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Message from the  
USENIX ATC ’15 Program Co-Chairs

Welcome to the 2015 USENIX Annual Technical Conference

This year’s program committee has put together a program of 47 refereed papers and 15 practitioner talks. These 
p apers and talks span a wide range of topics covering both novel research contributions and practical ideas in stor-
age systems, networking, memory management, data analytics, parallel and distributed systems, mobile computing 
and consumer electronics, security, reliability, and virtualization.

We introduced a new track for industrial practitioners to submit talk proposals this year and received 17 talk 
proposals submitted by practitioners from 13 different industrial organizations. Of these, we selected 15 talks to 
present at the conference.

For the traditional refereed papers track, we received a near-record number of paper registrations and submissions 
this year. Authors registered 312 abstracts, of which 221 were submitted as complete papers. Of the submitted 
papers, 32 were short papers, which had to be at most five pages long plus references, and the other 189 were full-
length papers, which had to be at most 11 pages long plus references.

Reviewing was single-blind, done by the program committee in two rounds, with a few external reviews. In the  
first round, each of the 221 submitted papers received two reviews. Papers receiving at least one “weak accept”  
or better (i.e., “accept” or “strong accept”) review moved on to the second round. In total, 139 papers moved on,  
and 82 papers were tentatively rejected. In the second round, each paper received two more reviews on average. 
Altogether, 724 reviews were completed.

After two phases of review, an online discussion was conducted among reviewers, during which the program com-
mittee decided to accept 14 highly ranked papers and to further discuss 61 papers during the in-person program 
committee meeting. The meeting was held in April in Chicago. One PC member called in; the other members all 
attended in person. Over a period of nine hours, the committee decided to accept 35 papers, including the 14 papers 
that were accepted earlier. Among these 35 papers, two are short papers. In addition, a total of 15 papers entered 
the reject-resubmission process. These 15 papers appeared to contain interesting ideas but could not be accepted in 
their submitted form. Therefore, the authors were given the option to resubmit a revised version of the paper within 
one month. Each such paper was assigned a PC contact who helped the authors understand the committee concerns. 
For 14 out of these 15 papers, the authors took advantage of this option and resubmitted. The original reviewers read 
and re-reviewed each resubmitted version over a period of two weeks and decided to accept 12 out of 14 resubmis-
sions. For most of these papers, all original reviewers were engaged in evaluating the resubmitted version.

The committee was comprised of 30 members, including the two co-chairs. Thirteen of them were affiliated with 
industrial organizations, and 17 were affiliated with academic organizations. Program committee  members were 
allowed to submit papers. The two co-chairs did not submit any papers. We followed conventional rules for handling 
conflicts of interest: conflicted members (or co-chairs) left the room during discussion of conflicted papers. 

In addition to the authors that submitted their work for consideration, the program committee, and the external 
reviewers, we would like to thank the USENIX staff that took care of all organizational details. Their help made  
our jobs a lot easier and allowed us to focus on reviewing papers and putting together the technical program.

We hope that you enjoy the conference, and thank you for participating in the USENIX ATC community.

Shan Lu, University of Chicago 
Erik Riedel, EMC 
USENIX ATC ’15 Program Co-Chairs
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Spartan: A Distributed Array Framework with Smart Tiling

Chien-Chin Huang†, Qi Chen*, Zhaoguo Wang†, Russell Power†, Jorge Ortiz‡

Jinyang Li†, Zhen Xiao*

†New York University, *Peking University, ‡IBM T.J. Watson Research Center

Abstract

Application programmers in domains like machine learning,

scientific computing, and computational biology are accus-

tomed to using powerful, high productivity array languages

such as MatLab, R and NumPy. Distributed array frameworks

aim to scale array programs across machines. However, max-

imizing the locality of access to distributed arrays is an un-

solved problem; such locality is critical for high performance.

This paper presents Spartan, a distributed array framework that

automatically determines how to best partition (aka “tile”) n-

dimensional arrays and to co-locate data with computation to

maximize locality. Spartan combines a lazy-evaluation based,

optimizing frontend with a distributed tiled array backend. Cen-

tral to Spartan’s design is a small number of carefully chosen

parallel high-level operators, which form the expression graph

captured by Spartan’s frontend during runtime. These operators

simplify the programming of distributed applications. More im-

portantly, their well-defined semantics allow Spartan’s runtime

to calculate the costs of different tiling strategies and pick the

best one for evaluating the entire expression graph.

Using Spartan, we have implemented 12 applications from

a variety of domains including machine learning and scien-

tific computing. Our evaluations show that Spartan’s automatic

tiling mechanism leads to good and scalable performance while

eliminating the need for manual tiling.

1 Introduction

High productivity array-languages, such as MAT-

LAB [42], NumPy [51] and R [63], are the dominant

toolkit for application programmers in areas like ma-

chine learning, scientific computing and computational

finance. To help array programs scale across machines,

there have been many proposals from both the HPC and

the systems communities to develop a distributed array

framework (discussed in §6). However, despite these ef-

forts, an easy-to-use, high-performance distributed array

framework has remained elusive. When distributing ar-

ray programs, the open challenge is how to maximize

the locality of access to array data spread out across

the memory of many machines. To improve locality, one

needs to both partition arrays smartly and co-locate com-

putation with data. We refer to this as the “tiling” prob-

lem. Tiling is crucial for performance; programs that op-

timize for locality can be an order of magnitude faster

than those that don’t.

Existing distributed array frameworks do not ade-

quately address the tiling problem. Most systems rely

on users to manually specify array partitioning; exam-

ples include Pydron [46], Presto [64], MadLINQ [56],

Global Arrays [20] and Petsc [9]. Although SciDB [62]

can automatically choose a good chunk size to optimize

loading arrays from disk, it still relies on a user-defined

tiling strategy. Manual tiling can achieve good locality,

but makes the resulting system much more tedious and

complex to use than their single-machine counterpart.

Ideally, a distributed array framework should support au-

tomatic tiling with minimal user input to achieve both

ease-of-use and high performance.

This paper presents Spartan distributed array frame-

work with smart tiling. Spartan provides the popular

Numpy [51] array abstractions while achieving scal-

able high performance across machines. The key in-

novation of Spartan is its automatic tiling mechanism:

when distributing an n-dimensional array across ma-

chines, the runtime of Spartan can automatically decide

which axis(es) to cut each array along and to co-locate

computation with data.

A major design of Spartan is the five high-level paral-

lel operators, including map, fold, filter, scan and join -

update. These high-level operators capture the parallel

patterns of most array programs and we use them to dis-

tribute a myriad of built-in array functions as well as user

programs. The semantics of these high-level operators

lead to well-defined cost profiles. The cost profile of an

operator gives an estimate of the communication cost for

each potential tiling strategy (row-wised, column-wised,

etc.) for its inputs. Therefore, it provides crucial infor-

mation to enable the runtime to perform automatic tiling.

As an example, the map operator applies a user-defined

function element-wise to several input arrays with the

same shape. Thus, this operator achieves the best locality

(and zero communication cost) if all its input arrays are

partitioned in the same way. Otherwise, the cost equals

to the size of those input arrays with different tiling.

At runtime, Spartan splits program execution into a

1
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series of frontend and backend steps. On the client ma-

chine, the frontend first turns a user program into an ex-

pression graph of high-level operators via lazy evalua-

tion. It then runs a greedy search algorithm to find a good

tiling for each node in the expression graph to reduce the

overall communication cost. Finally, the frontend gives

the tiled expression graph to the backend for execution.

The backend creates distributed arrays according to the

assigned tiling and evaluates each operator by schedul-

ing parallel tasks among a collection of workers.

Spartan’s automatic tiling is not without limitations.

First, Spartan only aims to minimize network communi-

cation and does not consider other performance limiting

factors such as how tiling impacts each machine’s cache

locality. Second, the default cost profile for join update

is not precise in some circumstances and require addi-

tional hints from users. While this imposes additional

work from users, we have found the efforts to be reason-

ably low in practice. Third, the greedy search algorithm

does not guarantee optimal tiling because the underlying

optimization problem is NP-complete.

We have built Spartan to provide similar user inter-

faces as NumPy. It currently implements 50+ common

Numpy functions. We have developed 12 applications

on top of Spartan. All of them are simple to write using

builtins or Spartan’s high-level operators. Evaluations on

a local cluster and the Amazon EC2 show that Spar-

tan tiling algorithm can automatically find good tiling

for arrays and achieve good scalability. Compared to an

existing in-memory distributed array framework, Presto,

Spartan applications achieve a speedup of 1.7×.

2 Automatic Tiling Overview

The Setup. The Spartan system is comprised of many

worker machines in a high speed cluster. Spartan parti-

tions each global array into several tiles (sub-arrays) and

distributes each one to a potentially different worker. We

refer to the partitioning strategy as tiling. There are sev-

eral ways to “tile” an array. For example, Fig. 1 shows

the three tiling choices for a 2D array (aka matrix).

In Spartan, an array is created by loading data from

an external storage or as a result of some computation.

Spartan decides the tiling choice for the array at its cre-

ation time. What is a good tiling choice? We consider the

best tiling as one that incurs the minimum communica-

tion cost when the array is used in a computation – work-

ers fetch and write as few remote tiles as possible. In this

section, we examine what affects good tiling and give an

overview of Spartan’s approach to automatic tiling.

2.1 What Affects Good Tiling?

Several factors affect the tiling choice for an array. These

include how the computation accesses the array, the run-

time information of the array and how the array is used

row-wised tiling column-wised tiling block tiling

Figure 1: Three tiling methods for 2-dimensional arrays.
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Figure 2: Two ways to implement matrix multiplication

X·Y=Z, aka dot operation. Gray areas denote data read or

updated by a single worker. In (a), each worker reads the en-

tirety of Y across the network and performs local writes. Its

per-worker communication cost is k ∗ m. In (b), each worker

performs local fetches and sends updates of size n∗m over the

network. The per-worker communication cost is n ∗m.

across the program. Below, we illustrate how each of the

factors affects tiling using concrete examples.

1) The access pattern of an array. Array computation

tends to read or update an array along some particular

axis. This access information is crucial for determining

a good tiling. Fig. 2(a) shows the access pattern of a

common implementation of matrix multiplication (aka

dot). When computing X ·Y = Z, this implementation

launches p parallel tasks each of which reads X row-wise

and reads the entirety of Y . The task then performs a lo-

cal dot and sends the result row-size to create Z. Conse-

quently, it is best to tile both X and Z row-wise (it does

not matter how Y is tiled). Other ways of tiling incur ex-

tra communication cost for fetching X and updating Z.

2) The shape and size of an array. The access pattern

of an array often depends on the array’s shape and size.

Therefore, such runtime information affects the array’s

tiling choice. In addition to Fig. 2(a), there exists an alter-

native implementation of dot, shown as Fig. 2(b). In this

alternative implementation, each of the p parallel tasks

reads X column-wise and Y row-wise to perform a lo-

cal matrix multiplication and update the entirety of Z.

The final Z is created by aggregating updates from all p

tasks. Consequently, it is best to tile X column-wise and

Y row-wise.

2
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Whether to use Fig. 2(a) or Fig. 2(b) to compute X ·

Y = Z is a runtime choice that depends on the array

shapes. Suppose X is an n× k matrix and Y is a k ×m

matrix. Fig. 2(a) has a per task communication cost of

k ∗m. This is because each task needs to fetch the entire

Y across the network and can be scheduled to co-locate

with the tile of X that it intends to read. By contrast,

Fig. 2(b) has a per task communication cost of n ∗ m.

This is because each task needs to send its update of Z

over the network and can be scheduled to co-locate with

the tiles of X and Y that it intends to read. Therefore, the

best tiling choice depends on the shape of X . If n > k,

the cost of Fig. 2(a) is lower and the system computes

dot using (a) whose preferred tiling for X is column-

wise. If n < k, the cost of Fig. 2(b) is lower and the

system computes dot using (b) whose preferred tiling

for X is row-wise.

1 func ALS(A):

2 ’’’

3 Alternating Least Squares

4 Input: A is a n*k user-movie rating matrix.

5 Output: U and M are factor matrices.

6 ’’’

7 for i from 1 to max_iter

8 U = CalculateUsersFactor(A, M)

9 M = CalculateMoviesFactor(A, U)

10 endfor

11 return U, M

Figure 3: Pseudocode of Alternating Least Squares.

3) How an array is used throughout the program.

An array can be read by multiple expressions. If these

expressions access the array differently, we can reduce

communication cost by creating multiple tilings for the

array. In order to learn of an array’s usage, the system

cannot simply handle one expression at a time, but must

“look ahead” in execution when determining an array’s

tiling. Consider the Alternating Least Squares (ALS)

computation shown in Fig. 3. ALS solves the collabo-

rative filtering problem by decomposing the given user-

item rating matrix. Consider a movie recommendation

system under ALS that makes use of two parameters:

users and movies. In each iteration, ALS calculates the

factor for each user, based on the rating matrix, A, and

a movie factor matrix (line 5 in Fig. 3). Then, it calcu-

lates the factor for each movie based on the rating matrix,

A, and users factor matrix (line 6 in Fig. 3). Thus, ALS

needs to access A along both row (users) and column

(movies) in one single iteration. If the system decides

on A’s tiling by line 8 only, it would tile A row-wise.

Later, at line 9, the system incurs communication cost

when reading A column-wise. This is far from optimal.

If we unroll the for loop and look at all the expressions

together, we can see that A is accessed by two expres-

sions several times (max iterations). Thus, the best tiling

is to duplicate A and tile one along row and another along

Tile1

array-language
frontend

operator based
expression graph

Worker 1

Tile2

Worker 2

Tile 3

Worker 3

{client
machine

distributed execution 
backend

distributed 
arrays

capture array expressions
transform to operators

tiling 
optimization

Figure 4: The layered design of Spartan. The frontend builds

an expression graph and optimizes it. The backend executes

the optimized graph on a cluster of machines. Each worker (3

workers in this figure) owns a portion of the global array.

column.

2.2 Our Approach and Spartan Overview

Like NumPy and other popular array languages, users

write applications in Spartan using a large number of

built-in functions and array primitives (e.g. +,*,dot,

mean, etc.). Spartan implements its built-in functions us-

ing a small number of high-level parallel operators. The

high-level operators encapsulate common parallel pat-

terns and can efficiently express most types of computa-

tion. Users may also directly program using these high-

level operators if their computation cannot be expressed

by existing builtins.

Spartan uses a layered approach which splits the exe-

cution into frontend and backend steps, shown in Fig. 4.

The frontend, running on a client machine, captures user

code and turns it into an expression graph whose nodes

correspond to the high-level operators. Next, the frontend

runs a tiling optimizer to determine good tiling for each

node in the expression graph. Finally, the frontend sends

the tiled expression graph to the backend. The backend

provides high performance distributed implementations

of high-level operators. For each operator, it schedules a

collection of tasks running on many compute machines.

The tasks create, fetch and update distributed in-memory

arrays based on the tiling hint determined by the opti-

mizer.

Spartan’s high-level operators and its layered design

help collect the necessary information for automatic

tiling. First, by expressing various types of computation

in a small set of high-level operators, the data access

pattern is made explicit for analysis (§2.1 (1)). Second,

the frontend dynamically captures the expression graph

with runtime information about the shape of input and in-

termediate arrays (§2.1 (2)). Third, the expression graph

represents a large execution context, thereby allowing the

frontend to understand how an array is used by multiple

3
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expressions. This is crucial for good tiling (§2.1 (3)).

3 Smart Tiling with High-level Operators

This section describes the design of Spartan, focusing on

those parts crucial for automatic tiling. Specifically, we

discuss high-level operators (§3.1), how Spartan’s fron-

tend turns an array program into a series of expression

graphs (§3.2), the basic tiling algorithm (§3.3) and addi-

tional optimizations (§3.4).

3.1 High-level Operators

A high-level operator in Spartan is a parallel computation

that can be parameterized by some user-defined function
1. The operators are “functional” in nature: they take ar-

rays or views of arrays as input and generate a new one

without modifying existing arrays in place. Spartan sup-

ports views of arrays like NumPy. A view is an inter-

face that allows users to manipulate arrays (e.g., swap-

ping axes, slicing) without copying data. When reading

a tile of a view, Spartan translates the shape and location

from the view to those of the underlying array to fetch

data.

High-level operators are crucial to Spartan’s smart

tiling, but what operators should we use? There are

two considerations in choosing them. First, each oper-

ator should capture a general parallel pattern that can be

used to implement many builtins. Second, each opera-

tor should have restricted semantics that correspond to a

well-defined cost profile for different ways of tiling its

input and output. This enables the captured expression

graph to be analyzed to identify good tiling choices.

Spartan’s current collection of five high-level opera-

tors is the result of many design iterations based on our

experience of building various applications and builtins.

Below, we describe each operator in turn and also discuss

its (communication) cost w.r.t. different tiling choices.

• D=map(fmap, S1, S2, . . .) applies function fmap

in parallel tile-wise over input arrays, S1, S2, . . .,

and generates output array D with the same shape.

The total cost is zero if all inputs have the same

tiling. Otherwise, the cost is the total size of all in-

put arrays whose tiling differs from S1.

As an example usage of map, Fig. 5(line 4–7)

shows the implementation of Spartan’s built-in ar-

ray addition function which simply uses map with

fmap as Numpy’s addition function.

• D=filter(fpred, S) creates a view of S that excludes

elements that do not satisfy the given predicate

fpred. Alternatively, filter can take a boolean array

in place of fpred. Since filter creates a view without

copying actual data, the cost is zero.

1The user-defined function must be free of side-effects and deter-

ministic.

• D=fold(faccum, S, axis) aggregates input array

S using the commutative and associate function

faccum along the axis dimension. For example, if

S is a m × n matrix, then folding it along axis=0

creates a vector of n elements. Spartan performs the

underlying folding in parallel using up to m tasks.

The cost of fold is zero if S is tiled along the axis

dimension, otherwise, the cost is S.size.

• D=scan(faccum, S, axis) computes cumulative

aggregates using faccum over the axis dimension

of S. Unlike fold, its output D has the same shape

as the input. The cost profile of scan is the same as

fold.

• D=join update(fjoin, faccum, S1, S2, . . . , axis1,

axis2, . . . , output shape) is more complex than

previous operators. This operator treats each input

array Si as a group of tiles along the axisi,

The shapes of the input arrays must satisfy the

requirement that they have the same number of

tiles along their respective axisi. Spartan joins

each tile among different groups and applies fjoin
in parallel. Function fjoin generates some update

to be written to output D at a specified location.

Multiple workers running fjoin may concurrently

update to the same location of D; such conflicts are

automatically resolved by applying faccum.

As an example of join update, consider the matrix

multiplication implementation in Fig. 2(b), where

S1 is a n × k matrix and S2 is a k × m matrix.

Fig. 5 (lines 20–22) uses join update which divides

S1 into k column vectors and S2 into k row vec-

tors. The fjoin (aka dot_udf) is called in parallel

for each column vector of S1 joined with the corre-

sponding row vector of S2. It performs a local dot

product of the joined column and row to generate

an n×m output tile. All updates are aggregated to-

gether using the addition accumulator to create the

final output.

A special case of join update is when some input

array Si has axisi = −1. In this case, the entire

array Si will be joined with each tile of other input

arrays. Fig. 5 (lines 23-25) uses this special case of

join update to realize the alternative matrix imple-

mentation of Fig. 2(a).

The cost of join update consists of two parts, 1) the

cost to read the input arrays. 2) the cost of updating

the output array. If an input array Si is partitioned

along axisi, the input cost for Si is zero, otherwise,

the cost is Si.size. Since the size and shape of out-

put array created by fjoin is unknown to Spartan, it

assumes a default update cost, D.size.

In addition to the five high-level operators, Spartan

also provides several primitives to create distributed ar-

rays or views of arrays.
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• D=newarray(shape, init method) creates a dis-

tributed array with a given shape. The array can be

initialized in several ways, 1) by loading data from

an external storage, 2) by some computation, e.g.

random, zeros.

• D=slice(S, region) creates a view over a specified

region in array S. The region descriptor specifies

the start and end of the sliced region along each di-

mension.

• D=swapaxis(S, axis1, axis2) creates a view of ar-

ray S by swapping the axes axis1 and axis2. The

commonly used built-in transpose function is im-

plemented using this operator. The output view D

has a different tiling from S. For example, if S is a

column-tiled matrix, then D = swapaxis(S, 0, 1)
is effectively a row-tiled matrix.

There is no cost for newarray, newarray and swa-

paxis (the cost of newarray reading from an external

storage is unrelated to tiling).

1 import numpy

2 import spartan

3

4 # Spartan’s parallel implementation of

5 # element-wise array addition

6 def add(a, b):

7 return spartan.map(a, b, f_map=numpy.add)

8

9 # User-defined f_join function

10 def dot_udf(input_tiles):

11 output_loc = spartan.location(0,0)

12 output_data = numpy.dot(input_tiles[0],

13 input_tiles[1])

14 return output_loc, output_data

15

16 # Spartan’s parallel implementation of

17 # matrix multiplication

18 def dot(a, b):

19 if a.shape[0] <= a.shape[1]:

20 return spartan.join_update(S=(a, b),

21 axes=(1, 0), f_join=dot_udf,

22 shape=..., f_accum=numpy.add)

23 else:

24 return spartan.join_update(S=(a, b),

25 axes=(0, -1),..)

Figure 5: Implementations of add and dot in Spartan.

Based on the high-level operators, Spartan supports

50+ Numpy builtins. Fig. 5 shows two implementations

of Spartan’s builtins, add and dot.

Although Spartan’s map and fold resemble the “map”

and “reduce” primitives in the MapReduce world [21, 1,

67, 29], they are more restrictive. Spartan only allows

fmap to write a tile in the same location of the output ar-

ray as its input tile location and not some arbitrary loca-

tion. Similarly, fold can only reduce along some axis as

opposed to over arbitrary keys in a key value collection.

Such restriction is necessary for them to have a well-

defined cost profile.

3.2 Expression Graph Capture

During a user program’s execution, Spartan’s frontend

captures array expressions via lazy evaluation and turns

(X) (Y)
newarray(X) newarray(Y)

map(+) join_update
(dot)

map(-)

(+)

(-)

(dot)

(a) (b)

Figure 7: The expression graph and its corresponding tiling

graph for Z = X + Y −X · Y .

them into a series of expression graphs [15, 4]. In an ex-

pression graph, each node corresponds to a high-level op-

erator and an edge from one node to another shows the

data dependency between them. Fig. 7(a) shows an ex-

ample expression graph. Expression graphs are acyclic

because Spartan’s high-level operators create immutable

arrays.

The frontend stops growing an expression graph only

when forced: this occurs in a few situations: (1) when a

variable is used to determine the control flow, (2) when

a variable is used for program output, (3) when a user

explicitly requests evaluation. The use of lazy evaluation

leads to an implicit form of loop unrolling: as long as

there is no data dependent control flow, expression graph

will continue growing until pre-configured limits.

3.3 Graph-based Tiling Optimizer

Spartan supports “rectangular” tiles: an n-dimensional

array can be partitioned along any one dimension (e.g.

row-wise, column-wise), or partitioned along two or

more dimensions (e.g. block-wise tiling). Some existing

work [28] explored other possible shapes that are more

efficient for its applications.

Given an expression graph of high-level operators, the

goal of the tiling optimizer is to choose a tiling for each

operator node to minimize the overall cost. This opti-

mization problem is NP-Complete (See appendix §A). It

is also not practical to find the best tiling via brute force

since the expression graph can be very large. Therefore,

we propose a graph-based approximation algorithm to

identify a good tiling quickly.

The algorithm works in two stages. First, it constructs

a tiling graph based on the expression graph and the cost

profile of each operator. Next, it uses a greedy strategy to

search for a low cost tiling combination.

1) Constructing the tiling graph. The goal of the tiling

graph is to expose the tiling choices and cost in the

expression graph. For each operator in the expression

graph, the optimizer transforms it into a node group, i.e.

5
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Figure 6: Two examples of building the tiling graph. (a) A plus expression, (S1 + S2), implemented by map operator (b) A dot

expression, dot(S1, S2), implemented by join update operator.

a cluster of several tiling nodes, each representing a spe-

cific choice to tile the operator’s output or intermediate

steps. The weight of each edge that connects two tiling

nodes represents the underlying cost if the two operators

are tiled according to the tiling nodes.

Fig. 6 shows how a map operator, corresponding to

D = S1 + S2, is transformed. To keep the figure simple,

we assume that all arrays are two dimensional with two

tiling choices: row-based or column-based. And all dot-

ted lines represent zero edge weights. As Fig. 6 shows,

the map operator becomes two nodes in the tiling graph,

each representing a different way to tile its output D.

Similarly, each of the map operator’s input arrays S1 and

S2 (which are likely outputs from the previous operators)

also correspond to two nodes. For map, there is a well-

defined way to label the weights among nodes, as illus-

trated in Fig. 6. For example, if S2 is tiled column-wise

and D is tiled row-wise, the weight between the corre-

sponding two nodes is S2.size because workers have to

read S2 across the network to perform the map. fold and

scan are treated similarly as map, but with edge weights

labeled according to their own tiling cost profiles.

Next, we discuss the transformation of join update.

For this operator, we use some intermediate tiling nodes

(a1, a2 . . . in Fig. 6(b)) to represent the reading cost dur-

ing the join. A placeholder node is used to represent the

join stage. We use another set of tiling nodes (n1, n2 in

Fig. 6(b)) to capture the update cost to the output array.

Unfortunately, Spartan can not know the precise update

cost of join update without executing the user-defined

fjoin function. Thus, we provide a default update cost

according to the common update cost pattern observed

in the applications implemented by join update. If join -

update is performed within a loop, the optimizer can ad-

just the edge cost of the tiling graph according to the ac-

tual cost observed during the previous execution of the

join update.

Fig. 6(b) shows the tiling graph used for the ma-

trix multiplication function implemented in join update.

This implementation corresponds to the data access pat-

tern shown in Fig. 2(b). As shown in Fig. 5, the join axes

for the first and second arrays are column and row re-

spectively. The edge weight for Si is 0 if it matches the

join axis and is Si.size otherwise. The cost is Si.size is

because each worker needs to update the entirety of the

result matrix. The edge weights for n1 and n2 are both

p ∗ output shape.

Fig. 7 gives an example showing a specific array ex-

ecution (Z = X + Y − X · Y )) and its corresponding

expression graph and tiling graph. We omitted the details

of other edge weights to keep the graph readable.

2) Searching for a good tiling. Deciding a tiling choice

for an operator corresponds to picking one node among

the corresponding node group in the underlying tiling

graph and different combinations of tiling nodes pose

different costs. As a result, the next step for the tiling

optimizer is to analyze the tiling graph and find a com-

bination of tiling choices that minimizes the overall cost.

The tiling optimizer adopts a greedy search algorithm.

The heuristic is to decide the tiling for the node group

with the maximum connectivity first. Here, connectiv-

ity of a node group is the number of its adjacent node

groups. When deciding a tiling for a node group X , the

algorithm chooses the one resulting in the minimum cost

for X . Why does this heuristic work? The cost of a tiling

for an operator depends on the tiling choices of its ad-

jacent operators. Thus, an operator with more adjacent

operators has a higher impact on overall cost. Conse-

quently, the algorithm should first minimize the cost of

node groups with higher connectivity2.

Fig. 8 shows the pseudo code for the tiling algorithm.

Given a tiling graph G, the algorithm processes node

groups in the order of edge connectivity (Line 19–20).

For each node group (x in Line 20), the algorithm calcu-

lates the cost of each tiling node and chooses the tiling

2Another natural heuristic is to search the node group with largest

array size first. Unfortunately, this algorithm does not perform well ac-

cording to our experiments.
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node with the minimum cost (Line 23–29). After decid-

ing the good tiling (x.chosenT iling in Line 30) for node

group x, the algorithm removes all edges connected to all

other tiling nodes (Line 32). This implies that the algo-

rithm can’t freely choose tiling for adjacent node groups

of x any more – it must consider the chosen tiling of x.

FindCost obtains the cost of a tiling node (T in Line

1) by calculating the sum of the minimum edge weight

between each adjacent node group and T (Line 4–14).

If the adjacent node group is a view operator such as

swapaxis, its tiling node will be decided by T . To get

accurate cost affected by T , the algorithm should also

consider the adjacent node groups for its view operators.

As a result, FindCost recursively finds the cost of the

view node group (Line 5–6). The result corresponds to

the best possible cost for tiling node T .

The complexity of the tiling algorithm is O(E ∗ N)
where E is the number of edges in the tiling graph and

N is the number of node groups. It is not guaranteed to

find the optimal tiling. However, we find that the greedy

strategy works well in practice (§5).

1 func FindCost(NodeGroup G, TileNode T)

2 # Find the cost for tiling node T of G

3 cost = 0

4 foreach NodeGroup g in G.connectedGroups():

5 if IsView(g, G):

6 cost += FindCost(g, g.viewTileNode(T))

7 else:

8 edgeCost = INFINITY

9 foreach Edge e in g <-> T

10 edgeCost = min(edgeCost, e.cost)

11 endfor

12 cost += edgeCost

13 endif

14 endfor

15 return cost

16

17 func FindTiling(TilingGraph G)

18 # Find good tiling for every operator in G.

19 GroupList = SortGroupByConnectivity(G)

20 foreach NodeGroup x in GroupList

21 minCost = INFINITY

22 goodTiling = NONE

23 foreach TileNode y in x

24 cost = FindCost(x, y)

25 if cost < minCost:

26 minCost = cost

27 goodTiling = y

28 endif

29 endfor

30 x.chosenTiling = goodTiling

31 # Other Group can only connect to goodTiling.

32 x.removeAllConnectedEdgesExcept(goodTiling)

33 endfor

34 return G

Figure 8: The maximum connectivity group first algorithm to

find good tiling based on the tiling graph.

3.4 Additional Tiling Optimizations

Duplication of arrays. As the ALS example in Fig 3

shows, some arrays may be accessed along different axes

several times. To reduce communication, Spartan sup-

ports duplication of arrays and tiles each replica along

different dimensions. To support duplication in the tiling

optimizer, we add a “duplication tile“ node to each node

group in the underlying tiling graph. As duplication of

arrays increases memory consumption. Spartan allows

users to specify the memory budget for duplicating ar-

rays to limit memory usage. Whenever the optimizer

chooses to “duplicate tile“ which causes an operator’s

output to be duplicated, it deducts from the memory

budget. The optimizer will not choose duplication tiling

without enough memory budget.

Sparse arrays. Dense arrays and sparse arrays are dif-

ferent in several aspects. First, the size of a sparse array

can’t be known based on the shape. Smart tiling estimates

the size by sampling before constructing the tiling graph.

Second, the non-zero elements distribution of intermedi-

ate arrays may be different from those of the input ar-

rays. Smart tiling addresses this problem by adjusting

edge weights after executing operators. This technique

is the same as how Spartan improves its initial imprecise

cost estimate of join update with successive execution.

Finally, the distribution of a sparse array can be skewed.

Smart tiling can use fine-grained tiles to help backend to

perform work stealing [55].

4 Implementation

Since NumPy is wildly popular in machine learning and

scientific computing, our implementation goal is to repli-

cate the “feel” of NumPy as much as possible. Our

prototype currently supports 50+ most commonly used

Numpy builtins.

The Spartan frontend, written in Python, captures ex-

pression graph and performs tiling optimization (§3). The

Spartan backend, consists of one designated master and

many worker processes on a cluster of machines. Below,

we provide more details on the major backend compo-

nents:

Execution engine. The backend provides efficient im-

plementations of all high-level operators. Given an ex-

pression graph, the master is responsible for coordinat-

ing the execution of one node (a high-level operator) at a

time. To execute a node, the master first creates an output

array with the given tiling hint and then schedules a set

of tasks to run user-defined parameter functions in paral-

lel according to the data locality. Locality here means the

task is executed on the worker that stores its input source

tile. If the node corresponds to a join update, scan or

fold, the backend also associates a user-defined accumu-

lator function with the output array to aggregate updates

from multiple workers.

User-defined parameter functions are written in

Python NumPy and process one tile instead of one

element at a time. Like MatLab, NumPy relies on

high performance C-based linear algebra libraries like

BLAS [35] or LAPACK [6]. As a result, the local exe-

cution of parameter functions in each worker is efficient.

7
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Distributed, tiled arrays. Each distributed array is

partitioned into a set of tiles according to its tiling hint

and stored in workers’ memory. To create an array, the

master assigns each of its tile to a worker (e.g. in a round-

robin fashion) and distributes the tile-to-worker mapping

to all workers so everybody can access remote tiles with-

out consulting the master. If two arrays of the same shape

have identical hints, the master ensures that tiles corre-

sponding to the same region in both arrays are co-located

in the memory of the same worker.

Fault tolerance. To recover from worker failure in the

middle of a long computation, the backend checkpoints

in-memory arrays to durable storage. Our implementa-

tion currently adopts the simplest design: after finishing

an entire operator, the master periodically instructs all

workers to save their tiles and also saves its own state.

5 Evaluation

In this section, we measured the performance of our

smart tiling algorithm. We also evaluated the scalability

of applications and compared against other open-source

distributed array frameworks.

5.1 Experimental setup

We evaluated the performance of Spartan on both our

local cluster as well as Amazon EC2. The local cluster

is a heterogeneous setup consisting of eleven machines:

6 machines have 8-core AMD Opterons with 16GB of

RAM, and 5 machines have 4-core Intel Xeons with

8GB of RAM. The machines are connected by gigabit

Ethernet. For the EC2 experiments, we use 128 spot in-

stances of the older generation m2.xlarge. Each of these

instances has 17.1GB memory and 2 virtual CPUs. The

network performance is rated as “moderate”, which is

approximately 300Mbps according to our measurements.

Unless otherwise mentioned, we ran multiple worker

processes on each machine, one associated with each

CPU core. We use 12 applications as our benchmarks.

They include algorithms from machine learning, data

mining and computational finance.

5.2 Tiling

Smart Tiling Evaluation for Applications: We com-

pared the running time of applications with the tiling

generated by smart tiling against the best tiling – the

tiling that incurs the minimum communication cost. The

best tiling can be pre-calculated by using a brute-force

algorithm to traverse the expression graph and search the

minimum communication cost among all possible tiling

choices. The experiment runs on 128 EC2 instances. Fig.

9 only shows 10 applications because the computational

finance ones operate on one-dimensional arrays which

can only be tiled along one axis. For applications which

are not perfectly scalable such as ALS and Cholesky, we

Figure 9: Running time comparison between smart tiling and

the best tiling for 10 applications.

set the sample sizes up to 10 million. For others, the sam-

ple sizes are up to 1 billion due to the memory limitation.

These applications show various kinds of tiling pat-

terns. First, many applications contain expressions or op-

erators that require runtime shape and axis information to

best tile matrices, e.g. dot and join update. Smart tiling

analyzes the runtime information and gives the best tiling

for the applications such as row-wise tiling for Regres-

sion and block tiling for Cholesky decomposition. Sec-

ond, some program flows pass the intermediate matrices

to expressions that change the view of tiling, e.g. swa-

paxis. Smart tiling identifies the best tiling through the

global view of computation. Example applications in-

clude SSVD and PCA. Finally, some applications, like

ALS, access matrices along different axes several times.

As described in §2.1, the best tiling for these applications

is duplication tiling.

Fig. 9 shows that Spartan’s smart tiling is able to give

the best tiling and improve the performance for all appli-

cations. Note that the application running time of the best

tiling and Spartan’s smart tiling are not the same; some-

times Spartan’s smart tiling even outperforms the best

tiling. The difference is caused by the instability of Ama-

zon EC2. Spartan’s optimizer makes the same choices as

the best tiling for all applications.

A bad tiling can result in huge network transmission.

For instance, if the tiling of the input arrays for logistic

regression is partitioning along the smaller dimension,

workers need to remotely fetch the matrix which is more

than 512GB in the evaluation (4GB network transmis-

sion per instance in one iteration which result in approx-

imately an extra 110 seconds in our environment). An-

other interesting example is ALS. Simply row-wise or

column-wise tiling can result in 40% performance degra-

dation compared to duplication tiling. Moreover, the run-

ning speed of smart tiling is fast. For example, the brute-

force algorithm needs more than 500 seconds to analyze

a 14-operators ALS while Spartan’s smart tiling derives

the same result in 0.06 seconds.
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Figure 12: Fixed input size, varying number of workers. Normalized running time is calculated by dividing 8 worker running time

on local cluster.

Figure 10: Network transmission cost comparison between

smart tiling and the best tiling for 100 randomly generated pro-

grams. Sorted by network transmission for readability only (ar-

ray sizes are randomly chosen from a set and there is no relation

between experiment index and network transmission).

1 def sub_optimal_case_pattern(SIZE):

2 A = expr.rand((SIZE, SIZE))

3 B = expr.rand((SIZE, SIZE))

4 C = A + B

5 D = expr.transpose(A) + expr.transpose(B)

6 E = C + D

Figure 11: An example that smart tiling gives sub-optimal

tiling.

Smart Tiling Evaluation for Randomly Generated

Programs: Although smart tiling gives the best tiling for

applications we implemented, there is no guarantee that

smart tiling performs well for various kinds of applica-

tions. Therefore, we examined the performance of smart

tiling for randomly generated programs. Each array di-

mension is randomly chosen from 128K to 512K. These

programs contain various numbers and types of opera-

tors Spartan has supported. The number of operators per

program ranges from 2 to 15.

Fig. 10 shows the network transmission cost of 100

randomly generated programs with the tiling given by

smart tiling and the best tiling. The result shows that

Spartan’s smart tiling can give the best tiling for most

programs. It is also fast compared to the brute-force al-

gorithm. For all programs, smart tiling needs less than

0.1 seconds while the brute-force algorithm spends 1900

seconds when the program contains 15 operators.

Fig. 11 shows the pattern residing in those programs

that smart tiling gives sub-optimal tiling. The best tiling

for Fig. 11 is to tile D column-wise and other operators

row-wise. However, smart tiling inspects the tiling cost

for C first and then for D because of the maximum con-

nectivity. It finds that row-wise tiling costs zero for both

operators. Therefore, smart tiling partitions both C and

D row-wise and thus gives sub-optimal tiling due to the

conflict views (caused by transpose) of C and D.

Although smart tiling cannot give the best tiling for

these programs, this sub-optimal case rarely happens.

Smart tiling produces a conflict view only when a pro-

gram exhibits two patterns simultaneously: 1) Two oper-

ators have different views of tiling from the same input

arrays. 2) Both operators have more connectivity than

their input arrays. As Fig. 10 shows, only 5 out of 100

random generated programs satisfy both requirements.

For three of them, the best tiling needs zero network

transmission while the smart tiling needs around 0.01 GB

network transmission. The number is not large because

these expressions include fold which reduces the size of

matrices. For the other two instances, the best tiling re-

quires 1.3 GB but the smart tiling consumes 1.9GB and

2.6GB respectively.

5.3 Scaling

We evaluated the scalability of all applications in two

ways. First, the applications use fixed-size inputs and run

across a varying number of workers. Second, the appli-

cations use inputs whose sizes are scaled linearly with

the number of workers. All results are normalized by the

8 workers baseline cluster size to show the relative sav-

ings (comparing with 1 worker is not fair because there

is no communication for only 1 worker). All inputs are

synthetic data.

9
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Figure 13: Scaling input size on local cluster.

Figure 14: Scaling input size on 128 instances EC2.

Fixed input size. Fig. 12 shows the running time of 12

applications on the local cluster. The number of workers

used in the experiments increases from 8 to 64. The dot-

ted lines corresponding to 1

2
, 1

4
or 1

8
ratio represent the

ideal scaling for 16, 32, and 64 workers.

The evaluation shows that the running time of many

applications achieves perfect scaling. Some of them do

not scale well due to the inefficiencies of the underly-

ing algorithms. CG has many dependent folds that re-

duce to one value on one worker. Cholesky also has many

dependent steps: the parallelism available in each step

grows and shrinks, thus Cholesky cannot always utilize

all workers.

Scaling input size. Fig. 13 shows the performance for

16 and 64 workers. Ideal scaling corresponds to a flat line

of 1.0.To examine the scalability on a larger-scale sys-

tem, we ran the experiment on EC2. Fig. 14 illustrates

the experiment running up to 256 workers. The result is

similar to that of Fig. 13 except for ALS. There are three

matrices in ALS, rating matrix, sample matrix and item

matrix. While Spartan’s smart tiling can reduce the read-

ing cost of rating matrix by duplication, ALS still needs

to randomly fetch sample matrix and item matrix in each

iteration and results in large communication. Thus, ALS

is not scalable for large-scale datasets.

Running Time (seconds) Sample Size

Spartan 523.95s 1 billion

Presto 882.47s 1 billion

SciDB 2573.83s 10 million

Figure 15: K-Means performance comparison with Presto and

SciDB on 128 instances EC2. The dataset for Spartan and

Presto contains 1 billion points, 50 dimensions and 128 cen-

ters. The dataset for SciDB contains 10 million points.

5.4 Comparison with other systems

We compared the performance of Spartan’s k-means with

the implementation of Presto (also called Distributed R)

and SciDB. The synthetic dataset contains 1 billion sam-

ples with 50 dimensions and 128 centers for Presto and

Spartan while only 10 million samples for SciDB.

Fig. 15 shows that the performance of Spartan is 1.7x

faster than Presto. Though both Spartan and Presto par-

tition the arrays row-wise which is the best tiling, Presto

requires users to explicitly assign the tiling while Spar-

tan needs no user hints. Thus, the performance difference

of Spartan and Presto comes from the backend library

and implementation. We have verified this by running k-

means only on a single worker.

Unlike Spartan and Presto, SciDB is not an in-memory

distributed system and thus has much slower perfor-

mance. The basic partition unit in SciDB is a chunk. It

is important for SciDB to select the correct chunk size to

reduce disk I/O. However, in Spartan, we focus on how

to reduce the network communication.

6 Related Work

There is much prior work in the area of distributed array

framework design and optimization.

Compiler-assisted data distribution. Prior work in

this space proposes static, compile-time techniques for

analysis. The first set of techniques focuses on parti-

tioning [28] and the latter set on data co-location [33,

53, 45]. Prior work also has examined nested loops

with affine array subscript patterns, using different struc-

tures (vector [28], matrix [58] or reference [30]) to

model memory access patterns or polyhedral model [40]

to perform localization analysis. Since static analysis

deals poorly with ambiguities in source code [7], recent

work proposes profile-guided methods [18] and memory-

tracing [52] to capture memory access patterns. Simpler

approaches focus on examining stencil code [52, 24, 26,

32, 25]. Spartan simplifies analysis significantly since

high-level operator access patterns are well-defined.

Access patterns can be used to find a distribution of

data that minimizes communication cost [28, 57, 10, 22,

27]. All approaches construct a weighted graph that cap-

tures possible layouts. Although searching the optimal

solution is NP-Complete [31, 34, 36, 37], heuristics per-

10
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form well in practice [37, 53]. Spartan adopts the idea

of constructing a weighted graph. However, unlike prior

work that requires language-specific compile-tile analy-

sis, Spartan’s high-level operators with know tiling costs

provide enough information to analysis.

Parallel vector languages. ZPL [38], SISAL [43],

NESL [13] and MatLab*P [17] share a common goal

with Spartan. These languages expose distributed arrays

and vector primitives and some provide a few core opera-

tors for parallel operations. Unlike Spartan, ZPL does not

allow arbitrary indexing of distributed arrays and does

not allow parallelization of indexable arrays. NESL re-

lies on a PRAM model which assumes that a shared, dis-

tributed region of memory can be accessed with low la-

tency. Spartan makes no such assumption. SISAL pro-

vides an explicit tiled model for arrays [23], however

does not consider tiling strategies.

Distributed programming frameworks. Most dis-

tributed frameworks target primitives for key-value

collections (e.g. MapReduce [21], Dryad [29], Pic-

colo [55], Spark [67], Ciel [48], Dandelion [59] and Na-

iad [47]). Some provide graph-centric primitives (e.g.

GraphLab [39] and Pregel [41]). While one can encode

arrays as key-value collections or graphs, doing so is

much less efficient than Spartan’s tile-based backend. It

is possible to implement Spartan’s backend by augment-

ing an in-memory framework, such as Spark or Piccolo.

However, we built our prototype from scratch to allow

for better integration with NumPy.

FlumeJava [15] provides programmers with a set of

high-level operators. Its operators are transformed into

MapReduce’s [21] dataflow functions. FlumeJava is tar-

geted at key-value collections instead of arrays. Flume-

Java’s operators look similar to Spartan’s, but their un-

derlying semantics are specific to key-value collections

instead of arrays. Moreover, FlumeJava does not explic-

itly optimize for data locality because it is not designed

for in-memory computation.

Relational queries are a natural layer on top of key-

value centric distributed execution frameworks, as seen

in systems like DryadLINQ [66], Shark [65], Dande-

lion [59] and Dremel [44]. Several efforts attempt to

build an array interfaces on these. MadLINQ [56] adds

support for distributed arrays and array-style computa-

tion to the dataflow model of DryadLINQ [66]. Sci-

Hadoop [14] is a plug-in for Hadoop to process array-

formatted data. Google’s R extensions [61], Presto [64]

and SparkR [3] extend the R language to support dis-

tributed arrays. Julia [2] is a newly developed dynamic

language designed for high performance and scientific

computing. Julia provides primitives for users to paral-

lel loops and distribute arrays. These extensions and lan-

guages rely on users to specify a tiling for each array,

which burdens users with making non-trivial optimiza-

tion that require deep familiarity which each operation

and its data.

Distributed array libraries. Optimized, distributed

linear algebra libraries, like LAPACK [6], ScaLA-

PACK [16], Elemental [54] Global Arrays Toolkit [49]

and Petsc [8, 9] expose APIs specifically designed for

large matrix operations. They focus on providing highly

optimized implementations of specific operations. How-

ever, their speed depends on correct partitioning of arrays

and their programming model is difficult to extend.

Global Address Spaces. Systems such as Unified Par-

allel C [19] and co-array Fortran [50] provide a global

distributed address space for sharing arrays. They can be

used to implement the backend for distributed array li-

braries. They do not directly provide a fully functional

distributed array language.

Specialized application frameworks. There are a num-

ber of frameworks specifically targeted for distributed

machine learning (e.g. MLBase [60], Apache Ma-

hout [5], and Theano [12], for GPUs). Unlike these, Spar-

tan targets a much wider audience and thus must address

the complete set of challenges, including support for a

number built-ins, minimizing the number of temporary

copies and optimizing for locality.

Array Databases and Query Languages SciDB [62]

and RasDaMan [11] are distributed databases with n-

dimensional data storage and an array query language

inspired by SQL. These represent the database commu-

nity’s answer to big numerical computation. The query

language is flexible, but as the designers of SciDB

have seen, application programmers often prefer express-

ing problems in more comprehensive array languages.

SciDB-R is an attempt to win over R programmers by

letting R scripts access data in SciDB and use SciDB to

execute some R commands. SciDB’s partition strategy

is optimized for disk utilization. In contrast, Spartan fo-

cuses on in-memory data.

7 Conclusion

Spartan is a distributed array framework that provides a

smart tiling algorithm to effectively partition distributed

arrays. A set of carefully chosen high-level operators ex-

port well-defined communication cost and simplify the

tiling process. User array code is captured by the fron-

tend and turned into an expression graph whose nodes

correspond to these high-level operators. With the ex-

pression graph, our smart tiling can estimate the com-

munication cost across expressions and find good tilings

for all the expressions.
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A NP-Completeness Proof

A.1 Problem Definition

To simplify the proof, we consider only newarray, map and

swapaxis operators. The general case is discussed in section

A.4. This problem contains several operators in a program and

each one can be the input of others. The first step is to build an

expression graph for this problem as shown in section 3.3. Next

is to convert the expression graph to the tiling graph. We define

a tiling graph as following:

1. A node group represents an operator and contains several

partition nodes.

2. If an operator A is an input of an operator B in the expres-

sion graph, there are some edges between node group A

and group B in the tiling graph. How node group A con-

nects to node group B depends on the type of operator

B.

3. The cost of an edge A.tilingI → B.tilingK is the net-

work transmission cost to do operator B when A is tiled

as tilingI and B is tiled as tilingK .

Figure 16 shows three operators that will be used in the

proof. There are two kinds of tilings, row and column, for each

operator. There is no input for a newarray. As for map, there

is at least one input array. The tiling nodes of an input node

group are fully connected to the tiling nodes of map. If two

tiling nodes represent the same tilings, there is no cost for the

edge between them. Otherwise, the cost is the size of the array,

N . The last operator is swapaxis. There is one input array for

swapaxis and each tiling node of the input array connects to

the tiling node of swapaxis representing the swapped tiling.

The cost for both edges are zero.

The problem is to choose a unique tiling node for each node

group without conflict and achieve the minimum overall cost

(summation of cost of all edges adjacent to two chosen tiling

nodes). Conflict means that if there are edges between node

group A and node group B, the chosen nodes must bear the

same relationship. For example, if the chosen tiling node for

the input of swapaxis means row tiling, the chosen tiling node

for swapaxis can only be column tiling to avoid conflict.

Instead of directly proving the problem, we prove the corre-

sponding verify problem which is to find out if there is a choice

with the cost less than or equal to K where K is an integer. We

denote the verify problem as TILING(K).

A.2 NP Proof

To show that TILING is in NP, we need to prove that a given

choice can be verified in polynomial time. Suppose N is the

number of node groups. Given a solution, we can verify the

solution by adding up the cost for all edges connected to each

chosen tiling node. There are at most N − 1 edges connected

to a tiling node and N chosen tiling nodes, we can get the total

cost in O(n2). Therefore, TILING(K) is in NP.

A.3 NP-Completeness Proof

To show TILING(K) is NP-Complete, we prove that

NAE−3SAT (N) can be reduced to TILING(K). NAE−

3SAT is similar to 3SAT except that each clause must have at

least one true and one false. Therefore, it rules out TTT and

FFF while 3SAT only excludes FFF .
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Figure 16: Three node groups and edge relationship with their

input(s).

Assume that there are N literals and M clauses in the given

question. M is polynomial to N . We prove that NAE −

3SAT (N) can be reduced to TILING(K) where K =
M ∗ 2.

1. Construction Function, C(I) :

(a) For C(I), True is viewed as row tiling and false

is viewed as column tiling.

(b) Each literal in NAE − 3SAT is an array in

TILING(K). A negation literal is viewed as a

swapaxis of the original array.

(c) For each clause ci = (L1∨L2∨L3), C(I) creates

six expressions:

E1 = map(swapaxis(L1, 0, 1), L2)

E2 = map(swapaxis(L1, 0, 1), L3)

E3 = map(swapaxis(L2, 0, 1), L1)

E4 = map(swapaxis(L2, 0, 1), L3)

E5 = map(swapaxis(L3, 0, 1), L1)

E6 = map(swapaxis(L3, 0, 1), L2)

For a negation literal, L, swapaxis(L) represent

the original array. For example, C(I) creates six

expressions for cj = (¬L1 ∨ L2 ∨ L3):

E1 = map(L1, L2)

E2 = map(L1, L3)

E3 = map(swapaxis(L2, 0, 1), swapaxis(L1, 0, 1))

E4 = map(swapaxis(L2, 0, 1), L3)

E5 = map(swapaxis(L3, 0, 1), swapaxis(L1, 0, 1))

E6 = map(swapaxis(L3, 0, 1), L2)

For explanation purpose, we call the six expressions

created by C(I) a clause group.

(d) After converting all clauses to clause groups, C(I)
create a cost graph according to the definition.

Without loss of generality, we assume that the array

size is 1. Therefore, the cost for an edge is either 0
or 1.

For a clause group, if three literal have the same symbols,

true or false, the minimum cost is 6. For example, if

three literals are all true or all false for ci = (L1 ∨

L2∨L3), the two inputs for each map of the clause group

must have different tilings because of swapaxis. Thus

the cost for map node group can only be 1. Since there

are six maps for a clause group, the minimum cost is 6.

For other cases, the minimum cost of a clause group is

2. For example, if L1 is the only true for ci = (L1 ∨

L2 ∨ L3), only the input tilings of maps for E4 and E6
are different. Since all maps are not referenced by other

operators, we can freely choose their tilings based only

on the input tilings. Thus the cost for this case is 2. Other

combinations are just symmetries of the above case and

have the same cost.

The time complexity for C(I) is O(N2).

2. C(B) belongs to TILING(K) if B belongs to

TILING(K) :

If S is a solution for B, every clause in S has at least one

true and one false. This implies that at least one row

tiling input and column tiling input for each clause group

of C(S). Therefore, the cost for C(S) is M ∗ 2 which is

equal to K.

3. B belongs to NAE − 3AT if C(B) belongs to

TILING(K) :

If S is a solution for C(B), there are at least one row tiling

and one column tiling for each clause group. In other

words, if one clause group has all row tiling inputs or all

column tiling inputs, the total cost for the tiling graph will

be at least 2 ∗ (M − 1) + 6 > K. As a result, no clause

group has all row tiling or column tiling input. Therefore,

S is a solution for B.

Step 2 and step 3 prove that NAE − 3SAT can be reduced

to TILING(K).

A.4 General Graph

The previous proof only considers the tiling graph with Array,

map and swapaxis. However, we argue that even though

the tiling graph contains more different operators, it is still

an NP-Complete problem to find out the solution. For any

TILING(K) which contains only the three operators, we

add some other operators and expression which are indepen-

dent from the original ones. Thus the new tiling graph con-

tains two sub tiling graphs, the original tiling graph and the

tiling graph representing the newly added operators. Moreover,

two sub tiling graphs are not connected. Thus, to solve new

TILING(K′) must first solve the TILING(K) which is

NP-Complete. Thus, we can also reduce TILING(K) to the

general graph.
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Abstract

This paper describes how a rules-based approach allowed

us to solve a broad class of challenging distributed sys-

tem problems in the RAMCloud storage system. In the

rules-based approach, behavior is described with small

sections of code that trigger independently based on sys-

tem state; this provides a clean separation between the

deterministic and nondeterministic parts of an algorithm.

To simplify the implementation of rules-based modules,

we developed a task abstraction for information hiding

and complexity management, pools for grouping tasks

and minimizing the cost of rule evaluation, and a polling-

based asynchronous RPC system. The rules-based ap-

proach is a special case of an event-based state machine,

but it encourages a cleaner factoring of code.

1 Introduction

Over the last decade more and more systems pro-

grammers have begun working on new and challenging

software subsystems that manage distributed resources

in a concurrent and fault-tolerant fashion. We call

these subsystems DCFT modules (Distributed, Concur-

rent, Fault-Tolerant). DCFT modules are most com-

mon in systems that provide infrastructure for large-

scale applications, such as Bigtable [8], Chubby [6],

Hadoop [2], HDFS [25], RAMCloud [22], Sparrow [23],

and ZooKeeper [15]. A DCFT module typically man-

ages a collection of distributed servers, such as workers

in a MapReduce application or replicas for a chunk of

data; it issues remote requests in parallel to maximize

performance, and it recovers from failures so that higher

layers of software need not deal with them.

DCFT code is different from most systems code be-
cause it must describe behavior that is highly nondeter-
ministic. As a result, DCFT modules are painfully diffi-
cult to implement. For example, the Chubby developers
reported:

Fault-tolerant algorithms are notoriously hard to ex-

press correctly, even as pseudo-code. This problem

is worse when the code for such an algorithm is

intermingled with all the other code that goes into

building a complete system. [7]

The current state of development for DCFT modules

resembles the situation in the mid-1960s for synchro-

nizing concurrent processes. In both cases, a new and

challenging style of programming was becoming more

common; there were no widely accepted design patterns

for implementing these modules, so each team developed

its own set of ad hoc implementation techniques. In

the case of synchronization, many different approaches

were tried over a period of more than a decade, and there

was considerable discussion about which approach was

best. By the early 1980s the systems community had

mostly settled on locks and condition variables, and this

approach has been the dominant one for managing small-

scale concurrency over the last three decades. We hope

that this paper will provide useful data to fuel the discus-

sion of DCFT modules, and that agreement will eventu-

ally emerge that makes it easier to implement these chal-

lenging systems.

This paper describes our experiences implementing

several DCFT modules in the RAMCloud storage sys-

tem [22, 24]. After struggling with our first implementa-

tions, we noticed that each of the DCFT modules ended

up organized around a collection of rules. In this rules-

based approach, the behavior of a module is described

with a small set of code snippets that trigger indepen-

dently based on the module’s state. The order of exe-

cution is not determined a priori, but rather by the evo-

lution of the module’s state in response to events in the

distributed system.

Since discovering this commonality, we have used the

rules-based approach explicitly in more recent DCFT

modules; these modules have been considerably easier

to develop than the early DCFT modules. Rules provide

a clean mechanism for expressing the nondeterminism of

a DCFT module while allowing the vast majority of code

to be written in a traditional imperative style.

This paper makes three contributions. First and fore-

most, it provides the first in-depth discussion of how to

implement DCFT modules in a practical large-scale sys-

tem. The paper introduces two of the DCFT modules in

RAMCloud, describes why they were hard to implement,

and discusses the design choices we made for RAM-

Cloud along with their implications. We believe that

the problems and solutions for RAMCloud are general

enough to be relevant for a variety of other systems.

Second, the paper describes the implications of a

rules-based approach on system structure. We found sev-

eral abstractions useful in structuring rules and imple-

menting efficient rules-based subsystems:



18 2015 USENIX Annual Technical Conference USENIX Association

• A task structure combines a set of related rules with

a collection of state variables. Each task uses its

rules and state variables to achieve a particular goal,

such as replicating an object. Tasks make it easier

to manage rules and understand their behavior.

• A pool is a simple scheduler that improves the effi-

ciency of rule evaluation. Each pool manages a col-

lection of related tasks; it separates inactive tasks

(those that are in their goal state) from active tasks

and evaluates rules only for the active tasks.

• A polling-based asynchronous mechanism for re-

mote procedure calls (RPCs) provides an efficient

and convenient way to incorporate remote commu-

nication into a rules-based module. Asynchronous

RPCs provide a better factoring than messages be-

cause they allow many error conditions to be han-

dled entirely within the RPC system.

These facilities allowed rules to be incorporated simply

and naturally into the RAMCloud system.

The paper’s third contribution is to demonstrate the

value of the rules-based approach. Rules allowed us

to solve a wide range of problems in RAMCloud us-

ing a small amount of code (only 30-300 lines of rules-

based code for each DCFT module). Rules are also ef-

ficient: when used in the critical path of RAMCloud’s

write operations, rules overheads account for only about

200-300 ns out of the total write time of 13.5 µs. The

rules-based approach is a specialized form of an event-

driven state machine, but it results in cleaner factoring

and simpler code than the traditional approach to state

machines. We reimplemented the scheduler for Hadoop

MapReduce (which uses the traditional approach) using

rules; our rules-based implementation replaced 163 state

transitions with only 19 rules.

2 DCFT modules

A DCFT module is a piece of code that runs on a sin-

gle machine but coordinates a collection of distributed

resources. For example, the resources might be a group

of worker machines, each of which will process a subset

of the data in a scalable computation. Or, the resources

might be storage servers, out of which a subset will be

chosen to store replicas for a chunk of data. In many

cases the management complexity is concentrated in a

DCFT module on a single machine. The other machines

are simply slaves that respond to requests; the slaves are

simple enough that they do not require the DCFT ap-

proaches discussed in this paper. In other cases, such as

consensus protocols, each machine runs an independent

DCFT module.

Most of the work of a DCFT module involves com-

municating with other machines, and this introduces two

challenges. First, communication is expensive enough

that DCFT modules typically issue concurrent requests

to improve performance. Second, distributed resources

may fail. For example, a worker may crash before com-

pleting its computation, or a storage server may crash and

lose all of its replicas. A DCFT module must detect fail-

ures and take recovery actions such as restarting a com-

putation on a different worker or creating new replicas to

replace the lost ones. Ideally, the complexities of distri-

bution, concurrency, and fault tolerance are encapsulated

within the DCFT module, so that it provides a simple and

fault-free API for its clients.

The rest of this section describes two DCFT modules

from the RAMCloud storage system, which will be used

as examples in the remainder of the paper. RAMCloud

contains several other DCFT modules besides these two;

they are described in Table 2 in Section 6.

2.1 Membership notifier

RAMCloud’s cluster membership notifier is a relatively

simple DCFT module. Each server in a RAMCloud clus-

ter needs to know about all of the other servers currently

in the cluster. A special server called the cluster coordi-

nator maintains the master copy of cluster membership

information, called the server list, and it must notify all

of the other servers whenever a server enters or leaves the

cluster. The membership notifier runs on the coordinator

and is responsible for propagating server list changes to

the rest of the cluster.

The notifier uses RPCs to send updates to other

servers. In order to update the cluster quickly, it sends

updates to multiple servers concurrently. Additional

server list updates may occur while the notifier is work-

ing; when this happens, the notifier batches multiple up-

dates in future RPCs in order to minimize the total num-

ber of RPCs. The notifier must ensure that each server

eventually receives all updates, and that all servers ob-

serve server list changes in the same order.

The membership notifier must handle a variety of

faults. For example, a server may crash while a notifi-

cation RPC to it is underway. If some servers are slow

to respond to RPCs, this must not prevent other servers

from receiving timely updates. Temporary network out-

ages may cause update RPCs to fail; these RPCs must be

retried.

2.2 Replica manager

The most complex DCFT module in RAMCloud, and the

one that motivated much of our thinking about DCFT

code, is the replica manager. The replica manager han-

dles log replication for storage servers. Each RAMCloud

storage server, called a master, organizes its DRAM as

an append-only log of data, which is divided into tens
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Figure 1: The replica manager is responsible for ensuring

that each of a master’s log segments is properly replicated

on backups. In this example new data has recently been ap-

pended to the log head (S5), so it is being replicated. In

addition, a backup has crashed, so the replica manager is

replacing lost replicas for segments S3 and S4.

of thousands of 8 MB segments (see Figure 1). Each

segment must be replicated on the secondary storage of

several other servers, called backups. An independent

replica manager module runs on each master; its job is

to ensure that the segments on that master are properly

replicated. When new data is appended to the head seg-

ment, the replica manager must update the replicas for

that segment. If a backup server crashes, the replica man-

ager must create replacements for any replicas stored on

that server.

In addition to the requirements above, the replica man-

ager must also enforce constraints between segments.

For example, in order to ensure that the log head can be

identified unambiguously during crash recovery, an ini-

tial header must be written to a new head segment before

the previous head is closed by writing a footer to it, and

the footer must be written before any data can be written

to the new head segment. See [26] for details on these

constraints.

The replica manager is under particularly stringent

timing constraints, since it is on the critical path for ba-

sic write operations. A master cannot respond to a write

request from a client until the new data has been fully

replicated. In order to minimize write latency (currently

about 13.5 µs end-to-end for small objects) the replica

manager must issue update requests in parallel for all of

the replicas of the head segment.

3 How we ended up with rules

We did not consciously choose a rules-based approach

for RAMCloud’s DCFT modules: the code gradually as-

sumed this form as we added functionality over a series

of refactorings. When we built the first DCFT modules

in RAMCloud, such as the ones described in the previ-

ous section, we had no particular point of view on how to

write such code, and we did not know that DCFT mod-

ules would require an unusual approach. Thus, we ini-

tially tried to write each module as a monolithic piece of

code that solved a problem from start to finish using a

traditional imperative approach. However, this approach

broke down almost immediately because of nondeter-

minism caused by concurrency and faults. To handle the

nondeterminism, the code disintegrated into fragments

that needed to execute relatively independently. None of

our DCFT modules has reached anywhere near complete

functionality with an imperative implementation.

For example, in the replica manager, the disintegra-

tion was initially caused by the desire to replicate seg-

ments concurrently. Different replicas could be in differ-

ent states and could progress at different rates, so it didn’t

make sense to manage the replicas with a deterministic

global algorithm. The most natural approach was to treat

each replica independently.

Fault tolerance caused additional disintegration of the

code. Failures have the effect of undoing work that

was previously completed, thereby requiring earlier steps

to be redone. For example, in the replica manager, if

a backup crashes while receiving a replica, the replica

manager must redo the process of selecting a server to

store the replica. Failures can occur at many points, and

different failures may require different amounts of work

to be redone. As a result, it isn’t possible to code an

algorithm from start to finish. It makes more sense to

think about the algorithm in terms of steps that make in-

cremental progress, such as selecting a backup server or

transmitting the segment header to the server for a par-

ticular replica. The execution order of the steps is non-

deterministic, based on concurrency and failures.

Given a large set of relatively independent code frag-

ments, we faced the question of how to manage their exe-

cution. We considered a fine-grained threaded approach,

but quickly rejected this possibility. The replica manager

must manage thousands of segments, with several repli-

cas per segment, so using a separate thread per replica, or

even per segment, would have been too inefficient [27].

Furthermore, multi-threading would only have handled

the code disintegration caused by concurrency; it would

not have addressed the disintegration caused by fault tol-

erance. In addition, threads were not needed from a per-

formance standpoint: most of the work of a DCFT mod-

ule consists of managing RPCs to other servers, with

only a few RPCs typically outstanding at a time.

We also considered a coarse-grained approach to

threading like SEDA [27], where tasks pass through a

series of stages with each stage served by one or a few

threads. However, the inter-thread communication re-

quired for this would have been unacceptable given our

requirements for low latency (for example, using a con-

dition variable to wake a thread takes about 2 µs; RAM-

Cloud servers process simple requests in about 1 µs).

Thus, we decided to manage all of the code fragments

for each DCFT module in a single thread. This left the
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problem of deciding the order in which fragments should

execute in the thread. Writing an intelligent dispatcher

that always knew what to do next was infeasible; the or-

der depended on nondeterministic events such as RPC

completions and failures, and there were complex de-

pendencies between fragments (for example, the footer

cannot be replicated for one segment until the header has

been replicated for the following segment). As a result,

we decided to let the fragments schedule themselves.

Each fragment has an associated condition, which tests

state variables to determine when it is appropriate for the

fragment to run. The DCFT module operates by repeat-

edly testing conditions and executing the fragments for

the conditions that are satisfied. Although this may ap-

pear to be expensive, we developed a few simple tech-

niques that make this approach efficient (see Section 5).

Over time, we noticed that all of our DCFT modules

disintegrated in the same way and ended up with similar

features. Furthermore, these features resembled rules-

based programming. Since then we have adopted the

rules-based approach for all new DCFT modules, and we

have developed infrastructure in RAMCloud to make the

rules-based approach efficient and easy to use. Section 4

describes the approach at a conceptual level, and Sec-

tion 5 describes how we implemented it in RAMCloud,

and the supporting infrastructure that we developed.

In retrospect, we realized that DCFT modules require

a highly unconstrained execution order; structures that

restrict the order are likely to cause problems. For exam-

ple, our first implementation of the membership notifier

ran synchronously: each time the coordinator modified

its server list to indicate the entry or exit of a server, the

rest of the cluster was notified before returning from the

modification. During this time, the server list lock was

held. However, if a server crashed during the notification

process, deadlock could result; the notifier couldn’t com-

plete without knowing about the crashed server (other-

wise it would keep attempting to update that server), and

it couldn’t mark the server crashed without acquiring the

lock. The rules-based version of this module never per-

forms synchronous operations, which allows it to adapt

to server list changes. We now use deadlock as a “ca-

nary in the coal mine:” if a module experiences dead-

lock, it may be a sign that its execution order is overly

constrained and that we need to convert it to the rules-

based approach.

As another example, we considered using the C++ ex-

ception mechanism to handle errors, but it is too restric-

tive to handle all of the error cases. Specifically, an ex-

ception handler can only catch exceptions in the calls

nested beneath it, but the steps in a DCFT module do

not follow a sequential or nested pattern. For example,

the replica manager must replace segment replicas that

are lost when a backup crashes. If a lost replica is for an
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Cond. Action

Cond. Action

Cond. Action

... ...

State

RulesEvent Handlers
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Figure 2: In a rules-based approach, code is divided into

rules, each of which has a condition that tests state variables,

and an action that is executed if the condition is satisfied.

Rules can trigger in any order permitted by their conditions.

The state is modified by handlers for external events and by

the actions of some rules, which then allows new rules to

trigger.

older segment that is closed and inactive, then no thread

is replicating it, and there is nowhere to deliver an excep-

tion.

4 The rules-based approach

We use the term rules-based to describe a style of pro-

gramming where there is not a crisp algorithm that pro-

gresses monotonically from beginning to end. Instead,

the top-level controlling code of the module is divided

into small chunks, called actions, which can potentially

execute in any order (see Figure 2). Each action has an

associated condition that determines when the action can

execute; the condition is expressed as a predicate on the

module’s state variables. Together, an action and its as-

sociated condition constitute a rule.

A rules-based module operates by repeatedly select-

ing a rule whose condition is satisfied and then execut-

ing that rule’s action. Each action makes incremental

progress towards some goal (such as proper replication

of a segment); the module executes rules repeatedly until

it reaches the goal state. The goal is also described as a

predicate on the module’s state variables.

Actions can modify the state of the module or initiate

external operations such as RPCs to other servers. Each

action is nonblocking, and faults and external events have

no effect on an action once it starts executing. If an ac-

tion turns out to involve blocking or must handle nonde-

terminism due to faults, then it must be split into multiple

actions in different rules. For example, an action cannot

both initiate an RPC and wait for it to complete, since

that would require the action to block and would expose

it to nondeterministic failures of the RPC.

Nondeterminism manifests itself between actions, in

the form of events. An event is an occurrence outside

the direct control of the DCFT module that affects its

behavior, such as:
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Rules

Rule Condition Action

R1 No backup server selected. Choose an available server to store replica.

R2 Header not committed, no RPC outstanding. Start RPC containing segment header.

R3 Header RPC completed. If backup rejected request, clear server assignment for replica. Otherwise, mark

header committed and mark prior segment to allow footer replication.

R4 Uncommitted data, no RPC outstanding,

prior footer is committed.

Start write RPC containing up to 1 MB of uncommitted data.

R5 RPC containing data completed. Mark sent data as committed.

R6 Segment finalized, following header com-

mitted, footer not sent, no RPC outstanding.

Start RPC containing footer.

R7 Segment footer RPC completed. Mark footer as committed and mark following segment to allow data replication.

Events

Event What Happened Handler

E1 RPC completed (or failed). Update RPC object to indicate completion.

E2 New data added to segment. Increment count of uncommitted bytes ready for replication.

E3 Backup server failed. Cancel any RPCs outstanding to server. For all replicas stored on the failed server:

cancel server selection; reset replica header, footer, and data to unsent and uncom-

mitted.

Table 1: A partial list of the rules and events for managing one replica of a particular log segment. In the normal case, rules

execute in order from R1 to R7 (R4 and R5 may trigger many times). Some rules test (R4 and R6) or modify (R3 and R7) state

from multiple segments. If an RPC fails, no actions are taken other than to mark the state “no RPC outstanding”; the rules will

automatically retry it. The handler for E1 is implemented by the RPC system.

• The completion of an RPC.

• The failure of a server.

• A new server joining the cluster (for the member-

ship updater).

• The addition of new data to the head segment (for

the replica manager).

When an event occurs, a handler updates state variables

as shown in Figure 2; these state changes then allow new

rules to trigger. For example, when an RPC completes,

the RPC subsystem sets a state variable associated with

the RPC.

The rules-based approach is similar in many ways to

event-based programming. However, in event-based pro-

gramming an event typically triggers actions directly. In

the rules-based approach an event handler merely up-

dates state variables; actions are then triggered based on

the new state. In our experience, this two-step approach

results in a cleaner factoring of code than the traditional

event-based approach (see Section 8).

As an example, Table 1 shows some of the rules

and events for managing a single segment replica in the

replica manager described in Section 2. Rule R4 speci-

fies the following predicate on a segment replica:

• some data appended to the segment has not been

transmitted to the backup storing the replica, and

• no replication RPC is outstanding to the backup,

and

• the preceding segment in the log has already com-

mitted its footer (so is safe to write to this replica).

If this condition is met, then the replica manager starts

an RPC to send uncommitted data to the backup storing

the replica. If the RPC completes successfully, a state

variable is set, which allows R5 to execute. If a backup

fails, event E3 executes: it cancels any RPCs outstand-

ing to the failed backup, then iterates over the full list

of segments in the log, resetting the replication state for

any replica assigned to the failed backup. After the state

is reset, recreation of the replicas happens automatically,

just as it does during normal operation, starting with rule

R1.

We found it natural to program with rules because they

reflect the inherently nondeterministic structure of the

problems being solved. Rules separate the determinis-

tic parts of a module (actions) from the nondeterministic

parts (events). Each action implements one of the basic

steps of the module. In this problem domain it is diffi-

cult to describe all of the control flows from one step to

another, so the rules-based approach does not even try.

Instead, it describes the control flow in terms of the con-

ditions that determine when each action executes, inde-

pendently of how that state was reached. This results in

a clean code factoring.

5 Implementing Rules

This section describes how we implemented the rules-

based approach in RAMCloud, with emphasis on two is-

sues: (a) achieving a clean code factoring, and (b) in-

tegrating rules-based DCFT modules cleanly and effi-
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ciently with the rest of RAMCloud. We introduced two

new abstractions to manage rules: tasks, which provide

modularity by associating a set of rules with a collection

of state variables, and pools, which reduce the cost of

rule evaluation by separating tasks into active and inac-

tive groups. The rules-based approach requires an asyn-

chronous communication mechanism; we chose to im-

plement an asynchronous RPC system, which provides a

cleaner factoring than a message-based approach. In ad-

dition to discussing these abstractions, this section also

describes how events are handled and the role of threads

in processing rules.

5.1 Tasks

The primary abstraction for implementing rules in RAM-

Cloud is a task. Tasks provide modularity for rule sets,

and they make it easy to use rules within a system mostly

programmed in an imperative style. A task consists of

three elements: a collection of state variables, a set of

rules, and a goal. The collection of state variables is im-

plemented as an instance of a class, and the rules are im-

plemented by an applyRulesmethod on the class. Each

invocation of applyRules makes one pass over all the

rules for that task, testing conditions and invoking ac-

tions for any conditions that are satisfied. In its simplest

form, the body of applyRules consists of a sequence of

if statements, one for each rule.

The goal of a task represents the outcome that the task

is trying to achieve, such as ensuring proper replication

of a single segment or updating all of the server lists in

the cluster to reflect a change on the coordinator. A goal

can be expressed as a predicate on the task’s state vari-

ables. Goals are reminiscent of invariants, but we chose

to use a different term because goals are unmet during

much of the operation of a DCFT module, whereas in-

variants are almost always true.

A DCFT module contains one or more tasks. It oper-

ates by repeatedly calling the applyRules methods on

its tasks until all tasks have achieved their goals. Events

may cause a task to fall out of its goal state (for exam-

ple, a server may crash, or new data may arrive that re-

quires replication). If this happens, the DCFT module

resumes processing rules until all tasks have once again

reached their goal states. RAMCloud uses a polling ap-

proach, continually testing rules for tasks not in their goal

state. Section 7 describes how to use rules in environ-

ments where sleeping is preferable to polling.

Many DCFT modules contain only a single task; the

RAMCloud membership notifier is one example. Its state

includes the coordinator’s server list (including its ver-

sion number), the version number of the server list stored

on each server in the cluster, a list of recent updates,

where each update mutates a server list from one ver-

sion to the next, and a list of outstanding RPCs. The task

contains three rules:

• Condition: there exists a server whose server list is

out of date with respect to the coordinator’s list, and

for which there is currently no outstanding RPC.

Action: initiate an RPC to that server, containing

the updates not yet received by that server.

• Condition: there are updates that are no longer

needed (they have been received by all servers in

the cluster).

Action: delete those updates.

• Condition: an outstanding RPC has completed.

Action: if the RPC succeeded, update the version

number stored for that server to reflect the updates

it just received.

The goal of the membership notifier is to reach a

state where the update list is empty. The notifier is

implemented as a thread that repeatedly invokes the

applyRules method until the goal is achieved, then

sleeps until the coordinator’s server list changes.

We try to structure our applyRules methods to make

it easier for the programmer to reason about the overall

behavior of the task. For example, we tend to order the

rules in an applyRules method to match the order in

which they will occur in the normal case without errors.

This preserves enough ordering in the code for the devel-

oper to understand how the code is intended to progress.

For tasks with a complex state space, it can sometimes

be difficult to ensure that the rules cover all possible

states. In these cases, we write the task’s rules using a

set of nested if statements, each of which always has an

unconditional else clause. This approach ensures that

all possible states have been considered; exactly one ac-

tion executes each time applyRules is called. Some of

these cases may not contain code, which means that state

is waiting for an event; the empty block serves as docu-

mentation that the state was considered.

5.2 Handling Events

In addition to invoking rules, a DCFT module must also

handle events, which are occurrences outside the mod-

ule that modify its state. Events are asynchronous with

respect to the DCFT module, so they must synchronize

with the DCFT module’s rules engine in order to update

state. In RAMCloud this is typically done with a tradi-

tional locking approach. For example, in the membership

notifier, the only events other than RPC completions are

modifications to the coordinator’s server list, which also

create new entries in the update list. A lock synchro-

nizes these modifications with the execution of rules, and

a condition variable is used to wake up the rules engine

if it is sleeping when the server list is modified.
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RPC completion events are handled specially using

state variables; this mechanism is described in Sec-

tion 5.5.

5.3 Threading

There are several ways we could have chosen to use

threads in implementing rules. One possibility would

be to employ threading on a fine-grain basis, with one

thread for each task or perhaps even one thread for each

rule; however, this is unnecessary and inefficient. For

RAMCloud we chose a coarse-grain approach where

each DCFT module executes in a single thread and eval-

uates its rules sequentially. There is little incentive to use

multiple threads within a DCFT module because DCFT

modules spend most of their time waiting for RPCs to

complete. The concurrency of a DCFT module comes

from concurrent execution of RPCs to other servers, not

from concurrent execution of the module’s internal code.

If a DCFT module’s functions include significant local

processing then multiple threads might make sense for

that module, and Section 7 describes how this can be im-

plemented, but we have not yet encountered any modules

where this is the case.

Using a single thread per DCFT module eliminates

the need for most locks within a DCFT module, which

makes the module both simpler and faster. For exam-

ple, rules from one task can safely test and modify state

variables from other tasks without synchronization (see

rules R4 and R7 in Table 1). However, most DCFT mod-

ules must respond to some events generated outside the

module, and locks are needed to synchronize these event

handlers with the DCFT rules. This is typically imple-

mented with a lock around each call to applyRules.

Different DCFT modules can execute concurrently in

RAMCloud, since they use different threads.

5.4 Pools

Many of RAMCloud’s DCFT modules are simple ones

with only one task, but other modules have multiple

tasks. For example, the replica manager uses one task

for each segment stored on the server (typically tens of

thousands). Evaluating all of the rules for all of these

tasks is prohibitively expensive, so we introduced a pool

abstraction to make rule evaluation efficient. A pool is a

simple scheduler for a collection of related tasks. Pools

reduce the overhead of rule application by dividing tasks

into two groups: active tasks, whose rules must be eval-

uated, and inactive tasks, whose rules can be skipped. A

task stays active until it achieves its goal, at which point it

becomes inactive. Typically, only a small subset of tasks

are active at a time, so testing rules is efficient. Over its

life, a single task may be activated and deactivated many
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Figure 3: The replica manager’s pool and its associated

tasks. Each task manages the replication of a single seg-

ment. The pool thread continually evaluates rules for ac-

tive tasks (those that have not yet met their replication goal).

When a task meets its replication goal it becomes inactive

and its rules are no longer evaluated. Server failures cause

the state of some tasks to be reset, and the affected tasks are

reactivated. Testing rules is efficient, since there is rarely

more than one segment (the head) under active replication at

a time.

times, since failures and other state changes can return a

task to a state where its goal is no longer met.

Each pool is implemented as a thread associated with

a list of active tasks. Whenever the list contains at least

one task, the thread cycles through the tasks, invoking

their applyRules methods. When the list is empty the

thread sleeps.

For example, the replica manager contains a pool with

one task for each segment; the task’s goal is to maintain

three complete replicas of the data in the segment. When

new data is added to the head segment, the corresponding

task is activated (see Figure 3). When the task catches up

in replicating its data, its goal is reached, so it is deacti-

vated. Once a segment is completely filled by the server

and its task finishes replicating it, then its task is deac-

tivated forever unless one of its replicas is lost due to a

failure. In this case the task is reactivated to begin recre-

ating the lost data. At any given time, most segments are

fully replicated, so the replica manager pool usually only

has to test rules for a few segment tasks at a time.

5.5 Asynchronous RPCs

The rules-based approach requires an asynchronous

communication mechanism because actions that initiate

remote requests cannot wait for completion (blocking

would prevent other rules from firing; it would also ex-

pose actions to nondeterminism, since remote commu-

nication can fail). To meet this requirement, we im-

plemented an asynchronous RPC mechanism based on

polling. This section describes how the RAMCloud RPC

system simplifies the implementation of rules, and why it

results in a cleaner code factoring than alternatives such

as callback-based RPCs or message-based programming.
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In RAMCloud all RPCs are inherently asynchronous.

Each RPC is represented with a C++ object; the construc-

tor for the object forms the request message and initiates

transmission of that message. The RPC object contains

a state variable that can be tested to determine whether

the RPC has completed. If the state variable indicates

completion, another method may be invoked on the RPC

object to retrieve results or failure information. Each

RPC object also supports a synchronous wait method

that polls the state variable until the RPC has finished.

This approach fits naturally with rules-based program-

ming: DCFT modules keep RPC objects as part of their

state, and the conditions for rules test the RPC objects for

completion (see Table 1 for an example). An alternative

approach for asynchronous RPCs is to invoke a callback

function when an RPC completes. However, callbacks

are awkward because they must synchronize their execu-

tion with rules that might be executing concurrently. The

state variable provides a simpler form of synchronization

between the completion of the RPC and the rules engine.

RAMCloud uses polling not only for asynchronous

RPCs in DCFT rules engines, but also for synchronous

RPCs invoked outside DCFT modules. Polling works

well in RAMCloud because the expected completion

time for RPCs is only a few microseconds. Blocking a

thread to wait for an RPC serves little purpose: by the

time the CPU could switch to another task, the RPC will

probably have completed, and the polling approach elim-

inates the latency overhead for waking the blocked thread

when the RPC completes.

An alternative to asynchronous RPCs would have been

to use a messaging approach, with separate request and

response messages. However, we found that RPCs pro-

duce a cleaner code factoring by allowing more func-

tionality to be implemented transparently in the RPC

mechanism; this simplifies the code in DCFT modules.

Remote procedure calls automatically associate each re-

quest message with the corresponding response message.

In a pure message-based approach, higher level software

must make this association, which increases its complex-

ity. Furthermore, the RPC approach allows some er-

rors to be detected and handled transparently in the RPC

system, whereas a message-based approach must expose

these errors to higher-level software. RAMCloud’s RPC

system allows the creation of customized modules that

recover automatically from many errors. For example, if

a network connection fails, a recovery module will au-

tomatically open a new connection and retry; or, if an

RPC fails with an error indicating that the target server no

longer stores the desired object, a recovery module will

automatically find the correct server and retry the request

with that server. As a result, many of RAMCloud’s RPCs

return no errors except those caused by bad arguments:

all system errors are handled internally by the RPC sys-

tem. In a message-based approach, these problems must

be handled by higher-level software.

6 Evaluation

This section discusses the strengths and weaknesses of

rules, based on our experiences in RAMCloud.

6.1 Benefits

Thinking in terms of rules has allowed us to produce

new DCFT modules more quickly, with fewer refactor-

ings before reaching satisfactory solutions. Specifically:

• The task and pool abstractions simplify the devel-

opment of DCFT modules. Tasks serve a purpose

similar to that of monitors [19]: a monitor helps to

modularize synchronization code by encapsulating

a lock with a collection of state variables and a set

of methods that manipulate those variables; a task

helps to modularize DCFT code by encapsulating

a collection of state variables with rules and events

that manipulate those variables to achieve a goal.

Both of these structures provide a framework that

reduces the number of decisions a developer must

make to produce a working module.

• The applyRules methods bring all of the rules for

a task together in a few pages of code, making it

easier to understand the task’s behavior.

• It is relatively easy to add rules to an existing DCFT

module when new issues are discovered.

• It is straightforward to integrate rules-based mod-

ules into the RAMCloud system. We use rules-

based code surgically in only a few applyRules

methods, while the vast majority of the system is

programmed in a traditional imperative fashion.

Table 2 summarizes each of the seven DCFT modules

in RAMCloud, with two overall conclusions. First, the

table shows that the rules-based approach can be used

to implement a variety of tasks, including different ap-

proaches to replication, coordinating workers executing

in parallel, and crash recovery. Second, the rules-based

approach allows the nondeterministic parts of the sys-

tem to be concentrated in a small amount of code, so

that the vast majority of the system can be written using

a simpler imperative style. The applyRules methods

in RAMCloud range in size from 30-300 lines, which is

only a small fraction of the overall DCFT modules. All

of the rules-based code in RAMCloud amounts to only

about 1,100 lines, out of a total system size of more than

50,000 lines.

One potential problem with the rules-based approach

is the cost of testing rule conditions, which happens re-

peatedly. We measured this cost for the RAMCloud

replica manager, which is the most time-sensitive DCFT
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DCFT Module Functionality Task Rules Events applyRules

Types code

Membership notifier Notifies all servers of changes to coordinator’s server list 1 3 3 36

Replica manager Maintains a specified number of replicas of each segment

on a master

1 23 3 258

Recovery manager Executes on coordinator to recover crashed master: locates

complete copy of log, splits the master’s tablets,

coordinates many masters to replay log and recover

partitions

4 12 2 299

Recovery master

replay

Executes on recovery masters during crash recovery: reads

log segment replicas from backups, replays entries,

replicates new data

1 3 0 230

Backup replica

recovery

Executes on backups during crash recovery: reads segment

replicas, divides log entries into buckets for different

recovery masters

1 4 2 31

Multi-read Executes on clients: reads many objects concurrently using

batched requests to multiple servers

1 2 2 75

Indexed read Executes on clients: retrieves index entries from one or

more secondary index servers, then reads the

corresponding objects from other servers

1 14 2 132

Table 2: Summary of DCFT modules in RAMCloud. “Task Types” counts the number of different kinds of task (not instances) in

the module. “Rules” counts the total number of rules in all task types. “Events” counts only module-specific events (it excludes

RPC completion events, which are handled automatically by the RPC subsystem). “ApplyRules code” counts lines of code

(not including comments) in all applyRules methods. Some of the line counts include additional code not directly related to

processing rules.

module in RAMCloud (it is on the critical path for all

write operations). The replica manager also has the

largest rule set of all the RAMCloud DCFT modules.

As shown in Figure 4, only a few hundred nanosec-

onds are needed for evaluating conditions in each call

to applyRules. When applyRules takes a signifi-

cant amount of time to execute, it is because of actions

that initiate RPCs and handle completions. Furthermore,

only two invocations of applyRules are on the critical

path for each write: the first (which issues replication

RPCs) and the last (which receives the results from the

last replication RPC). Based on Figure 4, we estimate

that testing conditions accounts for 200-300 ns out of a

total time of about 13.5 µs for writes.

6.2 Challenges

It is not always easy to identify modules that require

the rules-based approach. The natural tendency is to

code any new module in an imperative style (especially

for programmers not already familiar with DCFT mod-

ules and rules), and it is easy to underestimate the im-

plications of fault tolerance. Thus, we sometimes find

ourselves attempting to implement new DCFT modules

without rules. When this happens, corner cases result in

refactorings that gradually break up the code flow, until

eventually we realize that we need to switch to a rules-

based approach. The introduction of rules usually sim-

plifies the code, and seemingly intractable problems sud-

denly become tractable. For example, the introduction

of rules in the membership notifier eliminated deadlocks

that had plagued several previous versions of the code.

The greatest challenge in using rules is to get out of

the traditional mental model where an algorithm is de-

fined monolithically. Instead, the algorithm must be de-

fined as a collection of independent small pieces, each of

which makes incremental progress towards a goal. These

pieces become the actions of rules, and conditions and

event handlers are added to invoke the actions appropri-

ately. Our experience is that once a developer adopts this

mental model, the actual rule set follows fairly quickly,

and it is straightforward to incorporate the rules into the

overall system.

It can be difficult to visualize the behavior of a DCFT

module from a collection of rules. However, we think

this problem is inevitable, given the nondeterminism that

the rules must capture: nondeterministic solutions will

always be harder to understand than deterministic ones.

We do not advocate the use of rules as an overall archi-

tecture for applications. Asynchronous nondeterministic

programming is fundamentally more difficult than tradi-

tional imperative programming, so it should only be used

where it is absolutely necessary.
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Figure 4: Cumulative distribution of the execution time of

the applyRules method for the RAMCloud replica man-

ager, measured using YCSB Workload A [9] to generate

writes of 1000-byte objects. “Total time” includes the cost

of actions as well as condition checks. “Time w/o RPC ac-

tions” excludes time spent in actions that initiate RPCs and

process RPC results. Most invocations of applyRules oc-

cur while waiting for RPCs to complete; these invocations

test conditions but no actions fire.

7 Rules Without RAMCloud

Although most of our experience with rules is in the con-

text of RAMCloud, we believe that the rules-based ap-

proach also makes sense for other applications. This sec-

tion discusses modifications of the rules approach that

may be appropriate in environments other than RAM-

Cloud.

A polling approach to rules evaluation makes sense in

RAMCloud’s low-latency environment, but in applica-

tions with high communication latency it makes more

sense for the rules engine to sleep while waiting for

events. The rules approach can accommodate sleeping

with two modifications. First, the rules engine must

be able to determine when it is safe to sleep. To do

this, applyRules methods must return an indication of

whether any rules triggered. If no rules triggered, then no

state changes were made, so no rules will trigger in the

future until an event occurs. In this situation, the pool

can deactivate the task just as if it had reached its goal

state. In fact, with this mechanism for sleeping, no spe-

cial handling is needed for goal states: the mechanism

for sleeping will handle them automatically. Once all of

the tasks in a pool are inactive, the pool can sleep. The

second modification for sleeping is that the rules engine

must wake up again when necessary. To implement this,

each event must be associated with a task; when the event

occurs, the task is reactivated and its pool is awakened.

Most of the rest of the rules mechanism still applies,

even in environments without polling. For example, the

task abstraction still makes sense as a way of encapsulat-

ing a rule set with its state variables. Pools are still use-

ful, both for minimizing the number of rules that must

be tested and also as the mechanism for sleeping. Asyn-

chronous RPCs retain their advantages over messages or

synchronous RPCs, as described in Section 5.5.

One additional modification that may be appropri-

ate in some environments is to relax RAMCloud’s one-

thread-per-DCFT-module restriction. If some actions in-

volve significant local processing, then it may be desir-

able to allow other rules to execute concurrently with

them. Concurrency can be implemented using an ap-

proach similar to that for asynchronous RPCs: the ac-

tion dispatches its work to a separate worker thread and

then returns, so that the rules engine can process other

rules while the worker thread executes. When the worker

thread completes, it sets a state variable just like an RPC

completion, which can then cause other rules to trigger.

If the worker thread needs to access state variables dur-

ing its execution, then it must synchronize with the rules

engine.

In summary, most of RAMCloud’s rule mechanism

carries over directly to other environments, and with a

few small changes the mechanism can handle issues we

have not yet experienced in RAMCloud, such as high-

latency communication and long-running actions.

8 Event-driven state machines

The rules-based approach emerged so consistently in all

of our DCFT modules that we initially thought it might

be inevitable. However, we have since discovered that

other systems use different approaches for DCFT mod-

ules. The most common alternative appears to be an

event-driven state machine; Chubby [6] and Hadoop [2]

are examples of this approach. In this section we com-

pare the rules-based approach to this alternative, and we

argue that the rules-based approach produces cleaner and

simpler code.

An event-driven state machine is a system with one or

more state variables, whose behavior is determined by

events. When an event occurs, the state machine takes

actions based on the current state and the event. The ac-

tions can alter the state, which affects the way that future

events are handled.

The state machine definition is broad enough that it in-

cludes the rules-based approach as a special case. How-

ever, in most state machines the actions are determined

directly from the events. Rules use a two-step approach

where event handlers only modify state and never take

actions. Rules then trigger based on the resulting state,

which reflects the sum of the outside events.

The difference between these two approaches is sub-

tle, but the rules-based approach results in a cleaner code

factoring. In DCFT modules, the current state of the

system is more important than how the system got to

that state, so it is cleaner to structure code around state,

not events. A single event may need to trigger many

actions, and the same action might be triggered from

multiple events. For example, the replica manager may
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State Machine States Transitions Distinct

Job 14 82 27

Task 7 24 16

TaskAttempt 13 57 15

Total 34 163 58

Table 3: Hadoop MapReduce 2.4 manages task scheduling

using 3 state machines. For each state machine the table lists

the number of explicitly named states, the total number of

transitions between states, and the number of distinct actions

among all the transitions for the state machine.

need to choose a backup for a particular replica either

because a new segment is being created, or because an

existing replica was lost in a crash. The traditional state

machine approach results in considerable duplication of

code, which is not present in the rules-based approach.

To demonstrate the advantages of the rules-based

approach, we analyzed the job scheduler in Hadoop

MapReduce 2.4, which uses the state machine approach

described above. The overall goal of the job scheduler

is to schedule a collection of tasks across a group of

servers. The module manages a group of objects, with

each object controlled at any given time by one of three

state machines (see Table 3). In total, the three state

machines contain 34 states, with 163 separately-defined

transitions, where a transition describes the actions to

take when a particular event occurs in a particular state.

Of the 163 transitions, only 58 have distinct actions:

the other 105 transitions are duplicates. Furthermore,

upon analysis of the actions, we found that many of

the “distinct” transitions are near-duplicates. For ex-

ample, rather than writing one error cleanup action that

works across many states, MapReduce contains numer-

ous nearly-identical cleanup actions, each specialized

slightly for the state and event that trigger it.

For comparison, we reimplemented the MapReduce

job scheduler using a rules-based approach, with each

state machine replaced by one task. We used Python

for the rules-based implementation because of its rapid-

prototyping capabilities and verified by hand that each of

the 163 transitions in the Java state machines is covered

by the rules-based implementation. Our Python imple-

mentation is complete enough to schedule and run simple

jobs. The source code for the Python implementation is

available on GitHub along with the corresponding code

for the Java state machine [3].

The rules-based implementation of the MapReduce

scheduler is significantly simpler than the state machine

implementation: a total of 19 rules in 3 tasks provided

functionality equivalent to the 163 transitions in the state

implementation. Each of the three applyRules meth-

ods fits in a screen or two of code (117 total lines of code

and comments between the three applyRulesmethods),

which makes it possible to view the entire behavior of

each task at once. Furthermore, the order of the rules

within each applyRules method shows the normal or-

der of processing, which also helps visualization. In con-

trast, the state machine implementation required more

than 750 lines of code just to specify the three transition

tables, plus another 1,500 lines of code for the transition

handlers.

Transition handler counts, rule counts, and lines of

code are metrics that are easy to compare, but other met-

rics may provide more insight. For example, more elab-

orate code complexity metrics or a full user study could

help highlight the differences between the approaches.

9 Other Related Work

Several formalisms exist for specifying and reason-

ing about concurrent code. For example, Dijkstra’s

Guarded Command Language (GCL) [11] provides non-

deterministic conditional and loop constructs similar

to the iterative conditional checks used in rules-based

tasks. Hoare’s Communicating Sequential Processes

(CSP) [14] extends GCL to support specification of and

reasoning about interconnected nondeterministic pro-

cesses. GCL and CSP have been influential in the design

of concurrency primitives of programming languages

like the recent Go and Rust systems languages. The

occam [5] programming language adheres to CSP even

more closely; programs in occam tend to follow a rules-

based style.

Lamport’s Temporal Logic of Actions and his TLA+

specification language [18, 28] allow specification of

concurrent systems. TLA+ supports a model checker and

proof system. However, it is not a full programming lan-

guage and cannot be used for implementation. Similar

to our rules, TLA+ specifications use conditional atomic

actions to transition from one state to the next; this may

make it a good fit for verifying rules-based modules.

Rules are also used in other application domains to

solve problems other than DCFT:

• Expert Systems [16] and the General Problem

Solver [21, 20] are AI programs that reason using

heuristic methods; they are implemented as a set of

rules that iteratively transform a knowledge base to

arrive at a solution.

• Make [12] is a utility that builds software based on

user-provided rules. Each rule specifies how to re-

build a particular file, if the current version is out of

date.

• Model Checkers are formal verification tools that,

like rules-based modules, iteratively apply condi-

tional transformations to state variables to ensure

user-specified invariants are preserved.
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Actors, originally conceived in the 1970s, have be-

come popular in recent years for building distributed or

concurrent applications [13, 1]. In the actors approach,

a program is divided into independent modules with no

shared state, called actors, which communicate using

asynchronous messages. Actors often handle messages

using an approach like that described in Section 8 for

event-driven state machines (each actor is a state ma-

chine, and messages represent events). However, actors

could also use a rules-based approach, and this would

be advantageous for actors that implement DCFT mod-

ules. We also believe that an asynchronous RPC system

would provide a better communication mechanism for

DCFT actors than asynchronous messages, as discussed

in Section 5.5.

Several groups have developed domain-specific lan-

guages and frameworks for specifying DCFT modules

as a collection of event-driven state machines:

• Chubby [7] is a consensus-based configuration ser-

vice that uses a custom state machine specification

language to simplify the specification of its core al-

gorithm.

• Mace [17] provides a restricted language for speci-

fying state machines that allows specifications to be

verified using a provided model checker. Unlike the

rules-based approach, Mace programs only perform

actions in response to events, though Mace also pro-

vides a construct that generates events in response

to conditions on state.

• P [10] is a graphical language for specifying state

machines that was used to implement the USB de-

vice driver stack of Microsoft Windows 8. P also

allows model checking of state machines.

• SEDA [27] is an event-driven framework for build-

ing highly concurrent services that avoids the over-

head of the thread-per-request approach. SEDA ser-

vices are actor-like; they consist of pipelined stages

interconnected by message queues. Each stage can

optimize throughput by adjusting how many threads

it uses. SEDA doesn’t address fault-tolerance, and it

increases response latency, making it inappropriate

for RAMCloud.

• Bloom [4] is a language for building distributed sys-

tems in which programs are expressed using declar-

ative rules over unordered sets of tuples. A key

benefit of Bloom’s “disorderly” approach is that

it avoids artificial coordination compared to tradi-

tional imperative programs. Conditions on rules

have something of a declarative style in rules-based

code, but actions are programmed in an imperative

style.

10 Conclusion

DCFT modules are becoming increasingly important in

large-scale software systems, but they are difficult to im-

plement and developers today have little guidance on

how to implement them. In this paper we have described

the problems we faced while implementing DCFT mod-

ules in RAMCloud and the rules-based solution that

emerged from our experience. The rules-based approach

results in a simple code factoring because it separates

the deterministic and nondeterministic parts of a DCFT

module. In addition, we found that a few other patterns

and mechanisms encouraged a clean factoring of rules-

based code, including tasks, pools, and an asynchronous

RPC system. With this infrastructure, it was relatively

easy to incorporate rules-based code into the RAMCloud

system, and the rules-based approach has provided clean

solutions to a variety of problems. In comparison to other

approaches we considered, the rules-based approach en-

courages a cleaner factoring of code, which is particu-

larly important given the inherent complexity of DCFT

modules.

Experience with many more systems will be needed

before agreement can be reached on the best way to im-

plement DCFT modules. We hope that our experience

can serve as a basis for additional discussion and experi-

mentation.
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ABSTRACT
Cloud storage systems typically use three-way random
replication to guard against data loss within the cluster,
and utilize cluster geo-replication to protect against cor-
related failures. This paper presents a much lower cost
alternative to full cluster geo-replication. We demon-
strate that in practical settings, using two replicas is suf-
ficient for protecting against independent node failures,
while using three random replicas is inadequate for pro-
tecting against correlated node failures.

We present Tiered Replication, a replication scheme
that splits the cluster into a primary and backup tier. The
first two replicas are stored on the primary tier and are
used to recover data in the case of independent node fail-
ures, while the third replica is stored on the backup tier
and is used to protect against correlated failures. The
key insight of our paper is that, since the third replicas
are rarely read, we can place the backup tier on sep-
arate physical infrastructure or a remote location with-
out affecting performance. This separation significantly
increases the resilience of the storage system to corre-
lated failures and presents a low cost alternative to geo-
replication of an entire cluster. In addition, the Tiered
Replication algorithm optimally minimizes the probabil-
ity of data loss under correlated failures. Tiered Repli-
cation can be executed incrementally for each cluster
change, which allows it to supports dynamic environ-
ments in which nodes join and leave the cluster, and
it facilitates additional data placement constraints re-
quired by the storage designer, such as network and rack
awareness. We have implemented Tiered Replication
on HyperDex, an open-source cloud storage system, and
demonstrate that it incurs a small performance overhead.
Tiered Replication improves the cluster-wide MTTF by a
factor of 20,000 compared to random replication and by
a factor of 20 compared to previous non-random replica-
tion schemes, without increasing the amount of storage.

1. INTRODUCTION
Popular cloud storage systems like HDFS [33],

GFS [15] and Azure [6] typically replicate their data on
three random machines to guard against data loss within
a single cluster, and geo-replicate the entire cluster to a
separate location to guard against correlated failures.

In prior literature, node failure events are broadly cat-
egorized into two types: independent node failures and
correlated node failures [4, 5, 7, 14, 25, 38]. Indepen-
dent node failures are defined as events during which
nodes fail individually and independently in time (e.g.,
individual disk failure, kernel crash). Correlated failures
are defined as failures in which several nodes fail simul-
taneously due to a common root cause [7, 11] (e.g., net-
work failure, power outage, software upgrade). In this
paper, we are focused on events that affect data durability
rather than data availability, and are therefore concerned
with node failures that cause permanent data loss, such
as hardware and disk failures, in contrast to transient data
availability events, such as software upgrades.

The conventional wisdom is that three-way replication
is cost-effective for guarding against node failures within
a cluster. We also note that, in many storage systems, the
third replica was introduced mainly for durability and not
for read performance [7, 8, 13, 34].

Our paper challenges this conventional wisdom. We
show that two replicas are sufficient to protect against
independent node failures, while three replicas are inad-
equate to protect against correlated node failures.

We show that in storage systems in which the third
replica is only read when the first two are unavailable
(i.e., the third replica is not used for client reads), the
third replica would be used almost only during correlated
failure events. In such a system, the third replica’s work-
load is write-dominated, since it would be written to on
every system write, but very infrequently read from.

This property can be leveraged by storage systems to
increase durability and reduce storage costs. Storage
systems can split their clusters into two tiers: the pri-
mary tier would contain the first and second copy of
each replica, while the backup tier would contain the
backup third replicas. The backup tier would only be

1
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used when data is not available in the primary tier. Since
the backup tier’s replicas will be read infrequently they
do not require high performance for read operations. The
relaxed read requirements for the third replica enable
system designers to further increase storage durability,
by storing the backup tier on a remote site (e.g., Amazon
S3), which significantly reduces the correlation in fail-
ures between nodes in the primary tier and the backup
tier. This is a much lower cost alternative to full cluster
geo-replication, in which all three replicas are stored in a
remote site. Since the backup tier does not require high
read performance, it may also be compressed, dedupli-
cated or stored on a low-cost storage medium that does
not offer low read latency but supports high write band-
width (e.g., tape) to reduce storage capacity costs.

Existing replication schemes cannot effectively sepa-
rate the cluster into tiers while maintaining cluster dura-
bility. Random replication, the scheme widely used by
popular cloud storage systems, scatters data uniformly
across the cluster and has been shown to be very sus-
ceptible to frequent data loss due to correlated fail-
ures [2, 7, 9]. Non-random replication schemes, like
Copyset Replication [9], have significantly lower prob-
ability of data loss under correlated failures. However,
Copyset Replication is not designed to split the repli-
cas into storage tiers, does not support nodes joining and
leaving, and does not allow storage system designers to
add additional placement constraints, such as supporting
chain replication or requiring replicas to be placed on dif-
ferent network partitions and racks.

We present Tiered Replication, a simple dynamic
replication scheme that leverages the asymmetric work-
load of the third replica. Tiered Replication allows sys-
tem designers to divide the cluster into primary and
backup tiers, and its incremental operation supports
nodes joining and leaving. In addition, unlike Random
Replication, Tiered Replication enables system design-
ers to limit the frequency of data loss under correlated
failures. Moreover, Tiered Replication can support any
data layout constraint, including support for chain repli-
cation [37] and topology-aware data placement.

Tiered Replication is an optimization-based algorithm
that places chunks into the best available replication
groups. The insight behind its operation is to select repli-
cation groups that both minimize the probability of data
loss under correlated failures by reducing the overlap be-
tween replication groups, and satisfy data layout con-
straints defined by the storage system designer. Tiered
Replication increases the MTTF by a factor of 20,000
times compared to Random Replication, and by a factor
of 20 compared to Copyset Replication.

We implemented Tiered Replication on HyperDex, a
cloud storage system that can scale up to hundreds of
thousands of nodes [13]. Our implementation of Tiered

Replication is versatile enough to satisfy constraints on
replica assignment and load balancing, including Hyper-
Dex’s data layout requirements for chain replication [37].
We analyze the performance of Tiered Replication on a
HyperDex installation on Amazon, in which the backup
tier, containing the third replicas, is stored on a separate
Amazon availability zone. We show that Tiered Repli-
cation incurs a small performance overhead for normal
operations and preserves the performance of node recov-
ery. Our open source implementation of Tiered Replica-
tion on HypderDex is publicly available.

2. MOTIVATION
In this section, we demonstrate why three-way repli-

cation is not cost-effective. First, we demonstrate that it
is superfluous to use a replication factor of three to pro-
vide data durability against independent failures, and that
two replicas provide sufficient redundancy for this type
of failure. Second, building on previous work [7, 9], we
show that random three-way replication falls short in pro-
tecting against correlated failures. These findings pro-
vide motivation for a replication scheme that more effi-
ciently handles independent node failures and provides
stronger durability in the face of correlated failures.

2.1 Analysis of Independent Node Failures
Consider a storage system with N nodes and a repli-

cation factor of R. Independent node failures are mod-
eled as a Poisson Process with an arrival rate of λ. Typ-
ical parameters for storage systems are N = 1, 000 to
N = 10, 000 and R = 3 [5, 7, 14, 33].
λ = N

MTTF , where MTTF is the mean time to per-
manent failure of a standard node. We borrow the fail-
ure assumption used by Yahoo and LinkedIn, for which
about 1% of the nodes in a typical cluster fail indepen-
dently each month [7, 33]. Consequently, we use a node
MTTF of 10 years. We also assume in the model that
the number of nodes remains constant and that there is
always an idle server available to replace a failed node.

When a node fails, the cluster re-replicates its data
from several servers, which store replicas of the node’s
data and write the data into another set of nodes.
The node’s recovery time depends on the number of
servers that can be read from in parallel to recover the
data. Using previously defined terminology [9], we term
scatter width or S as the average number of servers
that participate in a single node’s recovery. For exam-
ple, a node that has S = 10 has its data replicated uni-
formly on 10 other nodes, and when the node fails, the
storage system can re-replicate the data by reading from
and writing to 10 nodes in parallel.

A single node’s recovery time is modeled as an ex-
ponential random variable, with a recovery rate of µ.
We assume that recovery rate is a linear function of the
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Figure 1: Markov chain of data loss due to indepen-
dent node failures. Each state represents the number
of nodes that are down simultaneously.

scatter width, or a linear function of the number of
nodes that recover in parallel. µ = S

τ , where τ
S is the

time to recover an entire server over the network with S
nodes participating in the recovery. Typical values for τ

S
are between 1-30 minutes [7, 14, 33]. For example, if a
node stores 1 TB of data and has a scatter width of 10
(i.e., its data would be scattered across 10 nodes), and
each node was read from at a rate of 500 MB/s, it would
take about three minutes to recover the node’s data. As
a reference, Yahoo has reported that when the cluster re-
covers a node in parallel, it takes about two minutes to
recover a node’s data [33].

Throughout the paper we use τ = 60 minutes with
a scatter width of 10, which results in a recovery time
of 6 minutes (three times higher than the recovery time
reported by Yahoo [33]). Note that there is a practical
lower bound to recovery time. Most systems first make
sure the node has permanently failed before they start
recovering the data. Therefore, we do not consider re-
covery times that are below one minute. We also assume
that each node has a single 2 TB disk that can be recov-
ered at a rate of 500 MB/s, and that each node’s data is
split into 10,000 chunks. These numbers match standard
industry parameters [6, 9, 17].

The rate of data loss due to independent node failures
is a function of two probabilities. The first is the prob-
ability that i nodes in the cluster have failed simultane-
ously at a given point in time: Pr(i failed). The second
is the probability of loss given i nodes failed simultane-
ously: Pr(loss|i failed). In the next two subsections,
we show how to compute these probabilities, and in the
final subsection we show how to derive the overall rate
of failure due to independent node failures.

2.1.1 Probability of i Nodes Failing
We first express Pr(i failed) using a Continuous-

time Markov chain, depicted in Figure 1. Each state in
the Markov chain represents the number of failed nodes
in a cluster at a given point in time.

The rate of transition between state i and i + 1 is
the rate of independent node failures across the cluster,
namely λ. The rate of the reverse transition between state

Number
of Nodes

Pr(2 Failures) Pr(3 Failures) Pr(4 Failures)

1,000 6.51× 10−7 2.48× 10−10 7.07× 10−14

5,000 1.62× 10−5 3.08× 10−8 4.40× 10−11

10,000 6.44× 10−5 2.45× 10−7 7.00× 10−10

50,000 1.54× 10−3 2.93× 10−5 4.18× 10−7

100,000 5.81× 10−3 2.21× 10−4 6.31× 10−6

Table 1: Probability of simultaneous node failures
due to independent node failures under different clus-
ter sizes. The model uses S = 10, R = 3, τ =
60 minutes and an average node MTTF of 10 years.

i and i − 1 is the recovery rate of single node’s data.
Since there are i failed nodes, the recovery rate of a sin-
gle node is (i) ·µ (in other words, as the number of nodes
the cluster is trying to recover increases, the time it takes
to recover the first node decreases, because more nodes
participate in recovery). We assume that the number of
failed nodes does not affect the rate of recovery. This as-
sumption holds true as long as the number of failures is
relatively small compared to the total number of nodes,
which is true in the case of independent node failures in
a large cluster (we demonstrate this below).

The probability of each state in a Markov chain with N
states can always be derived from a set of N linear equa-
tions. However, since N is on the order of magnitude of
1,000 or more, and the number of simultaneous failures
due to independent node failures in practical settings is
very small compared to the number of nodes, we derived
an approximate closed-form solution that assumes an in-
finite sized cluster. This solution is very simple to com-
pute, and we provide the analysis for it in Appendix 8.

The probability of i nodes failing simultaneously is:

Pr(i failed) =
ρi

i!
e−ρ

Where ρ =
λ

µ
. The probabilities for different cluster

sizes are depicted in Table 1. The results show that for
clusters smaller than 10,000 nodes, the probability of two
or more simultaneous independent failures is very low.

2.1.2 Data Loss Given i Node Failures
Now that we have estimated Pr(i failed), we need to

estimate Pr(loss|i failed). Previous work has shown
how to compute this probability for different types of
replication techniques using simple combinatorics [9].
Replication algorithms map each chunk to a set of R
nodes. A copyset is a set that stores all of the copies of
a chunk. For example, if a chunk is replicated on nodes
{7, 12, 15}, then these nodes form a copyset.

Random replication selects copysets randomly from
the entire cluster. Facebook has implemented its own

3



34 2015 USENIX Annual Technical Conference USENIX Association

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Number of Nodes

M
T

T
F

 i
n
 Y

e
a
rs

 

 

Copyset Replication, Independent, R = 3

Facebook Random Replication, Independent, R = 3

Random Replication, Independent, R = 3

Copyset Replication, Independent, R = 2

Facebook Replication, Independent, R = 2

Random Replication, Independent, R = 2

Copyset Replication, Correlated, R = 3

Facebook Replication, Correlated, R = 3

Random Replication, Correlated, R = 3

Figure 2: MTTF due to independent and correlated
node failures of a cluster with a scatter width of 10.

random replication technique in which the R nodes are
selected from a pre-designated window of nodes. For
example, if the first replica is placed on node 10, the
remaining two replicas will randomly be placed on two
nodes out of a window of 10 subsequent nodes (i.e., they
will be randomly selected from nodes {11, ..., 20}) [2, 9].

Unlike random schemes, Copyset Replication mini-
mizes the number of copysets [9]. The following exam-
ple demonstrates the difference between Copyset Repli-
cation and Facebook’s scheme. Assume our storage sys-
tem has: R = 3, N = 9 and S = 4. In Facebook’s
scheme, each chunk will be replicated on another node
chosen randomly from a group of S nodes following the
first node. E.g., if the primary replica is placed on node
1, the secondary replica will be randomly placed either
on node 2, 3, 4 or 5. Therefore, if our system has a large
number of chunks, it will create 54 distinct copysets.

In the case of a simultaneous failure of three nodes, the
probability of data loss is the number of copysets divided
by the maximum number of sets:

# copysets(
N
R

) =
54(
9
3

) = 0.64

Now, examine an alternative scheme using the same pa-
rameters. Assume we only allow our system to replicate
its data on the following copysets:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}{1, 4, 7}, {2, 5, 8}, {3, 6, 9}

That is, if the primary replica is placed on node 3, the
two secondary replicas can only be randomly placed on
nodes 1 and 2 or 6 and 9. Note that with this scheme,
each node’s data will be split uniformly on four other
nodes. The new scheme creates only 6 copysets. Now, if
three nodes fail, the probability of data loss is:

# copysets

84
=

6

84
= 0.07.

Consequently, as we decrease the number of copysets,
Pr(loss|i failed) decreases. Therefore, this probabil-

ity is significantly lower with Copyset Replication com-
pared to Facebook’s Random Replication.

Note however, that as we decrease the number of copy-
sets, the frequency of data loss under correlated failures
will decrease, but each correlated failure event will incur
a higher number of lost chunks. This is a desirable trade-
off for many storage system designs, in which each data
loss event incurs a fixed cost [9]. Another design choice
that affects the number of copysets is the scatter width.
As we increase the scatter width, the number of copysets
used by the system also increases.

2.1.3 MTTF Due to Independent Node Failures
We can now compute the rate of loss due to indepen-

dent node failures, which is:

Rate of Loss =
1

MTTF
=

λ
N∑
i=1

Pr(i− 1 failed) · (1− Pr(loss|i− 1 failed))·

Pr(loss|i failed)

The equation accounts for all events in which the
Markov chain switches from state i− 1, in which no loss
occurs, to state i, in which data loss occurs. λ is the tran-
sition rate between state i− 1 and i, Pr(i− 1 failed) is
the probability of state i−1, (1−Pr(loss|i−1 failed))
is the probability that there was no data loss when i − 1
nodes failed, and Pr(loss|i failed) is the probability of
data loss when i nodes failed. Since no data loss can oc-
cur when i < R, the sum can be computed from i = R.

In addition, Table 1 shows that under practical system
parameters, the probability of i simultaneous node fail-
ures due to independent node failures drops dramatically
as i increases. Therefore:

Rate of Loss =
1

MTTF
≈

λ · Pr(R− 1 failed) · Pr(loss|R failed)

Using this equation, Figure 2 depicts the MTTF of
data loss under independent failures for R = 2 and R =
3 with three replication schemes, Random Replication,
Facebook’s Random Replication and Copyset Replica-
tion, as a function of the cluster’s size. It is evident that
Facebook’s Random Replication and Copyset Replica-
tion have a much higher MTTF than Random Replica-
tion. The reason is that they use a much smaller number
of copysets than Random Replication, and therefore their
Pr(loss|i failed) is smaller.

2.2 Analysis of Correlated Node Failures
Correlated failures occur when an infrastructure fail-

ure causes multiple nodes to be unavailable for a long
period of time. Such failures include power outages that
may affect an entire cluster, and network switch and
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Figure 3: MTTF due to independent and correlated
node failures of a cluster with 4000 nodes.

rack failures [7, 11]. Storage systems can avoid data
loss related to some common correlated failure scenar-
ios, by placing replicas on different racks or network
segments [5, 7, 14]. However, these techniques only
go so far to mitigate data loss, and storage systems still
face unexpected simultaneous failures of nodes that share
replicas. Such data loss events have been documented
by multiple data center operators, such as Yahoo [33],
LinkedIn [7] and Facebook [2, 5].

In order to analyze the affect of correlated failures on
MTTF, we use the observation made by LinkedIn and
Yahoo, that about once a year, 1% of the nodes do not
recover after a cluster-wide power outage. This has been
documented as the most common severe correlated fail-
ure [7, 33]. We can compute the probability of data loss
for this event using combinatorics [9].

Figure 2 also presents the MTTF of data loss under
correlated failures. It is evident from the graph that the
MTTF due to correlated failures for R = 3 is three or-
ders of magnitude lower than that for independent fail-
ures with R = 2 and six orders of magnitude lower than
that for independent failures with R = 3, for any repli-
cation scheme.

We conclude that R = 2 is sufficient to protect against
independent node failures, and that system designers
should only focus on further increasing the MTTF under
correlated failures, which is by far the main contributing
factor to data loss. This has been corroborated in empir-
ical studies conducted by Google [14] and LinkedIn [7].

This provides further evidence that random replication
is very susceptible to correlated and independent failures.
Therefore, in the rest of the paper we compare Tiered
Replication only against Facebook’s Random Replica-
tion and Copyset Replication.

Figure 3 plots the MTTF for correlated and indepen-
dent node failures using the same model as before, as a
function of the scatter width. This graph demonstrates
that Copyset Replication provides a much higher MTTF
than Facebook’s Random Replication scheme. The fig-

ure also shows that increasing the scatter width has an
opposite effect on MTTF for independent and correlated
node failures. The MTTF due to independent node fail-
ures increases as a function of the scatter width, since a
higher scatter width provides faster node recovery times,
since more nodes participate in simultaneous recovery.
In contrast, the MTTF due to correlated node failures de-
creases as a function of the scatter width, since a higher
scatter width produces more copysets.

Since the MTTF is determined primarily by correlated
failures, we can also conclude that if system designers
wish to reduce the cluster-wide MTTF, they should use a
small scatter width.

2.3 The Peculiar Case of the Nth (or Third)
Replica

This analysis prompted us to investigate whether we
can further increase the MTTF under correlated fail-
ures. We assume that the third replica was introduced
in most cases to provide increased durability and not for
increased read throughput [7, 8, 13, 34].

Therefore, consider a storage system in which the third
replica is never read unless the first two replicas have
failed. We estimate how frequently the system requires
the use of a third replica, by analyzing the probability of
data loss under independent node failures for a replica-
tion factor of two. If a system loses data when it uses
two replicas, it means that if a third replica existed and
did not fail, the system would recover the data from it.

In the independent failure model depicted by Fig-
ures 2 and 3, Facebook Random Replication and Copyset
Replication require the third replica very rarely, on the
order of magnitude of every 105 years.

To leverage this property, we can split our storage sys-
tem into two tiers. The primary tier contains the first
and second replicas of each chunk (or the N-1 replicas
of each chunk), while the backup tier contains the third
(or Nth) replica of each chunk. If possible, failures in the
primary tier will always be recovered using nodes from
the primary tier. We only recover from the backup tier if
both the first and second replicas fail simultaneously. In
case the storage system requires more than two nodes for
read availability, the primary tier will contain the num-
ber of replicas required for availability, while the backup
tier will contain an additional replica. Additional backup
tiers (containing a single replica) can be added to support
read availability in multiple geographies.

Therefore, the backup tier will be mainly used for
durability during severe correlated failures, which are in-
frequent (on the order of once a year), as reported by
various operators [5, 7, 33]. Consequently, the backup
tier can be viewed as write-dominated storage, since it
is written to on every write (e.g., thousands of times per
second), but only read from a few times a year.

5



36 2015 USENIX Annual Technical Conference USENIX Association

Splitting the cluster into tiers provides multiple advan-
tages. The storage system designer can significantly re-
duce the correlation between failures in the primary tier
and the backup tier similar to full cluster geo-replication.
This can be achieved by storing the backup tier in a geo-
graphically remote location, or by other means of physi-
cal separation such as using different network and power
infrastructure. It has been shown by Google that storing
data in a physical remote location significantly reduces
the correlation between failures across the two sites [14].

Another possible advantage is that the backup tier can
be stored more cost-effectively than the primary tier,
since it does not require low read latency. For exam-
ple, the backup tier can be stored on a cheaper storage
medium (e.g., tape, or disk in the case of an SSD-based
cluster), its data may be compressed [17, 19, 22, 28, 30],
deduplicated [12, 27, 40] or may be configured in other
ways to be optimized for a write dominated workload.

The idea of using full cluster geo-replication has been
explored extensively. However, existing geo-replication
techniques replicate all replicas from one cluster to a sec-
ond cluster, which multiplies the cost of storage [14, 23].

In the next section, we design a replication technique,
Tiered Replication, that supports tiered clusters and does
not duplicate the entire cluster. Unlike random replica-
tion, Tiered Replication is not susceptible to correlated
node failures, and unlike previous non-random tech-
niques like Copyset Replication, it supports data topol-
ogy constraints such as tiered replicas and minimizes the
number of copysets, even when the number of nodes in
the cluster changes over time [9].

3. DESIGN
The goal of Tiered Replication is to create copysets

(groups of nodes that contain all copies of a single
chunk). When a node replicates its data, it will ran-
domly choose a copyset that it is a member of, and place
the replicas of the chunk on all the nodes in its copy-
set. Tiered Replication attempts to minimize the number
of copysets while providing sufficient scatter width (i.e.,
node recovery bandwidth), and ensuring that each copy-
set contains a single node from the backup tier. Tiered
Replication also flexibly accommodates any additional
constraints defined by the storage system designer (e.g.,
split copysets across racks or network tiers).

Algorithm 1 describes Tiered Replication, while Ta-
ble 2 contains the definitions used in the algorithm.
Tiered Replication continuously creates new copysets
until all nodes are replicated with sufficient scatter width.
Each copyset is formed by iteratively picking candidate
nodes with a minimal scatter width that meet the con-
straints of the nodes that are already in the copyset. Al-
gorithm 2 describes the part of the algorithm that checks
whether the copyset has met the constraints. The first

Name Description

cluster list of all the nodes in the cluster
node the state of a single node
R replication factor (e.g., 3)
cluster.S desired minimum scatter width

of all the nodes in the cluster
node.S the current scatter width of a

node
cluster.sort returns a sorted list of the nodes

in increasing order of scatter
width

cluster.addCopyset(copyset) adds copyset to the list of copy-
sets

cluster.checkTier(copyset) returns false if there is more than
one node from the backup tier, or
R nodes from the primary tier

cluster.didNotAppear(copyset) returns true if each node never
appeared with other nodes in pre-
vious copysets

Table 2: Tiered Replication algorithm’s variables and
helper functions.

Algorithm 1 Tiered Replication
1: while ∃ node ∈ cluster s.t. NODE.S < CLUSTER.S do
2: for all node ∈ cluster do
3: if NODE.S < CLUSTER.S then
4: copyset = {node}
5: sorted = CLUSTER.SORT
6: for all sortedNode ∈ sorted do
7: copyset = copyset ∪ {sortedNode}
8: if CLUSTER.CHECK(copyset) == false then
9: copyset = copyset - {sortedNode}

10: else if COPYSET.SIZE == R then
11: CLUSTER.ADDCOPYSET(copyset)
12: break
13: end if
14: end for
15: end if
16: end for
17: end while

Algorithm 2 Check Constraints Function
1: function CLUSTER.CHECK(copyset)
2: if CLUSTER.CHECKTIER(copyset) == true AND

CLUSTER.DIDNOTAPPEAR(copyset) AND
... // additional data layout constraints then

3: return true
4: else
5: return false
6: end if
7: end function

constraint satisfies the tier requirements, i.e., having ex-
actly one node in each copyset that belongs to the backup
tier. The second constraint enforces the minimization of
the number of copysets, by requiring that the nodes in
the new copyset do not appear with each other in pre-
vious copysets. This constraint minimizes the number of
copysets, because each new copyset contributes the max-
imum increase of scatter width.
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Figure 4: MTTF improvement of Tiered Replication
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Figure 5: Tiered Replication would require 4 replicas
to maintain an MTTF of 100 years once the cluster
scales to 25,000 nodes with a scatter width of 10.

Note that there may be cases in which the algorithm
does not succeed to find a copyset that satisfies all the
constraints. In this case, the algorithm is run again, with
a relaxed set of constraints (e.g., we can relax the con-
straint of minimizing the number of copysets, and allow
more overlap between copysets). In practical scenarios,
in which the number of nodes is an order of magnitude
or more greater than S, the algorithm will easily satisfy
all constraints.

3.1 Analysis of Tiered Replication
We evaluate the durability of Tiered Replication under

independent and correlated node failures. To measure
the MTTF under independent node failures, we use the
same Continuous-time Markov model that we presented
in Section 2. The results are presented in Figures 4 and 5.
Note that R = 2 + 1 means we use Tiered Replication
with two replicas in the primary tier and one replica in
the backup tier.

Under Tiered Replication, when a replica fails in the
primary tier, if possible, it is only recovered from other
nodes in the primary tier. Therefore, fewer nodes will

participate in recovery, because the backup tier nodes
will not be recovered from. In order to compensate for
this effect, system designers that use Tiered Replication
may choose to increase the scatter width. For our analy-
sis we compute the MTTF using the same scatter width
for Tiered Replication and other replication schemes.
Figure 4 shows that for S = 10, the MTTF under inde-
pendent node failures is higher for Copyset Replication
compared to Tiered Replication, because fewer nodes
participate in the recovery of primary replicas and its
single-node recovery time is therefore higher.

Also, note that in Figures 4 and 5, we assume that for
R = 2+1, the third replica is never used to recover from
independent node failures. In reality, the backup tier is
used for any failure of two nodes from the primary tier,
and therefore will be used in the rare case of an indepen-
dent node failure that simultaneously affects two nodes in
the primary tier that are in the same copyset. Hence, the
MTTF under independent node failures for Tiered Repli-
cation is even higher than depicted by the graphs.

To evaluate the durability of Tiered Replication under
correlated failures, we quantify the probability that all
the nodes in one copyset or more fail. Since the primary
and backup tiers are stored on separate infrastructure, we
assume that their failures are independent.

Since each copyset includes two nodes from the pri-
mary tier, when these nodes fail simultaneously, data loss
will occur only if the third copyset node from the backup
tier failed at the same time. Since our assumption is that
correlated failures occur once a year and affect 1% of the
nodes each time (i.e., an MTTF of 100 years for a sin-
gle node), while independent failures occur once in ev-
ery 10 years for a node, it is 10 times more likely that if
a backup node fails, it is due to an independent node fail-
ure. Therefore, the dominant cause of failures for Tiered
Replication is when a correlated failure occurs in the pri-
mary tier, and at the same time an independent node fail-
ure occured in the backup tier.

To compute the MTTF due to this scenario, we need to
compute the probability that a node failure will occur in
the backup cluster while a correlated failure event is oc-
curring in the primary cluster. To be on the conservative
side, we assume that it takes 12 hours to fully recover
the data after the correlated failure in the primary tier
(LinkedIn data center operators report that unavailabil-
ity events typically take 1-3 hours to recover from [7]).
We compute the probability of data loss in this scenario,
using the same combinatorial methods that we used to
compute the MTTF under correlated failures before.

Figure 4 shows that the MTTF of Tiered Replication is
more than two orders of magnitude greater than Copyset
Replication. This is due to the fact that it is much less
likely to lose data under correlated failures when one of
the replicas is stored on an independent cluster. Recall
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that Copyset Replication’s MTTF was already three or-
ders of magnitude greater than random replication.

In Figure 5 we explore the following: what is the turn-
ing point, when a storage system needs to use R = 4
instead of R = 3? We plot the MTTF of Tiered Repli-
cation and extend it N = 1, 000, 000, which is a much
larger number of nodes than is used in today’s clusters.
Assuming that storage designers are targeting an MTTF
of at least 100 years, our results show that at around
25,000 nodes, storage systems should switch to a de-
fault of R = 4. Note that Figure 4 shows that Copyset
Replication needs to switch to R = 4 much sooner, at
about 5,000 nodes. Other replication schemes, like Face-
book’s scheme, fail to achieve an MTTF of 100 years
with R = 3, even for very small clusters.

3.2 Dynamic Cluster Changes
Since running Tiered Replication is fast to execute

(on the order of milliseconds, see Section 4) and the al-
gorithm is structured to create new copysets incremen-
tally, the storage system can run it every time the cluster
changes its configuration.

When a new node joins the cluster, we simply run
Tiered Replication again. Since the new node does not
belong to any copysets, it starts with a scatter width of
0. Tiered Replication’s greedy operation ensures that the
node is assigned to a sufficient number of copysets that
will increase its scatter width to the value of S.

When a node dies (or leaves the cluster), it leaves be-
hind copysets that are missing a single node. The sim-
plest way to re-instate the copysets is to assume that the
old copysets are down and run the algorithm again. The
removal of these copysets will reduce the scatter width
of the nodes that were contained in the removed copy-
sets, and the algorithm will create a new set of copysets
to replace the old ones. The data in the old copysets will
need to be re-replicated R times again. We chose this
approach when implementing Tiered Replication on Hy-
perDex, due to its simplicity.

Alternatively, the algorithm can be optimized to look
for a replacement node, which addresses the constraints
of the remaining nodes in the copyset. In this scenario, if
the algorithm succeeds in finding a replacement, the data
will be re-replicated only once.

3.3 Additional Constraints
Tiered Replication can be extended to support differ-

ent requirements of storage system designers by adding
more constraints to the cluster.check(copysets) func-
tion. The following provides two examples.

Controlled Power Down: Some storage designers
would like to allow parts of the cluster to be temporarily
switched off to reduce power consumption (e.g., accord-
ing to diurnal patterns). For example, Sierra [36], allows
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Figure 6: Adding constraints on Tiered Replication
increases the number of copysets, on a cluster with
N = 4000, R = 3 and S = 10.

a cluster with three replicas to power down two thirds
of its cluster and still allow access to data. This feature
can easily be added as a constraint to Tiered Replication
by forcing each copyset to contain a node that belongs
to a different tier. This feature is also important for sup-
porting controlled software or hardware upgrades, during
which parts of the cluster may be powered down without
affecting the cluster availability.

Chain Replication: Chain replication can provide im-
proved performance and consistency. Each replica is
assigned a position in the chain (e.g., head, middle,
tail) [37]. A desirable property of chain replication is
that each node will have an equal number of replicas in
each position. It is straightforward to incorporate this
requirement into Tiered Replication. In order to ensure
that nodes have an even distribution of chain positions
for their replicas, when the algorithm assigns nodes to
copysets and chain positions, it tries to balance the num-
ber of times the node will appear in each chain position.
For example: if a node has been assigned to the head po-
sition twice, middle position twice and tail position once,
the algorithm will enforce that it will be assigned to a tail
position in the next copyset the node will belong to.

To demonstrate the ability to incorporate additional
constraints to Tiered Replication, we implemented it on
HyperDex [13], a storage system that uses chain replica-
tion. Note that Copyset Replication and Random Repli-
cation are inefficient for supporting balanced chain sets.
Copyset Replication is not designed for incorporating
such constraints because it randomly permutes the en-
tire set of nodes. Random Replication is not effective for
this requirement because its random placement of nodes
frequently creates imbalanced chain positions.

3.4 Analysis of Additional Constraints
Figure 6 demonstrates the effect of adding constraints

on the number of copysets. In the figure, copyset effi-
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ciency is equal to the ratio between the number of copy-
sets generated by an optimal replication scheme that min-
imizes the number of copysets, and the number of copy-
sets generated by the replication scheme with the con-
straint. Note that in an optimal replication scheme, nodes
will not appear more than once with each other in differ-
ent copysets, or in other words, the number of copysets
would be equal to S · (R− 1).

The graph shows that as we further constrain Tiered
Replication, it is less likely to generate copysets that
meet multiple constraints, and its copyset efficiency will
decrease. The figure also shows that the chain set con-
straint has a greater impact on the number of copysets
than the power down constraint. In any case, Tiered
Replication with additional constraints significantly out-
performs any Random Replication scheme.

4. IMPLEMENTATION
In order to evaluate Tiered Replication in a practi-

cal setting, we have extended the open-source Hyper-
Dex [13] key-value store to use Tiered Replication for
replica set selection. HyperDex is a distributed, fault-
tolerant, and strongly consistent key-value store. For our
purposes, HyperDex’s architecture is especially suited
for evaluating different replication strategies. In Hyper-
Dex, a replicated state machine serves as the coordina-
tor, and is responsible for maintaining the cluster mem-
bership and metadata. Part of this metadata includes the
complete specification of all replica sets in the system.

Since Tiered Replication can be implemented effi-
ciently, and is only run when nodes join or leave the
cluster, we implement the greedy algorithm directly in
the replicated HyperDex coordinator.

In HyperDex, a variant of chain replication [37] called
value-dependent chaining specifies the replica set of an
object as a chain of nodes through which writes propa-
gate. We incorporate this into Tiered Replication in the
form of additional constraints that track the positions of
nodes within chains as well as the replica sets each node
appears in. This helps ensure that each node will be bal-
anced across different positions in the chain.

We implement Tiered Replication using synchronous
replication. All writes will be acknowledged by all repli-
cas in both tiers before the client is notified of success.
Practically, this means writes will not be lost except in
the case of correlated failure of all replicas in both tiers.

In total, our changes to HyperDex are minimal. We
added or changed about 600 lines of C++ code, of which
250 lines constitute the greedy Tiered Replication algo-
rithm. The rest of our implementation provides the ad-
ministrator with tools to denote whether a node belongs
to the primary or the backup tier of the cluster.

5. EVALUATION
In order to measure the performance impact of Tiered

Replication in a practical setting, we do not attempt to
measure the frequency of data loss under realistic scenar-
ios, because it is impractical to run a cluster of thousands
of nodes for decades.

5.1 Performance Benchmarks
We set up a 9 node HyperDex cluster on Amazon EC2

using M3 xlarge instances. Each node has a high fre-
quency Intel Xeon E5-2670 v2 (Ivy Bridge) with 15 GiB
of main memory and two 40 GB SSD volumes config-
ured to store HyperDex data.

We compare Tiered Replication to HyperDex’s default
replication scheme, which does not support smart place-
ment across two different availability zones. We ran 6
nodes in one availability zone (us-east-1a) and the three
remaining nodes in a second availability zone (us-east-
1b). In Amazon EC2, each availability zone runs on
its own physically distinct, independent infrastructure.
Common points of failures like generators and cooling
equipment are not shared across availability zones. Ad-
ditionally, they are physically separate, such that even
extremely uncommon disasters such as fires, tornados or
flooding would only affect a single availability zone [1].

In both deployments, the cluster is physically split
across the availability zones, but only the tiered replica-
tion scheme ensures that there is exactly one node from
the backup tier in each chain. In both deployments, we
measured the throughput and latency of one million re-
quests with the Yahoo! Cloud Serving Benchmark [10].
YCSB is an ideal choice of benchmark, because it has be-
come the de-facto standard for benchmarking key-value
stores, and provides a variety of workloads drawn from
real workloads in place at Yahoo. We configured YCSB
to run 32 client threads per host on each of the hosts in the
cluster, with the database prepopulated with 10 million
1KiB objects. Figure 7 shows the throughput measured
for both deployments. The difference in throughput is
due to the fact that Tiered Replication does not load bal-
ance the nodes evenly in very small clusters. The figure
includes error bars for the observed throughput over any
one second interval through the course of the experiment.

5.2 Write Latency
We measure the write latency overhead of Tiered

Replication. The workload consists of 50% read oper-
ations and 50% write operations. When we compared
the write latency of Tiered Replication across two avail-
ability zones with Random Replication across two zones,
we did not find any difference in latency.

Figure 8 comares the write latency of Tiered Replica-
tion across two zones with Random Replication across a
single zone. As expected, Tiered Replication adds some

9
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Figure 7: Tiered Replication throughput under
YCSB benchmark. Each bar represents the through-
put under a different YCSB workload.
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Figure 8: Comparison of write latency between
Tiered Replication across two availability zones and
Random Replication on a single availability zone un-
der YCSB benchmark.

latency overhead, because it spreads the requests across
two availability zones, and our implementation uses syn-
chronous replication, which requires waiting for all repli-
cas to be written before acknowledging the write.

5.3 Recovery Evaluation
We measured single node recovery times under two

scenarios: a node failure in the primary tier and in the
backup tier. We repeated the experiment from the first
two benchmarks and ran YCSB workload B. Thirty sec-
onds into the benchmark, we forcibly failed one node in
the cluster, and initiated recovery thirty seconds later.

In the primary tier node failure experiment, it took ap-
proximately 80 seconds to recover the failed node. It then
took another 48 seconds for the recovered node to syn-
chronize missing data with nodes in the backup tier. This
two-step reintegration process is required by chain repli-

cation: in the first step, the node performs state transfer
with its predecessor, while in the second step, the node
verifies its data with its successor. The recovered node
only transfers to the backup tier nodes the data written
during the thirty seconds of down time, and not the total
data set.

When we repeated the same experiment and failed a
node in the backup tier, it took 91 seconds to recover the
node. Because this node is the last in the chain, the node
can completely reintegrate with the cluster in one step.
The recovery time for both of these experiments is simi-
lar to that of the default HyperDex replication algorithm.

5.4 Bandwidth Across Availability Zones
Tiered Replication relies on having two failure-

independent locations, with a high bandwidth intercon-
nect between them. Our testing shows that Amazon’s
availability zones are an ideal setup. They provide reli-
able links with high bandwidth and low latency. Using
the same machines from the previous experiments, we
conducted pairwise bandwidth tests using the iperf per-
formance measuring tool. All servers in the cluster were
able to communicate at 1.09Gbit/s (even when commu-
nicating across availability zones), which seems to be the
maximum capability of the instances we purchased.

6. RELATED WORK
Several researchers have made observations that the

MTTF under independent failures is much higher than
from correlated failures [25, 38]. A LinkedIn field study
reported no record of data loss due to independent node
failures [7]. Google researchers have shown that the
MTTF with three replicas under correlated failures is al-
most three orders of magnitude lower than the MTTF un-
der independent node failures [14].

Google researchers developed an analysis based on
a Markov model that computes the MTTF for a single
stripe under independent and correlated failures. How-
ever, they did not provide an analysis for the MTTF of the
entire cluster [14]. Nath et al. modeled the affect of cor-
related node failures and demonstrated that replication
techniques that prevent data loss under independent node
failures are not always effective for preventing correlated
node failures [25]. In addition, several researchers have
modeled the MTTF for individual device components,
and in particular for disks [3, 18, 26, 31, 32].

Several replication schemes addressed the high prob-
ability of data loss under correlated failures. Facebook’s
HDFS implementation [2, 5] limits the scatter width of
Random Replication, in order to reduce the probability
of data loss under correlated failures. Copyset Repli-
cation [9] improved Facebook’s scheme, by restricting
the replication to a minimal number of copysets for a
given scatter width. Tiered Replication is the first repli-
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cation technique that not only minimizes the probabil-
ity of data loss under correlated failures, but also lever-
ages the much higher MTTF under independent failures
to further increase the MTTF under correlated failures.
In addition, unlike Copyset Replication, Tiered Repli-
cation can gracefully tolerate dynamic cluster changes,
such as nodes joining and leaving and planned cluster
power downs. It also supports chain replication and the
ability to distribute replicas to different racks and failure
domains, which is a desirable requirement of replication
schemes [5, 24].

The common way to increase durability under cor-
related failures is to use geo-replication of entire clus-
ter to a remote site [14, 21, 23, 35, 39]. Therefore,
if the cluster was using three replicas, once it is geo-
replicated, the storage provider will effectively use six
replicas. Similarly, Glacier [16] and Oceanstore [20, 29]
design an archival storage layer that provides extra pro-
tection against correlated failures by adding multiple new
replicas to the storage system. While the idea of using
archival replicas is not new, Tiered Replication is more
cost-efficient, since does not require any additional stor-
age for the backup: it migrates one replica from the orig-
inal cluster to a backup tier. In addition, previous repli-
cation techniques utilize random placement schemes and
do not minimize the number of copysets, which leaves
them susceptible to correlated failures.

Storage coding is used for reducing the storage over-
head of replication [17, 19, 22, 28, 30]. De-duplication is
also commonly used to reduce the overhead of redundant
copies of data [12, 27, 40]. Tiered Replication is fully
compatible with any coding or de-duplication schemes
for further reduction of storage costs of the backup tier.
Moreover, Tiered Replication enables storage systems to
further reduce costs by storing the third replicas of their
data on a cheap storage medium such as tape, or hard
disks in the case of an solid-state based storage cluster.

7. CONCLUSION
Cloud storage systems typically rely on three-way

replication within a cluster to protect against indepen-
dent node failures, and on full geo-replication of an en-
tire cluster to protect against correlated failures. We pro-
vided an analytical framework for computing the proba-
bility of data loss under independent and correlated node
failures, and demonstrated that the standard replication
architecture used by cloud storage systems is not cost-
effective. Three-way replication is excessive for protect-
ing against independent node failures, and clearly falls
short of protecting storage systems from correlated node
failures. The key insight of our paper is that since the
third replica is rarely needed for recovery from indepen-
dent node failures, it can be placed on a geographically
separated cluster, without causing a significant impact to

the recovery time from independent node failures, which
occur frequently in large clusters.

We presented Tiered Replication, a replication tech-
nique that automatically places the n-th replica on a sep-
arate cluster, while minimizing the probability of data
loss under correlated failures, by minimizing the num-
ber of copysets. Tiered Replication improves the cluster-
wide MTTF by a factor of 20,000 compared to ran-
dom replication, without increasing the storage capac-
ity. Tiered Replication supports additional data place-
ment constraints required by the storage designer, such
as rack awareness and chain replication assignments, and
can dynamically adapt when nodes join and leave the
cluster. An implementation of Tiered Replication on Hy-
perDex, a key-value storage system, demonstrates that it
incurs a small performance overhead.

8. APPENDIX
This section contains the closed-form solution for the

Markov chain described in Section 2 and Figure 1 with
an infinite number of nodes. The state transitions the
Continuous-time Markov chain state i are:

i · µ · Pr(i) = λ · Pr(i− 1)

Therefore:

Pr(i) =
ρ

i
Pr(i− 1)

Where ρ =
λ

µ
. If we apply this formula recursively:

Pr(i) =
ρ

i
Pr(i−1) =

ρ2

i · (i− 1)
Pr(i−2) =

ρi

i!
Pr(0)

In order to find Pr(0), we use the fact that the sum of
all the Markov state probabilities is equal to 1:

∞∑
i=0

Pr(i) = 1

If we apply the recursive formula:

∞∑
i=0

Pr(i) =
∞∑
i=0

ρi

i!
Pr(0) = 1

Using the equality
∞∑
i=0

ρi

i!
= eρ, we get: Pr(0) = e−ρ.

Therefore, we now have a simple closed-form formula
for all of the Markov state probabilities:

Pr(i) =
ρi

i!
e−ρ
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Abstract

We introduce Callisto-RTS, a parallel runtime system
designed for multi-socket shared-memory machines. It
supports very fine-grained scheduling of parallel loops—
down to batches of work of around 1K cycles. Fine-
grained scheduling helps avoid load imbalance while
reducing the need for tuning workloads to particular
machines or inputs. We use per-core iteration counts
to distribute work initially, and a new asynchronous
request combining technique for when threads require
more work. We present results using graph analytics al-
gorithms on a 2-socket Intel 64 machine (32 h/w con-
texts), and on an 8-socket SPARC machine (1024 h/w
contexts). In addition to reducing the need for tuning, on
the SPARC machines we improve absolute performance
by up to 39% (compared with OpenMP). On both archi-
tectures Callisto-RTS provides improved scaling and per-
formance compared with a state-of-the-art parallel run-
time system (Galois).

1 Introduction

Callisto-RTS is a parallel runtime system for multi-
socket shared-memory machines. We focus on support-
ing graph analytics workloads such as PageRank [24]
and betweenness centrality (BC) [17]. These workloads
are increasingly important commercially, and are the fo-
cus of benchmarking efforts [1, 29] along with myriad
single-machine systems (such as Galois [21] and Green-
Marl [12]) plus distributed systems (such as Grappa [20],
Naiad [19], and Pregel [18]). It can be difficult to exploit
parallelism in these workloads because of the difficulty
of achieving good load balance in combination with low
synchronization overhead.

As a running example, consider a PageRank superstep
(Figure 1). The outer loop (t) ranges over the vertices.
Within each iteration, w ranges over the vertices adjacent
to t and updates the new PageRank value for t based on
the current value for w. Using OpenMP [22] as an exam-

#pragma omp for schedule(dynamic, BATCH_SIZE)

for (node_t t = 0; t < G.num_nodes(); t ++) {

double val = 0.0;

for (edge_t w_idx = G.r_begin[t];

w_idx < G.r_begin[t+1]; w_idx ++) {

node_t w = G.r_node_idx [w_idx];

val += G_pg_rank[w] /

(G.begin[w+1] - G.begin[w]);

}

G_pg_rank_nxt[t] = (1 - d) / N + d * val;

}

Figure 1: PageRank loop, with t ranging over vertices.

ple, the pragma indicates that chunks of BATCH_SIZE
iterations of the outer loop should be assigned dynam-
ically to threads. Typically, implementations do this
assignment using an atomic fetch-and-add on a shared
counter.

Setting BATCH_SIZE introduces a trade-off. Setting
it too large risks load imbalance with threads taking large
batches of work and some threads finishing before oth-
ers. Setting it too small introduces synchronization over-
heads. It is difficult to set BATCH_SIZE optimally: The
distribution of work between iterations is uneven—for
instance, in a social network, a celebrity has millions of
times more neighbors than the average. Even if the it-
erations are divided evenly, the work performed by each
thread can be uneven. In some cases, the number of in-
structions executed by each thread may be the same, but
the execution times differ based on differing memory ac-
cess times and cache locality.

With Callisto-RTS we reduce the need for tuning by
making it efficient to select a very small BATCH_SIZE
while still achieving good performance and scalability.
Concretely, on machines with 1024 h/w contexts, we
achieve good performance down to batches of around 1K
cycles (compared with 200K cycles using dynamically-
scheduled OpenMP loops).

Section 2 describes our programming model. We pro-
vide nested parallel loops, with control over how the h/w
contexts in the machine are allocated to different levels
of the loop hierarchy—for instance, an outer loop may
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run with one thread per core, leaving additional threads
per core idle until an inner level of parallelism is reached.
This non-work-conserving approach to nesting can lead
to better cache performance when iterations of the inner
loop share state in a per-core cache.

Section 3 describes our techniques for fine-grained
scheduling. We use a combining mechanism to allow
threads requesting new work to aggregate their requests
before accessing a shared loop iteration counter (e.g.,
combining requests via local synchronization in a core’s
L1$). In addition, we introduce a new asynchronous
combining scheme in which a thread issues a request for
new work while executing its current work: this provides
more time for combining to occur. Furthermore, combin-
ing can be achieved with ordinary read/write operations,
reducing the need for atomic read-modify-writes.

In Section 4 we evaluate the performance of
Callisto-RTS. We use a 2-socket Intel 64 system (having
32 h/w contexts). We also use an 8-socket T5 SPARC
system (having 1024 h/w contexts).

In addition to comparing with OpenMP, we compare
our PageRank results with Galois, a state-of-the-art sys-
tem based on scalable work-stealing techniques [21].
In contrast to work-stealing, we show that the shared-
counter representation we use for parallel work en-
ables single-thread performance improvements of 5%–
26%. The asynchronous combining technique enables
improved scalability on both processor architectures.

Section 5 discusses related work, and in particular,
task-parallel models such as Cilk [8] and Intel Threading
Building Blocks (TBB) [27]. Callisto-RTS differs from
these systems in two main ways: First, compared with
work-stealing, our implementation is specialized to dis-
tributing batches of loop iterations via shared counters.
We use request aggregation to reduce contention on these
counters rather than using thread-local work queues. Our
approach avoids reifying individual batches of loop iter-
ations as entries in work queues (as in Galois [21]), or re-
quiring memory fence instructions (as in typical thread-
safe work queues).

Second, we exploit the structure of the machine in
the programming model as well as the runtime system.
Our non-work-conserving approach to nesting contrasts
with work-stealing implementations of task-parallelism
in which all of the idle threads in a core would start ad-
ditional iterations of the outer loop. In workloads with
nested parallelism, our approach aims to reduce cache
pressure when different iterations of an outer loop have
their own iteration-local state: it can be better to have
multiple threads sharing this local state, rather than ex-
tracting further parallelism from the outer loop.

As we say in Section 6, we hope that our techniques
can be incorporated in runtime systems for other parallel
programming models in the future.

2 Programming model: parallel loops

In this section we introduce the API supported by
Callisto-RTS. Our initial workloads are graph analytics
algorithms generated by a compiler from the Green-Marl
DSL [12]. Therefore, while we aim for the syntax to be
reasonably clear, our main goal is performance.

2.1 Flat parallelism

Callisto-RTS is based on parallel loops. As with
OpenMP, and other systems, the programmer must en-
sure that iterations are safe to run concurrently. Loops
are expressed using C++ templates, specializing a
parallel_for function according to the type of the
iteration variable and the loop body. Currently, all of the
loops we support distribute their iterations across the en-
tire machine (as with OpenMP dynamic loops). This
reflects the fact that our graph algorithms typically have
little temporal or spatial locality in their access patterns.
In this setting, we are concerned more by reducing con-
tention in the runtime system, and achieving good uti-
lization of the h/w contexts across the machine and their
associated memory.

A parallel loop to sum the numbers 0 . . .10 is written:

struct example_1 {

atomic<int> total {0}; // 0-initialized atomic

void work(int idx) {

total += idx; // Atomic add

} } e1;

parallel_for<example_1, int>(e1, 0, 10);

cout << e1.total;

The work function provides the body of the loop. The
parallel_for is responsible for distributing work
across multiple threads. The struct e1 is shared across
the threads. Hence, due to the parallelism, atomic add
operations are needed for each increment.

Per-thread state can be used to reduce the need for
atomic operations. This per-thread state is initialized
once in each thread that executes part of the loop, and
then passed in to the work function:

struct per_thread { int val; };

struct example_2 {

atomic<int> total {0}; // 0-initialized atomic

void fork(per_thread &pt) { pt.val = 0; }

void work(per_thread &pt, int idx) {

pt.val += idx; // Unsynchronized add

}

void join(per_thread &pt) {

total += pt.val; // Atomic add

} } e2;

parallel_for<example_2, per_thread, int>(e2,0,10);

cout << e2.total;
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In this example the fork function is responsible for ini-
tializing the per-thread counter. The work function then
operates on this per-thread state. Thejoin function uses
an atomic add to combine the results.

Design rationale. We considered whether to use C++
closures for loop bodies. Closures provide simpler syn-
tax for short examples, and permit variables to be cap-
tured by reference in the work function. Unfortunately,
performance using current compilers appears to depend a
great deal on the behavior of optimization heuristics. We
hope that future compiler implementations may provide
more consistent performance in this regard.

For simplicity we have an implicit barrier at the end of
each loop. This reflects the fact that, for our workloads,
there is abundant parallel work, plus the fact that our im-
plementation techniques are effective in reducing load
imbalance (meaning that threads tend to arrive at the end
of the loop at approximately the same time). We assume
that Callisto-RTS runs within an environment where it
has exclusive use of h/w contexts, and so thread preemp-
tion is not a concern.

In more variable multiprogrammed environments, dy-
namic techniques such as the prior work of Harris et

al. [10], or abstractions and analyses such as those of
Vajracharya and Grunwald may mitigate straggler prob-
lems [32].

Implementation. We initially describe the implementa-
tion with a single level of parallelism (we discuss nest-
ing in Section 2.2). A set of worker threads is created
at startup. A designated leader starts the main function.
Other follower threads wait for work.

The definition of parallel_for instantiates a
work_item object and publishes it via a shared pointer
being watched by the followers. The work item has a
single run function containing a loop which claims a
batch of iterations before calling the workload-specific
loop body. This repeats until there are no more itera-
tions. A reference to the loop’s shared state is held in the
work item. Any per-thread state is stack-allocated within
run. Consequently, only threads that participate in the
loop will need to allocate per-thread state.

The thread which claims the last batch of iterations re-
moves the work item from the shared pointer (prevent-
ing additional threads needlessly starting it). Finally,
each work item holds per-socket counts of the number
of active threads currently executing the item. The main
thread waits for these counters to all be 0, at which point
it knows that all of the iterations have finished execution.

Process termination is signaled by the leader publish-
ing a designated “finished” work item. This approach
means that a worker can watch the single shared location
both for new work and for termination.

2.2 Nested parallelism

Parallel loops can be nested within one another, and
Callisto-RTS provides control over the way in which h/w
contexts are allocated to different levels. The workloads
we target have a small number of levels of parallelism,
dependent on the algorithm rather than on its input. For
instance, our betweenness centrality workload (BC) uses
an outer level to iterate over vertices, and then an inner
level to implement a parallel breadth-first search (BFS)
from each vertex.

Selecting which of these levels to run in parallel de-
pends on the structure of the hardware. In the BC ex-
ample, parallelizing just at the outer level can give poor
performance on multi-threaded cores because multiple
threads’ local BFS states compete for space in each per-
core cache. Conversely, parallelizing just at the inner
level gives poor performance when the BFS algorithm
does not scale to the complete machine. A better ap-
proach is to use parallelism at both levels, exploring dif-
ferent vertices on different cores, and using parallel BFS
within a core.

A loop indicates how many levels are nested inside
it. That is, a loop at level 0 is an inner loop with no
further parallelism. A loop at level 1 encloses one level
of parallelism, and so on.

Concretely, writing parallel_for is short for a
loop at level 0. For a loop at level N we write:

outer_parallel_for<...>(N, ...);

Design rationale. This “inside out” approach to count-
ing levels provides composability. A leaf function using
parallelism will always be at level 0, irrespective of the
different contexts it may be called from.

If we numbered levels “outside in”, or assigned them
dynamically, then it would not be possible to distinguish
(i) reaching an outer loop which should be distributed
across all h/w contexts, versus (ii) an outer loop which
should just be distributed at a coarse level leaving some
idle h/w contexts for use within it. A given program may
have loops with different depths of nesting—e.g., a flat
initialization phase at level 0 over all h/w contexts, while
a subsequent computation may start at level 1 and just be
distributed at a per-socket granularity.

Implementation. Environment variables set how nest-
ing levels map to the machine—e.g., indicating that loops
at level 0 should be distributed across all h/w contexts,
and that level 1 should be distributed across cores, core-
pairs, sockets, or some other granularity. This flexibil-
ity lets a program express multiple levels of parallelism
on large NUMA machines, but execute more simply on
smaller systems.
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(a) Thread t1 executes sequential code.

Other threads wait for work.

(b) Thread t1 enters a loop at level 0.

All threads participate in the loop.

(c) Thread t1 enters a loop at level 1. Thread t1 and t5

participate. Threads t6–t8 now wait for work from t5.

(d) Threads t1 and t5 enter loops at level 0,

threads participate in the respective loops.

Figure 2: Allocation of threads to loops. Thread t1 is at
the top level, t5 at level 1, and other threads at level 0.
This allocation might be appropriate in a 2-socket ma-
chine with 4 threads per socket.

Based on this, threads are organized into a tree which
selects which threads participate in which loops. Each
thread has a level in this tree, and a parent at the next
non-empty level above it (aside from a designated top-
level thread which forms the root of the tree). Dynami-
cally, each thread has a status (leading or following). Ini-
tially, the root is leading and all other threads following.
A thread’s leader is the closest parent with leading status
(including the thread itself). A thread at level n becomes
a leader if it encounters a loop at level k≤n. A follower
at level n executes iterations from a loop if its leader en-
counters a loop at level k≤n; otherwise, it remains idle.

Figure 2 illustrates this dynamically with a possible or-
ganization of 8 threads across 2 sockets. The main thread
is t1 and is the parent to t2. . .t4 in its own socket (level 0),
and t5 in the second socket (level 1). In turn, t5 is parent
to t6. . .t8. Initially t1 is the only active thread and hence
leader to all of the threads t1. . .t8 (Figure 2a). If t1 en-
counters a loop at level 0 then all threads participate in
the same loop (Figure 2b). If, instead, t1 encounters a
loop at level 1 then just t1 and t5 participate (Figure 2c).

(a) Distribution during a level-0 loop led by t1
in which all threads participate, using separate

request combiners on each socket.

(b) Distribution during a level-0 loop

led by t1 (left) and by t5 (right).

Figure 3: Work scheduling in different loops. A top-level
loop spans the complete machine, with local requests for
work being combined in each set of nearby threads. Mul-
tiple instances of an inner loop may run concurrently on
the two parts of the machine.

If t5 then encounters a new loop at level 0 then it becomes
a leader of t5. . .t8 (Figure 2d).

3 Work scheduling

We now introduce our techniques for distributing itera-
tions. We take a hierarchical approach to defining work
scheduling policies, with a number of basic policies that
can be combined to form more complex variants. An in-
dividual thread makes a request to the leaves of a tree
of work distributors, and the implementation of this may
involve a call to a higher level distributor, and so on.

Our hierarchical approach lets us reflect the struc-
ture of the machine within the hierarchy used for work
scheduling. In addition, it lets us explore a range of
complex policies—for instance, exploring whether data
structures should be per-core, per-L2$, or per-socket,
Figure 3 illustrates this using the example 8-thread ma-
chine. Separate work distributors are used for each par-
allel loop—for instance, the 4-thread loop led by t1 is
handled separately from the 4-thread loop led by t5.

Shared counter. The simplest work distributor is a sin-
gle shared counter, initialized with loop bounds, and with
threads claiming iterations using an atomic fetch-and-
add. We include this initial implementation to reflect
the techniques used for dynamically scheduled loops in
many OpenMP runtime systems.
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Distributed counters. The iteration space is dis-
tributed evenly across a number of stripes according to
the number of sockets, cores, or threads within the ma-
chine. Each thread is associated with a home stripe (e.g.,
with per-socket distribution, this would correspond to the
thread’s socket). In addition, each thread has a current

stripe. A thread claims iterations by an atomic incre-
ment on its current stripe until that portion of the iter-
ation space has been completed. At that point it moves
on to the next stripe, and so on until it returns to its home
stripe.

Request combining. Request combiners attempt to ag-
gregate requests for work which are made “nearby” in
time and in the machine. Rather than have multiple
threads across the machine compete for atomic updates
to a single cache line, sets of threads can compete at a
finer granularity, and then a smaller number of threads
compete at a global level. This reduces the number of
atomic read-modify-write instructions, and it increases
the likelihood that contention remains in a local cache.

Each thread using a combiner has a slot comprising a
pair of loop indices (start/request, and end). For
instance, in a 4-slot combiner:

Slot (0,0) is quiescent. Slot (REQ,0) represents a request
for work. Slot (0,16) represents supplied work (in this
case the iterations 0. . .16). In addition, each combiner
has a lock which needs to be held by a thread collecting
requests to make to the upstream counter. In pseudocode:

my_slot->start = REQ; // Issue request

while (1) {

// Try to acquire the combiner lock

if (!spinlock_tryacquire(&my_combiner->lock)) {

// Lock busy. Wait for it to be released, then

// test if we received work.

while (spinlock_is_held(&my_combiner->lock)) {

}

} else {

// We acquired combiner lock, collect requests

// from other threads, issue aggregate request,

// distribute work, and then release lock.

...

spinlock_release(&my_combiner->lock);

}

// Test if request has been satisfied

if (my_slot->start != REQ) {

return (my_slot->start, my_slot->end);

} }

A thread starts by writing REQ in its slot and then trying
to acquire the lock. If the lock is already held then the
current thread waits until the lock is available, and tests
if its request has been satisfied. Note that the REQ flag
is set without holding the lock, and so the lock holder

is not guaranteed to see the thread’s request. If a thread
succeeds in acquiring the lock it scans the other slots for
REQ and issues an upstream request for a separate batch
of iterations for each requester (for brevity we omit the
pseudocode for this). Work is distributed by writing to
the end field and then overwriting REQ in the start
field. Hence, on a TSO memory model, a thread receiv-
ing work sees the start-end pair consistently once REQ is
overwritten.

If all threads using a combiner share a common L1$
then the request slots are packed onto as few cache lines
as possible, Otherwise, each slot has its own line. Com-
biners can be configured in various ways. For instance,
threads within a core could operate with a per-core com-
biner, and then additional levels of combining could oc-
cur at a per-L2$ level (if this is shared between cores), or
at a per-socket level. We examine some of these alterna-
tives in our evaluation (Section 4).

Asynchronous combining. With asynchronous com-
bining, a thread sets its request flag before executing its
current batch, rather than after finishing it. This asyn-
chrony exposes a request over a longer interval: other
threads using the same combiner can handle the request
while the thread’s current batch is being executed.

In the best case, in a set of n threads, all but 1 will find
they have received new work immediately after finishing
their current batches. Furthermore, if additional combin-
ing occurs, then it increases the size of the aggregate re-
quests issued from the combiner (reducing contention on
the next level in the work scheduling tree), and it reduces
contention on the lock used within the combiner (if most
threads receive work then they never need to acquire the
lock). The fast-path for the n−1 threads receiving work
is (i) reading the work provided to them, and (ii) setting
their request flag. On a TSO memory model this avoids
fences or atomic read-modify-write instructions.

4 Evaluation

We evaluate the performance of Callisto-RTS using ma-
chines with two different processor architectures:

Intel 64. We use an Oracle X4-2 machine. This is a 2-
socket machine with Intel Xeon E5-2650 IvyBridge pro-
cessors. Processors have a per-socket L3$, and per-core
L2$ and L1$. Each core provides 2 h/w contexts for a
total of 32 h/w contexts in the machine.

We use GCC 4.7.4 and Linux 2.6.32. We confirmed a
subset of our results on Linux 3.14.33 but saw no dif-
ference: the runtime systems are set to employ user-
mode synchronization using atomic instructions rather
than futex system calls.
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Figure 4: Microbenchmark scalability on X4-2 and T5-8 systems.

SPARC. We use an Oracle T5-8 machine. This is an
8-socket machine with SPARC T5 processors. Each
socket has 16 cores, and each core supports 8 h/w
contexts for a total of 1024 h/w contexts in the machine.
As with the Intel 64 system, the T5-8 has per-socket
L3$ caches, and per-core L2$ and L1$. We use Solaris
Studio 12.4 on Solaris 11.2.

Both architectures provide atomic compare-and-swap
(CAS). The Intel 64 architecture provides additional
atomic operations such as fetch-and-add. Conversely, the
T5 processor provides a user-mode-accessiblewrpause

instruction which lets a h/w context wait for a config-
urable number of cycles, avoiding it consuming pipeline
resources while waiting. This can be important in the
multi-threaded SPARC processor: when only a single
h/w context is runnable, that context can issue instruc-
tions to multiple pipelines in each clock cycle. On the
T5-8 we use wrpause for 128 cycles in loops which
are expected to unblock quickly (e.g., during request
combining), and for approximately 4096 cycles in loops
which are expected to unblock less quickly (e.g., waiting
on entry to a loop).

We spread software threads as widely as possible



USENIX Association  2015 USENIX Annual Technical Conference 51

within the machine. We use OpenMP with active
synchronization (i.e., spinning, rather than blocking in
the OS). For each algorithm-machine combination, the
fastest result is achieved with active synchronization
rather than blocking. We report median-of-3 results.

We use three evaluation workloads: a scalability mi-
crobenchmark (Section 4.1), graph algorithms with a sin-
gle level of parallelism (Section 4.2), and an additional
graph workload using nested parallelism (Section 4.3).

4.1 Work scheduling microbenchmarks

We start using a microbenchmark with a single large
loop. Each iteration performs a variable amount of work
(incrementing a stack-allocated variable a set number of
times). We can vary (i) the number of increments used in
the different iterations, (ii) the number of threads, (iii) the
work scheduling mechanism we use, and (iv) the batch
size in which threads claim work. We investigate two
ways of organizing the work within the loop:

Even distribution. Here, each iteration performs the
same amount of work: good load balancing can be
achieved by splitting the iteration space evenly. We eval-
uate six scheduling techniques: a single shared counter,
distributed counters at per-socket, per-core, and per-
thread granularities, and finally per-core work combin-
ers coupled with per-core counters (Figure 4). For each
machine we show a workload with a modest number of
threads (left column), and then a workload with 1 thread
per core (center column), and a workload with all h/w
contexts in use (right column). We plot the speedup rela-
tive to unsynchronized sequential code on the same ma-
chine.

On the Intel 64 system, a single iteration is around 50
cycles. The per-core and per-thread counters perform
well across the experiments. Request combining per-
forms slightly worse than simple per-thread or per-core
counters: little combining occurs with only two threads
per core.

On the SPARC system, each iteration is around 140
cycles. At large batch sizes, we see good scaling to
512 h/w contexts. The number of instructions per cy-
cle is 0.34 and so, with 2 pipelines per core, we would
expect to saturate the cores with 750 threads. Beyond
this point, contention between threads for pipeline re-
sources can limit performance. We believe this is an ex-
ample workload where the user-mode mwait instruction
in the future SPARC M7 processor [25] could provide
improved scalability—unlike wrpause, the mwait in-
struction permits a thread to monitor a memory location
while waiting, rather than needing to pick a specific in-
terval in advance.

Combining shows slight benefits at high thread counts

and low batch sizes. As expected, the CAS loop used
to increment the counters starts to need re-execution
under higher contention (on Intel 64 we can use an
atomic fetch-and-add). Re-execution consumes pipeline
resources that could otherwise be used productively.

Asynchronous combining generally aggregates re-
quests from all of the active threads in a core irrespective
of the batch size used (e.g., with 256 threads, there are
2 threads per core, and each combined request is for 2
batches). Synchronous combining is effective only when
the batch sizes are small, making requests more likely to
“collide”.

Skewed distribution. With the skewed work distribu-
tion, the first n iterations each contain 1024x the work of
the others. We set n so that the total work across all iter-
ations is the same as the even distribution. The aim is to
study the impact of different work scheduling techniques
when there is contention in the runtime system: threads
which start at the “light” end of the iteration space will
complete their work quickly and start to contend for work
with threads at the “heavy” end.

On the Intel 64 system, per-core and per-thread coun-
ters perform well. As with the even workload, two
threads per core provides little opportunity for combin-
ing.

On the SPARC systems, the use of combining has sig-
nificant benefits at high thread counts (512 or 1024), with
some additional benefit from asynchronous combining.
The skewed workload means that we see CAS failures
and re-execution when incrementing shared counters. In
contrast, per-core combining allows most threads to re-
quest work by setting their request flag (which remains
core-local in the L1$) and then waiting “politely” using
wrpause.

Summary. Based on these results, we use per-thread
counters as the default on Intel 64, and per-core coun-
ters with asynchronous combining on SPARC.

In addition to the results shown here we explored two-
level combining schemes in which threads combine re-
quests within a core, before using a further level of com-
bining within a socket. We saw combining occurring at
both levels, but the the overall benefits from reduced con-
tention did not offset the cost of the additional operations
used. Per-core combining with per-core counters per-
formed better across all workloads, and so we omit the
two-level results.

4.2 Graph algorithms

We now evaluate Callisto-RTS using the PageRank and
Triangle Counting algorithms from Green-Marl [12]
(Figure 5). In Section 4.3 we use a betweenness central-
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T5-8, OpenMP (left), single global counter, per-socket counters, per-core counters with async combining (right),

PageRank – LiveJournal. The best OpenMP execution took 0.26s (512 threads, 1024 batch size).
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T5-8, OpenMP (left), single global counter, per-socket counters, per-core counters with async combining (right),

PageRank – Twitter. The best OpenMP execution took 6.0s (512 threads, 1024 batch size).
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T5-8, OpenMP (left), single global counter, per-socket counters, per-core counters with async combining (right),

Triangle counting – LiveJournal. The best OpenMP execution took 0.21s (256 threads, 256 batch size).
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T5-8, OpenMP (left), single global counter, per-socket counters, per-core counters with async combining (right),

Triangle counting – Twitter. The best OpenMP execution took 55.3s (256 threads, 4 batch size).

Figure 5: Graph algorithms on LiveJournal (4.8M vertices) and Twitter (42M vertices). Execution times normalized
to the best OpenMP result. Below each plot we show the ratio of the best configuration’s execution time to the best
OpenMP result.

ity algorithm [17] as an example with nested parallelism.
We use the SNAP LiveJournal dataset (4.8M vertices,

69M edges) [16] and the Twitter data set of Kwak et al.

(42M vertices, 1.5B edges) [14].
We focus on the SPARC machine. As the microbench-

mark results illustrated, the smaller 2-socket Intel 64 sys-
tem does not exhibit a great deal of sensitivity to work
scheduling techniques with per-thread counters.

For each machine-algorithm combination we show:
the original OpenMP implementation, and then
Callisto-RTS using a single global counter, per-socket
counters, and per-core counters with asynchronous com-

bining. Each plot shows the performance of the given
technique across thread counts (32. . .1024), and batch
sizes (1024. . . 4). Each square shows the execution time,
normalized to the best OpenMP result. Below each plot,
we show the time of the best configuration, normalized
to the best OpenMP result. Note that the dark rows at
the top of the plots indicate there are insufficient threads
to perform well on these scalable workloads, even with
perfect work scheduling and no overheads.

On the LiveJournal input, careful tuning is needed to
get good performance with OpenMP or with a single
counter: different numbers of threads are best for the dif-
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Figure 6: PageRank on Callisto-RTS and Galois.

ferent algorithms, and there is a sharp fall-off in perfor-
mance if the best configuration is not selected.

The OpenMP implementations often perform better
than Callisto-RTS using a single global counter. This
is because they use static scheduling on some loops
where work is known to be distributed evenly (e.g., copy-
ing from one array to another). Static scheduling works
well on such loops, but not on the main parts of the algo-
rithm.

Using a single global counter leads to poor per-
formance at small batch sizes, and work imbalance
with large batches. Per-socket counters provide signif-
icant improvement at smaller batch sizes. As in the
microbenchmark, per-core counters with asynchronous
combining provide good performance over a wide range
of configurations. We see similar trends on the Twitter
input.

Comparison with Galois. The Galois system is a
lightweight infrastructure for parallel in-memory pro-
cessing. In prior work, Nguyen et al. demonstrated
that Galois has good performance and scalability across
a range of graph benchmarks [21]. We use version
2.2.1. We adapted the Galois PageRank code to use the
same in-memory compressed sparse row representation
as with Callisto-RTS. Compared with the Galois origi-
nal, this modified implementation is faster across every
test. We disabled concurrency control and confirmed that
we obtained identical performance between Galois and
Callisto-RTS. Thread placement is identical between the

two runtime systems. We use Galois’ default batch size
(32) in both systems.

Figure 6 shows the resulting performance on the X4-
2 and T5-8. All results are normalized to the single-
threaded implementation without concurrency control.
Callisto-RTS performs better on both machines and both
inputs.

On the X4-2, Callisto-RTS scales similarly on both
graphs up to 16 threads (1 thread per core), with a slight
additional benefit from hyperthreading. Galois scales
well on the Twitter graph, with 15-20% overhead com-
pared with Callisto-RTS. Galois does not scale well on
the LiveJournal graph with shorter loop iterations. Both
differences are due to the way Galois distributes chunks
of work. Each chunk is reified in memory as a block list-
ing the iterations to execute, with each thread holding a
current working block, and per-socket queues of blocks.
On the smaller graph, the iterations are short-running and
contention on per-socket queues appears to limit scaling.
On the Twitter graph, each iteration is longer and con-
tention less significant. However, the inner loop of fetch-
ing an iteration and executing it remains slower than with
Callisto-RTS.

We see similar trends on the T5-8. Galois and
Callisto-RTS both scale well to 128 threads (1 per
core), as does the additional Callisto-RTS variant us-
ing per-socket iteration counters. Beyond this point,
Callisto-RTS continues to scale well with asynchronous
work distribution, whereas the other implementations are
harmed by contention between threads when distributing
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Figure 7: Betweenness centrality using nested paral-
lelism at different levels.

work. On both graphs, Callisto-RTS performs well using
the complete machine of 1024 threads.

Summary. Compared with the OpenMP implementa-
tion, using per-core counters with asynchronous combin-
ing improves the best-case performance in all four of the
workloads in Figure 5 by 6%, 8%, 17%, and 39%. In ad-
dition, and perhaps more significantly, the performance
achieved is more stable over different thread and batch
settings, and does not require the programmer to select
between static and dynamic scheduling.

4.3 Nested parallelism

Our final results use nested parallelism to compute be-
tweenness centrality [17]. For each vertex, the computa-
tion executes breadth-first-search (BFS) traversals. The
execution time can be large even for a modestly sized
graph. We use the SNAP Slashdot data set [16] (82.1K
vertices, 948K edges). Figure 7 compares flat parallelism
(in which we process each vertex sequentially), versus
nested parallelism at different levels. We use a parallel
BFS algorithm with 13 different parallel loops, some ini-
tializing per-BFS data structures, and others performing
parallel expansion of the next level of vertices. There is
a barrier in between each loop (just between the threads
executing that BFS, rather than system-wide).

On this workload, flat parallelism scales well to the
level of 1 thread per core (128 threads on the T5-8
SPARC system). We see little improvement from fur-
ther threads, and then some degradation at 512. . .1024
threads. We recorded values from the SPARC CPU per-
formance counters. With 1 thread per core, 9.8% of load
instructions miss in the L2-D$. With flat parallelism, this
rises steadily to 29% with 8 threads per core.

We obtain the best performance using nesting within a
single core, corresponding to the L2-D$ in this machine.
Using nested parallelism, the miss rate rises only slightly
to 10.8% when moving from 128 to 1024 threads.

In addition to the results shown here we tried (i) nested
parallelism at a per-socket level, and (ii) parallelism only

at the inner level in the BFS algorithm. Both of these al-
ternatives were substantially worse than flat parallelism.

5 Related work

We discuss related work under three sections: program-
ming models providing parallel loops, implementations
of task parallelism, and prior work on combining tech-
niques:

Parallel loops. Our techniques could be used in imple-
mentations of programming models which include paral-
lel loops. Examples include OpenMP [22], parallel loops
in Intel Threading Building Blocks (TBB) [27], and the
proposed C Parallel Language Extensions [6]. Currently,
the GCC 4.9 OpenMP implementation uses a per-loop
shared counter with atomic fetch-and-add. As our results
show, this approach requires careful tuning.

Task-parallelism. Systems such as Cilk [8], TBB [27],
Wool [7, 26], and the Java ForkJoin framework [15]
support task-parallel programming by distributing
lightweight tasks using work-stealing systems such as
those of Blumofe et al. [3] or Chase-Lev [5]. Cilk and
TBB provide parallel loops built over task-parallel ab-
stractions, recursively decomposing loops until a mini-
mum size is reached (analogous to the batch size).

Typically, the common execution path involves a
thread taking a task from a local work queue, decompos-
ing the task, pushing part of the task back onto the queue,
and executing the extracted iterations. While these steps
can remain local to a thread, they require an atomic oper-
ation or memory fence [2]. Our request combining tech-
nique avoids these operations (aside from the one thread
performing the aggregate request). Asynchronous com-
bining reduces our fast path to a read of the current batch,
followed (without a fence) by a write for a new request.

Tzannes et al. [30, 31] observe that a thread can avoid
repeated operations on a work-queue by only pushing
tasks on to the queue when it is below a threshold size
(if the queue is above this size then that indicates that
other threads are busy because otherwise items from the
queue would have been stolen).

Using work stealing provides the opportunity to bene-
fit from large amounts of prior work on scalable imple-
mentations (dating back at least as far as the work of Bur-
ton and Sleep [4], and stretching to ongoing work such
as that of Tzannes et al. [31]). As discussed in our evalu-
ation, Galois is a state-of-the-art example of this kind of
implementation, specialized to shared-memory NUMA
systems, However, reifying each loop iteration as an en-
try in a work-stealing queue introduces storage and pro-
cessing costs, especially when loops contain short itera-
tions.
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Combining algorithms. Many systems have used com-
bining techniques in which operations are aggregated to
reduce contention. Direct software implementations of
early techniques such as combining trees [9] and com-
bining funnels [28] have typically not performed well.
Hendler et al. illustrate this in the evaluation of their
flat combining technique for handling requests on a lock-
based shared data structure [11]. As in our request com-
biners, with flat combining each thread has a structure to
publish requests for work, and a lock which is held while
collecting requests. Unlike our design, flat combining
requires threads to watch both the lock and their own
request—our approach allows threads to just watch the
lock (enabling the use of instructions such as mwait),
and we make requests asynchronously with working.

Oyama et al. described a technique in which a lock
protects a data structure and threads add requests to a
LIFO queue associated with the lock [23]. Each thread
must perform a successful CAS on the head of the list,
whereas we allow threads to publish requests by writing
to a per-thread flag. We use combining within a core,
and empirically the cost of scanning the flags is better
than the cost of maintaining a list.

Klaftenegger et al. described a queue-based delegation
model in which a thread making a write-only request can
proceed concurrently with the request’s execution [13].
Our specialized use of delegation avoids maintaining an
explicit queue, and handles a read-modify-update opera-
tion involving aggregation as well as delegation.

6 Conclusions and future work

In this paper we have introduced runtime system tech-
niques for supporting parallel loops with fine-grain work
scheduling. We are able to scale down to batches of work
of around 1000 cycles on machines with 1024 h/w con-
texts, and we are able to achieve good scaling with work-
loads where the distribution of work between loop iter-
ations is skewed. In addition, on an example workload
with nested parallelism, we were able to obtain further
scaling by matching the point at which we switch to the
inner level parallelism to the position of the L2-D$ in
the machine. This lets multiple threads execute the inner
loops while sharing data in their common cache.

We believe that the techniques used in Callisto-RTS
are applicable to other parallel programming models.
The combining techniques could be applied transparently
in implementations of OpenMP dynamically scheduled
loops—either with, or without, asynchronous combin-
ing.

In addition, the same techniques could be applied to
work-stealing systems. It may be profitable to use per-
core queues and for threads within a core to use com-
bining to request multiple items at once. As with loop

scheduling in Callisto-RTS, this may reduce the number
of atomic operations that are needed, and enable asyn-
chrony between requesting work and receiving it. Fur-
thermore, using per-core queues with combining may
make loop termination tests more efficient than with per-
thread queues (typical termination tests must examine
each queue at least once before deciding that all of the
work is complete).

Finally, we see the trend toward increasingly non-
uniform memory performance making it important to ex-
ercise control over how nesting maps to hardware. In
Callisto-RTS we do this by explicit programmer control
and non-work-conserving allocation of work to threads.
Future systems could use feedback-directed techniques,
or potentially static analyses.
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Abstract

The in-memory cache system is a performance-critical
layer in today’s web server architecture. Memcached is
one of the most effective, representative, and prevalent
among such systems. An important problem is memory
allocation. The default design does not make the best
use of the memory. It fails to adapt when the demand
changes, a problem known as slab calcification.

This paper introduces locality-aware memory alloca-
tion (LAMA), which solves the problem by first ana-
lyzing the locality of the Memcached requests and then
repartitioning the memory to minimize the miss ratio and
the average response time. By evaluating LAMA us-
ing various industry and academic workloads, the paper
shows that LAMA outperforms existing techniques in the
steady-state performance, the speed of convergence, and
the ability to adapt to request pattern changes and over-
come slab calcification. The new solution is close to op-
timal, achieving over 98% of the theoretical potential.

1 Introduction

In today’s web server architecture, distributed in-
memory caches are vital components to ensure low-
latency service for user requests. Many companies use
in-memory caches to support web applications. For ex-
ample, the time to retrieve a web page from a remote
server can be reduced by caching the web page in server’s
memory since accessing data in memory cache is much
faster than querying a back-end database. Through this
cache layer, the database query latency can be reduced as
long as the cache is sufficiently large to sustain a high hit
rate.

Memcached [1] is a commonly used distributed in-
memory key-value store system, which has been de-
ployed in Facebook, Twitter, Wikipedia, Flickr, and
many other internet companies. Some research also pro-
poses to use Memcached as an additional layer to ac-

celerate systems such as Hadoop, MapReduce, and even
virtual machines [2, 3, 4]. Memcached splits the mem-
ory cache space into different classes to store variable-
sized objects as items. Initially, each class obtains its own
memory space by requesting free slabs, 1MB each, from
the allocator. Each allocated slab is divided into slots of
equal size. According to the slot size, the slabs are cat-
egorized into different classes, from Class 1 to Class n,
where the slot size increases exponentially. A newly in-
coming item is accepted into a class whose slot size is
the best fit of the item size. If there is no free space in
the class, a currently cached item has to be first evicted
from the class of slabs following the LRU policy. In this
design, the number of slabs in each class represents the
memory space that has been allocated to it.

As memory is much more expensive than external
storage devices, the system operators need to maximize
the efficiency of memory cache. They need to know
how much cache space should be deployed to meet the
service-level-agreements (SLAs). Default Memcached
fills the cache at the cold start based on the demand. We
observe that this demand-driven slab allocation does not
deliver optimal performance , which will be explained
in Section 2.1. Performance prediction [5, 6] and op-
timization [7, 8, 9, 10, 11] for Memcached have drawn
much attention recently. Some studies focus on profil-
ing and modelling the performance under different cache
capacities [6]. In the presence of workload changing,
default Memcached server may suffer from a problem
called slab calcification [12], in which the allocation can-
not be adjusted to fit the change of access pattern as
the old slab allocation may not work well for the new
workload. To avoid the performance drop, the operator
needs to restart the server to reset the system. Recent
studies have proposed adaptive slab allocation strategies
and shown a notable improvement over the default allo-
cation [13, 14, 15]. We will analyze several state-of-the-
art solutions in Section 2. We find that these approaches
are still far behind a theoretical optimum as they do not
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exploit the locality inherent in the Memcached requests.
We propose a novel, dynamic slab allocation scheme,

locality-aware memory allocation (LAMA), based on
a recent advance on measurement of data locality [16]
described in Section 2.2. This study provides a low-
overhead yet accurate method to model data locality
and generate miss ratio curves (MRCs). Miss ratio
curve (MRC) reveals relationship between cache sizes
and cache miss ratios. With MRCs for all classes,
the overall Memcached performance can be modelled
in terms of different class space allocations, and it can
be optimized by adjusting individual classes’ alloca-
tion. We have developed a prototype system based on
Memcached-1.4.20 with the locality-aware allocation of
memory space (LAMA). The experimental results show
LAMA can achieve over 98% of the theoretical potential.

2 Background

This section summarizes the Memcached’s allocation de-
sign and its recent optimizations, which we will compare
against LAMA, and a locality theory, which we will use
in LAMA.

2.1 Memory Allocation in Memcached
Default Design In most cases, Memcached is demand
filled. The default slab allocation is based on the number
of items arriving in different classes during the cold start
period. However, we note that in real world workloads, a
small portion of the items appears in most of the requests.
For example, in the Facebook ETC workload [17], 50%
of the items occur in only 1% of all requests. It is likely
that a large portion of real world workloads have similar
data locality. The naive allocation of Memcached may
lead to low cache utilization due to negligence of data
locality in its design. Figure 1 shows an example to il-
lustrate the issue of a naive allocation. Let us assume
that there are two classes of slabs to receive a sequence
of requests. In the example, the sequence of items for
writing into Class 1 is “abcabcabc...”, and the sequence
into Class 2 is “123456789...”. We also assume that each
slab holds only one item in both classes for the sake of
simplicity, and there are a total of four slabs. If the ac-
cess rates of the two classes are the same, the combined
access pattern would be “a1b2c3a4b5c6a7b8c9...”. In
the default allocation, every class will obtain two slabs
(items) because they both store two objects during the
cold start period. Note that the reuse distance of any re-
quest is larger than two for both classes. The number
of hits under naive allocation would be 0. As the work-
ing set size of Class 1 is 3, the hit ratio of Class 1 will be
100% with an allocation of 3 slabs according to the MRC
in Figure 1(b). If we reallocate one slab from Class 2 to

Class 1, the working set of Class 1 can be fully cached
and every reference to Class 1 will be a hit. Although
the hit ratio of Class 2 is still 0%, the overall hit ratio
of cache server will be 50%. This is much higher than
the hit ratio of the default allocation which is 0%. This
example motivates us to allocate space to the classes of
slabs according to their data locality.

(a) Access detail for different allocation

(b) MRCs for Class 1&2

Figure 1: Drawbacks of default allocation

Automove The open-source community has imple-
mented an automatic memory reassignment algorithm
(Automove) in a recent version of Memcached [18]. In
every 10 seconds window, the Memcached server counts
the number of evictions in each class. If a class takes the
highest number of evictions in three consecutive moni-
toring windows, a new slab is reassigned to it. The new
slab is taken from the class that has no evictions in the
last three monitoring stages. This policy is greedy but
lazy. In real workloads, it is hard to find a class with no
evictions for 30 seconds. Accordingly, the probability
for a slab to be reassigned is extremely low.

Twitter Policy To tackle the slab calcification prob-
lem, Twitter’s implementation of Memcached (Twem-
cache) [13] introduces a new eviction strategy to avoid
frequently restarting the server. Every time a new item
needs to be inserted but there is no free slabs or expired

2
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ones, a random slab is selected from all allocated slabs
and reassigned to the class that fits the new item. This
random eviction strategy aims to balance the eviction
rates among all classes to prevent performance degrada-
tion due to workload change. The operator no longer
needs to worry about reconfiguring the cache server
when calcification happens. However, random eviction
is aggressive since frequent slab evictions can cause per-
formance fluctuations, as observed in our experiments in
Section 4. In addition, a randomly chosen slab may con-
tain data that would have been future hits. The random
reallocation apparently does not consider the locality.

Periodic Slab Allocation (PSA) Carra et al. [14] ad-
dress some disadvantages of Twemcache and Automove
by proposing periodic slab allocation (PSA). At any time
window, the number of requests of Class i is denoted as
Ri and the number of slabs allocated to it is denoted as
Si. The risk of moving one slab away from Class i is de-
noted as Ri/Si. Every M misses, PSA moves one slab
from the class with the lowest risk to the class with the
largest number of misses. PSA has an advantage over
Twemcache and Automove by picking the most promis-
ing candidate classes to reassign slabs. It aims to find
a slab whose reassignment to another class dose not re-
sult in more misses. Compared with Twemcache’s ran-
dom selection strategy, PSA chooses the lowest risk class
to minimize the penalty. However, PSA has a critical
drawback: classes with the highest miss rates can also
be the ones with the lowest risks. In this case, slab re-
assignment will only occur between these classes. Other
classes will stay untouched and unoptimized since there
is no chance to adjust slab allocation among them. Fig-
ure 2 illustrates a simple example where PSA can get
stuck. Assume that a cache server consists of three slabs
and every slab contains only one item. The global access
trace is “(aa1aa2baa1aa2aa1ba2)⇤”, which is composed
of Class 1 “121212...” and Class 2 “(aaaabaaaaaaba)⇤”.
If Class 1 has taken only one slab (item) and Class 2 has
taken two items, Class 1 would have the highest miss
rate and the lowest risk. The system will be in a state
with no slab reassignment. The overall system hit ratio
under this allocation will be 68%. However, if a slab
(item) were to be reassigned from Class 2 to Class 1,
the hit ratio will increase to 79% since the working set
size of Class 1 is 2. Apart from this weak point, in our
experiments, PSA shows good adaptability for slab cal-
cification since it can react quikly to workload changing.
However, since the PSA algorithm lacks a global per-
spective for slab assignment, the performance still falls
short when compared with our locality-aware scheme.

Facebook Policy Facebook’s optimization of Mem-
cached [15] uses adaptive slab allocation strategy to bal-

Figure 2: Drawbacks of PSA

ance item age. In their design, if a class is currently evict-
ing items, and the next item to be evicted was used at
least 20% more recently than the average least recently
used item of all other classes, this class is identified as
needing more memory. The slab holding the overall least
recently used item will be reassigned to the needy class.
This algorithm balances the age of the least recently used
items among all classes. Effectively, the policy approxi-
mates the global LRU policy, which is inherently weaker
than optimal as shown by Brock et al. using the footprint
theory we will describe next [19].

The policies of default Memcached, Twemcache, Au-
tomove, and PSA all aim to equalize the eviction rate
among size classes. The Facebook policy aims to equal-
ize the age of the oldest item in size classes. We call
the former performance balancing and the latter age bal-
ancing. Later in the evaluation section, we will compare
these policies and show their relative strengths and weak-
nesses.

2.2 The Footprint Theory
The locality theory is by Xiang et al., who define a metric
called footprint and propose a linear time algorithm to
measure it [16] and a formula to convert it into the miss
ratio [20]. Next we give the definition of footprint and
show its use in predicting the miss ratio.

The purpose of the footprint is to quantify the locality
in a period of program execution. An execution trace is
a sequence of memory accesses, each of which is rep-
resented by a memory address. Accesses can be tagged
with logical or physical time. The logical time counts the
number of accesses from the start of the trace. The phys-
ical time counts the elapsed time. An execution window
is a sub-sequence of consecutive accesses in the trace.

The locality of an execution window is measured by
the working-set size , which is the amount of data ac-
cessed by all its accesses [21]. The footprint is a function
fp(w) as the average working-set size for all windows of

3



60 2015 USENIX Annual Technical Conference USENIX Association

the same length w. While different window may have
different working-set size, fp(w) is unique. It is the ex-
pected working-set size for a randomly selected window.

Consider a trace abcca. Each element is a window
of length w = 1. The working-set size is always 1, so
fp(1) = 5/5 = 1. There are 4 windows of length w = 2.
Their working-set sizes are 2, 2, 1, and 2. The average,
i.e., the footprint, is fp(2) = 7/4. For greater window
lengths, we have fp(3) = 7/3 and fp(w) = 3 for w = 4,5,
where 5 is the largest window length, i.e., the length of
the trace. We also define fp(0) = 0.

Although the footprint theory is proposed to model lo-
cality of data accesses of a program, the same theory can
be applied in modeling the locality of Memcached re-
quests where data access addresses are replaced by the
keys. The linear time footprint analysis leads to linear
time MRC construction and thus a low-cost slab alloca-
tion prediction, as discussed next.

3 Locality-aware Memory Allocation

This section describes the design details of LAMA.

3.1 Locality-based Caching
Memcached allocates the memory at the granularity of
a slab, which is 1MB in the default configuration. The
slabs are partitioned among size classes.

For every size class, Memcached allocates its items in
its collection of slabs. The items are ordered in a prior-
ity list based on their last access time, forming an LRU
chain. The head item of the chain has the most recent
access, and the tail item the least recent access. When all
the allocated slabs are filled, eviction will happen when
a new item is accessed, i.e. a cache miss. When the tail
item is evicted, its memory is used to store the new item,
and the new item is re-inserted at the first position to be-
come the new head.

In a web-service application, some portion of items
may be frequently requested. Because of their frequent
access, the hot items will reside near the top of the LRU
chain and hence be given higher priority to cache. A
class’ capacity, however, is important, since hot items
can still be evicted if the amount of allocated memory is
not large enough.

A slab may be reassigned from one size class to an-
other. The SlabReassign routine in Memcached releases
a slab used in a size class and gives it to another size
class. The reassignment routine evicts all the items that
are stored in the slab and removes these items from the
LRU chain. The slab is now unoccupied and changes
hands to store items for the new size class.

Memcached may serve multiple applications at the
same time. The memory is shared. Since requests are

pooled, the LRU chain gives the priority of all items
based on the aggregate access from all programs.

3.2 MRC Profiling

We split the global access trace into different sub-traces
according to their classes. With the sub-trace of each
class, we generate the MRCs as follows. We use a hash
table to record the last access time of each item. With this
hash table, we can easily compute the reuse time distri-
bution rt , which represents the number of accesses with a
reuse time t. For access trace of length n, if the number of
unique data is m, the average number of items accessed
in a time window of size w can be calculated using Xi-
ang’s formula [16]:

fp(w) = m− 1
n−w+1

(
m

Â
i=1

( fi −w)I( fi > w)

+
m

Â
i=1

(li −w)I(li > w)

+
n−1

Â
t=w+1

(t −w)rt) (1)

The symbols are defined as:

• fi: the first access time of the i-th datum

• li: the reverse last access time of the i-th datum. If
the last access is at position x, li = n+1−x, that is,
the first access time in the reverse trace.

• I(p): the predicate function equals to 1 if p is true;
otherwise 0.

• rt : the the number of accesses with a reuse time t.

Now we can profile the MRC using fp distribution.
The miss ratio for cache size of x is the fraction of reuses
that have an average footprint smaller than x:

MRC(x) = 1−
Â{t| f p(t)<x} rt

n
(2)

3.3 Target Performance

We consider two types of target performance: the total
miss ratio and the average response time.

If Class i has taken Si slabs, and Ii represents the num-
ber of items per slab in Class i. Then there should be
Si ⇤ Ii items in this class. The miss ratio of this class

4
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should be MRi = MRCi(Si ⇤ Ii). Let the number of re-
quests of Class i be Ri. The total miss ratio is calculated
as:

Miss Ratio =
Ân

i=1 Ri ⇤MRi

Ân
i=1 Ri

=
Ân

i=1 Ri ⇤MRCi(Si ⇤ Ii)

Ân
i=1 Ri

(3)
Let the average request hit time for Class i be Th(i),

and the average request miss time (including retrieving
data from database and setting back to Memcached) be
Tm(i). The average request time ARTi of Class i now can
be presented as:

ARTi = MRi ⇤Tm(i)+(1−MRi)⇤Th(i) (4)

The overall ART of the Memcached server is:

ART =
Ân

i=1 Ri(ARTi)

Ân
i=1 Ri

(5)

We target the overall performance by all size classes
rather than equal performance in each class. The metrics
take into account the relative total demands for different
size classes. If we consider a typical request as the one
that has the same proportional usage, then the optimal
performance overall implies the optimal performance for
a typical request.

3.4 Optimal Memory Repartitioning
When a Memcached server is started, the available mem-
ory is allocated by demand. Once the memory is fully
allocated, we have a partition among all size classes.
LAMA periodically measures the MRCs and repartitions
the memory.

The optimization problem is as follows. Given the
MRC for each size class, how to divide the memory
among all size classes so that the target performance is
maximized, i.e., the total miss ratio or the average re-
sponse time is minimized?

The repartitioning algorithm has two steps:

Step 1: Cost Calculation First we split the access
trace into sub-traces based on their classes. For each sub-
trace T [i] of Class i, we use the procedure described in
Section 3.2 to calculate the miss ratio M[i][ j] when al-
located j slabs, 0  j  MAX, where MAX is the total
number of slabs. We compute the cost for different opti-
mization targets.

To minimize total misses, Cost[i][ j] is the number of
misses for Class i given its allocation j as follows:

Cost[i][ j] M[i][ j]⇤ length(T [i]).
To minimize ART, Cost[i][ j] is the average access time

of Class i as follows:

Cost[i][ j] (M[i][ j]⇤Tm[i]+
(1−M[i][ j])⇤Th[i])⇤ length(T [i])

Algorithm 1 Locality-aware Memory Allocation

Input: Cost[][] // cost function, could be OPT MISS or
OPT ART

Input: Sold [] // number of slabs in each class
Input: MAX // total number of slabs

1: function SLABREPARTITION(Cost[][],Sold [],MAX)
2: F [][] +•
3: . F [][] minimal cost for Class 1..i using j slabs
4: for i  1..n do
5: for j  1..MAX do
6: for k  0.. j do
7: Temp  F [i−1][ j− k]+Cost[i][k]
8: . Give k slabs to Class i.
9: if Temp < F [i][ j] then

10: F [i][ j] Temp
11: B[i][ j] k
12: . B[][] saves the slab allocation.
13: end if
14: end for
15: end for
16: end for
17: Temp  MAX
18: for i  n..1 do
19: Snew[i] B[i][Temp]
20: Temp  Temp−B[i][Temp]
21: end for
22: MRold  0
23: MRnew  0
24: for i  n..1 do
25: MRold  MRold +Cost[i][Sold [i]]
26: MRnew  MRnew +Cost[i][Snew[i]]
27: end for
28: if MRold −MRnew > threshold then
29: SlabReassign(Sold [],Snew[])
30: end if
31: end function

Step 2: Repartitioning We design a dynamic pro-
gramming algorithm to find new memory partitioning (
Algorithm 1). Lines 4 to 16 show a triple nested loop.
The outermost loop iterates the set of size classes i from
1 to n. The middle loop iterates the number of slabs j
from 1 to MAX. The target function, F [i][ j], stores the
optimal cost of allocating j slabs to i size classes. The
innermost loop iterates the allocation for the latest size
class to find this optimal value.

Once the new allocation is determined, it is compared
with the previous allocation to see if the performance im-
provement is above a certain threshold. If it is, slabs are
reassigned to change the allocation. Through this pro-

5
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cedure, LAMA reorganizes multiple slabs across all size
classes. The dynamic programming algorithm is similar
to Brock et al. [19] but for a different purpose.

The time complexity of the optimization is O(n ⇤
MAX2), where n is the number of size classes and MAX
is the total number of slabs.

In order to avoid the cost of reassigning too many
slabs, we set N slabs as the upper bound on the total reas-
signment. At each repartitioning, we choose N slabs with
the lowest risk. We use the risk definition of PSA, which
is the ratio between reference rate and number of slabs
for each class. The re-allocation is global, since multi-
ple candidate slabs are selected from possibly many size
classes. In contrast, PSA selects a single candidate from
one size class.

The bound N is the maximal number of slab reassign-
ments. In the steady state, the repartitioning algorithm
may decide that the current allocation is the best possi-
ble and does not reassign any slab. The number of actual
reassignments can be 0 or any number not exceeding N.

Algorithm 1 optimizes the overall performance. The
solution may not be fair, i.e., different miss ratios across
size classes. Fairness is not a concern at the level of
memory allocation. Facebook solves the problem at a
higher level by running a dedicated Memcached server
for critical applications [17]. If fairness is a concern,
Algorithm 1 can use a revised cost function to discard
unfair solutions and optimize both for performance and
fairness. A recent solution is the baseline optimization
by Brock et al. [19] and Ye et al. [22].

3.5 Performance Prediction
We can also predict the performance of the default Mem-
cached. Using Equation1 in Section 3.2, we can obtain
the average footprint of any window size. For a stable ac-
cess pattern, we define the request ratio of Class i as qi.
Let the number of requests during the cold start period be
M. The allocation for Class i by the default Memcached
is the number of items it requests during this period .
We predict this allocation as fpi(M ⇤ qi). The length M
of the cold-start period, i.e., the period during which the
memory is completely allocated, satisfies the following
equation:

n

Â
i=1

fpi(M ⇤qi) =C (6)

Once we get the expected items (slabs) each class can
take, the system performance can be predicted by Equa-
tion 3. By predicting M and the memory allocation for
each class, we can predict the performance of default
Memcached for all memory sizes. The predicted allo-
cation is similar to the natural partition of CPU cache

memory, as studied in [19]. Using the footprint the-
ory, our approach delivers high accuracy and low over-
head. This is important for a system operator to deter-
mine how many caches should be deployed to achieve
required Quality of Service (QoS).

4 Evaluation

In this section, we evaluate LAMA in detail, includ-
ing describing the experimental setup for evaluation and
comprehensive evaluation results and analysis.

4.1 Experimental setup

LAMA Implementation We have implemented LAMA
in Memcached-1.4.20. The implementation includes
MRC analysis and slab reassignment. The MRC analysis
is performed by a separate thread. Each analysis samples
recent 20 million requests which are stored using a circu-
lar buffer. The buffer is shared by all Memcached threads
and protected by a mutex lock for atomic access. During
the analysis, it uses a hash table to record the last access
time. The cost depends on the size of the items being
analyzed. It is 3% - 4% of all memory depending for
the workload we use. Slab reassignment is performed
by dynamic programming as shown in Section 3.4. Its
overhead is negligible, both in time and in space.

System Setup To evaluate LAMA and other strategies,
we use a single node, Intel(R) Core(TM) I7-3770 with
4 cores, 3.4GHz, 8MB shared LLC with 16GB memory.
The operating system is Fedora 18 with Linux-3.8.2. We
set 4 server threads to test the system with memory ca-
pacity from 128MB to 1024MB. The small amount of
memory is a result of the available workloads we could
find (in previous papers as described next). In real use,
the memory demand can easily exceed the memory ca-
pacity of modern systems. For example, one of our work-
loads imitates the Facebook setup that uses hundreds of
nodes with over 64GB memory per node [17].

We measure both the miss ratio and the response time,
as defined in Section 3.4. In order to measure the latter,
we set up a database as the backing store to the Mem-
cached server. The response time is the wall-clock time
used for each client request by the server, including the
cost of the database access. Memcached is running on lo-
cal ports and the database is running from another server
on the local network.

Workloads Three workloads are used for different as-
pects of the evaluation:

• The Facebook ETC workload to test the steady-
state performance. It is generated using Muti-
late [23], which emulates the characteristics of the

6
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ETC workload at Facebook. ETC is the closest
workload to a general-purpose one, with the high-
est miss ratio in all Facebook’s Memcached pools.
It is reported that the installation at Facebook uses
hundreds of nodes in one cluster [17]. We set the
workload to have 50 million requests to 7 million
data objects.

• A 3-phase workload to test dynamic allocation.
It is constructed based on Carra et al. [14]. It has
200 million requests to data items in two working
sets, each of which has 7 million items. The first
phase only accesses the first set following a gener-
alized Pareto distribution with location q = 0, scale
f = 214.476 and shape k = 0.348238, based on
the numbers reported by Atikoglu et al. [17]. The
third phase only accesses the second set following
the Pareto distribution q = 0, f = 312.6175 and
k = 0.05. The middle, transition phase increasingly
accesses data objects from the second set.

• A stress-test workload to measure the over-
head. We use the Memaslap generator of libmem-
cached [24], which is designed to test the through-
put of a given number of server threads. Our setup
follows Saemundsson et al. [6]: 20 million records
with 16 byte keys and 32 byte values, and random
requests generated by 10 threads. The proportion
of GET requests to SET is 9:1, and 100 GETs are
stacked in a single MULTI-GET request.

4.2 Facebook ETC Performance
We test and compare LAMA with the policies of default
Memcached, Automove, PSA, Facebook, and Twitter’s
Twemcache (described in Section 2). In our experiments,
Automove finds no chance of slab reassignment, so it has
the same performance as Memcached. LAMA has two
variants: LAMA OPT MR, which tries to minimize the
miss ratio; and LAMA OPT ART, which tries to mini-
mize the average response time. Figures 3 and 4 show
the miss ratio and ART over time from the cold-start to
steady-state performance. The total memory is 512MB.

The default Memcached and PSA are designed to bal-
ance the miss ratio among size classes. LAMA tries to
minimize the total miss ratio. Performance optimization
by LAMA shows a large advantage over performance
balancing by Memcached and PSA. If we compare the
steady-state miss ratio, LAMA OPT MR is 47.20% and
18.08% lower than Memcached and PSA. If we compare
the steady-state ART, LAMA OPT ART is 33.45% and
13.17% lower.

There is a warm-up time before reaching the steady
state. LAMA repartitions at around every 300 seconds
and reassigns up to 50 slabs. We run PSA at 50 times

the LAMA frequency, since PSA reassigns 1 slab each
time. LAMA, PSA and Memcached converge to the
steady state at the same speed. Our implementation of
optimal allocation (Section 4.6) shows that this speed is
the fastest.

The Facebook method differs from others in that it
seeks to equalize the age of the oldest items in each
size class. In the steady state, it performs closest to
LAMA, 5.4% higher than LAMA OPT MR in the miss
ratio and 6.7% higher than LAMA OPT ART in the av-
erage response time. The greater weakness, however, is
the speed of convergence, which is about 4 times slower
than LAMA and the other methods.

Twemcache uses random rather than LRU replace-
ment. In this test, the performance does not stabilize as
well as the other methods, and it is generally worse than
the other methods. Random replacement can avoid slab
calcification, which we consider in Section 4.5.

Next we compare the steady-state performance for
memory sizes from 128MB to 1024MB in 64MB in-
crements. Figures 5 and 6 show that the two LAMA
solutions are consistently the best at all memory sizes.
The margin narrows in the average response time when
the memory size is large. Compared with Memcached,
LAMA reduces the average miss ratio by 41.9% (22.4%–
46.6%) for the same cache size, while PSA and Face-
book reduce the miss ratio by 31.7%(9.1%–43.9%) and
37.6%(21.0%–47.1%). For the same or lower miss
ratio, LAMA saves 40.8% (22.7%–66.4%) memory
space, PSA and Facebook save 29.7%(14.6%–46.4%)
and 36.9%(15.4%–55.4%) respectively.

Heuristic solutions show strength in specific cases.
Facebook improves significantly over PSA for smaller
memory sizes (in the steadstate). With 832MB and larger
memory, PSA catches up and slightly outperforms Face-
book. At 1024MB, Memcached has a slightly faster ART
than both PSA and Facebook. The strength of optimiza-
tion is universal. LAMA maintains a clear lead against
all other methods at all memory sizes.

Compared to previous methods on different memory
sizes, LAMA converges among the fastest and reaches
a greater steady-state performance. The steady-state
graphs also show the theoretical upper bound perfor-
mance (TUB), which we discuss in Section 4.6.

4.3 MRC Accuracy

To be optimal, LAMA must have the accurate MRC. We
compare the LAMA MRC, obtained by sampling and
footprint version, with the actual MRC, obtained by mea-
suring the full-trace reuse distance. We first show the
MRC in individual size classes of Facebook ETC work-
load. There are 32 size classes. The MRCs differ in most
cases. Figure 7 shows three MRCs to demonstrate. The
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Figure 3: Facebook ETC miss ratio from cold-start to
steady state

Figure 4: Average response time from cold-start to
steady state

Figure 5: Steady-state miss ratio with different memory sizes

Figure 6: Steady-state average response time when using different amounts of memory

three curves have different shapes and positions in the
plots, which means that data locality differs in differ-
ent size classes. The shape of the middle curve is not
entirely convex, which means that the traditional greedy
solution, i.e. Stone et al. [25] in Section 5, cannot always
optimize, and the dynamic-programming method in this
work is necessary.

Figure 7 shows that the prediction is identical to the
actual miss ratio for these size classes. The same accu-
racy is seen in all size classes. Table 1 shows the overall
miss ratio of default Memcached for memory sizes from
128MB to 1024MB and compares between the predic-
tion and the actual. The steady-state allocation prediction
for default Memcached uses Equation 6 in Section 3.5.
The prediction miss ratio uses Equation 4 based on pre-

dicted allocation. The actual miss ratio is measured from
each run. The overall miss ratio drops as the memory
size grows. The average accuracy in our test is 99.0%.
The high MRC accuracy enables the effective optimiza-
tion that we have observed in the last section.

4.4 LAMA Parameters

LAMA has two main parameters as explained in Sec-
tion 3.4: the repartitioning interval M, which is the num-
ber of items accesses before repartitioning; and the reas-
signment upper bound N, which is the maximal number
of slabs reassigned at repartitioning. We have tested dif-
ferent values of M and N to study their effects. In this
section, we show the performance of running the Face-
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Figure 7: MRCs for class 1&5&9

Table 1: prediction miss ratio vs. real miss ratio

Capacity Real Prediction Accuracy

128MB 87.56% 88.21% 99.26%
256MB 74.68% 75.40% 99.05%
384MB 62.34% 62.63% 99.54%
512MB 50.34% 50.83% 99.04%
640MB 39.36% 39.52% 99.60%
768MB 29.04% 29.27% 99.21%
896MB 20.18% 20.61% 97.91%

1024MB 13.36% 13.46% 99.26%

book ETC workload with 512MB memory.
Figure 8 shows the dynamic miss ratio over the time.

In all cases, the miss ratio converges to a steady state.
Different M,N parameters affect the quality and speed of
convergence. Three values of M are shown: 1, 2, and 5
million accesses. The smallest M shows the fastest con-
vergence and the lowest steady-state miss ratio. They are
the benefits of frequent monitoring and repartitioning.
Four values of N are shown: 10, 20, 50, and 512. Con-
vergence is faster with a larger N. However, when N is
large, 512 especially, the miss ratio has small spikes be-
fore it converges, caused by the increasing cost of slab re-
assignment. For fast and steady convergence, we choose
M = 1,000,000 and N = 50 for LAMA.

4.5 Slab Calcification
LAMA does not suffer from slab calcification. Partly
to compare with prior work, we use the 3-phase work-
load (Section 4.1) to test how LAMA adapts when the
access pattern changes from one steady state to another.
The workload is the same as the one used by Carra et
al. [14] using 1024MB memory cache to evaluate the per-
formance of different strategies. Figure 9 shows the miss
ratio over time obtained by LAMA and other policies.
The two vertical lines are phase boundaries.

LAMA has the lowest miss ratio in all three phases. In
the transition Phase 2, the miss ratio has 3 small, brief in-
creases due to the outdated slab allocation based on the
previous access pattern. The allocation is quickly up-
dated by LAMA repartitioning among all size classes. In

Figure 8: Different combinations of the repartitioning in-
terval M and the reassignment upperbound N

Figure 9: Miss ratio over time by different policies

LAMA, the slabs are “liquate” and not calcified.
Compared with LAMA, the miss ratio of the default

Memcached is about 4% higher in Phase 1, and the
gap increases to about 7% in Phase 3, showing the ef-
fect in Phase 3 of the calcified allocation made in Phase
1. PSA performs very well but also sees its gap with
LAMA increases in Phase 3, indicating that PSA does
not completely eradicate calcification. Facebook uses
global LRU. Its miss ratio drops slowly, reaches the level
of PSA in Phase 2, and then increases fairly rapidly.
The reason is the misleading LRU information when the
working set changes. The items of the first set stay a long
time in the LRU chain. The random eviction by Twem-
cache does not favor the new working set over the previ-
ous working set. There is no calcification, but the perfor-

9
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Table 2: Cost of MRC measurement in LAMA compared
to reuse distance (RD)

Size Length RD MRC LAMA MRC cost
class (millions) (secs) (secs) reduction

1 1.5953 3.6905 0.1159 96.85%
2 1.8660 4.5571 0.1378 96.97%
3 2.1091 5.2550 0.1597 96.96%
4 2.1140 5.3431 0.1598 97.00%
5 2.0646 5.2025 0.1554 97.01%
6 2.0875 5.2588 0.1585 96.98%
7 1.8725 4.6751 0.1404 96.99%
8 1.5546 3.7395 0.1131 96.97%
9 1.3022 3.0752 0.0932 96.96%

mance is significantly worse than others (except for the
worst of Facebook).

4.6 Theoretical Upper Bound
To measure the theoretical upper bound (TUB), we first
measure the actual MRCs by measuring the full-trace
reuse distance in the first run, compute the optimal slab
allocation using Algorithm 1, and re-run a workload to
measure the performance. The results for Facebook ETC
were shown in Figures 5 and 6. The theoretical upper
bound (TUB) gives the lowest miss ratio/ART and shows
the maximal potential for improvement over the default
Memcached. LAMA realizes 97.6% of the potential in
terms of miss ratio and 92.1% in terms of ART.

We have also tested the upper bound for the 3-phase
workload. TUB shows the maximal potential for im-
provement over the default Memcached. In this test,
LAMA realizes 99.2% of the potential in phase 3, while
the next best technique, PSA, realizes 41.5%. At large
memory sizes, PSA performs worse than the default
Memcached. It shows the limitation of heuristic-based
solutions. A heuristic may be more or less effective
compared to another heuristic, depending on the context.
Through optimization, LAMA matches or exceeds the
performance of all heuristic solutions.

4.7 LAMA Overhead
To be optimal, LAMA depends on accurate MRCs for
all size classes at the slab granularity. In our imple-
mentation, we buffer and analyze 20 million requests be-
fore each repartitioning. In Table 2, we list the overhead
of MRC measurement for Facebook ETC for the first 9
size classes. MRC based on reuse distance measurement
(RD MRC), takes 3 to 5.4 seconds for each size class.
LAMA uses the footprint to measure MRC. The cost is
between 0.09 and 0.16 second, a reduction of 97% (or
equivalently, 30 times speedup). In our experiments, the

repartitioning interval is about 300 seconds. The cost of
LAMA MRC, 0.1 second per size class, is acceptable for
online use.

We have shown that LAMA reduces the average re-
sponse time. A question is whether the LAMA overhead
affects some requests disproportionally. To evaluate, we
measure the cumulative distribution function (CDF) for
the response time of LAMA and the default Memcached.
The results are shown in Figure 10. The workload is ETC
workload, and the memory size is 1024MB.

Figure 10: CDFs of request response latency

99.9% of the response times in LAMA are the same
or lower than default Memcached. LAMA reduces the
latency from over 512ms to less than 128ms for the next
0.09% requests. The latency is similar for the top 0.001%
longest response times. The most significant LAMA
overhead is the contention on the mutex lock when mul-
tiple tasks record their item access in the circular buffer.
This contention and the other LAMA overheads do not
cause a latency increase in the statistical distribution.
LAMA’s improved performance, however, reduces the
latency by over 75% for 90% of the longest running re-
quests.

Figure 11: Throughput vs. number of threads

In this last experiment, we evaluate the throughput us-
ing stress test described in Section 4.1. The purpose is
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to test the degradation when LAMA is activated. We re-
peat each test 10 times and report the average through-
put. Figure 11 shows the overall throughput as different
number of threads are used. Although the throughput of
LAMA is lower than the default Memcached in the stress
test, the average degradation is only 3.14%. In compar-
ison, the Memcached performance profiler MIMIR [6],
which we will introduce in Section 5, brings 8.8% degra-
dation for its most accurate tracking. In actual use,
LAMA is activated at the beginning and whenever the
request pattern changes. Once LAMA produces the op-
timal partition, there is only the benefit and no overhead,
as long as the system performance maintains stable.

5 Related Work

We have discussed related techniques on memory allo-
cation in Section 2. Below we discuss additional related
work in two other areas.

MRC Measurement Fine-grained MRC analysis is
based on tracking the reuse distance or LRU stack dis-
tance [26]. Many techniques have been developed to re-
duce the cost of MRC profiling, including algorithmic
improvement [27], hardware-supported sampling [28,
29], reuse-distance sampling [30, 31, 32], and parallel
analysis [33, 34, 35]. Several techniques have used MRC
analysis in online cache partitioning [36, 37, 29], page
size selection [38], and memory management [39, 40].
The online techniques are not fine-grained. For exam-
ple, RapidMRC has 16 cache sizes [29], and it requires
special hardware for address sampling.

Given a set of cache sizes, Kim et al. divided the
LRU stack to measure their miss ratios [40]. The cost is
proportional to the number of cache sizes. Recently for
Memcached, Bjornsson et al. developed MIMIR, which
divides the LRU stack into variable sized buckets to ef-
ficiently measure the hit ratio curve (HRC) [6]. Both
methods assume that items in cache have the same size,
which is not the case in Memcached.

Recent work shows a faster solution using the footprint
(Section 2.2), which we have extended in LAMA (Sec-
tion 3.2). It can measure MRCs at per-slab granularity
for all size classes with a negligible overhead (Section 4).
For CPU cache MRC, the correctness of footprint-based
prediction has been evaluated and validated initially for
solo-use cache [16, 20]. Later validation includes opti-
mal program symbiosis in shared cache [41] and a study
on server cache performance prediction [42]. In Section
4.3, we have evaluated the prediction for Memcached
size classes and shown a similar accuracy.

MRC-based Cache Partitioning The classic method
in CPU cache partitioning is described by Stone et
al. [25]. The method allocates cache blocks among N
processes so that the miss-rate derivatives are as equal
as possible. They provide a greedy solution, which allo-
cates the next cache block to the process with the great-
est miss-rate derivative. The greedy solution is of lin-
ear time complexity. However, the optimality depends
on the condition that the miss-rate derivative is mono-
tonic. In other words, the MRC must be convex. Suh
et al. gave a solution which divides MRC between non-
convex points [43]. Our results in Section 4.3 show that
the Memcached MRC is not always convex.

LAMA is based on dynamic programming and does
not depend on any assumption about MRC curve prop-
erty. It can use any cost function not merely the miss
ratio. We have shown the optimization of ART. Other
possibilities include fairness and QoS. The LAMA opti-
mization is a general solution for optimal memory par-
titioning. A similar approach has been used to partition
CPU cache for performance and fairness [22, 19].

6 Conclusion

This paper has described LAMA, a locality-aware mem-
ory allocation for Memcached. The technique measures
the MRC for all size classes periodically and repartitions
the memory to reduce the miss ratio or the average re-
sponse time. Compared with the default Memcached,
LAMA reduces the miss ratio by 42% using the same
amount of memory, or it achieves the same memory uti-
lization (miss ratio) with 41% less memory. It outper-
forms four previous techniques in steady-state perfor-
mance, the convergence speed, and the ability to adapt
to phase changes. LAMA predicts MRCs with a 99% ac-
curacy. Its solution is close to optimal, realizing 98% of
the performance potential in a steady-state workload and
99% of the potential in a phase-changing workload.
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Abstract

Key-value (KV) stores have become a backbone of large-
scale applications in today’s data centers. The data set
of the store on a single server can grow to billions of
KV items or many terabytes, while individual data items
are often small (with their values as small as a couple of
bytes). It is a daunting task to efficiently organize such
an ultra-large KV store to support fast access. Current
KV storage systems have one or more of the following
inadequacies: (1) very high data write amplifications, (2)
large index set, and (3) dramatic degradation of read per-
formance with overspill index out of memory.

To address the issue, we propose LSM-trie, a KV stor-
age system that substantially reduces metadata for locat-
ing KV items, reduces write amplification by an order
of magnitude, and needs only two disk accesses with
each KV read even when only less than 10% of meta-
data (Bloom filters) can be held in memory. To this end,
LSM-trie constructs a trie, or a prefix tree, that stores
data in a hierarchical structure and keeps re-organizing
them using a compaction method much more efficient
than that adopted for LSM-tree. Our experiments show
that LSM-trie can improve write and read throughput of
LevelDB, a state-of-the-art KV system, by up to 20 times
and up to 10 times, respectively.

1 Introduction

Key-value (KV) stores play a critical role in the assur-
ance of service quality and user experience in many web-
sites, including Dynamo [22] at Amazon, Voldemort [7]
at LinkedIn, Cassandra [1] at Apache, LevelDB [4] at
Google, and RocksDB [11] at Facebook. Many highly-
demanding data-intensive internet applications, such as
social networking, e-commerce, and online gaming, rely
on quick access of data in the stores for quality service.

A KV store has its unique advantage on efficient
implementation with a flat data organization and a

much simplified interface using commands such as
Put(key,value) for writing data, Get(key) for reading
data, and Delete(key). However, there are several trends
on workload characteristics that are seriously challeng-
ing today’s state-of-the-art KV store implementations for
high performance and high scalability.

First, very small KV items are widespread. As an
example, Facebook had reported that 90% of its Mem-
cached KV pools store KV items whose values are
smaller than 500 bytes [13]. In one KV pool (USR) ded-
icated for storing user-account statuses all values are of
2 bytes. In its nonspecific, general-purpose pool (ETC)
2-, 3-, or 11-byte values add up to 40% of the to-
tal requests to the store. In a replicated pool for fre-
quently accessed data, 99% of KV items are smaller than
68 bytes [26]. In the wildcard (the default pool) and a
pool devoted for a specific application, 75% of items are
smaller than 363 bytes. In Twitter’s KV workloads, after
compression each tweet has only 362 bytes, which con-
tains only 46 bytes of text [3]. In one of Instagram’s KV
workloads the key is the media ID and the value is the
user ID. Each KV item is just as large as a couple of
bytes [10]. For a store of a given capacity, smaller KV
items demand more metadata to locate them. The meta-
data may include index for locating a data block (e.g., a
4 KB disk block) and Bloom filters for determining data
existence in the block.

Second, demand on a KV store’s capacity at individ-
ual KV servers keeps increasing. The rising demand is
not only due to data-intensive applications, but also be-
cause of the cost benefit of using fewer servers to host a
distributed KV store. Today it is an economical choice
to host a multi-terabytes KV store on one server using
either hard disks or SSDs. However, this would signif-
icantly increase metadata size and make memory con-
strained, which is especially the case when significant
applications, such as MapReduce jobs, are scheduled to
the cluster hosting the store, competing the memory re-
source with the storage service [19, 33].
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Third, many KV stores require high performance for
both reads and writes. It has been reported that ratio of
read and write counts in typical low-latency workloads
at Yahoo had shifted from anywhere between 2 and 9 to
around 1 in recent years [29]. Among the five core work-
loads in Yahoo’s YCSB benchmark suite two of them
have equal share of read and write requests [18]. There
are KV stores, such as LevelDB, that are optimized for
writes by organizing data in multiple levels. However,
when not all metadata can be held in memory, multiple
disk reads, each for medadata of a level, are needed to
serve a read request, degrading read performance. In
the meantime, for some KV stores, such as SILT [24],
major efforts are made to optimize reads by minimizing
metadata size, while write performance can be compro-
mised without conducting multi-level incremental com-
pactions.

In this paper, we propose LSM-trie, a KV storage sys-
tem that can accommodate multi-billions of small items
with a capacity of multi-terabytes at one server with lim-
ited memory demand. It supports a sustained through-
put of over 500 K writes per second, and a sustained
throughput of over 50 K reads per second even for work-
loads without any locality and thus with little help from
caching1. To achieve this, LSM-trie uses three novel
techniques. First, it integrates exponential growth pat-
tern in the LSM tree (Log-Structured Merge-tree)—a
commonly adopted KV-store organization—with a lin-
ear growth pattern. This enables a compaction design
that can reduce write amplification by an order of mag-
nitude and leads to much improved write throughput. A
high write throughput is desired as data modifications
and deletions are also processed as writes in the store
implementation. Second, using a trie, or a prefix tree,
to organize data in the store, LSM-trie almost eliminates
index. This allows more and stronger Bloom filters to be
held in memory, making service of read requests faster.
Third, when Bloom filters become too large to be en-
tirely held in the memory, LSM-trie ensures that on-disk
Bloom filters are clustered so that in most cases only one
4 KB-block read is required to locate the data.

Experiments show that LSM-trie significantly im-
proves write throughput over schemes in comparison, in-
cluding LevelDB, RocksDB, and SILT, by up to 20 times
regardless of system configurations such as memory size,
store size, storage devices (SSD or HDD), and access
pattern (uniform or Zipfian key distributions). LSM-trie
can also substantially improve read throughput, espe-
cially when memory available for running the KV store
is limited, by up to 10 times.

Note that LSM-trie uses hash functions to organize

1The throughput of read is significantly lower than that of write be-
cause one read needs access of at least one 4 KB block, while multiple
small KV items in write requests can be compacted into one block.

its data and accordingly does not support range search.
This is a choice similarly made in the design of many
important KV stores, including Amazon’s Dynamo [22],
LinkedIn’s Voldermort [7], and SILT [24], as this com-
mand is not always required by their users. Furthermore,
there are techniques available to support the command by
maintaining an index above these hash-based stores with
B-link tree [17] or dPi-tree [25], and experimental stud-
ies indicate that “there is no absolute winner” in terms of
range-search performance between stores natively sup-
porting it and those relying on external support [28].

2 The design of LSM-trie

The design of LSM-trie was motivated by the excessively
large write amplification of LSM-tree due to its data or-
ganization and compaction scheme [27]. In this section
we will describe the issue in the context of LevelDB, a
popular implementation of LSM-tree from Google. Then
we will describe a trie-based LSM-tree implementation
that can dramatically reduce write amplification in Sec-
tion 2.3. However, this optimized LSM-tree still retains
an index, which grows with the store size and eventually
becomes a barrier to the system’s scalability. In addition,
it may require multiple reads of Bloom filters on the disk
with a large store. In Section 2.4, we describe LSM-
trie, where KV items are hashed into individual buckets,
indices are accordingly removed, and Bloom filters are
grouped together to support efficient access.

2.1 Write Amplification in LSM-tree
A KV store design based on LSM-tree has two goals:
(1) new data must be quickly admitted into the store to
support high-throughput write; and (2) KV items in the
store are sorted to support fast data location. We use a
representative design, LevelDB, as an example to explain
the challenges on simultaneously achieving both of the
goals.

To meet the first goal LevelDB writes to the disk in a
large unit (a couple of megabytes) to generate an on-disk
data structure called SSTable. Specifically, LevelDB first
uses an in-memory buffer, called MemTable, to receive
incoming KV items. When a MemTable is full, it is writ-
ten to the disk to become an immutable SSTable. KV
items in an SSTable are sorted according to their keys.
An SSTable is stored as a file, and KV items are placed
in 4 KB blocks of the file. To locate a KV item in the
SSTable, LevelDB places an index in the file recording
the key of the first KV item in each block. Conduct-
ing binary search on the index, LevelDB knows in which
block a KV item can possibly be located. Because 4 KB
block is a disk access unit, it is not necessary to maintain
a larger index to determine byte offset of each item in a
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Figure 1: Using multi-level structure to grow an LSM-tree store.

Each solid rectangle represents an SSTable.

block. However, the index does not tell whether an item
is actually in the block. If not, accessing the block is
unnecessary and can substantially increase read latency.
To this end, LevelDB maintains a Bloom filter for each
block to indicate whether an item is in it [16]. To min-
imize its false positive rate, the filter must be sized pro-
portionally to the number of items in a block, usually
10–16 bits per item.

To meet the second goal LevelDB builds a multi-
level tree-like structure to progressively sort KV items.
As shown in Figure 1a, new SSTables, which are just
converted from MemTables, are placed in Level 0. To
quickly admit incoming items, items in new SSTa-
bles are not immediately sorted with those in exist-
ing SSTables at Level 0. Instead, each of the SSTa-
bles becomes a sub-level (L0.0,L0.1,L0.2, . . . ) of Level 0
(See Figure 1a). In the background, LevelDB merge-
sorts a number of L0 SSTables to produce a list of
non-overlapping SSTables at Level 1 (L1), an operation
called compaction. To quickly have more data sorted
into one list, starting from Level 1 there are no sub-
levels and the ratio of two adjacent levels’ sizes is large
(Size(Lk+1)/Size(Lk),where k = 0,1, . . . ). We name the
ratio amplification factor, or AF in short, which is 10 in
LevelDB by default. As every level (Lk+1) can be 10
times as large as its immediate upper level (Lk), the store
keeps producing exponentially larger sorted list at each
level and becomes very large with only a few levels.

However, this exponential growth pattern leads to an
excessively large write amplification ratio, a ratio be-
tween actual write amount to the disk and the amount
of data requested for writing by users. Because the range
of keys covered by each level is roughly the same, to
push one SSTable at a level down to its next lower level
LevelDB needs to read this SSTable and ten SSTables
in the lower level (in the worst case) whose entire key
range matches the SSTable’s key range. It then merge-
sorts them and writes the 11 resulting SSTables to the
lower level. That is, the write amplification ratio is

11, or AF + 1. For a new KV item to reach Level k
(k = 0,1,2, . . . ), the write amplification ratio can go up to
k× (AF + 1). When the k value reaches 5 or larger, the
amplification ratio can become unacceptably large (55
or larger). Such an expensive compaction operation can
consume most of the I/O bandwidth and leave little for
servicing frontend user requests.

For a store of given capacity, efforts on reducing the
write amplification by limiting number of levels would
have counter effect. One example is the SILT KV
store [24], which essentially has two levels (HashStore
and SortedStore). When the store grows large, its Sort-
edStore has to be much larger than HashStore (even
when multiple HashStores are employed). This causes
its very high write amplification (see Section 3 for mea-
surements), which justifies the use of multiple levels for
progressive compaction in the LSM-tree-based stores.

2.2 Challenge on Reducing Write Amplifi-
cation in the LSM-tree Compaction

A compaction entails reading sorted lists (one SSTable
from Lk and a number of SSTables matching its key range
from Lk+1), merging-sorting them into one sorted list,
and writing it back to Lk+1. While any data involved in
the operation contribute to the write amplification, it is
the larger data set from the lower level (Lk+1) that makes
the amplification ratio excessively large. Because the
purpose of the compaction is to push data to the lower
level, the contribution to the amplification from access-
ing data at the upper level is necessary. If we manage
to allow only data at the upper level to be involved in a
compaction, the write amplification can be minimized.

To this end, we introduce the linear growth pattern.
As shown in Figure 1b, in addition to Level 0 other lev-
els also consist of a number of its sub-levels. Sub-levels
belonging to the same level are of the same (maximum)
size. When a new sub-level is produced at a level, the
store linearly grows at this level. However, when a new
level is produced, the store exponentially grows (by AF
times). During growth of the store, new (sub)-levels are
produced alternatively using the linear and exponential
growth patterns. In other words, each LevelDB’s level is
replaced by multiple sub-levels. To minimize write am-
plification, we can merge-sort data in the sub-levels of
a level (Lk) to produce a new sub-level of its next lower
level (Lk+1). As similar amount of data in each sub-level,
but no data in the next lower level, are involved in a com-
paction, write amplification can be minimized.

A key consideration in LevelDB’s implementation is
to bound each compaction’s maximum cost in terms of
number of SSTables involved, or AF +1, to keep service
of user requests from being disruptively slowed down by
the background operation. For the same purpose, in the
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Figure 2: A trie structure for organizing SSTables. Each node repre-
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use of linear growth pattern in a compaction we select
one SSTable at each sub-level of a level (Lk), and merge-
sort these SSTables into a sequence of non-overlapping
SSTables at Level Lk+1. The range of keys involved
in a compaction represents the compaction’s key range.
Among all compactions moving data from Lk to Lk+1, we
must make sure their key ranges are not overlapped to
keep any two SSTables at Level Lk+1 from having over-
lapped key ranges. However, this cannot be achieved
with the LevelDB data organization because the sorted
KV-items at each sub-level are placed into the SSTables
according to the tables’ fixed capacity (e.g., 32 MB). The
key range size of an SSTable can be highly variable and
the ranges’ distribution can be different in different sub-
levels. Therefore, ranges of the aforementioned com-
pactions are unlikely to be un-overlapped.

2.3 SSTable-trie: A Design for Minimizing
Write Amplification

To enable distinct key range in a compaction, we do not
use a KV-item’s ranking (or its position) in a sorted list
to determine the SSTable it belongs to in a level. In-
stead, we first apply a cryptographic hash function, such
as SHA-1, on the key, and then use the hashed key, or
hashkey in short, to make the determination. This essen-
tially converts the LevelDB’s multi-level structure into a
trie, as illustrated in Figure 2. Accordingly we name this
optimized LevelDB SSTable-trie.

An SSTable-trie is a prefix tree whose nodes are table
containers, each containing a number of SSTables. Each
node has a fixed number of child nodes and the number is
equivalent to the AF (amplification factor) in LevelDB. If
the number is assumed to be 8, a node’s children can be
distinguished by a three-bit binary (000,001, . . . ,or 111).
A node in the trie can also be identified by a binary, usu-
ally of more bits. Starting from the root node, we can
segment the binary into consecutive three-bit groups with
the first group indicating a root’s child. As each bit group
identifies a corresponding node’s child, we can follow
the bit groups to find a path to the node corresponding

Before Compaction:

After Compaction:

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Figure 3: A compaction operation in the trie.

to the binary. All nodes of the same depth in a trie con-
stitute a level in the trie structure, which is equivalent to
a level in LevelDB. Each container has a pile of SSTa-
bles (see Figure 2). A trie level consists of a number of
SSTable piles. All SStables at the same position of the
piles at a trie level constitute a sub-level of the trie, which
corresponds to a sub-level in LevelDB.

As each KV item is also identified by a binary (the
hashkey), its location in a level is determined by match-
ing the hashkey’s prefix to the identity of a node in the
level (see Figure 2). In contrast to the KV-item placement
in a level of LevelDB, a KV-item’s location in a trie level
is independent of other keys in the same level. A com-
paction operation involves a pile of SSTables in only one
container. After a compaction KV items in a pile are
moved into the container’s children according to their re-
spective hashkeys, rather than their rankings in the sorted
list as LevelDB does. By using hashkeys each com-
paction’s key range is unique and SSTables produced by
a compaction are non-overlapping. Such a compaction
incurs minimal write amplification. Figure 3 illustrates
a compaction operation in a trie. Note that use of SHA-
1 as the hash function to generate hashkey guarantees a
uniform distribution of KV items at each (sub)-level re-
gardless of distribution of original keys.

2.4 LSM-trie: a Large Store for Small
Items

Our goal is to enable very large KV stores in terms of
both capacity and KV-item count in a server. A big chal-
lenge on designing such a store is the management of its
metadata that often have to be out of core (the DRAM).

2.4.1 Out-of-Core Metadata

For a given KV item, there is at most one SSTable at each
(sub)-level that may store the item in LevelDB because
every (sub)-level is sorted and its SSTables’ key ranges
are not overlapped. The store maintains a very small in-
memory search tree to identify the SSTable at each level.
At the end of each SSTable file an index and Bloom fil-
ters are stored to facilitate search in the table. The index



USENIX Association  2015 USENIX Annual Technical Conference 75

is employed to identify a 4 KB block and a Bloom filter
is maintained for each block to tell whether a KV item
is possibly in the block. The indices and Bloom filters
in a KV store can grow very large. Specifically, the size
of the indices is proportional to the store’s capacity (or
number of 4 KB blocks), and the size of the Bloom filters
is proportional to total item count. For a large store the
metadata can hardly be accommodated in memory. For
example, a 10 TB store holding 200 B-KV-items would
require about 125 GB space for 10-bit-per-key Bloom-
filters and 30 GB for indices. While it is well affordable
now and even so in the near future to have an HDD ar-
ray or even an SSD array as large as 10 TB in a server,
it is not cost-effective to dedicate such a large DRAM
only for the metadata. Therefore, we have to assume that
significant portion of the metadata is only on the disk
when the store grows large. Because locality is usually
not assumed in KV-store workloads [14, 31], the fact can
be that most reads require retrieval of metadata from the
disk before data can be read. The critical issue is how to
minimize number of metadata reads in serving a read re-
quest for a KV item. These metadata are possibly stored
in multiple SSTables, each at a different level. As the
metadata are associated with individual SSTables and are
distributed over them, having multiple reads seems to be
unavoidable in the current LSM-tree’s structure.

SSTable-trie introduces the linear growth pattern,
which leads to the design of LSM-trie that removes al-
most all indices and enables one metadata disk access
per read request. Before describing the design, let us
first address a concern with SSTable-trie. Using the lin-
ear growth pattern one can substantially increase number
of levels. As a multi-level KV-item organization requires
continuous search of levels, starting from Level 0, for a
requested item until it is found, it relies on Bloom filters
in each level to skip as many levels without the item as
possible. However, as each Bloom filter has a false pos-
itive rate (about 0.82% for a setting of 10 bits per item),
the probability of searching levels without the item in-
creases with the increase of level count (e.g., from 5.7%
for a 7-level structure to 46% for a 56-level one). There-
fore, the Bloom filter must be beefed up by using more
bits. For example, using a setting of 16 bits per item
would ensure less than 5% false positive rate for an entire
120-level structure. Compared with the disk capacity,
the additional on-disk space for the larger Bloom filters
is minimal. As we will show, LSM-trie removes indices
and uses only one disk access to read Bloom filters.

2.4.2 Removing Indices by Using HTables

LSM-trie represents an improvement over SSTable-trie
by incorporating an efficient metadata management. A
major change is to replace the SSTable in SSTable-trie
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Figure 4: The structure of an HTable.
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Figure 5: Distribution of bucket load across buckets of an HTable

with a uniform distribution of KV-item size and an average size of 100 B

(a), 200 B (b), and 300 B (c). The keys follow the Zipfian distribution.

For each plot, the buckets are sorted according to their loads in terms

of aggregate size of KV items in a bucket.

with HTable, a hash-based KV-item organization (see
Figure 4). In an SSTable, items are sorted and index
is needed for locating a block. In HTable, each block
is considered as a bucket for receiving KV items whose
keys are hashed into it. While each KV item has a SHA-
1-generated 160 bit hashkey and its prefix has been used
to identify an SSTable in SSTable-trie, or an HTable in
LSM-trie, we use its suffix to determine a bucket within
an HTable for the KV item. Specifically, if there are m
buckets in an HTable, a KV item with Hashkey h would
be placed in Bucket (h mod m).

To eliminate the index in an HTable, LSM-trie must
use buckets of fixed size. Further, as Bloom filter is
applied on individual buckets, an entire bucket would
be read should its filter indicate a possible existence
of a lookup item in the bucket. Therefore, for access
efficiency buckets should be of the same size as disk
blocks (4 KB). However, a challenging issue is whether
the buckets can be load balanced in terms of aggregate
size of KV items hashed into them. It is known that us-
ing a cryptographic hash function allows each bucket to
have statistically equal chance to receive a new item, and
item count in each bucket follows a normal distribution.
In addition to key’s distribution, item size2 and variation
of item size also add to variation of the bucket load.

Figure 5 shows the distribution of bucket load across
the buckets in an HTable after we store KV items, whose
keys are of the Zipfian distribution, into a 32 MB HTable
of 8192 4 KB-buckets. For each plot, the item size is of

2With larger KV items it is harder to balance the load across the
buckets in an HTable.
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Figure 6: Balancing the load across buckets in an HTable.

the uniform distribution with different average sizes, and
the size is in the range from 1 B to a size about doubling
their respective averages. In each experiment we keep
writing KV items to the store until it is 95% full. By
using the highly-skewed Zipfian distribution, the results
represent a conservative estimation of non-uniformity of
bucket load distribution.3 As shown, there are increas-
ingly more over-loaded buckets and more under-loaded
buckets with the increase of average item size.

Obviously LSM-trie must move excessive items out
of over-loaded buckets to make sure every bucket has
4 KB or less data. Like SSTable, HTable is also im-
mutable. During the construction of an HTable, we use a
greedy algorithm to migrate some items that were origi-
nally hashed to an overloaded bucket to an under-loaded
bucket for storage. As illustrated in Figure 6, the buckets
are first sorted into a list according to their initial loads.
We then conduct a paired migration operation within the
list, in which a minimal number of KV items are moved
out of the most overloaded bucket (the source) to the
most under-loaded bucket (the destination) until the re-
maining items in the source can fit in the bucket. The
source bucket is removed from the list and we keep the
list sorted. We then repeat the migration operation on
the shorter list. The operation continues until either a
list’s source bucket is not overloaded or the list’s destina-
tion bucket is also overloaded. To minimize the chance

3Interestingly the results are little affected by the key distribution.
Even the uniform key distribution produces similar results.
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Figure 7: Bucket load distribution after load balancing for HTables

with different average item sizes.
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Figure 8: Uses of a 160-bit SHA1 key: (1) the prefix is used for trie

encoding; (2) The infix is used for sorting KV items in a bucket; and (3)

the suffix is used for locating the KV items in an HTable.

of having the second scenario, we set a limit on the ag-
gregate size of KV items that can be stored in an HTable,
which is 95% of the fixed HTable capacity (32 MB by de-
fault). This approach is effective. For example, with such
a small reduction on usable capacity we have not ob-
served a single item that is moved out of an over-loaded
bucket but cannot be accommodated in an under-loaded
bucket for HTables whose item sizes are 400 B on aver-
age and are uniformly distributed between 1 B and 800 B.
Figure 7 shows the bucket load distribution after the load
is balanced.

To handle the case of overflown items that cannot be
accepted into any regular buckets, mostly due to exces-
sively large KV items, during creation of a new HTable,
LSM-trie sets up a special bucket to receive them. Items
in the special bucket are fully indexed. The index is saved
in the HTable file and is also cached in memory for ef-
ficiently locating the items. As the bucket is designed
only for a few large KV items, its index should be of
minimal size. Generally, workloads for accessing con-
sistently large items (a few KBs or larger) should use
SSTable-trie. In fact, such workloads do not pose a chal-
lenge on their metadata management in most KV stores.

There are several issues to address on the load bal-
ancing strategy. One is how to efficiently identify KV
items overflown out of a bucket. To minimize the book-
keeping cost for the purpose, we use a hash function on
the keys to rank KV items in a bucket and logically place
them into the bucket according to their rankings. We then
use the bucket capacity (4 KB) as the watermark. Any
items that are across or above the watermark are con-
sidered as overflown items for migration. We only need
to record the hash value for the item at the watermark,
named HashMark, for future lookups to know whether
an item has been migrated. For the hash function, we
simply select a 32-bit infix in the 160-bit hashkey (e.g.,
from 64th bit to 95th bit), as illustrated in Figure 8. We
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also record where the items are migrated (the destination
bucket ID). A migrated item can be further migrated and
searching for the item would need to walk over multiple
buckets. To minimize the chance for an item to be re-
peatedly migrated, we tune the hash function by rotating
the 32-bit infix by a particular number of bits, where the
number is a function of bucket ID. In this way, different
functions can be applied on different buckets, and an item
is less likely to keep staying above buckets’ watermarks
for repeated migrations.

The metadata for each bucket about its overflown
items comprise a source bucket ID (2 B), a migration des-
tination ID (2 B), and a HashMark (4 B). They are stored
in the bucket on the disk. A design issue is whether
to cache the metadata in memory. If we cache every
bucket’s metadata, the cost would be comparable to the
indices in SSTable, which records one key for each block
(bucket). Actually it is not necessary to record all buck-
ets’ metadata if we do not require exactly one bucket read
in an HTable lookup. As shown in Figure 5, distribution
of overflown items over the buckets is highly skewed.
So we only need to cache metadata for the most over-
loaded buckets (20% by default) and make lookup of
these items be re-directed to their respective destination
buckets without a disk read. In this way, with slightly
increased disk reads LSM-trie can significantly reduce
its cached metadata. For example, when KV items are
of 100 B in average and their sizes are uniformly dis-
tributed between 1 B and 200 B, only 1.01 bucket reads
per lookup are needed with only 14 KB (1792 × 8 B)
of the metadata cached, about 1/10 of the size of an
SSTable’s indices.

Similar to LevelDB, LSM-trie maintains a Bloom fil-
ter for each bucket to quickly determine whether a KV
item could be there. The migration of KV items out of a
bucket does not require updating the bucket’s Bloom fil-
ter, as these KV items still logically remain in the bucket
and are only physically stored in other bucket(s). Their
physical locations are later revealed through the bucket’s
migration-related metadata.

2.4.3 Clustering Bloom Filters for Efficient Access

LSM-trie does not assume that all Bloom filters can al-
ways be cached in memory. A Bloom filter at each
(sub)-level needs to be inspected until a requested item
is found. LSM-trie makes sure that all Bloom filters that
are required to service a read request in a level but are not
cached can be retrieved into memory with only one disk
read. To this end LSM-trie gathers all Bloom filters asso-
ciated with a column of buckets4 at different sub-levels
of an HTable container into a single disk block named

4As shown in Figure 9, the column of buckets refers to all buckets
at the same position of respective HTables in a container.

HTable
Disk block
Bloom-filter

Hash(key) = 3

Clusters of Bloom-Filters

Figure 9: Clustering Bloom filters

bits/key 50 Levels 100 Levels 150 Levels
10 40.95% 81.90% 122.85%
12 15.70% 31.40% 47.10%
14 6.00% 12.00% 18.00%
16 2.30% 4.59% 6.89%
18 0.88% 1.76% 2.64%

Table 1: Bloom filter false-positive rate.

BloomCluster, as illustrated in Figure 9. Because the
same hash function is applied across the sub-levels, a KV
item can appear only in one particular column of buckets
if it is in the container. In this way, only one disk read of
Bloom filters is needed for a level.

While LSM-trie is designed to support up to a 10 TB
store, its data is organized so that at most one read of
metadata (Bloom filters) is required to access any item in
the store. The prototyped LSM-trie system uses 32 MB
HTables and an amplification factor (AF) of 8. The store
has five levels. In the first four levels, LSM-trie uses
both linear and exponential growth pattern. That is, each
level consists of eight sub-levels.5 All the Bloom fil-
ters for the first 32 sub-levels are of 4.5 GB, assuming
a 64 B average item size and 16 bit Bloom filter per key.
Adding metadata about item migration within individ-
ual HTables (up to 0.5 GB), LSM-trie needs up to only
5 GB memory to hold all necessary metadata. At the fifth
level, which is the last level, LSM-trie uses only linear
growth pattern. As one sub-level of this level has a ca-
pacity of 128 G, it needs 8 such sub-levels for the store
to reach 1 TB, and 80 such sub-levels to reach 10 TB.
All the sub-levels’ Bloom filters are well clustered into a
BloomCluster so that only one disk read of Bloom filter
is required for a read request. Though the false positive
rate increases with level count, it can be well capped by
using additional bits per KV item, as shown in Table 1.
When LSM-trie uses 16-bit-per-item Bloom filters, the
false positive rate is only about 5% even for a 112-sub-
level 10 TB KV store. In the worse case there are only
2.05 disk reads, one for a BloomCluster and 1.05 on av-
erage for data.

5Actual number of sub-levels in a level can change during com-
paction operations. It varies between 0 and 16 with an average of 8.
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SSD HDD
Random Read 4KB (IOPS) 52,400 70
Sequential Write (MB/s) 230 144
Sequential Read (MB/s) 298 138

Table 2: Basic disk performance measurements.

In the LSM-trie structure, multiple KV items of the
same key, including special items for Delete operations,
can simultaneously stay in different sub-levels of the last
level without being merged as there are no merge-sort op-
erations at this level. Among the items of the same key,
only the item at the highest sub-level is alive and the oth-
ers are considered as garbage. This may lead to under-
utilized disk space, especially when the level contains
substantial amount of garbage. To ameliorate the effect,
we periodically sample a few random HTable containers
and assess their average garbage ratio. When the ratio is
larger than a threshold, we schedule garbage-collection
operations in a container-by-container manner either pe-
riodically or when the system is not loaded.

3 Performance Evaluation

To evaluate LSM-trie’s performance, we implement a
prototype and extensively conduct experiments to reveal
insights of its performance behaviors.

3.1 Experiment Setup
The experiments are run on a Dell CS23-SH server with
two Intel Xeon L5410 4-core processors, 64 GB FB-
DIMM memory, and 64-bit Linux 3.14. The SSD (Sam-
sung 840 EVO, MZ-7TE1T0BW) has 1 TB capacity. Be-
cause of its limited storage capacity (1 TB), we install
DRAM of moderate size on the computer (64 GB), a
configuration equivalent to 256 GB memory with a 4 TB
store. We also build a KV store on a hard disk, which is
3 TB Seagate Barracuda (ST3000DM001) with 64 MB
cache and 7200 RPM. Table 2 lists the disks’ perfor-
mance measurements. As we can see, the hard disk’s
random read throughput is too small and it’s not compet-
itive considering SSD’s rapidly dropping price. There-
fore, we do not run read benchmarks on the hard disk.
All experiments are run on the SSD(s) unless stated oth-
erwise. In LSM-trie immediately after a table is written
to the disk, we issue fsync() to persist its data.

In the evaluation, we compare LSM-trie with Lev-
elDB [4], RocksDB (an optimized LevelDB from Face-
book) [11], and SILT [24]. LSM-trie uses 32 MB HTa-
bles, LevelDB and RocksDB use 32 MB SSTables, and
SILT uses 32 MB HashStore. We run SILT using its
source code provided by its authors with its default
setup [9]. We do not include experiments for SSTable-
trie as its write performance is the same as LSM-trie, but

Figure 10: Write throughput of different stores. For each store,

the execution stops when either the store reaches 1TB or the run time

reaches 24 hours, whichever occurs earlier.

its read performance can be unacceptably worse than that
of LevelDB when there are many levels and Bloom filters
cannot be cached.

We use Yahoo’s YCSB benchmark suite to generate
read and write requests [18]. Average value size of the
KV items is 100 B with a uniform distribution between
1 B to 200 B. The key size is 16 B. We use constant value
size (100 B) for SILT as it does not support varied value
size. By default, we use the uniform key distribution, as
it represents the least locality and minimal overwrites in
the workload, which helps increase a store’s write pres-
sure.6

3.2 Experiment Results
In this section we present and analyze experiment results
for write and read requests.

3.2.1 Write Throughput

Figure 10 plots the write throughput, in terms of number
of PUT queries served per second (QPS), for LSM-trie,
LevelDB, RocksDB, and SILT with different store sizes,
or numbers of KV items in the store. We have a number
of interesting observations on the plots.

The LSM-trie store has throughput way higher than
other stores. Even the throughput for LSM-trie on the
hard disk (see the “LSM-trie-HDD” curve) more than
doubles those of other stores on the SSD. It takes about
24 hours for LSM-trie to build a 1TB store containing
nearly 8 billions of small items on an HDD. As it is too
slow for the other stores to reach the size of 1TB within
a reasonable time period, we stop their executions af-
ter they run for 24 hours. By estimation it would take
RocksDB and LevelDB about 4–6 days and even longer
time for SILT to build such a large store on the SSD.

6We do have a test for the Zipfian distribution in Section 3.2.
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Figure 11: Write amplification ratios of different stores. For each

store, the execution stops when either the store reaches 1TB or the run

time reaches 24 hours, whichever occurs earlier.

Admittedly SILT is designed mainly to service read re-
quests [24]. However, taking so long to build a large
store is less desirable in the first place. To understand
their big performance gaps, we draw the write amplifica-
tion ratio (WAR) plots for the stores in Figure 11.

It’s not a surprise to see SLIT’s WAR increases almost
linearly with the store size, as SILT does not adopt a
multi-level organization. By maintaining a large Sorted-
Store and merge-sorting much smaller HashStores into
it, most of its compaction I/O is to access data in the
SortedStore, and contributes to the WAR. While both
LevelDB and RocksDB adopt LSM-tree’s multi-level or-
ganization, its exponential growth pattern significantly
compromises its WAR. The WAR curve of RocksDB
is obtained by running its performance monitoring tool
(db_bench). The curve exhibits large variations, mainly
because of its choice of sampling points for performance
measurements. While RocksDB generally has a higher
WAR, its write throughput is higher than that of LevelDB
because of its use of multiple threads to better utilize par-
allelism available in SSD and CPU. The WAR curves for
LSM-trie (“LSM-trie-*” curves in Figure 11) have small
jumps at about 0.12 and 1.0 billion items in the KV store,
corresponding to the timings when the store grows into
Levels 3 and 4, respectively (Figure 11). Once the store
reaches its last level (Level 4), the WAR curves become
flat at around 5 while the store increases up to 10TB.

The write throughput curve for the hard disk (“LSM-
trie-HDD”) in Figure 10 has two step-downs, well
matching the two jumps in its corresponding WAR curve.
After the store reaches 1 billion items, its throughput
does not reduce with the increase of the store. For LSM-
trie on the SSD, we do see the first and second step-
downs on the curve (“LSM-trie-1SSD” in Figure 10) cor-
responding to the two WAR jumps. However, we had
been confused by the third step-down, as marked in Fig-
ure 10, when the store size reaches about 1.7 billion items

or 210GB. One might attribute this throughput loss to
the garbage collection. However, we had made efforts to
use large HTables (32MB) and aligned them to the erase
block boundaries. After investigation, it turns to be due
to SSD’s internal static wear-leveling.

As we know, frequency of data re-writing at different
levels dramatically varies. The ratio of the frequencies
between two adjacent levels (lower level vs. upper level)
can be as high as 8. For data at Level 4 and at Level 0,
the ratio of their re-write frequencies could be 4096 (84)!
With such a large gap between the frequencies, dynam-
ical wear-leveling is insufficient and SSD’s FTL (Flash
Translation Layer) has to proactively move data at the
lower level(s) around to even out flash wear across the
disk. The impact of the wear-levering becomes increas-
ingly serious when more and more SSD’s space is occu-
pied. To confirm our speculation, we introduce a second
SSD and move data at the two upper level (about only
2.5GB) to it, and run LSM-trie on the two SSDs (see
“LSM-trie-2SSD” in Figure 10). The third step-down is
postponed to a significantly later time (from about 1.7
billion items to about 5.2 billion items). The new third
step-down is caused by re-write frequency gaps among
data at Levels 2, 3, and 4 in the first SSD. Using more
SSDs and separating them onto different SSDs would
eliminate the step-down. In practice, it is a viable so-
lution to have a few small but wear-resistent SSDs (e.g.,
SLC SSD) to separate the first several levels of data.

We also issue write requests with the Zipfian key dis-
tribution to LSM-trie on two SSDs. It has a smaller
WAR than those with the uniform key distribution (see
“LSM-trie-2-zipf” in Figure 11), and higher through-
put (see “LSM-trie-2-zipf” in Figure 10). Strong lo-
cality of the workload produces substantial overwrites,
which are merged during the compactions. As a re-
sult, about one third of items are removed before they
reach the last level, reducing write amplification and in-
creasing throughput. The Zipfian distribution also al-
lows LevelDB to significantly reduce its WAR (com-
pare “LevelDB” and “LevelDB-zipf” in Figure 11) and
to increase its write throughput (compare “LevelDB” and
“LevelDB-zipf” in Figure 10).

In almost all scenarios, LSM-trie dramatically im-
proves WAR, leading to significantly increased write
throughput. The major reason of the improvements is the
introduction of the linear growth pattern into the LSM
tree and the adoption of the trie structure to enable it.

3.2.2 Performance of Read

Figures 12 and 13 plot the read throughput for various
stores on one SSD with 64Gb and 4GB memory, respec-
tively, except SILT. Keys of read requests are uniformly
distributed. As explained, we cannot build a sufficiently
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Figure 12: Read throughput with 64 GB memory.

Figure 13: Read throughput with 4 GB memory.

large SILT store to measure its read performance. In-
stead, we will use the results reported in its paper for
comparison [24]. To accelerate the building of the Lev-
elDB and RocksDB stores, we use YCSB to generate a
trace of write requests whose keys are sorted. The stores
can then be quickly built without any compactions.

As shown in Figure 12, when the store size is rela-
tively small (with fewer than about 1 billion KV items
or 128 GB data), almost half of accessed data can be
cached in memory and the throughput is very high (much
higher than 80K QPS). This throughput is not explicitly
shown in the figure, as it is less I/O related. LSM-trie
has higher throughputs than LevelDB and RocksDB for
both small and large store sizes. With a small store size,
LSM-trie uses less memory to cache metadata and leaves
more for caching data than other stores, producing higher
hit ratios and read throughputs. When the store becomes
larger, theh working set becomes larger due to uniform
key distribution and the memory size becomes less rel-
evant to the throughput. LSM-trie’s higher throughputs
with larger store are due to the alignment of its block to
the SSD pages in its implementation. Without the align-
ment, one access of an SSTable-file’s block may result
in access of an additional page. For the following exper-
iment we augment LevelDB and RocksDB by aligning
their blocks to the SSD pages. LSM-trie’s throughput
with a large store (over 6 billions KV items) is around
96% of one SSD’s raw read throughput in terms of num-
ber of 4 KB-blocks read per second. This is the same
percentage reported in the SILT paper [24].

Considering the scenario where a server running a KV

Latency Percentile 5% read 50% read 95% read
95% 690 µs 790 µs 700 µs
99% 860 µs 940 µs 830 µs

Table 3: Read Latency under mixed read/write workload.

store may simultaneously run other application(s) de-
manding substantial memory resource, or where a KV
store runs within a disk drive with small memory [8],
we evaluate LSM-trie’s performance with a constrained
memory size. Figure 13 shows read throughput when
the memory is only 4 GB 7. Current LSM-trie’s imple-
mentation always keeps metadata for the first four lev-
els in the memory. More and more requests require one
read of out-of-core metadata in addition to one read of
data after the store grows beyond the first four levels.
This is why the curve for LSM-trie starts to drop be-
yond 1.2-billion-item store size. The throughput curves
of LevelDB and RocksDB also drop with the increase of
store size. They drop much more than that of LSM-trie.
RocksDB’s throughput is higher than that of LevelDB
initially, as it caches more metadata by giving metadata
a caching priority higher than data.

Our measurements show that all requests can be com-
pleted in 1 ms, and its 99% percentile latency is 0.92
ms. To know how read latency is affected by concurrent
write requests, we list the 95% and 99% percentile laten-
cies for different percentages of read requests among all
the read/write requests in Table 3. The read latencies are
not sensitive to write intensity. The KV store store many
small items in write requests into one block while each
read request has to retrieve an entire block. Thanks to the
much reduced write compaction in LSM-trie, intensity of
write requests has a small impact on read latency.

4 Related Work

Key-value stores have become an increasingly popular
data management system with its sustained high perfor-
mance with workloads challenging other systems, such
as those generating a huge number of small data items.
Most related works aim for efficient writes and reads.

4.1 Efforts on Supporting Efficient Writes
Most KV stores support fast writes/updates by us-
ing log-based write, such as FAWN [12], Flash-
Store [20], SkimpyStash [21], SILT [24], LevelDB [4],
and bLSM [29]. Though log-appending is efficient for
admitting new data, it is not sufficient for high write effi-
ciency. There can be significant writes caused by internal
data re-organization and their efficiency can be critical to
the write throughput observed by users. A primary ob-
jective of the re-organization is to remove garbage from

7Note that write performance is not affected by the small memory.
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the log. Some systems, such as FAWN, FlashStore, and
SkimpyStash, focus mostly on this objective and incurs
a relatively small number of additional writes. Though
these systems are efficient for serving writes, they leave
the data not well organized, and produce a large metadata
set leading to slow reads with relatively small memory.

Another group of systems, such as LevelDB, SILT, and
bLSM, aim to build a fully organized data structure—one
(almost) sorted list of KV items. This is apparently ideal
for reducing metadata size and facilitating fast reads. It is
also essential for a scalable system. However, it can gen-
erate a very large write amplification. The issue quickly
deteriorates with the growth of the store. To address the
issue, RocksDB compacts more than two contiguous lev-
els at once intending to sort and push data faster to the
lower level [11]. However, the improvement is limited as
the amplification is fundamentally due to the difference
of the data set sizes at different levels. To mitigate the
compaction cost, TokuDB uses a Fractal Tree, in which
data is pushed to its next level by simply being appended
into log files at corresponding tree nodes [23, 15]. With-
out well sorting its data, TokuDB has to maintain a much
larger index, leading to larger memory demand and/or
additional disk access for metadata. In contrast, with the
support of the trie structure and use of linear growth pat-
tern, LSM-trie minimizes write amplification.

4.2 Efforts on Supporting Efficient Reads
Read efficiency is mostly determined by two factors. One
is metadata size and the other is the efficiency of retriev-
ing metadata from the disk. Both determine how many
disk reads are needed to locate a requested KV item.

As SILT has a fully sorted list of KV items and uses
a highly compact index representation, it produces very
small metadata [24]. In contrast, LevelDB’s metadata
can be much larger as they include both indices and
Bloom filters. It may take multiple reads for LevelDB
to load its out-of-memory metadata. FAWN [12] and
FlashStore [20] have very large metadata as they directly
store pointers to the on-disk items, especially when the
items are small and the store is large. SkimpyStash stores
hash table buckets on the disk, essentially leaving most
metadata on the disk and may require many disk reads
of metadata to locate the data [21]. In contrast, LSM-trie
substantially reduces metadata by removing almost all
indices. It requires at most one metadata read for each
read request with its well clustered metadata.

4.3 Other Related Works
Sharding (or partitioning), as a technique to distribute
heavy system load such as large working sets and in-
tensive I/O requests across nodes in a cluster, has been

widely used in database systems and KV stores [6, 5, 2].
It has been proposed as a potential method for reducing
merge (or compaction) overhead by maintaining multi-
ple smaller store instances (shards) at a node [24]. How-
ever, if the number of shards is moderate (fewer than one
hundred) at a node, each shard has to grow into four or
larger number of levels when the store becomes large.
Accordingly write amplification cannot be substantially
reduced. Meanwhile, because memory demand, includ-
ing MemTables and metadata, is about proportional to
the number of shards, using many shards increase pres-
sure on memory. In contrast, LSM-trie fundamentally
addresses the issue by improving store growth pattern to
minimize compaction cost without concerns of sharding.

Being aware of large compaction cost in LevelDB,
VT-Tree opportunistically looks for any block at a level
whose key range does not overlap with that of blocks at
another level during merge-sorting of the two levels’ KV
items [30]. Effectiveness of this method relies on proba-
bility of having non-overlapping blocks. For workloads
with small items, there are a large number of keys in a
block, reducing the probability. Though it had been re-
ported that this method can reduce write amplification by
about 1

3 to 2
3 , it is far from enough. In contrast, LSM-trie

reduces the amplification by up to an order of magnitude.
While LSM-trie trades some disk space (around 5%)

for much improved performance, Yu et al. proposed a
method to improve performance of the disk array by trad-
ing capacity for performance [32]. They trade 50% of the
disk space for a throughput improvement of 160%.

5 Conclusions

In this paper we describe LSM-trie, a key-value store de-
signed to manage a very large data set in terms of both its
data volume and KV item count. By introducing linear
growth pattern, LSM-trie minimizes compaction cost for
LSM-tree-based KV systems. As our extensive experi-
ments demonstrate, LSM-trie can manage billions of KV
items with a write amplification of only five. By design it
can manage a store of up to 10 TB. LSM-trie can service
a read request with only two SSD reads even when over
90% of the bloom-filters is not in the memory. Further-
more, with a second small SSD (only 20 GB) to store the
bloom-filters, the overall throughput can reach the peak
throughput of the raw device (50 K QPS vs. 52 K IOPS),
and 99% of its read latency is below 1 ms.
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Abstract
Cloud-based file synchronization services, such as Drop-
box, are a worldwide resource for many millions of users.
However, individual services often have tight resource
limits, suffer from temporary outages or even shutdowns,
and sometimes silently corrupt or leak user data.

We design, implement, and evaluate MetaSync, a se-
cure and reliable file synchronization service that uses
multiple cloud synchronization services as untrusted
storage providers. To make MetaSync work correctly,
we devise a novel variant of Paxos that provides efficient
and consistent updates on top of the unmodified APIs
exported by existing services. Our system automatically
redistributes files upon reconfiguration of providers.

Our evaluation shows that MetaSync provides low up-
date latency and high update throughput while being
more trustworthy and available. MetaSync outperforms
its underlying cloud services by 1.2-10× on three realis-
tic workloads.

1 Introduction
Cloud-based file synchronization services have become
tremendously popular. Dropbox reached 300M users in
May 2014, adding 100M customers in six months [15].
Many competing providers offer similar services, includ-
ing Google Drive, Microsoft OneDrive, Box, and Baidu.
These services provide very convenient tools for users,
especially given the increasing diversity of user devices
needing synchronization. With such resources and tools,
mostly available for free, users are likely to upload ever
larger amounts of personal and private data.

Unfortunately, not all services are trustworthy or reli-
able in terms of security and availability. Storage ser-
vices routinely lose data due to internal faults [6] or
bugs [13, 23, 30], leak users’ personal data [12, 31], and
alter user files by adding metadata [7]. They may block
access to content (e.g., DMCA takedowns [38]). From
time to time, entire cloud services may go out of busi-
ness (e.g., Ubuntu One [9]).

Our work is based on the premise that users want
file synchronization and the storage that existing cloud
providers offer, but without the exposure to fragile, unre-
liable, or insecure services. In fact, there is no fundamen-
tal need for users to trust cloud providers, and given the
above incidents our position is that users are best served
by not trusting them. Clearly, a user may encrypt files be-
fore storing them in the cloud for confidentiality. More

generally, Depot [27] and SUNDR [26] showed how to
design systems from scratch in which users of the cloud
storage obtain data confidentiality, integrity, and avail-
ability without trusting the underlying storage provider.
However, these designs rely on fundamental changes to
both client and server; our question was whether we
could use existing services for these same ends?

Instead of starting from scratch, MetaSync provides
file synchronization on top of multiple existing storage
providers. We thus leverage resources that are mostly
well-provisioned, normally reliable, and inexpensive.
While each service provides unique features, their com-
mon purpose is to synchronize a set of files between
personal devices and the cloud. By combining multiple
providers, MetaSync provides users larger storage capac-
ity, but more importantly a more highly available, trust-
worthy, and higher performance service.

The key challenge is to maintain a globally consistent
view of the synchronized files across multiple clients, us-
ing only the service providers’ unmodified APIs with-
out any centralized server. We assume no direct client-
client or server-server communication. To this end, we
devise two novel methods: 1) pPaxos, an efficient client-
based Paxos algorithm that maintains globally consistent
state among multiple passive storage backends (§3.3),
and 2) a stable deterministic replication algorithm that
requires minimal reshuffling of replicated objects on ser-
vice re-configuration, such as increasing capacity or even
adding/removing a service (§3.4).

Putting it all together, MetaSync can serve users bet-
ter in all aspects as a file synchronization service; users
need trust only the software that runs on their own com-
puters. Our prototype implementation of MetaSync, a
ready-to-use open source project, currently works with
five different file synchronization services, and it can be
easily extended to work with other services.

2 Goals and Assumptions
The usage model of MetaSync matches that of existing
file synchronization services such as Dropbox. A user
configures MetaSync with account information for the
underlying storage services, sets up one or more direc-
tories to be managed by the system, and shares each di-
rectory with zero or more other users. Users can connect
these directories with multiple devices (we refer to the
devices and software running on them as clients in this
paper), and local updates are reflected to all connected
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clients; conflicting updates are flagged for manual reso-
lution. This usage model is supported by a background
synchronization daemon (MetaSyncd in Figure 1).

For users desiring explicit control over the merge pro-
cess, we also provide a manual git-like push/pull inter-
face with a command line client. In this case, the user
creates a set of updates and runs a script to apply the
set. These sets of updates are atomic with respect to con-
current updates by other clients. The system accepts an
update only if it has been merged with the latest version
pushed by any client.

Our baseline design assumes the backend services to
be curious, as well as potentially unreachable, and unreli-
able. The storage services may try to discover which files
are stored along with their content. Some of the services
may be unavailable due to network or system failures;
some may accidentally corrupt or delete files. However,
we assume that service failures are independent, services
implement their own APIs correctly (except for losing
and corrupting user data), and communications between
client and server machines are protected. We also con-
sider extensions to this baseline model where the services
have faulty implementations of their APIs or are actively
malicious (§3.6). Finally, we assume that clients sharing
a specific directory are trusted, similar to a shared Drop-
box directory today.

With this threat model, the goals of MetaSync are:

• No direct client-client communication: Clients co-
ordinate through the synchronization services without
any direct communication among clients. In particu-
lar, they never need to be online at the same time.

• Availability: User files are always available for both
read and update despite any predefined number of ser-
vice outages and even if a provider completely stops
allowing any access to its previously stored data.

• Confidentiality: Neither user data nor the file hierar-
chy is revealed to any of the storage services. Users
may opt out of confidentiality for better performance.

• Integrity: The system detects and corrects any cor-
ruption of file data by a cloud service, to a configurable
level of resilience.

• Capacity and Performance: The system should ben-
efit from the combined capacity of the underlying
services, while providing faster synchronization and
cloning than any individual service.

3 System Design
This section describes the design of MetaSync as illus-
trated by Figure 1. MetaSync is a distributed, synchro-
nization system that provides a reliable, globally con-
sistent storage abstraction to multiple clients, by using
untrusted cloud storage services. The core library de-
fines a generic cloud service API; all components are
implemented on top of that abstraction. This makes it

MetaSync MetaSyncd

MetaSync Core

(command line) (sync daemon)

Synchronization
manager

Storage service
manager Translators

(e.g., encryption)(e.g., pPaxos) (e.g., replication)

Local storage

OneDrive Dropbox Google Drive
Remote services

...

(e.g., object store)
Backend abstractions

Sync. abstraction
Storage abstraction

Figure 1: MetaSync has three main components: a storage service
manager to coordinate replication; a synchronization manager to or-
chestrate cloud services; and translators to support data encryption.
They are implemented on top of an abstract cloud storage API, which
provides a uniform interface to storage backends. MetaSync supports
two front-end interfaces: a command line interface and a synchroniza-
tion daemon for automatic monitoring and check-in.

easy to incorporate a new storage service into our sys-
tem (§3.7). MetaSync consists of three major compo-
nents: synchronization manager, storage service man-
ager, and translators. The synchronization manager en-
sures that every client has a consistent view of the user’s
synchronized files, by orchestrating storage services us-
ing pPaxos (§3.3). The storage service manager imple-
ments a deterministic, stable mapping scheme that en-
ables the replication of file objects with minimal shared
information, thus making our system resilient to recon-
figuration of storage services (§3.4). The translators im-
plement optional modules for encryption and decryption
of file objects in services and for integrity checks of re-
trieved objects, and these modules can be transparently
composed to enable flexible extensions (§3.5).
3.1 Data Management
MetaSync has a similar underlying data structure to that
of git [20] in managing files and their versions: objects,
units of data storage, are identified by the hash of their
content to avoid redundancy. Directories form hash trees,
similar to Merkle trees [29], where the root directory’s
hash is the root of the tree. This root hash uniquely de-
fines a snapshot. MetaSync divides and stores each file
into chunks, called Blob objects, in order to maintain and
synchronize large files efficiently.
Object store. In MetaSync’s object store, there are
three kinds of objects—Dir, File and Blob—each
uniquely identified by the hash of its content (with an ob-
ject type as a prefix in Figure 2). A File object contains
hash values and offsets of Blob objects. A Dir object
contains hash values and names of File objects.

In addition to the object store, MetaSync maintains
two kinds of metadata to provide a consistent view of
the global state: shared metadata, which all clients can
modify; and per-client metadata, which only the single
owner (writer) client of the data can modify.
Shared metadata. MetaSync maintains a piece of
shared metadata, called master, which is the hash value
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Figure 2: File management in a client’s local directory. The object
store maintains user files and directories with content-based address-
ing, in which the name of each object is based on the hash of its content.
MetaSync keeps two kinds of metadata: shared, which all clients up-
date; and per-client, for which the owner client is the only writer. The
object store and per-client files can be updated without synchroniza-
tion, while updates to the shared files require coordinated updates of
the backend stores; this is done by the synchronization manager (§3.3).

of the root directory in the most advanced snapshot. It
represents a consistent view of the global state; every
client needs to synchronize its status against the master.
Another shared piece of metadata is the configuration
of the backend services including information regarding
the list of backends, their capacities, and authenticators.
When updating any of the shared metadata, we invoke
a synchronization protocol built from the APIs provided
by existing cloud storage providers (§3.3).
Per-client data. MetaSync keeps track of clients’
states by maintaining a view of each client’s status.
The per-client metadata includes the last synchronized
value, denoted as prev clientID, and the current value
representing the client’s recent updates, denoted as
head clientID. If a client hasn’t changed any files since
the previous synchronization, the value of prev clientID

is equal to that of head clientID. As this data is updated
only by the corresponding client, it does not require any
coordinated updates. Each client stores a copy of its per-
client metadata into all backends after each update.

3.2 Overview
MetaSync’s core library maintains the above data struc-
tures and exposes a reliable storage abstraction to appli-
cations. The role of the library is to mediate accesses and
updates to actual files and metadata, and further interacts
with the backend storage services to make file data per-
sistent and reliable. The command line wrapper of the
APIs works similarly with version control systems.

Initially, a user sets up a directory to be managed by
MetaSync; files and directories under that directory will
be synchronized. This is equivalent to creating a reposi-
tory in typical version control systems. Then, MetaSync
creates a metadata directory (.metasync as shown in
Figure 2) and starts the synchronization of file data to
backend services.

Each managed directory has a name (called names-
pace) in the system to be used in synchronizing with
other clients. Upon initiation, MetaSync creates a folder

Paxos Disk Paxos pPaxos

Proposer Proposer Proposer

Acceptor Acceptor Acceptor

a register

...

disk blocks

Propose Accept Propose  Check
① ② ① ②

append-only 
list

Propose  Check
① ②

(a) (b) (c)

Figure 3: Comparison of operations between a proposer and an accep-
tor in Paxos [25], Disk Paxos [19], and pPaxos. Each acceptor in Paxos
makes a local decision to accept or reject a proposal and then replies
with the result. Disk Paxos assumes acceptors are passive; clients write
proposals into per-client disk blocks at each acceptor. Proposers need
to check every per-client block (at every acceptor) to determine if their
proposal was accepted, or preempted by another concurrent proposal.
With pPaxos, the append-only log allows clients to efficiently check the
outcome at the passive acceptor.

with the name in each backend. The folder at the back-
end storage service stores the configuration information
plus a subset of objects (§3.4). A user can have multiple
directories with different configurations and composition
of backends.

When files in the system are changed, an update hap-
pens as follows: (1) the client updates the local objects
and head client to point to the current root (§3.1); (2)
stores the updated data blocks on the appropriate back-
end services (§3.4)); and (3) proposes its head client

value as the new value for master using pPaxos (§3.3)).
The steps (1) and (2) do not require any coordination,
as (1) happens locally and (2) proceeds asynchronously.
Note that these steps are provided as separate functions
to applications, thus each application or user can decide
when to run each step; crucially, a client does not have to
update global master for every local file write.

3.3 Consistent Update of Global View: pPaxos
The file structure described above allows MetaSync to
minimize the use of synchronization operations. Each
object in the object store can be independently uploaded
as it uses content-based addressing. Each per-client data
(e.g., head client *) is also independent since we ensure
that only the owning client modifies the file. Thus, syn-
chronization to avoid potential race conditions is neces-
sary only when a client wants to modify shared data (i.e.,
master and configuration).
pPaxos. In a distributed environment, it is not straight-
forward to coordinate updates to data that can be modi-
fied by multiple clients simultaneously. To create a con-
sistent view, clients must agree on the sequence of up-
dates applied to the shared state, by agreeing on the next
update applied at a given point.

Clients do not have communication channels between
each other (e.g., they may be offline), so they need to rely
on the storage services to achieve this consensus. How-
ever, these services do not communicate with each other,
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nor do they implement consensus primitives. Instead, we
devise a variant of Paxos [25], called pPaxos (passive
Paxos) that uses the exposed APIs of these services.

We start our overview of pPaxos by relating it to the
classic Paxos algorithm (see Figure 3(a)). There, each
client works as a proposer and learner; the next state is
determined when a majority accepts a given proposal.
Acceptors act in concert to prevent inconsistent propos-
als from being accepted; failing proposals are retried. We
cannot assume that the backend services will implement
the Paxos acceptor algorithm. Instead, we only require
them to provide an append-only list that atomically ap-
pends an incoming message at the end of the list. This
abstraction is either readily available or can be layered
on top of the interface provided by existing storage ser-
vice providers (Table 3). With this append-only list ab-
straction, backend services can act as passive acceptors.
Clients determine which proposal was “accepted” by ex-
amining the log of messages to determine what a normal
Paxos acceptor would have done.
Algorithm. With an append-only list, pPaxos becomes
a simple adaptation of classic Paxos, where the deci-
sion as to what proposal was accepted is performed by
proposers. Each client keeps a data structure for each
backend service, containing the state it would have if it
processed its log as a Paxos acceptor (Figure 4 Lines 1-
4). To propose a value, a client sends a PREPARE to ev-
ery storage backend with a proposal number (Lines 7-8);
this message is appended to the log at every backend.
The proposal number must be unique (e.g., client IDs are
used to break ties). The client determines the result of
the prepare message by fetching and processing the logs
at each backend (Lines 25-29). It aborts its proposal if
another client inserted a larger proposal number in the
log (Line 10). As in Paxos, the client proposes as the
new root the value in the highest numbered proposal “ac-
cepted” by any backend server (Lines 12-15), or its own
new root if none has been accepted. It sends this value in
an ACCEPT REQ message to every backend (Lines 18-19)
to be appended to its log; the value is committed if no
higher numbered PREPARE message intervenes in the log
(Lines 20-21, 30-32). When the new root is accepted by
a majority, the client can conclude it has committed the
new updated value (Line 23). In case it fails, to avoid
repeated conflicts the client chooses a random exponen-
tial back-off and tries again with an increased proposal
number (Lines 33-36).

This setting is similar to the motivation behind Disk
Paxos [19]; indeed, pPaxos can be considered as an op-
timized version of Disk Paxos (Figure 3(b)). Disk Paxos
assumes that the storage device provides only a simple
block interface. Clients write proposals to their own
block on each server, but they must check everyone else’s
blocks to determine the outcome. Thus, Disk Paxos takes

1: struct Acceptor
2: round: promised round number
3: accepted: all accepted proposals
4: backend: associated backend service

[Proposer]
5: procedure PROPOSEROUND(value, round, acceptors)

prepare:
6: concurrently
7: for all a ← acceptors do
8: SEND(〈PREPARE,round〉 → a.backend)
9: UPDATE(a)

10: if a.round > round then abort
11: wait until done by a majority of acceptors

accept:
12: accepted ←∪a∈acceptorsa.accepted
13: if |accepted|> 0 then
14: p ← argmax{p.round|p ∈ accepted}
15: value ← p.value
16: proposal ← 〈round,value〉
17: concurrently
18: for all a ← acceptors do
19: SEND(〈ACCEPT REQ, proposal〉 → a.backend)
20: UPDATE(a)
21: if proposal /∈ a.accepted then abort
22: wait until done by a majority of acceptors

commit:
23: return proposal
24: procedure UPDATE(acceptor)
25: log ← FETCHNEWLOG(acceptor.backend)
26: for all msg ∈ log do
27: switch msg do
28: case 〈PREPARE,round〉
29: acceptor.round ← max(round,acceptor.round)
30: case 〈ACCEPT REQ, proposal〉
31: if proposal.round ≥ acceptor.round then
32: acceptor.accepted.append(proposal)
33: procedure ONRESTARTAFTERFAILURE(round)
34: INCREASEROUND
35: WAITEXPONENTAILLY
36: PROPOSEROUND(value,round,acceptors)

[Passive Acceptor]
37: procedure ONNEWMESSAGE(〈msg,round〉)
38: APPEND(〈msg,round〉 → log)

Figure 4: pPaxos Algorithm.

time proportional to the product of the number of servers
and clients; pPaxos is proportional to number of servers.

pPaxos in action. MetaSync maintains two types of
shared metadata: the master hash value and service con-
figuration. Unlike a regular file, the configuration is
replicated in all backends (in their object stores). Then,
MetaSync can uniquely identify the shared data with a
three tuple: (version, master hash, config hash).

Version is a monotonically increasing number
which is uniquely determined for each master hash,
config hash pair. This tuple is used in pPaxos to de-
scribe the status of a client and is stored in head client
and prev client.

The pPaxos algorithm explained above can determine
and store the next value of the three tuple. Then, we build
the functions listed in Table 1 by using a pPaxos instance
per synchronized value. Each client keeps the last value
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APIs Description

propose(
prev, next)

Propose a next value of prev. It returns the
accepted next value, which could be next or
some other value proposed by another client.

get recent() Retrieve the most recent value.

Table 1: Abstractions for consistent update.

(v10, Dab.., ce..)

prev_client1 head_client1

(v11, Dg2.., ce..)

(v11, De1.., ce..)
prev_client2

(v12, De1.., f0..)

head_client2

Current Master

configs/ce..
     /f0..Client1 (C1)

Global View

Client2 (C2) Same value
Next version

Figure 5: An example snapshot of pPaxos status with two clients. Each
circle indicates a pPaxos instance. C1 synchronized against v10. It
modified some files but the changes have not been synchronized yet
(head client1). C2 changed some files and the changes were made into
v11, then made changes in configuration and synchronized it (v12).
Then, it hasn’t made any changes. If C1 tries to propose the next value
of v10 later, it fails. It needs to merge with v12 and creates v13 head.
In addition, C1 can learn configuration changes when getting v12.

with which it synchronized (prev client). To proposes a
new value, the client runs pPaxos to update the previous
value with the new value. If another value has already
been accepted, it can try to update the new value after
merging with it. It can repeat this until it successfully
updates the master value with its proposed one. This data
structure can be logically viewed as a linked list, where
each entry points the next hash value, and the tail of the
list is the most up-to-date. Figure 5 illustrates an example
snapshot of pPaxos status.
Merging. Merging is required when a client synchro-
nizes its local changes (head) with the current master that
is different from what the client previously synchronized
(prev). In this case, proposing the current head as the
next update to prev returns a different value than the pro-
posed head as other clients have already advanced the
master value. The client has to merge its changes with
the current master into its head. To do this, MetaSync
employs three-way merging as in other version control
systems. This allows many conflicts to be automati-
cally resolved. Of course, three-way merging cannot re-
solve all conflicts, as two clients may change the same
parts of a file. In our current implementation, for exam-
ple, MetaSync generates a new version of the file with
.conflict.N extension, which allows for users to resolve
the conflict manually.

3.4 Replication: Stable Deterministic Mapping
MetaSync replicates objects (in the object store) redun-
dantly across R storage providers (R is configurable, typ-
ically R = 2) to provide high availability even when a

service is temporarily inaccessible. This also provides
potentially better performance over wide area networks.
Since R is less than the number of services, it is required
to maintain information regarding the mapping of ob-
jects to services. In our settings, where the storage ser-
vices passively participate in the coordination protocol,
it is particularly expensive to provide a consistent view
of this shared information. Not only that, MetaSync re-
quires a mapping scheme that takes into account storage
space limits imposed by each storage service; if handled
poorly, lack of storage at a single service can block the
entire operation of MetaSync, and typical storage ser-
vices vary in the (free) space they provide, ranging from
2 GB in Dropbox to 2 TB in Baidu. In addition, the
mapping scheme should consider a potential reconfigu-
ration of storage services (e.g., increasing storage capac-
ity); upon changes, the re-balancing of distributed ob-
jects should be minimal.

Goals. Instead of maintaining the mapping informa-
tion of each object, we use a stable, deterministic map-
ping function that locates each object to a group of ser-
vices over which it is replicated; each client can calcu-
late the same result independently given the same ob-
ject. Given a hash of an object (mod H), the mapping is:
map: H →{s : |s|= R,s⊂ S}, where H is the hash space,
S is the set of services, and R is the number of replicas.
The mapping should meet three requirements:

R1 Support variations in storage size limits across dif-
ferent services and across different users.

R2 Share minimal information amongst services.
R3 Minimize realignment of objects upon removal or

addition of a service.

To provide a balanced mapping that takes into account
of storage variations of each service (R1), we may use a
mapping scheme that represents storage capacity as the
number of virtual nodes in a consistent hashing algo-
rithm [24, 36]. Since it deterministically locates each
object onto an identifier circle in the consistent hash-
ing scheme, MetaSync can minimize information shared
among storage providers (R2).

However, using consistent hashing in this way has two
problems: an object can be mapped into a single service
over multiple vnodes, which reduces availability even
though the object is replicated, and a change in service’s
capacity—changing the number of virtual nodes, so the
size of hash space—requires to reshuffle all the objects
distributed across service providers (R3). To solve these
problems, we introduce a stable, deterministic mapping
scheme that maps an object to a unique set of virtual
nodes and also minimizes reshuffling upon any changes
to virtual nodes (e.g., changes in configurations). This
construction is challenging because our scheme should
randomly map each service to a virtual node and balance
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1: procedure INIT(Services, H)
2: � H: HashSpace size, bigger values produce better mappings
3: N ←{(sId,vId) : sId ∈ Services,0 ≤ vId < Cap(sId)}
4: � Cap: normalized capacity of the service
5: for all i < H do map[i] = Sorted(N, key = md5(i,sId,vId))
6: return map
7: procedure GETMAPPING(ob ject,R)
8: i ← hash(ob ject) mod H
9: return Uniq(map[i], R) � Uniq: the first R distinct services

Figure 6: The deterministic mapping algorithm.

object distribution, but at the same time, be stable enough
to minimize remapping of replicated objects upon any
change to the hashing space. The key idea is to achieve
the random distribution via hashing, and achieve stability
of remapping by sorting these hashed values; for exam-
ple, an increase of storage capacity will change the order
of existing hashed values by at most one.
Algorithm. Our stable deterministic mapping scheme
is formally described in Figure 6. For each backend stor-
age provider, it utilizes multiple virtual storage nodes,
where the number of virtual nodes per provider is pro-
portional to the storage capacity limit imposed by the
provider for a given user. (The concept of virtual nodes
is similar to that used in systems such as Dynamo [14].)
Then it divides the hash space into H partitions. H is
configurable, but remains fixed even as the service con-
figuration changes. H can be arbitrary large but need to
be larger than the sum of normalized capacity, with larger
values producing better-balanced mappings for hetero-
geneous storage limits. During initialization, the map-
ping scheme associates differently ordered lists of vir-
tual nodes with each of the H partitions. The ordering
of the virtual nodes in the list associated with a partition
is determined by hashing the index of the partition, the
service ID, and the virtual node ID. Given an object hash
n, the mapping returns the first R distinct services from
the list associated with the (n mod H)th partition, similar
to Rendezvous hashing [37].

The mapping function takes as input the set of stor-
age providers, the capacity settings, value of H, and a
hash function. Thus, it is necessary to share only these
small pieces of information in order to reconstruct this
mapping across different clients sharing a set of files.
The list of services and the capacity limits are part of
the service configuration and shared through the config

file. The virtual node list is populated proportionally to
service capacity, and the ordering in each list is deter-
mined by a uniform hash function. Thus, the resulting
mapping of objects onto services should be proportional
to service capacity limits with large H. Lastly, when N
nodes are removed from or added to the service list, an
object needs to be newly replicated into at most N nodes.
Example. Figure 7 shows an example of our mapping
scheme with four services (|S| = 4) providing 1GB or
2GB of free spaces–for example, A(1) means that ser-

S = {A(1), B(2), C(2), D(1)}
N = {A1, B1, B2, C1, C2, D1}

m[0] = [A1, C2, D1, B1, B2, C1] = [A, C]
...
m[19] = [C2, B1, D1, A1, B2, C1] = [C, B

H=20
]

S = {A(1),  C(2), D(1)}
N = {A1,  C1, C2, D1}
m[0] = [A1, C2, D1,  C1] = [A, C]
...
m[19] = [C2,  D1, A1,  C1] = [C, D]

S = {A(1),  C(2), D(1), E(3)}
N = {A1,  C1, C2, D1, E1, E2, E3}

m[0] = [A1, E2, E1, C2, D1,  C1,E3 ] = [A, E C]
...
m[19] = [C2, E3, E2,  D1, E1, A1,  C1] = [C, E D]

(a) New mapping after service B(2) is removed 

(b) New mapping after service E(3) is added

R=2

Service D has 1GB storage

: Service config
: Normalized config
: Hash space
: Replication

S
N
H
R

Figure 7: An example of deterministic mapping and its reconfigura-
tions. The initial mapping is deterministically generated by Figure 6,
given the configuration of four services, A(1),B(2),C(2),D(1) where
the number represents the capacity of each service. (a) and (b) show
new mappings after configuration is changed. The grayed mappings
indicate the new replication upon reconfiguration, and the dotted rect-
angle in (b) represents replications that will be garbage collected.

vice A provides 1GB of free space. Given the replication
requirement (R = 2) and the hash space (H = 20), we
can populate the initial mapping with Init function from
Figure 6. Subfigures (a) and (b) illustrate the realign-
ment of objects upon the removal of service B(2) and the
inclusion of a new service E(3).

3.5 Translators
MetaSync provides a plugin system, called Translators,
for encryption and integrity check. Translators is highly
modular so can easily be extended to support a variety
of other transformations such as compression. Plugins
should implement two interfaces, put and get, which
are invoked before storing objects to and after retriev-
ing them from backend services. Plugins are chained, so
that when an object is stored, MetaSync invokes a chain
of put calls in sequence. Similarly, when an object is
retrieved, it goes through the same chain but in reverse.

Encryption translator is currently implemented using a
symmetric key encryption (AES-CBC). MetaSync keeps
the encryption key locally, but does not store on the back-
ends. When a user clones the directory in another de-
vice, the user needs to provide the encryption key. In-
tegrity checker runs hash function over retrieved object
and compares the digest against the file name. If it does
not match, it drops the object and downloads the object
by using other backends from the mapping. It needs to
run only in the get chain.

3.6 Fault Tolerance
To operate on top of multiple storage services that are
often unreliable (they are free!), faulty (they scan and
tamper with your files), and insecure (some are outside
of your country), MetaSync should tolerate faults.
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Data model. By replicating each object into multiple
backends (R in §3.4), MetaSync can tolerate loss of file
or directory objects, and tolerate temporal unavailability
or failures of R−1 concurrent services.

File integrity. Similarly with other version control sys-
tems [20], the hash tree ensures each object’s hash value
is valid from the root (master, head). Then, each ob-
ject’s integrity can be verified by calculating the hash
of the content and comparing with the name when it
is retrieved from the backend service. The value of
master can be signed to protect against tampering. When
MetaSync finds an altered object file, it can retrieve the
data from another replicated service through the deter-
ministic mapping.

Consistency control. MetaSync runs pPaxos for se-
rializing updates to the shared value for config and
master. The underlying pPaxos protocol requires 2 f +1
acceptors to ensure correctness if f acceptors may fail
under the fail-stop model.

Byzantine Fault Tolerant pPaxos. pPaxos can be eas-
ily extended to make it resilient to other forms of service
failures, e.g., faulty implementations of the storage ser-
vice APIs and even actively malicious storage services.
Note that even with Byzantine failures, each object is
protected in the same way through replication and in-
tegrity checks. However, updates of global view need
to be handled more carefully. We assume that clients
are trusted and work correctly, but backend services may
have Byzantine behavior. When sending messages for
proposing values, a client needs to sign it. This ensures
that malicious backends cannot create arbitrary log en-
tries. Instead, the only possible malicious behavior is to
break consistency by omitting log entries and reordering
them when clients fetch them; a backend server may send
any subset of the log entries in any order. Under this set-
ting, pPaxos works similarly with the original algorithm,
but it needs 3 f + 1 acceptors when f may concurrently
fail. Then, for each prepare or accept, a proposing client
needs to wait until 2 f +1 acceptors have prepared or ac-
cepted, instead of f + 1. It is easy to verify the correct-
ness of this scheme. When a proposal gets 2 f + 1 ac-
cepted replies, even if f of the acceptors are Byzantine,
the remaining f + 1 acceptors will not accept a compet-
ing proposal. As a consequence, competing proposals
will receive at most 2 f acceptances and will fail to com-
mit. Note that each file object is still replicated at only
f +1 replicas, as data corruption can be detected and cor-
rected as long as there is a single non-Byzantine service.
As a consequence, the only additional overhead of mak-
ing the system tolerate Byzantine failures is to require a
larger quorum (2 f + 1) and a larger number of storage
services (2 f + 1) for implementing the synchronization
operation associated with updating master.

APIs Description

(a) Storage abstraction
get(path) Retrieve a file at path
put(path, data) Store data at path
delete(path) Delete a file at path
list(path) List all files under path directory
poll(path) Check if path was changed

(b) Synchronization abstraction
append(path, msg) Append msg to the list at path
fetch(path) Fetch a log from path

Table 2: Abstractions for backend storage services.

3.7 Backend abstractions
Storage abstraction. Any storage service having an
interface to allow clients to read and write files can be
used as a storage backend of MetaSync. More specifi-
cally, it needs to provide the basis for the the functions
listed in Table 2(a). Many storage services provide a
developer toolkit to build a customized client accessing
user files [16, 21]; we use these APIs to build MetaSync.
Not only cloud services provide these APIs, it is also
straightforward to build these functions on user’s private
servers through SSH or FTP. MetaSync currently sup-
ports backends with the following services: Dropbox,
GoogleDrive, OneDrive, Box.net, Baidu, and local disk.

Synchronization abstraction. To build the primitive
for synchronization, an append-only log, MetaSync can
use any services that provide functions listed in Ta-
ble 2(b). How to utilize the underlying APIs to build the
append-only log varies across services. We summarize
how MetaSync builds it for each provider in Table 3.

3.8 Other Issues
Sharing. MetaSync allows users to share a folder and
work on the folder. While not many backend services
have APIs for sharing functions—only Google Drive and
Box have it among services that we used—others can be
implemented through browser emulation. Once sharing
invitation is sent and accepted, synchronization works
the same way as in the one-user case. If files are en-
crypted, we assume that all collaborators share the en-
cryption key.

Collapsing directory. All storage services manage in-
dividual files for uploading and downloading. As we see
later in Table 4, throughput for uploading and download-
ing small files are much lower than those for larger files.
As an optimization, we collapse all files in a directory
into a single object when the total size is small enough.

4 Implementation
We have implemented a prototype of MetaSync in
Python, and the total lines of code is about 7.5K. The
current prototype supports five backend services includ-
ing Box, Baidu, Dropbox, Google Drive and OneDrive,
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and works on all major OSes including Linux, Mac and
Windows. MetaSync provides two front-end interfaces
for users, a command line interface similar to git and a
synchronization daemon similar to Dropbox.
Abstractions. Storage services provide APIs equiva-
lent to MetaSync’s get() and put() operations defined
in Table 2. Since each service varies in its support for the
other operations, we summarize the implementation de-
tails of each service provider in Table 3. For implement-
ing synchronization abstractions, append() and fetch(),
we utilized the commenting features in Box, Google and
OneDrive, and versioning features in Dropbox. If a ser-
vice does not provide any efficient ways to support syn-
chronization APIs, MetaSync falls back to the default
implementation of those APIs that are built on top of
their storage APIs, described for Baidu in Table 3. Note
that for some services, there are multiple ways to imple-
ment the synchronization abstractions. In that case, we
chose to use mechanisms with better performance.
Front-ends. The MetaSync daemon monitors file
changes by using inotify in Linux, FSEvents and kQueue

in Mac and ReadDirectoryChangesW in Windows, all ab-
stracted by the Python library watchdog. Upon notifi-
cation, it automatically uploads detected changes into
backend services. It batches consecutive changes by
waiting 3 more seconds after notification so that all mod-
ified files are checked in as a single commit to reduce
synchronization overhead. It also polls to find changes
uploaded from other clients; if so, it merges them into
the local drive. The command line interface allows users
to manually manage and synchronize files. The usage of
MetaSync commands is similar to that of version control
systems (e.g., metasync init, clone, checkin, push).

5 Evaluation
This section answers the following questions:
• What are the performance characteristics of pPaxos?
• How quickly does MetaSync reconfigure mappings as

services are added or removed?
• What is the end-to-end performance of MetaSync?

Each evaluation is done on Linux servers connected to
campus network except for synchronization performance
in §5.3. Since most services do not have native clients
for Linux, we compared synchronization time for native
clients and MetaSync on Windows desktops.

Before evaluating MetaSync, we measured the perfor-
mance variance of services in Table 4 via their APIs. One
important observation is that all services are slow in han-
dling small files. This provides MetaSync the opportu-
nity to outperform them by combining small objects.

5.1 pPaxos performance
We measure how quickly pPaxos reaches consensus as
we vary the number of concurrent proposers. The re-
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sults of the experiment with 1-5 proposers over 5 stor-
age providers are shown in Figure 8. A single run
of pPaxos took about 3.2 sec on average under a sin-
gle writer model to verify acceptance of the proposal
when using all 5 storage providers. This requires at
least four round trips: PREPARE (Send, FetchNewLog)
and ACCEPT REQ (Send, FetchNewLog) (Figure 4) (there
could be multiple rounds in FetchNewLog depending on
the implementation for each service). It took about 7.4
sec with 5 competing proposers. One important thing to
emphasize is that, even with a slow connection to Baidu,
pPaxos can quickly be completed with a single winner
of that round. Also note that when compared to a single
storage provider, the latency doesn’t degrade with the in-
creasing number of storage providers—it is slower than
using a certain backend service (Google), but it is similar
to the median case as the latency depends on the proposer
getting responses from the majority.

Next, we compare the latency of a single round for
pPaxos with that for Disk Paxos [19]. We build Disk
Paxos with APIs by assigning a file as a block for each
client. Figure 9 shows the results with varying number
of clients when only one client proposes a value. As we
explain in §3.3, Disk Paxos gets linearly slower with in-
creasing number of clients even when all other clients are
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Service Synchronization API Storage API
append(path, msg) fetch(path) poll(path)

Box
Google
OneDrive

Create an empty path file and add msg as comments
to the path file.

Download the entire comments
attached on the path file.

Use events API, allowing long polling.
(Google, OneDrive: periodically list
pPaxos directory to see if any changes)

Baidu Create a path directory, and consider each file as a
log entry containing msg. For each entry, we cre-
ate a file with an increasing sequence number as its
name. If the number is already taken, we will get
an exception and try with a next number.

List the path directory, and down-
load new log entries since last
fetch (all files with subsequent se-
quence numbers).

Use diff API to monitor if there is any
change over the user’s drive.

Dropbox Create a path file, and overwrite the file with a new
log entry containing msg, relying on Dropbox’s ver-
sioning.

Request a list of versions of the
path file.

Use longpoll delta, a blocked call, that
returns if there is a change under path.

Disk† Create a path file, and append msg at the end of the
file.

Read the new entries from the
path file.

Emulate long polling with a condition
variable.

Table 3: Implementation details of synchronization and storage APIs for each service. Note that implementations of other storage APIs (e.g., put())
can be directly built with APIs provided by services, with minor changes (e.g., supporting namespace). Disk† is implemented for testing.

Services 1 KB 1 MB 10 MB 100 MB
U.S. China U.S. China U.S. China U.S. China

Baidu 0.7 / 0.8 1.8 / 2.6 0.21 / 0.22 0.12 / 1.48 0.22 / 0.94 0.13 / 2.64 0.24 / 1.07 0.13 / 3.38
Box 1.4 / 0.6 0.8 / 0.2 0.73 / 0.44 0.11 / 0.12 4.79 / 3.38 0.13 / 0.68 17.37 / 15.77 0.13 / 1.08

Dropbox 1.2 / 1.3 0.5 / 0.5 0.59 / 0.69 0.10 / 0.20 2.50 / 3.48 0.09 / 0.41 3.86 / 14.81 0.13 / 0.68
Google 1.4 / 0.8 - 1.00 / 0.77 - 5.80 / 5.50 - 9.43 / 26.90 -

OneDrive 0.8 / 0.5 0.3 / 0.1 0.45 / 0.34 0.01 / 0.05 3.13 / 2.08 0.11 / 0.12 7.89 / 6.33 0.11 / 0.44

KB/s MB/s MB/s MB/s

Table 4: Upload and download bandwidths of four different file sizes on each service from U.S. and China. This preliminary experiment explains
three design constrains of MetaSync. First, all services are extremely slow in handling small files, 7k/34k times slower in uploading/downloading
1 KB files than 100 MB on Google storage service. Second, the bandwidth of each service approaches its limit at 100 MB. Third, performance
varies with locations, 30/22 times faster in uploading/downloading 100 MB when using Dropbox in U.S. compared to China.

inactive, since it must read the current state of all clients.

5.2 Deterministic mapping
We then evaluate how fairly our deterministic mapping
distributes objects into storage services with different ca-
pacity, in three replication settings (R = 1,2). We test
our scheme by synchronizing source tree of Linux ker-
nel 3.10.38, consisting of a large number of small files
(464 MB), to five storage services, as detailed in Table 5.
We use H = (5×sum of normalized space) = 10,410 for
this testing. In R = 1, where we upload each object once,
MetaSync locates objects in balance to all services—it
uses 0.02% of each service’s capacity consistently. How-
ever, since Baidu provides 2TB (98% of MetaSync’s ca-
pacity in this configuration), most of the objects will be
allocated into Baidu. This situation improves for R = 2,
since objects will be placed into other services beyond
Baidu. Baidu gets only 6.2 MB of more storage when in-
creasing R = 1 → 2, and our mapping scheme preserves
the balance for the rest of services (using 1.3%).

The entire mapping plan is deterministically derived
from the shared config. The size of information to be
shared is small (less than 50B for the above example),
and the size of the populated mapping is about 3MB.

Reconfiguration #Objects Time (sec)
Added / Removed Replication / GC

S = 4,R = 2 → 3 101 / 0 33.7 / 0.0
S = 4 → 3,R = 2 54 / 54 19.6 / 40.6
S = 3 → 4,R = 2 54 / 54 29.8 / 14.7

Table 6: Time to relocate 193 MB amount of objects (photo-sharing
workloads in Table 7) on increasing the replication ratio, removing an
existing service, and adding one more service. MetaSync quickly re-
balances its mapping (and replication) based on its new config. We
used four services, Dropbox, Box, GoogleDrive, and OneDrive (S = 4)
for experimenting with the replication, including (S = 3 → 4) and ex-
cluding OneDrive (S = 4 → 3) for re-configuring storage services.

The relocation scheme is resilient to changes as well,
meaning that redistribution of objects is minimal. As in
Table 6, when we increased the configured replication
by one (R = 2 → 3) with 4 services, MetaSync repli-
cated 193 MB of objects in about half a minute. When
we removed a service from the configuration, MetaSync
redistributed 96.5 MB of objects in about 20 sec. Af-
ter adding and removing a storage backend, MetaSync
needs to delete redundant objects from the previous con-
figuration, which took 40.6/14.7 sec for removing/adding
OneDrive in our experiment. However, the garbage col-
lection will be asynchronously initiated during idle time.



92 2015 USENIX Annual Technical Conference USENIX Association

Repl. Dropbox Google Box OneDrive Baidu Total
(2 GB) (15 GB) (10 GB) (7 GB) (2048 GB) (2082 GB)

R = 1 77 (0.09%) 660 (0.75%) 475 (0.54%) 179 (0.20%) 86,739 (98.42%) 88,130 (100%)
0.34 MB (0.02%) 2.87 MB (0.02%) 2.53 MB (0.02%) 0.61 MB (0.01%) 463.8 MB (0.02%) 470.1 MB (0.02%)

R = 2 5,297 (3.01%) 39,159 (22.22%) 25,332 (14.37%) 18,371 (10.42%) 88,101 (49.98%) 176,260 (100%)
27.4 MB (1.34%) 206.4 MB (1.34%) 138.2 MB (1.35%) 98.3 MB (1.37%) 470.0 MB (0.02%) 940.3 MB (0.04%)

Table 5: Replication results by our deterministic mapping scheme (§3.4) for Linux kernel 3.10.38 (Table 7) on 5 different services with various
storage space, given for free. We synchronized total 470 MB of files, consisting of 88k objects, and replicated them across all storage backends.
Note that for this mapping test, we turned off the optimization of collapsing directories. Our deterministic mapping distributed objects in balance:
for example, in R = 2, Dropbox, Google, Box and OneDrive used consistently 1.35% of their space, even with 2-15 GB of capacity variation. Also,
R = 1 approaches to the perfect balance, using 0.02% of storage space in all services.

5.3 End-to-end performance
We selected three workloads to demonstrate performance
characteristics. First, Linux kernel source tree (2.6.1)
represents the most challenging workload for all stor-
age services due to its large volume of files and direc-
tory (920 directories and 15k files, total 166 MB). Sec-
ond, MetaSync’s paper represents a causal use of syn-
chronization service for users (3 directories and 70 files,
total 1.6 MB). Third, sharing photos is for maximizing
the throughput of each storage service with bigger files
(50 files, total 193 MB).

Table 7 summarizes our results for end-to-end perfor-
mance for all workloads, comparing MetaSync with the
native clients provided by each service. Each workload
was copied into one client’s directory before synchro-
nization is started. The synchronization time was mea-
sured as the length of interval between when one desktop
starts to upload files and the creation time of the last file
synced on the other desktop. We also measured the syn-
chronization time for all workloads by using MetaSync
with different settings. MetaSync outperforms any indi-
vidual service for all workloads. Especially for Linux
kernel source, it took only 12 minutes when using 4 ser-
vices (excluding Baidu located outside of the country)
compared to more than 2 hrs with native clients. This
improvement is possible due to using concurrent connec-
tions to multiple backends, and optimizations like col-
lapsing directories. Although these native clients may
not be optimized for the highest possible throughput,
considering that they may run as a background service,
it would be beneficial for users to have a faster option.
It is also worth noting that replication helps sync time,
especially when there is a slower service, as shown in
the case with S = 5,R = 1,2; a downloading client can
use faster services while an uploading client can upload
a copy in the background.
Clone. Storage services often limit their download
throughput: for example, MetaSync can download at
5.1 MB/s with Dropbox as a backend, and at 3.4 MB/s
with Google Drive, shown in Figure 10. Note that down-
loading is done already by using concurrent connections
even to the same service. By using multiple storage ser-
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Figure 10: Time to clone 193 MB photos. When using individual ser-
vices as a backend (Dropbox, Google, and OneDrive), MetaSync took
40-70 sec to clone, but improved the performance, 25-30 sec (30%) by
leveraging the distributions of objects across multiple services.

vices, MetaSync can fully exploit the bandwidth of local
connection of users, not limited by the allowed through-
put of each service. For example, MetaSync with both
services and R=2 took 25.5 sec for downloading 193 MB
data, which is at 7.6 MB/s.

6 Related Work
A major line of related work, starting with Farsite [2]
and SUNDR [26] but carrying through SPORC [17], Fri-
entegrity [18], and Depot [27], is how to provide tamper
resistance and privacy on untrusted storage server nodes.
These systems assume the ability to specify the client-
server protocol, and therefore cannot run on unmodified
cloud storage services. A further issue is equivocation;
servers may tell some users that updates have been made,
and not others. Several of these systems detect and re-
solve equivocations after the fact, resulting in a weaker
consistency model than MetaSync’s linearizable updates.
A MetaSync user knows that when a push completes,
that set of updates is visible to all other users and no
conflicting updates will be later accepted. Like Farsite,
we rely on a stronger assumption about storage system
behavior—that failures across multiple storage providers
are independent, and this allows us to provide a simpler
and more familiar model to applications and users.

Likewise, several systems have explored composing a
storage layer on top of existing storage systems. Syn-
dicate [32] is designed as an API for applications; thus,
they delegate design choices such as how to manage files
and replicate to application policy. SCFS [5] imple-
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Workload Dropbox Google Box OneDrive Baidu MetaSync
S = 5,R = 1 S = 5,R = 2 S = 4,R = 1 S = 4,R = 2

Linux kernel source 2h 45m > 3hrs > 3hrs 2h 03m > 3hrs 1h 8m 13m 51s 18m 57s 12m 18s
MetaSync paper 48 42 148 54 143 55 50 27 26
Photo sharing 415 143 536 1131 1837 1185 180 137 112

Table 7: Synchronization performance of 5 native clients provided by each storage service, and with four different settings of MetaSync. For
S = 5,R = 1, using all of 5 services without replication, MetaSync provides comparable performance to native clients–median speed for MetaSync
paper and photo sharing, but outperforming for Linux kernel workloads. However, for S = 5,R = 2 where replicating objects twice, MetaSync
outperform >10 times faster than Dropbox in Linux kernel and 2.3 times faster in photo sharing; we can finish the synchronization right after
uploading a single replication set (but complete copy) and the rest will be scheduled in background. To understand how slow straggler (Baidu)
affects the performance (R = 1), we also measured synchronization time on S = 4 without Baidu, where MetaSync vastly outperforms all services.

ments a sharable cloud-backed file system with multiple
cloud storage services. Unlike MetaSync, Syndicate and
SCFS assume separate services for maintaining metadata
and consistency. RACS [1] uses RAID-like redundant
striping with erasure coding across multiple cloud stor-
age providers. Erasure coding can also be applied to
MetaSync and is part of our future work. SpanStore [39]
optimizes storage and computation placement across a
set of paid data centers with differing charging models
and differing application performance. As they are tar-
geting general-purpose infrastructure like EC2, they as-
sume the ability to run code on the server. BoxLeech [22]
argues that aggregating cloud services might abuse them
especially given a user may create many free accounts
even from one provider, and demonstrates it with a file
sharing application. GitTorrent [3] implements a decen-
tralized GitHub hosted on BitTorrent. It uses BitCoin’s
blockchain as a method of distributed consensus.

Perhaps closest to our intent is DepSky [4]; it proposes
a cloud of clouds for secure, byzantine-resilient storage,
and it does not require code execution on the servers.
However, they assume a more restricted use case. Their
basic algorithm assumes at most one concurrent writer.
When writers are at the same local network, concur-
rent writes are coordinated by an external synchroniza-
tion service like ZooKeeper. Otherwise, it has a possible
extension that can support multiple concurrent updates
without an external service, but it requires clock syn-
chronization between clients. MetaSync makes no clock
assumptions about clients, it is designed to be efficient
in the common case where multiple clients are making
simultaneous updates, and it is non-blocking in the pres-
ence of either client or server failures. DepSky also only
provides strong consistency for individual data objects,
while MetaSync provides strong consistency across all
files in a repository.

Our implementation integrates and builds on the ideas
in many earlier systems. Obviously, we are indebted to
earlier work on Paxos [25] and Disk Paxos [19]; we ear-
lier provided a detailed evaluation of these different ap-
proaches. We maintain file objects in a manner similar
to a distributed version control system like git [20]; the
Ori file system [28] takes a similar approach. However,

MetaSync can combine or split each file object for more
efficient storage and retrieval. Content-based addressing
has been used in many file systems [8, 11, 26, 28, 35].
MetaSync uses content-based addressing for a unique
purpose, allowing us to asynchronously uploading or
downloading objects to backend services. While algo-
rithms for distributing or replicating objects have also
been proposed and explored by past systems [10, 33, 34],
the replication system in MetaSync is designed to mini-
mize the cost of reconfiguration to add or subtract a stor-
age service and also to respect the diverse space restric-
tions of multiple backends.

7 Conclusion
MetaSync provides a secure, reliable, and performant file
synchronization service on top of popular cloud storage
providers. By combining multiple existing services, it
enables a highly available service during the outage or
even shutdown of a service provider. To achieve a con-
sistent update among cloud services, we devised a client-
based Paxos, called pPaxos, that can be implemented
without modifying any existing APIs. To minimize the
redistribution of replicated files upon a reconfiguration of
services, we developed a deterministic, stable replication
scheme that requires minimal amount of shared infor-
mation among services (e.g., configuration). MetaSync
supports five commercial storage backends (in current
open source version), and outperforms the fastest indi-
vidual service in synchronization and cloning, by 1.2-
10× on our benchmarks. MetaSync is publicly avail-
able for download and use (http://uwnetworkslab.
github.io/metasync/).
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Abstract
With the rapid growth of mobile devices and applica-
tions, geo-tagged data has become a major workload for
big data storage systems. In order to achieve scalability,
existing solutions build an additional index layer above
general purpose distributed data stores. Fulfilling the se-
mantic level need, this approach, however, leaves a lot
to be desired for execution efficiency, especially when
users query for moving objects within a high resolution
geometric area, which we call geometry queries. Such
geometry queries translate to a much larger set of range
scans, forcing the backend to handle orders of mag-
nitude more requests. Moreover, spatial-temporal ap-
plications naturally create dynamic workload hotspots1,
which pushes beyond the design scope of existing solu-
tions. This paper presents Pyro, a spatial-temporal big-
data storage system tailored for high resolution geometry
queries and dynamic hotspots. Pyro understands geome-
tries internally, which allows range scans of a geometry
query to be aggregately optimized. Moreover, Pyro em-
ploys a novel replica placement policy in the DFS layer
that allows Pyro to split a region without losing data
locality benefits. Our evaluations use NYC taxi trace
data and an 80-server cluster. Results show that Pyro
reduces the response time by 60X on 1km×1km rectan-
gle geometries compared to the state-of-the-art solutions.
Pyro further achieves 10X throughput improvement on
100m×100m rectangle geometries2.

1 Introduction
The popularity of mobile devices is growing at an un-
precedented rate. According to the report published
by the United Nations International Telecommunication
Union [1], mobile penetration rates are now about equal
to the global population. Thanks to positioning modules
in mobile devices, a great amount of information gener-
ated today is tagged with geographic locations. For ex-
ample, users can share tweets and Instagram images with
location information with family and friends; taxi com-
panies collect pick-up and drop-off events data with geo-
graphic location information as well. The abundances of
geo-tagged data give birth to a whole range of applica-
tions that issue spatial-temporal queries. These queries,
which we call geometry queries, request information
about moving objects within a user-defined geometric
area. Despite the urgent need, no existing systems man-
age to meet both the scalability and efficiency require-

1The hotspot in this paper refers to a geographic region that receives
a large amount of geometry queries within a certain amount of time.

2The reason of using small geometries in this experiment is that the
baseline solution results in excessively long delay when handling even
a single large geometry.

ments for spatial-temporal data. For example, geospa-
tial databases [2] are optimized for spatial data, but usu-
ally fall short on scalability on handling big-data appli-
cations, whereas distributed data stores [3–6] scale well
but quite often yield inefficiencies when dealing with ge-
ometry queries.

Distributed data stores, such as HBase [3], Cassan-
dra [4], and DynamoDB [5], have been widely used for
big-data storage applications. Their key distribution al-
gorithms can be categorized into two classes: random
partitioning and ordered partitioning. The former ran-
domly distributes keys into servers, while the latter di-
vides the key space into subregions such that all keys in
the same subregion are hosted by the same server. Com-
pared to random partitioning, ordered partitioning con-
siderably benefits range scans, as querying all servers in
the cluster can then be avoided. Therefore, existing so-
lutions for spatial-temporal big-data applications, such
as MD-HBase [7], and ST-HBase [8], build index layers
above the ordered-partitioned HBase to translate a geom-
etry query into a set of range scans. Then, they submit
those range scans to HBase, and aggregate the returned
data from HBase to answer the query source, inheriting
scalability properties from HBase. Although these so-
lutions fulfill the semantic level requirement of spatial-
temporal applications, moving hotspots and large geom-
etry queries still cannot be handled efficiently.

Spatial-temporal applications naturally generate mov-
ing workload hotspots. Imagine a million people si-
multaneously whistle taxis after the New Year’s Eve at
NYC’s Times Square. Or during every morning rush
hour, people driving into the city central business district
search for the least congested routes. Ordered partition-
ing data stores usually mitigate hotspots by splitting an
overloaded region into multiple daughter regions, which
can then be moved into different servers. Nevertheless,
as region data may still stay in the parent region’s server,
the split operation prevents daughter regions from enjoy-
ing data locality benefits. Take HBase as an example.
Region servers in HBase usually co-locate with HDFS
datanodes. Under this deployment, one replica of all
region data writes to the region server’s storage disks,
which allows get/scan requests to be served using local
data. Other replicas spread randomly in the entire cluster.
Splitting and moving a region into other servers disable
data locality benefits, forcing daughter regions to fetch
data from remote servers. Therefore, moving hotspots
often lead to performance degradation.

In this paper, we present Pyro, a holistic spatial-
temporal big-data storage system tailored for high reso-
lution geometry queries and moving hotspots. Pyro con-

1
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sists of PyroDB and PyroDFS, corresponding to HBase
and HDFS respectively. This paper makes three ma-
jor contributions. First, PyroDB internally implements
Moore encoding to efficiently translate geometry queries
into range scans. Second, PyroDB aggregately mini-
mizes IO latencies of the multiple range scans gener-
ated by the same geometry query using dynamic pro-
gramming. Third, PyroDFS employs a novel DFS
block grouping algorithm that allows Pyro to preserve
data locality benefits when PyroDB splits regions during
hotspots dynamics. Pyro is implemented by adding 891
lines of code into Hadoop-2.4.1, and another 7344 lines
of code into HBase-0.99. Experiments using NYC taxi
dataset [9, 10] show that Pyro reduces the response time
by 60X on 1km×1km rectangle geometries. Pyro further
achieves 10X throughput improvement on 100m×100m
rectangle geometries.

The remainder of this paper is organized as follows.
Section 2 provides background and design overview.
Then, major designs are described in Section 3. Imple-
mentations and evaluations are presented in Sections 4
and 5 respectively. We survey related work in Section 6.
Finally, Section 7 concludes the paper.

2 Design Overview
Pyro consists of PyroDB and PyroDFS. The design of
PyroDB and PyroDFS are based on HBase and HDFS
respectively. Figure 1 shows the high-level architecture,
where shaded modules are introduced by Pyro.

2.1 Background
HDFS [11] is an open source software based on GFS
[12]. Due to its prominent fame and universal deploy-
ment, we skip the background description.

HBase is a distributed, non-relational database run-
ning on top of HDFS. Following the design of BigTable
[13], HBase organizes data into a 3D table of rows,
columns, and cell versions. Each column belongs to a

column family. HBase stores the 3D table as a key-value
store. The key consists of row key, column family key,
column qualifier, and timestamp. The value contains the
data stored in the cell.

In HBase, the entire key space is partitioned into re-
gions, with each region served by an HRegion instance.
HRegion manages each column family using a Store.
Each Store contains one MemStore and multiple Store-
Files. In the write path, the data first stays in the Mem-
Store. When the MemStore reaches some pre-defined
flush threshold, all key-value pairs in the MemStore are
sorted and flushed into a new StoreFile in HDFS. Each
StoreFile wraps an HFile, consisting of a series of data
blocks followed by meta blocks. In this paper, we use
meta blocks to refer to all blocks that store meta, data
index, or meta index. In the read path, a request first de-
termines the right HRegions to query, then it searches all
StoreFiles in those regions to find target key-value pairs.

As the number of StoreFiles increases, HBase merges
them into larger StoreFiles to reduce the overhead of read
operations. When the size of a store increases beyond a
threshold, its HRegion splits into two daughter regions,
with each region handles roughly half of its parent’s key-
space. The two daughter regions initially create refer-
ence files pointing back to StoreFiles of their past parent
region. This design postpones the overhead of copying
region data to daughter region servers at the cost of los-
ing data locality benefits. The next major compaction
materializes the reference files into real StoreFiles.

HBase has become a famous big-data storage sys-
tem for structured data [14], including data for location-
based services. Many location-based services share the
same request primitive that queries information about
moving objects within a given geometry, which we call
geometry queries. Unfortunately, HBase suffers inef-
ficiencies when serving geometry queries. All cells
in HBase are ordered based on their keys in a one-
dimensional space. Casting a geometry into that one-
dimensional space inevitably results in multiple dis-
joint range scans. HBase handles those range scans
individually, preventing queries to be aggregately opti-
mized. Moreover, location-based workloads naturally
create moving hotspots in the backend, requiring respon-
sive resource elasticity in every HRegion. HBase handles
workload hotspots by efficiently splitting regions, which
sacrifices data locality benefits for newly created daugh-
ter regions. Without data locality, requests will suffer
increased response time after splits. Above observations
motivate us to design Pyro, a data store specifically tai-
lored for geometry queries.

2.2 Architecture
Figure 1 shows the high-level architecture of Pyro. Pyro
internally uses Moore encoding algorithm [15–18] to
cast two-dimensional data into one-dimensional Moore

2
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index, which is enclosed as part of the row key. For
geometry queries, the Geometry Translator module first
applies the same Moore encoding algorithm to calculate
scan ranges. Then, the Multi-Scan Optimizer computes
the optimal read strategy such that the IO latency is min-
imized. Sections 3.1 and 3.2 present more details.

Pyro relies on the group-based replica placement pol-
icy in PyroDFS to guarantee data locality during region
splits. To achieve that, each StoreFile is divided into mul-
tiple shards based on user-defined pre-split keys. Then,
Pyro organizes DFS replicas of all shards into elaborately
designed groups. Replicas in the same group are stored
in the same physical server. After one or multiple splits,
each daughter region is guaranteed to find at least one
replica of all its region data within one group. To pre-
serve data locality, Pyro just need to move the daughter
region into the physical server hosting that group. The
details of group-based replica placement are described
in section 3.3.

Pyro makes three major contributions:
• Geometry Translation: Apart from previous solu-

tions that build an index layer above HBase, Pyro
internally implements efficient geometry translation
algorithms based on Moore encoding. This design
allows Pyro to optimize a geometry query by glob-
ally processing all its range scans together.

• Multi-Scan Optimization: After geometry transla-
tion, the multi-scan optimizer aggregately processes
the generated range scans to minimize the response
time of the geometry query. By using storage media
performance profiles as inputs, the multi-scan opti-
mizer employs a dynamic programming algorithm
to calculate the optimal HBase blocks to fetch.

• Block Grouping: To deal with moving hotspots,
Pyro relies on a novel data block grouping algo-
rithm in the DFS layer to split a region quickly and
efficiently, while preserving data locality benefits.
Moreover, by treating meta block and data block
differently, block grouping helps to improve Pyro’s
fault tolerance.

3 System Design
We first present the geometry translation and multi-
scan optimization in Sections 3.1 and 3.2 respectively.
These two solutions help to efficiently process geometry
queries. Then, Section 3.3 describes how Pyro handles
moving hotspots with the block grouping algorithm.
3.1 Geometry Translation
In order to store spatial-temporal data, Pyro needs to cast
2D coordinates (x,y) into the one-dimensional key space.
A straightforward solution is to use a fixed number of bits
to represent x, and y, and append x after y to form the
spatial key. This leads to the Strip-encoding as shown in
Figure 2 (a). Another solution is to use ZOrder-encoding
[7] that interleaves the bits of x and y. An example is
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illustrated in Figure 2 (b). These encoding algorithms
divide the 2D space into m×m tiles, and index each tile
with a unique ID. The tile is the spatial encoding unit as
well as the unit of range scans. We define the resolu-
tion as log2(m), which is the minimum number of bits
required to encode the largest value of x and y.

In most cases, encoding algorithms inevitably break
a two-dimensional geometry into multiple key ranges.
Therefore, each geometry query may result in multiple
range scans. Each range scan requires a few indexing,
caching, and disk operations to process. Therefore, it
is desired to keep the number of range scans low. We
carry out experiments to evaluate the number of range
scans that a geometry query may generate. The resolu-
tion ranges from 25 to 18 over the same set of randomly
generated disk-shaped geometry queries with 100m ra-
dius in a 40,000,000m×40,000,000m area. The corre-
sponding tile size ranges from 1.2m to 153m. Figure 3
shows the number of range scans generated by a single
geometry query under different resolutions. It turns out
that Strip-encoding and ZOrder-encoding translate a sin-
gle disk geometry to a few tens of range scans when the
tile size falls under 20m.

To reduce the number of range scans, we developed
the Geometry Translator module. The module employs
the Moore-Encoding algorithm which is inspired by the
Moore curve from the space-filling curve family [15–18].
A simple example is shown in Figure 2 (c). A Moore
curve can be developed up to any resolution. As shown
in Figure 4 (a), resolutions 1 and 2 of Moore encoding
are special cases. The curve of resolution 1 is called
a unit component. In order to increase the resolution,
the Moore curve expands each unit component accord-
ing to a fixed strategy as shown in Figure 5. Results plot-
ted in Figure 3 show that Moore-Encoding helps to re-
duce the number of range scans by 40% when compared
to ZOrder-Encoding. Moore curves may generalize to
higher dimensions [19], Figure 4 (b) depicts the simplest

3
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3D Moore curve of resolution 1. Implementations of the
Moore encoding algorithm are presented in Section 4.

3.2 Multi-Scan Optimization
The purpose of multi-scan optimization is to reduce read
amplification. Below, we first describe the phenomenon
of read amplification, and then we present our solution to
this problem.

3.2.1 Read Amplification
When translating geometry queries, range scans are gen-
erated respecting tile boundaries at the given resolution.
But, tile boundaries may not align with the geometry
query boundary. In order to cover the entire geometry,
data from a larger area is fetched. We call this phe-
nomenon Read Area Amplification. Figure 3 plots the
curve of read area amplification ratio, which is quantita-
tively defined as the total area of fetched tiles over the
area of the geometry query. The curves show that, solely
tuning the resolution cannot achieve both a small number
of range scans and a low ratio of read area amplification.
For example, as shown in Figure 3, restricting each ge-
ometry query to generate less than 10 scans forces Pyro
to fetch data from a 22% larger area. On the other hand,
limiting the area amplification ratio to less than 5% leads
to more than 30 range scans per geometry query. The
problem gets worse for larger geometries.

Moreover, encoding tiles are stored into fixed-size DB
blocks on disks, whereas DB blocks ignore the bound-
aries of encoding tiles. An entire DB block has to be
loaded even when there is only one requested key-value
pair fallen in that DB Block, which we call the Read
Volume-Amplification. Please notice that, DB blocks are
different from DFS blocks. DB blocks are the minimum
read/write units in PyroDB (similar to HBase). One DB
block is usually only a few tens of KiloBytes. In con-
trast, a DFS block is the minimum replication unit in
PyroDFS (similar to HDFS). DFS blocks are orders of
magnitudes larger than DB blocks. For example, the de-
fault PyroDFS block size is 64MB, which is 1024 times
larger than the default PyroDB block size.

Besides read area and volume amplifications, using a
third-party indexing layer may also force the data store
to unnecessarily visit a DB block multiple times, espe-
cially for high resolution queries. We call it the Redun-
dant Read Phenomenon. Even though a DB block can
be cached to avoid disk operations, the data store still
needs to traverse DB block’s data structure to fetch the
requested key-value pairs. Therefore, Moore encoding
algorithm alone is not enough to guarantee the efficiency.

For ease of presentation, we use the term Read Ampli-
fication to summarize the read area amplification, read
volume amplification, and redundant read phenomena.
Read amplification may force a geometry query to load
a significant amount of unnecessary data as well as visit-
ing the same DB block multiple times, leading to a much
longer response time. In the next section, we present
techniques to minimize the penalty of read amplification.
3.2.2 An Adaptive Aggregation Algorithm
According to Figure 3, increasing the resolution helps
to alleviate read area amplification. Using smaller DB
block sizes reduces read volume amplification. However,
these changes require Pyro to fetch significantly more
DB blocks, pushing disk IO to become a throughput bot-
tleneck. In order to minimize the response time, Pyro
optimizes all range scans of the same geometry query
aggregately, such that multiple DB blocks can be fetched
within fewer disk read operations. There are several rea-
sons for considering IO optimizations in the DB layer
rather than relying on asynchronous IO scheduling in the
DFS layer or the OS layer. First, issuing a DFS read
request is not free. As a geometry query may poten-
tially translate into a large number of read operations,
maintaining those reads alone elicits extra overhead in
all three layers. Second, performance of existing IO op-
timizations in lower layers depend on the timing and
ordering of request submissions. Enforcing the perfect
request submission ordering in the Geometry Translator
is not any cheaper than directly performing the IO opti-
mization in PyroDB. Third, as PyroDB servers have the
global knowledge about all p-reads from the same ge-
ometry request, it is the natural place to implement IO
optimizations.

Pyro needs to elaborately tune the trade-off between
unnecessarily reading more DB blocks and issuing more
disk seeks. Figure 6 shows the profiling results of
Hadoop-2.4.1 position read (p-read) performance on a
7,200RPM Seagate hard drive and a Samsung SM0256F
Solid State Drive respectively. In the experiment, we
load a 20GB file into the HDFS, and measure the latency
of p-read operations of varies sizes at random offsets.
The disk seek delay dominates the p-read response time
when reading less than 1MB data. When the size of p-
read surpasses 1MB, the data transmission delay starts
to make a difference. A naı̈ve solution calculates the
disk seek delay and the per-block transmission delay, and

4



USENIX Association  2015 USENIX Annual Technical Conference 101

HDD P-Read Size (Byte)
104 105 106 107

D
el

ay
 (

m
s)

50
100
150

Measured
Estimated

SSD P-Read Size (Byte)
104 105 106 107

D
el

ay
 (

m
s)

20

40
Measured
Estimated

Figure 6: Storage Media Profile

directly compares whether reading the next unnecessary
block helps to reduce response time. However, the sys-
tem may run on different data storage media, including
hard disk drives, solid state drives, or even remote cloud
drives. There is no guarantee that all media share the
same performance profile. Such explicit seek delay and
transmission delay may not even exist.

In order to allow the optimized range scan aggregation
to work for a broader scenarios, we propose the Adaptive
Aggregation Algorithm (A3). A3 uses the p-read profiling
result to estimate delay of p-read operations. The pro-
filing result contains the p-read response time of various
sizes. A3 applies interpolation to fill in gaps between pro-
filed p-read sizes. This design allows the A3 algorithm to
work for various storage media.

Before diving into algorithm details, we present the
abstraction of the block aggregation problem. Suppose
a geometry query hits shaded tiles (3, 4, 12, 15) in Fig
2 (c). For the sake of simplicity, assume that DB blocks
align perfectly with encoding tiles, one block per tile.
Figure 7 shows the block layout in the StoreFile. A3

needs to determine what block ranges to fetch in order
to cover all requested blocks, such that the response time
of the geometry query is minimized. In this example,
let us further assume each block is 64KB. According to
the profiling result shown in Figure 6, reading one block
takes about 9 ms, four blocks takes 14 ms, while read-
ing thirteen blocks takes 20 ms. Therefore, the optimal
solution reads blocks 3-15 using one p-read operation.

A3 works as follows. Suppose a geometry query trans-
lates to a set Q of range scans. Block indices help to
convert those range scans into another set B′ of blocks,
sorted in the ascending order of their offsets. By remov-
ing all cached blocks from B′, we get set B of n requested
but not cached blocks. Define S[i] as the estimated min-
imum delay of loading the first i blocks. Then, the prob-
lem is to solve S[n]. For any optimal solution, there must
exist a k, such that blocks k to n are fetched using a
single p-read operation. In other words, S[n] = S[k −
1]+ESTIMATE(k,n), where ESTIMATE(k,n) estimates
the delay of fetching blocks from k to n together based on
the profiling result. Therefore, starting from S[0], A3 cal-
culates S[i] as min{S[k−1]+ESTIMATE(k, i)|1 ≤ k ≤ i}.
The pseudo code of A3 is presented in Algorithm 1.

Algorithm 1: A3 Algorithm
Input: blocks to fetch sorted by offset B
Output: block ranges to fetch R

1 S ← an array of size |B|; initialize to ∞
2 P ← an array of size |B|; S[0]← 0
3 for i ← 1 ∼ |B| do
4 for j ← 0 ∼ i−1 do
5 k = i− j; s ←ESTIMATE(k, i) +S[k−1]
6 if s < S[i] then
7 S[i]← s; P[i]← k

8 i ← |B|; R ← /0
9 while i > 0 do

10 R ← R∪ (P[i], i); i ← P[i]−1

11 return R

0 1 2 3 5 6 7 8 9 10 11 12 13 14 15

Requested Block Fetched Block One p-read

4

Figure 7: Block Layout in a StoreFile

In Algorithm A3, the nested loop between line 3− 7
leads to O(|B|2) computational complexity. If B is large,
the quadratic computational complexity explosion can be
easily mitigated by setting an upper bound on the posi-
tion read size. For example, for the hard drive profiled
in Figure 6, fetching 107 bytes result in about the same
delay as fetching 5×106 bytes twice. Therefore, there is
no need to issue position read larger than 5× 106 bytes.
If block size is set to 64KB, the variable j on the 5th line
in Algorithm 1 only needs to loop from 0 to 76, resulting
in linear computational complexity.

3.3 Block Grouping
Moore encoding concentrates range scans of one geom-
etry query into fewer servers. This may lead to perfor-
mance degradation when spatial-temporal hotspots exist.
To handle moving hotspots, a region needs to gracefully
split itself to multiple daughters to make use of resources
on multiple physical servers. Later, those daughter re-
gions may merge back after their workloads shrink.

In HBase, the split operation creates two daughter re-
gions on the same physical server, each owning reference
files pointing back to StoreFiles of their parent region.
Daughter regions are later moved onto other servers dur-
ing the next cluster balance operation. Using reference
files on one hand helps to keep the split operation light,
but on the other hand prevents daughter regions from
taking advantage of data locality benefits. Because, af-
ter leaving the parent region’s server, the two daughter
regions can no longer find their region data in their lo-
cal disks until daughters’ reference files are materialized.
HBase materializes reference files during the next ma-
jor compaction, which executes at a very low frequency
(e.g., once a day). Forcing earlier materialization does
not solve the problem. It could introduce even more over-
head to the already-overwhelmed region, as materializa-
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tion itself is a heavy operation.
An ideal solution should keep both split and materi-

alization operations light, allowing the system to react
quickly when a hotspot emerges. Below, we present our
design to achieve such ideal behaviors.

3.3.1 Group Based Replica Placement
Same as HBase, Pyro suggests users to perform pre-split
based on expected data distribution to gain initial load
balancing among region servers. Pyro relies on the ex-
pected data distribution to create more splitting keys for
potential future splits. Split keys divide StoreFiles into
shards, and help to organize DFS block replicas into
replica groups. PyroDFS guarantees that DFS blocks re-
spect predefined split keys. To achieve that, PyroDFS
stops writing into the current DFS block and start a new
one as soon as it reaches a predefined split key. This
design relies on the assumption that, although moving
hotspots may emerge in spatial-temporal applications,
the long-round popularity of different geographic regions
changes slowly. Results presented in evaluation Sec-
tion 5.1 confirm the validity of this assumption.

Assume blocks are replicated r times and there are
2r−1−1 predefined split keys within a given region. Split
keys divide the region key space into 2r−1 shards, re-
sulting in r · 2r−1 shard replicas. Group 0 contains one
replica from all shards. Other groups can be constructed
following a recursive procedure:

1 Let Ψ be the set of all shards. If Ψ contains only one
shard, stop. Otherwise, use the median split key κ
in Ψ to divide all shards into two sets A and B. Keys
of all shards in A are larger than κ , while keys of all
shards in B are smaller than κ . Perform step 2, and
then perform step 3.

2 Create a new group to contain one replica from all
shards in set A. Then, let Ψ ← A, and recursively
apply step 1.

3 Let Ψ ← B, and then recursively apply step 1.
Replicas in the same group are stored in the same phys-
ical server, whereas different groups of the same region
are placed into different physical servers. According to
the construction procedure, group 1 starts from the me-
dian split key, covering the bottom half of the key space
(i.e., 2r−2 shards). Group 1 allows half of the regions
workload to be moved from group 0’s server to group 1’s
server without sacrificing data locality. Figure 8 demon-
strates an example of r = 3. PyroDFS is compatible with
normal HDFS workload whose replicas can be simply set
as no group specified. Section 3.3.2 explains why group

1 and 2 are placed at the end rather than in the beginning
of the StoreFile.

Figure 8 also shows how Pyro makes use of DFS block
replicas. The shaded area indicates which replica serves
workloads falling in that key range. In the beginning,
there is only one region server. Replicas in group 0 take
care of all workloads. As all replicas in group 0 are
stored locally in the region’s physical server, data local-
ity is preserved. After one split, the daughter region with
smaller keys stays in the same physical server, hence still
enjoys data locality. Another daughter region moves to
the physical server that hosts replica group 1, which is
also able to serve this daughter region using local data.
Subsequent splits are carried out under the same fashion.

To distinguish from the original split operation in
HBase, we call the above actions the soft split operation.
Soft splits are designed to mitigate moving hotspots.
Daughter regions created by soft splits eventually merge
back to form their parent regions. The efficiency of the
merge operation is not a concern as it can be performed
after the hotspot moves out of that region. Please notice
that the original split operation, which we call the hard
split, is still needed when a region grows too large to fit
in one physical server. As this paper focuses on geome-
try query and moving hotspots, all splits in the following
sections refer to soft splits.
3.3.2 Fault Tolerance
As a persistent data store, Pyro needs to preserve high
data availability. The block grouping algorithm pre-
sented in the previous section affects DFS replica place-
ment schemes, which in turn affects Pyro’s fault tol-
erance properties. In this section, we show that the
block grouping algorithm allows Pyro to achieve higher
data availability compared to the default random replica
placement policy in HDFS.

Pyro inherits the same HFile format [3] from HBase to
store key-value pairs. According to HFile Format, meta
blocks are stored at the end of the file. Losing any DFS
block of the meta may leave the entire HFile unavail-
able, whereas the availability of key-value DFS blocks
are not affected by the availability of other key-value
DFS blocks. This property makes the last shard of the
file more important than all preceding shards. Therefore,
we choose two different objectives for their fault toler-
ance design.
• Meta shard: Minimize the probability of losing any

DFS block.
• Key-value shard: Minimize the expectation of the

number of unavailable DFS blocks.
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Figure 9: Unavailability Probability

Assume there are n servers in the cluster, and f nodes
are unavailable during a cluster failure event. For a given
shard, assume it contains b blocks, and replicates r times,
where g out of r replications are grouped. PyroDFS ran-
domly distributes the grouped g replications into g phys-
ical servers. The remaining (r − g)b block replicas are
randomly and exclusively distributed in the cluster. If
the meta fails, it must be the case that the g servers host-
ing the g grouped replications all fail (i.e.,

( f
g

)
/
(n

g

)
), and

at least one block in each r − g ungrouped replications
fails. Hence, the probability of meta failure is

Pr [meta failure] =

( f
g

)
(n

g

)

1−

(
1−

( f−g
r−g

)
(n−g

r−g

)
)b


 . (1)

Figure 9 plots how the number of grouped replications g
affects the failure probability. In this experiment, n and r
are set to 10,000, and 3 respectively. According to [20–
22], after some power outage, 0.5%-1% of the nodes fail
to reboot. Hence, we vary f to be 50, and 100. The
results show that the meta failure probability decreases
when g increases. Pyro sets g to the maximum value for
the meta shard, therefore achieves higher fault tolerance
compared to default HDFS where g equals 1.

For key-value shards, transient and small-scale fail-
ures are tolerable, as they do not affect most queries. It is
more important to minimize the scale of the failure (i.e.,
the number of unavailable DB blocks). The expected
failure scale is,

E [failure scale|failure occurs] =
b
( f−g

r−g

)
(n−g

r−g

) . (2)

The failure scale decreases with the increase of grouped
replication number g. Therefore, placing replica groups
1 and 3 at the end of the StoreFile minimizes both the
meta shard failure probability and the failure scale of
key-value shards.

4 Implementation
PyroDFS and PyroDB are implemented based on HDFS-
2.4.1 and HBase-0.99 respectively.

4.1 Moore Encoding
As previously shown in Figure 4 and Figure 5, each unit
of Moore curve can be uniquely defined by the combina-
tion of its orientation (north, east, south, and west) and
its rotation (clockwise, counter-clockwise). Encode the
orientation with 2 bits, d1 and d0, such that 00 denotes
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Figure 10: Geometry Translation Delay

north, 01 east, 10 south, and 11 west. With more careful
observations, it can be seen that the rotation of a Moore
curve component unit completely depends on its orien-
tation. Starting from the direction shown in Figure 4
(a), the encodings in east and west oriented units rotate
clockwise, and others rotate counter-clockwise. With a
given integer coordinate (x,y), let xk and yk denote the
kth lowest bits of x and y in the binary presentation. Let
dk,1dk,0 be the orientation of the component unit defined
by the highest r− k−1 bits in x, and y. Then, the orien-
tation dk−1,1dk−1,0 can be determined based on dk,1, dk,0,
xk, and yk [15–18].

dk−1,0 = d̄k,1d̄k,0ȳk | d̄k,1dk,0xk

| dk,1d̄k,0yk | dk,1dk,0x̄k (3)

= d̄k,0
(
dk,1 ⊕ ȳk

)
| dk,0

(
dk,1 ⊕ x

)
(4)

dk−1,1 = d̄k,1d̄k,0xkȳk | d̄k,1dk,0x̄kyk

| dk,1d̄k,0x̄kyk | dk,1dk,0xkȳk (5)

= dk,1 (x̄k ⊕ yk) | (xk ⊕ yk)(d0 ⊕ xk) (6)

The formula considers all situations where dk−1,0 and
dk−1,1 should equal to 1, and uses a logic or to con-
nect them all. For example, the term d̄k,1d̄k,0ȳk states that
when the previous orientation is north (d̄k,1d̄k,0), the cur-
rent unit faces east or west (dk−1,0 = 1) if and only if
yk = 0. The same technique can be applied to determine
the final Moore encoding index ω .

ω2k+1 = d̄k,1d̄k,0x̄k | d̄k,1dk,0ȳk

| dk,1d̄k,0xk | dk,1dk,0yk (7)

= d̄k,0
(
dk,1 ⊕ x̄k

)
+dk,0

(
dk,1 ⊕ ȳk

)
(8)

ω2k = x̄k ⊕ yk (9)

Then, each geometry can be translated into range scans
using a quad tree. Each level in the quad tree corresponds
to a resolution level. Each node in the tree represents
a tile, which is further divided into four smaller tiles in
the next level. The translating algorithm only traverses
deeper if the geometry query partially overlaps with that
area. If an area is fully covered by the geometry, there is
no need to go further downwards. Figure 10 shows the
delay of translating a 5km× 5km square geometry. The
delay stays below 11ms even using the finest resolution.
4.2 Multi-Scan Optimization
After converting a geometry query into range scans, the
multi-scan optimizer needs two more pieces of infor-
mation to minimize the response time: 1) storage me-
dia performance profiles, and 2) the mapping from key
ranges to DB blocks. For the former one, an administra-
tor may specify an HDFS path under the property name
hbase.profile.storage in the hbase-site.xml configuration

7
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Figure 11: Manhattan Taxi Pick-up/Drop-off Hotspots

file. This path should point to a file containing multiple
lines of (p-read size, p-read delay) items, indicating the
storage media performance profile result. Depending on
storage media types in physical servers, the administra-
tor may set the property hbase.profile.storage to different
values for different HRegions. The file will be loaded
during HRegion initialization phase. For the latter one,
HBase internally keeps indices of DB blocks. Therefore,
Pyro can easily translate a range scan into a serious of
block starting offsets and block sizes. Then, those infor-
mation will be provided as inputs for the A3 algorithm.

4.3 Block Grouping
Distributed file systems usually keep replica placement
policies as an internal logic, maintaining a clean sep-
aration between the DFS layer and higher layer appli-
cations. This design, however, prevents Pyro from ex-
ploring opportunities to make use of DFS data replica-
tions. Pyro carefully breaks this barrier by exposing a
minimum amount of control knobs to higher layer appli-
cations. Through these APIs, applications may provide
replica group information when writing data into DFS. It
is important to choose the right set of APIs such that Py-
roDFS applications do not need to reveal too much about
details in the DFS layer. At the same time, applications
are able to fully make use of data locality benefits of all
block replicas.

In our design, PyroDFS exposes two families of APIs
which help to alter its internal behavior.
• Sealing a DFS Block: PyroDB may force PyroDFS

to seal the current DFS block and start writing into
a new DFS block, even if the current DFS block has
not reached its size limit yet. This API is useful be-
cause DFS block boundaries may not respect split-
ting keys, especially when there are many Store-
Files in a region and the sizes of StoreFiles are about
the same order of magnitude of the DFS block size.
The seal API family will help StoreFiles to achieve
full data locality after splits.

• Grouping Replicas: PyroDB may specify replica
namespace and replica groups when calling the
write API in PyroDFS. This usually happens dur-
ing MemStore flushes and StoreFile compactions.
Under the same namespace, replicas in the same
replica group will be placed into the same physi-
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cal server, and replicas in different groups will be
placed into different physical servers. If there are
not enough physical servers or disk spaces, Py-
roDFS works in a best effort manner. The mapping
from the replica group to the physical server and
corresponding failure recovery is handled within
PyroDFS. PyroDB may retrieve a physical server
information of a given replica group using grouping
APIs, which allows PyroDB to make use of data lo-
cality benefits.

5 Evaluation
Evaluations use NYC taxi dataset [9, 10] that contains
GPS pickup/dropoff location information of 697,622,444
trips from 2010 to 2013. The experiments run on a
cluster of 80 Dell servers (40 Dell PowerEdge R620
servers and 40 Dell PowerEdge R610 servers) [23–32].
The HDFS cluster consists of 1 master node and 30
datanodes. The HBase server contains 1 master node,
3 zookeeper [33] nodes, and 30 region servers. Region
servers are co-located with data nodes. Remaining nodes
follow a central controller to generate geometry queries
and log response times, which we call Remote User Em-
ulators (RUE).

We first briefly analyze the NYC taxi dataset. Then,
Sections 5.2, 5.3, and 5.4 evaluate the performance im-
provements contributed by Geometry Translator, Multi-
Scan Optimizer, and Group-based Replica Placement re-
spectively. Finally, in Section 5.5, we measure the over-
all response time and throughput of Pyro.
5.1 NYC Taxi Data Set Analysis
Moving hotspot is an important phenomenon in spatial-
temporal data. Figure 11 (a) and (b) illustrate the heat
maps of taxi pick-up and drop-off events in the Manhat-
tan area during a 4 hour time slot starting from 8:00PM
on December 31, 2010 and December 31, 2012 respec-
tively. The comparison shows that the trip distribution
during the same festival does not change much over the
years. Figure 11 (c) plots the heat map of the morning
(6:00AM-10:00AM) on January 1st, 2013, which drasti-
cally differs from the heat map shown in Figure 11 (b).
Figure 11 (d) illustrates the trip distribution from 8:00PM
to 12:00AM on July 4th, 2013, which also considerably
differs from that of the New Year Eve in the same year.

Figures 11 (a)-(d) demonstrate the distribution of
spatial-temporal hotspots. It is important to understand
by how much hotspots cause event count to increase
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Figure 14: Reducing the Number of Range Scans

in a region. We measure the increase as the ratio,
event count during peak hours

event count during normal hours .The CDF on 16X16 Manhattan
area is shown in Figure 12. Although hotspots move over
time, the event count of a region changes within a reason-
ably small range. During New Year midnight, popularity
of more than 97% regions grow within four folds.

When loading the data into HBase, both spatial and
temporal information contribute to the row key. The en-
coding algorithm translates the 2D location information
of an event into a 32-bit spatial-key, which acts as the suf-
fix of the row key. Then, the temporal strings are parsed
to Linux 64-bit timestamps. We use the most significant
32 bits as the temporal-key. Each temporal key repre-
sents roughly a 50-day time range. Finally, as shown in
Figure 13, the temporal-key is concatenated in front of
the spatial key to form the complete row key.

5.2 Moore Encoding
Figure 14 shows how much Moore encoding helps to re-
duce the number of range scans at different resolutions
when translating geometry queries in a 40,000,000m×
40,000,000m area. Figures 14 (a) and (b) uses disk ge-
ometry and rectangle geometries respectively. The two
figures share the same legend. For disk geometries,
Moore encoding generates 45% fewer range scans when
compared to ZOrder-encoding. When a long rectangle is
in use, Moore encoding helps to reduce the number of
range scans by 30%.

To quantify the read volume amplification, we encode
the dataset coordinates with Moore encoding algorithm
using the highest resolution shown in Figure 3, and pop-
ulate the data using 64KB DB Blocks. Then, the exper-
iment issues 1Km× 1Km rectangle geometries. Figure
15 (a) shows the ratio of fetched key-value pairs volume
over the total volume of accessed DB Blocks, which is
the inverse of read volume amplification. As the Strip-
encoding results in very high read volume amplification,
using the inverse helps to limit the result in interval [0, 1].
Therefore, readers can easily distinguish the difference
between Moore-encoding and ZOrder-encoding. We call
the inverse metric the effective data ratio. As Moore en-
coding concentrates a geometry query into fewer range
scans, and hence fewer range boundaries, it also achieves
higher effective data ratio.

Figures 15 (b)-(d) plot the CDFs of redundant read
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Figure 15: Read Amplification Phenomenon

counts when processing the same geometry query.It is
clear that the number of redundant reads increases when
using higher resolutions. Another observation is that,
Moore-encoding leads to large read redundancy. Thanks
to the multi-scan optimization design, this will not be
a problem, as all redundant reads will be accomplished
within a single DB block traverse operation.

5.3 Multi-Scan Optimization
In order to measure how A3 algorithm works, we load
data from the NYC taxi cab dataset using Moore encod-
ing algorithm, and force all StoreFiles of the same store
to be compacted into one single StoreFile. Then, the
RUE generates 1Km× 1Km rectangle geometry queries
with the query resolution set to 13. We measure the in-
ternal delay of loading requested DB blocks individually
versus aggregately.

The evaluation results are presented in Figure 16. The
curves convey a few interesting observations. Let us look
at the A3 curve first. In general, this curve rises as the
block size increases, which agrees with our intuition as
larger blocks lead to more severe read volume amplifica-
tion. The minimum response time is achieved at 8KB.
Because the minimum data unit of the disk under test
is 4KB, further decreasing block size does not help any
more. On the computation side, using smaller block size
results in larger input scale for the A3 algorithm. That
explains why the response time below 8KB slightly goes
up as the block size decreases. The ”individually” curve
monotonically decreases when the block size grows from
1KB to 100KB. It is because increasing block size signif-
icantly reduces the number of disk seeks when the block
is small. When the block size reaches between 128KB
and 4MB, two facts become true: 1) key-value pairs hit
by a geometry query tend to concentrate in less blocks;
2) data transmission time starts to make impacts. The

9
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benefits of reducing the number of disk seeks and the
penalties of loading DB blocks start to cancel each other,
leading to a flat curve. After 4MB, the data transmission
delay dominates the response time, and the curve rises
again. Comparing the nadirs of the two curves concludes
that A3 helps to reduce the response time by at least 3X.

5.4 Soft Region Split
To measure the performance of soft splitting, this ex-
periment uses normal scan queries instead of geome-
try queries, excluding the benefits of Moore encoding
and multi-scan optimization. A table is created for the
NYC’s taxi data, which initially splits into 4 regions.
Each region is assigned to a dedicated server. The
HBASE HEAPSIZE parameter is set to 1GB, and the
MemStore flush size is set to 256MB. Automatic region
split is disabled to allow us to manually control the tim-
ing of splits. Twelve RUE servers generate random-sized
small scan queries.

Figure 17 shows the result. The split occurs at the
240th second. After the split operation, HBase suffers
from even longer response time. It is because daughter
region B does not have its region data in its own physical
server, and has to fetch data from remote servers, includ-
ing the one hosting daughter region A. When the group
based replication is enabled, both daughter regions read
data from local disks, reducing half of the pressure on
disk, cpu, and network resources.

5.5 Response Time and Throughput
We measure the overall response time and throughput
improved by Pyro compared to the state-of-the-art solu-
tion MD-HBase. Experiments submit rectangle geome-
try queries of size 1km×1km and 100m×100m to Pyro
and MD-HBase. The request resolutions are set to 13 and
15 respectively for two types of rectangles. The block
sizes vary from 8KB to 512KB. When using MD-HBase,
the remote query emulator initiates all scan queries se-
quentially using one thread. This configuration tries to
make the experiment fair, as Pyro uses a single thread to
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answer each geometry query. Besides, experiments also
show how Pyro performs when using ZOrder-encoding
or/and A3 algorithm. Figures 18 and 19 plot experiment
results. The legend on the upper-left corner shows the
mapping from colors to block sizes. PyroM and PyroZ
represent Pyro using Moore- and ZOrder- encoding re-
spectively. PyroM-A3 and PyroZ-A3 correspond to the
cases with the A3 algorithm disabled.

When using PyroM and PyroZ, the response times
grow with the increase of block size regardless of
whether the rectangle geometry is large or small. It is be-
cause larger blocks weaken the benefits of block aggrega-
tion and force PyroM and PyroZ to read more data from
disk. After disabling A3, the response time rises by 6X
for 1km×1km rectangles, and 2X for 100m×100m rect-
angles. MD-HBase achieves the shortest response time
when using 64KB DB blocks, which is 60X larger com-
pared to PyroM and PyroZ when handling 1km × 1km
rectangle geometries. Reducing the rectangle size to
100m×100m shrinks the gap to 5X. An interesting phe-
nomenon is that using 512KB DB blocks only increases
the response time by 5% compared to using 64KB DB
blocks, when the request resolution is set to 13. How-
ever, the gap jumps to 33% if the resolution is set to 15.
The reason is that, higher resolution leads to more and
smaller range scans. In this case, multiple range scans
are more likely to hit the same DB block multiple times.
According to HFile format, key-value pairs are chained
together as a linked-list in each DB block. HBase has to
traverse the chain from the very beginning to locate the
starting key-value pair for every range scan. Therefore,
larger DB block size results in more overhead on iterat-
ing through the key-value chain in each DB block.

Figure 20 shows the throughput evaluation results of

10
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the entire cluster. Pyro regions are initially partitioned
based on the average pick up/drop off event location dis-
tribution over the year of 2013. Literature [9] presents
more analysis and visualizations of the dataset. During
the evaluation, each RUE server maintains a pool of em-
ulated users who submit randomly located 100m×100m
rectangle geometry queries. The reason of using small
geometries in this experiment is that MD-HBase results
in excessively long delays when handling even a sin-
gle large geometry. The distribution of the rectangle
geometry queries follows the heat map from 8:00PM
to 11:59PM on December 31, 2013. The configuration
mimics the situation where an application only knows
the long-term data distribution, and is unable to predict
hotspot bursts. When setting 600ms to be the maximum
tolerable response time, Pyro outperforms MD-HBase by
10X.

6 Related Work
As the volume of spatial-temporal data is growing at an
unprecedented rate, pursing a scalable solution for stor-
ing spatial-temporal data has become a common goal
shared by researchers from both the distributed system
community and the database community. Advances on
this path will benefit a great amount of spatial-temporal
applications and analytic systems.

Traditional relational databases understand high di-
mensional data well [17, 18, 34, 35] due to extensively
studied indexing techniques, such as R-Tree [36], Kd-
Tree [37], UB-Tree [38, 39], etc. Therefore, researchers
seek approaches to improve the scalability. Wang et
al. [40] construct a global index and local indices using
Content Addressable Network [41]. The space is parti-
tioned into smaller subspaces. Each subspace is handled
by a local storage. The global index manages subspaces,
and local indices manage data points in their own sub-
spaces. Zhang et al. [42] propose a similar architecture
using R-tree as global index and Kd-tree as local indices.

From another direction, distributed system researchers
push scalable NoSQL stores [3–6, 13, 43–45] to better
understand high dimensional data. Distributed key-value
stores can be categorized into two classes. One class uses
random partition to organize keys. Such systems include
cassandra [4], DynamoDB [5], etc. Due to the random-
ness on key distribution, these systems are immune to dy-
namic hotspots concentrated in a small key range. How-
ever, spatial-temporal data applications and analytic sys-
tems usually issue geometry queries, which translate to
range scans. Random partitioning cannot handle range
scans efficiently, as it cannot extract all keys within a
range with only the range boundaries. Consequently,
each range scan needs to query all servers. Other sys-
tems, such as BigTable [13], HBase [3], couchDB [46],
use ordered partitioning algorithms. In this case, the pri-
mary key space is partitioned into regions. The benefits

are clear. As data associated with a continuous primary
key range are also stored consecutively, sorted partition-
ing helps to efficiently locate the servers that host the
requested key range.

The benefits of ordered partitioning encouraged re-
searchers to mount spatial-temporal application onto
HBase. Md-HBase [7] builds an index layer on top of
HBase. The index layer encodes spatial information of
a data point into a bit series using ZOrder-encoding.
Then, a row using that bit series as key is inserted into
HBase. The ST-HBase [8] develops a similar technique.
However when serving geometry queries, the index layer
inevitably translates each geometry query into multiple
range scans, and prevents data store from aggregately
minimizing the response time.

As summarized above, existing solutions either orga-
nize multiple relational databases together using some
global index, or build a separate index layer above some
general purpose distributed data stores. This paper, how-
ever, takes a different path by designing and implement-
ing a holistic solution that is specifically tailored for
spatial-temporal data.

7 Conclusion
In this paper, we present the motivation, design, imple-
mentation, and evaluation of Pyro. Pyro tailors HDFS
and HBase for high resolution spatial-temporal geometry
queries. In the DB layer, Pyro employs Moore encoding
and multi-scan optimization to efficiently handle geome-
try queries. In the DFS layer, group-based replica place-
ment policy helps Pyro to preserve data locality bene-
fits during hotspots dynamics. The evaluation shows that
Pyro reduces the response time by 60X on 1km× 1km
rectangle geometries and improves the throughput by
10X on 100m×100m rectangle geometries compared to
the state-of-the-art solution.

Acknowledgement
We are grateful to Professor Dirk Grunwald and review-
ers for their invaluable comments during the revision
process of this paper. We would also like to thank Profes-
sor Dan Work for sharing with us the NYC taxi dataset.
This research was sponsored in part by the National Sci-
ence Foundation under grants CNS 13-20209, CNS 13-
02563, CNS 10-35736 and CNS 09-58314, the Army
Research Laboratory, and was accomplished under Co-
operative Agreement Number W911NF-09-2-0053. The
views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or im-
plied, of the Army Research Laboratory or the U.S. Gov-
ernment. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

11



108 2015 USENIX Annual Technical Conference USENIX Association

References
[1] B. Sanou, “The world in 2013: Ict facts and

figures,” in International Communication Union,
United Nations, 2013.

[2] S. Steiniger and E. Bocher, “An overview on cur-
rent free and open source desktop gis develop-
ments,” International Journal of Geographical In-
formation Science, vol. 23, no. 10, pp. 1345–1370.

[3] L. George, HBase: The Definitive Guide.
O’Reilly, 2011.

[4] A. Lakshman and P. Malik, “Cassandra: A decen-
tralized structured storage system,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 2, pp. 35–40.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: Amazon’s
highly available key-value store,” in ACM SOSP,
2007.

[6] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo,
S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “Tao:
Facebook’s distributed data store for the social
graph,” in USENIX ATC, 2013.

[7] S. Nishimura, S. Das, D. Agrawal, and A. E. Ab-
badi, “Md-hbase: A scalable multi-dimensional
data infrastructure for location aware services,” in
IEEE International Conference on Mobile Data
Management, 2011.

[8] Y. Ma, Y. Zhang, and X. Meng, “St-hbase: A
scalable data management system for massive geo-
tagged objects,” in International Conference on
Web-Age Information Management, 2013.

[9] B. Donovan and D. B. Work, “Using coarse gps
data to quantify city-scale transportation system
resilience to extreme events,” Transportation Re-
search Board 94th Annual Meeting, 2014.

[10] New York City Taxi & Limousine Commission
(NYCT&L), “Nyc taxi dataset 2010-2013,” https:
//publish.illinois.edu/dbwork/open-data/, 2015.

[11] T. White, Hadoop: The Definitive Guide, 1st ed.
O’Reilly Media, Inc., 2009.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
google file system,” in ACM SOSP, 2003.

[13] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,

and R. E. Gruber, “Bigtable: A distributed stor-
age system for structured data,” in USENIX OSDI,
2006.

[14] T. Harter, D. Borthakur, S. Dong, A. Aiyer, L. Tang,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Analysis of hdfs under hbase: A facebook mes-
sages case study,” in USENIX FAST, 2014.

[15] M. Bader, Space-Filling Curves: An Introduc-
tion with Applications in Scientific Computing.
Springer Publishing Company, Incorporated, 2012.

[16] J. Lawder, “The application of space-flling curves
to the storage and retrieval of multi-dimensional
data,” in Ph.D. Thesis, 2000.

[17] K.-L. Chung, Y.-L. Huang, and Y.-W. Liu, “Ef-
ficient algorithms for coding hilbert curve of
arbitrary-sized image and application to window
query,” Inf. Sci., vol. 177, no. 10, pp. 2130–2151.

[18] P. Venetis, H. Gonzalez, C. S. Jensen, and
A. Halevy, “Hyper-local, directions-based ranking
of places,” Proc. VLDB Endow., vol. 4, no. 5, pp.
290–301.

[19] R. Dickau, “Hilbert and moore 3d fractal
curves,” http://demonstrations.wolfram.com/
HilbertAndMoore3DFractalCurves/, 2015.

[20] A. Cidon, S. Rumble, R. Stutsman, S. Katti,
J. Ousterhout, and M. Rosenblum, “Copysets: Re-
ducing the frequency of data loss in cloud storage,”
in USENIX ATC, 2013.

[21] R. J. Chansler, “Data availability and durability
with the hadoop distributed file system,” in The
USENIX Magzine, 2012.

[22] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-
A. Truong, L. Barroso, C. Grimes, and S. Quinlan,
“Availability in globally distributed storage sys-
tems,” in USENIX OSDI, 2010.

[23] S. Li, S. Wang, F. Yang, S. Hu, F. Saremi, and T. F.
Abdelzaher, “Proteus: Power proportional mem-
ory cache cluster in data centers,” in IEEE ICDCS,
2013.

[24] S. Li, S. Wang, T. Abdelzaher, M. Kihl, and
A. Robertsson, “Temperature aware power alloca-
tion: An optimization framework and case studies,”
Sustainable Computing: Informatics and Systems,
vol. 2, no. 3, pp. 117 – 127, 2012.

[25] S. Li, S. Hu, and T. F. Abdelzaher, “The packing
server for real-time scheduling of mapreduce work-
flows,” in IEEE RTAS, 2015.

12



USENIX Association  2015 USENIX Annual Technical Conference 109

[26] S. Li, T. F. Abdelzaher, and M. Yuan, “TAPA: tem-
perature aware power allocation in data center with
map-reduce,” in IEEE International Green Com-
puting Conference and Workshops, 2011.

[27] S. Li, H. Le, N. Pham, J. Heo, and T. Abdelza-
her, “Joint optimization of computing and cooling
energy: Analytic model and a machine room case
study,” in IEEE ICDCS, 2012.

[28] S. Li, S. Hu, S. Wang, L. Su, T. F. Abdelzaher,
I. Gupta, and R. Pace, “WOHA: deadline-aware
map-reduce workflow scheduling framework over
hadoop clusters,” in IEEE ICDCS, 2014.

[29] M. M. H. Khan, J. Heo, S. Li, and T. F. Abdelzaher,
“Understanding vicious cycles in server clusters,”
in IEEE ICDCS, 2011.

[30] S. Li, S. Hu, S. Wang, S. Gu, C. Pan, and T. F. Ab-
delzaher, “Wattvalet: Heterogenous energy storage
management in data centers for improved power
capping,” in USENIX ICAC, 2014.

[31] S. Li, L. Su, Y. Suleimenov, H. Liu, T. F. Abdelza-
her, and G. Chen, “Centaur: Dynamic message dis-
semination over online social networks,” in IEEE
ICCCN, 2014.

[32] CyPhy Research Group, “UIUC Green Data Cen-
ter,” http://greendatacenters.web.engr.illinois.edu/
index.html, 2015.

[33] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,
“Zookeeper: Wait-free coordination for internet-
scale systems,” in USENIX ATC, 2010.

[34] J. K. Lawder and P. J. H. King, “Querying multi-
dimensional data indexed using the hilbert space-
filling curve,” SIGMOD Rec., vol. 30, no. 1, pp. 19–
24.

[35] Q. Lv, W. Josephson, Z. Wang, M. Charikar,
and K. Li, “Multi-probe lsh: Efficient indexing
for high-dimensional similarity search,” in VLDB,
2007.

[36] A. Guttman, “R-trees: A dynamic index structure
for spatial searching,” in ACM SIGMOD, 1984.

[37] I. Wald and V. Havran, “On building fast kd-trees
for ray tracing, and on doing that in o(n log n),” in
IEEE Symposium on Interactive Ray Tracing, 2006.

[38] R. Bayer, “The universal b-tree for multidimen-
sional indexing: General concepts,” in Proceed-
ings of the International Conference on Worldwide
Computing and Its Applications, 1997.

[39] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. El-
hardt, and R. Bayer, “Integrating the ub-tree into a
database system kernel,” in VLDB, 2000.

[40] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “In-
dexing multi-dimensional data in a cloud system,”
in ACM SIGMOD, 2010.

[41] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable net-
work,” in ACM SIGCOMM, 2001.

[42] X. Zhang, J. Ai, Z. Wang, J. Lu, and X. Meng, “An
efficient multi-dimensional index for cloud data
management,” in International Workshop on Cloud
Data Management, 2009.

[43] B. Cho and M. K. Aguilera, “Surviving congestion
in geo-distributed storage systems,” in USENIX
ATC, 2012.

[44] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky,
“Mica: A holistic approach to fast in-memory key-
value storage,” in USENIX NSDI, 2014.

[45] R. Geambasu, A. A. Levy, T. Kohno, A. Krishna-
murthy, and H. M. Levy, “Comet: An active dis-
tributed key-value store,” in USENIX OSDI, 2010.

[46] J. C. Anderson, J. Lehnardt, and N. Slater,
CouchDB: The Definitive Guide Time to Relax,
1st ed. O’Reilly Media, Inc., 2010.

13





USENIX Association  2015 USENIX Annual Technical Conference 111

CDStore: Toward Reliable, Secure, and Cost-Efficient Cloud Storage via
Convergent Dispersal

Mingqiang Li∗, Chuan Qin, and Patrick P. C. Lee
Department of Computer Science and Engineering, The Chinese University of Hong Kong

mingqiangli.cn@gmail.com, {cqin,pclee}@cse.cuhk.edu.hk

Abstract
We present CDStore, which disperses users’ backup data
across multiple clouds and provides a unified multi-
cloud storage solution with reliability, security, and cost-
efficiency guarantees. CDStore builds on an augmented
secret sharing scheme called convergent dispersal, which
supports deduplication by using deterministic content-
derived hashes as inputs to secret sharing. We present
the design of CDStore, and in particular, describe how
it combines convergent dispersal with two-stage dedupli-
cation to achieve both bandwidth and storage savings and
be robust against side-channel attacks. We evaluate the
performance of our CDStore prototype using real-world
workloads on LAN and commercial cloud testbeds. Our
cost analysis also demonstrates that CDStore achieves a
monetary cost saving of 70% over a baseline cloud stor-
age solution using state-of-the-art secret sharing.

1 Introduction
Cloud storage provides cost-efficient means for organi-
zations to host backups off-site [40]. However, from
users’ perspectives, putting all data in one cloud raises
reliability concerns regarding the single point of fail-
ure [8] and vendor lock-in [5], especially when cloud
storage providers can spontaneously terminate their busi-
ness [35]. Cloud storage also raises security concerns,
since data management is now outsourced to third par-
ties. Users often want their outsourced data to be pro-
tected with guarantees of confidentiality (i.e., data is kept
secret from unauthorized parties) and integrity (i.e., data
is uncorrupted).

Multi-cloud storage coalesces multiple public cloud
storage services into a single storage pool, and provides
a plausible way to realize both reliability and security
in outsourced storage. It disperses data with some form
of redundancy across multiple clouds, operated by inde-
pendent vendors, such that the stored data can be recov-
ered from a subset of clouds even if the remaining clouds
are unavailable. Redundancy can be realized through
erasure coding (e.g., Reed-Solomon codes [51]) or se-

cret sharing (e.g., Shamir’s scheme [54]). Recent multi-
∗Mingqiang Li is now with Hong Kong Advanced Technology Cen-

ter, Ecosystem & Cloud Service Group, Lenovo Group Ltd. This work
was done when he was with the Chinese University of Hong Kong.

cloud storage systems (e.g., [5, 19, 29, 33, 60]) leverage
erasure coding to tolerate cloud failures, but do not ad-
dress security; DepSky [13] uses secret sharing to further
achieve both reliability and security. Secret sharing often
comes with high redundancy, yet its variants are shown
to reduce the redundancy of secret sharing to be slightly
higher than that of erasure coding, while achieving secu-
rity in the computational sense (see §2). Secret sharing
has a side benefit of providing keyless security (i.e., elim-
inating encryption keys), which builds on the difficulty
for an attacker to compromise multiple cloud services
rather than a secret key. This removes the key manage-
ment overhead as found in key-based encryption [56].

However, existing secret sharing algorithms prohibit
storage savings achieved by deduplication. Since backup
data carries substantial identical content [58], organiza-
tions often use deduplication to save storage costs, by
keeping only one physical data copy and having it shared
by other copies with identical content. On the other hand,
secret sharing uses random pieces as inputs when gen-
erating dispersed data. Users embed different random
pieces, making the dispersed data different even if the
original data is identical.

This paper presents a new multi-cloud storage system
called CDStore, which makes the first attempt to provide
a unified cloud storage solution with reliability, secu-
rity, and cost efficiency guarantees. CDStore builds on
our prior proposal of an enhanced secret sharing scheme
called convergent dispersal [37], whose core idea is to
replace the random inputs of traditional secret sharing
with deterministic cryptographic hashes derived from the
original data, while the hashes cannot be inferred by at-
tackers without knowing the whole original data. This
allows deduplication, while preserving the reliability and
keyless security features of secret sharing. Using con-
vergent dispersal, CDStore offsets dispersal-level redun-
dancy due to secret sharing by removing content-level
redundancy via deduplication, and hence achieves cost
efficiency. To summarize, we extend our prior work [37]
and make three new contributions.

First, we propose a new instantiation of convergent
dispersal called CAONT-RS, which builds on AONT-RS
[52]. CAONT-RS maintains the properties of AONT-RS,
and makes two enhancements: (i) using OAEP-based



112 2015 USENIX Annual Technical Conference USENIX Association

AONT [20] to improve performance and (ii) replacing
random inputs with deterministic hashes to allow dedu-
plication. Our evaluation also shows that CAONT-RS
generates dispersed data faster than our prior AONT-RS-
based instantiation [37].

Second, we present the design and implementation of
CDStore. It adopts two-stage deduplication, which first
deduplicates data of the same user on the client side to
save upload bandwidth, and then deduplicates data of
different users on the server side to further save storage.
Two-stage deduplication works seamlessly with conver-
gent dispersal, achieves bandwidth and storage savings,
and is robust against side-channel attacks [27, 28]. We
also carefully implement CDStore to mitigate computa-
tion and I/O bottlenecks.

Finally, we thoroughly evaluate our CDStore proto-
type using both microbenchmarks and trace-driven ex-
periments. We use real-world backup and virtual im-
age workloads, and conduct evaluation on both LAN
and commercial cloud testbeds. We show that CAONT-
RS encoding achieves around 180MB/s with only two-
thread parallelization. We also identify the bottlenecks
when CDStore is deployed in a networked environment.
Furthermore, we show via cost analysis that CDStore can
achieve a monetary cost saving of 70% via deduplication
over AONT-RS-based cloud storage.

2 Secret Sharing Algorithms
We conduct a study of the state-of-the-art secret shar-
ing algorithms. A secret sharing algorithm operates by
transforming a data input called secret into a set of coded
outputs called shares, with the primary goal of providing
both fault tolerance and confidentiality guarantees for the
secret. Formally, a secret sharing algorithm is defined
based on three parameters (n, k, r): an (n, k, r) secret

sharing algorithm (where n > k > r ≥ 0) disperses a

secret into n shares such that (i) the secret can be recon-

structed from any k shares, and (ii) the secret cannot be

inferred (even partially) from any r shares.

The parameters (n, k, r) define the protection strength
of a secret sharing algorithm. Specifically, n and k de-
termine the fault tolerance degree of a secret, such that
the secret remains available as long as any k out of n

shares are accessible. In other words, it can tolerate the
loss of n − k shares. The parameter r determines the
confidentiality degree of a secret, such that the secret re-
mains confidential as long as no more than r shares are
compromised by an attacker. On the other hand, a secret
sharing algorithm makes the trade-off of incurring addi-
tional storage. We define the storage blowup as the ratio
of the total size of n shares to the size of the original se-
cret. Note that the storage blowup must be at least n

k
, as

the secret is recoverable from any k out of n shares.
Several secret sharing algorithms have been proposed

Algorithm Confidentiality
degree

Storage
blowup†

SSSS [54] r = k − 1 n

IDA [50] r = 0 n

k

RSSS [16] r ∈ [0, k − 1] n

k−r

SSMS [34] r = k − 1 n

k
+ n ·

Skey

Ssec

AONT-RS [52] r = k − 1 n

k
+ n

k
·
Skey

Ssec

† Ssec: size of a secret; Skey : size of a random key.

Table 1: Comparison of secret sharing algorithms.

in the literature. Table 1 compares them in terms of the
confidentiality degree and the storage blowup, subject to
the same n and k. Two extremes of secret sharing algo-
rithms are Shamir’s secret sharing scheme (SSSS) [54]
and Rabin’s information dispersal algorithm (IDA) [50].
SSSS achieves the highest confidentiality degree (i.e.,
r = k − 1), but its storage blowup is n (same as repli-
cation). IDA has the lowest storage blowup n

k
, but its

confidentiality degree is the weakest (i.e., r = 0), and
any share can reveal the information of the secret. Ramp
secret sharing scheme (RSSS) [16] generalizes both IDA
and SSSS to make a trade-off between the confidential-
ity degree and the storage blowup. It evenly divides a
secret into k − r pieces, and generates r additional ran-
dom pieces of the same size. It then transforms the k

pieces into n shares using IDA.
Secret sharing made short (SSMS) [34] combines IDA

and SSSS using traditional key-based encryption. It first
encrypts the secret with a random key and then disperses
the encrypted secret and the key using IDA and SSSS,
respectively. Its storage blowup is slightly higher than
that of IDA, while it has the highest confidentiality de-
gree r = k − 1 as in SSSS. Note that the confidentiality
degree is defined in the computational sense, that is, it is
computationally infeasible to break the encryption algo-
rithm without knowing the key.

AONT-RS [52] further reduces the storage blowup of
SSMS, while preserving the highest confidentiality de-
gree r = k−1 (in the computational sense). It combines
Rivest’s all-or-nothing transform (AONT) [53] for con-
fidentiality and Reed-Solomon coding [17, 51] for fault
tolerance. It first transforms the secret into an AONT
package with a random key, such that an attacker can-
not infer anything about the AONT package unless the
whole package is obtained. Specifically, it splits a secret
into a number s ≥ 1 of words, and adds an extra ca-

nary word for integrity checking. It masks each of the
s words by XOR’ing it with an index value encrypted
by a random key. The s masked words are placed at the
start of an AONT package. One more word, obtained
by XOR’ing the same random key with the hash of the
masked words, is added to the end of the AONT package.
The final AONT package is then divided into k equal-size
shares, which are encoded into n shares using a system-
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Figure 1: CDStore architecture.

atic Reed-Solomon code (a systematic code means that
the n shares include the original k shares).

The security of existing secret sharing algorithms lies
in the embedded random inputs (e.g., a random key in
AONT-RS). Due to randomness, secrets with identical
content lead to distinct sets of shares, thereby prohibiting
deduplication. This motivates CDStore, which enables
secret sharing with deduplication.

3 CDStore Design
CDStore is designed for an organization to outsource the
storage of data of a large group of users to multiple cloud
vendors. It builds on the client-server architecture, as
shown in Figure 1. Each user of the same organization
runs the CDStore client to store and access its data in
multiple clouds over the Internet. In each cloud, a co-
locating virtual machine (VM) instance owned by the
organization runs the CDStore server between multiple
CDStore clients and the cloud storage backend.

CDStore targets backup workloads. We consider a
type of backups obtained by snapshotting some applica-
tions, file systems, or virtual disk images. Backups gen-
erally have significant identical content, and this makes
deduplication useful. Field measurements on backup
workloads show that deduplication can reduce the stor-
age overhead by 10× on average, and up to 50× in some
cases [58]. In CDStore deployment, each user machine
submits a series of backup files (e.g., in UNIX tar for-
mat) to the co-located CDStore client, which then pro-
cesses the backups and uploads them to all clouds.

3.1 Goals and Assumptions
We state the design goals and assumptions of CDStore in
three aspects: reliability, security, and cost efficiency.
Reliability: CDStore tolerates failures of cloud storage
providers and even CDStore servers. Outsourced data is
accessible if a tolerable number of clouds (and their co-
locating CDStore servers) are operational. CDStore also
tolerates client-side failures by offloading metadata man-
agement to the server side (see §4.3). In the presence
of cloud failures, CDStore reconstructs original secrets
and then rebuilds the lost shares as in Reed-Solomon
codes [51]. We do not consider cost-efficient repair [29].

Security: CDStore exploits multi-cloud diversity to
ensure confidentiality and integrity of outsourced data
against outsider attacks, as long as a tolerable number
of clouds are uncompromised. Note that the confiden-
tiality guarantee requires that the secrets be drawn from
a very large message space, so that brute-force attacks
are infeasible [10]. CDStore also uses two-stage dedu-
plication (see §3.3) to avoid insider side-channel attacks
[27, 28] launched by malicious users. Here, we do not
consider strong attack models, such as Byzantine faults
in cloud services [13]. We also assume that the client-
server communication over the network is protected, so
that an attacker cannot infer the secrets by eavesdropping
the transmitted shares.
Cost efficiency: CDStore uses deduplication to reduce
both bandwidth and storage costs. It also incurs limited
overhead in computation (e.g., VM usage) and storage
(e.g., metadata). We assume that there is no billing for
the communication between a co-locating VM and the
storage backend of the same cloud, based on today’s pric-
ing models of most cloud vendors [30].

3.2 Convergent Dispersal
Convergent dispersal enables secret sharing with dedu-
plication by replacing the embedded random input with a
deterministic cryptographic hash derived from the secret.
Thus, two secrets with identical content must generate
identical shares, making deduplication possible. Also,
it is computationally infeasible to infer the hash with-
out knowing the whole secret. Our idea is inspired by
convergent encryption [24] used in traditional key-based
encryption, in which the random key is replaced by the
cryptographic hash of the data to be encrypted. Figure 2
shows the main idea of how we augment a secret sharing
algorithm with convergent dispersal.

This paper proposes a new instantiation of conver-
gent dispersal called CAONT-RS, which inherits the re-
liability and security properties of the original AONT-
RS, and makes two key modifications. First, to improve
performance, CAONT-RS replaces Rivest’s AONT [53]
with another AONT based on optimal asymmetric en-

cryption padding (OAEP) [11, 20]. The rationale is that
Rivest’s AONT performs multiple encryptions on small-
size words (see §2), while OAEP-based AONT performs
a single encryption on a large-size, constant-value block.
Also, OAEP-based AONT provably provides no worse
security than any AONT scheme [20]. Second, CAONT-
RS replaces the random key in AONT with a determin-
istic cryptographic hash derived from the secret. Thus,
it preserves content similarity in dispersed shares and al-
lows deduplication. Our prior work [37] also proposes
instantiations for RSSS [16] and AONT-RS (based on
Rivest’s AONT) [52]. Our new CAONT-RS shows faster
encoding performance than our prior AONT-RS-based
instantiation (see §5.3).
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Figure 2: Idea of convergent dispersal.

















 


 



 

Figure 3: Example of CAONT-RS with n = 4 and k = 3.

We now elaborate on the encoding and decoding of
CAONT-RS, both of which are performed by a CDStore
client. Figure 3 shows an example of CAONT-RS with
n = 4 and k = 3 (and hence r = k − 1 = 2).
Encoding: We first transform a given secret X into a
CAONT package. Specifically, we first generate a hash
key h, instead of a random key, derived from X using a
(optionally salted) hash function H (e.g., SHA-256):

h = H(X). (1)

To achieve confidentiality, we transform (X,h) into
a CAONT package (Y, t) using OAEP-based AONT,
where Y and t are the head and tail parts of the CAONT
package and have the same size as X and h, respectively.
To elaborate, Y is generated by:

Y = X ⊕G(h), (2)

where ‘⊕’ is the XOR operator and G is a generator
function that takes h as input and constructs a mask block
with the same size as X . Here, we implement the gener-
ator G as:

G(h) = E(h,C), (3)

where C is a constant-value block with the same size as
X , and E is an encryption function (e.g., AES-256) that
encrypts C using h as the encryption key.

The tail part t is generated by:

t = h⊕H(Y ). (4)

Finally, we divide the CAONT package into k equal-
size shares (we pad zeroes to the secret if necessary to
ensure that the CAONT package can be evenly divided).
We encode them into n shares using the systematic Reed-
Solomon codes [17, 46, 47, 51].

To enable deduplication, we ensure that the same share
is located in the same cloud. Since the number of clouds
for multi-cloud storage is usually small, we simply dis-
perse shares to all clouds. Suppose that CDStore spans
n clouds, which we label 0, 1, · · · , n − 1. After encod-
ing each secret using convergent dispersal, we label the
n generated shares 0, 1, · · · , n − 1 in the order of their
positions in the Reed-Solomon encoding result, such that
share i is to be stored on cloud i, where 0 ≤ i ≤ n − 1.

This ensures that the same cloud always receives the
same share from the secrets with identical content, ei-
ther generated by the same user or different users. This
also enables us to easily locate the shares during restore.
Decoding: To recover the secret, we retrieve any k out of
n shares and use them to reconstruct the original CAONT
package (Y, t). Then we deduce hash h by XOR’ing t

with H(Y ) (see Equation (4)). Finally, we deduce secret
X by XOR’ing Y with G(h) (see Equation (2)), and re-
move any padded zeroes introduced in encoding.

We can also verify the integrity of the deduced secret
X . We simply generate a hash value from the deduced
X as in Equation (1) and compare if it matches h. If the
match fails, then the decoded secret is considered to be
corrupted. To obtain a correct secret, we can follow a
brute-force approach, in which we try a different subset
of k shares until the secret is correctly decoded [19].
Remarks: We briefly discuss the security properties of
CAONT-RS. CAONT-RS ensures confidentiality against
outsider attacks, provided that an attacker cannot gain
unauthorized accesses to k out of n clouds, and ensures
integrity through the embedded hash in each secret. It
leverages AONT to ensure that no information of the
original secret can be inferred from fewer than k shares.
We note that an attacker can identify the deduplication
status of the shares of different users and perform brute-
force dictionary attacks [9, 10] inside the clouds, and we
require that the secrets be drawn from a large message
space (see §3.1). To mitigate brute-force attacks, we may
replace the hash key in CAONT-RS with a more sophisti-
cated key generated by a key server [9], with the trade-off
of introducing the key management overhead.

3.3 Two-Stage Deduplication

We first overview how deduplication works. Deduplica-
tion divides data into fixed-size or variable-size chunks.
This work assumes variable-size chunking, which de-
fines boundaries based on content and is robust to con-
tent shifting. Each chunk is uniquely identified by a fin-

gerprint computed by a cryptographic hash of the chunk
content. Two chunks are said to be identical if their fin-
gerprints are the same, and fingerprint collisions of two
different chunks are very unlikely in practice [15]. Dedu-
plication stores only one copy of a chunk, and refers any
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duplicate chunks to the copy via small-size references.
To realize deduplication in cloud storage, a naı̈ve ap-

proach is to perform global deduplication on the client
side. Specifically, before a user uploads data to a cloud,
it first generates fingerprints of the data. It then checks
with the cloud by fingerprint for the existence of any du-
plicate data that has been uploaded by any user. Finally,
it uploads only the unique data to the cloud. Although
client-side global deduplication saves upload bandwidth
and storage overhead, it is susceptible to side-channel

attacks [27, 28]. One side-channel attack is to infer the
existence of data of other users [28]. Specifically, an at-
tacker generates the fingerprints of some possible data of
other users and queries the cloud by fingerprint if such
data is unique and needs to be uploaded. If no upload
is needed, then the attacker infers that other users own
the data. Another side-channel attack is to gain unautho-
rized access to data of other users [27]. Specifically, an
attacker uses the fingerprints of some sensitive data of
other users to convince the cloud of the data ownership.

To prevent side-channel attacks, CDStore adopts two-

stage deduplication, which eliminates duplicates first on
the client side and then on the server side. We require
that each CDStore server maintains a deduplication in-
dex that keeps track of which shares have been stored by
each user and how shares are deduplicated (see imple-
mentation details in §4.4). Then the two deduplication
stages are implemented as follows.
Intra-user deduplication: A CDStore client first runs
deduplication only on the data owned by the same user,
and uploads the unique data of the user to the cloud.
Before uploading shares to a cloud, the CDStore client
first checks with the CDStore server by fingerprint if it
has already uploaded the same shares. Specifically, the
CDStore client first sends the fingerprints generated from
the shares to the CDStore server. The CDStore server
then looks up its deduplication index, and replies to the
CDStore client a list of share identifiers that indicate
which shares have been uploaded by the CDStore client.
Finally, the CDStore client uploads only unique shares to
the cloud based on the list.
Inter-user deduplication: A CDStore server runs dedu-
plication on the data of all users and stores the glob-
ally unique data in the cloud storage backend. After the
CDStore server receives shares from the CDStore client,
it generates a fingerprint from each share (instead of us-
ing the one generated by the CDStore client for intra-
user deduplication), and checks if the share has already
been stored by other users by looking up the dedupli-
cation index. It stores only the unique shares that are
not yet stored at the cloud backend. It also updates the
deduplication index to keep track of which user owns the
shares. Here, we cannot directly use the fingerprint gen-
erated by the CDStore client for intra-user deduplication.

Otherwise, an attacker can launch a side-channel attack,
by using the fingerprint of a share of other users to gain
unauthorized access to the share [27, 43].
Remarks: Two-stage deduplication prevents side-
channel attacks by making deduplication patterns inde-
pendent across users’ uploads. Thus, a malicious insider
cannot infer the data content of other users through dedu-
plication occurrences.

Both intra-user and inter-user deduplications effec-
tively remove duplicates. Intra-user deduplication elimi-
nates duplicates of the same user’s data. This is effective
for backup workloads, since the same user often makes
repeated backups of the same data as different versions
[32]. Inter-user deduplication further removes duplicates
of multiple users. For example, multiple users within the
same organization may share a large proportion of busi-
ness files. Some workloads exhibit large proportions of
duplicates across different users’ data, such as VM im-
ages [31], workstation file system snapshots [42], and
backups [58]. The removal of duplicates translates to
cost savings (see §5.6).

4 CDStore Implementation
We present the implementation details of CDStore. Our
CDStore prototype is written in C++ on Linux. We
use OpenSSL [4] to implement cryptographic opera-
tions: AES-256 and SHA-256 for the encryption and
hash algorithms of convergent dispersal, respectively,
and SHA-256 for fingerprints in deduplication. We use
GF-Complete [48] to accelerate Galois Field arithmetic
in the Reed-Solomon coding of CAONT-RS.

4.1 Architectural Overview
We follow a modular approach to implement CDStore,
whose client and server architectures are shown in Fig-
ure 4. During file uploads, a CDStore client splits the
file into a sequence of secrets via the chunking module.
It then encodes each secret into n shares via the cod-

ing module. It performs intra-user deduplication, and up-
loads unique shares to the CDStore servers in n different
clouds via both client-side and server-side communica-

tion modules. To reduce network I/Os, we avoid sending
many small-size shares over the Internet. Instead, we first
batch the shares to be uploaded to each cloud in a 4MB
buffer and upload the buffer when it is full. Upon receiv-
ing the shares, each CDStore server performs inter-user
deduplication via the deduplication module and updates
the deduplication metadata via the index module. Finally,
it packs the unique shares as containers and writes the
containers to the cloud storage backend through the in-
ternal network via the container module.

File downloads work in the reverse way. A CDStore
client connects to any k clouds to request to download
a file. Each CDStore server retrieves the corresponding
containers and metadata, and returns all required shares



116 2015 USENIX Annual Technical Conference USENIX Association

  


(a) CDStore client










 


(b) CDStore server

Figure 4: Implementation of the CDStore architecture.

and file metadata. The CDStore client decodes the se-
crets and assembles the secrets back to the file.

4.2 Chunking
We implement both fixed-size chunking and variable-
size chunking in the chunking module of a CDStore
client, and enable variable-size chunking by default. To
make deduplication effective, the size of each secret
should be on the order of kilobytes (e.g., 8KB [62]). We
implement variable-size chunking based on Rabin finger-
printing [49], in which the average, minimum, and max-
imum secret (chunk) sizes are configured at 8KB, 2KB,
and 16KB, respectively.

4.3 Metadata Offloading
One important reliability requirement is to tolerate
client-side failures, as we expect that a CDStore client
is deployed in commodity hardware. Thus, our current
implementation makes CDStore servers keep and man-
age all metadata on behalf of CDStore clients.

When uploading a file, a CDStore client collects two
types of metadata. First, after chunking, it collects file

metadata for the upload file, including the full pathname,
file size, and number of secrets. Second, after encoding
a secret into shares, it collects share metadata for each
share, including the share size, fingerprint of the share
(for intra-user deduplication), sequence number of the
input secret, and secret size (for removing padded zeroes
when decoding the original secret).

The CDStore client uploads the file and share metadata
to the CDStore servers along with the uploaded file. The
metadata will serve as input for each CDStore server to
maintain index information (see §4.4).

We distribute metadata across all CDStore servers for
reliability. For non-sensitive information (e.g., the size
and sequence number of each secret), we can simply
replicate it, so that each CDStore server can directly use
it to manage data transfer and deduplication. However,
for sensitive information (e.g., a file’s full pathname), we
encode and disperse it via secret sharing.

4.4 Index Management
Each CDStore server uses the metadata from CDStore
clients to generate index information of the uploaded

files and keep it in the index module. There are two types
of index structures: the file index and the share index.

The file index holds the entries for all files uploaded
by different users. Each entry describes a file, identi-
fied by the full pathname (which has been encoded as
described in §4.3) and the user identifier provided by a
CDStore client. We hash the full pathname and the user
identifier to obtain a unique key for the entry. The entry
stores a reference to the file recipe, which describes the
complete details of the file, including the fingerprint of
each share (for retrieving the share) and the size of the
corresponding secret (for decoding the original secret).
The file recipe will be saved at the cloud backend by the
container module (see §4.5).

The share index holds the entries for all unique shares
of different files. Each entry describes a share, and is
keyed by the share fingerprint. It stores the reference
to the container that holds the share. To support intra-
user deduplication, each entry also holds a list of user
identifiers to distinguish who owns the share, as well as
a reference count for each user to support deletion.

Our prototype manages file and share indices using
LevelDB [26], an open-source key-value store. Lev-
elDB maintains key-value pairs in a log-structured merge
(LSM) tree [44], which supports fast random inserts, up-
dates, and deletes, and uses a Bloom filter [18] and a
block cache to speed up lookups. We can also leverage
the snapshot feature provided by LevelDB to store peri-
odic snapshots in the cloud backend for reliability. We
currently do not consider this feature in our evaluation.

4.5 Container Management
The container module maintains two types of contain-
ers in the storage backend: share containers, which hold
the globally unique shares, and recipe containers, which
hold the file recipes of different files. We cap the con-
tainer size at 4MB, except that if a file recipe is very
large (due to a particularly large file), we keep the file
recipe in a single container and allow the container to go
beyond 4MB. We avoid splitting a file recipe in multiple
containers to reduce I/Os.

We make two optimizations to reduce the I/O overhead
of storing and fetching the containers via the storage
backend. First, we maintain in-memory buffers for hold-
ing shares and file recipes before writing them into con-
tainers. We organize the shares or file recipes by users,
so that each container contains only the data of a single
user. This retains spatial locality of workloads [62]. Sec-
ond, we maintain a least-recently-used (LRU) disk cache
to hold the most recently accessed containers to reduce
I/Os to the storage backend.

4.6 Multi-Threading
Advances of multi-core architectures enable us to ex-
ploit multi-threading for parallelization. First, the client-
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side coding module uses multi-threading for the CPU-
intensive encoding/decoding operations of CAONT-RS.
We parallelize encoding/decoding at the secret level: in
file uploads, we pass each secret output from the chunk-
ing module to one of the threads for encoding; in file
downloads, we pass the shares of a secret received by the
communication module to a thread for decoding.

Furthermore, both client-side and server-side commu-
nication modules use multi-threading to fully utilize the
network transfer bandwidth. The client-side communica-
tion module creates multiple threads, one for each cloud,
to upload/download shares. The server-side communi-
cation module also uses multiple threads to send/receive
shares for different CDStore clients.

4.7 Open Issues
Our current CDStore prototype implements the basic
backup and restore operations. We discuss some open
implementation issues.
Storage efficiency: We can reclaim more storage space
via different techniques in addition to deduplication. For
example, garbage collection can reclaim space of ex-
pired backups. By exploiting historical information, we
can accelerate garbage collection in deduplication stor-
age [25]. Compression also effectively reduces storage
space of both data [58] and metadata (e.g., file recipes
[41]). Implementations of garbage collection and com-
pression are posed as future work.
Scalability: We currently deploy one CDStore server per
cloud. In large-scale deployment, we can run CDStore
servers on multiple VMs per cloud and evenly distribute
user backup jobs among them for load balance. Imple-
menting a distributed deduplication system is beyond the
scope of this paper.
Consistency: Our prototype is tailored for backup work-
loads that are immutable. We do not address consistency
issues due to concurrent updates as mentioned in [13].

5 Evaluation
We evaluate CDStore under different testbeds and work-
loads. We also analyze its monetary cost advantages.

5.1 Testbeds
We consider three types of testbeds in our evaluation.

(i) Local machines: We use two machines: Local-

Xeon, which has a quad-core 2.4GHz Intel Xeon E5530
and 16GB RAM, and Local-i5, which has a quad-core
3.4GHz Intel Core i5-3570 and 8GB RAM. Both ma-
chines run 64-bit Ubuntu 12.04.2 LTS. We use them to
evaluate the encoding performance of CDStore clients.

(ii) LAN: We configure a LAN of multiple machines
with the same configuration as Local-i5. All nodes are
connected via a 1Gb/s switch. We run CDStore clients
and servers on different machines. Each CDStore server
mounts the storage backend on a local 7200RPM SATA

hard disk. We use the LAN testbed to evaluate the data
transfer performance of CDStore.

(iii) Cloud: We deploy a CDStore client on the Local-
Xeon machine (in Hong Kong) and connect it via the In-
ternet to four commercial clouds (i.e., n = 4): Ama-
zon (in Singapore), Google (in Singapore), Azure (in
Hong Kong), and Rackspace (in Hong Kong). We set up
the testbed in the same continent to limit the differences
among the client-to-server connection bandwidths. Each
cloud runs a VM with similar configurations: four CPU
cores and 4∼15GB RAM. We use the cloud testbed to
evaluate the real deployment performance of CDStore.

5.2 Datasets
We use two real-world datasets to drive our evaluation.

(i) FSL: This dataset is published by the File systems
and Storage Lab (FSL) at Stony Brook University [3,57].
Due to the large dataset size, we use the Fslhomes

dataset in 2013, containing daily snapshots of nine stu-
dents’ home directories from a shared network file sys-
tem. We select the snapshots every seven days (which are
not continuous) to mimic weekly backups. The dataset is
represented in 48-bit chunk fingerprints and correspond-
ing chunk sizes obtained from variable-size chunking.
Our filtered FSL dataset contains 16 weekly backups of
all nine users, covering a total of 8.11TB of data.

(ii) VM: This dataset is collected by ourselves and
is unpublished. It consists of weekly snapshots of 156
VM images for students in a university programming
course in Spring 2014. We create a 10GB master image
with Ubuntu 12.04.2 LTS and clone all VMs. We treat
each VM image snapshot as a weekly backup of a user.
The dataset is represented in SHA-1 fingerprints on 4KB
fixed-size chunks. It spans 16 weeks, totaling 24.38TB
of data. For fair comparisons, we remove all zero-filled
chunks (which dominate in VM images [31]) from the
dataset, and the size reduces to 11.12TB.

5.3 Encoding Performance
We evaluate the computational overhead of CAONT-
RS when encoding secrets into shares. We compare
CAONT-RS with two variants: (i) AONT-RS [52], which
builds on Rivest’s AONT [53] and does not support dedu-
plication, and (ii) our prior proposal CAONT-RS-Rivest

[37], which uses Rivest’s AONT as in AONT-RS and
replaces the random key in AONT-RS with a SHA-256
hash for convergent dispersal. CAONT-RS uses OAEP-
based AONT instead (see §3.2).

We conduct our experiments on the Local-Xeon and
Local-i5 machines. We create 2GB of random data in
memory (to remove I/O overhead), generate secrets using
variable-size chunking with an average chunk size 8KB,
and encode them into shares. We measure the encoding

speed, defined as the ratio of the original data size to the
total time of encoding all secrets into shares. Our results
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(a) Varying number of threads

    





 












    




  

(b) Varying n

Figure 5: Encoding speeds of a CDStore client.

are averaged over 10 runs. We observe similar results for
decoding, and omit them here.

We first examine the benefits of multi-threading (see
§4.6). Figure 5(a) shows the encoding speeds versus the
number of threads, while we fix (n, k) = (4, 3). The
encoding speeds of all schemes increase with the num-
ber of threads. If two encoding threads are used, the
encoding speeds of CAONT-RS are 83MB/s on Local-
Xeon and 183MB/s on Local-i5. Also, OAEP-based
AONT in CAONT-RS brings remarkable performance
gains. Compared to CAONT-RS-Rivest, which performs
encryptions on small words based on Rivest’s AONT,
CAONT-RS improves the encoding speed by 40∼61%
on Local-Xeon and 54∼61% on Local-i5; even though
compared to AONT-RS, which uses one fewer hash op-
eration, CAONT-RS still increases the encoding speed by
12∼35% on Local-Xeon and 19∼27% on Local-i5.

We next evaluate the impact of n (number of clouds).
We vary n from 4 to 20, and fix two encoding threads.
We configure k as the largest integer that satisfies k

n
≤

3

4

(e.g., n = 4 implies k = 3), so as to maintain a similar
storage blowup due to secret sharing. Figure 5(b) shows
the encoding speeds versus n. The encoding speeds of
all schemes slightly decrease with n (e.g., by 8% from
n = 4 to 20 for CAONT-RS on Local-i5), since more
encoded shares are generated via Reed-Solomon codes
for a larger n. However, Reed-Solomon coding only
accounts for small overhead compared to AONT, which
runs cryptographic operations. We have also tested other
ratios of k

n
and obtained similar speed results.

The above results only report encoding speeds, while
a CDStore client performs both chunking and encod-
ing operations when uploading data to multiple clouds.
We measure the combined chunking (using variable-size

     



















     








(a) Intra-user and inter-user deduplication savings

     




 













     







(b) Cumulative data and share sizes when (n, k) = (4, 3)

Figure 6: Deduplication efficiency of CDStore.

chunking) and encoding speeds with (n, k) = (4, 3) and
two encoding threads, and find that the combined speeds
drop by around 16%, to 69MB/s on Local-Xeon and
154MB/s on Local-i5.

5.4 Deduplication Efficiency

We evaluate the effectiveness of both intra-user and inter-
user deduplications (see §3.3). We extract the deduplica-
tion characteristics of both datasets, assuming that they
are stored as weekly backups. We define four types of
data: (i) logical data, the original user data to be encoded
into shares, (ii) logical shares, the shares before two-
stage deduplication, (iii) transferred shares, the shares
that are transferred over Internet after intra-user dedupli-
cation, and (iv) physical shares, the shares that are finally
stored after two-stage deduplication. We also define two
metrics: (i) intra-user deduplication saving, which is one
minus the ratio of the size of the transferred shares to
that of the logical shares, and (ii) inter-user deduplica-

tion saving, which is one minus the ratio of the size of
the physical shares to that of the transferred shares. We
fix (n, k) = (4, 3). Figure 6 summarizes the results.

Figure 6(a) first shows the intra-user and inter-user
deduplication savings. The intra-user deduplication sav-
ings are very high for both datasets, especially in subse-
quent backups after the first week (at least 94.2% for FSL
and at least 98.0% for VM). The reason is that the users
only modify or add a small portion of data. The sav-
ings translate to performance gains in file uploads (see
§5.5). However, the inter-user deduplication savings dif-
fer across datasets. For the FSL dataset, the savings fall
to no more than 12.9%. In contrast, for the VM dataset,
the saving for the first backup reaches 93.4%, mainly be-
cause the VM images are initially installed with the same
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operating system. The savings for subsequent backups
then drop to the range between 11.8% and 47.0%. Nev-
ertheless, the VM dataset shows higher savings for sub-
sequent backups than the FSL dataset; we conjecture the
reason is that students make similar changes to the VM
images when doing programming assignments.

Figure 6(b) then shows cumulative data and share sizes
before and after intra-user and inter-user deduplications.
After 16 weekly backups, for the FSL dataset, the total
size of physical shares is only 0.51TB, about 6.3% of the
logical data size; for the VM dataset, the total size of
physical shares is only 0.09TB, about 0.8% of the logi-
cal data size. This shows that dispersal-level redundancy
(i.e., n

k
= 4

3
) is significantly offset by removing content-

level redundancy via two-stage deduplication. Also, if
we compare the sizes of transferred shares and physical
shares for the VM dataset, we see that inter-user dedupli-
cation is crucial for reducing storage space.

5.5 Transfer Speeds
Single-client baseline transfer speeds: We first evalu-
ate the baseline transfer speed of a CDStore client us-
ing both LAN and cloud testbeds. Each testbed has one
CDStore client and four CDStore servers with (n, k) =
(4, 3). We first upload 2GB of unique data (i.e., no dupli-
cates), then upload another 2GB of duplicate data iden-
tical to the previous one, and finally download the 2GB
data from three CDStore servers (for the cloud testbed,
we choose Google, Azure, and Rackspace for down-
loads). We measure the upload and download speeds,
averaged over 10 runs.

Figure 7(a) presents the results. On the LAN testbed,
the upload speed for unique data is 77MB/s. Our mea-
surements find that the effective network speed in our
LAN testbed is around 110MB/s. Thus, the upload speed
for unique data is close to k

n
of the effective network

speed. Uploading duplicate data has speed 150MB/s.
Since it does not transfer actual data after intra-user
deduplication, the performance is bounded by the chunk-
ing and CAONT-RS encoding operations (see §5.3). The
download speed is 99MB/s, about 10% less than the ef-
fective network speed. The reason is that the CDStore
servers need to retrieve data from the disk backend be-
fore returning it to the CDStore client.

On the cloud testbed, the upload and download per-
formance is limited by the Internet bandwidth. For ref-
erences, we measure the upload and download speeds
of each individual cloud when transferring 2GB of
unique data divided in 4MB units (see §4.1), and Ta-
ble 2 presents the averaged results over 10 runs. Since
CDStore transfers data through multiple clouds in paral-
lel via multi-threading, its upload speed of unique data
and download speed are higher than those of individual
clouds (e.g., Amazon and Google). The upload speed for
unique data is smaller than the download speed because

Cloud Upload speed Download speed

Amazon 5.87 (0.19) 4.45 (0.30)
Google 4.99 (0.23) 4.45 (0.21)
Azure 19.59 (1.20) 13.78 (0.72)

Rackspace 19.42 (1.06) 12.93 (1.47)

Table 2: Measured speeds (MB/s) of each of four clouds,
in terms of the average (standard deviation) over 10 runs.

of sending redundancy and connecting to more clouds.
The upload speed for duplicate data is over 9× that for
unique data, and this difference is more significant than
on the LAN testbed.
Single-client trace-driven transfer speeds: We now
evaluate the upload and download speeds of a single
CDStore client using datasets as opposed to unique and
duplicate data above. We focus on the FSL dataset,
which allows us to test the effect of variable-size chunk-
ing. We again consider both LAN and cloud testbeds
with (n, k) = (4, 3). Since the FSL dataset only has
chunk fingerprints and chunk sizes, we reconstruct a
chunk by writing the fingerprint value repeatedly to a
chunk with the specified size, so as to preserve content
similarity. Each chunk is treated as a secret, which will
be encoded into shares. We first upload all backups to
CDStore servers, followed by downloading them. To re-
duce evaluation time, we only run part of the dataset. On
the LAN testbed, we run seven weekly backups for five
users (1.06TB data in total). We feed the first week of
backups of each user one by one through the CDStore
client, followed by the second week of backups, and so
on. On the other hand, on the cloud testbed, we run two
weekly backups for a single user (21.35GB data in total).

Figure 7(b) presents three results: (i) the average up-
load speed for the first backup (averaged over five users
for the LAN testbed), (ii) the average upload speed for
the subsequent backups, and (iii) the average download
speed of all backups. The presented results are obtained
from a single run, yet the evaluation time is long enough
to give steady-state results. We compare the results with
those for unique and duplicate data in Figure 7(a).

We see that the upload speed for the first backup ex-
ceeds that for unique data (e.g., by 19% on the LAN
testbed), mainly because the first backup contains dupli-
cates, which can be removed by intra-user deduplication
(see Figure 6(a)). The upload speed for the subsequent
backups approximates to that for duplicate data, as most
duplicates are again removed by intra-user deduplication.

The trace-driven download speed is lower than the
baseline one in Figure 7(a) (e.g., by 10% on the LAN
testbed), since deduplication now introduces chunk frag-
mentation [38] for subsequent backups. Nevertheless,
we find that the variance of the download speeds of the
backups is very small (not shown in the figure), although
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(a) Baseline results




















 









 




(b) Trace-driven results

Figure 7: Upload and download speeds of a CDStore client (the numbers are
the speeds in MB/s).

       




















 

Figure 8: Aggregate upload speeds
of multiple CDStore clients.

the number of accessed containers increases for subse-
quent backups. The download speed will gradually de-
grade due to fragmentation as we store more backups.
We do not explicitly address fragmentation in this work.
Multi-client aggregate upload speeds: We evaluate the
aggregate upload speed when multiple CDStore clients
connect to multiple CDStore servers. We mainly con-
sider data uploads on the LAN testbed, in which we vary
the number of CDStore clients, each hosted on a dedi-
cated machine, and configure four CDStore servers with
(n, k) = (4, 3). All CDStore clients perform uploads
concurrently, such that each of them first uploads 2GB
of unique data, and then uploads another 2GB of dupli-
cate data. We measure the aggregate upload speed, de-
fined as the total upload size (i.e., 2GB times the number
of clients) divided by the duration when all clients finish
uploads. Our results are averaged over 10 runs.

Figure 8 presents the aggregate upload speeds for
both unique and duplicate data, which we observe in-
crease with the number of CDStore clients. For unique
data, the aggregate upload speed reaches 282MB/s for
eight CDStore clients. The speed is limited by the net-
work bandwidth and disk I/O, where the latter is for the
CDStore servers to write containers to disk. If we ex-
clude disk I/O (i.e., without writing data), the aggregate
upload speed can reach 310MB/s (not shown in the fig-
ure), which approximates to the aggregate effective Eth-
ernet speed of k = 3 CDStore servers. For duplicate
data, there is no actual data transfer, so the aggregate up-
load speed can reach 572MB/s. Note that the knee point
at four CDStore clients is due to the saturation of CPU
resources in each CDStore server.

5.6 Cost Analysis

We now analyze the cost saving of CDStore. We com-
pare it with two baseline systems: (i) an AONT-RS-based
multi-cloud system that has the same levels of reliability
and security as CDStore but does not support deduplica-
tion, and (ii) a single-cloud system that incurs zero re-
dundancy for reliability, but encrypts user data with ran-
dom keys and does not support deduplication. We aim
to show that CDStore incurs less cost than AONT-RS
through deduplication; even though CDStore incurs re-
dundancy for reliability, it still incurs less cost than the

single-cloud system without deduplication.
We develop a tool to estimate the monetary costs us-

ing the pricing models of Amazon EC2 [1] and S3 [2]
in September 2014. Free charges apply to data trans-
fers between co-locating EC2 instances and S3 storage,
and also inbound transfers to both EC2 and S3. We only
study backup operations, and do not consider restore op-
erations as they are relatively infrequent in practice. Note
that both EC2 and S3 follow tiered pricing, so the exact
charges depend on the actual usage. Our tool takes into
account tiered pricing in cost calculations. For CDStore,
we also consider the storage costs of file recipes.

We briefly describe how we derive the EC2 and S3
costs. For EC2, we consider the category of high-
utilization reserved instances, which are priced based on
an upfront fee and hourly bills. We focus on two types
of instances, namely compute-optimized and storage-
optimized, to host CDStore servers on all clouds. Each
instance charges around US$60∼1,300 per month, de-
pending on the CPU, memory, and storage settings. Note
that both file and share indices (see §4.4) are kept in the
local storage of an EC2 instance, and the total index size
is determined by how much data is stored and how much
data can be deduplicated. Our tool chooses the cheap-
est instance that can keep the entire indices according
to the storage size and deduplication efficiency, both of
which can be estimated in practice. On the other hand,
S3 storage is mainly priced based on storage size, and
it charges around US$30 per TB per month. Note that
in backup operations, the costs due to outbound transfer
(e.g., a CDStore server replies the intra-user deduplica-
tion status to a CDStore client) and storage requests (e.g.,
PUT) are negligible compared to VM and storage costs.

We consider a case study. An organization schedules
weekly backups for its user data, for a retention time
of half a year (26 weeks). We fix (n, k) = (4, 3) (i.e.,
we host four EC2 instances for CDStore servers). We
vary the weekly backup size and the deduplication ratio,
where the latter is defined as the ratio of the size of logi-
cal shares to the size of physical shares (see §5.4).

Figure 9(a) shows the cost savings of CDStore ver-
sus different weekly backup sizes, while we fix the
deduplication ratio as 10× [58]. The cost savings in-
crease with the weekly backup size. For example, if we
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(a) Varying weekly backup size

     





















(b) Varying deduplication ratio

Figure 9: Cost savings of CDStore over an AONT-RS-
based multi-cloud system and a single-cloud system.

keep a weekly backup size of 16TB, the single-cloud
and AONT-RS-based systems incur total storage costs
(with tiered pricing) of around US$12,250/month and
US$16,400/month, respectively; CDStore incurs addi-
tional VM costs of around US$660/month but reduces
the storage cost to around US$2,880/month, resulting in
around US$3,540/month in total and thus achieving at
least 70% of cost savings as a whole. The cost saving of
CDStore over AONT-RS is higher than that over a sin-
gle cloud, as the former introduces dispersal-level redun-
dancy for fault tolerance. The increase slows down as the
weekly backup size further increases, since the overhead
of file recipes becomes significant when the total backup
size is large while the backups have a high deduplica-
tion ratio [41]. Note that the jagged curves are due to the
switch of the cheapest EC2 instance to fit the indices.

Figure 9(b) shows the cost savings of CDStore versus
different deduplication ratios, where the weekly backup
size is fixed at 16TB. The cost saving increases with the
deduplication ratio. The saving is about 70∼80% when
the deduplication ratio is between 10× and 50×.

6 Related Work
Multi-cloud storage: Existing multi-cloud storage sys-
tems mainly focus on data availability in the presence of
cloud failures and vendor lock-ins. For example, Safe-
Store [33], RACS [5], Scalia [45], and NCCloud [29] dis-
perse redundancy across multiple clouds using RAID or
erasure coding. Some multi-cloud systems additionally
address security. HAIL [19] proposes proof of retriev-
ability to support remote integrity checking against data
corruptions. MetaStorage [12] and SPANStore [60] pro-
vide both availability and integrity guarantees by repli-
cating data across multiple clouds using quorum tech-
niques [39], but do not address confidentiality. Hy-
bris [23] achieves confidentiality by dispersing encrypted
data over multiple public clouds via erasure coding and
keeping secret keys in a private cloud.
Applications of secret sharing: We discuss several se-
cret sharing algorithms in §2. They have been real-
ized by storage systems. POTSHARDS [56] realizes
Shamir’s scheme [54] for archival storage. ICStore
[21] achieves confidentiality via key-based encryption,

where the keys are distributed across multiple clouds via
Shamir’s scheme. DepSky [13] and SCFS [14] distribute
keys across clouds using SSMS [34]. Cleversafe [52]
uses AONT-RS to achieve security with reduced storage
space. All the above systems rely on random inputs to
secret sharing, and do not address deduplication.
Deduplication security: Convergent encryption [24]
provides confidentiality guarantees for deduplication
storage, and has been adopted in various storage sys-
tems [6, 7, 22, 55, 59]. However, the key management
overheads of convergent encryption are significant [36].
Bellare et al. [10] generalize convergent encryption into
Message-locked encryption (MLE) and provide formal
security analysis on confidentiality and tag consistency.
The same authors also prototype a server-aided MLE
system DupLESS [9], which uses more complicated en-
cryption keys to prevent brute-force attacks. DupLESS
maintains the keys in a dedicated key server, yet the key
server is a single point of failure.

Client-side inter-user deduplication poses new secu-
rity threats, including the side-channel attack [27,28] and
some specific attacks against Dropbox [43]. CDStore ad-
dresses this problem through two-stage deduplication. A
previous work [61] proposes a similar two-stage dedu-
plication approach (i.e., inner-VM and cross-VM dedu-
plications) to reduce system resources for VM backups,
while our approach is mainly to address security.

7 Conclusions
We propose a multi-cloud storage system called CDStore
for organizations to outsource backup and archival stor-
age to public cloud vendors, with three goals in mind:
reliability, security, and cost efficiency. The core de-
sign of CDStore is convergent dispersal, which aug-
ments secret sharing with the deduplication capabil-
ity. CDStore also adopts two-stage deduplication to
achieve bandwidth and storage savings and prevent side-
channel attacks. We extensively evaluate CDStore via
different testbeds and datasets from both performance
and cost perspectives. We demonstrate that dedupli-
cation enables CDStore to achieve cost savings. The
source code of our CDStore prototype is available at
http://ansrlab.cse.cuhk.edu.hk/software/cdstore.

Acknowledgments
We would like to thank our shepherd, Fred Douglis,
and the anonymous reviewers for their valuable com-
ments. This work was supported in part by grants ECS
CUHK419212 and GRF CUHK413813 from HKRGC.

References
[1] Amazon EC2. http://aws.amazon.com/

ec2/, 2014.



122 2015 USENIX Annual Technical Conference USENIX Association

[2] Amazon S3. http://aws.amazon.com/s3/,
2014.

[3] FSL traces and snapshots public archive. http:

//tracer.filesystems.org/, 2014.

[4] OpenSSL Project. http://www.openssl.

org, 2014.

[5] H. Abu-Libdeh, L. Princehouse, and H. Weather-
spoon. RACS: A case for cloud storage diversity. In
Proceedings of the 1st ACM Symposium on Cloud

Computing (SoCC ’10), pages 229–240, Indianapo-
lis, IN, June 2010.

[6] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. FARSITE: Fed-
erated, available, and reliable storage for an incom-
pletely trusted environment. In Proceedings of the

5th Symposium on Operating Systems Design and

Implementation (OSDI ’02), pages 1–14, Boston,
MA, Dec. 2002.

[7] P. Anderson and L. Zhang. Fast and secure lap-
top backups with encrypted de-duplication. In Pro-

ceedings of the 24th Large Installation System Ad-

ministration Conference (LISA ’10), pages 1–12,
San Jose, CA, Nov. 2010.

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaha. A view of
cloud computing. Communications of the ACM,
53(4):50–58, Apr. 2010.

[9] M. Bellare, S. Keelveedhi, and T. Ristenpart. Du-
pLESS: Server-aided encryption for deduplicated
storage. In Proceedings of the 22nd USENIX Se-

curity Symposium (Security ’13), pages 179–194,
Washington, DC, Aug. 2013.

[10] M. Bellare, S. Keelveedhi, and T. Ristenpart.
Message-locked encryption and secure deduplica-
tion. In Proceedings of the 32nd Annual Interna-

tional Conference on the Theory and Applications

of Cryptographic Techniques (EUROCRYPT ’13),
pages 296–312, Athens, Greece, May 2013.

[11] M. Bellare and P. Rogaway. Optimal asymmetric
encryption. In Proceedings of the 1994 Workshop

on the Theory and Application of Cryptographic

Techniques (EUROCRYPT ’94), pages 92–111, Pe-
rugia, Italy, May 1994.

[12] D. Bermbach, M. Klems, S. Tai, and M. Menzel.
MetaStorage: A federated cloud storage system to
manage consistency-latency tradeoffs. In Proceed-

ings of the 2011 IEEE 4th International Conference

on Cloud Computing (CLOUD ’11), pages 452–
459, Washington, DC, July 2011.

[13] A. Bessani, M. Correia, B. Quaresma, F. André,
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Abstract
Peripherals fail. Yet, modern embedded systems

largely leave the burden of tolerating peripheral fail-
ures to the programmer. This paper presents Phoenix, a
semi-automated peripheral recovery system for resource-
constrained embedded systems. Phoenix introduces
lightweight checkpointing mechanisms that transpar-
ently track both the internal program state and the exter-
nal peripheral state. These mechanisms enable rollback
to the precise point at which any failed peripheral access
occurred using as little as 6 KB of memory, minimizing
both recovery latency and memory utilization.

1 Introduction
Embedded systems drive the modern world, controlling
devices all around us from toasters to automobiles. Due
to resource constraints, these systems are typically pro-
grammed in low-level languages, with the application
developer manually managing system resources. To in-
crease programmer productivity, managed run-time sys-
tems are gaining popularity within the domain of embed-
ded systems [1, 2, 3, 4]. Run-time systems ease the bur-
den on the programmer by automating resource manage-
ment and supporting high-level programming languages.
The small amount of execution variability that these run-
time systems introduce can be tolerated, in order to gain
productivity, by many of the soft real-time workloads
that are prevalent in modern embedded systems.

Embedded systems are typically event-driven, inter-
acting with the real world by reading sensors, making
decisions, and controlling actuators. Since these systems
impact their environment, failures can have real-world
consequences. Microcontrollers often have built-in sup-
port for reliability [19, 31], and could implement addi-
tional known processor reliability techniques [5, 41, 43].
However, the sensors and actuators at the heart of these
systems are extremely susceptible to failures [9, 20]. De-
spite this, techniques for fault tolerance in embedded sys-
tems primarily focus on handling microcontroller fail-

ures [8, 22, 46, 48, 50], leaving management of periph-
eral failures entirely to the programmer.

This is a complex task for the programmer, as periph-
erals can fail asynchronously. The programmer would
have to anticipate all possible scenarios and determine
how to correctly restore the system state after an arbitrary
number of instructions and peripheral accesses have ex-
ecuted. Such an application would be difficult to write
and even harder to test, and still might have problems if
peripherals fail at unanticipated and inopportune times.
Therefore, it is crucial to develop mechanisms to facili-
tate recovery from peripheral failures.

These mechanisms should be largely transparent to the
programmer, as is the case in many other domains such
as large-scale distributed systems [15, 21, 25, 35, 39].
However, many existing system-level techniques require
active participation in the reliability protocols by the ele-
ments that can fail; such techniques are ill-suited to han-
dling peripheral failures in embedded systems, as these
peripherals are incapable of such participation. One ap-
proach that has been effective in embedded systems is
checkpointing, which enables the system to roll back to a
known valid state, correct failures, and re-execute. How-
ever, existing checkpointing schemes for embedded sys-
tems do not support peripheral failures [8, 46, 50].

This paper presents Phoenix, a semi-automated pe-
ripheral recovery system built around novel checkpoint-
ing mechanisms. Phoenix provides fault tolerance for
fail-stop peripheral failures, access timeouts, violations
in communications protocols, and interrupt storms or
other spurious interrupts. The design of Phoenix was mo-
tivated by a set of insights into the unique properties of
embedded systems and their ramifications on recovery.

In particular, peripherals introduce complexities that
must be addressed by any recovery process for cor-
rectness. First, many peripherals have external state,
which is fundamentally different from internal program
state. Internal state can be rolled back simply by reset-
ting the memory. In contrast, the interactions that pe-
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ripherals have with the real world may be difficult to
undo. Furthermore, some peripherals have transient ef-
fects, while others have lasting effects. These differences
influence how each peripheral must be handled during re-
covery. Finally, peripherals may interact with each other.
Such dependencies determine the necessary actions to re-
store the external state. While some peripheral accesses
should be replayed, in other cases it is incorrect to redo
the access, so it must be skipped.

These complexities, taken in conjunction with strin-
gent resource constraints, introduce several challenges to
implementing efficient checkpointing in embedded sys-
tems. First, the external peripheral state must be re-
stored along with the internal program state; traditional
checkpointing mechanisms neglect this peripheral state.
Second, simply taking a snapshot of the memory is in-
tractable. Embedded systems have a small amount of
memory, the majority of which is needed by the applica-
tion itself. It is not practical to keep even a single copy
of the memory at any given time. Last, the performance
limitations of resource-constrained embedded systems
motivate minimizing the latency of recovery. Ideally, the
system would roll back to exactly the point before the
particular access that failed, minimizing the number of
instructions and peripheral accesses to be re-executed.

Based on these insights, the checkpointing mecha-
nisms in Phoenix simultaneously track internal and exter-
nal state, optimize memory utilization, and enable roll-
back to any precise point at which a peripheral failure
could occur. If a failure occurs, Phoenix automatically
rolls back and recovers while keeping the internal and
external state consistent. For efficiency, the system only
tracks state when there is a chance of failure. Check-
pointing is automatically turned on when a peripheral
is accessed, and turned off once all past accesses have
succeeded. While checkpointing is enabled the system
builds an incremental log of the state, maintaining point-
ers into this log corresponding to each peripheral access.
This incremental approach serves two purposes. First, it
only checkpoints the minimal amount of state required
for rollback. Second, it allows the system to roll back
to the point right before any peripheral access that could
fail, thereby minimizing re-execution.

Evaluation on a set of microbenchmarks and appli-
cations showed that Phoenix is space-efficient enough
to operate within the resource constraints of embedded
systems. Running on a microcontroller with 96 KB of
SRAM, Phoenix used on the order of 5 KB to track both
the internal and external system state, leaving the ma-
jority of the space free for use by the running program.
When there was a failure the overhead rose to 6 KB, as a
small amount of extra state is needed during the recovery
process. Furthermore, for two of the three applications
studied in this paper there was no perceivable change in

performance with the addition of Phoenix.
The mechanisms of Phoenix transcend peripheral fail-

ures. In particular, any recovery strategy for embedded
systems should restore both internal and external state
when any asynchronous failure occurs. Phoenix’s tech-
niques for logging and restoring these two types of state
could be combined with the appropriate failure detection
mechanisms to handle additional types of failures.

The rest of the paper proceeds as follows. Section 2
presents the key insights that motivate the design of
Phoenix, and Section 3 presents the recovery procedure.
Sections 4 and 5 describe the mechanisms used to im-
plement the system. Section 6 shows the experimental
evaluation of Phoenix, and Section 7 discusses related
work. Finally, Section 8 concludes the paper.

2 Key Insights
Two sets of insights into the unique properties of embed-
ded systems shaped the design of Phoenix. The first set
consists of broad insights into the implications of periph-
erals on system behavior and therefore correct system re-
covery. Supplementing these, a second set of insights in-
fluenced the adaptation of a specific reliability technique,
checkpointing, to the domain of embedded systems.

2.1 Peripheral State in Embedded Systems
Embedded systems are inherently event-driven, interact-
ing with their surroundings through sensors and actua-
tors. These peripherals have unique properties which
manifest themselves in subtle and complex ways, and
which must be addressed in order to correctly recover
from a failure. Five insights into these peripherals drive
the design of the mechanisms presented in this paper.

First, hardware peripherals introduce external state in
addition to the internal state. To guarantee correct recov-
ery from failures, Phoenix restores both types of state.

Second, the way that peripherals affect external state
varies. Based on this, peripherals can be classified into
four categories: stateless, ephemeral, persistent, or his-
torical. The first category includes simple sensors such as
accelerometers which cannot affect their surroundings.
Ephemeral peripherals do affect the external state, albeit
fleetingly; these include, for example, buzzers. In con-
trast, persistent peripherals have lasting effects. The state
of a persistent peripheral is entirely determined by the
last write to it. For instance, setting the speed of a mo-
tor causes a state change that persists until a new speed
is set. Historical peripherals likewise have lasting state,
but the state of a historical peripheral is an aggregation
of a series of prior writes. Phoenix selects the recovery
actions to perform for a given peripheral based on the
classification it was registered with during initialization.

Third, peripherals do not operate in isolation; the state
of one may impact the behavior of another. Such de-
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pendencies are often specific to the context of a partic-
ular application. A peripheral P1 has a dependency on
a peripheral P2 if P2 failing results in P1 not having its
intended effect on the external state. As an example, con-
sider an autonomous car that uses a motor and steering
servo to drive. The servo will rotate the car’s wheels re-
gardless of whether the motor is functioning. However,
if the servo’s goal in this application is turning the car it-
self, the motor failing will prevent it from accomplishing
its goal. Thus, the servo has a dependency on the motor.

Fourth, not all peripheral accesses can be replayed.
Consider a historical peripheral such as a message pass-
ing interface between two devices. If a message is read
from this interface, but an unrelated peripheral fails be-
fore the message is processed, re-executing the read is in-
correct for two reasons. First, the program must process
the original message. Moreover, the state of the message
passing interface is not only external but shared; depend-
ing on the messaging protocol being used, the device on
the other end of the connection may not re-send, so a re-
read may time out. Instead, this read must be remateri-
alized: skipped during re-execution, in favor of re-using
the original return value. In contrast, accesses to periph-
erals that depended on the failed peripheral must be re-
executed. When a peripheral fails, the Phoenix system
uses the dependency information to populate an initial
set of peripherals to redo; accesses to peripherals not in
this set are rematerialized. As re-execution proceeds, this
set is updated as necessary to adapt to changes in state.

Finally, the lasting effects of persistent peripherals de-
mand additional mechanisms for restoring their state.
Correct restoration requires three steps. First, prior to
recovering from a failure, all persistent peripherals must
be put into a safe state; otherwise, they may continue
operating in an erroneous state. Next, all persistent pe-
ripherals selected for re-execution must be restored to
the state that they held prior to the failed access. That
way, when re-execution begins, they will be in the same
state that they were at this point in the original execution.
Last, once re-execution is complete, all persistent periph-
erals whose accesses were rematerialized must be set to
the last state that was rematerialized, so that they are in
the correct state going forward. Phoenix automatically
performs each of these three steps, ensuring a consistent
state throughout the duration of the recovery process.

2.2 Checkpointing in Embedded Systems
Checkpointing is often used to provide fault-tolerance in
domains such as mobile and distributed systems [25, 35,
39]. At a high level, the concept of tracking and restoring
a known consistent state extends well to other domains.
However, the resource-constrained nature of embedded
systems presents three unique challenges to adapting ex-
isting checkpointing mechanisms.

First, all of the insights introduced in Section 2.1 must
be considered when designing any recovery mechanism
for embedded systems; checkpointing is no exception. In
the context of checkpointing, this means that this external
peripheral state must be logged and rolled back just like
the internal program state. Phoenix therefore logs every
peripheral access that is performed. During re-execution,
it makes the decision of whether to re-execute or skip on
the granularity of an individual peripheral access.

Second, embedded systems face tight memory con-
straints. For example, the TI Stellaris LM3S9B92 [47],
a typical ARM Cortex-M3 microcontroller, has only
96 KB of SRAM and 256 KB of flash memory. Phoenix
addresses the lack of memory space by using a logging
technique that resembles journaling filesystems [10, 17,
26, 38]. Rather than preemptively checkpointing some
or all of the memory, Phoenix only copies memory that
has actually been changed. Moreover, Phoenix takes ad-
vantage of the fact that when there are no outstanding
peripheral accesses, there is no chance of peripheral fail-
ure. Thus, Phoenix automatically disables logging once
all peripheral accesses have been acked, re-enabling log-
ging only when another peripheral access is issued.

Last, embedded systems also face time constraints.
The LM3S9B92 operates at 50 MHz; therefore, minimiz-
ing the rollback latency is crucial to maintaining perfor-
mance. This is magnified by the fact that even soft real-
time embedded applications are typically event-driven,
and thus require some degree of reactivity. Phoenix guar-
antees that when a peripheral fails there will be sufficient
checkpointing data to roll back to the exact point of fail-
ure, avoiding unnecessary re-execution. It achieves this
by maintaining one logical checkpoint for each outstand-
ing peripheral access. Each checkpoint is identified by
pointers into checkpointing structures that contain only a
small subset of the memory at any given time.

3 Recovery Procedure
This section presents a semi-automated recovery proce-
dure for peripheral failures that builds on the insights
from Section 2. This procedure was implemented in
Owl [3, 7], an embedded run-time system including a
Python bytecode interpreter that runs on the bare metal.
Peripheral accesses are structured as function calls made
through Owl’s native function interface. These functions
access the hardware through a thin C library. While mi-
nor implementation details were tailored to Owl, the pro-
cedure and mechanisms of Phoenix transcend Owl and
could be implemented in other run-time systems.

When a peripheral access fails, it must be re-executed
in order to achieve correct program behavior. However,
re-executing this access in the context of the arbitrary
execution state in which its failure is detected may be
insufficient or incorrect. First, it is likely that many byte-



128 2015 USENIX Annual Technical Conference USENIX Association

codes were executed between the peripheral access and
the detection of its failure. These bytecodes could have
changed the program state. If the peripheral access inter-
acts with the internal program state at all, such as through
its parameters, then in order to re-execute it correctly
the state of the program must be restored to the point
at which the access originally occurred. Second, naively
re-executing the same peripheral access may simply re-
sult in another failure. Thus, the failed peripheral must
be recovered prior to re-execution. Last, some of the op-
erations performed after the peripheral access was issued
but before its failure was detected may have depended on
the success of the failed access; in this case, those oper-
ations must be re-executed as well.

The Phoenix system translates these facts into a three
step recovery process which automatically executes upon
detection of failure. First, the internal state is rolled back
to the point of the failed access. Second, the failed pe-
ripheral is recovered. Third, the correct external state
is reached via redo mode execution. Within redo mode,
the system re-executes the failed access, as well as all
accesses to dependent peripherals, but rematerializes ac-
cesses to unrelated peripherals. Once execution reaches
the point of failure detection, the system seamlessly exits
redo mode and resumes normal execution.

As an example, consider Figure 1, which is sample
code for an autonomous car that uses a motor and steer-
ing servo to drive and an SD card to record its move-
ments. Assume that the peripheral access in line 3 fails,
and the system identifies this failure after line 8.

Upon detecting this failure, the system will first put
the motor and servo into safe states. It will then restore
the internal state as it was immediately prior to line 3, re-
setting the value of the variable speed to 100. The sys-
tem will recover the motor by invoking a programmer-
provided recovery function, and will then enter redo
mode. During redo mode, line 3 will be re-executed,
since it failed initially. However, line 4 will be remateri-
alized, as there is no dependency between the motor and
the SD card. This rematerialization is a requirement for
correctness. Effectively, redo mode restores the periph-
eral state that would have been reached had there been no
failure at all. It would be inaccurate to replay this write

1 # Run t h e motor
2 speed = 100
3 motor . run ( speed )
4 SD . w r i t e ( ‘ s e t motor t o 100 ’ )
5 speed += 100
6
7 # Turn t h e whee l s
8 s e r v o . s e t s e r v o ( LEFT )
9 . . .

Figure 1: Sample Application Code

Application

Run-time

Interrupt

Microcontroller

Hardware Peripherals

Peripheral
Code

Application

CheckpointingSystem Mechanisms

Handlers Failure
Detection

Code

Rollback &
Replay

Compiler & Python AST
RewriterToolchain Native Code

Autowrapper

Config
File

Config File
Parser

Figure 2: Phoenix System Architecture

and record the motor as having been set to 100 twice,
when in fact the first attempt was unsuccessful. Next,
line 5 will be re-executed, because it affects the internal
state, which was rolled back. Last, the servo depends
on the motor, so line 8 will also be re-executed. Finally,
normal execution will resume.

4 System Mechanisms
This section presents the interlocking compiler and run-
time system mechanisms which work together to carry
out the procedure presented in Section 3.

At a high level, the compiler supports recovery in two
key ways: it injects code to enable checkpointing prior to
each peripheral access, and it auto-generates code to log
the arguments and return value of each peripheral access.
Then, when a failure is detected at run-time, the run-time
system automatically identifies the failed peripheral, puts
all persistent peripherals into a safe state, and executes
the three step recovery procedure.

None of these mechanisms alone are sufficient for re-
covery. But, taken as a whole, they form a complete re-
covery system which facilitates every step from failure
detection to rollback, recovery, and re-execution. Fig-
ure 2 presents an overview of the Phoenix system archi-
tecture, illustrating how the various components of the
Phoenix system, in white, fit into the Owl system, in grey.

4.1 Failure Detection
Microcontrollers offer a variety of external peripheral
interfaces, which notify the processor of events via in-
terrupts. For example, the LM3S9B92 includes uni-
versal asynchronous receiver/transmitters (UART), inter-
integrated circuit interfaces (I2C), and other interfaces.

Phoenix provides two system-level mechanisms to in-
teract with these external interfaces: interrupt handlers
and light-weight software shims. Since these two mech-
anisms are the link between the peripherals and the rest
of the Phoenix system, Phoenix automatically recovers
from all failures that they can detect, primarily consist-
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ing of communication failures such as fail-stop periph-
eral failures, timeouts, and spurious interrupts. Upon
detecting a failure, these mechanisms identify the failed
peripheral and set the three step recovery procedure in
motion by throwing an exception to the interpreter.

Most failures are detected solely via interrupt han-
dlers. However, some external interfaces do not provide
the appropriate type of interrupts for failure detection; in
these cases, the interrupt handlers are supplemented by
the software shims. Further, the existing software detec-
tion mechanisms could be augmented to perform addi-
tional validation that the peripheral is operating correctly,
thereby extending fault coverage without any changes to
the rest of the system.

4.1.1 Hardware Detection

The interrupt handlers in Phoenix manage both success-
ful and unsuccessful peripheral accesses. Each interrupt
handler begins by pinpointing the peripheral whose ac-
cess generated the interrupt. During initialization (see
Section 5.2), each peripheral is registered with an (in-
terface, interface details) pair that uniquely identifies it
to the interrupt handler. As an example, the pair for an
I2C device would look like (I2C, (master address, slave
address)). Thus, the handler identifies the source of the
interrupt by searching the set of registered peripherals.

Next, the interrupt handler checks the status flags to
determine whether the access succeeded. If so, the in-
terrupt handler acks it by decrementing the appropriate
counter of outstanding reads or writes. Otherwise, it
throws a rollback exception to the interpreter. A spe-
cial block in the interpreter handles this exception by per-
forming the three step procedure discussed in Section 3.

4.1.2 Software Detection

Not all peripheral interfaces provide a convenient in-
terrupt mechanism to detect success and failure. For
example, the interrupts for the UART interface on the
LM3S9B92 are designed to allow asynchronous trans-
mission and reception of data; thus, they convey whether
or not the device is ready for a subsequent transfer, not
whether previous transfers have succeeded or failed.

To address this limitation, the system was augmented
with a small buffer to hold UART data. Each entry con-
tains a byte that was received by the UART and associ-
ated error bits. As the hardware receives data, the inter-
rupt handler transfers the data, and any error bits, to the
software buffer. UART reads made by the application
then access the software buffer. When a read occurs on
a byte that was successfully transferred, the peripheral
access is acked, as if there had been a “success” inter-
rupt. When a read occurs on a byte that experienced a
transmission error, the recovery procedure is triggered,
as if a “failure” interrupt had occurred. This is a general

approach that can be used for any peripheral for which
the interface does not provide interrupts that enable the
system to determine the success or failure of each access.

4.2 Checkpointing
To enable rollback and re-execution, the Phoenix system
performs checkpointing whenever there is a chance of
peripheral failure. Checkpointing is automatically en-
abled prior to each peripheral access. While checkpoint-
ing is enabled, Phoenix maintains three structures: a
journal, a control flow queue, and a set of rematerial-
ization queues. These structures persist past rollback, as
they live on a second recovery heap which is not check-
pointed. They are freed on a rolling basis as accesses
succeed. Further, once all past accesses have succeeded,
rollback past the current point is impossible, so Phoenix
disables checkpointing until the next access is issued.

4.2.1 Software Journal

In Owl, all of the program state is stored on the Python
heap. So, when checkpointing is enabled, the history of
this heap must be tracked to enable rollback of the in-
ternal program state. When an assembly language store
to this heap occurs, Phoenix first records a journal en-
try containing the memory address to be stored and its
old contents. The journal only needs space proportional
to the number of stores to the Python heap since check-
pointing was last enabled, rather than the entire size of
the heap. On failure, the run-time system can roll back
the state of the Python heap by restoring the contents of
the journal in reverse order.

The prototype implementation of Phoenix keeps the
journal using software that exploits existing hardware
mechanisms defined by the ARM ISA. In particular,
Phoenix uses the ARM Cortex-M3’s memory protection
unit (MPU), flash remap hardware, and system call in-
struction (SVC) to keep the journal. These are the only
hardware requirements of Phoenix.

The journaling process proceeds as follows. First,
when checkpointing is enabled, the regions of memory
covering the Python heap are set read-only. This causes
the memory management fault handler to run upon each
store to this heap. It receives both the address of the in-
struction that caused the fault and the memory address
of the faulting access. Based on the type of instruction
(ARM has “store multiple” instructions), it determines
how many journal entries to populate. Each entry con-
tains a faulting address and the contents of that address.

If the journal fills, an exception is thrown telling the
system to wait for prior peripheral accesses to be acked.
Because the failure detection mechanisms only write to
the recovery heap — which is not checkpointed — as op-
posed to the Python heap, there is no chance of deadlock.
Once all accesses have succeeded, the system clears the
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journal and disables logging. Execution can then resume.
After the store instruction completes, memory protec-

tion must be turned back on. The fault handler remaps
the instruction that follows the store to become an SVC
instruction. Note, however, that the program is executing
from flash memory, so the instruction cannot be overwrit-
ten. Instead, Phoenix uses the Cortex-M3 flash patch and
breakpoint support, which allows small regions of flash
to be “patched” by remapping them to SRAM. When the
system call executes, MPU protection is turned back on.
The flash remapping is turned off, and the return from the
SVC is routed back to the instruction following the store.

The software journal is effective, but it incurs an over-
head for each protected store to the Python heap. Since
two exception handlers must run for each protected store,
there is a minimum overhead of 48 cycles (12 cycles to
enter and 12 cycles to exit each exception handler), plus
any pipeline flushes. In practice, the handlers themselves
execute for hundreds of additional cycles; during evalu-
ation on a series of microbenchmarks, the overhead per
protected store averaged 308 cycles.

4.2.2 Hardware Journal

To reduce the journal overhead, the microcontroller
could be augmented with a simple hardware journal.
This would involve minimal changes to the ARM ISA:
MPU support for an additional “log” mode, a circular
buffer with entries that can hold a memory location and
a 32-bit value to serve as the journal, and a pair of regis-
ters to store head and tail pointers into the journal. If the
tail pointer ever becomes equal to the head pointer, the
journal is full, and an interrupt would be generated. In
response to such an interrupt, the Phoenix system would
wait, as described in Section 4.2.1.

When a store instruction writes to memory in a region
that has the log attribute set, the hardware would first
store the address and the contents at that address in the
journal, incrementing the tail pointer modulo the size of
the journal. The stage of the store instruction that writes
to SRAM would complete in three cycles instead of one.
First, the original write to SRAM would be aborted. Sec-
ond, the contents of SRAM would be read. Last, three
writes would occur in parallel: the original write, the
journal write, and the tail pointer update. This two cy-
cle overhead is two orders of magnitude lower than that
of the software journal, which would yield perceptible
improvements for applications with frequent journaling.

4.2.3 Rematerialization Queues

The rematerialization queues checkpoint the external
state. Each peripheral has a queue, with one entry per
access. These entries serve two purposes: storing the ar-
guments and return value for use during redo mode, and
storing the rollback point in case of failure. Since periph-

eral accesses are structured as native function calls, the
return value is not raw data from the peripheral but rather
a Python object allocated on the heap. The rematerializa-
tion queue holds deep copies of these objects, allocated
on the recovery heap in order to persist past rollback.

On failure, Phoenix selects the right checkpoint based
on the identity of the failed peripheral. Each checkpoint
corresponds to a single access, so metadata for a given
checkpoint is stored in the corresponding queue entry:
indices into the journal and control flow queue, as well
as pointers into the other rematerialization queues.

After rollback, the system constructs a set of peripher-
als to redo based on programmer-specified dependencies.
Each time a peripheral access call is reached during redo
mode, Phoenix checks to see if the peripheral is in the
redo set. If so, the function is called as usual. Otherwise,
Phoenix compares the new arguments against those in the
rematerialization queue entry. If they match, the function
call is skipped; Phoenix pops the new arguments from
the stack and pushes the old return value. If they do not
match, the peripheral is added to the redo set and the
function call is re-executed with the new arguments.

A given rematerialization queue entry is freed once
the peripheral access it corresponds to, plus all earlier
accesses, are acked, since these acks guarantee that the
system will never roll back to (or past) this entry. The
contents of the journal up to the index stored within this
rematerialization queue entry are freed at the same time.

4.2.4 Control Flow Queue

When checkpointing is enabled, the control flow queue
keeps track of the instruction pointer of each Python
bytecode that is executed. During redo mode, this queue
is used to determine when to resume normal execution.
Redo mode is exited either when the point at which fail-
ure was detected is reached once more, or when con-
trol flow diverges from the original path. For instance, a
re-executed peripheral read may return a different value
the second time through and cause a different path to be
taken at a branch. Phoenix would then exit redo mode.
This allows the system to adapt to changes in the external
state that have occurred since the initial execution.

4.3 Compilation
To enable rollback, Phoenix records the journal and con-
trol flow queue indices at each checkpoint. Check-
points correspond to peripheral access function calls —
in Python, CALL FUNCTION bytecodes. However, it is
insufficient to re-execute the failed function call with the
same arguments, as they may change during recovery.
For instance, an I2C device access may take the mas-
ter address as a parameter. If this address was passed
as a variable, and this variable was changed by the re-
covery function, its new value must be loaded prior to
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re-execution. As such, the true checkpoint is not the
CALL FUNCTION bytecode but the first bytecode that
loads an argument for the call. These checkpoint loca-
tions are difficult to identify at run-time. Thus, Phoenix
introduces a new bytecode, JOURNAL STORE, and adds
a custom AST rewriter to the Python compiler which in-
serts a JOURNAL STORE prior to loading the arguments
for each peripheral access. On reaching this bytecode
at run-time, the interpreter stores the current journal and
control flow indices and enables checkpointing.

Additionally, Phoenix uses an autowrapping tool to in-
ject code before and after each peripheral access. Prior to
a peripheral access, the autowrapper adds code to create
a rematerialization queue entry. After the access, it in-
serts code to increment the number of outstanding reads
or writes to this peripheral and set the new rematerializa-
tion queue entry’s return value. These additions facilitate
the run-time system’s job in two ways. First, tracking
outstanding accesses allows the system to automatically
free the checkpointing structures and disable checkpoint-
ing as accesses complete. Second, allocating queue en-
tries is a prerequisite for rematerialization.

5 Programmer Mechanisms
Phoenix disentangles the bulk of the application code
from the peripheral code. Making this peripheral code
recoverable requires that the programmer follow a few
simple rules during development, involving minor refac-
toring and a small amount of new code. For the three
applications evaluated in Section 6.2, an additional 9–17
lines of Python and 66–76 lines of C were required.

5.1 Peripheral Classification
Each peripheral must extend one of four provided pe-
ripheral classes, which mirror the categories from Sec-
tion 2.1; an example is shown in Figure 3. Applications
using the same hardware peripheral can share the same
peripheral class. The class is largely written in Python;
the only C code that the programmer must write is that of
the low-level access functions. These can then be called
from the Python code via Owl’s native function interface.

Peripheral access functions should encapsulate an
atomic unit of work, since rollback and re-execution oc-
cur at the granularity of a single function call. Addition-
ally, each peripheral class must support recovery. All
peripheral classes must define a recover method, which
the system automatically calls after rollback. This gives
the programmer flexibility in deciding how to handle a
failed peripheral, such as by resetting it, switching in a
hot spare, or even signaling for user intervention. Yet, the
programmer need never worry about the complex book-
keeping and control flow logic to determine when to call
this method. This is the only method that must be defined
for stateless and ephemeral peripherals.

1 c l a s s Motor ( P e r s i s t e n t P e r i p h e r a l ) :
2 def i n i t ( s e l f ) :
3 # I n i t i a l i z e pr imary d e v i c e
4 s e l f . i n i t (PRIMARY)
5
6 def r e c o v e r ( s e l f ) :
7 # S w i t c h t o backup d e v i c e
8 s e l f . i n i t (BACKUP)
9

10 def s a f e s t a t e ( s e l f ) :
11 s e l f . s e t s p e e d ( 0 )
12
13 def l a s t s t a t e ( s e l f , ∗ a r g s ) :
14 n a t i v e w r i t e (∗ a r g s )

Figure 3: Peripheral Class Excerpt

Because persistent peripherals have lasting state, they
require two additional restoration methods, motivated
by the final insight in Section 2.1: safe state and
last state. Before rollback, Phoenix automatically
invokes all safe state methods to put the peripherals
into states that will have minimal effects during subse-
quent recovery steps. For example, a motor might be set
to a speed of zero. As with recover, the definition of
safe state is up to the programmer.

Defining last state is trivial, as it follows a stan-
dard template: take a variable number of arguments
and perform a write with those arguments. This allows
Phoenix to invoke last state by simply passing the
arguments from a rematerialization queue entry, regard-
less of the write function’s signature. During redo mode,
the system calls last state in two places. Peripher-
als whose accesses must be replayed are set to their last
state at the beginning of redo mode; peripherals whose
accesses were not replayed during redo mode are set to
their last state prior to resuming normal execution.

Restoring a historical peripheral is challenging, as its
state is an aggregation of multiple past writes. The
naive solution is to re-execute every past write. How-
ever, this would prevent freeing the rematerialization
queues, which is untenable given limited memory. While
Phoenix does not currently include specialized mecha-
nisms for historical peripherals, this does not preclude
their use with Phoenix. Consider an LCD display. Many
applications will update a display by completely redraw-
ing its contents, which would work seamlessly with
Phoenix. More generally, a finite number of pixels com-
prise the display’s state. Their values could be stored in
a buffer programmatically and restored by recover, re-
quiring no extra support from Phoenix.

5.2 Peripheral Initialization
To enable failure detection, the peripheral class must
do two things upon initialization: register the new
instance and enable interrupts. Phoenix provides a
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peripheral register function which must be in-
voked with the interface and interface details for the pe-
ripheral, as described in Section 4.1.1. Since interrupt
handlers detect success or failure, and interface informa-
tion is needed to determine which peripheral generated
a given interrupt, registering peripherals and enabling
interrupts must occur prior to any peripheral accesses.
However, registration and interrupt information can be
updated at any time to reflect changes to the hardware
configuration. In particular, if the recover function
switches to a backup device, it should also re-register the
peripheral and enable interrupts for any new interfaces.

5.3 Config File
Last, the programmer must provide a config file for each
application containing peripheral metadata. First, the
programmer must declare dependencies. Second, the
programmer must specify how many interrupts the pe-
ripheral access functions generate. This allows Phoenix
to treat an access as an atomic unit and determine when
it has completed. Writing the config file proved trivial
for the three applications studied in this paper.

6 Evaluation
This section will first introduce the microbenchmarks
and applications used to evaluate the Phoenix system. It
will then assess Phoenix, showing that its space overhead
is minimal and its time overhead is completely hidden in
realistic workloads.

6.1 Microbenchmarks
The microbenchmarks use two persistent peripherals, a
gyroscope and compass, and follow a common structure.
They are named in the form <peripherals> <actions>,
where <peripherals> is a subset of {gyro, comp} and
<actions> is a subset of {r, w, c}, for read, write, com-
pute. After the peripherals are initialized, the actions are
performed in a loop in the order in which they are listed.

Even in the absence of failures, checkpointing nec-
essarily incurs a time overhead, primarily due to jour-
naling. Across all of the benchmarks listed in Table 1,
the weighted average cost of adding an entry to the soft-
ware journal was 6.2 µs. Given a 20 ns cycle length,
this means that one journaled store took, on average, 308
cycles. A hardware journal, with an overhead of only 2
cycles per store, would yield dramatic improvements. In-
troducing a single failure incurred a relatively small ad-
ditional overhead of 12–143 ms. This overhead did not
exceed 45 ms for benchmarks with one peripheral; for
gyro comp wr the overhead was larger due to additional
safe state and last state calls.

This overhead is incurred in support of speculative ex-
ecution. Another approach would be to wait for each ac-
cess to be acked before proceeding. However, the length

Table 1: Benchmark Checkpointing Structures, With and
Without Failure (max live entries)

Benchmark
JNL CFQ

RMQ
(comp, gyro)

Failure? Failure? Failure?
No Yes No Yes No Yes

gyro r 220 220 9 14 (0, 2) (0, 3)
gyro w 165 182 7 14 (0, 2) (0, 3)
gyro wr 220 220 9 14 (0, 2) (0, 3)
comp r 144 169 6 6 (1, 0) (2, 0)
comp w 192 226 9 9 (2, 0) (3, 0)
comp wr 192 211 9 9 (2, 0) (3, 0)
gyro comp wr 220 301 9 11 (2, 2) (3, 2)
comp wcr 190 219 9 9 (2, 0) (3, 0)
comp wrc 190 211 9 9 (2, 0) (3, 0)
comp wcrc 192 211 9 9 (2, 0) (3, 0)

of the control flow queue reveals that Phoenix takes ad-
vantage of significant opportunities to make progress
where a stop-and-wait system would not. As shown in
Tables 1 and 5, the control flow queue reached lengths
of 9–18 during the period in which a wait-based system
would be stalling. This is non-trivial; one Python byte-
code may, for example, execute an entire native function.

Just as the checkpointing process takes time, the struc-
tures storing the state require space. There are three
checkpointing structures: the journal (JNL), control flow
queue (CFQ), and rematerialization queues (RMQ). Each
journal entry requires 6 bytes, as the software journal is
optimized to store an offset into the 64 KB heap rather
than the full address. A control flow queue entry requires
4 bytes. Phoenix uses a fixed-size journal of 512 entries,
and a fixed-size control flow queue of 64 entries. Rema-
terialization queues are linked lists. Each entry consumes
a minimum of (36 + (72 * n)) bytes, where n is the num-
ber of hardware peripherals, plus variable space for argu-
ments. Owl’s best-fit memory allocator also introduces a
small amount of variance.

A long-running program may generate many entries
in these structures over the course of its execution. How-
ever, since past entries are discarded as acks are received,
very few entries are live at the same point in time. Table 1
shows the maximum number of live entries for each of
the three checkpointing structures when the benchmarks
were run with no failures and with a single failure. No
benchmark required more than 301 journal entries, 14
control flow queue entries, or 3 rematerialization queue
entries per peripheral. Thus, the fixed sizes for the jour-
nal and control flow queue proved more than sufficient,
never exceeding 59% or 22% capacity, respectively.

Tables 2 and 3 show the total space overhead with and
without failure. The checkpointing structures are the pri-
mary source of this overhead. However, Phoenix addi-
tionally maintains a small amount of metadata. Periph-
eral metadata tracks the active peripherals in the system,
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Table 2: Benchmark Overhead, Without Failure (bytes)
Benchmark comp r comp w comp wr comp wcrc gyro r gyro w gyro wr gyro comp wr
JNL 3120 3120 3120 3120 3120 3120 3120 3120
CFQ 284 284 284 284 284 284 284 284
RMQ 276 472 472 472 484 484 484 752
Peripheral Metadata 268 268 268 268 268 268 268 384
Recovery Metadata 24 24 24 24 24 24 24 24
Total 3972 4168 4168 4168 4180 4180 4180 4564

Table 3: Benchmark Overhead, With Failure (bytes)
Benchmark comp r comp w comp wr comp wcrc gyro r gyro w gyro wr gyro comp wr
JNL 3120 3120 3120 3120 3120 3120 3120 3120
CFQ 284 284 284 284 284 284 284 284
RMQ 664 656 656 656 656 656 656 984
Peripheral Metadata 268 268 268 268 268 268 268 384
Recovery Metadata 304 300 300 300 304 304 304 300
Total 4436 4636 4636 4636 4632 4632 4632 5072

growing with the number of peripherals. Some of this
metadata is generated at boot-time based on data parsed
from the config file; the rest is created when a peripheral
is initialized at run-time. The same build of the run-time
system was used for all benchmarks; thus, there were
two peripherals’ worth of boot-time metadata in all of
the benchmarks, and the total peripheral metadata size
does not double on activating the second peripheral.

Recovery metadata contains information needed to
perform rollback and re-execution, including which pe-
ripheral failed and which peripherals to redo. Thus, the
size of this metadata is initially negligible and grows
when a failure occurs. The combined overhead of both
types of metadata never exceeded 408 B (gyro comp wr)
in the benchmarks without failure; with failure, it
reached a maximum of only 684 B (gyro comp wr).

The total space overhead of Phoenix was relatively
consistent across all benchmarks. With no failures, it
began at 3.9 KB for the case where a single peripheral
was read but not written (comp r), as this minimized
the number of live rematerialization queue entries. In-
troducing writes (comp w, comp wr, comp wcrc) added
an additional 196 B, as a second live rematerialization
queue entry is required to support last state. The
gyro benchmarks did not show this same increase upon
adding writes, as the gyro requires a single write during
initialization, and therefore even gyro r held a second re-
materialization queue entry. The largest increase occurs
when additional active peripherals are introduced, as in
gyro comp wr. This is due to two factors: extra remate-
rialization queue entries and extra peripheral metadata.

These space requirements do not change drastically
in the case of failure; only the rematerialization queue
entries and the recovery metadata consume additional

Table 4: Car Interval Length (ms)
Benchmark Minimum Maximum Average
Without Phoenix 30 44 30
Phoenix (No Failure) 30 44 30
Phoenix (Failure) 30 44 30

space. The expansion of the rematerialization queues is
due to the fact that the system maintains segments of the
queues from the original execution in order to replay ac-
cesses. At the same time, replaying these accesses results
in additional entries being generated. Thus, during redo
mode there are brief periods in which two rematerializa-
tion queue entries exist for the same access.

Overall, the space overhead of the Phoenix system is
quite small. Across all benchmarks, the overhead never
exceeded 4.5 KB when no failures occurred, nor did it
exceed 5.0 KB when one failure occurred. Using a mere
4.0–5.2% of SRAM, Phoenix leaves most of the space
available for the running program. At the same time,
it maintains multiple simultaneous checkpoints, each of
which is positioned at precisely the latest possible loca-
tion to which Phoenix could roll back in order to recover.

6.2 Applications
Phoenix was also evaluated on three applications, each
representative of a different pattern of peripheral ac-
cesses. The first application is an autonomous RC car.
The microcontroller is attached to three types of periph-
erals: a motor, a steering servo, and two gyroscopes. An
event loop controls the car’s movements by reading from
the gyro and writing to the motor and steering servo. The
second application is an obstacle tracker which periodi-
cally logs the distance to the nearest obstacle by reading
from one of two range finders and writing to a display.
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Table 5: Application Checkpointing Structures, With and Without Failure (max live entries)

Benchmark
JNL CFQ

RMQ
(comp, display, finder, gyro, motor)

Failure? Failure? Failure?
No Yes No Yes No Yes

autonomous car 220 220 9 15 (0, 0, 0, 2, 2) (0, 0, 0, 3, 2)
obstacle tracker 346 346 18 18 (0, 2, 1, 0, 0) (0, 2, 2, 0, 0)
virtual compass 346 346 18 18 (1, 2, 0, 0, 0) (2, 2, 0, 0, 0)

Table 6: Application Overhead, No Failure (bytes)

Application
autonomous

car
obstacle
tracker

virtual
compass

JNL 3120 3120 3120
CFQ 284 284 284
RMQ 876 1184 1360
Peripheral Metadata 476 352 368
Recovery Metadata 36 24 24
Total 4792 4964 5156

Table 7: Application Overhead, With Failure (bytes)

Application
autonomous

car
obstacle
tracker

virtual
compass

JNL 3120 3120 3120
CFQ 284 284 284
RMQ 1068 1084 1584
Peripheral Metadata 476 352 368
Recovery Metadata 336 294 312
Total 5280 5134 5668

The final application uses two compasses and a display to
draw a virtual compass pointing towards magnetic North.
The range finder is a stateless peripheral; the compass,
gyro, steering servo, and motor are persistent peripher-
als; and the display is a historical peripheral. Each ap-
plication was evaluated on three configurations, for ten
seconds each: Owl without Phoenix, Phoenix with no
failure, and Phoenix with a single failure.

The autonomous car uses a control loop to query the
gyro and steer. It attempts to hit a specific period (30 ms)
between updates, where an update consists of reading
the gyro and setting the servo. Table 4 shows the min-
imum, maximum, and average interval lengths, which
were identical across all configurations. On average, the
car hit its soft real-time deadline of 30 ms. Yet, the maxi-
mum was 44 ms. This spike was caused by ill-timed runs
of Owl’s mark-and-sweep garbage collector.

The obstacle tracker reads the range finder and dis-
plays the distance to the nearest obstacle. Instead of aim-
ing for a set period between updates, it sleeps for a fixed
amount of time. As a result, sleep dominates the work-
load, and all configurations completed the same number
of iterations in the allotted time.

In contrast, the virtual compass is peripheral access-

intensive. It attempts to update as frequently as possible;
on each iteration, it reads the compass and draws an ar-
row on the display. Without Phoenix, each iteration took,
on average, 1005 ms. With Phoenix enabled, an iteration
averaged 1862 ms. The main reason for this slowdown is
that peripheral accesses are so frequent that checkpoint-
ing was nearly always enabled. This is compounded by
the fact that the display is inherently slow, as a separate
native write is required for each pixel.

While the performance of the applications varied due
to their disparate update patterns, the space overhead
was consistently small. As seen in Table 5, each appli-
cation fit easily within the 512-slot journal and 64-slot
control flow queue, and the maximum rematerialization
queue length was three. The total space overhead, pre-
sented in Tables 6 and 7, was comparable to that of the
benchmarks, requiring a maximum of 5.0 KB (virtual
compass) when no failure occurred and a maximum of
5.5 KB (virtual compass) when a single failure occurred.
This overhead encompasses multiple checkpoints, one
per outstanding peripheral access. In contrast, a tradi-
tional checkpointing system would require a complete
copy of the heap (64 KB) for each individual checkpoint.

Reliability cannot come for free; it demands tradeoffs
in time and space. Phoenix optimizes for both, saving
time by enabling rollback to the exact point of failure
and saving space by logging only that which is abso-
lutely necessary. Still, a time overhead is perceptible
in peripheral-intensive workloads. In such workloads,
the costs of improved reliability may outweigh the ben-
efits; yet, if reliability is critical, this tradeoff may well
be worthwhile. Further, this overhead could largely be
eliminated by employing a hardware journal.

However, Phoenix is well-suited to applications that
access peripherals periodically; these applications expe-
rienced no observable delays during evaluation. Such ac-
cess patterns are more characteristic of typical embedded
workloads, which periodically monitor their surround-
ings via sensors and react to discrete events.

7 Related Work
Fault tolerance has been well studied in distributed sys-
tems. The elements of these systems collaborate to pro-
vide a reliable service to external clients using redun-
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dancy and consensus to detect, mask, and recover from
failures [15, 21, 27, 28, 36]. However, each element of
the system must be able to actively participate in the re-
liability protocols and communicate its current status. In
contrast, peripherals in embedded systems are dedicated
to a specific task and are unable to participate in special-
ized reliability protocols.

There has also been much work on protecting conven-
tional computing systems from device driver failure. In
such systems, the operating system has reliability fea-
tures that allow it to tolerate device failures if the drivers
behave properly. So, the focus has been on hardening de-
vice drivers and protecting the interface between the op-
erating system and the device driver [18, 23, 24, 29, 40,
44, 45]. Phoenix instead operates at the level of hardware
peripheral reads and writes, targeting systems which lack
the heavier weight isolation and protection mechanisms
of device drivers and conventional operating systems.

The difficulty of exhaustively addressing all possible
failure scenarios in embedded applications is widely rec-
ognized [9, 11, 30, 49]. Yet, existing techniques leave
much of the burden on the programmer, resulting in in-
creased development costs and poor scalability [32]. Ef-
forts have been made to raise the level of abstraction
of writing fault-tolerant embedded applications through
model- or template-driven development [11, 49] and
programming language primitives [9]. However, these
application-level approaches rely on the programmer to
apply the correct constructs in the right places, a non-
trivial task in the face of asynchronous failures.

One recovery methodology with significant traction is
rollback and re-execution [6, 12, 16, 25, 35, 37, 39, 42].
State-of-the-art rollback relies on checkpoints, or snap-
shots, of the system state. Checkpoints are typically ei-
ther taken periodically by the system, or inserted manu-
ally by the programmer [6, 12]. Traditional checkpoint-
ing algorithms maintain one or more complete copies of
the memory space; while this has been successful in mo-
bile and distributed systems [25, 35, 39], such an over-
head is infeasible in a resource-constrained embedded
system. Instead of taking snapshots of the entire pro-
gram state, Phoenix utilizes a logging technique that re-
sembles journaling filesystems [10, 17, 26, 38] and some
hardware transactional memory proposals [34]. Though
this adds an overhead to some stores, it ensures that the
system only copies the subset of memory that has been
changed. Further, automated disabling of logging mini-
mizes the number of stores burdened by this overhead.

Moreover, traditional snapshots encapsulate only the
internal program state, which can be restored via rollback
and re-execution. In the worst case, internal state can be
restored by re-executing the entire program. In fact, a
full reboot is a common approach to recovery in embed-
ded systems [14, 33]. However, critical application state

is likely to be lost on a reboot. To preserve state and
minimize the amount of work that is re-executed, algo-
rithms for mobile and distributed systems have been op-
timized to re-execute only a subset of processes [37, 39]
or threads [13, 25] based on dependencies which are ei-
ther implicitly established via messages or explicitly an-
notated by the compiler.

Yet, minimal efforts have been made to restore ex-
ternal state. Past work supplementing checkpointing
with message logging acknowledged the existence of ex-
ternal state in the form of messages, and attempted to
deal with it by skipping all message sends during re-
execution [37, 42]. However, this policy leaves no room
to adapt to changes during re-execution.

8 Conclusions
As embedded run-time systems grow in popularity, they
demand mechanisms for increased reliability. At the
same time, they present new opportunities for automat-
ing reliability at the system level. This paper has pre-
sented the design and implementation of Phoenix, a
novel system for surviving peripheral failures in embed-
ded run-time systems. Phoenix is composed of integrated
system- and application-level mechanisms, which work
together to efficiently record the system state and auto-
matically recover from asynchronous peripheral failures.

Several new insights motivated the design of Phoenix.
In particular, peripherals interact with the real world and
with each other in ways that are substantively differ-
ent than internal program interactions. Based on this,
one of the key innovations of Phoenix is a novel, light-
weight checkpointing system to efficiently track both in-
ternal and external state. After a failure, this enables
Phoenix not only to reset the internal program state, but
also to restore the external peripheral state by determin-
ing whether each peripheral access must be re-executed
or rematerialized.

The microcontrollers that Phoenix targets are severely
resource-constrained. Phoenix guarantees rollback to
the precise point at which a failed peripheral access oc-
curred, re-executing the minimal necessary set of actions
during recovery. Further, two of the three applications
on which Phoenix was evaluated experienced no perceiv-
able overhead during normal system operation. Finally,
Phoenix used no more than 6 KB to log both internal and
external state for these applications.

Embedded systems interact with the real world by con-
trolling actuators based on sensory inputs. The peripher-
als enabling these interactions are thus fundamental com-
ponents of the system and must be reliable. By providing
a complete recovery process that addresses the unique
challenges of resource-constrained embedded systems,
Phoenix is an important step towards improving the fu-
ture of writing reliable embedded applications.
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Abstract
Logging has been a common practice for monitoring and
diagnosing performance issues. However, logging comes
at a cost, especially for large-scale online service sys-
tems. First, the overhead incurred by intensive logging is
non-negligible. Second, it is costly to diagnose a perfor-
mance issue if there are a tremendous amount of redun-
dant logs. Therefore, we believe that it is important to
limit the overhead incurred by logging, without sacrific-
ing the logging effectiveness. In this paper we propose
Log2, a cost-aware logging mechanism. Given a “bud-
get” (defined as the maximum volume of logs allowed to
be output in a time interval), Log2 makes the “whether to
log” decision through a two-phase filtering mechanism.
In the first phase, a large number of irrelevant logs are
discarded efficiently. In the second phase, useful logs are
cached and output while complying with logging budget.
In this way, Log2 keeps the useful logs and discards the
less useful ones. We have implemented Log2 and evalu-
ated it on an open source system as well as a real-world
online service system from Microsoft. The experimen-
tal results show that Log2 can control logging overhead
while preserving logging effectiveness.

1 Introduction

Logging has been commonly adopted for monitoring and
diagnosing performance issues of online service systems,
such as web search engines and online banking systems.
Typically, performance logs record the end-to-end exe-
cution time of a service request as well as the execution
time of a component of the service system. Logging is
usually achieved by instrumenting source code with log-
ging statements and the resultant logs are stored on disks.
In practice, performance logs constitute a large propor-
tion of total logs. For example, our study of a Microsoft
online service system (described in Section 6) shows that
around 20%-40% of the total logs are performance logs.

Although logging is effective for performance diagno-
sis, it comes at a cost. Logging introduces overhead, such
as disk I/O bandwidth as well as CPU and memory con-
sumption. Intensive logging could further interfere with
the service’s normal execution. For example, web search
engines are sensitive to performance interference from
the logging system, which tends to generate huge vol-
ume of logs. Empirical results [20] show that if logging
is fully conducted, the average execution time of requests
in a search engine could increase by 16.3% and the aver-
age throughput could decrease by 1.48%. Therefore, it is
critical to reduce the performance interference by reduc-
ing the logging overhead. In addition, our survey (See
Section 2 for more details) of Microsoft engineers con-
firms this finding. About 80% of the survey participants
confirmed that they had experienced non-negligible per-
formance overhead caused by logging. Furthermore, in-
tensive logging could introduce a large amount of less
“useful” logs (i.e., the logs that are not useful for helping
diagnose the performance issue under investigation). A
study [9] on one large-scale online service system in Mi-
crosoft indicates that a high proportion of logs are useless
for diagnostic purposes. Our survey of Microsoft engi-
neers also confirms this observation.

Existing techniques for reducing logging overhead
include manually removing some logging statements,
changing the logging level (e.g., from “Verbose” to
“Medium”), and outputting logs in a sampling fash-
ion [20][6]. These techniques aim to reduce the num-
ber of logs to be output. However, these techniques are
insufficient for several reasons. First, they cannot guar-
antee to preserve logging effectiveness (i.e., preserving
the useful logs for diagnosis purposes). For instance, the
sampling technique could miss important events due to
randomness of the sampling. Second, there is no con-
trol mechanism on “whether to log” (whether or not the
executed logging statement should be output) over the
existing logging systems. Therefore, once developers
decide “where to log”, the logging system must strictly
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output the logs after the execution of the placed logging
statements. The resultant logs could still contain many
useless ones. Finally, most of these existing techniques
do not consider the dynamic properties of a running sys-
tem. For a running system, the changes of workload and
throughput can influence the load of its logging system.
Simply using a single logging level or a sampling rate
may not be able to control the logging overhead dur-
ing workload spikes. Therefore, it is desirable to have
a new, overhead-constrained logging system for perfor-
mance diagnosis.

In this paper, we propose a cost-aware logging mech-
anism called Log2. Using Log2, developers predefine a
resource budget allowed for logging. At runtime, the
logging system decides “whether to log” such that the
logging overhead is constrained under the budget while
the logging effectiveness is maximized. The budget for
logging overhead is defined as logging bandwidth, which
is the maximum volume of logs allowed to be output
in a time interval (such as 1KB per second). There are
two reasons for choosing logging bandwidth as the bud-
get. First, according to our survey, I/O bandwidth is the
most concerning overhead in practice. Second, in gen-
eral, most logging overhead such as disk storage, net-
work I/O and CPU are directly or indirectly affected by
I/O bandwidth. The logging effectiveness is measured
as the percentage of performance issues that can be cap-
tured by the resultant logs.

There are three challenges for realizing such a cost-
aware logging mechanism:

• It should be able to control logging overhead while
preserving logging effectiveness.

• It should incur low additional overhead such as CPU
and memory consumption.

• It should provide flexibility for developers to con-
figure it for different service scenarios, and should
be able to adapt to environmental changes dynami-
cally.

To address the above challenges, Log2 introduces a
two-phase filtering mechanism. In the first phase, a
large number of irrelevant logs are discarded efficiently.
In the second phase, useful logs are cached and out-
put while complying with the logging budget. The two-
phase mechanism is updated dynamically to address all
the challenges.

We evaluate Log2 on BlogEngine, which is a popular
open source blogging platform. Furthermore, we per-
form an evaluation of Log2 using real logs of ServiceX,
which is a large-scale online service system from Mi-
crosoft. The evaluation results confirm that Log2 is ef-
fective and practical in real-world scenarios.

This paper makes the following main contributions:

• We propose a novel cost-aware logging mechanism
Log2, which helps achieve a balance between log-
ging overhead and effectiveness. Such a mechanism
incurs low additional overhead and is flexible.

• We design and implement Log2. We also evaluate
Log2 on both a open source system and a large-scale
online service system from Microsoft.

The rest of the paper is organized as follows. Sec-
tion 2 describes a survey of logging practice in Mi-
crosoft, which motivates the design goals of Log2 de-
scribed in Section 3. Section 4 describes the design and
implementation of Log2. Section 5 provides the detailed
evaluation of Log2 on an open source system. Section 6
describes a case study on Microsoft ServiceX system.
We discuss the limitations and future work in Section 7.
Section 8 introduces the related work, and Section 9 con-
cludes the paper.

2 A Survey of Logging Practice in Mi-
crosoft

To better understand the current logging practice, we
conducted a comprehensive survey among hundreds of
engineers from five product teams in Microsoft. We re-
ceived responses from 84 engineers. According to the
survey, 81 out of 84 respondents are “expert” or “knowl-
edgeable” to logging systems. The survey aims to un-
derstand the participants’ experience in logging systems
and logging overhead. The details of survey questions
are available online [4].

In general, the logging systems used by Microsoft en-
gineers fall into three categories, including (1) internally
developed systems that directly output the executed log-
ging statements via a language-intrinsic component or
a wrapped API; (2) ETW logging [2], which writes the
buffered logs in a batch fashion, and (3) sampling-based
logging tools that are mainly designed for large-scale on-
line services sensitive to logging overhead.

2.1 Logging Overhead
According to our survey, 80% of the participants agreed
that logging overhead is a non-negligible issue. The
top three most commonly concerned types of overhead
are storage (60%), I/O bandwidth (58%), and CPU us-
age (56%). Among the participants, 59% of them have
suffered from the consequences incurred by the logging
overhead. Table 1 shows some of the experiences re-
ported by the surveyed engineers.

The top three most widely used approaches to control
the logging overhead include adjusting the logging level
(93%), manually removing unnecessary logs (64%), and

2
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Table 1: Some of the experiences of the logging overhead
Category Reported Experiences
Disk I/O
bandwidth

Overuse of I/O caused perception of interference with core functionality.
The bandwidth requirement by enabling all logs is 8MB/s, which however should be ≤ 200KB/s.

Storage OS slows down, other process that needs disk space may crash and even logging system could crash.
Storage is a critical component that may cause system crash, but it is often overlooked.

CPU
Service is slowed down significantly once the CPU usage of logging is increased to double digits.
CPU usage of logging is very sensitive to our super-efficient system.
3%-5% is the upper bound for CPU usage of logging.

Memory Unexpected increases of memory usage of logging system was the root cause of one service incident.
Memory leak of logging system caused days of efforts on debugging.

archiving log files periodically (43%). However, about
65% of the participants replied that they are not satis-
fied with the existing approaches. For instance, remov-
ing logs by changing source code requires extra efforts
on re-compiling, testing, and re-deployment. Archiving
log files is often expensive because a large volume of data
needs to be transformed via network. All these existing
approaches are considered to be after-thoughts, and are
applied only when logging overhead starts to compro-
mise the system quality.

About 83% of the survey participants also agreed that
many log messages are redundant for diagnosing perfor-
mance issues, implying the feasibility to reduce logging
overhead while preserving sufficient logging effective-
ness. In addition, about 43% of all participants agreed
that logging overhead needs to be controlled, and they
considered resource budget for logging in their work.

2.2 Other Limitations of Existing Logging
Systems

A number of participants also shared with us additional
limitations of the existing logging systems and expressed
the needs for a cost-aware logging mechanism. These
comments and suggestions strongly motivated the design
of Log2:
Lack of cost-awareness during log instrumentation.
One participant complained about the lack of cost-
awareness during log instrumentation. He noticed that
some developers often had little idea about the result-
ing logging overhead when they planned to instrument
source code with new logging statements. A typical bad
logging practice is to insert logging statements in tight
loops (i.e., the loops which iterates intensively), which
could cause high overhead, especially in I/O throughput
and storage. He suggested a logging system for control-
ling the logging overhead transparently, so that devel-
opers can perform log instrumentation without worrying
about the overhead incurred.
Burden in log analysis. One participant commented that
too many logs make it challenging to analyze logs via

manual inspection. It would be helpful if a logging sys-
tem can collect all possible logs but do not flush all of
them. He also suggested a potential solution: logging
system should flush the logs only when some predefined
rules are violated.

In summary, the survey results motivate a new
overhead-constrained logging mechanism as we propose
in this paper.

3 The Design Goals of Log2

3.1 Cost-Aware Logging Mechanism
In this paper, we propose Log2, a cost-aware logging
mechanism that constraints logging overhead. Using this
mechanism, developer can perform logging by instru-
menting their programs, and predefine a resource budget
for logging. With the given budget, the logging mecha-
nism decides “whether to log” for each logging request
at runtime, makes sure that the logging overhead com-
plies with the predefined budget, and maximizes the log-
ging effectiveness at the same time. In addition, the log-
ging mechanism can support on-the-fly budget setting.
Therefore, the logging mechanism not only provides de-
velopers with the flexibility to strike the balance between
logging overhead and effectiveness, but also provides the
flexibility to configure different logging budgets for dif-
ferent service scenarios, or even the flexibility to dynam-
ically configure the logging budget. Furthermore, such
a cost-aware logging mechanism enables better planning
of maintenance resources [5], as the logging budget can
be determined in advance.

3.2 Design Goals
Log2 is designed to realize such a cost-aware logging
mechanism. The budget for logging overhead in Log2

is defined as logging bandwidth, which is the maximum
volume of logs allowed to be output in a time interval.
Logging bandwidth is the most concerning logging over-
head according to engineers’ feedback. It is also the most

3
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representative logging overhead, because other types of
logging overhead such as disk storage, network I/O and
CPU are often directly or indirectly affected by the log-
ging bandwidth.

We have identified four design goals for Log2, which
are listed below:

Cost-effectiveness: Log2 should be able to achieve an
optimal balance between logging overhead and effec-
tiveness. The logging overhead, defined in terms of log
bandwidth, should be constrained under the budget. Al-
though the logging budget is under constraint, logging
effectiveness cannot be compromised, i.e., with respect
to performance diagnosis, the number of performance is-
sues detected by the reduced number of logs should be
similar to the number of issues detected by the total num-
ber of logs. In Log2, a ranking score named utility score
is defined to measure how much utility each logging re-
quest contributes to performance diagnosis. Log2 then
selects the top-ranked logging requests and outputs them.
Other logging requests are filtered away. More details are
described in Section 4.3.

Low additional overhead. Log2 should incur low addi-
tional overhead. The additional overhead brought by run-
time decision on “whether to log” (i.e., CPU usage and
memory consumption) should be negligible. The design
choices of Log2 for minimizing CPU usage and memory
consumption are described in detail in Section 4.4.

Scalable. Log2 should be scalable to the number of log-
ging requests. It is very common that thousands of re-
quests are processed per second, and considering that
many logging statements are executed when serving one
single request, the scale of the logging requests per sec-
ond is large. A traditional logging system, which makes
centralized decision, suffers since such centralized deci-
sion can delay the logging time as well as increasing the
corresponding memory buffer usage. In contrast, Log2

includes a two-phase filtering design to avoid the poten-
tial bottleneck. The details are described in Section 4.

Flexible. Log2 should provide developers with the flex-
ibility to configure the system. First, Log2 provides sev-
eral types of predefined utility scores, which are designed
for the most common diagnostic scenarios (to be de-
scribed in Section 4.3.1). It also allows developers to
configure a user-defined function for computing utility
scores. Such flexibility enables Log2 to tackle various
types of performance issues. Second, the budget can be
configured on-the-fly. Such on-the-fly configuration en-
ables developers to select a proper logging bandwidth ac-
cording to the different resource plans in different scenar-
ios. Since there is no one-fit-for-all configuration for all
kinds of services, such flexibility is crucially important
for wide adoption in different scenarios. More details
are described in Section 4.3.2 and Section 4.4.2.

1 Log2.Begin(string McrName , ...); // begin

2 DoSomething ();

3 Log2.End(string McrName , ...); // end

Figure 1: Logging API in Log2.

4 Design and Implementation of Log2

This section illustrates the detailed design and imple-
mentation of Log2. We first discuss the high level work-
flow of Log2, and then illustrate its two core components,
namely local filter and global filter. These core compo-
nents are essential for achieving the goals of Log2.

4.1 Logging Requests

For performance diagnosis, developers can specify an
area of code that should be monitored and logged.
We call such an area of code Monitored Code Region
(MCR). Examples of typical MCR include:

• Expensive system-level APIs, such as operations on
I/O, database, networking, etc.

• Loop blocks. Previous work [13] found that a sig-
nificant portion of real-world performance issues
are caused by inefficient loops.

• Function calls cross application-level component
boundaries, such as RPC or the connection between
GUI and backend services.

Performance logs should record two timestamps at the
beginning and end of a MCR, which are sufficient to
compute the execution time of the MCR. Log2 provides
two logging APIs, Begin and End, to denote the begin-
ning and end of an MCR, respectively. The APIs com-
pute the execution time of an MCR and also record the
unique ID of the MCR. Figure 1 depicts the logging API
usage in Log2, where the execution time of DoSomething
is recorded. A pair of logs Begin and End form a logging
request, which will be further processed by Log2 to de-
cide whether they should be filtered or output.

Local filter

Local filter

Global filter

adjusted 
threshold

adjusted 
threshold

log 
requests

log 
requests

Disk

Local filter

...

...

Figure 2: The workflow of Log2.
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4.2 Overall Workflow
The workflow of Log2 is depicted in Figure 2. Two fil-
tering phases, local filter and global filter, are adopted
to decide whether or not the incoming logging requests
should be logged (whether to log). Such a two-phase
filtering mechanism is used to avoid the potential bottle-
neck of a single centralized filter, when a huge number
of log requests come in simultaneously. The local fil-
ters are responsible for discarding the trivial logging re-
quests, which are logging requests that have low utility
scores. The global filter is responsible for flushing the
top ranked logging requests to disk and in the meantime
complying with the logging budget.

Each thread of logging requests has a local filter. Only
the logging requests with utility scores (which are cal-
culated dynamically) higher than a global threshold can
pass through the local filter to a memory buffer in the
global filter. Other logging requests are discarded.

The global threshold is adjusted dynamically, to adapt
to environment dynamics, while optimizing the effec-
tiveness and efficiency of Log2. Usually, a significant
high portion of logging requests are discarded in the first
phase. In the global filter, the final decision on log out-
putting is made periodically to make sure that the bud-
get constraint is compliant. The logging requests from
all local filters during the last time window are cached
in memory. When a periodic event is triggered, the
cached logging requests are sorted according to their
utility scores. Only the top-ranked requests with total
volume equal to the logging budget are flushed to disk.
Meanwhile, the global threshold for utility scores is up-
dated by the global filter by considering the volume of
logging requests in recent time intervals. Lastly, the
global filter feeds the new threshold back to each local
filter.

Details about each component are described in the fol-
lowing subsections.

4.3 Local Filter
The major task of the local filter component is to com-
pute the utility score for each logging request. The util-
ity score measures the usefulness of a logging request
for performance diagnosis. Note that a local filter is ex-
ecuted in the same service thread being monitored. The
overhead for computing utility score should be kept low
to reduce the impact on the service.

4.3.1 Formula of utility score

To compute the utility score for each logging request, we
analyze the histogram of the execution time of the cor-
responding MCR. The intuition is that the utility score
should be higher if the execution time of a MCR de-
viates further away from its past behavior. For each

MCR, we can measure the degree of performance devia-
tion based on the histogram of the execution time of the
MCR. However, it is inefficient to maintain the complete
history of execution time for each MCR and compute the
histogram. In our work, we adopt the concept of method
of moments [15], which can be efficiently computed. Ac-
cording to statistical theory, moments can well approxi-
mate histogram [10]. The 1-order of moment is mean,
and the 2-order of moment (σ 2) is the square of standard
deviation (σ ).

Based on the mean (µ) and the standard deviation (σ )
of execution time of an MCR, we propose three forms of
utility scores, given the current execution time t of the
MCR:

utility =
t −µ − τ

σ
(1)

utility = t (2)

utility = t −µ − τ (3)

In Equation (1), a constant value τ is a tolerance factor,
which is used to further reduce false-positives for MCRs.
For example, execution time of 5ms is significantly ab-
normal compared to 1ms as the average execution time,
but is ignorable for performance diagnosis. The default
value of τ is 25ms.

Equation (2) simply uses the execution time as the util-
ity score, which is suitable when the users would like
to identify performance hotspots (e.g., those components
with the longest execution time). Equation (3) computes
utility score based on the mean execution time. Com-
pared with Equations (1) and (2), it considers the abnor-
mality (t-µ) while ignores the fluctuation.

Besides the predefined utility formulas, we also allow
users to specify their own utility functions to cater for
their own scenarios.

4.3.2 Updating the utility scores dynamically

During performance monitoring, the execution time t of
each MCR varies at runtime. Therefore, the mean and
standard deviation of t should be updated dynamically
over time. moments can be updated incrementally, with
the time complexity of O(1):

µn = (1− 1
n
)µn−1 +

1
n

tn (4)

σ2
n = (1− 1

n
)[σ2

n−1 +
1
n
(tn −µn−1)

2] (5)

where n denotes the nth update; tn is the nth execution
time.

We also modify the Equations (4) and (5) in a man-
ner similar to Exponential Smoothing[11]. Exponential
Smoothing can better capture the slow-varying system
dynamics. The corresponding formulas are as follows:

µn = (1−α)µn−1 +αtn (6)

5
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σ2
n = (1−α)[σ2

n−1 +α(tn −µn−1)
2] (7)

where α is a weighting factor, which is empirically set to
0.01.

4.4 Global Filter
In Log2, the global filter component performs two major
tasks: log flushing and utility-threshold adjusting.

4.4.1 Log flushing

Log flushing is triggered periodically, and such period
is called flush interval. When the timer is triggered,
Log2 first sorts the buffered logs according to the util-
ity score, and then flushes the top ranked logs so that
the total flushed log volume does not exceed the logging
budget. All selected logs are packed together and are
flushed once in a batched fashion.
Buffer design. Proper buffer design is important for re-
ducing logging overhead, especially for reducing CPU
usage. Note that the buffer will be accessed by multiple
local filters with fast inserting operation, as well as the
global filter thread with slow sorting and flushing oper-
ations. To make sure that the latter one does not affect
the inserting performance and thus does not block work-
ing threads, Log2 includes a data structure called swap
buffer, which has two buffers: one serves for inserting
operation, and the other serves for sorting and flushing
operations. These two buffers are swapped periodically
after a flush interval. A 0/1 flag is used to indicate which
buffer is currently used for insertion, and which one is
for flushing. Such mechanism guarantees that the two
threads work on different buffers without lock contention
except swapping the global flag.
Flush-interval selection. Long flush interval would
result in larger swap buffer, and thus more memory
consumption; while shorter interval benefits less from
batched flushing, and incurs frequent overhead in swap-
ping buffers. Log2 currently sets the default flush interval
to 30 seconds, which works well in our experiments and
practice. Users are also allowed to configure the flush
interval on-the-fly.

4.4.2 Utility threshold adjustment

The utility threshold is used to control the volume of logs
to be inserted into the swap buffer. Because only the log-
ging requests with utility scores larger than the thresh-
old is cached, setting a proper threshold is very impor-
tant for Log2. Specifically, if the threshold is set too low,
massive logs could be inserted into the swap buffer, the
consequence is larger overhead. On the other hand, if
the threshold is set too high, only a small amount of logs
could be cached in the buffer, thus the important logs

could be missed, leading to unacceptable logging effec-
tiveness.

The optimal objective is to cache just budget-volume
logs by selecting a proper threshold. Choosing such an
optimal threshold value in one-shot in unrealistic, be-
cause either the environment dynamics or the frequency
of different utility scores is unknown. To address this
challenge, we design an iterative way for adjusting the
threshold by ‘learning from history’. The duration of
each iteration is called adjust interval. Intuitively, when
the volume of logs in the previous adjust interval is
higher than the budget, then the threshold should be in-
creased. The threshold should be decreased when the
volume of logs in the previous adjust interval is lower
than the budget. From both effectiveness and efficiency
perspectives, it is desirable that the adjusting algorithm
should converge quickly, and the volume of logs in the
buffer should not be too large (low overshoot [19]) in
any interval. We next illustrate the details of Log2’s
threshold-adjustment algorithm, which is agile and has
low overshoot.
Adjustment mechanism. Let us denote the threshold
and log volume as Tn and Vn, respectively. Here n is the
index of the adjust interval. Let us denote B as the log-
ging budget. The threshold adjusting mechanism used in
Log2 is as follows (in the form of Secant Method [18]):

Tn = Tn−1 +(Vn−1 −B)× Tn−1 −Tn−2

Vn−1 −Vn−2
(8)

Mathematically, the convergence of our algorithm is
super-linear, with an order of 1.618 [18]. More de-
tails about the mathematical deduction of our method are
available at our project website [4]. The interpretation is
that the ‘gain’ Tn −Tn−1 on the threshold is proportional
to ‘error’ Vn−1 − B, and coefficient Tn−1−Tn−2

Vn−1−Vn−2
approxi-

mates the reciprocal of the derivative, if we treat V as
a function of T .

In our implementation, to avoid a divide-by-zero error,
we add 1 if Vn−1 −Vn−2 is close to 0. When Tn−1 −Tn−2
is equal to zero, threshold updating can trap to a certain
number and never changes. To avoid such issue, we add
a very small value (0.01) under such situation.
Adjustment interval. To make the threshold adjustment
mechanism more effective, a properly chosen adjust-
ment interval is needed. The adjustment interval should
mitigate the fluctuation of environment change, i.e., the
workload varies slowly under the granularity of the cho-
sen adjustment interval. Therefore, the adjust interval
cannot be too short; otherwise, the transient random vari-
ation of workload will be significant, On the other hand,
a too long interval indicates longer time for convergence,
making Log2 less agile. In our implementation, Log2 sets
the adjust interval to 30 seconds, which is the same as the
flush interval.

6
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4.5 Implementation Details

We have implemented Log2 using the C# language.
Some details about the implementation are as follows.
Bounded memory usage. The maximum memory us-
age of Log2 is set to 50MB in configuration, so that Log2

has negligible memory contention with normal service
operations. In our implementation, when the maximum
memory usage is reached, new logging requests will be
dropped in the same flushing interval. In fact, 50MB is
rarely reached in most cases. Specifically, two compo-
nents in Log2 consume most memory usage. One is the
cache for maintaining µ and σ for all the MCRs. For a
large-scale online service, the number of MCRs is in a
magnitude of 100,000, so the corresponding memory us-
age is 100,000 × 2 × 8B = 1.6MB. The other component
that consumes most memory usage is the swap buffer.
Its size depends on both the budget size and flush inter-
val. The I/O bandwidth of logging is 200KB/s (which is
20GB per day!) per machine for a typical large-scale on-
line service. Because the budget size does not exceed the
overall throughput, a much loose upper bound of mem-
ory usage on the swap buffer is 200KB/s × 60s × 2 =
24MB. In addition, the 50MB threshold has not been
reached in all of our experiments.
Handling system idle time. System idling is a spe-
cial circumstance that needs to be handled. Specifically,
when logging requests are rare, the budget will not be
reached no matter how the utility threshold is adjusted.
The consequence is that the utility threshold could be-
come extremely low, and thus the system will overshoot
dramatically (i.e., there will be a burst of flushing) when
the intensity of logging requests turns back to normal. In
order to avoid such circumstances, a lower bound on the
adjust interval is set. In our implementation, we set the
lower bound to 0. Such mechanism is commonly used in
the area of control engineering [8].
Nested instrumentation. To support nested instrumen-
tation, it is noteworthy that each local filter actually
maintains a timestamp stack to match the logging begin-
end pair, When a Begin is invoked, the corresponding
timestamp is pushed into the stack; and when an End is
invoked, the top element in the stack is popped, and is
matched as the Begin corresponding to the current End
invocation. As illustrated in Section 4.3.2, the histori-
cal information of each MCR is maintained separately,
therefore, dropping the outer log request will not directly
lead to the dropping of the inner log request.

5 Evaluation

In our evaluation, we intend to evaluate Log2 from the
following three aspects:
Logging throughput: How much I/O throughput (the

volume of logs flushed to disk within a time interval) can
be reduced by Log2, compared with the existing logging
system?
Logging effectiveness: How effective is Log2 in diag-
nosing performance issues? The effectiveness is mea-
sured as the percentage of performance issues that can
be captured by the flushed logs.
Additional overhead: How much additional CPU and
memory overhead is incurred by Log2?

5.1 Experimental Subject and Setup
To evaluate Log2, we design experiments on BlogEngine
[1], which is a popular open-source, ASP.NET based
blogging platform. BlogEngine has received more than
1,000,000 downloads as of January 30, 2015. It supports
various blogging activities, such as writing blogs, adding
comments, sharing, and following. We choose the ver-
sion 2.8, as it is a recent stable version.

To evaluate Log2 on BlogEngine, we run the Blo-
gEngine as a service, and we simulate concurrent ac-
cess to the service via multiple synthetic users. We then
analyze the logs generated by Log2 as well as the run-
time performance. We set up the experiment on Blo-
gEngine with four steps: instrumentation, deployment,
performance issue injection, and overhead monitoring.
Below are the detailed setup procedures.
Instrumentation. We perform program instrumenta-
tion guided by previous work [14] [13]. Specifically,
three types of code regions in BlogEngine are marked
as MCRs and logged, since they have relatively high po-
tential to cause performance issues. These three types of
MCRs include expensive system-level APIs, loop blocks,
and function calls. In summary, about 1000 MCRs are
identified and instrumented.
Deployment. We use one physical machine to deploy the
BlogEngine service, and two other physical machines are
configured as client nodes. Each machine runs Windows
Server 2012 R2, with CPU Intel(R) Xeon(R) E5-2650 v2
@ 2.60GHz (2 processors) and 192GB Memory.

We adopt a tool named WebTest [3] to simulate high
workload from multiple synthetic users to access the Blo-
gEngine service. WebTest is a new testing tool released
with Visual Studio 2012. It can be configured to gen-
erate mixed types of requests with user-specified loads.
In our experiment, we generate five typical types of re-
quests in WebTest - read blogs, write comments, search,
download files and upload files. These requests cover the
most common usage scenarios of BlogEngine.
Performance Issue Injection. In order to evaluate the
logging effectiveness of Log2, we inject three types of
performance issues, namely upload an extremely large
file, search a strange term, and exhaust CPU by other
process. Specifically, when uploading a file with size
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larger than 100MB, the GUI on the client side starts to
hang (a possible fix is to put the uploading job in a back-
end thread). The response to the search operation be-
comes significantly slow when entering a strange query
term that is long and contains special characters (a pos-
sible fix is to pre-process the query term). Both of these
two performance issues can be directly pinpointed by the
corresponding logs.

We write a program named ResourceEater to con-
sume high CPU usage in a certain period to mimic the
third type of performance issues. When ResourceEater
is launched, it occupies CPU intensively. The runtime
performance of BlogEngine degrades significantly. Such
performance issues can be reflected in the corresponding
logs (e.g., the logs that mark the loop blocks).
Overhead monitoring. To measure the I/O throughput,
we record the number of logs flushed to disk per time
interval. To measure the additional CPU/Memory over-
head of Log2, we write a program named Per f Monitor
to periodically monitor the CPU and memory usage of
BlogEngine at every second. The CPU overhead is mea-
sured as the percentage of total CPU cycles Log2 occu-
pies, and the memory overhead is measured as the bytes
of memory space Log2 consumes.

5.2 Experimental Design

We design an experiment to evaluate Log2. We use the
WebTest tool [3] to simulate 101 synthetic users con-
currently accessing BlogEngine. The experiment runs
for two hours. Among the 101 users, 100 users mimic
the normal user behaviors, which fall into the five afore-
mentioned groups (read blogs, write comments, search,
download files and upload files). One user mimics the
abnormal usage to inject two types of performance is-
sues (upload an extremely large file and search a strange
term), which are generated 78 times during the 2-hour
experiment.

To inject the issues caused by exhausting CPU by
other process, the ResourceEater is triggered on the ser-
vice machine one hour after start, and lasts for 10 min-
utes.

We also evaluate the logging effectiveness of Log2 us-
ing three utility scores: t, (t − µ − τ), (t − µ − τ)/σ ,
respectively.

In the experiment, we compare Log2 with the baseline
approach, which directly outputs all executed logs with-
out considering cost-effectiveness. As we instrument all
the interested MCRs, the baseline approach is able to de-
tect all injected performance issues. We are interested in
knowing how Log2 can detect similar number of issues
using fewer amount of logs.

In addition, we compare Log2 with two sampling-
based logging approaches, named Sampling-counter
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Figure 3: Comparison of logging throughput. (budget =
120 logs/interval)

and Sampling-time, respectively. Sampling-counter is
counter-based, which uses a global counter to record
how many logging requests are processed. Only the logs
whose corresponding counter is divisible by the recipro-
cal of the sampling rate are flushed to disk. Sampling-
time is time-interval based, which uses a timer to control
when the logs are flushed to disk. Only the logs executed
when the timer is triggered are flushed.

5.3 Experimental Results
Logging throughput. Figure 3 shows the number of
logs flushed per time interval (30s) using Log2 and the
baseline logging approach, respectively. The budget is
set to 120 logs/interval. The big drop on the number of
logging requests (around interval 118-136) is due to the
launching of ResourceEater.

Figure 3 shows that the logging throughput is signifi-
cantly reduced using Log2. The average number of logs
flushed per interval is 104 for Log2, while it is 3,800 for
the baseline logging approach. The reduction on log-
ging throughput is over 97%. In addition, the logging
throughput of Log2 strictly complies with the budget con-
straint (< 120 logs/interval).

Logging effectiveness. The logging effectiveness is
inherently associated with the budget size, i.e., the log-
ging bandwidth. Higher logging bandwidth would in-
duce higher logging effectiveness. We evaluate the log-
ging effectiveness by varying the budget size. In addi-
tion, we also evaluate three alternative formulas of utility
scores (t, t −µ − τ , and (t −µ − τ)/σ ).

Figure 4 illustrates how the logging effectiveness in-
creases as the budget size increases. All the three pro-
posed utility scores help achieve high effectiveness, i.e.,
the coverage of marked logs increases quickly to almost
100% when the budget size starts to increase. The results
indicate that Log2 has strong ability to preserve high log-
ging effectiveness while reducing a significant amount of
logs.
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Figure 4: Logging effectiveness vs. budget size

Figure 5: Logging effectiveness of two sampling-based
approaches

The results of two sampling-based logging systems,
Sampling-counter and Sampling-time, are illustrated in
Figure 5. The effectiveness of either Sampling-counter
or Sampling-time is approximately proportional to the
sampling rate, which is much lower than what Log2

achieves. It is worth noting that the budget size of
120 logs/interval is equivalent to the sampling rate of
3%. While Log2 achieves almost 100% coverage with
such budget size, Sampling-counter and Sampling-time
achieve only 2% and 6% coverage, respectively.

For the issues injected by exhausting CPU by other
processes, there are in total 690,000 individual calls on
6 instrumented loop blocks during the experiment (note
that each loop block is one MCR). By using Log2, only
22,000 (97% reduction) calls on loop blocks are recorded
(budget size = 120 logs/interval), with the average execu-
tion time of 160ms. By inspecting the loop-related logs,
we found that the average execution time is 423ms when
ResourceEater is launched, which is significantly larger
than the average value (160ms) without the impact of Re-
sourceEater. Our inspection shows that the logs reflect-
ing loops with long execution time are recorded, which
demonstrates the capability of Log2 to detect the perfor-
mance issue due to exhausted CPU usage.

In summary, the experimental results show that Log2 is
effective in detecting performance issues, while keeping
the volume of logs low.

Additional overhead. Log2 works in the same
process of the BlogEngine service, hence its own
CPU/Memory usage cannot be measured directly. In or-
der to evaluate the overhead of Log2, we measure the
overall CPU/Memory usage of the BlogEngine system
integrated with Log2, and compare it with the overall us-
age of the BlogEngine system integrated with the base-
line logging approach (outputting all logs). We run the
experiment with each setting 7 times to overcome ran-
dom variations.

Table 2: Comparison on overall resource usage
Logging system Memory(GB) CPU(%)

Log2 4.74±0.21 63.4±3.0
Baseline 4.70±0.25 70.6±4.1

According to Table 2, the additional memory usage of
Log2 over the baseline approach is not noticeable. When
integrated with Log2, the average CPU usage of Blo-
gEngine is slightly lower than that with the baseline log-
ging system. This is because using Log2, a large number
of logging requests are discarded at early stage, there-
fore a significant amount of processing (such as logging
state extraction or string conversions) as well as lock con-
tention are avoided, leading to reduced CPU usage.
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Figure 6: Dynamics of swap buffer size

In order to evaluate the memory usage of Log2, we
monitor the size of the swap buffer over time. Figure 6
shows the number of logs inserted into the swap buffer
per flush interval. There is one peak at the beginning,
when the threshold for the utility score is not converged.
The peak is about 1.3 times higher than average, which
is far from the default maximum memory limit set in
Log2. In addition, it takes only five iterations to con-
verge, which shows that the small memory peak disap-
pears quickly. The variation of the curve is mostly caused
by the randomness in the workload.
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6 An Application to Microsoft ServiceX

To further evaluate Log2, we have applied it to analyze
the performance logs of Microsoft ServiceX (the service
name is anonymized due to confidentiality). ServiceX is
a large-scale online service system, serving millions of
users globally.

Designed with a 3-tier architecture, ServiceX is run
on a large number of machines, each of which continu-
ously generates huge amount of logs. A typical front-end
machine usually generates logs with a speed of 30MB
per minute. Log aggregation from all the machines is
a heavy task, since each machine generates about 40GB
logs every day. ServiceX provides a logging API called
MoS for performance diagnosis. The corresponding logs
are called MoS logs (i.e., performance logs), which take
up 20%-40% of the total logs. Engineers of ServiceX
would like to reduce the large volume of MoS logs, since
most of them are not useful for performance diagnosis
and they simply incur overhead.

We apply Log2 to evaluate its ability to reduce the vol-
ume of MoS logs.
Setup. Each MoS log entry contains the following in-
formation: log time, execution time of the MCR, code
region ID, and thread ID. Such information is sufficient
to re-construct the execution flows of all the MoS logs.
We randomly select 12 different datasets. Each dataset
contains logs generated during one continuous hour.

We focus on evaluating logging bandwidth and effec-
tiveness in our study. To do so, we identify performance
hotspots, which are the code regions that take most time
to execute. We choose the MoS logs having the top 0.3%
(i.e., 1 - 99.7%, which is a 3-sigma rule of thumb [22])
longest execution time as the performance hotspots. We
then apply Log2 to see how many of these performance
hotspots can be successfully identified. We choose t as
the utility formula. We evaluate logging effectiveness as
the coverage of the performance hotspots by varying the
budget size. Additionally, we also evaluate how the flush
interval affects the effectiveness.
Results. Figure 7 shows the logging effectiveness of
Log2 by varying the budget size. Since we conduct ex-
periments on 12 datasets, the effectiveness on each bud-
get is represented by a range. As shown in Figure 7, the
coverage of performance hotspots quickly comes up to
100% when the budget size increases. Particularly, when
the budget is set to 100 logs/interval, which is equivalent
to the sampling rate of 0.77%, the coverage is already
98%. On the other hand, only 4.5 MB logs are recorded,
while the size of original MoS logs is 500MB for each
dataset.

Figure 8 shows the effectiveness of Log2 under differ-
ent flush interval values. Here the budget is set to 120
logs/interval, which is equivalent to the sampling rate of
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Figure 7: Logging effectiveness vs. budget

1.0% . When the flush interval is very small, the cover-
age rate is relatively low, mainly due to the significance
of randomness on the workload. Setting the flush inter-
val to 30 seconds is satisfactory, since the coverage rate
here is almost 100%.
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Figure 8: Logging effectiveness vs. flush interval

In summary, our case study on ServiceX has con-
firmed the applicability of Log2 to real-world systems.

7 Discussion

Budget control for multiple services. In our current de-
sign, Log2 is implemented as a runtime logging library
and can be dynamically linked to a service system un-
der monitoring. It controls the budget for only one single
service. As budget can be changed dynamically, it is pos-
sible to make Log2 a standalone process, which manages
a set of budgets for multiple services. Such a centralized
budget control system can further enable dynamic budget
re-allocation to different services.

Supporting more types of performance analysis.
Log2 is very effective for capturing performance hotspots
on-the-fly. In practice, there are other commonly re-
quired types of performance analysis. For example, to
understand the overall latency status of the system un-
der monitoring, the total number of times the latency hits
the 3-sigma threshold, the average latency of a compo-
nent, and so on. Log2 has the ability to provide such
information. For example, Log2 maintains the mean
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and standard deviation values for each MCR. In addi-
tion, Log2 can record how many times each MCR is up-
dated. Hence, many other measures of performance sta-
tus (such as the 3-sigma measures) can be easily derived
from these basic statistics. Additionally, all the data of
Log2 can be dumped periodically and used by other per-
formance analysis tools. Analytical reports based on the
off-line processing of the data can produce comprehen-
sive information for postmortem analysis.

Multiple objectives. Currently we only define bud-
get in terms of I/O bandwidth, as it is mostly concerned
by our surveyed participants. It is possible to consider
more objectives, such as CPU and memory usage, and to
control logging overhead by performing multi-objective
optimization. We will address it in our future work.

Where to log. As described in Section 4.1, we iden-
tify MCRs for performance diagnosis. In this paper, we
focus on the problem of “whether to log”. Another im-
portant topic is “where to log”, i.e., the automatic identi-
fication of code regions that should be logged and moni-
tored. The two problems, “whether to log” and “where to
log” are closely related to each other. For example, the
logging mechanism we proposed enables “conservative
logging”, i.e., developers can instrument a large amount
of logging statements without concerning about the log-
ging cost. This is an important topic of our future work.

Leveraging non-performance logs. Although perfor-
mance logs are common in practice, there are also other
types of logs such as those for failure diagnostics. Two
adjacent log entries indicate the time spent on executing
code between the two log entries. It would be interesting
to leverage those logs for performance diagnosis.

Extension to failure diagnosis. Our current work fo-
cuses on analyzing performance logs for effective and ef-
ficient monitoring and diagnosis of performance issues.
Apart from performance logs, there are other types of
logs such as logs recording error and failure information.
These logs are mainly for diagnosing software failures
in production environment [24, 26, 27]. How to extend
our work to support failure diagnosis is important future
work.

8 Related Work

Performance monitoring and diagnosis has becoming in-
creasingly important, especially in the era of Internet-
based services and cloud computing. A large amount of
research has been conducted to characterize [13, 28, 16]
and improve system performance [14, 21, 23, 12, 7].

In production environment, logging is still the most
commonly used technique for performance monitoring
and diagnosis. Dapper [20] is a large-scale distributed
tracing infrastructure widely adopted by Google for
ubiquitous and continuous monitoring. Dapper is de-

signed to have low overhead, application-level trans-
parency and scalability. Log2 shares the same design
goals with Dapper, and goes one-step forward with finer-
grained and more accurate control on logging overhead
to comply with the resource budget. Dapper flushes only
a fraction of all traces using a sampling (with a manu-
ally configured sampling rate) approach such that inter-
esting traces could be missed. Log2 preserves useful logs
with significantly higher effectiveness. At the same time,
Log2 guarantees the resource budget constraints, which
can be violated in Dapper.

ETW (Event Tracing for Windows) [2] is a frame-
work that can log Windows kernel or application-specific
events to a log file. It has a buffering mechanism that
reduces the number of disk accesses for logging. How-
ever, ETW is not cost-aware: it cannot selectively record
a number of logs based on a given budget.

Paradyn [17] also controls its instrumentation over-
head dynamically. However, it depends on users to ex-
plicitly configure where to log, and predict whether to
log. Log2 instead is user-transparent in that whether
to log decisions are dynamically made by the log-
ging mechanism. Excessive instrumentation is com-
monly adopted in the profiling domain. Matthew [6]
presents sampling based low-cost instrumentation to en-
able feedback-guided just-in-time optimization. Like
Dapper, logging based on random sampling would miss
interesting traces.

Yuan et al. [25, 26, 27] have pioneered the work on
log-based failure diagnosis. LogEnhancer [27] aims to
enhance the recorded contents in existing logging state-
ments by automatically identifying and inserting critical
variable values into them. ErrLog [26] utilizes a num-
ber of exception patterns that potentially cause system
failures, and then adds proactive logging code to auto-
matically log all of them. These work mainly address the
problems of “what to log” and “where to log”. Our work,
instead, focuses on “whether to log”.

9 Conclusion

In this paper, we have presented Log2, a cost-aware log-
ging system for making the optimal “whether to log”
decisions. Log2 adopts a two-phase filtering mecha-
nism to selectively record useful logs based on a given
logging bandwidth. The experimental results on both
BlogEngine and ServiceX demonstrate the capability of
Log2 to control logging overhead while preserving effec-
tiveness.

Currently, Log2 analyzes performance logs for perfor-
mance monitoring and diagnosis. As we discussed in
Section 7, in the future we will extend Log2 to support
more type of analysis, such as supporting other kinds of
logs for failure diagnosis.
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Abstract

Enterprises routinely use data protection techniques to
achieve business continuity in the event of failures. To
ensure that backup and recovery goals are met in the
face of the steep data growth rates of modern workloads,
data protection systems need to constantly evolve. Re-
cent studies show that these systems routinely miss their
goals today. However, there is little work in the literature
to understand why this is the case.

In this paper, we present a study of 40,000 enterprise
data protection systems deploying Symantec NetBackup,
a commercial backup product. In total, we analyze over
a million weekly reports which have been collected over
a period of three years. We discover that the main rea-
son behind inefficiencies in data protection systems is
misconfigurations. Furthermore, our analysis shows that
these systems grow in bursts, leaving clients unprotected
at times, and are often configured using the default pa-
rameter values. As a result, we believe there is poten-
tial in developing automated, self-healing data protection
systems that achieve higher efficiency standards. To aid
researchers in the development of such systems, we use
our dataset to identify trends characterizing data protec-
tion systems with regards to configuration, job schedul-
ing, and data growth.

1 Introduction

Studies analyzing the characteristics of storage systems
are an important aid in the design and implementation of
techniques that can improve the performance and robust-
ness of these systems. In the past 30 years, numerous
file system studies have investigated different aspects of
desktop and enterprise systems [2, 6, 7, 19, 30, 39, 47,
51, 55, 56]. However, little work has been published
to provide insight in the characteristics of backup sys-
tems, focusing on deduplication rates [52], and the char-
acteristics of the file systems storing the backup images
[66]. With this study, we look into the backup applica-
tion generating these images, their internal structure, and
the characteristics of the jobs that created them.

Modern data growth rates and shorter recovery win-

dows are driving the need for innovation in the area of
data protection. Recent surveys of CIOs and IT profes-
sionals indicate that 90% of businesses use more than
two backup products [18], and only 28% of backup jobs
complete within their scheduled window [34, 65]. The
goal of this study is to investigate how data protection
systems are configured and operate. Our analysis shows
that the inefficiency of backup systems is largely at-
tributed to misconfigurations. We believe automating
configuration management can help alleviate these con-
figuration issues significantly. Our findings motivate and
support research on automated data protection [22, 27],
by identifying trends in data protection systems, and re-
lated directions for future research.

Our study is based on a million weekly reports col-
lected in a span of three years, from 40,000 enterprise
backup systems, also referred to as domains in the rest
of the paper. Each domain is a multi-tiered network of
backup servers deploying Symantec NetBackup [61], an
enterprise backup product. To the best of our knowledge,
this dataset is the largest in existing literature in terms of
both the number of domains, and the time span covered.
As a result, we are able to analyze the characteristics of
a diverse domain population, and its evolution over time.

First, we investigate how backup domains are config-
ured. Identifying common growth trends is useful for
provisioning system resources, such as network or stor-
age bandwidth, to accommodate future growth. We find
that the population of protected client machines grows
in bursts and rarely shrinks. Furthermore, domains pro-
tect data of a single type, such as database files or virtual
machines, regardless of domain size. Overall, our find-
ings suggest that automated configuration is an important
and feasible direction for future research to accommo-
date growth bursts in the number of protected clients.

The configuration of a backup system, with regards to
job frequency and scheduling, is also an important con-
tributor to resource consumption. Understanding com-
mon practices employed by systems in the field can give
us better insight in the load that these systems face, and
the characteristics of that load. To derive these trends, we
analyzed 210 million jobs performing a variety of tasks,
ranging from data backup and recovery, to management



152 2015 USENIX Annual Technical Conference USENIX Association

Characteristic Observation Section Previous work
System setup The initial configuration period of backup domains is at least 3 weeks. 4.1 None
Protected clients Clients tend to be added to a domain in groups, on a monthly basis. 4.2 None

Backup policies
82% of backup domains protect one type of data. 4.3 None
The number of backup job policies in a domain remains mostly fixed. Also, 79% of
clients subscribe to a single policy. 4.4 None

Job frequency
Full backups tend to occur every few days, while incremental ones occur daily.
Recovery operations occur for few domains, on a weekly or monthly basis. 5.2 None

Users prefer default scheduling windows during weekdays, resulting in nightly bursts of
activity. 5.3 None

Job sizes Incremental and full backups tend to be similar to each other in terms of size and
number of files. Recovery jobs restore either few files and bytes, or entire volumes. 6.1 Considers file

sizes instead [66]
Deduplication
ratios

Deduplication can result in the reduction of backup image sizes by more than 88%,
despite average job sizes ranging in the tens of gigabytes. 6.2 We confirm their

findings [66]

Data retention Incremental backups are retained for weeks, while full backups are retained for months
and retention depends on their scheduling frequency. 6.3 We confirm their

findings [66]

Table 1: A summary of the most important observations of our study.

of backup archives. We find that jobs occur in bursts,
due to the preference of default scheduling parameters by
users. Moreover, job types are strongly correlated to spe-
cific days and times of the week. To avoid these bursts
of activity, we expect future backup systems to follow
more flexible scheduling plans based on data protection
guarantees and resource availability [4, 26, 48].

Finally, successful resource provisioning for backup
storage capacity requires data growth rate knowledge.
Our results show that jobs in the order of tens of GBs are
the norm, even with deduplication ratios of 88%. Also,
retention periods for these jobs are selected as a function
of backup frequency, and backups are performed at inter-
vals significantly shorter than the periods for which they
are retained. Thus, future data protection offering faster
backup and recovery times through the use of snapshots
[1, 22], will have to be designed to handle significant data
churn, or employ these mechanisms selectively.

We summarize the most important observations of our
study in Table 1. Note that a policy (see Section 2.2)
refers to a predefined set of configuration parameters spe-
cific to an application. The rest of the paper is organized
as follows. In Section 2, we provide an overview of the
evolution of backup systems. Section 3 describes the
dataset used in this study. Sections 4 through 6 present
our analysis results on backup domain configuration, job
scheduling, and data growth, respectively. Finally, we
discuss directions for research on next-generation data
protection systems, supported by our findings, in Section
7, and conclude in Section 8.

2 Background

Formally, backup is the process of making redundant
copies of data, so that it can be retrieved if the orig-
inal copy becomes unavailable. In the past 30 years,
however, data growth coupled with capacity and band-

width limitations have triggered a number of paradigm
shifts in the way backup is performed. Recently, data
growth trends have once again prompted efforts to re-
think backup [1, 9, 20, 22, 27]. This section underlines
the importance of field studies in this process (Section
2.1), putting our study in context, and describes the ar-
chitecture of modern backup systems (Section 2.2).

2.1 Evolution of backup and field studies
In the early 1990s, backup consisted of using simple
command-line tools to copy data to/from tape. A number
of studies tested and outlined the shortcomings of these
contemporary backup methods [38, 54, 69, 70]. The lim-
itations of this approach, which included scaling, archive
management, operating on online systems, and comple-
tion time, were subsequently addressed sufficiently by
moving to a client-server backup model [8, 11, 15, 16].
In this model, job scheduling, policy configuration, and
archive cataloging were all unified at the server side.

In the early 2000s, deduplicating storage systems were
developed [53, 67], which removed data redundancy,
lowering the cost of backup storage. Subsequently, Wal-
lace et al. [66] published a study that aims to characterize
backup storage characteristics by looking at the contents
and workload of file systems that store images produced
by backup applications such as NetBackup. A large
body of work used their results to simulate deduplicating
backup systems more realistically [41, 43, 44, 57, 62],
and was built on the motivation provided by the study’s
results [40, 42, 46, 58]. The authors analyze weekly re-
ports from appliances, while we analyze reports from
the backup application, which has visibility within the
archives and the jobs that created them. However, the
two studies overlap in three points. First, the dedupli-
cation ratios reported for backups confirm our findings.
Second, we report backup data retention as a configura-
tion parameter, while they report on file age, two distri-
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Figure 1: Architecture of a modern backup domain.

butions that overlap for popular values. Third, the aver-
age job sizes we report are 5-8 times smaller than the file
sizes reported in their study, likely because they take into
account all files in the file system storing the backup im-
ages. Overlaps between our study and previous work are
summarized in Table 1.

Recently, an ongoing effort has been initiated in the
industry to redefine enterprise data protection as a re-
sponse to modern data growth rates and shorter backup
windows [12, 18, 65]. Proposed deviations from the tra-
ditional model rely on data snapshots, trading manage-
ment complexity for faster job completion rates [22], and
a paradigm shift from backup to data protection policies,
in which users specify constraints on data availability as
opposed to backup frequency and scheduling [1]. The
latter paradigm allows the system to make decisions on
individual policy parameters that can increase global ef-
ficiency, while keeping misconfigurations to a minimum.
In this direction, previous work leverages predictive an-
alytics to configure backup systems [9, 20, 25]. We be-
lieve that all this work is promising, and that a study char-
acterizing the configuration and evolution of backup sys-
tems over time could aid in developing new approaches
and predictive models that ensure backup systems meet
their goals timely, while efficiently utilizing their re-
sources.

2.2 Anatomy of modern backup systems
Modern backup domains typically consist of three tiers
of operation: a master server, one or more storage
servers, and several clients, as shown in Figure 1a. The
domain’s master server maintains information on backup

images and backup policies. It is also responsible for
scheduling and monitoring backup jobs, and assigning
them to storage servers. Storage servers manage stor-
age media, such as tapes and hard drives, used to archive
backup images. By abstracting storage media manage-
ment in this way, clients can send data directly to their
corresponding storage server, avoiding a bandwidth bot-
tleneck at the master server. Finally, domain clients
can be desktops, servers, or virtual machines generating
data that is protected by the backup system against fail-
ures. In an alternative 2-tiered architecture model (Fig-
ure 1b), the storage servers are absent and the storage
media are directly managed by the master server. The
majority of enterprise backup software today, includ-
ing Symantec NetBackup, support the 3-tiered model
[3, 5, 13, 17, 21, 28, 32, 60, 68].

Performing a backup generally consists of a sequence
of operations, each of which is executed as an indepen-
dent job. Such jobs include: snapshots of the state of
data at a given point in time, copying data into a backup
image as part of a full backup, copying modified data
since the last backup as part of an incremental backup,
restoring data from a backup image as part of a recov-
ery operation, and managing backup images or backing
up the domain’s configuration as part of a management
operation. These jobs are typically employed in a prede-
fined order. For example, a full backup may be followed
by a management operation that deletes backup images
past their retention periods.

To be consistently backed up, or provide point-in-time
recovery guarantees, business applications may require
specific operations to take place. In these scenarios,
backup products offer predefined policies that are spe-
cific to individual applications. For instance, a Microsoft
Exchange Server policy will also backup the transaction
log, to capture any updates since the backup was initi-
ated. Users can further configure policies to specify the
characteristics of backups jobs, such as their frequency
and retention rate.

3 Dataset Information

Our analysis is based on telemetry reports collected from
customer installations of a commercial backup product,
Symantec NetBackup [61], in enterprise and regular pro-
duction environments. Reports are only collected from
customers who opted to participate in the telemetry pro-
gram, so our dataset represents a fraction of the customer
base. The reports contain no personal identifiable infor-
mation, or details about the data being backed up.

Report types. Each report in our dataset belongs to ex-
actly one of three types: installation, runtime, or domain
report. Reports of different types are collected at distinct
points in the lifetime of a backup domain. Installation
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Report type Metrics used in study
Installation Installation time

Runtime report
Job information: starting time, type, size,
number of files, client policy, deduplication
ratio, retention period

Domain report
Number and type of policies, number of
clients, number of storage media, number of
storage servers and appliances

Table 2: Telemetry report metrics used in the study.

reports are generated when the backup software is suc-
cessfully installed on a server, and can be used to de-
termine the time each server of a domain first came on-
line. Runtime reports are generated and transmitted on
a weekly basis from online domains, and contain daily
aggregate data about the backup jobs running on the sys-
tem. Domain reports are also generated and transmitted
on a weekly basis, and report daily aggregate metrics that
describe the configuration of the backup domain. The
telemetry report metrics used in this study are summa-
rized in Table 2.

Dataset size. The telemetry reports in our dataset were
collected over the span of 3 years (January 2012 to De-
cember 2014), across two major versions of the Net-
Backup software. We collected 1 million reports from
over 40,000 server installations deployed in 124 coun-
tries, on most modern operating systems.

Monitoring duration. The backup domains included
in our study were each monitored for 5.5 months on av-
erage, and up to 32 months. We elaborate on our strategy
for excluding some of the domains from our analysis in
Section 4.1. Note that the monitoring time is not always
equivalent to the total lifetime of the domain, as many of
these domains were still online at the time of this writing.

Architecture. While NetBackup supports the 3-tiered
architecture model, only 35% of domains in our dataset
use dedicated storage servers. The remaining domains
omit that layer, opting for a 2-tier system instead. Ad-
ditionally, while backup software can be installed on
any server, storage companies also offer Purpose-Built
Backup Appliances (PBBAs) [33]. 31% of domains
in our dataset represent this market by deploying Net-
Backup on Symantec PBBAs.

4 Domain configuration

This section analyzes the way backup domains are con-
figured with regards to their clients and backup policies.
We use the periodic telemetry reports to quantify the
growth rate of the number of clients and policies across
domains, and characterize the diversity of policy types
based on the type of data and applications they protect.
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Figure 2: The average number of clients, policies, and
storage media for a given week of operation, as a fraction
of the expected total, i.e. the overall mean. We begin
our analysis on the fourth week of operation, when these
quantities become relatively stable.

4.1 Initial configuration period
Observation 1: Backup domains take at least 3 weeks
to reach a stable configuration after installation.

The number of clients, policies, and storage media are
three characteristic factors of a backup domain’s config-
uration. These numbers fluctuate as resources are added
to, or removed from the domain. As we monitor domains
since their creation, we find the number of clients, poli-
cies, and storage media to be initially close to zero, and
then increase rapidly until the domain is properly config-
ured. After this initial configuration period, variability
for these numbers tends to be low over the lifetime of
each domain, with standard deviations less than 16% of
the corresponding mean.

To avoid having the initial weeks of operation affect
our results, we exclude them from our analysis. To esti-
mate the average configuration period length, we analyze
the number of clients, policies, and storage media in a
backup domain as a fraction of the overall mean, i.e. the
expected total. In Figure 2, we report the average frac-
tions for all domains that have been monitored for more
than 16 weeks. For example, a fraction of 0.47 for the
number of clients during the first week of operation, im-
plies that the number of clients at that time is 47% of the
domain’s expected total. With the exception of storage
media, which seem to be added to backup domains from
their first week of operation, we find that the number of
clients and policies tends to be significantly lower for the
first 3 weeks of operation. As a result, we choose to start
our analysis from the fourth week of operation.

4.2 Client growth rate
Observation 2: The number of clients in a domain in-
creases by an average of 7 clients every 3.7 months.

Clients are the producers of backup data, and the con-
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Figure 3: Distribution of the average rate at which the
number of clients changes, across all domains in our
dataset. On average, 93% of client population changes
are attributed to the addition of clients.

sumers of said data during recovery. As a result, the num-
ber of jobs running on a backup domain is directly pro-
portional to the number of clients in the domain, deeming
it important to quantify the rate at which their population
grows over time.

Once the initial configuration period for a backup do-
main has elapsed, we find that clients tend to be added
to, or removed from the domain in groups. Therefore,
we characterize a domain’s client population growth by
quantifying the average rate of change in the client pop-
ulation, the sign indicating an increase or decrease in the
population, and size of each change.

To estimate the rate at which the number of clients
change, we extract inter-arrival times between changes
through change-point analysis [37], a cost-benefit ap-
proach for detecting changes in time series. Then, we
estimate the average rate of change for a domain as the
average of these inter-arrival times. In Figure 3, we show
the distribution of the average rates of change, i.e. the av-
erage number of months between changes in the number
of clients across domains. For 42% of backup domains,
the number of clients remains fixed after the first 3 weeks
of operation, while on average the number of clients in
a domain changes every 3.7 months. Overall, we find
no strong correlation between the rate of change in the
number of clients, and the domain’s lifetime.

We further analyze the sign and size of each popula-
tion change. Of all events in which a domain’s client
population changes, 93% are attributed to the addition of
clients. However, 78% of domains never remove clients.
Regarding the size of each change, Figure 4 shows the
distribution of the average number of clients involved in
each change, across all domains in our study. On av-
erage, a domain’s population changes by 7.3 clients at
a time. The average standard deviation of the number
of clients over time is 13.1% of the corresponding ex-
pected value, indicating low variation overall. However,
the 95% confidence intervals (C.I.) for each mean (Fig-
ure 4), suggest that growth spurts as large as 2.16 times
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Figure 4: Distribution of the average number of clients
involved in each change of a domain’s client population,
across all domains in our dataset. The 95% confidence
intervals (C.I.) for each domain’s average are also shown.

Policy category Domains with at least 1 policy

File and block policy 61.24%
Database policy 20.34%
Virtual machine policy 15.13%
Application policy 13.52%
Metadata backup policy 31.93%

Table 3: Percentage of backup domains with at least one
policy of a given category. Less than a third of domains
protect the master server using a metadata backup policy.

the average value are possible, as this is the width of the
average 95% confidence interval.

4.3 Diversity of protected data
Observation 3: 82% of backup domains protect one
type of data, and only 32% of domains effectively protect
the master server’s state and metadata.

To provide consistent online backups, backup prod-
ucts offer optimizations for different application types,
implemented as dedicated policy types [14, 23, 59]. For
our analysis, we partitioned these policy types into four
categories. File and block policies are specifically tai-
lored for backing up raw device data blocks, or file and
operating system data and metadata, e.g. from NTFS,
AFS, or Windows volumes. Database policies are de-
signed to provide consistent online backups for specific
database management systems, such as DB2 and Oracle.
Virtual machine policies are tuned to backup and restore
VM images, from virtual environments such as VMware
or Hyper-V. Application policies specialize in backing up
state for client-server applications, such as Microsoft Ex-
change and Lotus Notes. Finally, a metadata backup pol-
icy can be setup to backup the master server’s state.

In Table 3, we show the probability that at least one
policy of a given category will be present in a backup do-
main. Since domains may deploy policies from multiple
categories, these percentages add up to more than 100%.
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Figure 6: Distribution of the number of policy types per
backup domain, across all domains in the study. More
than 25 distinct NetBackup policy types are present in
the telemetry data.

Surprisingly, we find that only 32% of backup domains
register a metadata backup policy to protect the master
server’s data. While the remaining domains may employ
a different mechanism to backup the master server, guar-
anteeing no data inconsistencies while doing so is chal-
lenging. In any case, this result suggests that automat-
ically configured metadata backup policies should be a
priority for future backup systems.

We also look into the number of policy categories rep-
resented by each domain’s policies, to gauge the diver-
sity in the types of protected data. Interestingly, Figure
5 shows that 82% of domains deploy policies of a single
category (excluding metadata backup policies), and the
remaining domains mostly use policies of two distinct
categories. We further examine the number of distinct
policy types that are deployed in each domain. As shown
in Figure 6, domains tend to make use of a small number
of policy types. Specifically, 61% of the domains deploy
policies of only one, or two distinct types.

4.4 Backup policies
Observation 4: After the initial configuration period,
the number of policies in a domain remains mostly fixed
and 79% of clients subscribe to a single policy each.
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Figure 7: Distribution of the average number of policies
per backup domain. The 95% confidence intervals for
each average are also shown. Overall, the number of
policies remains stable over the lifetime of a domain.

Following from Section 4.2, the policies in a backup
domain, along with the number of clients, are indica-
tive of the domain’s load. Recall from Section 2.2, that
clients subscribe to policies which determine the char-
acteristics of backup jobs. Therefore, it is important to
quantify both the number of policies in a domain and
the characteristics of each, to effectively characterize the
domain’s workload. We defer an analysis of job charac-
teristics to the remainder of the paper, and focus here on
the number of policies in each domain.

In Figure 7, we show the distribution of the average
number of policies in a given backup domain, across
all domains in our dataset. Overall, we find that once
the initial configuration period is complete, the number
of backup policies in a domain remains mostly stable.
Specifically, the expected width of the 95% confidence
interval is 2.5% of the average number of policies.

Figure 7 also shows that the average backup domain
carries 30 backup policies, while 5% of domains carry
over 128. While each policy may represent a group of
clients with specific data protection needs, we find that
individual clients usually subscribe to a single policy. In
Figure 8, we show the distribution of the average number
of policies that each client subscribes to. More than 79%
of clients belong to only one policy, while 16% spend
some or most of their time unprotected (less than one
policy on average). The latter result, coupled with the
large number of policies in backup domains and the fact
that clients are added to a domain in groups (Section 4.2),
suggests that manual policy configuration might not be
ideal as a domain’s client population inflates over time.

5 Job scheduling

While the master server can reorder policy jobs to in-
crease overall system efficiency, it adheres to user pref-
erences that dictate when, and how often a job should be
scheduled. This section looks into the way that these pa-
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Figure 8: Distribution of the average number of poli-
cies that a domain client subscribes to. Overall, 79% of
clients subscribe to one policy, while 16% spend some or
most time unprotected by a policy (x < 1).

Job type Percentage of jobs
Incremental Backups 45.27%
Full Backups 31.20%
Snapshot Operations 12.61%
Management Operations 10.12%
Recovery Operations 0.80%

Table 4: Breakdown of all jobs in the dataset by type.

rameters are configured by users across backup domains,
and the workload generated in the domain as a result.

5.1 Job types
Recall from Section 2.2 that policies consist of a prede-
fined series of operations, each carried out by a separate
job. We collected data from 209.5 million jobs, and we
group them in five distinct categories: full and incremen-
tal backups, snapshots, recovery, and management oper-
ations. In Table 4, we show a breakdown of all jobs in
our dataset by job type. Across all monitored backup do-
mains, we find that 76% of jobs perform data backups,
having processed a total of 1.64 Exabytes of data, while
13% of jobs take snapshots of data. On the other hand,
less than 1% of jobs are tasked with data recovery, hav-
ing restored a total of 5.12 Petabytes of data. Finally,
10% of jobs are used to manage backup images, e.g. mi-
grate, duplicate, or delete them. Due to the data transfer
of backup images, these jobs processed 4.88 Exabytes of
data. We analyze individual job sizes in Section 6.

5.2 Scheduling frequency
Observation 5: Full backups tend to occur every 5
days or fewer. Recovery operations occur for few do-
mains, on a weekly or monthly basis.

A factor indicative of data churn in a backup domain
is the rate at which jobs are scheduled to backup, restore,
or manage backed-up data. To quantify the scheduling
frequency of different job types for a given domain, we
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Figure 9: Distribution of the average scheduling fre-
quency of different job types across backup domains.
Recovery operations are broken into two groups of do-
mains with more, and less than 5 recovery operations
each. Despite being of similar size, the characteristics
of each group differ significantly.

rely on the starting times of individual jobs. Specifi-
cally, starting times are used to estimate the average oc-
currence rate of different jobs of each domain policy, on
individual clients. In Figure 9, we show the distributions
of the scheduling frequency of different job types across
backup domains.

Overall, we find that the average frequency of recovery
operations differs depending on their number. In Figure
9, we show the distributions of the recovery frequency
for two domain groups having recovered data more, and
less than 5 times. The former group consists of 337 do-
mains that recovered data 17 times on average, and the
latter consists of 262 domains with 3 recovery operations
on average. By definition, our analysis excludes an addi-
tional 676 domains that initiate recovery only once. For
domains with multiple events, the distribution of their
frequency spans 1-2 weeks, with an average of 6 days.
On the other hand, domains with fewer recovery opera-
tions perform them significantly less frequently, up to 2
months apart and every 24 days on average. Since recov-
ery operations are initiated manually by users, we have
no accurate way of pinpointing their cause. These re-
sults, however, suggest that frequent recovery operations
may be attributed to disaster recovery testing, while in-
frequent ones may be due to actual disasters. Interest-
ingly, both domain groups are equally small, but when
domains with a single recovery event are factored in, the
group of infrequent recovery operations doubles in size.

In the case of backup jobs, the general belief is that
systems in the field rely on weekly full backups, comple-
mented by daily incremental backups [11, 36, 67]. Our
results confirm this assumption for incremental backups,
which take place every 1-2 days in 81% of domains.
Daily incremental backups are also the default option
in NetBackup. For full backups, however, our analysis
shows that only 17% of domains perform them every 6-8
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Figure 10: Tukey boxplots (without outliers) that repre-
sent the average size of full backup jobs, for different job
scheduling frequencies. Means for each boxplot are also
shown. Frequent full backups seem to be associated with
larger job sizes, suggesting that they may be preferred as
a response to high data churn.

days on average. Instead, the majority of domains per-
form full backups more often: 15% perform them every
1-2 days, and 57% perform them every 2-6 days. This
is despite the fact that weekly full backups is the default
option. As expected, management operations take place
on a daily or weekly basis, since they usually follow (or
precede) an incremental or full backup operation. Snap-
shot operations display a similar trend to full backups, as
they are mostly used by clients in lieu of the latter.

Of the 65% of domain policies that perform full back-
ups every 6 days or fewer, only 33% also perform in-
cremental backups at all. On the other hand, 76% of
policies that perform weekly full backups also rely on
incremental backups. To determine whether full back-
ups are performed frequently to accommodate high data
churn, we group average full backup sizes per client pol-
icy according to their scheduling frequency, and present
the results as a series of boxplots in Figure 10. Note
that regardless of frequency, full backups tend to be small
(medians in the order of a few gigabytes), due to the effi-
ciency of deduplication. However, the larger percentiles
of each distribution show that larger backup sizes tend
to occur when full backups are taken more frequently
than once per week. While this confirms our assump-
tion of high data churn for a fraction of the clients, the
remaining small backup sizes could also be attributed
to overly conservative configurations, a sign that policy
auto-configuration is an important feature for future data
protection systems.

5.3 Scheduling windows
Observation 6: Users prefer default scheduling win-
dows during weekdays, resulting in nightly bursts of ac-
tivity. Default values are overridden, however, to avoid
scheduling jobs during the weekend.

Another important factor for characterizing the work-
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Figure 11: Probability density function for scheduling
policy jobs at a given hour of a given day of the week.
Policies tend to be configured using the default schedul-
ing windows at 6pm and 12am, resulting in high system
load during those hours.

load of a backup system is the exact time jobs are sched-
uled. A popular belief is that backup operations take
place late at night or during weekends, when client sys-
tems are expected to be idle [15, 66]. In Figure 11, we
show our findings for all the jobs in our dataset. The
presented density function was computed by normalizing
the number of jobs that take place in a given domain, to
prevent domains with more jobs from affecting the over-
all trend disproportionately. We note that this normaliza-
tion had minimal effect on the result, which suggests that
the presented trend is common across domains.

The hourly scheduling frequency is similar for each
day, although there is less activity during the weekend.
We also find that the probability of a job being sched-
uled is highest starting at 6pm and 12am on a weekday.
We attribute the timing of job scheduling to customers
using the default scheduling windows suggested by Net-
Backup, which start at 6pm and 12am every day. The
choice to exclude weekends, however, seems to be an
explicit choice of the user. This result suggests that auto-
mated job scheduling, where the only constraints would
be to leverage device idleness [4, 26, 48], would be more
practical, allowing the system to schedule jobs so that
such activity bursts are avoided.

While Figure 11 merges all job types, different jobs
exhibit different scheduling patterns, as shown in Figure
9. Our data, however, does not allow a matching of job
types to scheduling times at a granularity finer than the
day on which the job was scheduled. Thus, we partition
jobs based on their type, and in Figure 12 we show the
probability that a job of a given type will be scheduled on
a given day of the week. We find that incremental back-
ups are scheduled to complement full backups, as they
tend to get scheduled from Monday to Thursday, while
full backups are mostly scheduled on Fridays. Note that
the latter does not contradict our previous result of full
backups that take place more often than once a week,
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Figure 12: Probability of a policy job occurring on a
given day of the week, based on its type. Incremental
backups tend to be scheduled to complement full back-
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Figure 13: Distribution of the average job size of a given
job type across backup domains, after the data has been
deduplicated at the client side. Incremental backups re-
semble full backups in size.

as the probability of scheduling full backups any other
day is still comparatively high. Recovery operations also
take place within the week, with a slightly higher proba-
bility on Tuesdays (which we confirmed as not related to
Patch Tuesday [49]). Finally management operations do
not follow any particular trend and are equally likely to
be scheduled on any day of the week.

6 Backup data growth

Characterizing backup data growth is crucial for estimat-
ing the amount of data that needs to be transferred and
stored, which allows for efficient provisioning of stor-
age capacity and bandwidth. Towards this goal, we ana-
lyze the sizes and number of files of different job types,
and their deduplication ratios across backup domains. Fi-
nally, we look into the time that backup data is retained.

6.1 Job sizes and number of files
Observation 7: Incremental and full backups tend to be
similar in size and files transferred, due to the effective-
ness of deduplication, or misconfigurations. Recovery
jobs restore either a few files, or entire volumes.
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Figure 14: Distributions of average number of files trans-
ferred per job, across different job types. The trends are
consistent with those for job sizes (Figure 13).

An obvious factor when estimating a domain’s data
growth is the size of backup jobs. In Figure 13, we show
the distributions of the average number of bytes trans-
ferred for different job types across all domains, after the
data has been deduplicated at the client. Averages for
each operation are shown in the legend, and marked on
the x axis. Snapshot operations are not included, as they
do not incur data transfer.

Surprisingly, incremental backups resemble full back-
ups in size. Although the distribution of full backups
is skewed toward larger job sizes, 29% of full backups
on domains that also perform incremental backups tend
to be equal or smaller in size than the latter, 21% range
from 1− 1.5 times the size of incremental backups, and
the remainder range from 1.5− 106 times. We attribute
the small size difference to three reasons. First, systems
with low data churn can achieve high deduplication rates,
which are common as we show in Section 6.2. Second,
misconfigured policies or volumes that do not support
incremental backups often fall back to full backups, as
suggested by support tickets. Third, maintenance appli-
cations, such as anti-virus scanners, can update file meta-
data making unchanged files appear modified. Overall,
the average backup job sizes in Figure 13 are 5-8 times
smaller than the file sizes reported by Wallace et al. [66],
likely due to their study considering the sizes of all files
in the file system storing the backup images.

Since recovery operations can be triggered by users to
recover an entire volume or individual files, the distribu-
tion of recovery job sizes is not surprising. 32% of recov-
ery jobs restore less than 1GB, while the average job can
be as large as 51GB. Finally, management operations,
which consist mostly of metadata backups (95.7%), but
also backup image (1.5%) and snapshot (2.8%) duplica-
tion operations, are much smaller than all other opera-
tions, as expected.

Figure 14 shows the distributions of the average num-
ber of files transferred for different job types in each do-
main. Similar to job sizes, the average number of files
transferred per incremental backup is 31% smaller than
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Figure 15: Distributions of the average daily deduplica-
tion ratio of different job types, across backup domains.
Incremental and full backups observe high deduplication
ratios, while the uniqueness of metadata backups (man-
agement operations) makes them harder to deduplicate.

that for full backups, and both job types are characterized
by similar CDF curves. Recovery operations transfer as
many files as full backups on average, yet the majority
transfer fewer than 200 files. This is in line with our
results on recovery job sizes. Given that large recovery
jobs also occur less frequently, these results suggest that
most recovery operations are not triggered as a disaster
response, but rather to recover data lost due to errors, or
to test the recoverability of backup images. Management
operations, being mostly metadata backups, transfer sig-
nificantly fewer files than other job types on average.

6.2 Deduplication ratios
Observation 8: Deduplication can result in the reduc-
tion of backup image sizes by more than 88%, despite
average job sizes ranging in the tens of gigabytes.

For clients that use NetBackup’s deduplication solu-
tion, we analyzed the daily deduplication ratios of jobs,
i.e. the percentage by which the number of bytes trans-
ferred was reduced due to deduplication. Figure 15
shows the distributions of the average daily deduplication
ratio for management operations, full, and incremental
backups across backup domains. Recovery and snapshot
jobs are not included as the notion of deduplication does
not apply. Since deduplication happens globally across
backup images, deduplication ratios for backups tend to
increase after the first few iterations of a policy. In gen-
eral, sustained deduplication ratios as high as 99% are
not unusual. Across all domains in our dataset, however,
the average daily deduplication ratio is 88-89%, for both
full and incremental backups. It is interesting to note that
despite such high deduplication ratios, jobs in the order
of tens of gigabytes are common (Figure 13), suggesting
that even for daily incremental jobs, the actual job sizes
are an order of magnitude larger in size. These results
are in agreement with previous work [66], which reports
average deduplication ratios of 91%.
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Figure 16: Distributions of retention period lengths for
different job types. 3% of jobs have infinite retention pe-
riods. Incremental backups are typically retained for al-
most half the time of full backups, the majority of which
are retained for months.

Finally, for management operations the average dedu-
plication ratio is 68%. Since only 1.1% of domains that
use deduplication enable it for management operations,
we do not attach much importance to this result. For
the reported domains, however, it can be attributed to the
uniqueness of metadata backups, which do not share files
with other backup images on the same backup domain
and consist of large binary files.

6.3 Data retention
Observation 9: Incremental backups are retained for
weeks, while full backups are retained for months and
retention depends on their scheduling frequency.

Another factor characteristic of backup storage growth
is the retention time for backup images, which is a con-
figurable policy parameter. Once a backup image ex-
pires, the master server deletes it from backup storage.
We have analyzed the retention periods assigned to each
job in our telemetry reports, and show the distributions
of retention period lengths for different job types in Fig-
ure 16. Our initial observation is that job retention pe-
riods coincide with the values available by default in
NetBackup, although users can specify custom periods.
These values range from 1 week to 1 year, and corre-
spond to the steps in the CDF shown. While federal laws,
such as HIPAA [63] and FoIA [64], require minimum re-
tention from a few years up to infinity for certain types
of data. In our case, 3% of jobs are either assigned cus-
tom retention periods longer than 1 year, or are retained
indefinitely. On the other extreme, only 3% of jobs are
assigned custom retention periods shorter than 1 week.
Previous work confirms our findings, by reporting simi-
lar ages for backup image files [66].

In particular, management operations (metadata back-
ups and backup image duplicates) are mostly retained for
1 week. Incremental backups are mostly retained for 2
weeks, the default option. Full backups and snapshots,
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on the other hand, are more likely retained for months.
Overall, 94% of jobs select a preset retention period from
NetBackup’s list, and 35% of jobs keep the default sug-
gestion of 2 weeks. This suggests that the actual reten-
tion period length is not a crucial policy parameter.

Finally, we find a strong correlation (Pearson’s r =
0.53) between the length of retention periods for full
backups, and the frequency with which they take place.
Specifically, we find that clients taking full backups less
frequently retain them for longer periods of time. On the
other hand, no such correlation exists for management
operations and incremental backups. This is because al-
most all data resulting from a management operation is
retained for 1 week (Figure 16), and almost all incre-
mental backups are performed with a frequency of 1-2
days apart (Figure 9). The correlation of retention period
length and frequency of full backup operations, coupled
with the preference for default values, may suggest that
retention periods are selected as a function of storage ca-
pacity, or that they are at least limited by that factor.

7 Insight: next-generation data protection

This section outlines five major directions for future
work on data protection systems. In each case, we iden-
tify existing literature and describe how our findings en-
courage future work.

Automated configuration and self-healing. To allevi-
ate performance and availability problems of data pro-
tection systems, existing work uses historical data to
perform automated storage capacity planning [9], data
prefetching and network scheduling [25]. Our findings
support this line of work. We have shown that backup do-
mains grow in bursts, and client policies are either con-
figured using default values, misconfigured, or not con-
figured at all. As a result, clients are left unprotected,
jobs are scheduled in bursts, and users are not warned of
imminent problems. To enable automated policy config-
uration and self-healing data protection systems, further
research is necessary.
Deduplication. Our findings confirm the efficiency of
deduplication at reducing backup image sizes. We fur-
ther show that in many systems, incremental backups are
replaced by frequent full, deduplicated backups. This is
likely due to the adoption of deduplication, which im-
proves on incremental backups by looking for duplicates
across all backup data in the domain. To completely re-
place incremental backups, however, it is necessary to
improve on the time required to restore the original data
from deduplicated storage, which directly affects recov-
ery times. Currently, this is an area of active research
[24, 35, 43, 50].
Efficient storage utilization. Our analysis shows that
job retention periods are selected as a function of backup

frequency, likely to ensure sufficient backup storage
space will be available. Additionally, 31% of domains
in our dataset use dedicated backup appliances (PBBAs),
a market currently experiencing growth [33]. We believe
that storage capacity in these dedicated systems should
be utilized fully, and retention periods should be dynam-
ically adjusted to fill it, providing the ability to recover
older versions of data. In this direction, related work on
stream-processing systems [29] could be adapted to the
needs of backup data.
Accident insurance. Most recovery operations in our
dataset appear to be small in both the number of files and
bytes they recover, compared to their respective backups.
This result suggests that recovery operations are mostly
triggered to restore a few files, or to test the integrity of
backup images. This motivates us to re-examine the re-
quirement of instant recovery for backup systems as a
problem of determining which data is more likely to be
recovered, and storing it closer to clients [40, 45].
Content-aware backups. Data protection strategies can
generate data at a rate up to 5 times higher than produc-
tion data growth [1]. This is due to the practice of creat-
ing multiple copies and backing up temporary files used
for test-and-development or data analytics processes,
such as the Shuffle stage of MapReduce tasks [10]. De-
pending on the storage interface used, it might be more
efficient to recompute these datasets rather than restor-
ing them from backup storage. Another challenge for
contemporary backup software is detecting data changes
since the last backup among PBs of data and billions of
files [31]. By augmenting data protection systems to ac-
count for data types and modification events, we can po-
tentially reduce the time needed to complete backup and
restore operations.

8 Conclusion
We investigated an extensive dataset representing a di-
verse population of enterprise data protection systems
to demonstrate how these systems are configured and
evolved over time. Among other results, our analysis
showed that these systems are usually configured to pro-
tect one type of data, and while their client population
growth is steady and bursty, their backup policies don’t
change. With regards to job scheduling, we find that
the popularity of default values can have an adverse ef-
fect on the efficiency of the system by creating bursty
workloads. Finally, we showed that full and incremental
backups tend to be similar in size and number of files,
as a result of efficient deduplication and misconfigura-
tions. We hope that our data and the proposed areas of
future research will enable researchers to simulate realis-
tic scenarios for building next generation data protection
systems that are easy to configure and manage.



162 2015 USENIX Annual Technical Conference USENIX Association

Acknowledgments

The study would not be possible without the teleme-
try data collected by Symantec’s NetBackup team, and
we thank Liam McNerney and Aaron Christensen for
their invaluable assistance in understanding the data. We
also thank the four anonymous reviewers and our shep-
herd, Fred Douglis, for helping us improve our paper
significantly. Finally, we would like to thank Petros
Efstathopoulos, Fanglu Guo, Vish Janakiraman, Ash-
win Kayyoor, CW Hobbs, Bruce Montague, Sanjay Sah-
wney, and all other members of Symantec’s Research
Labs for their feedback during the earlier stages of our
study.

References

[1] ACTIFIO. Actifio Copy Data Virtualization: How It
Works, August 2014.

[2] AGRAWAL, N., BOLOSKY, W. J., DOUCEUR, J. R.,
AND LORCH, J. R. A five-year study of file-system meta-
data. In Proceedings of the 5th USENIX Conference on
File and Storage Technologies (2007).

[3] ARCSERVE. arcserve Unified Data Protection. http:

//www.arcserve.com, May 2014.

[4] BACHMAT, E., AND SCHINDLER, J. Analysis of meth-
ods for scheduling low priority disk drive tasks. In Pro-
ceedings of the 2002 ACM SIGMETRICS International
Conference on Measurement and modeling of computer
systems (2002).

[5] BACULA SYSTEMS. Bacula 7.0.5. http://www.

bacula.org, July 2014.

[6] BAKER, M., HARTMAN, J. H., KUPFER, M. D.,
SHIRRIFF, K., AND OUSTERHOUT, J. K. Measure-
ments of a Distributed File System. In Proceedings of the
13th ACM Symposium on Operating Systems Principles
(1991).

[7] BENNETT, J. M., BAUER, M. A., AND KINCHLEA, D.
Characteristics of Files in NFS Environments. In Pro-
ceedings of the 1991 ACM SIGSMALL/PC Symposium on
Small Systems (1991).

[8] BHATTACHARYA, S., MOHAN, C., BRANNON, K. W.,
NARANG, I., HSIAO, H.-I., AND SUBRAMANIAN, M.
Coordinating Backup/Recovery and Data Consistency
Between Database and File Systems. In Proceedings
of the 2002 ACM SIGMOD International Conference on
Management of Data (2002), SIGMOD.

[9] CHAMNESS, M. Capacity Forecasting in a Backup Stor-
age Environment. In Proceedings of the 25th Interna-
tional Conference on Large Installation System Adminis-
tration (2011).

[10] CHEN, Y., ALSPAUGH, S., AND KATZ, R. Interactive
Analytical Processing in Big Data Systems: A Cross-
industry Study of MapReduce Workloads. Proc. VLDB
Endow. 5, 12 (Aug. 2012), 1802–1813.

[11] CHERVENAK, A. L., VELLANKI, V., AND KURMAS,
Z. Protecting File Systems: A Survey Of Backup Tech-
niques. In Proceedings of the Joint NASA and IEEE Mass
Storage Conference (1998).

[12] COMMVAULT SYSTEMS. Get Smart About Big Data: In-
tegrated Backup, Archive & Reporting to Solve Big Data
Management Problems, July 2013.

[13] COMMVAULT SYSTEMS INC. CommVault Sim-
pana 10. http://www.commvault.com/simpana-

software, April 2014.

[14] COMMVAULT SYSTEMS INC. CommVault Simpana:
Solutions for Protecting and Managing Business Ap-
plications. http://www.commvault.com/solutions/
enterprise-applications, April 2015.

[15] DA SILVA, J., GUDMUNDSSON, O., AND MOSSÉ, D.
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Abstract— Many networked systems today, ranging
from home automation networks to global wide-area net-
works, are operated using centralized control programs.
Bugs in such programs pose serious risks to system secu-
rity and stability. We develop a new technique to system-
atically explore the behavior of control programs. Be-
cause control programs depend intimately on absolute
and relative timing of inputs, a key challenge that we
face is to systematically handle time. We develop an
approach that models programs as timed automata and
incorporates novel mechanisms to enable scalable and
comprehensive exploration. We implement our approach
in a tool called DeLorean and apply it to real control
programs for home automation and software-defined net-
works. DeLorean is able to finds bugs in these programs
as well as provide significantly better code coverage—up
to 94% compared to 76% for existing techniques.

1 Introduction
Control programs that orchestrate the actions of “dumb”
devices are becoming increasingly popular. The num-
ber of such devices, including locks, thermostats, motion
sensors, and packet forwarding switches, is projected to
grow beyond 50 billion by 2020 [10]. In a similar vein,
software-defined networking (SDN) has become a multi-
billion dollar market.

While control programs for these devices may be spec-
ified using simple languages (e.g., ISY [14], in the case
of home automation), reasoning about their correctness
is an incredibly complex task. The programs can have
complex interactions across rules due to shared variables
and device states. Further, time plays an important role
in program behavior, as the behavior can change with the
time of day or the time between occurrences of certain
events. System behavior is often programmed directly to
depend on time, in terms of policies (e.g., different ac-
tions during day vs. night) and protocol behavior (e.g.,
DHCP leases). Therefore, the behavior of these control
programs is hard to verify by running the program a few
times (e.g., during development) and, as a result, many
bugs are discovered in production. These bugs can com-
promise the safety, security, and efficiency of the system.

One method of uncovering bugs is to systematically
explore program behavior using model checking. How-
ever, prior work [6, 12, 15, 18, 22] does not address an
important aspect of program behavior, specifically time.

Instead, these tools abstract away time and, as a result,
assume timers of different periods can fire at any time
and in any order. Similarly, comparisons involving time
can nondeterministically return true or false. Such an
imprecise analysis of time is unacceptable for control
programs because, as we show later, it generates many
states that are not reachable in practice. This can force
developers to sort through many false positive bugs re-
ported by these tools. Furthermore, by abstracting time,
these tools preclude developers from verifying correct-
ness properties involving time (e.g., that timers fire at the
correct time and under the correct conditions). Tools that
use coarse heuristics to model time [23] eliminate false
positives at the expense of incomplete exploration.

Accurately modeling time when exploring program
behavior is a non-trivial problem. The challenge arises
because events can occur at any time. To explore all
possible behaviors, in theory, we must study all possi-
ble events occurring at all possible times. However, this
is an ill-defined concept since time is continuous. We
describe in §2.1 why circumventing this issue by naively
discretizing time is unsatisfactory.

We investigate the use of timed automata (TA) [2] to
systematically explore the behavior of control programs.
TAs have been previously used to verify models of real-
time systems. A TA is a finite state machine extended
with real-valued (not discrete) virtual clocks. TA tran-
sitions can specify constraints on clock variables. For
instance, a timeout transition should happen only when a
particular clock variable is greater than a constant. The
analyzability of TAs arises from the fact that, under cer-
tain conditions on clock constraints, one can define a fi-
nite number of regions [2]. All program states within a
region are equivalent with respect to the untimed behav-
ior of a system. Thus, “all possible times” can be safely
translated to “all possible regions.”

Prior work [4, 24] on exploring temporal behavior
with TAs analyzes only an abstract model of a program or
system. However, errors can be introduced in the model
if it does not faithfully capture the behavior of the pro-
gram, and the model can “drift” as the program evolves
during development [18]. In this paper, we focus on us-
ing TAs to verify temporal properties of actual code. In
particular, we ask: can TAs be used to analyze executable
programs? If so, what are the limitations of applying this
theory to practice?
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Exploring the temporal behavior of a program with-
out the need to first derive a TA introduces several new
challenges. A TA-based exploration requires the set of
temporal constraints that appear in the program. We de-
velop a method to extract this information using program
analysis [16]. As with many verification techniques, TA-
based exploration inherits the state space explosion prob-
lem. As prior work is limited to exploring only abstract
models, most heuristics to reduce the state space assume
full knowledge of the model and cannot be used in our
exploration. We develop three new techniques to boost
exploration efficiency: (i) reducing the number of clock
variables in the program, to cut down the number of re-
gions we must explore; (ii) exploring the program as
multiple, independent control loops; and (iii) predicting
the response of the program to certain events, reducing
the number of times we must execute the program.

We implement our approach for TA-based exploration
in a tool called DeLorean and evaluate it in two diverse
domains: home automation (HA) and SDNs. We explore
10 real HA programs and 3 SDN applications. Though
DeLorean does not completely bridge the gap between
the theory and practice of exploring real code with TAs,
we see measurable benefit. DeLorean finds bugs uncov-
ered by existing verification tools and new bugs that can-
not be uncovered with existing techniques. We find we
can achieve higher fidelity in exploring behavior, result-
ing in improved state and code coverage. We achieve
up to 94% code coverage, compared to 76% in existing
techniques that explore temporal behavior [23].

2 Background and Motivation
Many networked systems today are logically central-
ized. An HA system is composed of a controller and de-
vices such as light switches, motion sensors, and locks.
The controller receives notifications from the devices
(e.g., when motion is sensed), can poll them for their
current state (e.g., current temperature), and can send
them commands (e.g., turn on the light switch). It uses
these capabilities to coordinate the devices. Similarly,
in SDNs, a controller manages the operation of switches
by configuring them to forward packets as desired. The
switches inform the controller when they receive packets
for which forwarding actions have not been configured.

At the core of logically centralized control systems is
a control program that determines its behavior. While
the implementation languages for different systems and
domains are different, control programs have a common
structure. Their operation can be understood in terms
of a set of rules. Each rule has a trigger and associ-
ated actions. A trigger is either an event in the envi-
ronment (e.g., sensed motion, arrival of a packet) or a
firing timer. Actions include setting a device state (e.g.,
turn on the light, installing a new rule in a switch) or a

variable and setting timers. Actions can be conditioned
on device state, variable and timer values, and time of
the day. Programs are single-threaded and each rule runs
until completion before another is processed.

Figure 1 shows an example program with three rules.
Assume that the user wants to turn on the front porch
light when motion is detected and it is dark out, and to
automatically turn off this light after 5 minutes if it is
daytime. Rule 1 is triggered when motion is detected by
the front porch motion sensor. It turns on the light if mo-
tion is detected twice within 1 second and the light level
sensed by a light meter is less than 20. The first condition
is a heuristic to filter out false positives in motion sens-
ing, and the second ensures that light is turned on only
when it is dark. Rule 1 also updates the time when mo-
tion was last detected. Rule 2 is triggered when the front
porch light goes from off to on (either programmatically
or through human action) and sets a timer for 5 minutes.
Rule 3 is triggered when this timer fires, and turns off the
light if the current time is between 6 AM and 6 PM.

2.1 Reasoning about Program Correctness
The correctness of control programs can be hard to rea-
son about. Even if individual rules are simple, reasoning
about the program as a whole can be difficult because
of complex interactions across rules. These interactions
arise from shared state across rules due to the state of
variables and devices. Thus, the program’s current be-
havior depends not only on the current trigger but also
on the current state, which in turn is a function of the
sequence and timings of rules triggered in the past. This
dependency and the number of possible sequences makes
predicting program behavior difficult.

As an example, even the simple program in Figure 1
has a behavior that may not be expected by the user. Sup-
pose the light is turned from off to on at 9:00 PM either
due to sensed motion or by the user, triggering Rule 2.
Then, the user walks on to the front porch at 9:04:50 PM,
triggering Rule 1. This user might expect the light to stay
on for at least 5 minutes, but it goes off unexpectedly 10
seconds later (at 9:05 PM). The fix here is of course to
reset the timer in Rule 1, but that may not be apparent to
the user until this behavior is encountered in practice.

Control programs are not the only ones whose correct-
ness is difficult to reason about; the same holds true for
almost all real-world programs such as network proto-
cols and distributed systems. As a result, in a range of
settings, researchers have developed a variety of tech-
niques and corresponding tools, called model checkers,
to automatically explore program behavior [6, 18].
Complex dependence on time. The behavior of control
programs can depend intimately on time, both absolute
time and the relative timing of triggers. For instance, the
behavior of the program in Figure 1 depends on the time
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1 PorchMotion.Detected: /* Rule 1 */

2 if (Now - timeLastMotion < 1 secs

3 && lightMeter.LightLevel < 20)

4 FrontPorchLight.Set(On);

5 timeLastMotion = Now;

6 FrontPorchLight.StateChange: /* Rule 2 */

7 if (FrontPorchLightState == On)

8 timerFrontPorchLight.Reset(5 mins);

9 timerFrontPorchLight.Fired: /* Rule 3 */

10 if (Now.Hour > 6 AM && Now.Hour < 6 PM)

11 FrontPorchLight.Set(Off);

Figure 1: An example home automation program.

1 Trigger0:

2 timeTrigger0 = Now;

3 timeTrigger1 = Now;

4 trigger1Seen = false;

5 Trigger1:

6 if (Now - timeTrigger0 < 5 secs)

7 trigger1Seen = true;

8 Trigger2:

9 if (trigger1Seen)

10 if (Now - timeTrigger1 < 2 secs)

11 DoOneThing();

12 else

13 DoAnotherThing();

Figure 2: An example home automation program.

of day and on how close in time two motion events fire.
Existing model checkers do not systematically model

time. Most [6, 15, 18] perform untimed model checking.
They completely abstract time (in the interest of scala-
bility) and do not maintain temporal consistency. During
exploration, calls to gettimeofday() return random val-
ues and timers can fire in any order, regardless of their
values. This can lead to many false positives (§5.4), i.e.,
bad states that will not arise in practice. False positives
can be highly problematic, and often worse than missing
errors [23], because they can send developers on a wild
goose chase. Equally important for our context, since
time is abstracted, untimed model checkers cannot verify
time-related properties of a system, which are of prime
interest for control programs.

One model checker that maintains temporal consis-
tency is MoDist [23]. It has a global virtual clock, which
is used to return values for gettimeofday(). Timers are
fired in order and, when they do, the virtual clock is ad-
vanced accordingly. It uses static analysis of program
source to infer all timers, including implicit timers. (Line
2 of Figure 1 represents an implicit timer that is set in
Line 5 to expire in 1 second. Line 10 checks if the timer
has fired, and the program behaves differently for the two
cases.) During exploration, MoDist explores two cases,
one in which the timer has expired and one in which it
has not. In each, the clock value is set appropriately to a
value that is consistent with the explored case.

While MoDist’s approach does not produce false pos-
itives, it does not comprehensively explore all possible
behaviors because exploring both cases for timers is not
enough. Consider the simple example in Figure 2. This
program has three triggers: Trigger0 resets the control
loops; Trigger1 is considered as seen if it occurs within 5
seconds of Trigger0; and Trigger2 does different things
depending on whether it occurs within 2 seconds of Trig-
ger0. Assume that when Trigger0 fires, the virtual clock
time of MoDist is T (seconds). While exploring Trig-
ger1, to cover both cases MoDist will select one virtual
clock time in the range [T,T + 5) and one greater than
T + 5. But now it has a problem: while exploring Trig-
ger2, it can only explore one of the two branches (Line
10 or 12) and not both. If it had picked T + 1 in the
first case, it cannot explore the path on Line 13; if it had
picked T +3, it cannot explore the path on Line 11.

Note that at the point of exploring Trigger1, MoDist
has no reason to believe the specific selection in the range
[T,T +5) matters. All choices lead to the same program
state and paths, and only later the choice has an impact.
This is just one simple example; in reality, temporal con-
straints in the program can be highly complex (e.g., the
same timer may drive behavior in multiple places).

Without systematic modeling of the temporal behav-
ior of the program, the only way MoDist can explore
all possible program behaviors is to explore all possible
times of all possible triggers. But “all possible times”
is ill-defined because time is continuous. We could dis-
cretize time and assume events happen only at discrete
moments. But picking a granularity of discretization is
tricky—if it is too fine, the exploration will have too
much overhead as we would explore too many event oc-
currences; if it is too coarse, the exploration will miss
event sequences that occur at finer granularity in prac-
tice and lead to different behaviors. Simply picking the
smallest time-related constant in the program is also not
enough [2]. Thus, there appears no satisfactory way to
pick a granularity that works for all events and programs.

We thus systematically reason about time by explor-
ing the control program as a timed automaton (TA) [2].
This lets us carve time into equivalence regions such that
the exact timing of events within a region is immaterial.
Thus, instead of exploring all possible times, it suffices
to explore all possible regions.
Time-bound correctness properties. Untimed model
checkers find violations of properties such as liveness
(i.e., the system will eventually enter a good state) and
safety (i.e., the system never enters a bad state). Since
these tools abstract time, they cannot verify properties
involving concrete time. For example, consider an SDN
program caching mappings of ports to MAC addresses.
Entries should expire a certain period after their last ac-
cess. An untimed model checker can prove the entry ex-
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Figure 3: A TA for the program in Figure 1.

pires after a certain sequence of events, but not that it
expires after a certain period of time. To prove such a
property, we must prove time-bound liveness. Further-
more, untimed model checkers cannot verify correctness
properties based on absolute time, such as a light turning
on at the right time or never being on at a certain time. In
our evaluation of HA programs, we find three bugs (P9-1,
P9-2, and P10-1 in §5.5) with this type of invariant.

2.2 Timed Automata
To reason systematically about time, we use timed au-
tomata [2] to guide our exploration. TAs are finite state
machines extended with real-valued virtual clocks (VC),
where a VC represents time elapsed since an event. (Wall
clock time is simply one possible VC, which measures
elapsed time since Jan. 1, 1970.) The state of a TA is
the combination of the state of the underlying finite state
machine together with the values of all VCs. A TA transi-
tion changes the machine state and may reset one or more
VCs. Each transition specifies a set of clock constraints
and is enabled from states that satisfy the constraint.

Figure 3 shows a TA that captures the behavior of the
program in Figure 1. There are four states, correspond-
ing to the Cartesian product of whether the front porch
light (FPL) is on or off and the current light level (CLL).
The TA uses three VCs to capture the time since i) the
last motion (tlm), ii) the light was turned on (tfpl), and
iii) midnight (td). Transitions are labeled with their trig-
gers (underlined), the clock constraints (in parenthesis),
and the clocks that are reset (in brackets). Motion denotes
motion, and FplOn and FplOff denote the physical acts of
manipulating the light. Some transitions have multiple
labels, one for each situation where the TA can go from
the source to the sink state. Transitions that have no trig-
gers are taken as soon as the clock constraints are met.

In general, systematic exploration of TAs is infeasi-
ble, even in theory, as VCs hold non-discrete real val-
ues. However, the seminal work on TAs [2] shows that an
exhaustive exploration is feasible provided the VC con-
straints obey certain conditions. The conditions are that
arithmetic operations cannot be performed between two
VCs and a VC cannot be involved in a multiplication or
division operation. But adding or subtracting constants
to VCs is allowed, and so is comparing two VCs (poten-

Figure 4: Time regions for the example in Figure 2.

tially after adding or subtracting constants).
Under these conditions the possible behaviors of the

TA can be discretized into regions, such that the (un-
countably many) states in a region behave the same with
respect to the correctness properties of the TA. How such
regions emerge can be intuitively understood if one ob-
serves that for the TA in Figure 3, after a motion event,
the future behaviors are determined by whether the suc-
ceeding motion event occurs before or after 1 sec. The
exact timing of the second motion event is not critical.
Regions exist in multi-dimensional space where each di-
mension corresponds to one VC, and a point in the space
represents concrete values of all the VCs. Regions en-
compass a set of points such that the exact point is im-
material for the purposes of comprehensive exploration.

The size of the region is proportional to the great-
est common denominator (GCD) of constants in clock
constraints, and hence the exploration will be faster if
the GCD is larger. Regions get exponentially smaller
as more VCs are included in the TA, because the plane
for each pair of VCs divides open spaces into two parts.
Once the regions are known, fully exploring the TA’s be-
havior requires 1) exploring all possible transitions, in re-
sponse to all possible triggers, from the current state; and
2) exploring exactly one delay transition in which there
is no state transition but all VCs advance by the same
amount. This amount is such that the time progresses to
the immediately succeeding region. Figure 4 shows the
regions for the example in Figure 2, which has two VCs.
The constants in the clock constraints are 5 and 2, and
thus the GCD is 1. We get 92 regions in this example.

3 Our Approach
Our goal is to systematically explore control program be-
havior. From a starting time and state, we want to predict
all possible program behaviors. The exploration should
be virtual so the actual state of the devices is not im-
pacted. The output should be the set of unique states the
system can be in, along with the sequence of events (i.e.,
triggers, actions) leading to that state.

3.1 Introducing Virtual Clocks
Control programs do not contain explicit references to
VCs, but as mentioned previously, all time-related activ-
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ities in effect manipulate VCs.
There are three kinds of time-related activities in con-

trol programs. The first is measuring the relative time
between two events of interest (e.g., consecutive motion
events). Here, a variable (e.g., timeLastMotion in Fig-
ure 1) is used to store the time of the first event, which
is then subtracted from the wall clock time of the second
event. To express this as a VC, we set the VC to zero
when the first event occurs; the value of the VC when the
second event occurs yields the delay, since VCs progress
at the same rate as the wall clock unless reset.

The second time-related activity is a timer (e.g., timer-

FrontPorchLight in Figure 1). To capture this activity us-
ing a VC, we reset the VC when the timer is set, and
queue a timer trigger to fire after the desired delay, after
removing any previously queued event.

The third time-related activity is a sleep call, where
actions for a rule are taken after a delay (e.g., turn on
fan, sleep 30 seconds, turn it off). We express this by in-
troducing a new timer and new rule. The actions of the
new rule corresponds to post-sleep actions of the original
rule. The sleep and post-sleep actions in the original rule
are replaced by a timer that fires after the desired delay.
In our treatment of sleep calls, if the trigger for the orig-
inal rule occurs again before the timer set by an earlier
occurrence fires, the post-sleep actions that correspond
to the earlier trigger will not be carried out (because the
earlier timer event will be dequeued). This behavior is
consistent with the semantics of the systems we study.

3.2 Systematically Exploring Behavior
Given a control program and its starting state as input,
our goal is to explore a given duration of wall clock time.
A duration must be specified since wall clock time is un-
bounded and has an infinite number of regions. For pro-
grams with no dependency on the wall clock (e.g., many
SDN applications), no duration is needed.

We assume that the program can be modeled as a TA.
That is, all timers and variables that store time in program
are, in effect, VCs. To leverage time regions, these VCs
must satisfy the conditions mentioned above. We believe
that these conditions are met in many contexts. They are
certainly met in the different systems that we study in §5
and §6. The scripting languages of some of these systems
cannot even express complex clock operations.

However, our exploration does not assume a TA has
been derived from the actual code. Existing meth-
ods [4, 24] can explore the behavior of a TA, but deriving
the entire TA corresponding to the program may not be
feasible. Even the smallest of control programs can have
extremely large TAs, as it needs to capture the program
logic and its response to possible events.

Thus, we explore the TA dynamically, akin to how
FSA-based model checkers dynamically explore the FSA

1: EndWC=Time.Now + FFduration; � How long to explore
2: S0.WC = Time.Now; � Set the wall clock
3: ES = {}; � explored states
4: US={S0}; � unexplored states
5: while US �= φ do
6: Si = US.pop();
7: ES.push(Si);
8: for all e in Events, Si.EnTimers do
9: So = Compute(Si, e);

10: if !Similar(So, (US ∪ ES)) then
11: US.push(So);
12: end if
13: end for
14: if Si.EnTimers = φ then
15: delay = DelayForNextRegion(Si.Region);
16: if Si.WC + delay > EndWC then
17: continue;
18: end if
19: So = Si.AdvanceAllVCs(delay);
20: for all timer in So.Timers do
21: if timer.dueTime >= So.WC then
22: So.EnTimers.Push(timer);
23: end if
24: end for
25: if !Similar(So, (US ∪ ES)) then
26: US.push((So, t));
27: end if
28: end if
29: end while

Figure 5: Pseudocode for basic TA exploration.

instead of deriving the complete FSA of the program.
From a starting program state, we repeatedly derive suc-
cessor states resulting from triggers or delay transitions.
For delay transitions, we must know the timed regions in
advance to compute the delay amount. Fortunately, con-
structing regions does not require the complete TA, but
only the constraints on the values of VCs [2]. We extract
these constraints using analysis of program source.

Figure 5 shows how we comprehensively explore pro-
gram behavior. Assume we want to explore FFDuration
of behavior, starting from the program state S0. Program
state includes the values of (non-time) variables, VCs,
and enabled timers (i.e., ready to fire). We do a breadth-
first exploration using a queue of unexplored states. Ob-
taining all successors of a state entails firing all possi-
ble events and all enabled timers. If a successor state is
not similar to any previously seen state, we add it to the
queue. Two states are similar if their variable values and
set of enabled timers are identical and if their VC values
map to the same region; VC values need not be identical
since the exact time within a region does not matter.

If the state being explored has no enabled timer, it is
eligible for a delay transition. This represents a period
of time where nothing happens and time advances to the
succeeding region. States with enabled timers need to
fire all enabled timers before time can progress. We ig-
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nore the successor if this delay takes us past the end time
(i.e., starting wall clock time + specified duration). Oth-
erwise, the successor state is computed by advancing all
VCs. We treat wall clock time, which is virtualized dur-
ing exploration, as any other VC except that it never re-
sets; it tracks the progress of absolute time. We then
check if any of the timers have been enabled because of
this delay and mark them as such. The construction of
time regions guarantees that no timers are skipped dur-
ing the delay transition.

3.3 Achieving Scalable Exploration
The basic TA-based exploration above correctly handles
time but is too slow to be practical. We use three general
techniques to make it practical:
Predicting successor states Our first technique reduces
the time to obtain successor states of a state being ex-
plored. We must first define the notion of clock personal-
ity. Two program states have the same clock personality
if their values of all the VCs are equivalent with respect
to all the clock constrains of the TA. Two program states
can have the same clock personalities even if they are not
in the same region.

If two states S1 and S2 with the same clock person-
alities have identical variable values and enabled timers,
then any stimulus (i.e., combination of trigger and envi-
ronmental conditions) will have exactly the same effect
on both states. Thus, it is necessary to compute the suc-
cessor of only one such state, say S1. The successor of
S2 can be obtained from the successor of S1 while retain-
ing the clock values of S2 for all VCs except those that
are reset by the current stimulus.

Computing a successor requires deserializing the par-
ent’s state, running the program, subjecting it to the stim-
ulus, and serializing the successor’s state. These are
costly operations. In contrast, prediction requires only
copying the state and modifying VC values.
Independent control loops Our second optimization
is based on the observation that large control programs
may often be composed of multiple, independent control
loops manipulating different parts of the program state.
For instance, thermostats and furnaces may be controlled
by a climate control loop, and locks and alarms by a secu-
rity loop. These two may manipulate different variables
and clocks, but otherwise share no state. In such cases,
we can explore the loops independently, instead of ex-
ploring them jointly. Separate exploration is faster since
joint exploration considers the Cartesian product of the
values of independent variables and clocks. We use taint
tracking to identify independent loops.
Reducing the number of clocks The number of VCs in
the program has a significant impact on exploration effi-
ciency because the size of regions shrinks exponentially
with it. When transforming a control program, we should

introduce the minimum number of VCs. We exploit two
opportunities. First, consider cases where the actions in a
rule have multiple sleeps, e.g., action1; sleep(5); action2;
sleep(10); action3. Instead of using two timers (one per
sleep), we can use only one because the two sleeps can
never be active at the same time [7]. To retain the original
dynamic behavior, we introduce a new program variable
to track which actions should be taken when the timer
fires. In the example above, when the rule is triggered,
after action1 is taken, this variable is reset to 0 and the
timer is set to fire after 5 seconds. When the timer fires:
i) if the variable value is 0, action 2 is taken, the variable
is set to 1, and the timer is set to fire after 10 seconds; ii)
if the variable value is 1, action 3 is taken.

Second, control programs often have daily action for
different times of day (e.g., sunrise, one hour after sun-
rise). The straightforward translation is to introduce a
new timer per unique activity. A more efficient method
is to use one timer to conduct all such activities, using a
method similar to the above — introduce an additional
program variable to cycle through the different actions
and reset it after the last action is conducted.

3.4 Theory-Practice Gap
Existing TA-based model checkers work with abstract
models and assume the model is provided as input. In
building the model incrementally and dynamically, we
uncover several gaps in using TAs on real code.

A transition in a TA must occur instantaneously since
time only progresses explicitly through a delay transi-
tion. In practice, however, the processing of an event
(e.g., in response to motion occurring) may involve a
non-trivial amount of time. In our implementation, we
assume processing time is instantaneous, but propose a
technique to handle events with non-trivial processing
times. For each of these event handlers in the program,
we can introduce a timer to expire after the expected pro-
cessing time. When the timer is active and has not ex-
pired, the system is processing the event. If the timer is
inactive, either because the timer has expired or has not
been activated, the system is not processing the event.

In some systems, clocks may be created in response to
events. In SDN programs, for example, flows installed in
switches in response to a packet arrival at the controller
introduce two new VCs—one each for the soft and hard
timeouts. We can use symbolic execution to extract the
clock constraints for all possible values of timeouts, but
we cannot determine the number of occurrences of the
event triggering this behavior. Rather, this is dependent
on the number of times the event occurs along a path gen-
erating a specific state. We cannot add a new clock with
a new constraint to the region construction, as we can-
not change regions during exploration. Regions are con-
structed using GCD of the clock constraints and adding
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Figure 6: Overview of DeLorean.

a new clock mid-exploration could change the delay if
the GCD changes. Instead, we pre-allocate a number of
VCs, each with a specific constraint. During exploration,
when a new VC needs to be created, it is allocated an
available VC from a queue of pre-allocated VCs.

4 Design
We now describe the design of DeLorean, our TA-based
model checker. As shown in Figure 6, the primary in-
puts to DeLorean is the control program—including a
model of the controller (on which the program runs) and
devices—and the duration of wall clock time to explore
(FFDuration). If the program has no dependence on wall
clock time, i.e., timers are relative, this parameter is not
needed. The user can also specify three optional inputs.
The first is a list of invariants on device states and system
behavior, which should be satisfied at all times. These
are specified in a manner similar to the i f conditions in
the rules and can include time. The second is the wall
clock time. The third is the starting state of (a subset
of) devices and variables from which exploration should
begin.

The output of DeLorean is all the unique states of the
devices. If invariants are specified and violated by any
state during the exploration, we also output the state. In
addition, DeLorean outputs the path that leads to each
state—a timestamped sequence of triggers, along with
the values of environmental factors during those firings.

DeLorean has three stages. First, the front end con-
verts the program to one where clocks have been virtual-
ized, using the method in §3.1. Second, pre-exploration
analyzes this program to recover information required for
the optimizations in §3.3. The final stage is the explo-
ration itself.

4.1 Pre-Exploration
This stage analyzes the program produced by the front
end to recover the information needed for construct-
ing timed regions and implementing the optimizations
in §3.3. Here, we use symbolic execution [16] of pro-
gram source. Symbolic execution simulates the execu-
tion of code using a symbolic value σx to represent the
value of each variable x. As the symbolic executor runs,
it updates the symbolic store that maintains information
about program variables. For example, after the assign-
ment y=2x the symbolic executor does not know the ex-
act value of y but has learned that σy=2σx. At branches,

symbolic execution uses a constraint solver to determine
the value of the guard expression given the information
in the store. The executor only explores the branch cor-
responding to the guard’s value as returned by the con-
straint solver, ensuring infeasible paths are ignored. If
there is insufficient information to determine the guard’s
value, both branches are explored. This produces a tree
of all possible program execution paths. Each path is
summarized by a path condition that is the conjunction
of branch choices made to go down that path.

We symbolically execute the program’s main control
loop, which is the starting point for all processing activ-
ity. We configure the symbolic executor to treat the fol-
lowing entities as symbolic: program state (variables and
clocks) and the parameters of the control loop. The out-
put of the symbolic executor is the set of possible paths
for each possible trigger. For each path, we obtain the i)
constraints that must hold for the program to traverse that
path, and ii) the program state that results after its traver-
sal. The constraints and the resulting program state are
in terms of input symbols, the entities we made symbolic
in the configuration.

We can now recover the following information.
Virtual clock constraints These are required for con-
structing time regions and for predicting successor states.
We obtain them from the output of symbolic execution
by taking the union of constraints on VCs along each
path. Additionally, program statements that reset a timer
x to k secs are essentially clock constraints of the form
x ≥ k. We extract such statements from the program
source and add corresponding constraints to the set.
Independent control loops We also use the output of
symbolic execution for taint tracking. We analyze the
program state that results from each path. If the final
value of a variable along any path is different from its
(symbolic) input value, that variable is impacted along
the path. This impact depends on the input symbols that
appear in the output value (data dependency) and path
constraints (control dependency). The variables corre-
sponding to those input symbols are tainting the variable.

We use this information to identify independent sets
of variables and VCs. Two variables or VCs are deemed
dependent if they either taint each other in the program,
or they occur together in a user-supplied invariant (as we
must do a joint exploration in this case as well). After
determining pairwise dependence, we compute the inde-
pendent sets that cover all variables and VCs.

4.2 Exploration
This stage implements the method outlined in §3. To
start, it runs the program and initializes the starting state.
We then checkpoint the program by serializing its in-
ternal state. The checkpoint captures the values of all
variables, including time related variables, and the times
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type #rules #devs SLoC #VCs GCD (s)
P1 OmniPro 6 3 59 2 7200
P2 Elk 3 3 75 2 1800
P3 MiCasaVerde 6 29 143 2 300
P4 Elk 13 20 193 5 5
P5 ActiveHome 35 6 216 14 5
P6 mControl 10 19 221 4 5
P7 OmniIIe 15 27 277 6 60
P8 HomeSeer 21 28 393 10 2
P9 ISY 25 51 462 6 60
P10 ISY 90 39 867 6 10

Table 1: The HA programs we study.

when various timers will fire.
We maintain a table that contains the values of the VCs

of a state. Many states differ only in VC values—the suc-
cessor state after a delay transition differs from the parent
only in VC values, so does the successor that is predicted
from another state. Maintaining this table separately lets
us quickly obtain these successor states. It also helps re-
duce the memory footprint, since two states that differ
only in VC values can share the same checkpoint. How-
ever, this implies that the VC values in a table can be out
of sync with those embedded in the checkpoint. Thus,
when restoring a state, we update its VC values from the
table before any other processing.

4.3 Implementation
DeLorean is implemented with 10k+ lines of C# code.
The bulk of this code implements the pre-exploration and
exploration stage, which we developed from scratch. We
could not use existing tools for exploring TAs [4, 24] be-
cause we do not have the complete TA for the program.
Our implementation includes models of controllers and
devices in the two domains we study—home automation
(§ 5) and software-defined networks (§ 6).

For HA applications, we implemented front end mod-
ules for two systems—ISY [14] and ELK [9]. We chose
these two because of their popularity. The front end
parses ISY or ELK programs using ANTLR [3] and pro-
duces a C# program that captures the behavior of the pro-
gram and contains additional variables, rules, and actions
needed for modeling devices. As the state of these de-
vices is typically simple and can be represented using
boolean or integer variables, we can model the devices
automatically from the ISY or ELK program.

The pre-exploration stage uses Pex [19] to symboli-
cally execute the main event loop of this C# program.
Pex is a modern symbolic execution engine that mixes
concrete and symbolic execution (“concolic” execution)
to boost path coverage and efficiency.

5 Case Study: HA Networks
To evaluate a TA-based exploration against existing ver-
ification techniques, we examine DeLorean in two envi-
ronments: home automation networks and SDNs.

5.1 Domain-Specific Optimizations
A common behavior in HA is a dependence on envi-
ronmental factors (e.g., temperature, light level) sensed
by devices in the system. For a comprehensive evalua-
tion, we must explore all combinations of values of ex-
ternal factors. To address this challenge, we build on
prior work and combine symbolic execution with model
checking [6]. We use symbolic execution of program
source to infer equivalence classes of combinations of
values of environmental factors. In Figure 1, for exam-
ple, there are two equivalence classes, corresponding to
light level values below or higher than 20. Then during
exploration, we use one set of values per class, instead
of having to explore all possible combinations of values.
So, if a program depends on temperature and light level,
for every trigger, its response must be explored with all
combinations of temperature and light levels.

5.2 Dataset
We evaluate DeLorean using real HA programs. We so-
licited these programs on a mailing list for HA enthu-
siasts. We picked the 10 programs shown in Table 1.
We selected them for the diversity of HA systems and
the number of rules and devices. We see that most in-
stallations have tens of rules and devices, with the max-
imums being 90 and 51. This points to the challenge
users face today in predictably controlling their homes.
Collectively, these installations had 19 different types of
devices, including motion sensors, temperature sensors,
sprinklers, and thermostats.

The table shows the source lines of code (SLoC) and
the number of VCs in the program after transformation
in the first stage. Systems which we have not imple-
mented a front end yet were transformed manually. We
see that most installations have 5 or more VCs, indicating
a heavy reliance on time. The table also shows the GCD
(greatest common denominator) across all constants in
VC constraints in the program. The GCD can be coarsely
thought of as the detail with which the program observes
the passage of time. Since the size of the regions depends
on it, it also heavily influences the exploration time.

5.3 Exploration Performance
We run DeLorean over all 10 programs and conduct 20
trials, each with randomly selected starting state and time
(since program behavior depends on both). All experi-
ments use an 8 Core 2.5Ghz Intel Xeon PC with 16GB
RAM. Table 2 shows the number of transitions and aver-
age CPU time needed to explore one hour of wall clock
time for each program. We estimate DeLorean makes
200k transitions per second. Since HA programs depend
on wall clock time, we can also measure the CPU time
with respect to wall clock time. We also see that De-
Lorean can explore real programs 3.6 times to 36K times
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# Transitions CPU Time (sec) Reduction w/ Prediction
P1 72 0.10 -11.11%
P2 123 0.12 -20%
P3 178 0.15 -7.14%
P4 19.7M 176.10 75.16%
P5 78.7K 1.03 61.28%
P6 51K 1.04 48%
P7 36.M 17.87 89.53%
P8 8.1M 89.50 84.36%
P9 121M 793.90 95.24%
P10 256M 998.0 83.5%

Table 2: Performance for exploring one hour of wall clock
time and the reduction in CPU time from predicting states.

faster than wall clock time.
An important element in obtaining quick explorations

for these programs is predicting successor states. While
this is a general optimization for dynamically explor-
ing TAs, its effectiveness depends on how often we en-
counter non-similar states with identical clock personal-
ities, variables, and enabled timers. To evaluate it, Ta-
ble 2 show the percentage reduction in CPU time when
prediction is used compared to when it is not used. For
the smallest programs, prediction leads to slower explo-
ration. This is because in such cases the overhead asso-
ciated with checking for past states that can be used for
prediction is greater than any benefit it brings. However,
for larger programs, prediction brings substantial benefit.
For P9, prediction cuts the exploration time by 95%, i.e.,
exploring without prediction is slower by a factor of 20.

5.4 Comparison with Alternatives
Untimed exploration As mentioned earlier, current
model checkers ignore time and can thus generate in-
valid program states that will not be generated in real
executions. If there were just a few, it is conceivable
that users would be willing to put up with occasional in-
correctness. However, we find that untimed exploration
results in many incorrect states. Figure 7 shows the per-
centage of additional, invalid states produced by untimed
model checking,1 when beginning from the same starting
state as DeLorean and running until it cannot find any
new states. Untimed exploration differs from DeLorean
in three aspects: i) in addition to successors based on
device notifications, each state has successors based on
each queued timer, independent of the target time of the
timer; ii) if a comparison to time is encountered during
exploration both true and false possibilities are consid-
ered; iii) there are no delay transitions. The graph av-
erages results over 10 paired trials with different starting

1This comparison based on invalid states alone hides one additional
limitation of untimed model checking. Untimed exploration is inca-
pable of verifying program behaviors that depend on time (e.g., light
turned off a second after turning on).

Figure 7: Invalid states generated by untimed exploration.

inputs, and the error bars shows maximum and minimum
percentage of invalid states.

We see that untimed exploration produces a significant
number of invalid states. For most programs, the num-
ber of invalid states is of the same order as the number
of valid states produced by DeLorean. Closer inspec-
tion of results from untimed exploration provides insight
into how some invalid states are produced. One common
case is where devices such as lights are programmed to
turn on in the evening, using a timer. Because timers can
fire anytime, untimed model checking incorrectly pre-
dicts that the light can be off in the evening, which will
not happen in practice. Another case is where certain
actions are meant to occur in a sequence, e.g., open the
garage door after key press and then close it 5 minutes
later. With DeLorean, these actions are carried out in
the right sequence, correctly predicting that the door is
left in the closed state. But both possible sequences are
explored by untimed exploration, one which incorrectly
predicts that the garage door is left open.
MoDist Unlike untimed exploration, MoDist maintains
temporal consistency during exploration, but at the ex-
pense of incomplete exploration (§2.1). To illustrate this,
we implement MoDist’s algorithm for exploring timers
in DeLorean and compare it with our exploration. We
compare two metrics–state coverage and code coverage.
State coverage measures the number of unique program
states explored and code coverage measures the num-
ber of lines of code exercised during exploration. Fig-
ures 8 and 9 show code and state coverage, respectively,
for MoDist and DeLorean averaged over 24 trials, each
exploring one hour. Programs omitted in Figure 8 have
equivalent coverage in MoDist and DeLorean.

5.5 Unintended Behaviors
To informally gauge DeLorean’s ability to find such be-
haviors, we inspect comments in two of the programs
(P9, P10) and turn them into invariants for which De-
Lorean should report violations. We find four violations.
P9-1 A comment indicated the lights in the back of the
house should turn on if motion is detected in the evening
(i.e., sunset to 11:35PM). But DeLorean found that the
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Figure 8: Code coverage.

Figure 9: States missed by MoDist.

lights could be on even if there was no motion. A rule
appears misprogrammed—instead of using conjunction
as the condition to turn on the light (sunset < Now <

11:35PM && MotionDetected), it was using disjunction
(sunset < Now < 11:35PM || MotionDetected)

P9-2 A comment indicated the front porch light should
stay on from a half hour after sunset until 2AM. There
were two rules to implement this invariant: one turning
the light on at a half hour after sunset and one turning it
off at 2AM. But DeLorean found cases where the light
was off in that time window. Inspection revealed another
rule to turn off the light at 7:45PM. Thus, the invariant is
violated if sunset occurs after 7:15PM, which can happen
where the user of P9 resides. Exploring sunset values
higher than 7:15PM uncovered the violation.

P10-1 A comment indicated the user wanted to turn on
a dimmer switch in the master bath room when motion is
detected. But we found instances where the motion oc-
curred but the dimmer was not on. Inspection revealed
that the user’s detailed intent, implemented using two
rules, was to turn on the dimmer half-way when motion
occurs during the day, and to turn it on fully when its
detected during night. But the way day and night time
periods were defined left a 2 minute gap where nothing
would happen in response to motion.

P10-2 A comment indicated the user wanted to treat
three devices identically (i.e., all on or all off). Inspection
of a violation of this invariant showed that while three of
the four rules that involved these devices correctly ma-
nipulated them as a group, one rule had left out a device.

#trans
SLoC #VCs GCD (s) 1 VC 2 VCs 4 VCs

PySwitch 234 13 1 6210 49k 8.8M
LoadBalancer 2063 14 2 351k 512k 3.8M

EnergyTE 434 10 5 442k 1.7M 21M

Table 3: The OpenFlow programs we study.

6 Case Study: SDN
To further demonstrate the value of TA-based explo-
ration, we model and test SDN programs in DeLorean.
Similar to NICE [6], we create a model of the NOX
platform in C#, including the controller, switches, and
hosts. We discover relevant packet headers during
pre-exploration, using Pex to symbolically execute the
event handlers that make up the OpenFlow program.
Since OpenFlow switches have complex internal behav-
ior (e.g., flow tables) that we cannot observe externally,
we manually define models of OpenFlow switches and
hosts. OpenFlow programs have no dependency on ab-
solute time, therefore we use no wall clock time.

6.1 Dataset
We evaluate DeLorean using three real programs—a
MAC-learning switch (PySwitch), a web server load
balancer[21], and energy efficient traffic engineering
(REsPoNse) [20]. We manually translate the programs
from Python into C# for testing in DeLorean. Table 3
shows the source lines of code (SLoC), the total num-
ber of VCs that can be dynamically created during an
exploration, and the GCD of the clock constraints. As
in NICE, we bound the state space by limiting certain
events, such as the number of times a host sends a packet.

Each program has dependencies on relative time.
PySwitch, for example, uses a timer to periodically check
entries in a cache of MAC address-port mappings and
expire entries older than a specific time. In this case, a
VC is needed to express the timer scheduling the periodic
check, and another VC for each entry in the cache.

6.2 Comparison with Alternatives
We compare DeLorean to NICE, a model checker for
OpenFlow programs. Similar to untimed model check-
ing, NICE does not systematically model time. Instead,
application-specific heuristics are used to trigger timers
in each of the SDN applications tested. We construct a
model of the NOX platform for DeLorean and simulate
NICE’s exploration by running DeLorean with no VCs.
We also implement NICE’s heuristics for exploring timer
behavior. To informally gauge DeLorean’s ability to find
unintended behaviors, we create invariants from the 11
bugs discovered by NICE. We find DeLorean can repro-
duce violations for all 11 bugs.

We now compare DeLorean’s coverage of a program’s
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% Missing % Incorrect
1 VC 2 VCs 4 VCs 1 VC 2 VCs 4 VCs

Pyswitch 0% 34% 84% 0% 0% 0%
Loadbalancer 95% 95% 95% 117% 123% 123%

EnergyTE 69% 87% 97% 26% 12% 46%

Table 4: Missing and invalid states generated by NICE,
compared to explorations in DeLorean using 1, 2, and 4
VCs.

Figure 10: Code coverage in DeLorean and NICE.

state space to that of NICE. In Figure 10, we show the
code coverage of DeLorean and NICE for the three pro-
grams. In PySwitch, NICE does not explore the timer for
periodically checking cache entries, therefore missing an
entire function.

In Table 4, we show the number of missed and incor-
rect states generated by NICE compared to explorations
in DeLorean using 1, 2, and 4 VCs. Because NICE does
not trigger any timers in PySwitch, it misses potential
behavior, but does not introduce any invalid states that
would be generated from timers firing at incorrect times
from incorrect states The heuristic for trigger timers in
the EnergyTE application, however, fires timers from ev-
ery possible state, resulting in invalid states. Similarly,
in LoadBalancer, timers can also fire from invalid states.

Further, NICE’s heuristics do not test the expiration
of flows. Correctly exploring this behavior requires, and
verifying correctness properties related to flow expira-
tions, requires more systematic treatment of time. This
results in missed states in both the EnergyTE and Load-

Balancer applications.
We see that with non-systematic treatment of time,

program exploration can introduce false behaviors or
miss potential behaviors. In programs dependent on ab-
solute and relative time, such as HA programs, we find
untimed exploration can produce too many invalid states
to be useful. Even in programs with dependencies only
on relative time, such as SDN programs, we see non-
systematic treatment of time can also produce as many
invalid states as valid states.

7 Related Work
Our work builds on progress the research community has
made towards verifying the behavior of real systems.

Model checking programs One class of techniques is
model checking, where programs are modeled as FSAs
and their behavior is comprehensively explored [12, 15,
18]. Recent work, like us, also combines model check-
ing with symbolic execution [5, 8, 22]. However, most
model checking work ignores time. This approach works
well for programs that have a weak dependence of time,
but the behavior of control programs that we study is in-
tricately linked with time. Ignoring time in such pro-
grams can lead to exploring infeasible executions, and it
cannot discover unexpected behaviors in which the mis-
match is the time gap between events. One exception
is NICE, which studies OpenFlow applications whose
behavior can vary considerably based on packet tim-
ings [6]. However, its treatment of time is not systematic
and instead relies on heuristics to explore timer behavior.
Model checking using TA There has been much work
on TA-based model checking in the real-time systems
community. It includes developing efficient tools to ex-
plore the TA [4, 24] as well as transformations that speed
explorations [7, 13]. This body of work assumes that
the entire TA is known in advance, and it does not target
program analysis. While we draw heavily on the insights
from it, to our knowledge, our work is the first to use TA
to model check programs. We describe general meth-
ods to dynamically and comprehensively explore pro-
gram executions and techniques to optimize exploration.
Other debugging techniques Explicit state model
checking, which we use, is complementary to other pro-
gram debugging approaches. Record and replay [17] can
help diagnose faults after-the-fact and is especially use-
ful for non-deterministic systems; in contrast, we want to
determine if faults can arise in the future. There has also
been work on “what-if” analysis in IP networks, e.g.,
with the use of shadow configurations [1] and route pre-
diction [11]. These focus on computing the outcomes of
configuration changes; in contract, we study the dynamic
behavior of more general programs.

8 Conclusions
Mistakes in control programs can impact the safety and
efficiency of their system. We develop a technique us-
ing timed automata to systematically explore program
behavior and verify temporal properties. We implement
our approach in a tool named DeLorean and apply it
to two domains where timing in control programs is
important—home automation and software-defined net-
works. We show it results in higher fidelity analysis,
including better state and code coverage, than existing
techniques that do not systematically model time.
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Abstract
Applications such as software updaters or a run-away web
app, even if low priority, can cause performance degra-
dation, loss of battery life, or other issues that reduce a
computing device’s availability. The core problem is that
OS resource control mechanisms unevenly apply unco-
ordinated policies across different resources. This paper
shows how handling resources – e.g., CPU, memory, sock-
ets, and bandwidth – in coordination, through a unifying
abstraction, can be both simpler and more effective. We
abstract resources along two dimensions of fungibility
and renewability, to enable resource-agnostic algorithms
to provide resource limits for a diverse set of applications.

We demonstrate the power of our resource abstrac-
tion with a prototype resource control subsystem, Fence,
which we implement for two sandbox environments run-
ning on a wide variety of operating systems (Windows,
Linux, the BSDs, Mac OS X, iOS, Android, OLPC, and
Nokia) and device types (servers, desktops, tablets, lap-
tops, and smartphones). We use Fence to provide system-
wide protection against resource hogging processes that
include limiting battery drain, preventing overheating,
and isolating performance. Even when there is interfer-
ence, Fence can double the battery life and improve the
responsiveness of other applications by an order of mag-
nitude. Fence is publicly available and has been deployed
in practice for five years, protecting tens of thousands of
users.

1 Introduction
Unfortunately, it is still common for end-user devices
to suffer from unexpected loss of availability: applica-
tions run less responsively, media playback skips instead
of running smoothly, or a full battery charge lasts hours
less than expected. The cause might be a website run-
ning JavaScript [5, 6], a software updater overstepping
its bounds [10], an inopportune virus scan [20, 27], or a
file sync tool such as Dropbox indexing content [3, 7]. A
buggy shell that leaks file descriptors can prevent other
applications from running correctly [14]. Moreover, the
cause may be unwanted apps or functionalities bundled
with a legitimate application, such as advertisements [71]
or hidden BitCoin miners [18]. Malicious applications
may even attempt to overheat the device to cause perma-
nent damage [54].

Although dealing with resource contention is a problem

as old as multiprogrammed operating systems, today’s
platforms present renewed challenges. Key properties of
a system such as battery life, application performance, or
device temperature depend on multiple resources. This,
along with the resource-constrained nature of mobile de-
vices and the number and ease of installing applications
from “app stores,” exacerbates the problem.

In many cases, one cannot simply identify and kill pro-
cesses that consume too many resources, because many
programs execute useful-but-gluttonous tasks. For exam-
ple, a web browser may execute inefficient JavaScript
code from a site that slows down the device. However,
the browser overall consists of many interrelated pro-
cesses that render and execute code from different sites.
Selectively containing resource usage is much better than
killing the browser.

Our work addresses the problem of improving device
availability in the presence of useful-but-gluttonous appli-
cations that can consume one or more types of resources.
We introduce a non-intrusive mechanism that mediates
and limits access to diverse resources using uniform re-
source control. Our approach has two parts: a unifying
resource abstraction, and resource control. We abstract
resources along two dimensions, allowing uniform rea-
soning about all system resources, such as CPU, memory,
sockets, or I/O bandwidth. The first dimension classifies
each resource as fungible (i.e., interchangeable, such as
disk space) or non-fungible (i.e., unique, such as a spe-
cific TCP port). The second dimension classifies resources
as either renewable (i.e., automatically replenished over
time, such as CPU quanta) or non-renewable (i.e., time
independent, such as RAM space). Using only these two
dimensions, we are able to fully define a policy to control
a specific resource. Adding a mechanism that quantifies
and regulates access to each resource, either through inter-
position or polling, provides the desired level of control.

We demonstrate the feasibility of our approach by de-
signing and building a resource control subsystem for
sandbox environments, which we call Fence. Fence allows
arbitrary limits to be placed on the resource consumption
of an application process by applying a resource control
policy consistently across resource types. This allows it
to provide much better availability, when faced with a
diverse set of resource-intensive applications, than would
resource-specific tools. As we show in §5, when the sys-
tem is under contention from a resource-hungry process,
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our current user-space implementation of Fence provides
double the battery life and a performance improvement
of an order of magnitude relative to widely used OS-level
and hardware solutions.

Fence is the first approach for controlling multiple re-
sources across multiple platforms. By arbitrarily limit-
ing resource consumption, Fence bounds the impact that
applications can have on device availability as well as
on properties such as heat or battery drain. Fence runs
in user space, which makes it usable even within Vir-
tual Machines (VMs) and on already deployed systems,
where privileged access might be problematic and low-
level changes could be disruptive.

2 Scope
Fence’s controls work insofar as it can interpose on ap-
plications’ requests for resources. As a proof of concept,
Fence is targeted at application hosts, such as sandbox
environments, VMs, browsers, or plugin hosts. The same
unified policies could be implemented in an OS.

Most modern operating systems have mechanisms for
identifying and limiting the resource usage of applica-
tions and processes [11, 15, 25]. However, as the preva-
lence of availability problems indicates, and we further
demonstrate in §5, existing mechanisms do not adequately
isolate resources among applications. A major cause of
device availability problems is that there is no single re-
source where contention happens, which implies that any
mechanism that controls a single resource will not be ef-
fective. Furthermore, because existing mechanisms use
different abstractions and control points, it is very hard,
if not ineffective, to write coordinated policies across dif-
ferent resources. Priority-based allocation and resource
reservation systems (along with hybrids of the two) offer
partial solutions in some cases, but the combined prop-
erties and guarantees are far from sufficient in practice.
They apply ad-hoc and uncoordinated resource control
across diverse resource types, and do not offer uniform
functionality, abstractions, or behavior.

Recent developments in Linux’s cgroups (cf. §7) pro-
vide a more unified approach to resource management,
but are still restricted to one operating system. We imple-
ment Fence’s resource control mechanisms – polling and
interposition – at the user level, making it easily portable
across many different platforms.

In this paper we assume that hog applications are
“useful-but-gluttonous.” That is, a hog application may
attempt to consume a large amount of resources, but is
otherwise desirable. Specifically, we do not attempt to pro-
tect against applications that perform clearly malicious
actions, such as deleting core OS files, killing random pro-
cesses, or installing key loggers (existing work addresses
such issues). The desired outcome is that the user has
control over properties such as the responsiveness, battery

life, and heat for any set of applications, especially hogs.
Our main focus in this paper is how to provide the

needed mechanisms for resource-control, not on provid-
ing a specific resource control policy. As a first step, we
demonstrate the effectiveness of Fence with two simple
policies, both assuming that we can identify and have
the privilege to control the hog process: one in which we
manually provide static limits (most scenarios in §5), and
one in which the policy sets dynamic resource limits to
achieve a desired battery lifetime (§5.5). We anticipate,
however, that more sophisticated policies are possible and
applicable in other scenarios.

Lastly, a note about who interacts with Fence. Fence’s
mechanisms are integrated into a platform, e.g., a new
sandbox environment, by the authors of the environment.
Policies, on the other hand, can be written by the same
authors, by third parties such as machine administrators,
or by end-users. This paper does not specify higher-level
interfaces for specifying policies. Fence should be trans-
parent to applications running within the environment.

3 Managing Resources
In this section, we present Fence’s resource abstraction,
and discuss how using a simple classification of resources,
along the dimensions of fungibility (§3.1) and renewabil-
ity (§3.2), makes it possible to control their usage in a
unified way. We assume a simple policy of limiting re-
source consumption by imposing a quota, given in terms
of either an absolute quantity or a utilization.1 Following
that, §3.3 explains how control is enforced on resources,
and §3.4 discusses choosing resource limit settings.

3.1 Fungible and non-fungible
One way to characterize low-level resources is by whether
or not they are fungible, i.e., whether one instance of the
resource can stand in for or indiscernibly replace any other
instance. A fungible resource is something like a slot in
the file descriptor table. It does not matter to the applica-
tion that accesses a file where exactly the slot maps into
the kernel’s table. However, overconsumption of the re-
source can cause stability issues [14]. Fungible resources
only need to be counted. The maximum allowed utiliza-
tion by an application is capped by a quota. Fungible
resources can be managed by maintaining, according to
the resource’s usage, an available quantity relative to a
quota.

Lines 1, 2 and 3 of Table 1 summarize how gaining ac-
cess to fungible resources works. As long as the requested
resource quantity is within the quota, access is granted
and the consumed quantity is logged. If a request exceeds
the quota, granting access depends on the renewability of
the resource (defined in §3.2 below), and will either fail or
block until the required quantity becomes available. This

1As we show in §5.5, this quota needs not be static.
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# Condition Fungible Renewable Result
1 quantity ≤ quota Yes either reduce quota, grant access
2 quantity > quota Yes Yes block until replenished
3 quantity > quota Yes No error
4 unallocated resource No either allocate, grant access
5 busy resource No Yes block until replenished
6 busy resource No No error

Table 1: Accessing resources with different characteristics

will happen either over time (for a renewable resource), or
through explicit release by the caller (for a non-renewable
resource).

For a non-fungible resource, like a listening TCP or
UDP port, each resource is unique. Each application may
request one specific instance and will effectively block
all other uses of this resource instance. Non-fungible re-
sources need to be controlled on a system-wide basis. In
most cases, non-fungible resources are assigned by Fence
and reserved by applications, even when the application
is not executing. Thus, even if a webserver application
is not running, it may reserve TCP port 8080 to prevent
other applications from using the port (closing a common
security hole [83]).

Non-fungible resource access is summarized in lines
4, 5 and 6 of Table 1. A non-fungible resource that is not
currently allocated can be accessed (after allocating it to
the caller). Otherwise, access to a busy resource will either
block or raise an error. Similar to fungible resources, non-
fungible resources will either replenish over time, or are
released explicitly by the caller.

3.2 Renewable and non-renewable
Some low-level resources, such as CPU cycles and net-
work transmit rate, have an innate time dimension wherein
the operating system continually schedules the use of the
device or resource. These low-level resources are renew-
able resources because they automatically replenish as
time elapses. Put another way, one cannot conserve the
resource by not using it. If the CPU remains idle for a
quantum, this does not mean there is an extra quantum of
CPU available later. The control mechanism for a renew-
able resource is to limit the rate of usage, or utilization.
Utilization is controlled over one or more periods, where
the application’s use of the resource is first measured and
then paused for as long as required to bound it below a
threshold, on average.

For example, to bound data plan costs, one may set a
per-month limit for an application. Preventing the appli-
cation’s data usage from impacting the responsiveness
of other network applications may also require a per-
second limit. If an application attempts to consume a
renewable resource at a faster rate than is allowed, the
request is not issued until sufficient time has passed. (An
extreme version of this involves batching requests to-
gether [17, 58, 76].)

Lines 1 and 4 in Table 1 show that access is granted

when there is sufficient quota or unallocated resources.
When a renewable resource is oversubscribed or busy
(as shown in lines 2 and 5), it will block access until the
resource is replenished, which will happen when the caller
refrains from using the resource for an interval.

Non-renewable resources like memory, file descriptors,
or persistent storage space are acquired by an applica-
tion and (ignoring memory paging) are not time-sliced
out or shared by other applications. As a result, granting
access to a non-renewable resource is a conceptually per-
manent allocation from the application’s perspective. For
resources other than persistent storage space, the alloca-
tion usually coincides with the lifespan of the application
instance, although the application may often choose to
voluntarily relinquish the resource at any time. Short of
forcibly stopping the application instance, there is lit-
tle remedy for reclaiming most non-renewable resources
once they are allocated.

To monitor and control the usage of non-renewable
resources, it suffices to keep a table of resource assign-
ments that track and update requests and releases. Once
resource caps are set, an application can never request
more non-renewable resources than the cap. A request
can be met if the requested quantity is no greater than
the cap on a fungible resource (see line 1 of Table 1), or,
for a non-fungible resource, if the resource is not already
allocated (line 4). Trying to exceed the cap will result in
an error signal (line 3), as will trying to access an already
allocated resource (line 6).

3.3 Enforcing Resource Controls
In the preceding discussion it was assumed that resource
consumption can be measured and controlled in some
way. While the restrictions Fence intends to place upon re-
sources are fully specified by their fungibility and renewa-
bility, the method of enforcing resource controls is not,
and will potentially vary across implementations of Fence,
on different platforms. We describe two specific types of
enforcement that allow Fence to control resources: (1)
call interposition and (2) polling and signaling (indicated
in Figure 1).

Call interposition. Interposition allows Fence to be
called every time a process consumes a resource. How-
ever, there are different strategies that one may choose
to control resources. For example, consider the case of
restricting network I/O rate (a renewable resource). Sup-
pose that a program requests to send 1MB of data over a
connected TCP socket. The fundamental question is when
Fence’s control of this resource should be enforced.

Pre-call strategy. If an application is only charged for
sent data before the call executes, then often times it will
be overcharged. Given our example of a 1MB send, the
send buffer may not be large enough to accept delivery of
the entire amount and so much less may be sent. In such

3
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Figure 1: Fence’s resource control via call interposition and
polling/signaling.

a scenario, Fence would block the program for a longer
time than is actually needed.

Post-call strategy. If the application is only charged
after the call executes, however, it is possible to start
threads that make huge requests to transmit information.
This could allow the user to monopolize resources in the
short term and to consume a large amount of resources.

Pre-and-post-call strategy. To better meter renewable
resources, one can decouple the potential delay of access
(done to adjust utilization based on past usage), from
accounting, which is best performed after access. With
this method, the pre-call portion of control will block until
the use from prior calls has replenished; after that, the
function is executed and the post-call portion charges the
consumed amount.

Micro-call strategy. Finally, another option is to break
a large call up into smaller calls and then allow Fence to
handle them separately. However, this has the drawback
of changing the original call semantics in some cases. For
example, suppose that an application is only permitted to
send 20kB of data per second. However, the caller wants
to send a UDP datagram of 60kB. Instead of sending one
60kB datagram, the application could send three sepa-
rate 20kB datagrams. Since each datagram is a “message”
and the loss / boundaries between messages are mean-
ingful (unlike the stream abstraction of TCP), sending
three 20kB datagrams has a different meaning than does
sending one 60kB datagram.

In practice, Fence is largely used with the pre-and-post-
call strategy for renewable resources. For non-renewable
resources, the pre-call strategy is predominant, because
it will block access to an unauthorized resource before it
occurs. Other strategies can be used, depending on how
Fence is integrated into a platform.

Polling and signaling. For resources on which it cannot
interpose, Fence uses polling, coupled with some form of
limit enforcement, such as signaling, as a complementary
mechanism to control resource usage. For example, for
CPU scheduling, Fence does not modify the OS; rather,

the OS scheduler manages process scheduling directly.
Fence needs to poll to understand how often a process has
been scheduled and must signal the scheduler to stop or
start executing the application. This has a number of im-
plications [80, §5.5.3], [78, §18.3] that call interposition
does not present.

Atomicity. While trivially implementable for call in-
terposition (e.g., by guarding calls with semaphores), re-
source access is not guaranteed to be atomic. This raises
potential Time-Of-Check To Time-Of-Use (TOCTTOU)
issues between threads of the same application as well as
other applications wanting to access the resource.

Interference due to load. Fence’s polling and signaling
impose a certain amount of overhead that depends on the
rate of checking and control. When the machine is under
load, Fence might not be able to keep up with its planned
check and control schedule. As a result, a process under
its control can consume a resource for longer than the time
scheduled by Fence. Thus, in the worst case, this causes
overconsumption and reinforces the overload condition.

Rate of checking and control. The fidelity and overhead
of resource control depend on the rate at which control
is enforced. The minimum rate (i.e. the longest interval
between interruptions) is given by the minimal fidelity
desired. If the rate is too low, a process might overspend a
resource between checks. The maximum rate is bounded
by the maximum acceptable overhead – each check and
interruption causes additional cost – and the granularity
of checking and control (which defines the minimum
possible length of interruption).

Polling and signaling granularity. Granularity is the
smallest unit of measurement and control of a resource,
e.g., the resolution of the system clock, or the unit job
that control functions can handle (process, thread). If the
granularity is too coarse, Fence might misapprehend the
resource consumption of a process under its control dur-
ing polling or enforce undue restrictions on the process.

3.4 Choosing Resource Control Settings
A question that follows from the previously discussed
framework is how to choose which resources to allocate
to a process. This can be viewed along two axes. First,
policies can set direct per-resource usage limits or quo-
tas, or indirectly establish limits based on the effect of
resource usage on device availability. Second, such lim-
its may be static, set manually and a priori, or dynamic,
where policies continually adjust limits to achieve avail-
ability goals2.

For most non-fungible resources (like TCP / UDP port

2We also envision that different stakeholders desire different policies:
For example, a programmer could include Fence in their application in
order to tame it; a sysadmin may specify policies based on user groups,
time of day etc.; the end user sets values with respect to their current
workload and usage requirements.

4
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Figure 2: Fence’s uniform control APIs for resources based
on fungibility and renewability

numbers) or for items that are hard to quantify (like pri-
vacy, cf. §6), choosing appropriate resource settings is
typically done manually during packaging or installation.

However, the relationship between a limit (say, 30%
of CPU or disk bandwidth), and user-observable proper-
ties (such as response time, battery life, or heat) is non-
obvious and dependent on a number of factors. Accurate
resource modeling is very difficult and in general requires
advanced techniques [35, 45, 68, 75, 89], but determin-
ing a workload that approximates the maximum negative
impact is an easier task.

Fence provides the capability to automatically choose
resource limits, in particular, for fungible resources. When
Fence is installed, it can benchmark the platform and
check the usage impact on different resources, such as
performance degradation, battery usage, or temperature.
By understanding the impact of individual resources, one
can choose resource settings that provide device availabil-
ity in the face of contention. In §5.5 we show a policy
that sets limits both indirectly and dynamically, based on
a target battery lifetime.

4 Implementation
Fence’s fully functional open source implementation that
runs across various hardware platforms and OSses in-
cludes the features and functionality described in the pre-
vious sections. The core implementation is 790 lines of
Python code (as counted by sloccount). There are two
major portions of the Fence code: the uniform resource
control code (140 LOC) and the operating system specific
code (650 LOC).

4.1 Uniform Resource Control
Because the uniform resource control code only differs
in its characteristics of fungibility and renewability, it
fits within 140 LOC. Fence is informed about resource
consumption by performing a set of four calls as is shown
in Figure 2.

The specific call made depends on the type of re-

def sendmessage(destip,destport,msg,localip,localport):
...
# check that we are permitted to use this port...
if not fence.is_item_allowed(’messport’,localport):
raise ResourceAccessDenied("...")

# get the OS’s UDP socket
sock = _get_udp_socket(localip, localport)

# Register this socket descriptor with fence
fence.tattle_add_item("outsockets", id(sock))

# Send this UDP datagram
bytessent = sock.sendto(msg, (destip, destport))

# Account for the network bandwidth utilized
if _is_loopback_ipaddr(destip):
fence.tattle_quantity(’loopsend’, bytessent + 64)

else:
fence.tattle_quantity(’netsend’, bytessent + 64)

...

Figure 3: Fence additions to the Seattle sandbox’s sendmes-
sage call. Added lines of code are in bold text.

source being consumed. For example, the Seattle sand-
box (described in more detail in § 6) required an addi-
tional 79 lines of code to support Fence, 68 of which
were direct calls to Fence Figure 3 shows some of
the code changes made to sendmessage, Seattle’s
API call for sending UDP datagrams. The first call,
is item allowed(), checks whether the UDP port (a
non-fungible, non-renewable resource) can be consumed.
The tattle add item() call is used to charge for
entries in the socket descriptor table to prevent the ker-
nel from being overloaded with active sockets. The
tattle quantity() call charges for the consumed
bandwidth (a renewable resource), depending on the des-
tination interface.

In addition, there is an API that can be used to set high
level policy. This is done by setting low-level resource
quotas for the different resources that Fence manages.
For example, if energy is the primary concern, resource
quotas can be set to restrict the maximum expected en-
ergy consumption over a polling period. Actual energy
consumed can be measured and the resource quota values
updated appropriately.

4.2 Operating System Specific Code
The bulk of the Fence code (650 LOC) is operating sys-
tem specific and involves supporting polling or enforce-
ment across various platforms, including Windows XP
and later, Mac OS X, Linux, BSD variants, One Laptop
Per Child, Nokia devices, iPhones / iPods / iPads, and
Android phones and tablets.

While all these platforms have the necessary low-level
functionality, a convergence layer is still required because
polling and enforcement semantics differ from platform
to platform. For example, resource statistics are gathered
in a fundamentally different way across many types of de-
vices. However, the operating systems for many platforms

5
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are derived from similar sources and thus share some
subset of resource control functionality. For example, the
Android port of Fence is based on the convergence layer
of the Linux implementation of Fence and reuses almost
all of its code.

4.3 Operating System Hooks Utilized
At the lowest level, Fence polls OS specific hooks for
performance profiling to obtain statistics about the re-
source consumption of an application. To gain con-
trol over scheduling, Fence uses the job control inter-
face on most OSes (SIGSTOP and SIGCONT), or the
SuspendThread / ResumeThread interface on Win-
dows. This informs the scheduler when to suspend or
continue a process, in order to impose a different schedul-
ing policy than the underlying OS scheduler. This can
give a program less CPU time than it would ordinarily
have to limit its performance impact, rate of battery drain,
or heat.

To control resources other than the CPU, Fence con-
structs a uniform interface to low-level functionality that
operates in an OS-specific manner. Consider memory
as an example: On Linux and Android, Fence can use
proc to read the memory consumption (Resident Set
Size) for the process. On Mac OS X, similar actions are
performed by interfacing with libproc. On Windows,
calls to kernel32 and psapi, the process status API,
reveal the required information. Inside of its resource mea-
surement and control routines, Fence can then use a single
high-level call to gather the memory usage of a process,
no matter what underlying OS or platform is used.

5 Evaluation
We evaluated Fence’s software artifact and its deployment
to investigate the following questions.

In situations with resource contention, how effectively
do uniform resource control and legacy ad-hoc techniques
provide device availability? (§5.2)

How well does uniform resource control function
across diverse platforms? (§5.3)

How much overhead is incurred when employing uni-
form resource control during normal operation? (§5.4)

Can realistic, high level policies be expressed with
Fence? (§5.5)

How diverse are the resources that can be metered by
uniform resource control? (§6)

How time consuming and challenging is it to add a new
resource type to Fence? (§6)

5.1 Experiment Methodology
To understand the tradeoffs between customized solutions
and uniform resource control, we compared Fence to well-
known, deployed tools found on common OSes. These
included nice (which sets the scheduling priority of a

process), ionice (similarly for I/O priority), ulimit
(which imposes hard limits on the overall consumption
of resources like file sizes, overall CPU time, and stack
size), as well as a combination of these tools. We also
included cpufreq-set, which changes the CPU fre-
quency within the device and slows down all processing.

To create a model hog application that stresses re-
sources, we created a series of processes that were in-
tended to consume the entirety of a specific type of re-
source. For example, a CPU hog will simply go into an
infinite loop, while a memory hog will acquire as much
memory as possible and constantly touch different parts
of it. We also created an ‘everything hog’ process that
would use all of the memory, CPU, network bandwidth,
and storage I/O it was allowed to consume.

For those experiments that looked at power consump-
tion and temperature, we used the devices’ built-in ACPI
interfaces. Measurements were taken after a machine had
been in a steady load state for ten minutes, to account for
heating and cooling effects between load changes.

5.2 Availability of Fence vs Legacy Tools
5.2.1 Performance Degradation

Setup. To evaluate all of the tested tools’ abilities to
contain a hog process, we ran an experiment where the
‘everything hog’ interfered with VLC playback of a 1080p
H.264 video [24] stored on disk. The results presented
here were generated on a Dell Inspiron 630m laptop run-
ning Ubuntu 10.04; however, our results were similar
across different device types and operating systems. We
set all of the tools, including Fence, to their most restric-
tive settings3 in order to contain the hog processes. For
nice and ionice, VLC was additionally set to have
the highest possible priority.

Result. Figure 4 shows the results4 in terms of the pro-
portion of frames decoded by the player when competing
with hog processes. Existing tools performed very poorly
when competing with the ‘everything hog’ – using nice
(19.2%), ionice (17.7%), or ulimit (16.4%) showed
not much more impact than not using them (16.7%). Even
using a combination of all these tools showed little ef-
fect (21.8%). Setting the CPU frequency lower (7.9%)
slowed down the entire system, including the video player,
causing even more dropped frames. Because Fence limits
all types of resources, even the everything hog has very
limited impact (Fence delivers 99.8% of the frames).

One surprising finding was that nice was highly inef-
fective in protecting the video player against a CPU hog.

3I.e. nice level +20, ionice class idle, lowest CPU frequency
setting, and ulimit memory to 10 MB; for Fence, 1% of the CPU,
10kBps disk rate, 10 MB of memory

4 An anonymized video that shows the actual playback quality in
this experiment is available [8].

6



USENIX Association  2015 USENIX Annual Technical Conference 183

 0

 20

 40

 60

 80

 100

CPU Memory Disk Network Everything

D
ec

od
ed

 fr
am

es
 (%

)

Hogs

no restriction
nice

ionice
ulimit

combination
cpufreq_set(lowest)

Fence

Figure 4: Proportion of decoded frames during video play-
back when competing with different resource hogs (aver-
ages of ten runs ±σ , larger is better).

35

40

45

50

55

60

65

70

75

 20  30  40  50

Th
er

m
al

 E
ffe

ct
 (d

eg
re

e 
C

)

Battery Drain (W)

nice
ionice
ulimit
combination
cpufreq-set
Fence

nice and ionice

idle
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the device. Fence effectively sweeps the full range.

It provides little benefit for a high-priority program that
exhibits bursty behavior with implicit deadlines for work
activities. However, tasks that constantly consume CPU,
such as benchmarks, benefited substantially from nice.

Evaluations of the ‘everything hog’ showed that heavy
use of one resource tended to cause a performance prob-
lem for other resources. Thus, resource conflicts seemed
to compound, yet defenses were about the same as the
strongest individual defense. This implies that uniformly
strong defenses are essential to preventing an application
from degrading performance.

5.2.2 Control Of Power And Heat

Setup. We next compared the effectiveness of popu-
lar tools in controlling the rate of power consumption
and thermal effect (heat) caused by an application. To
make this comparison, we ran an ‘everything hog’ pro-
cess on the laptop for ten minutes and examined the ACPI
battery and temperature sensors. We then applied Fence,

ulimit, cpufreq-set, nice, and ionice on the
hog process, for ten minutes each, and read the battery
and temperature sensors again. To understand the im-
pact of the tool, we varied the hog’s priority or resource
settings by choosing a variety of settings, including the
lowest to highest settings permitted by the tool. Interme-
diate settings were used to further understand the tool’s
effective range of control. An ideal tool would allow the
temperature and battery drain of the ‘everything hog’ to
be precisely controlled in a range from idle (no impact
from the hog) to full system utilization (full performance
of the hog).
Results. Figure 5 shows the ability of tools to control the
rate of battery consumption and heat. Existing tools, such
as ulimit and nice, showed no measurable impact on
a hog’s ability to consume power (48.4W) or to raise the
temperature of a device (71.5°C). This is because when
there are available resources, any program (no matter how
low its priority) can exhaust the battery and thermal capa-
bilities of a device. In comparison, ulimit can at least
slightly improve battery life (41.9W) and thermal effect
(67.4°C) because it will reduce memory use. Using all
these tools simultaneously on a hog produced a similar ef-
fect to ulimit (42.2W, 67.1°C). Thus ulimit, nice,
and ionice are not effective in controlling battery drain
or heat.

In our experiment, cpufreq-set was much more
effective than were other off-the-shelf tools (30.8W,
47.7°C). However, as described in the previous section,
cpufreq-set negatively impacted all applications. It
also failed to control access to resources other than the
CPU, which resulted in high residual battery drain and
temperature (e.g., from wireless network adapters).

Fence was much more effective in controlling battery
consumption; it brought these values down to within .2%
of idle. The uniform resource control impacted all power
consuming resources, which led to effective control of
battery drain and heat.

5.3 Effectiveness on Diverse Platforms
Setup. We ran a series of benchmarks to investigate
whether uniform resource control is effective on diverse
platforms. We tested Fence on smartphones (Samsung
Galaxy Y, Nokia N800), tablets (Samsung Galaxy Tab,
Apple iPad), laptops (MacBook, Inspiron, Thinkpad),
desktop PCs (Alienware, Ideacenter), and also the com-
mercial Amazon EC2 cloud computing platform. Operat-
ing systems tested included Windows 7, Ubuntu 10.04 to
12.04, Mac OS X 10.8.4, Nokia’s OS2008, Android 2.3.5
and 4.0.3, and a jailbroken iOS 5.0.1

We ran five benchmarks for the Seattle testbed, includ-
ing an HTTP server serving a large file, an Amazon S3-
like block storage service, an HTTP server benchmark
with small files / directory entries, a UDP P2P messaging
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program, and the Richards benchmark [19], set up against
an ‘everything hog’.

Note that the last four benchmarks were qualitatively
and quantitatively similar, so we only present the results
from the S3 blockstore. Figure 6 shows the results of
these benchmarks with both an ‘everything hog’ with
no restrictions and an ‘everything hog’ under Fence’s
control. The values are all normalized by dividing by the
benchmark time on an idle device.

Results. The benchmark performance when the hog was
unrestricted ranged from about 60% (Lenovo IdeaCentre
running Ubuntu 11.04) down to 2% (Nokia N800). Note
that performance results for the unrestricted hog on a
jailbroken iPad are not represented because parts of the
system crashed when we instantiated an unrestricted hog
process.

If the hog process is bound by Fence to consume at
most 1% of a device’s resources, a typical VM size in
the Seattle testbed [67], the hog’s impact on a bench-
mark is minimal. If the hog is restricted to 1%, then the
benchmark should run with about 99% of the original
performance. The lowest value (90%) was recorded on
a Nokia N800 that was purchased in 2007. On very low
power devices such as this, Fence’s overhead for polling
and signaling is significant. However on other platforms,
the benchmark’s execution time was within 98% of the
original performance. Our tests show that uniform re-
source control provides strong device availability with
low overhead across a diverse array of modern platforms.

5.4 Overhead of Fence
Both interposition and polling can incur overhead on
applications. Although the exact overhead will depend
on where and how uniform resource control is imple-
mented, it is important to have a rough understanding
of the cost. We measured the overhead from both pre-
post call interposition (§3.3) and polling / signaling using
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Pulse-Frequency Modulation [37]. Figure 7 shows the
relative overhead incurred by the CPU polling mecha-
nism5 used by Fence when compared with an unrestricted
benchmark on a Lenovo IdeaCentre K330 desktop PC
running Ubuntu 11.04. Results for other operating sys-
tems and platforms were qualitatively similar. Fence’s
current implementation uses a 100ms polling interval for
Linux on a desktop machine, which causes an overhead
of less than 4% across the range of CPU allowances. If
the polling interval was reduced to 20ms, control would
be finer-grained, but the overhead would exceed 10% for
allowance values above 50%. (Only at 100% allowance,
i.e., no CPU restrictions, does the overhead drop again.
In this case, Fence never detects that the CPU allowance
was exceeded; thus, only polling causes overhead and no
signaling overhead is incurred.) Results for many shorter
polling rates (e.g., 1ms) are omitted because they do not
fit on the graph. Using a 100ms polling interval for Fence
results in low overhead across a wide variety of resource
restriction settings.

5.5 Expressing a High-Level Policy
We now explore how a high-level policy can be expressed
with Fence. To demonstrate this we implemented a sim-
ple policy from Cinder [75, Fig.1] to limit the long-term
power draw of an application. Cinder uses reserves that

5Resource types other than CPU have an impact on the order of
100 ns to 8 µs per interposition.
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store energy and taps that transfer energy between re-
serves per unit time to control energy use. In this scenario,
a fixed-rate tap replenishes a reserve at fixed intervals, and
the application can only draw energy from the reserve.
(This is analogous to a token bucket where the tap is the
filling rate of the bucket and the reserve is the number
of tokens in the bucket.) The tap limits the long-term
power draw, which is useful to provide battery lifetime
guarantees, while the reserve allows for bursts. We imple-
mented the policy as a control loop that reads the battery
information from ACPI to determine the power draw for
the previous interval, computes the necessary limits for
processes, and sets the quota for Fence to enforce.

We examined the power draw on a Dell M1210 lap-
top. The long-term power draw goal from the battery was
set to 25.4W, corresponding to about 69% between idle
(12.0W) and maximum (31.5W) power draw on this ma-
chine. The “battery tap” replenished a reserve from which
the application drew energy. To read the battery informa-
tion from the system, we used the power supply API that
updated approximately every 15 seconds. The theoretical
maximum power draw in the reserve for one period was
tracked at the same temporal resolution.

Fence operates at the user level and as such does not
have low-level information about the energy consumption
of individual hardware components. To enforce energy
consumption restrictions, we requested that Fence set the
quota on every renewable resource based on the amount
of energy in the reserve. For example, if the reserve al-
lowed for 28W for the next interval, then all renewable
resources were set to 82% of their maximum value, as
28W = 12.0W+ 0.82% · (31.5W− 12.0W). While this
policy has many simplifying assumptions, we find that in
practice it works.

We ran a Richards benchmark [19] in the following
fashion. It ran for 10 periods (where a period is the amount
of time between power supply readings), and then slept for
2 periods. After doing this three times, it ran continually
for 20 periods. The benchmark was run according to this
schedule, both with and without Fence.

Results of this benchmark are shown in Figure 8. The
shaded areas indicate when the benchmark was sleeping.
The tap rate, representing the long-term power draw goal,
was 25.4W for each period. The unrestricted rate shows
the benchmark’s power draw in absence of any power re-
strictions: For the majority of time that the benchmark test
was active, it caused the battery to drain at approximately
the maximum rate.

The Fence rate shows the benchmark’s power draw
when run under Fence. Note that unlike the unrestricted
benchmark, the behavior of this line is limited by two
power rates: The maximum power draw that the system al-
lows, and also the amount in reserve in each period. When
the reserve is large (for example, right after a sleep pe-

riod), Fence behaves similarly to the unrestricted rate, and
uses energy at approximately the maximum rate. When
the reserve is small, Fence restricts power use to approxi-
mately the rate of the tap. Cinder’s policy uses Fence to
enforce that the overall power use stays within budget,
while allowing the application to have flexibility in when
it consumes its energy budget.

Fence’s power restrictions are inaccurate, due in part
to our implementation working at user space. As such we
do not directly account for complex issues of power use
in the underlying platform (e.g. tail power consumption
[34]). However, Fence will read the new battery level
during the next period and will drain the reserve based
upon what was actually consumed. Fence’s adjustment in
subsequent periods mitigates the effect of this inaccuracy.

Fence made implementing Cinder’s policy very
straightforward. The implementation is 150 lines of code
and did not require any detailed knowledge of the under-
lying resource types or control mechanisms. The imple-
mentation simply reads the battery level and adjusts the
values in the resource table based upon the reserve and
tap settings. This demonstrates that uniform resource con-
trol may make policy implementation easier, which we
hope will lead to more application developers and system
designers using such mechanisms.

6 Practical Fence Deployments
Seattle’s Use of Fence. Fence is deployed as a part of
the Seattle testbed [21]. Seattle runs on laptops, tablets,
and smartphones, with more than twenty thousand installs
distributed around the world [88]. The Seattle testbed is
used to measure end user connectivity, to build peer-to-
peer services, and as a platform for apps that measure and
avoid Internet censorship [16, 44, 46, 73, 81]. Seattle is
also widely used in computer science education where it
has been used in more than fifty classes at more than a
dozen universities [39, 41, 67].

Each device running Seattle uses Fence to allocate
a fixed percentage (usually 10%) of the device’s CPU,
memory, disk, and other resources to one or more VMs.
When a Seattle sandbox [40] is started, it reads a text file
that lists the resources allocated to the program. Each
line contains a resource type and quantity (for fungi-
ble resources) or the name of the resource (for non-
fungible resources). For example, resource memory
10000000 sets the memory cap to 10 million bytes, and
resource udpport 12345 allows the program to
send and receive UDP traffic on port 12345.

Seattle’s categorization of resources and enforcement
mechanisms are shown in Table 2. In the Seattle plat-
form’s sandbox, the calls to network and disk devices
are routed through Fence, whereas usage statistics on
memory and CPU are polled from the operating system.
Unfortunately, there is not a clean, cross-platform way
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Resource Fungible Renewable Seattle Control Lind Control
CPU Yes Yes Polling Polling
Threads Yes No Interposition Interposition
Memory Yes No Polling Interposition
Storage space Yes No Polling Interposition
UDP / TCP ports No No Interposition Interposition
Open sockets Yes No Interposition Interposition
Open files Yes No Interposition Interposition
File R/W Yes Yes Interposition Interposition
Network R/W No Yes Interposition Interposition
HW randomness Yes Yes Interposition Interposition

Table 2: The user-space Fence implementation’s resource
categorization used in Seattle [40] and Lind [65].

for Fence to reclaim memory used by an application. As
such, Seattle enforces a hard maximum allowed memory
limit for an application, so a process trying to exceed the
limit will be forcefully killed.

Lind’s Use of Fence. In addition to being used in Seat-
tle’s sandbox, Fence is also used in a Google Native Client
sandbox called Lind [65]. Since this sandbox provides
a different abstraction (a POSIX system call), some of
the low-level resource characteristics (and thus, means of
controlling consumption) vary from Seattle’s deployment.
This sandbox has a hook that allows Fence to interpose
on memory requests and avoid polling. (This also allows
Fence to control native programs that cannot be executed
in the Seattle sandbox.) The rightmost column of Table 2
overviews Lind’s resource categorization.

The Sensibility Testbed’s Use of Fence. Fence is
not limited to controlling traditional computational re-
sources – it is currently being integrated by the Sensibility
Testbed [22] developers. Sensibility Testbed consists of
smartphones and tablets where researchers get access
to dozens of diverse sensors including WiFi network in-
formation, accelerometer readings, battery level, device
ID, GPS, and audio. Sensibility Testbed uses the same
sandbox as the Seattle testbed. However, in addition to
limiting a program’s access to resources for performance
reasons, Sensibility Testbed allows users who pass an IRB
review to get access to devices’ sensors at a rate meant
to preserve user privacy (e.g. by limiting the rate or ac-
celerometer queries to prevent sniffing keystrokes [70]).
The demonstrated ability of Fence to provide privacy guar-
antees across “sensor resources” validates the generality
of uniform resource control as a technique.

Experiences / Limitations. Our experience is that
Fence’s effectiveness depends on the amount of resource
information available to the developer. E.g., it is relatively
straightforward for a sandbox operating in user space to
limit disk I/O when interposing on a read or write call
on a file descriptor for a regular file – the number of disk
blocks accessed is fairly easy to predict. However, it is
very hard to provide performance isolation for a call like
mount: It may perform a substantial number of disk I/O
operations in the kernel, which are not predictable by a
sandbox in user space. (For similar reasons, a hardware

resource like L2 cache may be difficult to meter using
software in an OS kernel.)

The time it takes a developer to understand the re-
sources consumed by a call depends a lot on the imple-
menter. In our experience, adding calls into Fence in the
appropriate parts of the code only takes a few minutes per
API call. In fact, outside groups have used Fence to pro-
vide resource controls on many platforms (Android, iOS,
Nokia, Raspberry PI, and OpenWrt) each necessitating
only a few days’ worth of effort. The bulk of the effort
lies in understanding what resources a call will consume.

7 Related Work
Our work follows a substantial amount of prior work that
has recognized the need to prevent performance degra-
dation, enhance battery control, and manage heat. Fence
is unique in that it works across diverse platforms and
presents a portable, user-space solution that unifies re-
source control across resource types.

Deployed Solutions For Improved Availability. The
need for improved device availability has produced strate-
gies for preventing performance degradation, with differ-
ent levels of required privileges, including per-application,
per-user, OS-wide, and hypervisor-based approaches. For
example, modern web browsers monitor the run time of
their JavaScript engine to detect “runaway” scripts, i.e.,
programs that take excessive time to execute and allow
the user to stop the script. A malicious script can fool
the timer however, by partitioning its workload, or by
using Web Workers [69]. The runaway timer also ignores
other resources that the JavaScript program may take,
such as network and memory. Another application-level
example, the Java Virtual Machine [12], supports setting
a limit on the amount of memory that can be allocated by
a process. However, much like Lua [56], Flash [1], and
other programming language VMs, the Java Virtual Ma-
chine (JVM) does not support limiting the rate of some
fungible/renewable resources, such as CPU — the pri-
mary cause of energy drain and heat on many devices.

Operating system virtual machine monitors control
many different resource types, depending on the imple-
mentation [13, 26, 28, 29, 36, 72]. However, the resource
controls are ad hoc and specific to the type of resource.
Bare-metal hypervisors [13, 36] require kernel changes,
whereas hosted hypervisors [26, 28] have substantial per-
VM resource costs. As a result, none of these are practical
to deploy on a per application basis, especially on devices
like smartphones and tablets.

More recently, the cgroups [4] infrastructure in
Linux addresses many of the issues discussed in this paper
(CPU, memory use, and disk I/O). cgroups, however,
is specific to newer versions of Linux. Due to its location
in the kernel, it has better resource granularity than Fence.
However, cgroups focuses on point solutions for spe-
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cific resources, rather than a more uniform and general
solution. In contrast, Fence provides a user-space uniform
resource control solution that works across a wide array
of devices without kernel modifications.

Operating Systems Research. There are many clean
slate OS approaches that would achieve the same im-
provements as Fence. Since many deployed OSes are
ineffective at preventing performance degradation, Fence
focuses on providing this property in user space. Several
OS-level efforts aim at managing processes’ low-level re-
sources consumption in a system-wide manner to control
battery life. ECOSystem [89], Odyssey [48], Cinder [75],
and ErdOS [85] focus on extending battery life. Their
reasoning about resources is fixated on the energy con-
sumed by renewable resources. Scheduling decisions are
made exclusively on this foundation. Fence also supports
energy-aware resource limiting, but we measure resource
consumption as “unit of resource,” which enables interest-
ing use cases, such as control strategies based on device
responsiveness or service availability.

Research projects [42, 43, 54, 60, 61, 66, 87] try to man-
age thermal effects through temperature-aware priority-
based scheduling and thread placement on the CPU. Our
work demonstrates that priority-based scheduling is inef-
fective at upper-bounding a process.

The efforts presented above require deep changes to ap-
plications to support resource aware operation, are based
on new kernels, or use forms of priority-based schedul-
ing that do not succeed in limiting resource consump-
tion. In contrast, Fence requires no changes to OSes or
applications, and operates entirely in user space. Further-
more, Fence puts boundaries on any type of resource
consumption and can affect more than battery drain. This
is achieved by reasoning about, tallying, and controlling
multiple different resources in a uniform way.

Controlling resource consumption is well researched
in the real-time OS community [31, 64, 74]. Our research
focuses on techniques to enhance general-purpose OSes
with minimal disruption to existing systems.

There have been a substantial number of complimen-
tary user-space techniques for improving security that
involve system-call interposition [52, 53, 59], host intru-
sion detection [47, 50], and access control [55, 77, 86].
These mechanisms aim to permit or deny access to re-
sources requested by applications based upon how they
will impact the security of the system. Fence’s goal is
fundamentally different: It limits the rate of resources
consumption so that the use of allowed resources does not
impact the availability or correct operation of a device.

Idle Resource Consumption A variety of frame-
works, such as Condor [63], SETI@Home [23], and Fold-
ing@Home [9] allow trusted developers to consume idle
resources on a users device. These wait for the user’s

system to be idle and then run, so as to not interfere with
performance. However, once they run, these programs
may fully utilize the CPU, GPU, and similar resources on
the device, often leading to significant power drain [2].
Fence may also operate in such an on-off manner, but it
is flexible enough to allow more advanced policies.

One related effort to Fence in this domain was the
construction of an idle resource consumption framework
by Abe et al. [30]. This system runs in user space and
leverages special functionality from OS-specific hooks in
Solaris revolving around dtrace [38]. While this pro-
vides easy control of native code (which Fence lacks),
equivalent techniques do not exist across platforms. As
such, this will only work for a few environments, such
as BSD, that support similar hooks. As a result, Abe’s
work cannot be deployed on many systems. (For example,
Windows lacks a non-bypassable method for interpos-
ing on an untrusted application’s operating system calls.)
Additionally, as this work seeks to enable background
execution only when foreground execution is idle, many
of the detection and scheduling results from this work do
not apply to our domain.
Distributed Systems Research Controlling resource
utilization is also an important problem in distributed
contexts [32, 33, 49, 51, 57, 62, 79, 82, 84]. Significant
prior work has focused on efficiently allocating avail-
able resources between multiple parties. While managing
distributed resources is orthogonal to our goals, Fence
embraces richer semantics to reason about resource con-
sumption, rather than utilization; we believe that our ap-
proach towards uniform resource control would apply
well as a heterogeneity-masking technique in distributed
contexts.

8 Conclusion
This paper introduces uniform resource control by clas-
sifying resources along the dimensions of renewability
and fungibility. Our system, Fence, demonstrates that uni-
form resource control provides flexibility by controlling
multiple heterogeneous resources across almost a dozen
diverse operating systems. Furthermore, we demonstrate
that this technique is particularly adept at addressing is-
sues of performance degradation, heat, and battery drain
that many users face today.

In addition to the experimental validation presented
in this paper, Fence has been deployed and adopted to
provide resource containment of untrusted user code in
several testbeds. As a result, tens of thousands of smart-
phones, tablets, and desktop OSes around the world rely
on Fence to prevent device degradation. Beyond our de-
ployment, we believe Fence’s abstractions and mecha-
nisms could be used to provide better resource control for
sandboxes, web browsers, virtual machine monitors, and
operating systems.
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Abstract

Non-volatile write cache (NVWC) can help to improve

the performance of I/O-intensive tasks, especially write-

dominated tasks. The benefit of NVWC, however, cannot

be fully exploited if an admission policy blindly caches

all writes without differentiating the criticality of each

write in terms of application performance. We propose

a request-oriented admission policy, which caches only

writes awaited in the context of request execution. To ac-

curately detect such writes, a critical process, which is in-

volved in handling requests, is identified by application-

level hints. Then, we devise criticality inheritance proto-

cols in order to handle process and I/O dependencies to a

critical process. The proposed scheme is implemented on

the Linux kernel and is evaluated with PostgreSQL rela-

tional database and Redis NoSQL store. The evaluation

results show that our scheme outperforms the policy that

blindly caches all writes by up to 2.2× while reducing

write traffic to NVWC by up to 87%.

1 Introduction

For decades, processor and memory technologies have

been significantly improved in terms of performance

whereas the performance of storage still lags far behind

that of other components. To remedy this performance

gap, modern operating systems (OSes) use main memory

as a cache for underlying storage. With large main mem-

ory, this technique is effective for read-intensive tasks by

hiding long latency of storage reads [63]. For write op-

erations, however, caching is less effective because the

volatility of main memory may lead to data loss in the

event of power failure. As a consequence, write opera-

tions dominate the traffic to storage in production work-

loads operating with large main memory [13, 50, 69, 77].

Non-volatile write cache (NVWC) can help to im-

prove the performance of I/O-intensive tasks, especially

∗Currently at EMC

write-dominated tasks. For this reason, battery-backed

DRAM (NV-DRAM) has been widely exploited as an

NVWC device for file systems [11, 15, 41], transaction

processing systems [27, 57, 74], and disk arrays [36, 37].

In addition, various caching solutions based on flash

memory have been extensively studied to efficiently uti-

lize fast random access of flash memory [10, 19, 46, 49,

65]. Storage-class memory (SCM), such as spin-transfer

torque magneto-resistive memory (STT-MRAM) [17]

and phase change memory (PCM) [67], is expected to be

deployed as NVWC since it provides low latency compa-

rable to DRAM and persistency without backup battery.

Blindly caching all writes, however, cannot fully uti-

lize the benefit of NVWC for application performance

due to the following reasons. Firstly, it can frequently

stall writes in the performance-critical paths of an ap-

plication due to the lack of free blocks in NVWC, es-

pecially for capacity-constrained devices, such as NV-

DRAM and STT-MRAM. Secondly, it can cause severe

congestion in OS- and device-level queues of NVWC,

thereby delaying the processing of performance-critical

writes. Finally, it would hurt the reliability and perfor-

mance depending on the characteristics of the NVWC

device used. For instance, caching non-performance-

critical writes exacerbates wear-out of storage medium,

such as flash memory [39, 40, 80] and PCM [17, 66],

without any gain in application performance.

We propose a request-oriented admission policy that

only allows critical writes (i.e., performance-critical

writes) to be cached in NVWC. In particular, we define

critical writes as the writes awaited in the context of re-

quest execution since the performance of processing an

external request, like a key-value PUT/GET, determines

the level of application performance. By using the pro-

posed policy, a large amount of non-critical writes can

be directly routed to backing storage bypassing NVWC

because typical data-intensive applications, such as rela-

tional database management system (RDBMS) [38, 59]

and NoSQL store [25, 31], delegate costly write I/Os
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to background processes while concurrently handling re-

quests using other processes; we refer to any kind of ex-

ecution context as process in this paper.

The key challenge of realizing the proposed policy

is how to accurately identify all critical writes. Basi-

cally, synchronous writes requested by a critical pro-

cess, which is involved to handle requests, are critical

writes by definition. This simple identification, however,

cannot detect process and I/O dependency-induced crit-

ical writes generated by complex synchronizations dur-

ing runtime. Since synchronization is the technique fre-

quently used to ensure correct execution among concur-

rent processes and I/Os, unresolved dependencies can

significantly delay the progress of a critical process,

thereby degrading application performance.

We devise hint-based critical process identification

and criticality inheritance protocols for accurate detec-

tion of critical writes. Basically, the proposed scheme

is guided by a hint on a critical process from an appli-

cation. Based on the given hint, synchronous writes re-

quested by a critical process are cached in NVWC. To

handle process dependency, we inherit criticality to a

non-critical process on which a critical process depends

to make progress. To handle I/O dependency, we dy-

namically reissue an outstanding non-critical write with

which a critical process synchronizes to NVWC without

compromising the correctness. We also resolve cascad-

ing dependencies by tracking blocking objects recorded

in the descriptors of processes who have dependencies to

a critical process.

Our proposed scheme was implemented on the Linux

kernel and FlashCache [2]. Based on the prototype

implementation, we evaluated our scheme using Post-

greSQL [5] and Redis [23] with a TPC-C [7] and

YCSB [26] benchmark, respectively. The evaluation re-

sults have shown that the proposed scheme outperforms

the policy that blindly caches all writes by 3–120% and

17–55% while reducing write traffic to NVWC by up to

72% and 87%, for PostgreSQL and Redis, respectively.

Our key contributions are the followings:

• We introduce a novel NVWC admission policy

based on request-oriented write classification.

• We devise criticality inheritance protocols to handle

complex dependencies generated during runtime.

• We prove the effectiveness of our scheme by con-

ducting case studies on real-world applications.

The remainder of this paper is organized as follows:

Section 2 describes the background and motivation be-

hind this work. Section 3 and Section 4 detail the design

of the proposed policy. Section 5 explains the prototype

implementation, and Section 6 presents our application

studies. Section 7 presents the evaluation results. Finally,

Section 8 presents related work and Section 9 concludes

our work and presents future direction.

2 Background and Motivation

2.1 Non-volatile Write Caches

Unlike conventional volatile caches, non-volatile write

cache (NVWC) is mainly used to durably buffer write

I/Os for improving write performance. Traditionally,

NV-DRAM has been widely used as an NVWC device

to enhance write performance by exploiting its low la-

tency and persistency. Typical usages of NV-DRAM are

writeback cache in RAID controllers [36, 37] and drop-

in replacement for DDR3 DIMMs [8, 78]. An inherent

limitation of NV-DRAM is small capacity due to high

cost per capacity and battery scaling problem.

Recently, flash memory-based caching is gaining sig-

nificant attention because it delivers much higher per-

formance than traditional disks and much higher density

than NV-DRAM. Thus, flash memory is widely adopted

in many storage solutions, such as hybrid storage [19, 70]

and client-side writeback caches in networked storage

systems [10, 49, 65]. Despite of the benefits, flash mem-

ory also has caveats to be used as an NVWC device be-

cause it has limited write endurance [39, 40, 80] and

garbage collection overheads [44, 45, 47, 62].

Emerging SCM, such as STT-MRAM [17] and

PCM [67], is also a good candidate for an NVWC device

since it provides low latency comparable to DRAM and

persistency without backup power. Though STT-MRAM

promises similar access latency to that of DRAM, its ca-

pacity is currently very limited due to technical limita-

tion [1]. On the other hand, PCM has been regarded as

more promising technology to be deployed at commer-

cial scale than STT-MRAM [3]. PCM, however, has lim-

ited write endurance [52, 66], which necessitates careful

management when it is used as an NVWC device.

2.2 Why Admission Policy Matters

A straightforward use of NVWC is to cache all writes

and to writeback cached data to backing storage in a

lazy manner. This simple admission policy is intended to

provide low latency for all incoming writes as much as

possible for improving system performance (e.g., IOPS).

However, blindly caching all writes cannot fully utilize

the benefit of NVWC in terms of application perfor-

mance (e.g., transactions/sec) for the following reasons.

Firstly, caching all writes can frequently stall writes

that are in the critical paths of an application due to

the lack of free blocks in NVWC. This is because the

speed of making free blocks is eventually bounded by

the writeback throughput to backing storage, such as

2
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Figure 1: Limitations of caching all writes. TPC-C throughput is normalized to the case of No NVWC.

disks. The stalled writes problem becomes more seri-

ous in capacity-constrained devices, such as NV-DRAM

and STT-MRAM. In order to quantify the impact of

stalled writes on application performance, we ran a TPC-

C benchmark [7] against PostgreSQL RDBMS [5] on

a Linux-based system having NV-DRAM-based NVWC

(emulated via ramdisk); see Section 7 for the detailed

configuration. As shown in Figure 1(a), the TPC-C

throughput normalized to the case without NVWC (i.e.,

disk only) drops from 1.99 to 1.09 as the capacity of

NVWC decreases. This is because the frequency of write

stalls in critical paths of PostgreSQL (e.g., stalls during

log commit) is highly likely to increase as the ratio of

stalled writes increases.

Secondly, caching all writes can incur significant

congestion in OS- and device-level request queues of

NVWC, thereby delaying the processing of critical

writes. When the request queues of NVWC are con-

gested, write requests need to wait at the queues even

though the NVWC has sufficient free blocks. More-

over, queue congestion of a storage-based NVWC such

as SSD can be exacerbated by concurrent I/Os for writing

back cached data. The concurrent I/Os include NVWC

reads for retrieving a dirty cache block into main mem-

ory and NVWC writes for updating the corresponding

metadata. In order to measure the impact of aggravated

queueing delay, we ran the TPC-C benchmark with a

flash SSD-based NVWC. As shown in Figure 1(b), the

average length of OS request queue increases as the num-

ber of clients increases, thereby gradually degrading the

normalized TPC-C throughput. In addition, the perfor-

mance further decreases as the concurrent I/Os increase

as shown in Figure 1(c); the frequency of writebacks de-

pends on the ratio of dirty blocks in NVWC for this mea-

surement. In most cases, NVWC provides even lower

performance than that without NVWC (up to 47% per-

formance loss) though write stalls did not occur at all in

all the configurations.

Finally, caching all writes would hurt reliability and

performance depending on the characteristics of an

NVWC device. For example, caching non-critical writes

exacerbates the wear-out of an NVWC device, like flash

and PCM, without any gain in application performance.

In addition, caching non-critical writes can increase the

probability of garbage collection while processing criti-

cal writes in flash-based NVWCs.

For these reasons, caching only critical writes to

NVWC is vital to fully utilize a given NVWC device

for application performance. From the analysis based

on the realistic workload (Section 7.2), we found that all

writes do not equally contribute to the application per-

formance. This finding implies that there is a need to

classify write I/Os for typical data-intensive applications

such as databases and key-value stores.

3 Which Type of Write is Critical?

3.1 Request-Oriented Write Classification

The primary role of a data-intensive application is to pro-

vide a specific data service in response to an external

request, like a PUT/GET request to a key-value store.

In such an application, the performance of request pro-

cessing determines the level of application performance

a user perceives. Therefore, we need to identify which

type of writes delays the progress of request processing

to classify critical writes.

Synchronous writes can be a good candidate for the

type of critical writes. Traditionally, write I/O is broadly

classified into two categories in the system’s viewpoint:

asynchronous and synchronous. When a process issues

an asynchronous write, it can immediately continue pro-

cessing other jobs without waiting for the completion

of the write. A synchronous write, on the other hand,

is awaited by a requesting process until the write com-

pletes. Due to this difference, prioritizing synchronous

writes over asynchronous ones is known as a reasonable

method to reduce system-wide I/O wait time [35], and

hence it is adopted in commodity OS [28].

However, not all synchronous writes are truly syn-

chronous from the perspective of request execution. Typ-

ical data-intensive applications delegate a large amount

of synchronous writes to a set of background processes

as a way of carrying out internal activities. For instance,

RDBMS [38, 59] and NoSQL store [25, 31] adopt a vari-

ant of logging technique that accompanies only a small

amount of (mostly sequential) synchronous writes during

request processing while conducting a burst of (mostly

3
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Write Type Process Ratio (%)

Sync.

backends 44.312

checkpointer 34.664

log writer 0.368

jbd2 (kernel) 0.094

etc 0.007

Async.
kworker (kernel) 20.554

etc 0.002

Table 1: Breakdown of writes by type and process.

random) synchronous writes in background. This is an

intrinsic design to achieve high degree of application per-

formance without loss of durability by segregating costly

synchronous writes from the critical path of request exe-

cution as much as possible.

To verify such behaviors, we ran the TPC-C bench-

mark using 24 clients without NVWC and recorded the

type of write issued per process. As shown in Table 1,

about 80% of the writes are synchronous, and most of

them are performed by backends and checkpointer. In

PostgreSQL, the backend is a dedicated process for han-

dling requests while the checkpointer periodically issues

a burst of synchronous writes to reflect buffer modifi-

cations to backing storage. Likewise, in kernel-level,

journaling daemon (i.e., jbd2) also issues synchronous

writes (though small amount in this case) for commit-

ting and checkpointing file system transactions. Basi-

cally, the synchronous writes requested by the processes

other than the backends are irrelevant to request process-

ing. Furthermore, according to our analysis result (Ta-

ble 3), asynchronous writes occasionally block the back-

ends because of complex synchronizations during run-

time. The conventional synchrony-based classification,

therefore, is inadequate for classifying critical writes.

We introduce request-oriented write classification that

classifies a write awaited in the context of request execu-

tion as a critical write regardless of whether it is issued

synchronously or not. Based on this classification, only

critical writes are cached into NVWC while non-critical

writes are routed to backing storage directly. As a re-

sult, a request can be handled quickly by avoiding ex-

cessive write stalls and queue congestion. In addition,

device-specific reliability and performance issues, which

are discussed in Section 2.2, can be eased without hurt-

ing application performance.

3.2 Dependency-Induced Critical Write

In data-intensive applications, one or more processes are

involved in handling requests. Synchronous writes is-

sued by these processes are definitely critical; hence,

we refer to this type of processes as a critical pro-

cess. Caching these synchronous writes alone, however,

is insufficient for identifying all critical writes. This

is because runtime dependencies generated by complex
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Figure 2: Impact of dependencies on application per-

formance. CP caches synchronous writes requested by

critical processes while Optimal caches all writes with-

out stalls. Network latencies are omitted for brevity.

synchronizations among concurrent processes and I/Os

make critical processes wait for the writes that are not

synchronously issued by them.

There are two types of dependencies associated with

write I/Os: a process dependency and an I/O depen-

dency. The process dependency occurs when two pro-

cesses interact with each other via synchronization prim-

itives, such as a lock and condition variable. The process

dependency complicates the accurate detection of criti-

cal writes because a non-critical process may issue syn-

chronous writes within a critical section making a critical

process indirectly wait for the completion of the writes.

On the other hand, the I/O dependency occurs between

a critical process and an ongoing write I/O. Basically,

the I/O dependency is generated when a critical process

needs to directly wait for the completion of an outstand-

ing write in order to ensure consistency and/or durability.

In order to quantify the significance of the depen-

dency problems, we measured the wait time of critical

processes (i.e., PostgreSQL backends) using Latency-

TOP [34] during the execution of the TPC-C benchmark

using 24 clients with 4GB ramdisk-based NVWC. Fig-

ure 2 shows the impact of complex dependencies on the

TPC-C throughput; CP caches only synchronous writes

requested by critical processes while Optimal caches all

writes without stalls and queue congestion. As we ex-

pect, CP mostly eliminates the latency incurred by syn-

chronous writes (i.e., wait on page writeback()).

However, CP still suffers from excessive latencies mainly

caused by process dependency (i.e., mutex lock()) and

I/O dependency (i.e., sleep on shadow bh()). Note

that the I/O dependency occurs because a critical pro-

cess attempts to update a buffer page that is under writ-

ing back as the part of a committing file system transac-

tion. Consequently, CP achieves only a half of the per-

formance improvement compared to Optimal.

In addition, there are many other sources of exces-

sive latencies in terms of the average and worst case

as shown in Table 2. The read/write semaphore for

serializing on-disk inode modifications represented as

down read() induces about one second and several sec-

onds latencies in the average and worst case, respec-
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tively. The journaling-related synchronizations for en-

suring file system consistency also incur high latencies.

In particular, wait transaction locked() is called to

synchronize with all the processes updating the current

file system transaction to complete their execution while

jbd2 log wait commit() is called to wait for the jour-

naling daemon to complete the commit procedure of a

file system transaction. The synchronization methods

that induce I/O dependency, such as lock buffer() and

lock page(), delay the progress of critical processes up

to several seconds. Though some of the synchronization

methods account for a small portion of the total latency,

they would increase tail latency, thereby degrading user

experience in large-scale services [29]. Therefore, all

synchronization methods causing latency to the critical

processes should be handled properly in order to elimi-

nate unexpected request latency spikes.

4 Critical Write Detection

4.1 Critical Process Identification

In order to detect all critical writes, we should identify

critical processes in the first place. To do so, we adopt

an application-guided approach that exploits application-

level hints.

The main benefit of the application-guided approach

is that it does not increase the complexity of the OS

kernel. Accurately identifying critical processes with-

out application guidance requires huge engineering ef-

fort to the kernel. For instance, similar to the previous

approaches [83, 84], the kernel should track all inter-

process communications and network-related I/Os to in-

fer the processes handling requests. In addition, the

kernel should adopt complex heuristics (e.g., feedback-

based confidence evaluation [84]) to reduce the possibil-

ity of misidentification. On the other hand, an applica-

tion can accurately decide the criticality of each process

since the application knows the best which processes are

currently involved in handling requests.

Though the application-guided approach requires ap-

plication modifications, the engineering cost for the

modifications is low in practice. This is because an appli-

cation developer does not need to know the specifics of

underlying systems since the hint (i.e., disclosure [64])

revealing a critical process remains correct even when

the execution environment changes. In addition, typical

data-intensive applications, such as MySQL [4], Post-

greSQL, and Redis, already distinguish foreground pro-

cesses (i.e., critical processes) from background pro-

cesses. This distinction is also common for event-driven

applications since they need to clearly separate internal

activities from request flows as exemplified in Cassan-

dra [43]. As a consequence, the required modification is

Dep. Synchronization Avg Max

Type Method (ms) (ms)

Process

down read 1088.09 6065.2

wait transaction locked 493.05 4806.8

mutex lock 134.55 6313.55

jbd2 log wait commit 40.96 391.36

I/O

lock buffer 912.38 3811.35

sleep on shadow bh 225.25 3560.47

lock page 8.08 3009.84

wait on page writeback 0.04 19.12

Table 2: Sources of dependencies. Average and maxi-

mum wait times of backends are shown in the CP case.

only a few lines of code in practice; see Section 6 for our

application studies.

Since a hint is solely used for deciding admission to

NVWC, a wrong hint does not affect the correct execu-

tion of an application. However, hint abuse by a mali-

cious or a thoughtless application may compromise per-

formance isolation among multiple applications sharing

NVWC. This problem can be solved by overriding criti-

cality of each write at the kernel based on a predefined

isolation policy. Addressing the issue resulting from

sharing NVWC is out of scope of this paper.

4.2 Criticality Inheritance Protocols

As we discussed in Section 3.2, the process and I/O de-

pendencies can significantly delay the progress of a crit-

ical process. In the rest of this section, we explain our

criticality inheritance protocols that effectively resolve

the process and I/O dependencies.

4.2.1 Process Criticality Inheritance

Handling the process dependency has been well-studied

in the context of process scheduling because the process

dependency may cause priority inversion problem [51].

Priority inheritance [72] is the well-known solution for

resolving the priority inversion problem.

Inspired by the previous work, we introduce process

criticality inheritance to resolve the process dependency.

Process criticality inheritance is similar to the priority in-

heritance in that a non-critical process inherits criticality

when it blocks a critical process until it finishes its exe-

cution within the synchronized region. The main differ-

ence between process criticality inheritance and priority

inheritance is that the former is used to prioritize I/Os

whereas the latter is used to prioritize processes.

Figure 3(a) illustrates an example of process criticality

inheritance: (1) critical process P1 attempts to acquire a

lock to enter a critical section. (2) Non-critical process

P2 inherits criticality from P1 since the lock is held by

P2. Then, the synchronous write to block B1 issued by

P2 is directed to NVWC to accelerate the write within

5
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Figure 3: Criticality inheritance protocols. Thick lines represent a critical path of request execution while dotted

lines indicate blocked execution. Circles and boxes represent write I/Os to specific blocks and blocking objects of

specific processes, respectively. Thick arrows indicate specific actions described in the corresponding texts while thin

arrows to/from write I/Os show I/O submission/completion.

the critical path. (3) P2 wakes up P1 when its execution

within the critical section has been completed, and P1

continues the rest of its job. In this example, the write

latency of block B1 is minimized by using process crit-

icality inheritance since it indirectly delays the request

execution.

4.2.2 I/O Criticality Inheritance

Handling the I/O dependency is more complicated than

that of the process dependency since inheriting criticality

to the ongoing write to backing storage requires reissuing

the write to NVWC without side effects (e.g., duplicated

I/O completion). A possible solution for eliminating the

side effects is canceling an outstanding write to a disk.

In practice, however, canceling a specific ongoing write

needs significant engineering efforts due to multiple ab-

straction stages in I/O stack. In Linux, for example, an

I/O can be staged in either an OS queue managed by an

I/O scheduler or a storage queue managed by a device

firmware. Hence, the procedure of canceling requires

lots of modifications to various in-kernel components.

In order to rapidly resolve the I/O dependency while

maintaining low engineering cost, we devise immediate

reissuing and I/O completion discarding as a technique

for I/O criticality inheritance. Figure 3(b) describes the

proposed mechanism: (1) critical process P1 needs to

wait for the completion of the write request to block B2.

(2) P1 reissues B2 to NVWC to resolve the I/O depen-

dency between P1 and B2. (3) The event of I/O com-

pletion of the reissued B2 wakes up P1. (4) Later, the

I/O completion of the original write to B2 is discarded to

suppress the duplicated completion notification.

The main drawback of the proposed technique for I/O

criticality inheritance is that it cannot eliminate unneces-

sary write traffic to a disk since it does not cancel ongo-

ing writes to the disk. However, the performance penalty

would be small since the duplicated write to a specific

block is highly likely to be processed as a single sequen-

tial write merged with other writes to adjacent blocks in

modern OSes. Moreover, discarding several blocks in-

cluded in a write request may result in splitting the re-

quest into multiple requests, thereby decreasing the ef-

ficiency of I/O processing. In practice, the amount of

reissued writes is insignificant despite of its large contri-

bution to application performance (Table 3).

4.2.3 Handling Cascading Dependencies

Cascading dependencies, a chain of process and I/O

dependencies, make precise detection of critical writes

more difficult if the chain contains a process that is al-

ready blocked. For example, as illustrated in Figure 3(c),

non-critical process P3 issues a synchronous write and is

blocked to wait for the completion of the write. Later,

non-critical process P2 sleeps while holding a lock be-

cause it needs to wait for an event from P3. In this situ-

ation, if critical process P1 attempts to acquire the lock

that is held by P2, P1 blocks until the write issued by P3

is completed even though P2 inherits criticality from P1.

We found that this scenario occurs in practice because

of complex synchronization behaviors for ensuring file

system consistency.

In order to handle the cascading dependencies, we

record a blocking object to the descriptor of a process

when the process is about to be blocked. There are two

types of the blocking object in general: a process and

an I/O for process dependency and I/O dependency, re-

spectively. As a special case, a lock is recorded as the

blocking object when a process should sleep to acquire

the lock, in order to properly handle the cascading depen-

dencies to both the lock owner and the waiters having

higher lock-acquisition priority. Based on the recorded

blocking object, a critical process can effectively track

the cascading dependencies and can handle them using

the process and I/O criticality inheritances.

Figure 3(c) demonstrates an example to describe how

the cascading dependencies are handled: (1) critical pro-

6
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cess P1 attempts to acquire the lock that is held by

non-critical process P2. (2) Then, P2 inherits critical-

ity from P1, and P1 checks P2’s blocking object. (3)

Since P2 is currently blocked waiting for an event from

non-critical process P3, P3 also inherits criticality and

P1 again checks P3’s blocking object. (4) Due to P3 cur-

rently blocks on B1, P1 initiates reissuing of block B1 to

NVWC and sleeps until the lock has been released by P2.

(5) The I/O completion of the reissued B1 wakes up P3,

and (6) P3 wakes up P2 after doing some residual work.

(7) P2, in turn, wakes up P1 after completing its execu-

tion in the critical section. Finally, P1 enters the critical

section and continues its job.

5 Implementation

We implemented our scheme on x86-64 Linux version

3.12. For the critical process identification, we added

a pair of special priority values to dynamically set or

clear criticality of a process (or a thread) to the existing

setpriority() system call interface. We also added a

field to the process descriptor for distinguishing critical-

ity of each process.

For handling process and I/O dependencies, we im-

plemented criticality inheritance protocols to blocking-

based synchronization methods. Specifically, pro-

cess and I/O criticality inheritances are implemented

to the methods that synchronize with a process

(e.g., mutex lock()) and an ongoing I/O (e.g.,

lock buffer()), respectively. In all the synchroniza-

tion points, a blocking object is recorded into the descrip-

tor of a process who is about to be blocked for synchro-

nization.

We implemented our admission policy to Flash-

Cache [2] version 3.1.1, which is a non-volatile block

cache implemented as a kernel module. We modified the

admission policy of FlashCache to cache only the writes

synchronously requested by both critical and criticality-

inherited processes. We also added the support for I/O

criticality inheritance to FlashCache. In particular, the

modified FlashCache maintains the list of outstanding

non-critical writes to disk and searches the list when a

critical process requests for reissuing a specific write. If

the requested write is found in the list, FlashCache im-

mediately reissues that write to NVWC and discards the

result of the original write upon completion.

6 Application Studies

To validate the effectiveness of our scheme, we

chose two widely deployed applications: PostgreSQL

RDBMS [5] version 9.2 and Redis NoSQL store [23]

version 2.8. For the critical process identification, we in-

serted eleven and two lines of code excluding comments

to PostgreSQL and Redis, respectively. This result indi-

cates that adopting the interface for critical process iden-

tification is trivial for typical data-intensive applications.

PostgreSQL RDBMS. In PostgreSQL, backend is

dedicated to client for serving requests while other pro-

cesses, such as checkpointer, writer, and log writer, carry

out I/O jobs in background. The checkpointer flushes

all dirty data buffers to disk and writes a special check-

point record to the log file when the configured num-

ber of log files is consumed or the configured timeout

happens, whichever comes first. The writer periodically

writes some dirty buffers to disk to keep regular backend

processes from having to write out dirty buffers. Simi-

larly, the log writer periodically writes out the log buffer

to disk in order to reduce the amount of synchronous

writes needed for backend processes at commit time.

We classified backends as critical processes by call-

ing the provided interface before starting the main loop

of each backend. We also classified a process who is

holding WALWriteLock as a temporary critical process

because WALWriteLock is heavily shared between back-

ends and other processes, and flushing the log buffer to a

disk is conducted while holding the lock. This approach

is similar to the priority ceiling [72] in that a process in-

herits criticality of a lock when the process acquires the

lock.

Redis NoSQL store. Redis has two options to pro-

vide durability: snapshotting and command logging. The

snapshotting periodically produces point-in-time snap-

shots of the dataset. The snapshotting, however, does not

provide complete durability since up to a few minutes of

data can be lost. The fully-durable command logging,

on the other hand, guarantees the complete durability by

synchronously writing an update log to a log file before

responding back to the command. In the command log-

ging, log rewriting is periodically conducted to constrain

the size of the log file. Though the command logging

can provide stronger durability than the snapshotting, it

is still advisable to also turn the snapshotting on [25].

Similar to the PostgreSQL case, the snapshotting and

log rewriting are conducted by child processes in back-

ground while a main server process serves all requests

sequentially. Hence, we classified only the main server

process as a critical process by calling the provided in-

terface before starting the main event loop.

7 Evaluation

This section presents evaluation results based on the pro-

totype implementation. We first detail the experimental

environment. Then, we show the experimental results for

both PostgreSQL and Redis to validate the effectiveness

of the proposed scheme.

7
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Figure 4: PostgreSQL performance. TPC-C throughput is averaged over three runs for each admission policy.

7.1 Experimental Setup

Our prototype was installed on Dell PowerEdge R420,

equipped with two quad-core Intel Xeon E5-2407

2.4GHz processors and 16GB RAM; CPU clock fre-

quency is set to the highest level for stable performance

measurement. The storage subsystem is comprised of

three 500GB 10K RPM WD VelociRaptor HDDs, one of

which is dedicated to OS and the others are used as back-

ing storage of NVWC. We used Ubuntu 14.04 with the

modified Linux kernel version 3.12 as an OS and ext4

file system mounted with the default options.

For NVWC devices, we used a 4GB ramdisk (allo-

cated from the main memory) and a 256GB Samsung

840 Pro SSD. To correctly emulate the persistency of

the ramdisk-based NVWC in the existence of volatile

CPU caches, we used the non-temporal memory copy de-

scribed in [20] when the data is written to ramdisk. For

the stable performance measurement of the SSD-based

NVWC, we discard all blocks in SSD and give enough

idle time before starting each experiment. In addition,

in-storage volatile write cache was turned off to eliminate

performance variations caused by internal buffering.

We used two criticality-oblivious admission policies:

ALL and SYNC. ALL, which is the default of Flash-

Cache, caches all incoming writes while SYNC caches

only synchronous writes. In addition, we used three

criticality-aware admission policies: CP, CP+PI, and

CP+PI+IOI. CP caches synchronous writes requested by

critical processes. CP+PI caches direct and cascading

process dependencies-induced critical writes in addition

to CP. CP+PI+IOI additionally caches direct and cascad-

ing I/O dependencies-induced critical writes.

7.2 PostgreSQL with TPC-C

We used TPC-C [7] as the realistic workload for Post-

greSQL. We set TPC-C scale factor to ten, which corre-

sponds to about 1GB of initial database, and simulated

24 clients running on a separate machine for 30 minutes.

We report the number of New-Order transactions exe-

cuted per minute (i.e., tpmC) as the performance met-

ric. PostgreSQL was configured to have 512MB buffer

pool, and the size of log files triggering checkpointing

was set to 256MB. The database and log files are located

on different HDDs according to the recommendation in

the official document [6]. As the practical alternative of

selective caching [21, 27, 42, 53], we used an additional

policy denoted as WAL that caches all write traffics to-

ward the log disk in NVWC. Since our work focuses on

caching write I/Os, we eliminate read I/Os by warming

up the OS buffer cache before starting the benchmark.

Performance with ramdisk-based NVWC. Fig-

ure 4(a) shows the TPC-C throughput averaged over

three runs as the capacity of ramdisk-based NVWC in-

creases from 32MB (scarce) to 4GB (sufficient). ALL

achieves the lowest performance in the 32MB case be-

cause it stalls 58% of all writes. ALL gradually improves

the performance as the NVWC capacity increases due to

the reduction of write stalls. Note that the performance

of ALL in the 4GB case is the optimal performance in

our configuration because the capacity and bandwidth of

NVWC are sufficient for absorbing all writes. SYNC

slightly improves the performance compared to ALL in

the low capacities since it reduces the number of write

stalls by filtering out asynchronous writes. SYNC, how-

ever, cannot catch up the performance of ALL in the

high capacities since it suffers from the dependencies in-

duced by the asynchronous writes. Though WAL and

CP do not suffer from write stalls at all in all the capaci-

ties, they achieve still lower performance than CP+PI and

CP+PI+IOI due to runtime dependencies. CP+PI further

improves performance by 4–12% over CP by handling

process dependencies. CP+PI+IOI outperforms CP+PI

by 18–29% by additionally handling I/O dependencies.

Compared to ALL, CP+PI+IOI gains 80% performance

improvement in the 32MB case and 72% reduction of

cached writes without performance loss in the 4GB case.

To further analyze the reason behind the per-

formance differences, we measured the wait time

8
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tency. 512MB ramdisk is used as the NVWC device and
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of critical processes (i.e., PostgreSQL backends)

in the 512MB NVWC case. As shown in Fig-

ure 5, ALL and SYNC incur the synchronous

write latency (i.e., wait on page writeback)

and the mutex- and file system journaling-

induced latencies (i.e., sleep on shadow bh and

wait transaction locked) described in Section 3,

mainly due to frequent write stalls. Though WAL and

CP mostly eliminate the synchronous write latencies

by eliminating write stalls, they still incur excessive

latencies mainly caused by the mutex and file system

journaling. Though CP+PI further reduces latencies by

resolving the mutex-induced dependency, it delays the

progress of the critical processes because of unresolved

I/O dependences. CP+PI+IOI eliminates most of the

latencies since it additionally resolves I/O dependencies

including the dependency to the journaling writes.

As a result, CP+PI+IOI achieves the highest level of

application performance in all the capacities.

Performance with SSD-based NVWC. Figure 4(b)

shows the TPC-C throughput averaged over three runs as

the capacity of SSD-based NVWC increases from 4GB

to 128GB; the amount of concurrent I/Os for writeback

decreases as the NVWC capacity increases. Unlike the

case of the ramdisk-based NVWC, ALL achieves lower

performance than the criticality-aware policies in all the
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Figure 7: Caching efficiency. Ramdisk is used as the

NVWC device.

capacities due to severe congestion in the request queues

of the SSD. Though SYNC can ease the contention in the

SSD more than ALL, it still has dependency problems

incurred by the asynchronous writes directly routed to

HDDs. On the other hand, WAL and the criticality-aware

policies improve the application performance by reduc-

ing queue congestion compared to both ALL and SYNC.

In particular, CP+PI+IOI outperforms ALL and SYNC

by about 1.8–2.2× and 2.2–2.5×, respectively, because

it minimizes the queueing delays of critical writes by fil-

tering out more than a half of writes while effectively

handling process and I/O dependencies.

To show the impact of queueing delay on critical

writes, we measured 4KB IOPS for both the SSD and

HDDs, and the average latency of synchronous writes

requested by backends. As shown in Figure 6, ALL and

SYNC utilize the SSD better than the other policies. This

high utilization, however, causes severe congestion in the

request queues of SSD, thereby delaying the processing

of critical writes. WAL and the criticality-aware policies

utilize both the SSD and the HDDs in a more balanced

manner, thereby decreasing the queueing delay of critical

writes.

Caching efficiency. In order to quantify the caching

efficiency in terms of application performance, Figure 7

plots the performance per cached block as the capac-

ity of the ramdisk-based NVWC increases. WAL and

the criticality-aware policies show higher caching effi-

ciencies compared to ALL and SYNC. Note that ALL

and SYNC unexpectedly show high caching efficiency in

the low NVWC capacities because FlashCache directs a

write I/O to backing storage instead of waiting for a free

block when there is no free block in NVWC. Overall,

CP+PI+IOI utilizes NVWC more efficiently by 1.2–3.7×

and 1.2–2.2× compared to ALL and SYNC, respectively.

Breakdown of critical writes. To help understand

which types of data and I/O constitute critical writes, Ta-

ble 3 shows the breakdown of critical writes in terms of

data and I/O types. As we expect, the dominant type of

data comprising critical writes is the logs that are syn-

chronously written by backends during transaction com-

9
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Ratio (%) CP PI IOI Total

Data

Data (DB) 0 0.5209 0.0515 0.5723

Data (LOG) 98.7409 0.5707 0.0007 99.3123

Metadata 0 0 0.0014 0.0014

Journal 0 0.0782 0.0357 0.1140

Total 98.7409 1.1698 0.0893 100

I/O

Sync. 98.7409 1.0312 0.0357 99.8078

Async. 0 0.1387 0.0535 0.1922

Total 98.7409 1.1698 0.0893 100

Table 3: Breakdown of critical writes. 4GB ramdisk is

used as the NVWC device in the case of CP+PI+IOI.

mits. However, the rest of the critical writes is still cru-

cial since it contributes to additional 32% performance

improvement over CP alone (Figure 4(a)). On the other

side, the dominant type of I/O comprising critical writes

is synchronous writes. Though the portion of asyn-

chronous writes is insignificant, it contributes to addi-

tional 38% performance improvement over SYNC (Fig-

ure 4(a)). Overall, dependency-induced critical writes

have significant impact on application performance.

Performance disparity. Interestingly, we found the

disparity between the system performance (i.e., IOPS)

and the application performance (i.e., tpmC). For in-

stance, as shown in Figure 8, ALL better utilizes NVWC

by 40% than CP+PI+IOI leading to achieve 10% higher

system performance in the 512MB ramdisk case. How-

ever, CP+PI+IOI accomplishes 57% higher applica-

tion performance than that of ALL because CP+PI+IOI

avoids write stalls in the critical paths. This result val-

idates our argument on the necessity of the request-

oriented approach in order to effectively utilize a given

NVWC device.

7.3 Redis with YCSB

For Redis, we used the update-heavy (Workload A) and

read-mostly (Workload B) workloads provided by the

YCSB benchmark suite [26]. The data set was com-

posed of 0.5 million objects each of which is 1KB in

size. We simulated 40 clients running on a separate ma-

chine to generate ten millions of operations in total. We

report operations per second (i.e., ops/sec) as the perfor-

mance metric. We enabled both snapshotting and com-

mand logging according to the suggestion in the offi-

cial document [25]. Due to the single threaded design

of Redis [24], we concurrently ran four YCSB bench-

marks against four Redis instances to utilize our multi-

core testbed.

Performance. Figure 9 demonstrates the average

YCSB throughput over three runs normalized to ALL.

SYNC improves the performance over ALL since it fil-

ters out the asynchronous writes issued by the kernel

thread that cleans the OS buffer cache. Unlike the case

of PostgreSQL, CP shows significantly low performance
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Figure 9: Redis performance. 512MB ramdisk and

16GB SSD are used as the NVWC devices.

compared to the other policies because Redis frequently

incurs synchronous writes conducted by a journaling

daemon, which cannot be detected as the critical pro-

cess by CP, within the critical path of update request.

CP+PI dramatically improves the performance by 2–30×

over CP because it additionally caches the journaling

writes when there is a dependency between a critical pro-

cess and the journaling daemon. CP+PI+IOI further im-

proves the performance by 3–49% over CP+PI by addi-

tionally resolving the I/O dependencies mainly incurred

by the synchronizations to guarantee the file system con-

sistency. Though Workload B mostly consists of read re-

quests, the performance is affected by the admission pol-

icy used. This is because Redis serves the requests from

all clients sequentially using a single thread, thereby de-

laying the processing of read requests that are queued

behind update requests. By providing the first class sup-

port for critical writes, CP+PI+IOI outperforms ALL by

17–32% and 47–55% while reducing cached write by

20–29% and 84–87% in the ramdisk- and SSD-based

NVWC, respectively.

Tail latency. To show the impact of the admission

policies on tail latency, we present the latency distribu-

tion of YCSB requests in the SSD-based NVWC case.

As shown in Table 4, only CP+PI+IOI keeps 99.9th and

99.99th-percentile latencies below 100ms, which makes

users feel more responsive than higher latencies [18].

ALL and SYNC, on the other hand, increase the 99.9th-
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Latency (ms) 99th-%ile 99.9th-%ile 99.99th-%ile

A

ALL 80 649 >1000

SYNC 72 678 >1000

CP+PI+IOI 32 50 79

B

ALL 70 572 >1000

SYNC 59 438 >1000

CP+PI+IOI 23 32 83

Table 4: Redis tail latency. 16GB SSD is used as the

NVWC device.

percentile latency by an order of magnitude compared to

that of CP+PI+IOI. Moreover, the 99.99th-percentile la-

tencies of ALL and SYNC exceeds one second, which

is the maximum latency reported by YCSB. Consider-

ing the significance of providing consistent response la-

tencies to users [16, 71] especially for large-scale ser-

vices [29, 75], this result indicates that the proposed

scheme is essential for providing high quality services

to users.

8 Related Work

Non-volatile cache. A large volume of work has been

done to efficiently utilize non-volatile caches based on

NV-DRAM [15, 36, 37, 41], flash memory [19, 62, 70],

and SCM [14, 33, 48, 56, 61]. In addition, the case of

client-side non-volatile caches has been widely explored

for networked storage systems [10, 11, 49, 65]. On the

other side, researchers have extensively investigated the

case of non-volatile cache optimized for database sys-

tems such as cost- and pattern-aware flash caches for re-

lational database [32, 46, 55, 58] and persistent key-value

store [30]. In addition, several studies have been inves-

tigated the case of dedicating NV-DRAM [27, 42] and

flash memory [21, 53] to buffer or store transaction logs

of relational databases. None of the previous work has

taken the context of request execution into account for

managing a non-volatile cache despite of its importance.

I/O classification. Prioritizing synchronous I/Os over

asynchronous ones has been known as a reasonable

method for improving system performance [28, 35].

Classifying I/Os based on explicit hints from data-

intensive applications has been well-studied. Li et

al. [54] proposed a cache replacement policy that ex-

ploits different write semantics in a relational database

to maintain exclusivity between storage server and client

caches. Later, Xin et al. [79] proposed a more gen-

eral framework for the client hint-based multi-level cache

management. Similarly, Mesnier et al. [60] proposed an

I/O classification interface between computer and stor-

age systems. For user-interactive desktop environments,

Redline [76] statically gives higher I/O priority to inter-

active applications over non-interactive ones. Unlike the

previous work, our classification scheme considers the

I/O priority as dynamic property since it can be changed

during runtime due to complex dependencies.

Request tracing. Request-oriented performance de-

bugging has been widely explored for the end-user expe-

rience. Instrumentation-based profilers such as Project

5 [9] and MagPie [12] have been used for tracking re-

quest flows triggered by user requests. The Mystery Ma-

chine [22] and the lprof tool [82] extract the per-request

performance behaviors from the log files to diagnose per-

formance problems in large-scale distributed systems.

In addition, Shen has studied architectural implications

of request behavior variations in modern computer sys-

tems [73]. For user-interactive mobile platforms, AppIn-

sight [68] and Panappticon [81] provide the information

on the critical path of user request processing to appli-

cation developers for improving user-perceived respon-

siveness. In this work, we focus on tracking request exe-

cution in the write I/O path and apply the acquired infor-

mation to the admission policy of NVWC for improving

application performance.

9 Conclusion and Future Direction

We present the request-oriented admission policy, which

selectively caches the writes that eventually affect the

application performance while preventing unproduc-

tive writes from occupying and wearing-out capacity-

constrained NVWCs. The proposed scheme can con-

tribute to reducing capital cost of expensive NVWCs sat-

isfying desired service-level objectives. The results from

the in-depth analysis on realistic workloads justify our

claim that storage systems should consider the context of

request execution to guarantee a high degree of applica-

tion performance.

We plan to develop automatic critical process identi-

fication at kernel-level without an application hint in or-

der to support legacy and proprietary applications. We

also plan to apply the proposed classification to interac-

tive systems, such as mobile systems, considering a di-

rect user input as an external request.
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Abstract
Key-value stores are ubiquitous in high performance

data-intensive, scale out, and NoSQL environments.

Many KV stores use flash devices for meeting their per-

formance needs. However, by using flash as a sim-

ple block device, these KV stores are unable to fully

leverage the powerful capabilities that exist within Flash

Translation Layers (FTLs). NVMKV is a lightweight

KV store that leverages native FTL capabilities such as

sparse addressing, dynamic mapping, transactional per-

sistence, and support for high-levels of lock free paral-

lelism. Our evaluation of NVMKV demonstrates that it

provides scalable, high-performance, and ACID compli-

ant KV operations at close to raw device speeds.

1 Introduction

Flash-based key-value (KV) stores are becoming main-

stream, with the importance of the KV interface to stor-

age and flash technology have been well established

through a gamut of implementations [13, 17, 21, 22,

31]. However, best utilizing the high-performance flash-

based storage to drive the new generation of key-value

stores continues to remain a challenge. The majority

of the existing KV stores use a logging-based approach

which induces significant additional write amplification

(WA) at the KV software layer in addition to the internal

WA caused by the FTL while managing physical flash.

Modern FTLs offer new capabilities that enable com-

pelling, new design points for KV stores [6, 9]. Integra-

tion with these advanced capabilities results in an opti-

mized FTL-aware KV store [33]. First, writing to the

flash can be optimized to significantly improve both de-

vice lifetime and workload I/O performance. Second,

modern FTLs already perform many functions that are

similar to the functionality built into many KV stores

such as log-structuring, dynamic data remapping, index-

ing, transactional updates, and thin provisioning [29, 35,

37]. Avoiding such replication of functionality can offer

significant resource and performance benefits.

In this paper, we present the design, implementation,

and evaluation of NVMKV, an FTL-aware KV store.

NVMKV has been designed from the ground up to uti-

lize the advanced capabilities found in modern FTLs. It

implements a hashing-based design that uses the FTLs

sparse address-space support to eliminate all write am-

plification at the KV layer, improving flash device en-

durance significantly relative to current KV stores. It

is able to achieve single I/O get/put operations with

performance close to that of the raw device, represent-

ing a significant improvement over current KV stores.

NVMKV uses the advanced FTL capabilities of atomic

multi-block write, atomic multi-block persistent trim,

exists, and iterate to provide strictly atomic and syn-

chronous durability guarantees for KV operations.

Two complementary factors contribute to increased

collocation requirements for KV stores running on a sin-

gle flash device. First, given the increasing flash den-

sities, the performance points of flash devices are now

based on capacity with larger devices being more cost-

effective [42]. Second, virtualization supports increases

in collocation requirements for workloads. A recent

study has shown that multiple independent instances of

such applications can have a counterproductive effect

on the underlying FTL, resulting in increased WA [42].

NVMKV overcomes this issue by offering a new pools

abstraction that allows transparently running multiple

KV stores within the same FTL. While similar features

exist in other KV stores, the FTL-aware design and im-

plementation within NVMKV enables both efficient FTL

coupling and KV store virtualization. NVMKV’s design

also allows for optimized flash writing across multiple

KV instances and as a result lowers the WA.

In the quest for performance, KV stores and other ap-

plications are trending towards an in-memory architec-

ture. However, since flash is still substantially cheaper

than DRAM, any ability to offset DRAM for flash has the

potential to reduce Total Cost of Ownership (TCO). We

demonstrate how accelerating KV store access to flash

can in turn result in similar or increased performance

with much less DRAM.

We evaluated NVMKV and compared its performance

to LevelDB. We evaluated the scalability of pools, com-

pared it to multiple instances of LevelDB, and also found

that NVMKV’s atomic writes outperform both async

and sync variants of LevelDB writes by up to 6.5x and

1030x respectively. NVMKV reads are comparable to

that of LevelDB even when the workloads fit entirely in

the filesystem cache, a condition that benefits LevelDB

exclusively. When varying the available cache space,

NVMKV outperforms LevelDB and more importantly

introduces a write amplification of 2x in the worst case,

which is small compared to the 70x for LevelDB. Finally,

NVMKV improves YCSB benchmark throughput by up

to 25% in in comparison to LevelDB.
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2 Motivation

In this section, we discuss the benefits of better integra-

tion of KV stores with the FTL’s capabilities. We also

motivate other key tenets of our architecture, in particu-

lar the support of multiple KV stores on the same flash

device and the need to increase performance with smaller

quantities of DRAM.

An FTL-aware KV store: A common technique for

performance improvement in flash optimized KV stores

is some form of log structured writing. New data is ap-

pended to an immutable store and reorganized over time

to reclaim space [1, 10, 26, 31]. The reclamation process,

also called garbage collection or compaction, generates

Auxiliary Write Amplification (AWA) which is the appli-

cation level WA above that which is generated by the

FTL. Unfortunately, AWA and the FTL induced WA have

a multiplicative effect on write traffic to flash [43]. Pre-

vious work highlighted an example of this phenomenon

with LevelDB, where a small amount of user writes

can be amplified into as much as 40X more writes to

the flash device [33]. As another example, the SILT

work describes an AWA of over 5x [31]. NVMKV en-

tirely avoids AWA by leveraging native addressing mech-

anisms and optimized writing implemented within mod-

ern FTLs.

Multiple KV stores in the device: The most recent

PCIe and SAS flash devices can provide as much as 4-

6TB of capacity per device. As density per die increases

with every generation of flash driven by the consumer

market, the multiple NAND dies required to generate a

certain number of IOPs will come with ever increasing

capacities as well as reduced endurance [27]. Multiple

KV stores on a single flash device become cost effective

but additional complexities arise. For instance, recent

work shows how applications that are log structured to be

flash optimal can still operate in suboptimal ways when

either placed above a file system or run as multiple inde-

pendent instances over a shared FTL [42]. NVMKV pro-

vides the ability to have multiple independent KV work-

loads share a device with minimal AWA.

Frugal DRAM usage: The ever increasing need

for performance is driving the in-memory computing

trend [7, 11, 24]. However, DRAM cost does not scale

linearly with capacity since high capacity DRAM and

the servers that support it are more expensive per unit of

DRAM (in GB) than the mid-range DRAM and servers.

The efficacy of using flash to offset DRAM has also been

established in the literature [16]. In the KV store context,

similar arguments have been made showing the server

consolidation benefits of trading DRAM for flash [1].

A KV store’s ability to leverage flash performance con-

tributes directly to its ability to trade off DRAM for flash.

NVMKV operates with high performance and low WA in

both single and multiple instance KV deployments.

3 Building an FTL-aware KV Store

NVMKV is built using the advanced capabilities of mod-

ern FTLs. In this section, we discuss its goals, provide

an overview of the approach, and describe its API.

3.1 Goals

NVMKV is intended for use within single node deploy-

ments by directly integrating it into applications. While

it is not intended to replace the scale out key-value

functionality provided by software such as Dynamo and

Voldemort [23, 39], it can be used for single node KV

storage within such scale out KV stores. From this point

onward, we refer to such single node KV stores simply

as KV stores. We had the following goals in mind when

designing NVMKV:

Deliver Raw Flash Performance: Convert the most

common KV store operations, GET and PUT into a single

I/O per operation at the flash device to deliver close to

raw flash device performance. As flash devices support

high levels of parallelism, the KV store should also scale

with parallel requests to utilize the performance scaling

capacity of the device. Finally, when multiple, indepen-

dent KV instances are consolidated on a single flash de-

vice, the KV store should deliver raw flash performance

to each instance.

Minimize Auxiliary Write Amplification: Given the

multiplicative effect on I/O volume due to WA, it is im-

portant to minimize additional KV store writes, which in

turn reduces the write load at the FTL and the flash de-

vice. Reducing AWA improves KV operation latency by

minimizing the number of I/O operations per KV opera-

tion as well as improvement of flash device lifetime.

Minimize DRAM Consumption: Minimize DRAM

consumption by (i) minimizing the amount of internal

metadata, and (ii) by leveraging flash performance to off-

set the amount of DRAM used for caching.

Simplicity: Leverage FTL capabilities to reduce code

complexity and development time for the KV store.

3.2 Approach

Our intent with NVMKV is to provide the rich KV in-

terface while retaining the performance of a much sim-

pler block based flash device. NVMKV meets its goals

by leveraging the internal capabilities of the FTL where

possible and complementing these with streamlined ad-

ditional functionality at the KV store level. The high

level capabilities that we leverage from the FTL include:

Dynamic mapping: FTLs maintain an indirection map

to translate logical addresses into physical data locations.

NVMKV leverages the existing FTL indirection map to

the fullest extent to avoid maintaining any additional lo-

cation metadata. Every read and write operation sim-

ply uses the FTL indirection map and thereby operates

2
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Category API Description

Basic

get(...) Retrieves the value associated with a given key.

put(...) Inserts a KV pair into the KV store.

delete(...) Deletes a KV pair from the KV store.

Iterate
begin(...) Sets the iterator to the beginning of a given pool.

next(...) Sets the iterator to the next key location in a given pool.

get current(...) Retrieves the KV pair at the current iterator location in a pool.

Pools

pool exist(...) Determines whether a key exists in a given pool.

pool create(...) Creates a pool in a given NVMKV store.

pool delete(...) Deletes all KV pairs from a pool and deletes the pool from NVMKV store.

get pool info(...) Returns metadata information about a given pool in a KV store.

Batching

batch get(...) Retrieves values for a batch of specified keys.

batch put(...) Sets the values for a batch of specified keys.

batch delete(...) Deletes the KV pairs associated with a batch of specified keys.

delete all(...) Deletes all KV pairs from a NVMKV store in all pools.

Management

open(...) Opens a given NVMKV store for supported operations.

close(...) Closes a NVMKV store.

create(...) Creates a NVMKV store

destroy(...) Destroys a NVMKV store.

Table 1: NVMKV API The table provides brief descriptions for the NVMKV API calls.
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Figure 1: NVMKV System Architecture

at raw flash device performance by definition. This ap-

proach also reduces the additional DRAM overhead of

NVMKV.

Persistence and transactional support: FTLs access

data and metadata, and in particular maintain the per-

sistence of indirection maps, at the speed of raw flash.

NVMKV leverages this highly tuned capability to re-

duce the overhead for metadata persistence, logging, and

checkpointing operations. Further, as FTLs operate as

non-overwriting redirect-on-write stores, they can eas-

ily provide high performance transactional write seman-

tics [35]. NVMKV leverages these capabilities to limit

locking and journaling overheads.

Parallel operations: FTLs already implement highly

parallel read/write operations while coordinating meta-

data access and updates. NVMKV leverages this FTL

feature to minimize locking, thus improving scalability.

We also define batch operations that are directly executed

by the FTL to enable parallel KV store requests to be is-

sued with lower I/O stack overhead [40].

3.3 NVMKV Architecture

NVMKV is a lightweight library in user space which in-

teracts with the FTL through a primitives interface im-

plemented as IOCTLs to the device driver that manages

the flash device. Figure 1 shows the architecture of a sys-

tem with NVMKV. Consumer applications, such as scale

out KV stores, communicate with the NVMKV library

using the NVMKV API. The NVMKV API calls are

translated to underlying FTL primitives interface calls to

be executed by the FTL.

3.4 NVMKV Consumer API

NVMKV’s consumer applications interact with the li-

brary through the NVMKV API. We held discussions

with the creators and vendors of several scale out KV

stores to identify a set of operations commonly needed

in a KV store. These operations formed the NVMKV

API and they fall under five broad categories based on

the functionality they provide. The categories are: basic,

iterate, pools, batching, and management.

Table 1 presents the overview of the NVMKV API. We

leverage the FTL’s ability to provide enhanced operations

such as Atomic Writes to provide transactional guaran-

tees in NVMKV operations. Most existing KV stores

do not offer such guarantees for their operations, and

adopt more relaxed semantics such as eventual consis-

tency to provide higher performance. On the other hand,

we found that our approach enabled us to provide trans-

actional guarantees with no loss of performance. We be-

lieve such guarantees can be of use to specific classes

of applications as well as for simplifying the store logic

3
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Category API Description

Basic

read(...) Reads the data stored in the Logical Block Address (LBA).

write(...) Writes the data stored in buffer to destination LBA.

trim(...) Deletes (or discards) the mapping in FTL for the passed LBA range.

Sparse

exists(...) Returns the presence of FTL mapping for the passed LBA.

range exist(...) Returns the subset of LBA ranges that are mapped in the FTL.

ptrim(...) Persistently deletes the mapping in FTL for the passed LBA range.

iterate(...) Returns the next populated LBA starting from the passed LBA.

atomic read(...) Executes read for a contiguous LBAs as an ACID transaction.

Transactional atomic exists(...) Executes exists for a contiguous LBAs as an ACID transaction.

Persistence atomic write(...) Executes write of a contiguous LBAs as an ACID transaction.

atomic ptrim(...) Executes ptrim of a contiguous LBAs as an ACID transaction.

Conditional
cond atomic write(...) Execute the atomic write only if a condition is satisfied.

cond range read(...) Returns the data only from a subset of LBA ranges that are mapped in the FTL.

Batching Operations within each category can be batched and executed in the FTL.

Table 2: FTL Primitive Interface Enhanced FTL capabilities that NVMKV builds upon.

contained within such applications. For instance, atomic

KV operations imply that applications no longer need to

be concerned with partial updates to flash.

The Basic and Iterate categories contain common fea-

tures provided by many KV stores today. The Pools cat-

egory interfaces allow for grouping KV pairs into buck-

ets that can be managed separately within an NVMKV

store. Pools provide the ability to transparently run mul-

tiple KV stores within the same FTL (discussed in more

detail in § 6). The Batching category interfaces allow

for group operations both within and across Basic, Iter-

ate, and Pools categories, a common requirement in KV

stores [18]. Finally, the Management category provides

interfaces to perform KV store management operations.

4 Overview and FTL Integration

NVMKV’s design is closely linked to the advanced capa-

bilities provided by modern FTLs. Before describing its

design in more detail, we provide a simple illustrative ex-

ample of NVMKV’s operation and discuss the advanced

FTL capabilities that NVMKV leverages.

4.1 Illustrative Overview

To illustrate the principles behind NVMKV’s design sim-

ply, we now walk through how a get, a put, and a

delete operation are handled. We assume the sizes of

keys and values are fixed and then address arbitrary sizes

when we discuss design details (§5).

By mapping all KV operations to FTL operations,

NVMKV eliminates any additional KV metadata in

memory. To handle puts, NVMKV computes a hash on

the key and uses the hash value to determine the location

(i.e., LBA) of the KV pair. Thus, a put operation gets

mapped to a write operation inside the FTL.

A get operation takes a key as input and returns the

value associated with it (if the key exists). During a get

operation, a hash of the key is computed first to deter-

mine the starting LBA of the KV pair’s location. Using

the computed LBA, the get operation is translated to a

read operation to the FTL wherein the size of the read is

equal to the combined sizes of the key and value. The

stored key is matched with the key of the get operation

and in case of a match, the associated value is returned.

To handle a delete operation, the given key is hashed

to compute the starting LBA of the KV pair. Upon con-

firming that the key stored at the LBA is the key to be

deleted, a discard operation is issued to the FTL for the

range of LBAs containing the KV pair.

In this simplistic example, translating existing KV op-

erations to FTL operations is straightforward and the KV

store becomes a thin layer offloading most of its work to

the underlying FTL with no in-memory metadata. How-

ever, additional work is needed to handle hash collisions

in the LBA space and persisting discard operations.

4.2 Leveraging FTL Capabilities

We now describe the advanced FTL capabilities that are

available and also extended to enable NVMKV. Many of

these advanced FTL capabilities have already been used

in other applications [20, 29, 35, 37, 43]. The FTL inter-

face available to NVMKV is detailed in Table 2.

4.2.1 Dynamic Mapping

Conventional SSDs provide a dense address space, with

one logical address for every advertised available phys-

ical block. This matches the classic storage model, but

forces applications to maintain separate indexes to map

items to the available LBAs. Sparse address spaces are

available in advanced FTLs which allow applications to

address the device via a large, thinly provisioned, vir-

tual address space [35, 37, 43]. Sparse address entries

are allocated physical space only upon a write. In the

NVMKV context, a large address space enables sim-

ple mapping techniques such as hashing to be used with

manageable collision rates.

4
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Additional primitives are required to work with sparse

address spaces. EXISTS queries whether a particular

sparse address is populated. PTRIM is a persistent and

atomic deletion of the contents at a sparse address. These

primitives can be used for individual, or ranges of, loca-

tions. For example, RANGE-EXISTS returns a subset of a

given virtual address range that has been populated. The

ITERATE primitive is used to cycle through all populated

virtual addresses, whereby ITERATE takes a virtual ad-

dress and returns the next populated virtual address.

4.2.2 Transactional Persistence

The transactional persistence capabilities of the FTL

are provided by ATOMIC-WRITE and PTRIM [20, 29].

ATOMIC-WRITE allows a sparse address range to be writ-

ten as a single ACID compliant transaction.

4.2.3 Optimized Parallel Operations

The FTL is well-placed to optimize simultaneous device-

level operations. Two classes of FTL primitives,

conditional and batch, provide atomic parallel opera-

tions that are well-utilized by NVMKV. For example,

cond atomic write allows for an atomic write to be

completed only if a particular condition is satisfied,

such as the LBA being written to is not already popu-

lated. This primitive removes the need to issue separate

exists and atomic write operations. Batch or vec-

tored versions of all primitives are also implemented into

the FTL (such as batch read, batch atomic write,

and batch ptrim) to amortize lock acquisition and sys-

tem call overhead. The benefits of batch (or vector) op-

erations have been explored earlier [41].

5 Design Description

NVMKV implements novel techniques to make sparse

addressing practical and efficient for use in KV stores

and for providing low-latency, transactional persistence.

5.1 Mapping Keys via Hashing

Conventional KV stores employ two layers of transla-

tions to map keys to flash device locations, both of which

need to be persistent [8, 10, 13]. The first layer translates

keys to LBAs. The second layer (i.e., the FTL) translates

the LBAs to physical locations in flash device. NVMKV

leverages the FTLs sparse address space and encodes

keys into sparse LBAs via hashing, thus collapsing an

entire layer.

NVMKV divides the sparse address into equal sized

virtual slots, each of which stores a single KV pair. More

specifically, the sparse address space (with addressabil-

ity through N bits) is divided into two areas: the Key Bit

Range (KBR) and the Value Bit Range (VBR). This di-

vision can be set by the user at the time of creating the

LBA = hash(k, pid)

get(k, pid)

put(< k, v >, pid)

read(LBA, . . .)

write(LBA, . . .)

NVMKV VSL

LBA = [047|146| . . . |113|112︸ ︷︷ ︸
hash36(k,pid)

|011| 110| . . . |001|100︸ ︷︷ ︸
hash11(pid)

]

Figure 2: Hash model used in NVMKV. The arguments to

the functions represent k:key, v:value, and pid:pool id.

NVMKV store. The VBR defines the amount of contigu-

ous address space (i.e., maximum value size or virtual

slot size) reserved for each KV pair. The KBR deter-

mines the maximum number of such KV pairs that can

be stored in a given KV store. In the expected use cases,

the sparse virtual address range provided by the KBR

will still be several orders of magnitude larger than the

number of KV pairs as limited by the physical media.

The keys are mapped to LBAs through a simple hash

model as shown in Figure 2. User supplied keys can be

of variable length up to the maximum supported key size.

To handle a put operation, the specified key is hashed

into an address which also provides its KBR value. The

maximum size of the information (Key, Value, metadata)

that can be stored in a given VBR is half of the size ad-

dressed by the VBR. For example, if the VBR is 11 bits

and each address represents a 512B sector, a given VBR

value can address 2 MB.

The above layout guarantees the following two proper-

ties. First, each VBR contains exactly one KV pair, en-

suring that we can quickly and deterministically search

and identify KV pairs stored in the flash device. Sec-

ond, no KV pairs will be adjacent in the sparse address

space. In other words, there is always unpopulated vir-

tual addresses between every KV pair. This deliberately

wasted virtual space does not translate into unutilized

storage since it is in virtual and physical space. These

two properties are critical for NVMKV as the value size

and exact start location of the KV pair are not stored as

part of NVMKV metadata but are inferred via the FTL.

Doing so helps in significantly reducing the in-memory

metadata footprint of NVMKV. Non-adjacent KV pairs

in the sparse address space help in determining the value

size along with the starting virtual address of each KV

pair. To determine the value size, NVMKV issues a

range exist call to the FTL.

A direct consequence of this design is that every ac-

cess pattern becomes a random pattern, losing any possi-

ble order in the key space. The decision to not preserve

sequentiality was shaped by two factors: metadata over-

head and flash I/O performance. To ensure sequential

5
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writes for contiguous keys, additional metadata would

be required. This metadata would have to be consulted

when reading, updated after writing, and cached in RAM

to speed up the lookups. While straightforward to imple-

ment, doing so is unnecessary since the performance gap

between random and sequential access for flash is ever

decreasing; for current high performance flash devices,

it is practically non-existent.

5.2 Handling Hash Collisions

Hashing variable sized keys into fixed size virtual slots

could result in collisions. Since each VBR contains ex-

actly one KV pair, hash conflicts only occur in the KBR.

To illustrate the collision considerations, consider the

following example. A 1TB Fusion-io ioDrive can con-

tain a maximum of 231 (2 billion) keys. Given a 48 bit

sparse address space with 36 bits for KBR and 12 bits

for VBR, NVMKV would accommodate 236 keys with

a maximum value size of 512KB. Under the simplifying

assumption that our hash function uniformly distributes

keys across the value ranges, for a fully-utilized 1TB io-

Drive, the chances of a new key insertion resulting in a

collision is 1/25 or a little under 3 percent.

NVMKV implicitly assumes that the number of KBR

values is sufficiently large, relative to the number of keys

that can be stored in a flash device, so that the chances

of a hash collision are small. If the KV pair sizes are

increased, the likelihood of a collision reduces because

the device can accommodate fewer keys while preserv-

ing the size of the key address space. If the size of the

sparse address space is reduced, the chances of a colli-

sion will increase. Likewise, if the size of the flash de-

vice is increased without increasing the size of its sparse

address space, the likelihood of a collision will increase.

Collisions are handled deterministically by computing

alternate hash locations using either linear or polynomial

probing. By default, NVMKV uses polynomial probing

and up to eight hash locations are tried before NVMKV

refuses to accept a new key. With this current scheme, the

probability of a put failing due to hash failure is vanish-

ingly small. Assuming that the hash function uniformly

distributes keys, the probability of a put failing equals

the probability of 8 consecutive collisions. This is ap-

proximately (1/25)8 = 1/240, roughly one failure per

trillion put operations. The above analysis assumes that

the hash function used is well modeled by a uniformly

distributing random function. Currently, NVMKV uses

the FNV1a hash function [5] and we experimentally val-

idated our modeling assumption.

5.3 Caching

Caching is employed in two distinct ways within

NVMKV. First, a read cache speeds up access to fre-

quently read KV pairs. NVMKV’s read cache implemen-

medata data

NVMKV layout on a sparse block layer

store-info bitmap . . .

2MB

header key value| |

offset

expiry pid size . . .

44B

2MB region for single record

Figure 3: NVMKV layout

tation is based on LevelDB’s cache [26]. The read cache

size is configurable at load time. Second, NVMKV uses

a collision cache to improve collision handling perfor-

mance. It caches the key hash (the sparse LBA) along

with the actual key which is used during puts (i.e., in-

serts or updates). If the cached key matches the key to be

inserted, the new value can be stored in the correspond-

ing slot (the key’s hash value). This significantly reduces

the number of additional I/Os needed during collision

resolution. In most cases, only a single I/O is needed

for a get or a put to return or store the KV pair.

5.4 KV Pair Storage and Iteration

KV pairs are directly mapped to a physical location in

the flash device and addressable through the FTL’s sparse

address space. In our current implementation, the min-

imum unit of storage is a sector and KV pairs requiring

less than 512B will consume a full 512B sector. Each KV

pair also contains metadata stored on media. The meta-

data layout is shown in Figure 3; it includes the length

of the key, the length or the value, pool identifier (to be

discussed further in §6), and other information.

To minimize internal fragmentation, NVMKV packs

and stores the metadata, the key, and the value in a single

sector whenever possible. If the size of the KV pair and

the metadata is greater than a sector, NVMKV packs the

metadata and key into the first sector and stores the value

starting from the second sector. This layout allows for

optimal storage efficiency for small values and zero-copy

data transfer into the users buffer for larger values.

NVMKV supports unordered iteration through all KV

pairs stored in the flash device. Key iteration is ac-

complished by iterating across the populated virtual ad-

dresses inside the FTL in order. The iterator utilizes the

ITERATE primitive in the FTL, which takes in the previ-

ously reported start virtual address and returns the start

address of the next contiguously populated virtual ad-

dress segment in the sparse address space. Note that this

approach relies on the layout guarantee that each KV pair

is located contiguously in a range of virtual addresses,

and that there are unpopulated virtual addresses in be-

tween each KV pair.

6
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5.5 Optimizing KV Operations

NVMKV’s design goal is one I/O for a get or a put op-

eration. For get, this is achieved with the KV data layout

and the CONDITIONAL-RANGEREAD primitive. The lay-

out guarantees that individual KV pairs occupy a single

contiguous section of the sparse address space, separated

from other KV pairs by unpopulated virtual addresses.

Given this, a CONDITIONAL-RANGEREAD can retrieve

the entire KV pair in one operation without knowing the

size of the value up front. Second, collisions induce a

minimal number of additional operations. Since get and

put operations for a given key map to hash addresses in

a deterministic order, and since put places the new KV

pair at the first available hash address (that is currently

unused) in this order, subsequent gets are guaranteed to

retrieve the most recent data written to this key. Finally,

DELETE operations may require more than one I/O per

operation, since they are required to read and validate

the key before issuing a PTRIM. It also needs to check

multiple locations to ensure that previous instances of a

particular key have all been deleted.

NVMKV is intended to be zero copy and avoid mem-

ory comparison operations wherever possible. First, for

any value that is large enough to start at its own sec-

tor, the data retrieved from a get (or written during a

put) operation will be transferred directly to (or from)

the user provided memory buffer. Second, no key com-

parisons occur unless the key hashes match. Given that

the likelihood of collisions is small, the number of key

comparisons that fail is also correspondingly small.

6 Multiple KV Instances Via Pools

Pools in NVMKV allow applications to group related

keys into logical abstractions that can then be managed

separately. Besides simplifying KV data management

for applications, pools enable efficient access and iter-

ation of related keys. The ability to categorize or group

KV pairs also improves the lifetime of flash devices.

6.1 Need for Pools

NVMKV as described thus far, can support multiple in-

dependent KV stores. However, it would need to ei-

ther partition the physical flash device to create multiple

block devices each with its own sparse address space or

logically partition the single sparse address space to cre-

ate block devices to run multiple instances of KV stores.

Unfortunately, both approaches do not work well for

flash. Since it is difficult to predict the number of KV

pairs or physical storage needed in advance, static par-

titioning would result in either underutilization or insuf-

ficient physical capacity for KV pairs. Further, smaller

capacity physical devices would increase pressure on the

garbage collector, resulting in both increased write am-

plification and reduced KV store performance. Alterna-

tively, partitioning the LBA space would induce higher

key collision rates as the KBR would be shrunk depend-

ing on the number of pools that need to be supported.

6.2 Design Overview

NVMKV encodes pools within the sparse LBA to avoid

any need for additional in-memory pool metadata. The

encoding is done by directly hashing both the pool ID

and the key to determine the hash location within the

KBR. This ensures that all KV pairs are equally dis-

tributed across the sparse virtual address space regard-

less of which pool they are in. Distributing KV pairs of

multiple pools evenly across the sparse address space not

only retains the collision probability properties but also

preserves the get and put performance with pools.

Pool IDs are also encoded within the VBR to opti-

mally search or locate pools within the sparse address

space. Encoding pool IDs within the VBR preserves the

collision properties of NVMKV. The KV pair start offset

within the VBR determines the Pool ID. The VBR size

determines the maximum number of pools that can be

addressed without hashing, while also maintaining the

guarantee that each KV pair is separated from neigh-

boring KV pairs by unpopulated sparse addresses. For

example, with a 12 bit VBR, the maximum number of

pools that can be supported without pool ID hashing is

1024. If the maximum number of pools is greater than

1024, the logic of get is modified to also retrieve the

KV pair metadata that contains the pool ID now needed

to uniquely identify the KV pair.

6.3 Operations

Supporting pools requires changes to common opera-

tions of the KV store. We now describe three important

operations in NVMKV that have either been added or

significantly modified to support pools.

Creation and Deletion: Pool creation is a lightweight

operation. The KV store performs a one-time write to

record the pool’s creation in its persistent configuration

metadata. On the other hand, pool deletion is an ex-

pensive operation since all the KV pairs of a pool are

distributed across the entire LBA space, each requiring

an independent PTRIM operation. NVMKV implements

pool deletion as an asynchronous background operation.

Upon receiving the deletion request, the library marks

the pool as invalid in its on-drive metadata, and the ac-

tual deletion of pool data occurs asynchronously.

Iteration: NVMKV supports iteration of all KV pairs

in a given pool. If no pool is specified, all key-value

pairs on the device are returned by the iteration routines.

Iteration uses the ITERATE primitive of the FTL to find

the address of the next contiguous chunk of data in the

sparse address space. During pool iteration, each con-

tiguous virtual address segment is examined as before.

7
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However, the iterator also examines the offset within the

VBR of each starting address, and compares it to the pool

ID, or the hash of the pool ID, for which iteration is be-

ing performed. Virtual addresses are only returned to the

KV store if the pool ID match succeeds.

NVMKV guarantees that each KV pair is stored in a

contiguous chunk, and that adjacent KV pairs are always

separated by at least one empty sector, so the address re-

turned by ITERATE locates the next KV pair on the drive

(see §5.1). When the maximum number of pools is small

enough that each pool ID can be individually mapped to

a distinct VBR offset, the virtual addresses returned by

the ITERATE primitive are guaranteed to belong to the

pool currently being iterated upon. When the maximum

number of pools is larger, the ITERATE uses the hash of

the pool ID for comparison. In this case, the virtual ad-

dresses that match are not guaranteed to be part of the

current pool, and a read of the first sector of the KV pair

is required to complete the match.

7 Implementation

NVMKV is implemented as a stand-alone KV store writ-

ten in C++ using 6300 LoC. Our current prototype works

on top of ioMemory VSL and interacts with the FTL us-

ing the IOCTL interface [25]. The default subdivision

for KBR and VBR used in the current implementation is

36 bits and 12 bits respectively, in a 48 bit address space.

The KBR/VBR subdivision is also configurable at KV

store creation time. To accelerate pool iteration, we im-

plemented filters inside the ITERATE/BATCH-ITERATE

FTL primitives. During the iteration of keys from a par-

ticular pool, the hash value of the pool is passed along

with the IOCTL arguments to be used as a filter for the

iteration. The FTL services (BATCH-)ITERATE by re-

turning only populated ranges that match the filter. This

reduces data copying across the FTL and NVMKV.

7.1 Extending FTL Primitives

We extended the FTL to better support NVMKV.

ATOMIC-WRITE and its vectored forms are implemented

in a manner similar to what has been described by

Ouyang et al. [35]. Atomic operations are tagged within

the FTL log structure, and upon restart, any incom-

plete atomic operations are discarded. Atomic writes are

also not updated in the FTL map until they are com-

mitted to the FTL log to prevent returning partial re-

sults. ITERATE and RANGE-EXISTS are implemented

as query operations over the FTL indirection map.

CONDITIONAL-READ and CONDITIONAL-WRITE are

emulated within NVMKV in the current implementation.

7.2 Going Beyond Traditional KV Stores

NVMKV provides new capabilities with strong guaran-

tees relative to traditional KV stores. Specifically, it

provides full atomicity, isolation, and consequently se-

rializability for basic operations in both individual and

batch submissions. Atomicity and serializability guar-

antees are provided for individual operations within a

batch, not for the batch itself. The atomicity and iso-

lation guarantees provided by NVMKV rely heavily on

the ATOMIC-WRITE and PTRIM primitives from the FTL.

Each put is executed as a single ACID compliant

ATOMIC-WRITE, which guarantees that no get running

in parallel will see partial content for a KV pair. The get

operation opportunistically retrieves the KV pair from

the first hash location using cond range read to guar-

antee the smallest possible data transfer. In the unlikely

event of a hash collision, the next hash address is used.

Since the hash address order is deterministic, and every

get or put to the same key will follow the same order,

and every write has atomicity and isolation properties,

get is natively thread safe requiring no locking.

When ATOMIC-WRITEs are used, put operations re-

quire locking for thread safety because multiple keys can

map to the same KBR. When a CONDITIONAL-WRITE

(which performs an atomic EXISTS check and WRITE of

the data in question) is used, put operations can also be

made natively thread safe. Individual iterator calls are

thread safe with respect to each other and to get/put

calls; thus, concurrent iterators can execute safely.

The ITERATE primitive is also supported in batch

mode for performance. BATCH-ITERATE returns multi-

ple start addresses in each invocation, reducing the num-

ber of IOCTL calls. For each LBA range returned, the

first sector needs to be read to retrieve the key for the

target KV pair.

8 Evaluation

Our previous work established performance of the ba-

sic approach used in NVMKV, contrasting it relative to

block device performance [33]. Our evaluation addresses

a new set of questions:

(1) How effective is NVMKV in supporting multiple

KV stores on the same flash device? How well do

NVMKV pools scale?

(2) How effective is NVMKV in trading off DRAM for

flash by sizing its read cache?

(3) How effective is NVMKV in improving the en-

durance of the underlying flash device?

(4) How sensitive is NVMKV to the size of its collision

cache?

8.1 Workloads and Testbed

We use LevelDB [26], a well-known KV store as the

baseline for our evaluation of NVMKV. LevelDB uses

a logging-based approach to write to flash and uses com-

paction mechanisms for space reclamation. Our eval-

8
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Figure 4: Comparing multiple identical instances of Lev-

elDB with a single instance of NVMKV with equal num-

ber of pools.

uation consists of two parts. We answer question (1)

above using dedicated micro-benchmarks for NVMKV

and LevelDB. We then answer questions (2), (3), and

(4) using the YCSB macro-benchmark [19]. We used

the YCSB workloads A, B, C, D, and F with a data set

size of 10GB; workload E performs short range-scans

and the YCSB Java binding for NVMKV does not sup-

port this feature currently. We also used a raw device

I/O micro-benchmark which was configured so that I/O

sizes were comparable to the sizes of the key-value pairs

in NVMKV. Our experiments were performed on two

testbeds, I and II. Testbed I was a system with a Quad-

Core 3.5 GHz AMD Opteron(tm) Processor, 8GB of

DDR2 RAM, and a 825GB Fusion-io ioScale2 drive run-

ning Linux Ubuntu 12.04 LTS. Testbed II was a sys-

tem with a 32 core Intel(R) Xeon(R) CPU E5-2690 0

@ 2.90GHz with 128 GB DDR3 RAM, and a 1.2TB

Fusion-io ioDrive2 running Linux Ubuntu 12.04.2 LTS.

8.2 Micro-Benchmarks

Our first experiment using Testbed II answers question

(1). We ran a single instance of NVMKV and mea-

sured the throughput of reads and writes as functions of

the number of NVMKV pools. NVMKV also used as

many threads as pools. We compared its performance

against multiple instances of LevelDB. Both KV stores

were configured to use the same workload, sizes of key-

value pairs, and accessed a total of 500 MB of data. In

addition, LevelDB used both its own user-level cache of

size 1GB and the operating system’s file system cache as

well. On the other hand, NVMKV used neither. Lev-

elDB provides two options for writes, a low-performing

but durable sync and the high performing async, and we

include them both here. NVMKV, on the other hand,

performs all writes synchronously and atomically, and

thus only a synchronous configuration is possible.

Figure 4 provides a performance comparison. Due to

its low-latency flash-level operations, NVMKV almost

equals LevelDB’s primarily in-memory performance for

up to 32 pools/instances. LevelDB continues scaling be-

yond 32 parallel threads; its operations continue to be

memory-cache hits while NVMKV must perform flash-

level accesses (wherein parallelism is limited) for each

operation. When writing, NVMKV outperforms Lev-

elDB’s sync as well as async versions despite not using

the filesystem cache at all. Even when LevelDB was

configured to use async writes, it was about 2x slower

than NVMKV in the best case, and about 6.5x slower

at its worst. For synchronous writes, a more comparable

setup, NVMKV outperforms LevelDB between 643x (64

pools) and 1030x faster (1 pool).

8.3 DRAM Trade-off and Endurance

This second experiment using Testbed I addresses ques-

tions (2) and (3). NVMKV uses negligible in-memory

metadata and does not use the operating system’s page

cache at all. It implements a read cache whose size can

be configured, allowing us to trade-off DRAM for flash,

thus providing a tunable knob for trading off cost for per-

formance. To evaluate the effectiveness of the collision

cache, we evaluate two variants of NVMKV, one with-

out the collision cache and the other when it uses 64MB

of collision cache space. We used the YCSB benchmark

for this experiment. We present the results from both the

load phase, that is common to all workload personalities

implemented in YCSB, and the execution phase, that is

distinct across the workloads.

Figure 5 (top) depicts throughput as a function of the

size of the application-level read cache available to Lev-

elDB and NVMKV. Unlike NVMKV, LevelDB accesses

use the file system page cache as well. Despite this,

NVMKV outperforms LevelDB during both phases of

the experiment, load and execution, by a significant mar-

gin. Further, the gap in performance increases as the size

of the cache increases for every workload. This is be-

cause YCSB’s workloads favor reads in general, vary-

ing from 50%, in the case of workload A, all the way to

100% in the case of workload C. Furthermore, the YCSB

workloads follow skewed data access distributions, mak-

ing even a small amount of cache highly effective.

To better understand these results, we also collected

how much data was written to the media while the ex-

periments were running. All workload were configured

to use 10GB of data, so any extra data that is written to

the media is overhead introduced by NVMKV or Lev-

elDB. Figure 5 (bottom) depicts the results of the write

amplification. By the end of each experiment, LevelDB

has written anywhere from 42.5x to 70x extra data to the

media. This seems to be a direct consequence of its inter-

nal design which migrates the data from one level to the

next, therefore copying the same data multiple times as it

ages. NVMKV on the other hand, introduces a write am-

plification of 2x in the worst case. We believe this to be

9
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Figure 5: Throughput comparison between NVMKV and LevelDB using YCSB workloads (above). Write Amplifica-

tion Comparison between NVMKV and LevelDB using YCSB workloads (below).

Figure 6: Collision cache impact on YCSB workloads.

the main reason for the performance difference between

the two KV Stores.

Finally, the effect of NVMKV’s collision cache is

highly sensitive to the workload type. As expected, for

read-intensive workloads (i.e., B, C, and D) the presence

of collision cache has little to no impact at all. On the

other hand, the update heavy workloads (i.e., A and F)

benefit significantly from the collision cache, increasing

the performance up to 76% and 56% respectively. Sur-

prisingly the load phase is negatively affected by the col-

lision cache, and performance decreases by up to 11%.

8.4 Effectiveness of the Collision Cache

We used Testbed II to address question (4). We measured

YCSB workload throughput when varying the size of the

collision cache in NVMKV. During this experiment, the

read cache was disabled to eliminate other caching ef-

fects. As shown in Figure 6, the presence of the collision

cache benefits workloads A and F with a throughput im-

provement of 28% and 10% respectively. Read-mostly

workloads (B, C, and D) do not benefit from the colli-

sion cache since the probability of collision is low and a

single flash-level read is necessary to service KV GET op-

erations. A and F involve writes and these benefit from

the collision cache. The collision cache optimizes the

handling repeated writes to the same location by elimi-

nating the reading of the location (to check for collisions)

prior to the write. Finally, the loading phase does not

demonstrate any benefit from the collision cache mainly

because of YCSB’s key randomization during inserts.

9 Discussion and Limitations

Through the NVMKV implementation, we were able to

achieve a majority of our design goals of building a flash-

aware lightweight KV store that leverages advanced FTL

capabilities. We made several observations through the

design and development process.

It is valuable for atomic KV operations, such as those

described by Ouyang et al. [35], to be fully ACID com-

pliant. The usage described in Ouyang et al.’s work only

required the durable writes to have the atomicity prop-

erty. We found that having isolation and consistency en-

ables reduced locking and in some cases, fully lock free

operation, at the application level. For example, updat-

ing multiple KV pairs atomically as a single batch can

help provide application-level consistent KV store state

without requiring additional locks or logs.

Many primitives required by NVMKV are the same

as those required by other usages of flash. FlashTier, a

primitives based solid state cache leverages the sparse

10
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addressing model, and the EXISTS and PTRIM FTL

primitives [37], as does DirectFS, a primitives based

filesystem [4, 29].

NVMKV suffers from internal fragmentation for small

KV pairs. Since we map individual KV pairs to separate

sectors, NVMKV will consume an entire sector (512B)

even for KV pairs smaller than the sector size. While this

does not pose a problem for many workloads, there are

those for which it does. For the second group of work-

loads, NVMKV will have poor capacity utilization. One

way to manage efficient storage of small KV pairs is

to follow a multi-level storage mechanism, as provided

in SILT [31], where small items are initially indexed

separately and later compacted into larger units such as

sectors. We believe that implementing similar methods

within the FTL itself can be valuable.

10 Related Work

Most previous work on FTL-awareness has focused on

leveraging FTL capabilities for simpler and more effi-

cient applications, focusing on databases [35], file sys-

tems [29] and caches [37]. NVMKV is the first to present

the complete design and implementation of an FTL-

aware KV store and explains how specific FTL primitives

can be leveraged to build a lightweight and performant

KV store. NVMKV is also the first to provide support for

multiple KV instances (i.e., pools) on the same flash de-

vice. Further, NVMKV trades-off main memory for flash

well as evidenced in the evaluation of a read cache imple-

mentation. Finally, NVMKV extends the use of the FTL

primitives in a KV store to include conditional-primitives

and batching.

There is substantial work on scale-out KV stores

and many of the recent ones focus on flash. For ex-

ample, Dynamo [23] and Voldemort [39] both present

scale out KV stores with a focus on predictable perfor-

mance and availability. Multiple local node KV stores

are used underneath the scale out framework and these

are expected to provide get, put, and delete opera-

tions. NVMKV complements these efforts by providing

a lightweight, ACID compliant, and high-performance,

single-node KV store.

Most flash-optimized KV stores use a log structure

on block-based flash devices [10, 14, 17, 18, 21, 31].

FAWN-KV [14] focused on power-optimized nodes and

uses an in-memory map for locating KV pairs at they

rotate through the log. FlashStore [21] and SkimpyS-

tash [22] take similar logging-based approaches to pro-

vide high-performance updates to flash by maintaining

an in-memory map. SILT [31] provides a highly mem-

ory optimized multi-layer KV store, where data transi-

tions between several intermediate stores with increas-

ing compaction as the data ages. Unlike the above men-

tioned systems, NVMKV eliminates an entire additional

layer of mapping along with in-memory metadata man-

agement by utilizing the FTL mapping infrastructure.

There are several popular disk optimized KV stores [3,

8, 26]. Memcachedb [3] provides a persistent back

end to the in-memory KV store, memcached [2], us-

ing BerkeleyDB [34]. BerkeleyDB, built to operate on

top a black-box block layer, caches portions of the KV

map in DRAM to conserve memory and incurs read am-

plification on map lookup misses. MongoDB, a cross-

platform document-oriented database, and LevelDB, a

write-optimized KV store, are HDD based KV stores.

Disk-based object stores can also provide KV capabili-

ties [28, 30, 32, 36]. Disk-based solutions do not work

well on flash because the significant AWA that they in-

duce reduces the flash device lifetime by orders of mag-

nitude [33].

Finally, we examine the role of consistency in KV

stores in the literature. Anderson et al. analyze the

consistency provided by different KV stores [15]. They

observe that while many KV stores offer better perfor-

mance by providing a weaker form of (eventual) consis-

tency, user dissatisfaction when violations do occur is a

concern. Thus, while many distributed KV stores pro-

vide eventual consistency, others have focused on strong

transactional consistency [38]. NVMKV is a unique KV

store that leverages the advanced capabilities of modern

FTLs to offer strong consistency guarantees and high-

performance simultaneously.

11 Conclusions

Leveraging powerful FTL primitives provided by a flash

device allows for rapid and stable code development; ap-

plication developers can exploit features present in the

FTL instead of re-implementing their own mechanisms.

NVMKV serves as an example of leveraging and enhanc-

ing capabilities of an FTL to build simple, lightweight

but highly powerful applications. Through the NVMKV

design and implementation, we demonstrated the impact

to a KV store in terms of code and programming sim-

plicity and the resulting scalable performance that comes

from cooperative interaction between the application and

the FTL. We believe that the usefulness of primitives for

FTLs will only grow. In time, such primitives will fun-

damentally simplify applications by enabling developers

to quickly create simple but powerful, feature-rich appli-

cations with performance comparable to raw devices.
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Abstract
Applications implement their own update protocols to
ensure consistency of data on the file system. However,
since current file systems provide only a preliminary or-
dering guarantee, notably fsync(), these update protocols
become complex, slow, and error-prone.

We present a new file system, CFS, that supports a
native interface for applications to maintain crash consis-
tency of their data. Using CFS, applications can achieve
crash consistency of data by declaring code regions that
must operate atomically. By utilizing transactional flash
storage (SSD/X-FTL), CFS implement a lightweight
mechanism for crash consistency. Without using any
heavyweight mechanisms based on redundant writes and
ordering, CFS can atomically write multiple data pages
and their relevant metadata to storage.

We made three technical contributions to develop a
crash consistency interface with SSD/X-FTL in CFS: se-
lective atomic propagation of dirty pages, in-memory
metadata logging, and delayed deallocation. Our evalua-
tion of five real-world applications shows that CFS-based
applications significantly outperform ordering versions:
2–5× faster by reducing disk writes 1.9–4.1× and disk
cache flushing 1.1–17.6×. Importantly, our porting effort
is minimal: CFS requires 317 lines of modifications from
3.5 million lines of ported applications.

1 Introduction
Preserving the consistency of application data is one of
the foremost responsibilities of computer systems. Appli-
cations, ranging from a simple text editor to more com-
plex relational DBMS, are designed to keep their data
crash-consistent. Nevertheless, due to limited file sys-
tem interfaces, primarily fsync(), update protocols of
applications to achieve crash consistency are notoriously
complex, inefficient, and ad-hoc. As a result, most ap-
plications still incur inconsistencies of data upon system
crashes or random power failures [54].

Suppose that two database files need to be atomically
updated as shown in Figure 1. In current file systems, a
typical solution is to use multiple rollback journals as
shown in Figure 2. To make a single database update

∗Some of this work was performed while Changwoo Min was at
Sungkyunkwan University.

1 + cfs_begin();
2 write(/db1, "new");
3 write(/db2, "new");
4 + cfs_commit();

Figure 1: An example code snippet to implement crash-
consistent updates of two database files in SQLite by using
CFS. In this pseudo code, /db1 means a file descriptor of a
database db1 under the directory /, and “new” means new data
(e.g., database entry) to be updated. Two API calls, cfs_begin()
and cfs_commit(), are included at the beginning and end of two
write() operations to denote an atomic update.

crash-consistent, it first records the original state of the
database to a journal, so that it can always restore the
database to known state upon a system crash. To make
multiple database files crash-consistent, it has to main-
tain another journal, the so-called master journal, which
specifies the database files involved during updates.

As a result, popular database systems, such as
SQLite [7], end up maintaining three journal files and
performing 11 fsync() operations for updating just two
database files with crash-consistency [31]. Besides com-
plexity, this ad-hoc update protocol imposes a huge per-
formance overhead: under ext4 in ordered journal mode,
it generates 48 page disk writes and eight disk cache flush
operations to update just two data pages. In spite of the in-
herent performance overhead, such fsync()-based update
protocols often can not guarantee crash consistency. This
happens because some file systems, device drivers, and
virtual machines deliberately ignore such flush requests
to optimize runtime performance [12, 13, 50].

A significant amount of research has been done to
provide consistency of file system structures (e.g., meta-
data) [16, 25, 29, 39, 43, 58, 64]. However, upon crashes
or power failures, even when file system structures are
consistent in a system-wide manner, each application’s
data can be left inconsistent.

One reason why file systems and applications resort
to costly journaling or logging is that current storage
devices do not guarantee the atomic write of multiple
pages or even a single page. Though recently proposed
transactional flash storage supports atomic multi-page
writes [20,33,51,53,56] by extending their log-structured
write mechanism, to the best of our knowledge, there is
no study on how to use transactional flash storage for
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1 // init master journal
2 open(/master.jnl, O_CREATE);
3 write(/master.jnl, "/db1,/db2");
4 fsync(/master.jnl); fsync(/);
5 // update db1
6 open(/db1.jnl, O_CREATE);
7 write(/db1.jnl, "old");
8 fsync(/db1.jnl); fsync(/);
9 write(/db1.jnl, "/master.jnl");

10 fsync(/db1.jnl);
11 write(/db1, "new");
12 fsync(/db1);
13 // update db2: do the same as db1
14 ...
15 // clean up master journal
16 unlink(/master.jnl);
17 fsync(/);
18 // clean up db1/2 journal
19 unlink(/db1.jnl);
20 unlink(/db2.jnl);

/db1 . . . . . . 
write(/db1, “new”); 
w s 

/db2 . . . . . . 
write(/db2, “new”); 
w s 

/master.jnl 
write(/master.jnl, “/db1,/db2”); 

c w s u s 

/db1.jnl 

write(/db1.jnl, “old”); 
write(/db1.jnl, “/master.jnl”); 

c w w s s u 

/db2.jnl 

write(/db2.jnl, “old”); 
write(/db2.jnl, “/master.jnl”); 

u c w w s s 

: write db w : unlink u : create c : write journal w : fsync s s two fsync on fd  
and its parent dir : 

time 

Figure 2: Crash-consistent updates of two database files in SQLite. File systems provide a minimal consistency guarantee upon
a crash or a power failure: data and metadata of the latest sync-ed files will be preserved in order. To provide application-level
consistency, an application has to carefully coordinate fsync() and unlink() in an ad-hoc manner. In this example, SQLite maintains
a master journal (master.jnl) and two journals (i.e., db1.jnl and db2.jnl) with complex ordering of fsync() and unlink() calls.
Because fsync() does not ensure that the entry in the directory containing the file has reached storage, creating a journal file entails
two fsync() calls: one for the journal itself and another for its parent directory.

direct and efficient support of application-level crash con-
sistency.

In this paper, we present CFS, a file system that natively
supports application-level crash consistency on transac-
tional flash storage. We make the following technical
contributions:

• Native Interface for Crash Consistency: CFS pro-
vides a native interface for applications to describe
atomic code regions which must operate atomically.
For each region, CFS creates an atomic propagation
group, which is a set of data and metadata pages
modified in the region. An atomic propagation group
is atomically written to storage regardless of system
crash (commit), or is reverted either explicitly by a
user (abort) or upon crash. Atomicity is guaranteed
by atomic multi-page writes in transactional flash
storage without using any journaling or logging.
• In-Memory Metadata Logging: The key design

challenge is how to propagate metadata pages shared
by multiple atomic propagation groups. Suppose
that two inodes in different groups happen to be
in the same metadata page; committing a group re-
sults in unintended propagation of another inode. We
call this false sharing of metadata pages because ir-
relevant sub-page-sized metadata structures are in
the same page. To resolve this, we introduce an in-
memory metadata logging mechanism that keeps
track of metadata changes for each group and selec-
tively propagates changes of a committing group.
• Delayed Deallocation: All operations in an atomic

code region must be safely abortable. However, it is
tricky to revert deallocation of file system resources
such as inodes and blocks. For example, suppose

that block B1, which was released from atomic prop-
agation group A1, was allocated to another group. If
A1 is aborted, it is impossible to revert A1’s dealloca-
tion of B1. To resolve this, we introduce a delayed
deallocation technique, which defers actual resource
deallocation until commit time.
• Legacy Application Support: CFS internally man-

ages a system-wide atomic propagation group for
legacy applications that do not use CFS system calls.
Legacy applications can run with CFS-based ones
without any modification.

Unlike transactional file systems [36, 42, 55, 60, 63] ,
which have been proposed to support DBMS-like ACID
transactions, we have designed CFS primarily for crash
consistency, and not for strong isolation. There are two
reasons for this decision. First, modern applications like
MariaDB [3, 38] or Kyoto Cabinet [2] already relax their
isolation level for performance optimization, without com-
promising their correctness semantics. If strong isolation
is enforced by transactional file systems, atomic updates
in these applications may fail to progress efficiently due
to frequent conflicts among transactions. We will discuss
this in more detail in §8. Second, using rich semantics
at the application level, it makes sense to give develop-
ers more freedom to choose appropriate synchronization
primitives to achieve the required isolation level for their
applications. We summarize isolation policies of popular
applications in §6.

We have implemented CFS based on ext4 using transac-
tional flash storage (SSD/X-FTL [33]). Our evaluation on
real-world applications, including SQLite, MariaDB, and
Kyoto Cabinet shows that CFS-based applications signifi-
cantly outperform their original versions: 2–5× faster by

2
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reducing disk writes 1.9–4.1× and disk cache flushing by
1.1–17.6×. Our porting experience shows that CFS can
easily replace a variety of existing update protocols with
its native interface.

In the rest of this paper, we will discuss the background
(§2) and design principles (§3). Next, we will present the
details of CFS design (§4) and implementation (§5). Then,
we will show our application case studies (§6) and evalu-
ate performance (§7). Finally, we discuss our limitations
(§8) and related work (§9), and conclude (§10).

2 Background
2.1 Problems in Modern File Systems
Modern file systems cannot guarantee application-level
crash consistency even with data journal mode for the
four following reasons:

No Atomicity on Multiple Files: It is not uncommon
that application data, which needs to be atomically up-
dated, spans two or more files, as shown in Figure 2.
However, while modern file systems provide three order-
ing primitives, namely sync(), fsync() and msync() for
system-wide or file-wide flushing, they do not provide
any primitive to flush multiple files selectively and atomi-
cally. As a result, developers have no option other than to
implement their own complex update protocols with the
given primitives.

Lack of Atomic Page Writes: Although fsync() en-
sures durability and ordering of writes, current storage
devices do not guarantee the atomic write of a single page
as well as multiple pages. Hence, file systems and applica-
tions resort to costly journaling (or logging) mechanisms
or complicated copy-on-write (CoW) mechanisms [19].
However, disk cache flush operations, which are essen-
tial to implement such mechanisms, frequently become a
performance bottleneck [18, 19, 46].

Shared Metadata Page: Even if an underlying stor-
age device provides atomic page writes, modern file sys-
tems cannot directly support application-level crash con-
sistency. Assume that two applications, A1 and A2, are
running. Suppose that A1 finishes atomic updates of its
changes and the system crashes before A2 triggers its
atomic updates. To achieve crash consistency of A1, all
data pages and relevant metadata pages should be writ-
ten. However, a metadata page can contain information of
both A1 and A2, so the incomplete metadata changes of A2
can be accidentally propagated by A1. This is because a
write unit in storage is a page, not an individual metadata
structure. We call this false sharing of metadata pages.
Depending on the unwanted metadata propagation of A2,
a directory could have nonexistent files, or a file could
have garbage blocks, or the free block counter in a su-
perblock could be incorrect. In other words, A1 hampers

the consistency of A2 upon a crash.

Steal Policy and Lack of Undo Mechanism: Modern
file systems use the steal policy: due to page reclamation
by the page flusher or sync() by applications, any meta-
data or data page can be written to storage at any time,
although its corresponding application is still executing.
Upon system recovery after a crash or an application’s re-
quest to abort its changes, the stolen pages and in-memory
data structures, such as metadata and inode cache, should
be reverted. Unfortunately no existing file system provides
a native undo mechanism. This is one of the main reasons
why file systems cannot natively support application-level
crash consistency.

2.2 Transactional Flash Storage
Transactional flash storage [20, 33, 51, 53, 56] supports
atomic write of multiple pages by extending the log-
structured nature of a flash translation layer (FTL). They
defer the update of the mapping table for new data and
achieve the atomicity of multi-page writes by atomically
updating the mapping table in response to a commit re-
quest from the host. Since atomic writes achieve a high
level of data integrity with fewer write commands, the
storage industry is working on its standardization [61].

In this paper, we used SSD/X-FTL [33], which is a
transactional flash storage providing extended SCSI in-
terfaces such as write(txid, page), commit(txid), and
abort(txid). Each write operation is associated with
txid, and the written pages with the same txid become
atomically durable upon a commit(txid) request. Upon
an abort(txid) request, they are reverted to their old
copies. Though CFS is built on SSD/X-FTL, CFS does
not fundamentally require SSD/X-FTL, and it can be
built on any transactional storage devices [26, 51, 56, 61]
(see §8).

3 Design Principles
For an application to be crash-consistent, a series of file
system operations either all occur, or nothing occurs.
From the perspective of file systems, this can be trans-
lated into the following technical axiom: “all data pages
and their relevant metadata changes should be atomically
propagated to storage.” In this paper, file systems satis-
fying this technical requirement will be said to provide
application-level crash consistency. In this section, we
discuss four design principles which will lead to our key
techniques: selective atomic propagation of dirty pages
(§4.1) and in-memory metadata logging (§4.2).

Defining an Atomic Code Region: In CFS, instead of
implementing complex update protocols, applications
simply specify an atomic code region, in which file
system operations must be atomically processed. An
atomic code region starts with cfs_begin() and ends

3
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with cfs_commit() (or is canceled with cfs_abort()).
CFS automatically captures files modified by system
calls, but for memory-mapped files, developers should
explicitly specify corresponding file descriptors by using
cfs_add(fd). Naturally, there are one or more files in an
atomic code region. After capturing all the modifications
inside the atomic code region (the so-called atomic prop-
agation group), cfs_commit() will make those changes
persistent, and cfs_abort() will revert them by undoing
all operations performed in the atomic code region.

Atomic Propagation of Data and Metadata Pages:
Instead of resorting to costly journaling or complex CoW
mechanisms, CFS exploits the atomic multi-page write
feature of transactional flash storage. All data and rele-
vant metadata pages modified in an atomic code region
are grouped and sent to storage for an atomic write. Since
transactional flash storage guarantees atomic durability,
there is no need for journaling or CoW mechanisms.

No-Steal and Selective Propagation of Metadata:
Even if CFS writes only relevant metadata pages modi-
fied in an atomic code region, metadata changes made by
other in-progress atomic code regions can be propagated
to storage due to the false sharing of metadata pages.

To avoid this anomaly, CFS delays writing the in-
progress metadata changes to storage until commit time
(no stealing). Also, to selectively propagate the changes
in a metadata page, we propose a technique that logs in-
memory metadata changes for each atomic propagation
group and replays them at commit time.

Undoing Stolen Data Pages and In-Memory Struc-
tures: Unlike metadata pages, we support a steal policy
for data pages, meaning that data pages do not need to be
sent to storage, and rather can be stolen. This provides
two benefits. First, effective management of limited page
cache becomes possible, because data pages can be re-
claimed under memory pressure. Second, the amount of
writes at commit can be reduced, hence latency as well,
because the page flusher can flush dirty pages during idle
time.

To support a steal policy of data pages, CFS should
be able to revert every stolen page of the aborted atomic
propagation group to its old copy when system recovers
from a crash or cfs_abort() is invoked. CFS relies on
transactional flash storage to revert stolen pages. When
a system crashes, transactional flash storage reverts all
uncommitted writes to their old copies on system reboot.
When cfs_abort() is called, CFS asks the transactional
flash storage to revert written pages of the aborting group
to their old copies. In addition, CFS reverts all in-memory
metadata changes for the operating system after the abort
operation. This is done by undoing the collected logs of
the in-memory metadata structures.

4 CFS Design
In this section, we present the design of CFS, an ext4-
based file system that natively supports application-
level crash consistency on transactional flash storage. To
achieve crash consistency for a series of file system oper-
ations, developers define atomic code regions in source
code and CFS guarantees atomic operations within the
regions. For each region, CFS manages an atomic prop-
agation group that is a set of data and metadata pages
modified in each region. The pages in the group will be
written atomically using atomic multi-page write features
of transactional flash storage. CFS logs in-memory meta-
data changes made by each region. At commit time, CFS
replays the collected logs of a committing group to selec-
tively propagate changes made in the group to storage. To
this end, CFS manages two versions of metadata: mem-
ory version and storage version. The data pages and the
storage version of metadata pages are atomically written
to storage.

Figure 3 illustrates a running example of CFS. Ap-
plication A1, as in Figure 1, updates two database files,
db1 and db2, in its atomic code region. Application A2 up-
dates two pages of a database file db3. Upon cfs_begin(),
a new atomic propagation group starts and an associ-
ated new txid is assigned for further interaction with
transactional flash storage. CFS logs in-memory metadata
changes made in each region (Step 1). Suppose that A1
starts cfs_commit() while A2 is still in-progress (Step 2).
At this moment, the atomic propagation group of A1 has
data page P5 and P6, and metadata pages P1–P4, which
have metadata changes for db1 and db2. The false shar-
ing between A1 and A2 occurs in P1–P4. CFS replays the
collected logs of A1 on the storage versions, P1’–P4’, for
selective propagation of metadata changes (Step 3). Thus,
the storage versions P1’–P4’ only contain the changes of
A1 without incorporating the changes of still-in-progress
A2. All data pages and the storage version of metadata
pages in the group are written to storage with the txid of
A1 (Step 4). Finally, CFS asks the storage device to make
the written pages with the txid atomically persistent (Step
5). By using transactional flash storage, CFS can avoid
redundant journalings and can significantly improve the
performance of file systems. Not only that applications do
not need complex and ad-hoc update protocols, but natu-
rally gain better performance by using CFS. For example,
SQLite’s update protocols, which invokes 11 fsync()
calls for updating two database files, can be replaced with
two native calls to CFS and gain a 16.7× increase in per-
formance compared to the original version, as shown in
§7.2.

4.1 Managing Atomic Propagation Groups
For each atomic code region embraced with cfs_begin()
and cfs_commit(), CFS keeps track of modified pages

4
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          … 
    cfs_begin(); 
    write(/db3, …);  
    write(/db3, …);  
    cfs_commit(); 
 

Application 
A1 A2 

2. Commit A1 

    cfs_begin();  
    write(/db1, “new”);  
    write(/db2, “new”);  
    cfs_commit(); 
          … 

                                    

Operating System  
Data  
Page 

Metadata 
Page 

CFS P7 P8 /db1 /db2 /db3 P5 P6 

1. Collect logs 
 

3. Redo A1 logs on storage versions 

Memory 
Version 

Metadata 
Logs 

SB GD BB IT 

A1 logs A2 logs 

Device  
Driver  P5 P6 4. Atomic write P1’, …, P4’, P5, P6 

Storage 
Version 

                                    

Transactional Flash Storage 

P1 

New copy of P1, … , P4’, P5, P6 
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NOTE. SB: superblock, GD: group descriptor, BB: block bitmap, IT: inode table

Figure 3: Two database applications running in CFS. Checkerboard rectangles denote metadata of files with the same color. Redoing
logs of A1 resolves the false sharing that occurred at P1–P4 and creates storage version P1’–P4’. Only storage versions of metadata
pages with no false sharing are written to storage. Thus, committing A1 does not interfere with the consistency of A2.

as an atomic propagation group. All dirty data pages of
the files and modified metadata pages in the same atomic
propagation group are atomically and persistently written
to storage using atomic write operations in transactional
flash storage. An atomic propagation group is inherited
by a child task but cannot be nested: a new task spawned
inside an atomic code region automatically inherits its par-
ent region (i.e., parent’s txid) until it starts a new atomic
code region. In SSD/X-FTL, a new txid is assigned to
a task (i.e., task_struct in Linux) upon invocation of
cfs_begin(). CFS then writes all pages with the same
txid for the task.

4.2 In-Memory Metadata Logging
Memory Version vs. Storage Version: At the core of
CFS is the in-memory metadata logging. CFS records
changes of in-memory metadata structures, called the
memory version, for each atomic propagation group.
Upon a commit, CFS selectively propagates the changes
made in the group to on-disk metadata structures, called
the storage version, which are updated by redoing logs
of a committing group, and then writing to storage. Upon
an abort, CFS reverts the changes of in-memory metadata
structures by undoing logs of the aborting group. Creat-
ing the storage version is straightforward if a metadata
has separate in-memory and on-disk structures (e.g., su-
perblock and inode). Otherwise, in the case that there is
no separate structure (e.g., inode bitmap), CFS clones a
memory version and uses the cloned structure as a storage
version. The storage versions are what will be initially
loaded when reading pages from storage.

Operational Logging: CFS uses operational logging,
which records executed metadata change operations. Ta-
ble 1 shows the specification of operations used to capture

the metadata changes in CFS. Operations are composed
of four primitive operations and one extended operation
(x_op). Primitive operations directly modify metadata
structures and an extended operation runs a registered
callback function, noted as argument f. All operations
have two arguments: m for memory version and s for
storage version of a metadata structure.

Let us suppose that the free inode count in a superblock
needs to be decremented when allocating a new inode. To
capture this operation, CFS records a sub operation with
an argument of the free inode count in superblock, so that
the metadata change can be part of the logs in the current
atomic propagation group. Upon a commit, the free inode
count in on-disk superblock (i.e., s) will be decremented
to reflect the change (redoing). Upon an abort, the free
inode count of the in-memory superblock (i.e., m) will be
incremented (undoing) to revert the change.

It is worth detailing how to undo assign operations
(φ(m) in Table 1). For example, atomic propagation group
A1 creates a new file, thus the timestamp of the parent
directory D is updated from t0 to t1. After that, another
atomic propagation group A2 creates another file at the
same directory so the timestamp is updated from t1 to t2.
Now, if A1 aborts, to what should the timestamp of D be
reverted? Since A2 already updated the timestamp from t1
to t2, it should remain t2. After that, when A2 aborts, the
timestamp should be reverted to t0. After all, CFS always
reverts to its most recent valid value. For this purpose,
CFS maintains a list of assign operations for a data entry
in order of the operations. Upon an abort, CFS removes
the aborting assign operation in the list and reverts the
value to the head of the list (i.e., its most recent valid
value).
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Operation REDO (commit) UNDO (abort) Description (example)

add(m,s,v) s+=v m-=v Add v to m (e.g., increments free inode counts)
sub(m,s,v) s-=v m+=v Subtract v from m (e.g., decrements free block counts)
assign(m,s,v) s=v m=φ(m) Assign v to m (e.g., changes access mode of an inode)
toggle_bit(m,s,i) s[i]=¬s[i] s[i]=¬s[i] Toggle i-th bit of m (e.g., toggles a bit in block bitmap)
x_op(m,s,f,a) f(commit,m,s,a) f(abort,m,s,a) Run a function f (e.g., allocates a directory entry)

NOTE. m: memory version, s: storage version, m[i]: i-th bit of m, φ(m): the most recent valid value of m

Table 1: Specification of operations for in-memory metadata logging.

Extended Operations: To handle complex metadata
structures and optimize the use of resources (e.g., caches),
CFS introduced a special type of operation, called x_op().
We summarize its usage into three categories:

The first usage is to manipulate complex metadata struc-
tures. For example, each directory keeps its directory en-
tries (or dentries) in a list or a hash tree [24]. Inserting
or deleting a dentry must follow the semantics of such
structures. When CFS allocates a dentry to create a new
file, it registers a callback function. Upon a commit, the
callback inserts the dentry into the storage version of the
directory. Upon an abort, it deletes the dentry from the
memory version of the directory.

Second, the extended operation is required to revert file
system caches upon an abort. CFS maintains the inodes
and dentry caches for efficient accesses as well as the
buddy cache [17] for efficient disk block allocation. When
allocating a file system resource (i.e., inode, dentry, or
block), an associated cache is also updated. CFS needs to
revert the changes in the cache if the resource allocation
is aborted. To do this, CFS has to register a callback that
reverts the cache updates that happened while allocating
file system resources.

Lastly, the extended operation is required to correctly
deallocate file system resources. For instance, given two
atomic propagation groups A1 and A2, let us suppose that
a block released from A1 was allocated to A2. After A2
is committed, it is impossible to abort A1 because there
is no way to revert the block allocation of already com-
mitted A2. In order to prevent this scenario, we propose a
technique named delayed deallocation. When CFS needs
to release file system resources, it registers a callback
function. Deallocation is deferred until the actual com-
mit, at which point it finally deallocates the resource by
executing the registered callback function.

A Running Example: As in Figure 3, suppose that db1,
db2, and db3 are in the same block group [24]. If new data
is overwritten in db1, and another new data is appended
in db2 and db3, then the size of their database files grows.
The last modified time of each database file is updated
(P4) and CFS logs three assign operations. Growing the
files incurs a series of metadata changes: three block use
flags for P6, P7, and P8 in a block bitmap (P3) are turned
on and CFS logs three toggle_bit operations; the block
maps in the inode table (P4) are changed to refer to the

new blocks and the file sizes in the inodes (P4) increase,
thus CFS logs five assign operations; each free block
count in the superblock (P1) and block group descriptor
(P2) decreases, thus CFS logs two sub operations. Since
block allocation incurs the changes in the buddy cache,
CFS adds one x_op to revert the change in the cache upon
abort.

4.3 Commit and Abort Procedures
Upon a commit, CFS first writes all dirty data pages of
the files that belong to the committing atomic propagation
group. Writing data pages could cause further metadata
changes; for example, due to the delayed block allocation
scheme [17], the actual block allocation happens when
writing data blocks, changing metadata structures such
as block bitmap and free block count. Then, CFS applies
all of the group’s collected logs to the storage version of
metadata in the order of their generations and writes the
storage version. It writes all pages with the txid issued at
cfs_begin() and then asks SSD/X-FTL to make written
pages with the txid durable.

Upon an abort, CFS rolls back the atomic propagation
group by executing all the collected logs for the group in
reverse order of their creation (undoing). Then, it also lets
the storage revert the stolen data pages to their old copies.
In SSD/X-FTL, CFS sends an abort command with the
txid of the group. Finally, CFS forcefully drops all the
dirty pages of the files in the group so that subsequent ac-
cess to the page results in reading the reverted valid page
from storage. If another application happens to access the
aborted files, it could encounter an error depending on its
correctness semantics. If this is the case, access to shared
files must be coordinated using a synchronization prim-
itive such as locking, or the shared files must be made
public only after they are committed. For example, a trans-
actional package manager needs to make new versions of
shared libraries public after successful package installa-
tion to avoid applications reading the libraries, which are
being installed and could be subject to an abort.

4.4 Dealing with Legacy Applications
It is highly desirable to be able to run the legacy appli-
cations without any modification while preserving their
semantics. To this end, every update from legacy appli-
cations is treated as part of an atomic propagation group
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in CFS. To be concrete, CFS maintains a system-wide
atomic propagation group, to which every update from
legacy applications belongs. CFS commits the system-
wide atomic propagation group either when background
flusher threads flush all dirty data and metadata pages or
when a sync() is invoked. After the commit, CFS creates
a new system-wide atomic propagation group for han-
dling subsequent updates from legacy applications. Our
current unoptimized fsync() simply performs sync().
We believe, however, this is not a fundamental limita-
tion of our approach; for example, managing fine-grained
(e.g., file-level) atomic propagation group and using group
commit can be leveraged to optimize fsync() of legacy
applications.

4.5 Consistency and Recovery
Despite various system or application failures, CFS guar-
antees application-level crash consistency as long as an
application correctly specifies atomic code regions and a
transactional flash storage guarantees atomic multi-page
writes. Because CFS enforces durability of all and only
the data pages and metadata changes of a committing
atomic code region, it guarantees version consistency [19],
that the metadata version matches the version of the re-
ferred data for each commit operation, and does not in-
terfere with the consistency of other commit operations.
Also, because updates from legacy applications are treated
in the same manner, CFS guarantees file system-level
crash consistency.

There are two types of common failures in CFS. First,
if an application is terminated abnormally without the en-
tire system failing, the OS kernel aborts all uncommitted
atomic propagation groups of the terminating process and
thus rolls back the changes of the application. To maintain
the semantics of legacy applications, CFS never aborts
the system-wide atomic propagation group. Second, if
the entire system fails (e.g., a power outage), CFS relies
on the recovery mechanism of transactional flash storage.
On system reboot, for any incomplete commit at the time
of failure, transactional flash storage will invalidate all
uncommitted changes and thus roll back the storage to
the last successful commit state.

5 Implementation
We implemented CFS in Linux Kernel 3.10.7 based on
ext4, modifying about 5,800 lines of code. To capture
the operational logs at runtime, we inserted 171 primitive
operations and 11 extended operations. We performed
experiments on a machine with a quad-core 2.1 GHz Intel
Xeon E5606 processor and 4 GB memory. We used the
OpenSSD development platform [10] with 8 GB storage
capacity and the SATA 2 interface. We implemented two
FTL schemes on the OpenSSD device: greedy FTL [35],
which is a page-level FTL scheme with a greedy garbage

Application Isolation

SQLite Strong isolation
MariaDB Four isolation levels in SQL standards [38]
Kyoto Cabinet Intentionally no isolation
APT No isolation
vim Strong isolation or no isolation

Table 2: Isolation levels in five real-world applications.

collection policy, and X-FTL [33], which is an extended
greedy FTL, to support atomic multi-page writes.

In comparison to commercial SSDs, OpenSSD and its
FTLs have several limitations: First, its capacity is too
small to be considered as typical enterprise setting. Since
SSDs use log-structured writing scheme, write perfor-
mance under high disk utilization would be slower than
that in low disk utilization. To avoid such performance
anomaly and present fair comparison, we carefully choose
the data set size for evaluation. For MariaDB, database
size was set to 2.5 GB so there were around 70% free
space in the SSD. Next, OpenSSD has a low degree of
internal parallelism due to its architectural limitations.
Due to this low degree of internal parallelism, perfor-
mance degradation caused by a disk cache flush is limited
in OpenSSD, even though it will be significant in high-
end SSDs [32]. Finally, the size of atomic propagation
group is limited by the transaction size of X-FTL. How-
ever, this limitation could be overcome by adopting other
transaction representation schemes (e.g., cyclic represen-
tation [56]) to support unlimited (i.e., limited by only disk
capacity) transaction size.

6 Application Case Studies
In this section, we show how CFS can simplify the com-
plicated update protocols of existing applications. We
choose five real-world applications, which have a variety
of isolation levels from strong isolation (e.g., SQLite) to
no isolation (e.g., KyotoCabinet), shown in Table 2. The
CFS-enabled applications can simply reuse the existing
concurrency control code to achieve the same isolation
level without any additional overheads. As summarized in
Table 3, porting existing applications to CFS is straightfor-
ward. For four applications, in which a file is the granular-
ity of atomicity, we simply specified atomic code regions
using CFS’s native calls. For MariaDB, which uses physi-
ological write-ahead-logging [44] and double-write [1],
we replaced the double-write with CFS-protected atomic
write of database files. Our experience confirms that CFS
can easily replace various existing update protocols: for
five real-world applications, we only needed to modify
317 lines of code out of 3.5 million in total.

SQLite: SQLite [6] is a library based DBMS widely
used in smart devices. It relies on rollback journaling
(RBJ) or write-ahead-logging (WAL) to guarantee crash
consistency [7, 8]. In RBJ mode, the original content of a
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Application Lines of code Mechanisms to guarantee application consistency

Original Modified Original Modified

SQLite 217,313 38 Physical RBJ or WAL Specifying an atomic code region
MariaDB 1,534,980 240 Physiological WAL & double-write Physiological WAL & atomic database write
Kyoto Cabinet 162,606 26 Physical RBJ on a mmap-ed region Specifying an atomic code region
APT 407,642 4 None Specifying an atomic code region
vim 1,179,246 9 rename-based update Specifying an atomic code region

Total 3,501,787 317

NOTE. RBJ (rollback journaling), WAL (write-ahead-logging)

Table 3: Summary of our porting efforts in applying CFS to five real-world applications. CFS requires only 317 lines of modifications
out of 3.5 million lines of ported applications, in order to support the crash consistency.

page is copied to the rollback journal before updating the
page. In the WAL mode, the original content is preserved
in the database and the modified page is appended to a
write-ahead-log file. The change is then later propagated
to the database by periodic checkpointing.

In version 3.8.3 of SQLite, the RBJ and WAL mode
consist of about 14,500 lines of code. With CFS, we were
able to implement the same level of crash consistency
by adding just 38 lines of CFS system calls with journal
mode off.

MariaDB: MariaDB [3] is a popular open source
DBMS, and InnoDB is a popular transactional stor-
age engine used in MariaDB. To preserve crash con-
sistency, InnoDB uses an optimized logging technique
known as ARIES-style physiological write-ahead-logging
(WAL) [44]. Unlike the physical WAL mode in SQLite, in
the physiological WAL of MariaDB, only changes made
to data pages are written to the log device to minimize the
amount of log writes. Since logs are directly applied to the
data pages in-place, crash recovery is possible only if the
data pages are not corrupted. To guarantee atomic update
of data pages, InnoDB uses a redundant page write tech-
nique known as double-write [1]: it first synchronously
writes data pages to the dedicated double-write area, then
re-writes each page to its original location. In each step,
fsync() calls are used to enforce ordering and durability.

CFS-based MariaDB directly updates database files in-
place after writing the physiological log, and does not
require the double-write. CFS can ensure the atomic up-
dates of database files by simply guarding the update code
using the CFS system calls.

Kyoto Cabinet: Kyoto Cabinet [2] is a library-based
key-value store using a memory mapped region to manage
its data. For crash recovery, it writes an unmodified copy
to the dedicated rollback journal area when a data page
becomes dirty. To guarantee that the old copy is flushed
to storage ahead of its new copy, it calls fsync() upon
every write to the rollback journal area.

We were able to achieve the same level of crash consis-
tency by simply turning off the journaling and guarding
the atomic update code using the CFS system calls.

APT Package Manager: For a successful software in-
stallation or update, numerous files can be created, modi-
fied, or deleted, and all these modifications should be car-
ried out atomically. Surprisingly, due to the complexity of
guaranteeing atomic package installation, most package
managers, including the popular APT [23], do not provide
atomic installation, leaving the responsibility to system
administrators. We added an atomic installation feature
to APT by guarding its package operation code using the
CFS system calls.

Vim: When saving an updated file of document-like
data, many applications, including vim [11], use rename-
based update schemes: creating a new file and writing the
updated document to the new file, then calling fsync() on
the file to force it to disk, and finally replacing the original
with the new one. With CFS, vim is modified to update the
file in place and its atomicity is guaranteed by wrapping
the update code with cfs_begin() and cfs_commit().

7 Evaluation
In this section, we present experiments that answer the
following questions:

• Does CFS really guarantee application-level crash
consistency? (§7.1)
• How do legacy update protocols and CFS-based

atomic updates behave differently? (§7.2)
• What are the performance benefits of CFS-based

applications? (§7.3)
• What is the performance impact on legacy applica-

tions that do not use CFS system calls? (§7.4)

Before running each experiment, we ran the workload
independent preconditioning (WIPC) [62], so as to put
the SSD in a steady state. The journal size of ext4 is set
to 128 MB. We reported the average of three runs.

7.1 Consistency over Random Failures
We begin our evaluation of CFS by experimentally veri-
fying whether it preserves application-level crash consis-
tency across sudden power outages. We used MariaDB
because it is the most mature and complicated among our
test applications and it also provides the tool mysqlcheck,
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Figure 4: Results of the microbenchmark. Atomic update of two database files in Figure 1 and 2. The CFS-based version is 16.7×
faster than the original version in ext4 ordered mode. Because the CFS-based version does not rely on a complex update protocol,
disk writes and cache flush operations are reduced by 12.9× and 12.7×, respectively.

0.20 0.21 

0.52 0.50 0.50 0.48 
0.42 

0.21 

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

Pe
rf

or
m

an
ce

 

SQLite 
RBJ 

SQLite 
WAL 

Kyoto  
Cabinet 

MariaDB 

(a) Performance

1.42  

5.89  

2.71  

1.03  
2.06  

1.22  

2.70  

0
1
2
3
4
5
6
7

CFS ext4
RBJ

ext4
WAL

CFS  ext4 CFS  ext4

SQLite
Facebook

MariaDB
LinkBench

Kyoto Cabinet
db_bench

W
rit

e 
Am

pl
ifi

ca
tio

n FS journaling + metadata
App. journaling

SQLite 
Facebook 

MariaDB 
LinkBench 

Kyoto Cabinet 
db_bench 

App. data 

(b) Write amplification

1.00 
3.96 

1.13 1.00 

17.55 

1.00 2.69 

0

4

8

12

16

CFS ext4
RBJ

ext4
WAL

CFS ext4 CFS ext4

SQLite Facebook MariaDB
LinkBench

Kyoto Cabinet
db_bench

Re
la

tiv
e 

Di
sk

 F
lu

sh
 C

ou
nt

 

SQLite 
Facebook 

MariaDB 
LinkBench 

Kyoto Cabinet 
db_bench 

(c) Disk cache flush count

Figure 5: Results of real-world applications. The original versions are run on ext4 in ordered journal mode. Compared to the
CFS-based versions, the original versions relying on complex update protocols show significant overhead.

which checks for database corruption. While we ran
LinkBench [14] on CFS-based MariaDB, we cut the
power of the SSD/X-FTL to stress the full system soft-
ware/hardware stack. After rebooting the test machine, we
checked the consistency of CFS and the database using
fsck and mysqlcheck, respectively. If both checks pass,
then we conclude that CFS preserves application-level
crash consistency. We repeated this test 100 times and
passed the consistency check every time. To check the
coverage of our test, we further analyzed pages recov-
ered by SSD/X-FTL. In 90% of the tests, SSD/X-FTL
recovered 10.3 pages on average. Types of recovered
pages were CFS metadata (2.4%), LinkBench data ta-
ble (95.1%), and InnoDB system table (2.5%). Though it
is limited, this experiment is one practical way to validate
CFS’s correctness. From a theoretical point of view, it is
hard to imagine a case where application consistency is
vulnerable when data pages and their relevant metadata
changes are atomically propagated to the storage.

7.2 Analysis of Atomic Update
To understand the performance characteristics of legacy
update protocols and CFS-based atomic updates, we used
the atomic update of two database files presented in Fig-
ure 1 and 2 as a microbenchmark. The original version
was run on ext4 with three different journaling modes: off,
ordered, and data journal mode.

In Figure 4, we first present performance comparisons,
write amplification, and disk flush count for further anal-
ysis. The performance of each original version is nor-

malized to the CFS-based version. Write amplification is
the ratio of an application’s writing of database files to
the file system’s writing to storage. It is split into three
categories: application data, application journaling (e.g.,
SQLite RBJ), and file system overhead (i.e., metadata and
journaling). We present the normalized disk flush count
for CFS. In the case of CFS, we counted commit requests,
upon which SSD/X-FTL flushes the disk cache. This data
is obtained by instrumenting the microbenchmark and
collecting block traces from the host using blktrace.

As Figure 4a shows, the CFS-based version signifi-
cantly outperforms the original version—7.7× to ext4 off
mode, and 16.7× to ext4 journaling modes—due to re-
duced disk writes and disk cache flush operations. The
write amplification of the original version is surprisingly
high (Figure 4b): 8.6, 19.3, and 22.1 in ext4 off, ordered,
and data journal mode, respectively. Application-level
journaling incurs significant metadata overhead. When
combined with ext4 journaling, the amount of writes is
amplified by 2–3× compared to ext4 off mode. As ex-
pected, the disk flush count of the original version is very
high (Figure 4c). Since ext4 in off mode does not guaran-
tee any consistency, it does not issue any disk cache flush
operations. In the other modes, 12.7× more cache flush
operations were issued. However, due to the low degree
of internal parallelism of OpenSSD [10], performance
is largely determined by the write amplification factors
rather than disk cache flush count.
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7.3 Performance of Real Applications
To see how CFS can improve performance of real-world
applications, we evaluated three performance-sensitive
applications: SQLite, MariaDB, and Kyoto Cabinet, stud-
ied in §6, using six workloads. In Figure 5, we compared
performance, write amplification, and disk flush count of
each application. As we expected, CFS-based applica-
tions significantly improve performance of their original
versions, because they prevent the journaling of journal
(JoJ) anomaly [31] fundamentally without any consis-
tency compromise. In the rest of this section, we present
the performance analysis of each application.

SQLite: We ran two SQL traces [33] collected from
running the RL Benchmark [5] and Facebook applications
on an Android 4.1.2 Jelly Bean SDK under its typical
usage scenario.

The CFS-based version outperforms the original ver-
sions with the rollback journal (RBJ) and write-ahead
logging (WAL) by approximately five-fold and two-fold,
respectively. In RBJ mode, data is always written twice,
one for the RBJ file and another for the database file.
Moreover, since the RBJ file is created and deleted when-
ever a new transaction ends, SQLite in RBJ mode has very
high file system metadata overhead. As a result, the orig-
inal version generates 4.1× more writes and 3.9× more
disk cache flush operations than the CFS-based version.
In WAL mode, the modified data is appended to a WAL
file and then the change is propagated to the database
file by periodical checkpointing. Since the WAL file is
reused by many transactions until the checkpoint occurs,
the metadata overhead of SQLite in WAL mode is far
lower than that of RBJ mode. As a result, the original
version generates about 1.9× more writes and 10% more
disk cache flush operations than the CFS-based version.

MariaDB: We used two popular database benchmarks:
SysBench [9] and LinkBench [14]. SysBench in an OLTP
mode stresses a 2.5 GB database (16 files) with 10 mil-
lion rows for 10 minutes. LinkBench from Facebook is
designed to benchmark performance of database opera-
tions with large-scale social graphs. In LinkBench, we ran
80,000 operations for a 2.5 GB database (18 files) after
a two minute warm-up. In both experiments, MariaDB
was configured to use 100 MB as a buffer pool with eight
concurrent threads, and all under O_DIRECT I/O mode.

The CFS-based MariaDB performs 2× faster than the
original MariaDB. This performance benefit primarily
comes from the reduced number of write operations by
replacing the double-write with CFS’s native interface.
While fsync() is required for each database file update
and every double-write operation in the original MariaDB,
the CFS-based MariaDB requires only one disk flush to
update all database files. Thus, the CFS-based version in-
vokes 17.6× fewer disk flush operations than the original
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Figure 6: Performance comparison between CFS and ext4 for
FIO and FFSB benchmarks

version. However, the performance results in Figure 5a
are little affected by such frequent disk flush operations.
This is because OpenSSD, as discussed in §5, has low
degree of internal parallelism.

To emphasize the criticality of this problem that end-
users will face, we ran LinkBench using a commercial
SSD [30] with high-level of internal parallelism. Since
the SSD does not support transactional interfaces yet, we
used the modified MariaDB that flushes disk cache once
at updating all database files without double-write. Write
amount and cache flush count are the same as those in
CFS and so the performance will be similar to that of the
CFS-based one. For comparison, we ran the MariaDB
only turning off the double-write mode without any other
modifications; so the cache flush count is the same as the
unmodified MariaDB but the write amount is the same as
CFS-based one. The frequent disk cache flush operations
in the latter degrades performance by 78%. It shows that
frequent cache flush caused by ad-hoc update protocols
is a serious performance bottleneck and CFS’s native
interface can be a solution to overcome this performance
degradation problem.

Kyoto Cabinet: We used two workloads for Kyoto
Cabinet. First, we ran Kyoto Cabinet’s kctreetest [2]
with eight concurrent test threads. Each test thread writes
10,000 arbitrary key-value pairs and then reads the keys
10,000 times. Second, we ran LevelDB’s db_bench [28]
with a single test thread. We measured the performance
of 10,000 arbitrary writes of key-value pairs. We con-
figured Kyoto Cabinet in synchronous transaction mode,
guaranteeing consistency.

The CFS-based version significantly outperforms the
original version. In kctreetest, where the read-to-write
ratio is about one, the CFS version is 2.4× faster than
the original version. In the write-intensive db_bench, the
CFS version is 4.8× faster than the original version. The
original version issues sync system calls three times for a
write operation. As a result, it generates 2.2× more writes
and 2.7× more disk cache flush operations.

7.4 Performance of Legacy Applications
To understand the performance of legacy applications,
which were not designed to use CFS, we compare perfor-
mances of ext4 and CFS by running two popular bench-
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marks: Flexible I/O (FIO) benchmark [15] and Flexible
File System Benchmark (FFSB) [59]. We used the FIO
benchmark to simulate a data-heavy workload: it is con-
figured to perform random writes to a 4 GB file with an
8 KB write unit while fsync() is called every 40 KB. We
used the FFSB benchmark to simulate a metadata-heavy
workload: it executes a combination of small file creates,
writes, reads, and appends.

We ran the benchmarks on CFS and the three journal-
ing modes of ext4. As Figure 6 shows, CFS provides
similar performance to ext4 with journaling off while it
guarantees the highest level of crash consistency. Results
of ext4 in the other journaling modes show significant
overhead.

8 Discussion and Future Work
Isolation and Concurrency Control: One may be cu-
rious about the difference between the application-level
crash consistency of CFS and the transaction of transac-
tional file systems [36, 42, 55, 60, 63]. In terms of concur-
rency control, we took an opposite design choice to trans-
actional file systems. Transactional file systems are de-
signed to natively support a DBMS-like ACID transaction,
therefore they support strong isolation (i.e., the highest
isolation level, serializable isolation). Under strong iso-
lation, time-of-check-to-time-of-use (TOCTTOU) races
can be easily prevented. In Table 4, we compare two
representative transactional file systems, Valor [63] and
TxOS [55], with CFS. To support strong isolation, they
took two extreme design decisions: Valor uses pessimistic
coarse-grained locking and TxOS uses optimistic multi-
versioning based on software transactional memory. Sup-
pose that two applications, A1 and A2, create, write, and
read files in a directory D in each transaction. Since the
timestamp of D is updated upon every file creation, Valor
locks D at the expense of concurrent execution of appli-
cations. Though TxOS maintains multiple versions of D
for concurrent execution, due to the conflicting updates
of the timestamp, only one application succeeds and the
other should be re-executed.

In contrast, CFS does not provide isolation or concur-
rency control mechanisms. Applications must implement
required concurrency control using existing synchroniza-
tion primitives, such as file lock and mutex. Also, if there
is a possibility of TOCTTOU races, applications should
prevent the races themselves (for example, by using the
openat() system call [4]). In fact, of the four ACID prop-
erties in DBMS, the isolation property is the most often
relaxed. Popular DBMS implementations [38, 40, 48] pro-
vide at least four isolation levels for a user to choose. In
the above example, if A1 and A2 need an isolated view of
D, they must implement concurrency control themselves.
Otherwise, no concurrency control is required resulting
no overhead. The rationale behind our design is that isola-

CFS Valor [63] TxOS [55]

Atomic update Trans. flash FS meta journal FS full journal
+ logging

Isolation None (app.) Locking Versioning
Performance High Low Mid
Complexity Low (5.8K) Low (4.4K) High (22.6K)

Table 4: Comparison among CFS and recent transactional file
systems. Modified LOCs are in the parentheses on the bottom.
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Figure 7: Multithreaded performance of CFS and Valor.

tion can be best implemented at the application level by
exploiting correctness semantics of the applications.

To verify the cost of isolation, we implemented the es-
sential part of Valor in userspace and ran varying numbers
of threads of the above example. As expected, perfor-
mance of CFS increases as thread count increases and
is constrained by storage bandwidth (Figure 7). How-
ever, due to conservative directory locking, performance
of Valor is constant regardless of the number of threads.
Also, since Valor uses logging, its single-thread perfor-
mance is about 2× slower than CFS.

Running CFS on Non-transactional Storage: An-
other interesting question is whether CFS is applicable
to non-transactional storage devices. The performance
benefit of CFS is two-fold: simplified update protocols
and no redundant writes that rely on transactional flash.
Therefore, if atomic multi-page writes can be emulated on
non-transactional storage, CFS is applicable and we can
expect performance benefits from the simplified update
protocols. Such atomic multi-page writes have long been
studied (e.g., atomic recovery unit in Logical Disk [22]).
The obvious design choice is to implement the atomic
multi-page write using write-ahead-logging at the device
mapper layer [57], which is a higher-level virtual block
device on top of physical block devices in the Linux Ker-
nel. To see its potential performance benefit, we ran the
code in Figure 1 on ext4 data journal mode replacing
cfs_commit() with two fsync calls. Though it is 2.9×
slower than the CFS version, it is still 6.2× faster than the
version using ext4 ordered journal (Figure 4). As future
work, we will design and implement virtual transactional
storage supporting CFS on non-transactional storage de-
vices.

11
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9 Related Work
Crash consistency is critical to operating system design,
and many different approaches have been explored.

File System Consistency: To guarantee system-wide
consistency of file system data structures, a variety of
techniques have been proposed: journaling [39, 64], soft
updates [25], copy-on-write [16, 29, 43, 58], and using a
DBMS as a file system [27, 34, 45, 47, 49]. However, due
to the lack of file system interfaces to support application-
level crash consistency, applications had no choice but
to implement complex update protocols using fsync().
Although several techniques [18, 19, 46] have been pro-
posed to mitigate the performance penalty of fsync(),
they cannot help to simplify these update protocols. A
recent study revealed that widely-deployed applications,
such as PostgreSQL, LevelDB, and HDFS, implemented
their own ad-hoc update protocols, and thus still remained
vulnerable to crashes [54]. We believe CFS is the first
principled and practical way to change this landscape.

Transactional File Systems: There have been steady
efforts to natively provide transactions with ACID prop-
erties to applications via file systems [36, 42, 55, 60, 63].
As we discussed in §8, transactional file systems and ap-
plications relying on them support only strong isolation.
Considering that relaxation of isolation according to appli-
cations’ correctness semantics is a key optimization tech-
nique, it is the critical limitation in practice. Also, com-
plexity and overheads for strong isolation is not negligible;
the most commonly used locking technique limits concur-
rent execution of multiple transactions [42,60,63]; sophis-
ticated multi-versioning still shows non-negligible over-
head (14% in TxOS [55]). Moreover, to achieve atomic
and durable updates, transactional file systems rely solely
on file system journaling [42, 63], or additionally main-
tain another write-ahead log for transactions [55, 60]. As
a result, it was recommended to maintain transactions to
small, mostly metadata operations [41].

Transactional Storage Devices: Several interesting ap-
proaches [20,33,51,53,56] have been proposed to support
the transactional atomicity inside NAND flash storage de-
vices. They exploit the log-structured mapping in FTL
and atomically update the mapping table to achieve trans-
actional atomicity. However, none of them resolve the
false sharing of metadata pages. Thus they cannot support
atomic update of multiple applications due to this lack of
generality. For non-volatile memory storage, MARS [21]
supports application transactions. But, it does not mention
how MARS can be used to support file system consis-
tency.

Atomic Update of Application Data: Recently, sev-
eral techniques [37, 52, 65] have been proposed to protect
application data from failures without supporting isola-

tion like CFS. None of them handle the false sharing of
metadata pages. Thus they cannot support atomic updates
for arbitrary file system operations as CFS does. Failure-
atomic msync() [52] atomically updates the changes of
a mmap-ed file using REDO journaling. However, it only
supports atomic update of a single mmap-ed file, and, due
to the lack of the UNDO mechanism, the dirty data pages
can not be stolen.

10 Conclusion
CFS is the first file system that natively supports
application-level crash consistency on transactional flash
storage. To guarantee crash consistency, applications can
simply specify code regions that need atomic file system
operations instead of implementing complex, slow, and
error-prone update protocols by themselves. CFS guaran-
tees the atomic propagation of data and metadata pages
changed in the code region without relying on journaling
through the use of the atomic multi-page write functional-
ity of SSD/X-FTL. Our application case studies confirm
that a variety of existing applications can be easily ported
to CFS. Our experimental results show that CFS-based
applications are 2–5× faster than the original versions.
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Abstract

This work is dedicated to resolve the Journaling of Jour-
nal Anomaly in Android IO stack. We orchestrate SQLite
and EXT4 filesystem so that SQLite’s file-backed jour-
naling activity can dispense with the expensive filesys-
tem intervention, the journaling, without compromising
the file integrity under unexpected filesystem failure. In
storing the logs, we exploit the direct IO to suppress the
filesystem interference. This work consists of three key
ingredients: (i) Preallocation with Explicit Journaling,
(ii) Header Embedding, and (iii) Group Synchronization.
Preallocation with Explicit Journaling eliminates the
filesystem journaling properly protecting the file meta-
data against the unexpected system crash. We redesign
the SQLite B-tree structure with Header Embedding to
make it direct IO compatible and block IO friendly. With
Group Synch, we minimize the synchronization over-
head of direct IO and make the SQLite operation NAND
Flash friendly. Combining the three technical ingredi-
ents, we develop a new journal mode in SQLite, the
WALDIO. We implement it on the commercially available
smartphone. WALDIO mode achieves 5.1× performance
(insert/sec) against WAL mode which is the fastest jour-
naling mode in SQLite. It yields 2.7× performance (in-
serts/sec) against the LS-MVBT, the fastest SQLite jour-
naling mode known to public. WALDIO mode achieves
7.4× performance (insert/sec) against WAL mode when it
is relieved from the overhead of explicitly synchronizing
individual log-commit operations. WALDIO mode reduces
the IO volume to 1/6 compared against the WAL mode.

1 Introduction

Smart device, e.g. smartphone, smart TV, and smart pad,
firmly position themselves as mainstream computing de-
vice. The mobile DRAM and mobile NAND Flash sales
for smart device account for 30% [41] and 40% [8] of the
world DRAM sales and NAND Flash sales, respectively.

In the smartphone, the storage subsystem is arguably the
main governing factor for performance [23].

Android IO stack suffers from the excessive IO be-
havior. Sending two character message, ’Hi’, through
the text messaging application yields at least 48 KByte
of writes to the storage device. This anomalous am-
plification is due to the uncoordinated interaction be-
tween SQLite and EXT4 filesystem. The broken re-
lationship between the EXT4 filesystem and SQLite
is caused by the fact that SQLite synchronizes each
change in the database file or in rollback journal file
through fsync()/fdatasync() and that each call to
fsync()/fdatasync() triggers the bulky EXT4 jour-
nal module to log the updated metadata. This phe-
nomenon is called Journaling of Journal Anomaly [19].

There have been a number of efforts to mitigate the
Journaling of Journal anomaly [19, 27, 35, 25, 38]. These
works either modify SQLite to reduce the number of
fsync() calls [19, 27] or modify the filesystem to mit-
igate the overhead of a single fsync() [19, 35, 25, 38].
While the overheads may vary, these works still need to
journal the metadata of the SQLite journal file for each
database transaction.

In this work, we dedicate our effort in resolving Jour-
naling of Journal anomaly. We orchestrate EXT4 filesys-
tem and SQLite so that SQLite can dispense with the ex-
pensive filesystem journaling in maintaining its journal
file without compromising the file integrity under the un-
expected system failure. We successfully eliminate the
root cause for Journaling of Journal anomaly, the filesys-
tem journaling. In our optimization effort, SQLite ex-
ploits ”direct IO” in updating its journal file. Our work
consists of three key technical ingredients: (i) Block Pre-
allocation with Explicit Journaling, (ii) Header Embed-
ding and (iii) Group Synch.

• Preallocation with Explicit Journaling: We pre-
allocate the data blocks to the SQLite journal file
and explicitly journal the file metadata. The subse-
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quent direct IO based log-commit operation does
not incur any metadata update and the filesystem
journaling can be eliminated. Via explicit journal-
ing, the SQLite journal file is protected by the un-
derlying filesystem against the unexpected system
failure.

• Header Embedding: We develop Header Embed-
ding and re-design the journal file structure. With
Header Embedding, the fragmented SQLite journal
file structure becomes 4 KByte aligned. The Header
Embedding makes the SQLite journaling operation
direct IO compatible and block IO friendly.

• Group Synchronization: With Group Synchro-
nization (Group Synch in short), we aggregate mul-
tiple logs and to synchronize them as a single unit.
Group synch effectively reduces the overhead of
synchronizing the direct IO based log-commit op-
eration to the storage surface. It significantly im-
proves the performance via aligning the IO with
NAND Flash page size.

Combining all these techniques, we develop a new
SQLite journal mode, the WALDIO. We implement the
WALDIO mode in commercially available smartphone
model (Samsung Galaxy S5). WALDIO mode with per-
sistent direct IO exhibits 5.1× performance (insert/sec)
and 2.7× performance (insert/sec) against WAL mode
which is the fastest stock SQLite journal mode and
LS-MVBT [27] mode which is the fastest SQLite jour-
nal mode known to public, respectively. Smartphone
with non-removable battery can potentially make the di-
rect IO a persistent operation for practical purpose, in
which case WALDIO yields 7.4× performance (insert/sec)
against WAL mode and 4.0× performance (insert/sec)
against LS-MVBT mode, respectively. The improvement
in update and delete follow the similar trend. WALDIO
mode reduces the write volume of SQLite to 1/6 com-
pared to WAL mode.

2 Background

2.1 SQLite
SQLite is a serverless embedded DBMS. SQLite is the
way of maintaining the records in various smartphone
platforms, e.g. Android, iOS, Tizen and etc. and is
widely used as the embedded DBMS for desktop applica-
tions, e.g. Chrome web browser, Firefox, Adobe Acrobat
reader, Skype [40].

SQLite adopts B-tree for its database. The size of the
B-tree node is power of two ranging from 512 Byte to
64 KByte. Default node size is 1024 Byte. Fig. 1 illus-
trates the leaf node structure. The B-tree node consists of
the page header, the index array and the cell array. The

page header resides at the beginning of the node. Next
to the page header, there exists an index array. Each in-
dex points the variable size record. The record, which is
called cell in SQLite, is allocated from the end of the
node. The index array and the records grow in the oppo-
site direction. When a cell is deleted, the space occupied
by the deleted record is marked as dead. The page header
maintains the number of the deleted cells. The deleted
cells are weaved together as a linked list. SQLite allo-
cates a new node when there is no more free space in the
page or the deleted area.

Figure 1: SQLite B-tree node structure, node size = 4
KByte, PH: Page header

Different from the large scale DBMS [39, 29, 10],
SQLite does not have its own storage management mod-
ule. SQLite heavily relies on the underlying filesys-
tem to persistently manage its information and to pro-
tect it against unexpected system failure. SQLite uses
file to maintain the log for crash recovery. For trans-
actional guarantee, SQLite explicitly synchronizes, i.e.
fdatasync(), the log file and the database file after
committing the log or after updating the database, re-
spectively.

SQLite provides six journal modes: DELETE,
TRUNCATE, PERSIST, WAL, MEMORY and OFF. As the
name suggests, MEMORY mode and OFF mode maintain
the journal information in memory and does not main-
tain the journal information, respectively. The remaining
four journal modes can be categorized into two: rollback
journal and rollforward journal. DELETE, TRUNCATE and
PERSIST modes are for rollback and WAL mode is for
rollforward journaling, respectively.

In the rollback journal mode, the SQLite operation,
e.g. INSERT, DELETE and UPDATE, consists of three
phases: (i) logging, (ii) database update and (iii) log re-
set. The three SQLite journal modes in rollback jour-
naling share the first and the second phase. In logging
phase, SQLite updates the journal header and logs the
old database pages (undo log) in the journal file. In
database update phase, the updated database pages are
written to the database file. The objective of the log-reset
phase is to mark that a given transaction has success-
fully completed. In the third phase (log reset), there is
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minor difference among the three SQLite journal modes.
In DELETE mode, SQLite deletes the journal file. In
TRUNCATE mode, SQLite truncates the journal file to 0.
In PERSIST mode, SQLite puts special mark at the be-
ginning of the journal file to denote that the transaction
has completed. While the difference is subtle, it bears the
profound implication on the filesystem journaling over-
head. In DELETE mode, SQLite always needs to create
the new journal file in the logging phase. Creating a file
accompanies the large amount of metadata updates; the
directory block, inode table, block bitmap and etc. All
these metadata need to be journaled by the filesystem
when fsync()/fdatasync() is called.
TRUNCATE mode retains the inode and deallocates

the file blocks. Since TRUNCATE mode does not create
the journal file, it yields smaller amount of metadata
update compared to DELETE mode. As a result, when
fsync()/fdatasync() is called in the logging phase,
it yields smaller amount of EXT4 journal IO compared
to DELETE mode.
PERSIST mode recycles not only the inode but also

the file blocks. In PERSIST mode, the ”logging” up-
dates only the time related fields in the file metadata,
e.g. mtime. Compared against TRUNCATE mode, the
PERSIST mode further reduces the amount of metadata
to be fsync()’ed in the logging phase. Via replacing the
fsync() with fdatasync(), PERSIST mode achieves
more reduction on the amount of metadata journaled in
the ”logging” phase [19].

In WAL mode, SQLite appends the header and a set
of updated database pages to the log file (redo log).
We call this file as WAL file for convenience’s sake.
When the database table is closed or the number of com-
mitted database pages in WAL file reaches the prede-
fined maximum, the committed database pages in WAL
file are checkpointed to the database file. SQLite pro-
vides two options to synchronize the committed logs:
Full Sync and Normal Sync. In Full Sync, SQLite
calls fsync()/fdatasync() after each log-commit to
persistently store the logs. In Normal Sync, SQLite
calls fsync()/fdatasync() after each checkpoint. In
Normal Sync option, the committed logs reside in the
buffer cache till they are either checkpointed by SQLite
or flushed by OS. The logs in the buffer cache are subject
to loss in case of unexpected system failure, e.g. power
failure, or operating system crash [6] and the durability
of a transaction can be compromised. The default option
is Full Sync.

2.2 EXT4 Journaling
EXT4 filesystem provides three journal modes; Journal,
Ordered and Writeback. The Ordered mode is the most
widely used one. In Ordered mode, the filesystem logs

only the updated metadata. When logging the metadata,
the filesystem flushes all the data blocks related to the
updated metadata and then it logs the updated meta-
data. EXT4 journaling module is bulky. An EXT4 jour-
nal transaction consists of a 4 KByte journal header, a set
of 4 KByte journal records each of which corresponds to
the updated filesystem block and a 4 KByte journal com-
mit block. EXT4 journaling module is activated either on
regular basis, e.g. in 5 sec interval, or via an explicit call
to fsync() or fdatasync().

EXT4 journaling module functions efficiently when it
is triggered in sufficiently large interval, e.g. in every 5
sec. With the large interval, the journal descriptor and
the journal commit block pair carries sufficiently large
amount of journal records in a single journal transaction.
The overhead of journal descriptor and journal commit
block is insignificant. SQLite drives the EXT4 filesys-
tem in a way which, we carefully believe, has not been
foreseen before and brings unacceptable inefficiency in
Android IO stack. SQLite calls fdatasync() very fre-
quently, typically after very few number of 4 KByte
writes [19]. In fdatasync(), appending a 4 KByte
block to a file accompanies at least 12 KByte of EXT4
journal writes.

3 Analysis of Journaling of Journal
Anomaly

We overhaul the interaction between the SQLite and
EXT4. SQLite inserts one 100 Byte record into an empty
database table and we examine the block level IO be-
havior of the underlying filesystem. We use open-source
benchmark, Mobibench [31] and MOST [18] to generate
the workload and to analyze the IO trace, respectively.
We examine the IO behavior under five SQLite journal
modes: OFF, WAL, DELETE, TRUNCATE, and PERSIST.

Fig. 2 illustrates the block access patterns of SQL
INSERT operations under five SQLite journaling modes.
We mark SQLite journal related IO’s and SQLite
database related IO’s with ’+’ and ’x’, respectively. Each
’+’ and ’x’ mark is annotated with the respective IO size
in KByte unit. In the X-Y plane, the EXT4 journal re-
gion is marked with the light-grey background. The ’+’
marked IO’s in the light-grey region correspond to the
EXT4 journal writes for the SQLite journal file; Jour-
naling of Journal overhead. We annotate each write in
EXT4 data region with its type; the writes to journal file
can be for journal header (H) or for journal record (P),
respectively.

In OFF mode, SQLite synchronizes only the database
file and does not accompany any SQLite journaling re-
lated IO (Fig. 2(a)). EXT4 filesystem writes two data
blocks for database file and journals the respective meta-
data. The total 3 blocks are written in EXT4 journal re-
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Figure 2: SQLite Block IO pattern (H: Journal Header or WAL Frame Header, P: DB page)

gion: one page of journal descriptor, one page for up-
dated metadata and one page of journal commit mark.

In WAL mode (Fig. 2(b)), SQLite writes the redo
log to WAL file and synchronizes the WAL file via
fdatasync(). As a result of calling fdatasync(),
EXT4 journals the updated metadata of the journal file,
separately synchronizing the journal descriptor and jour-
nal commit mark. Since the committed database pages
are checkpointed to the database file in batched manner,
we do not observe any IO on the database file in Fig. 2(b).

Fig. 2(c), Fig. 2(d), and Fig. 2(e) illustrate block
access patterns for rollback journal modes; DELETE,
TRUNCATE and PERSIST, respectively. The rollback jour-
nal modes synchronize both the rollback journal file and
the database file after they are updated. Compared to WAL
mode, the filesystem journaling overhead doubles. In all
these rollback journal modes (Fig. 2(c), Fig. 2(d), and
Fig. 2(e)), the first and the second fsync() are for syn-
chronizing the rollback journal file (phase 1: logging).
The third fsync() is for synchronizing the updated
database file (phase 2: update the database). PERSIST
mode carries an additional fsync() to persistently store
the reset mark in the log file (phase 3: log-reset).

The Journaling of Journal overhead for DELETE,
TRUNCATE and PERSIST mode corresponds to 44 KByte,
36 KByte and 40 KByte, respectively. These differences
are due to the way in which the SQLite journal mode re-
sets the log file. The WAL mode yields the smallest JOJ
overhead, 20 KByte.

Table 1 summarizes the traffic volume for five SQLite
journal modes. In all SQLite journal modes, the filesys-
tem intervention is overly excessive; the filesystem jour-

IO type (Write, KB)
Mode Data Journal JOJ Total
OFF 8 12 0 20
WAL 8 20 20 28
DELETE 24 56 44 80
TRUNCATE 24 48 36 72
PERSIST 28 52 40 80

Table 1: IO Volume in inserting 100 Byte (DATA: EXT4
Data region, Journal: EXT4 Journal region, JOJ: EXT4
journal writes for SQLite journal file, and Total)

naling activity accounts for more than 50% of the IO.
While WAL mode yields the smallest amount of total IO,
it is still subject to extreme IO inefficiency. In WAL, the
filesystem journaling accounts for 70% of the entire IO
traffic (20 KByte out of 28 KByte). WAL mode yields the
smallest IO overhead and in the mean time, bears the
largest room for improvement when the filesystem jour-
naling overhead is eliminated.

4 Direct IO and SQLite

4.1 Direct IO
Direct IO is a filesystem feature which allows the user to
read and to write the data directly from and to the storage
device. In direct IO, the data block is immediately written
to the storage device bypassing the page cache. Direct IO
based write, DIO write for short, returns when the data
blocks reach the writeback cache of the storage device.
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DBMS [13, 3] and Virtual Machine Monitor [28, 33] use
direct IO to manage the storage device with minimum
file system intervention.

SQLite maintains the logs in a journal file. It
uses buffered write in storing the log to the jour-
nal file and explicitly synchronizes the journal file via
fsync()/fdatasync() for durability guarantee. Flush-
ing the logs in the buffer cache can accompany the ex-
pensive filesystem journaling. If SQLite uses direct IO to
write the log to the journal file, it can save the filesystem
from expensive filesystem journaling activity.

4.2 Writing a Block to the Storage
We examine the three ways to write a block to the storage
device: (i) write() followed by fsync(), (ii) write()
followed by fdatasync() and (iii) DIO write().
These approaches differ in a way in which the filesys-
tem handles the updated metadata. In fsync(), EXT4
filesystem journals the updated metadata for the respec-
tive file. In fdatasync(), EXT4 filesystem journals the
updated metadata only when the file block is allocated
(or deallocated). DIO write by itself does not entail any
filesystem journaling. We can categorize the write opera-
tions into two types: allocating write and non-allocating
write. Allocating write is a write system call which re-
quires an allocation of a new filesystem block. Allocat-
ing write updates the various metadata, e.g. the block
bitmap, inode table, intermediate node block and etc.
Non-allocating write does not entail the allocation of a
file block. It updates only access time related fields and
possibly the initialized flag in the metadata.

 

write()

write()

fsync()
fdatasync()

(a) Allocating Write

 

write()write()

fsync() fdsync()

write()

(b) Non-Allocating Write

Figure 3: Writing a block with fsync(), fdatasync()
and direct IO

Fig. 3(a) and Fig. 3(b) schematically illustrate the IO
paths of three different ways of writing 4 KByte to the
storage device, for allocating and non-allocating write,
respectively. For both allocating and non-allocating
write, fsync() journals the updated metadata. In allo-
cating write, fdatasync() exhibits the identical behav-
ior as fsync(). In non-allocating write, fdatasync()

does not journal any metadata. For both allocating and
non-allocating write, direct IO does not accompany the
filesystem journaling. In direct IO, the updated metadata,
if there is any, can be subject to loss.

SQLite provides two options to synchronize the
database (or journal) file: via fsync() and via
fdatasync(). Android platform legitimately uses
fdatasync() in SQLite to reduce the filesystem jour-
naling overhead. Overhauling the IO behavior, we find
an important caveat to resolve the Journaling of Jour-
nal anomaly, the EXT4 journaling overhead. In non-
allocating write, ”DIO write” yields the same behavior,
though not precisely identical, with the ”buffered write
followed by fdatasync()” from the filesystem journal-
ing’s point of view; in delivering the data blocks to the
storage, they both are free from the filesystem journal-
ing.

5 Eliminating Filesystem Journaling in
Android IO

We propose to use direct IO based write operation for
committing the logs to the SQLite journal file so that the
logs are directly written to the storage and the activity
of committing the logs does not accompany any updates
in the page cache entries; neither the data block nor the
metadata. With this approach, the synchronization activ-
ity of SQLite, e.g. fdatasync(), does not trigger any
filesystem journaling related IO. Our scheme consists of
three key technical ingredients: (i) Preallocation with Ex-
plicit Journaling, (ii) Header Embedding, and (iii) Group
Synch. Combining all these, we develop a new SQLite
journal mode, WALDIO.

5.1 Preallocation with Explicit Journaling
The prime concern is to eliminate the interference of the
EXT4 journaling in the log-commit operation and at the
same time to protect the metadata of the journal file. We
develop Preallocation with Explicit Journaling, where
(i) we preallocate a certain amount of initialized blocks
for a WAL file and (ii) journal the metadata for the cre-
ated WAL file via explicitly calling fdatasync(). In
this approach, we do rely on filesystem journaling to pro-
tect the metadata of the SQLite journal file, but suppress
the every log-commit operation to accompany filesystem
journaling. Fig. 4 schematically illustrates the detailed
process; (i) WAL file is preallocated with the initialized
blocks (labeled as 1), (ii) the metadata of the WAL file
is synchronized to disk via fdatasync() (labeled as 2),
and (iii) the logs are committed to WAL file via direct IO
(labeled as 3, 4 and 5).

EXT4 filesystem maintains an initialized flag for
each data block. A file block is said to be initialized when
this flag is set. Any attempts to read the uninitialized
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fdatasync() 

Figure 4: Preallocation with Explicit Journaling, 1: Preal-
locate the initialized blocks, 2: Journal the updated meta-
data, fdatasync(), 3, 4, and 5: Commit the logs with
DIO

block are returned all 0’s. The primary reason for this
mechanism is to avoid exposing the stale data.

Being pre-allocated with the file blocks, the direct
IO based log-commit operation becomes non-allocating
write, where both the page cache entries and the meta-
data of the WAL file remain intact. The log-commit op-
eration in WALDIO mode leaves no room for filesystem
journaling module to interfere with. WALDIO mode saves
the SQLite from the expensive filesystem journaling.
When the WAL file is created or extended, WALDIO calls
fdatasync() to synchronize the file metadata. With Ex-
plicit journaling, the WAL file becomes robust against
the system failure.

In Preallocation, a special care needs to be taken to ini-
tialize the allocated blocks. Otherwise, the logs written
in WALDIO mode may not be readable after unexpected
system failure. Let us explain why. The fallocate()

system call of EXT4 returns the uninitialized blocks.
They are initialized when they are written for the first
time. When a block is written with direct IO, the filesys-
tem sets the respective initialized flag if it has not
been initialized yet. However, since DIO write does not
accompany the filesystem journaling, the updated flag
is subject to loss under the unexpected system failure.
While the dirty page cache entries and the updated meta-
data are synchronized to the storage in every few sec-
onds, e.g. 5 sec, the contents in the writeback cache of
the storage device are written to the storage surface in
much shorter interval, e.g. in typically a few msec. Under
the unexpected system failure, therefore, the logs written
with direct IO may become unreadable even when they
actually exist in the storage due to the unavailability of
the initialized flag.

We propose three approaches to initialize the allo-
cated blocks and subsequently to guard the stale con-
tents in the allocated blocks against the exposure. The
first and the easiest approach is to zero-fill the allo-

cated blocks prior to use. In the second and the third
approaches, we exploit the discard (or trim) com-
mand in the eMMC storage [1] to guard the stale content
against the exposure. The discard command takes the
list of the logical block addresses as an input and asks the
eMMC storage to remove the mapping table entries for
the respective logical blocks. In the second approach, we
mount the filesystem with discard option and modify
fallocate() to allocate the blocks with initialized

flag set. When a filesystem uses discard mount op-
tion, it issues a discard command when the file blocks
are deallocated. To force the fallocate() to return the
blocks with initialized flags set, we port the exist-
ing NO HIDE STALE patch [34] to Linux source for Sam-
sung Galaxy S5. In the third approach, we modify the
fallocate() to allocate the blocks with initialized

flag set and to discard the allocated blocks. We embed
the discard command to the NO HIDE STALE patch [34]
developed for the second approach and we develop a
new flag NO HIDE STALE DISCARD for fallocate().
The main difference between the second and the third
approach is the time when the blocks are unmapped. In
the second and third approaches, the file blocks are un-
mapped when they are deallocated and when they are al-
located, respectively. In the second approach, the filesys-
tem issues discard command for all deallocated blocks.
Meanwhile, in the third approach, the filesystem discards
only the file blocks allocated to WAL file. The third ap-
proach yields the smaller overhead than the second one.

Each of these three approaches has pros and cons.
The zero-fill operation accompanies IO overhead. Us-
ing discard mount option may slow down the filesys-
tem [37]. Many recent smartphone devices including
our test platform Galaxy S5 mount the filesystem with
discard option. We implement all these schemes in our
test platform. Via implementing all three schemes, one
can choose the right scheme to initialize the allocated
blocks subject to the available features of the underlying
filesystem and storage device.

There exists an important implementation specific is-
sue which deserves further attention. The discard com-
mand is designed to make the garbage collection more
efficient [21]. It is not designed to hide the stale content.
The eMMC standard [1] does not define what needs to
be read when the discarded blocks are accessed. Some
eMMC products, e.g. the one used by Samsung Galaxy
S5 (Part No. MBC4GC), return all 0’s when the dis-
carded block is accessed. To use the discard command
to hide the stale content, one needs to assure that the
given eMMC product does not leak the stale content,
i.e. is guaranteed to return all 0’s or all 1’s when the dis-
carded block is accessed. Otherwise, one needs to take
the resort to use trim command even though it is sub-
ject to larger overhead. The trim command is defined
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to return all 0’s or all 1’s when the trimmed block is
accessed [1]. On the same token, one also needs to as-
sure that the given eMMC product does not ignore the
discard command from the host in any circumstances,
e.g. when the eMMC device is busy for performing back-
ground garbage collection.

5.2 Header Embedding
The direct IO operation fails when the IO size is not sec-
tor aligned. In SQLite, neither the redo log nor the undo
log structures are sector aligned. Full fledged DBMS to
align its database and cache organization for efficient
block device interaction [10, 29, 39]. We reorganize the
structure of SQLite WAL file and the database page to in-
tegrate direct IO into SQLite. Figures in Fig. 5 illustrate
the redo and undo log structures of SQLite, respectively.
B-tree node size is 4 KByte. The undo log of SQLite con-
sists of 4 Byte prefix (page number), the 4 KByte journal
record, and 4 Byte checksum (Fig. 5(a)). Each of these
components is separately written with write(). In WAL
file, a redo log consists of 24 Byte frame header and 4
KByte WAL frame (Fig. 5(b)). They are written sepa-
rately as well. This fragmented data structure of SQLite
bars the use of direct IO in managing its journal file.

(a) rollback journal file

(b) WAL file

Figure 5: Journal file structure of SQLite, node size: 4
KByte
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We examine the DIO write performance under varying
IO size from 512 Byte to 16 KByte (Fig. 6). The sequen-
tial write performance of Samsung Galaxy S5 reaches
over 70 MByte/sec. With 512 Byte IO size, the sequen-
tial write is subject to extreme inefficiency yielding mere
2 MByte/sec. This is because the IO size is not aligned
with the block size. We observe larger degree of perfor-
mance improvement when the IO size is aligned with
the filesystem block size, 4 KByte, or NAND Flash page
size, 8 KByte, respectively. This trend persists beyond 16
KByte IO size. This simple experiment provides an im-
portant direction for our optimization effort; Align the IO
with the filesystem block size and with the NAND Flash
page size.

We develop Header Embedding to align the SQLite
IO with the filesystem block size. Instead of maintaining
the header outside the log record, we embed the WAL
header and the frame header into the header page and
the WAL frame, respectively. In WALDIO, we set the B-
tree node size to 4 KByte. WAL header is placed at the
free space between database header and schema table in
the root node of database B-tree. We harbor the 24 Byte
frame header at the end of WAL-frame. Fig. 7 illustrates
the log structure with header embedding. Embedding the
frame header into the B-tree node, the available space
in the B-tree node decreases. We physically examine the
free spaces in B-tree nodes of SQLite. With few excep-
tions, there exists sufficient room to harbor 24 Byte field.
Reserving 24 Byte for Header in the node, therefore, will
not increase the number of nodes in the B-tree.

Figure 7: SQLite database page structure with Header
Embedding (PH: Page Header, FH: Frame Header)

We examine the efficiency of the different aligning
schemes for redo log structure. In page padding, SQLite
pads the WAL header and WAL frame header to make
them 4 KByte aligned. We examine four schemes: WAL
(the original one), WAL with page padding, WALDIO
with page padding, and WALDIO with header embed-
ding. We perform 1,000 INSERT operations and exam-
ine the total IO volume. Fig. 8 illustrates the result.
In WAL mode, total 29 MByte is written. Among 29.0
MByte, file data and EXT4 journal writes account for
12.3 MByte and 16.7 MByte, respectively. The size of
WAL log record is 4120 Byte (24 Byte header and 4096
Byte frame). In committing 1,000 log entries of 4120
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Byte each, total 12.3 MByte is written to filesystem data
region. The fragmented log structure puts unnecessary
stress on the storage device. Via properly aligning the log
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Figure 8: Total IO volume: 1000 INSERT in SQLite (PP:
page pading, HE: header embedding)

structure, we reduce the IO volume to EXT4 Data region
to 1/3 from 12.3 MByte to 4.4 MByte. With simple mod-
ification on the log structure accompanied by direct IO,
the total IO volume decreases to 1/6 from 29.0 MByte to
4.6 MByte. The performance result will be dealt with in
section 6.3.

5.3 Group Synchronization
Each layer in the IO stack, e.g. DBMS, filesystem, and
block device layer, aggregates the IO’s on its own way to
remove the IO bottleneck [9, 11, 15, 5]. While WALDIO

mode is successful in eliminating the filesystem journal-
ing overhead, the individual log-commit operations are
separately issued to the storage device. This nature of
direct IO bars the underlying Operating System from ag-
gregating and coalescing the IO’s. If the logs are imme-
diately synchronized to the storage surface after they are
written with direct IO, the storage behavior is subject to
further inefficiency since the storage device loses the op-
portunity to exploit its writeback cache. In this situation,
the IO size plays a rather critical role in the storage per-
formance. When the IO size is not properly aligned with
the NAND Flash page size, it may cause read-modify-
write problem [4, 24], proper handling of which requires
complicated firmware technique such as subpage map-
ping [22].

We develop Group Synchronization (Group Synch) to
mitigate the synchronization overhead of the direct IO
based log-commit operation. In Group Synch, we em-
ploy frame buffer and grouping interval. All log records
which have been written during a grouping interval
are maintained at the frame buffer. When the group-

(a) three write()’s with fdatasync()

(b) three write()’s with direct IO

(c) three write()’s in Group Synch

Figure 9: Writing three blocks to storage: fdatasync(),
direct IO vs. Group Synch

ing interval expires or when the frame buffer is full,
SQLite flushes the frame buffer with DIO write. The
Group Synch shares much of its idea with the prior arts;
Group Commit from DBMS [9, 11] and Anticipatory
disk scheduling from Operating System [17].

Figures in Fig. 9 schematically illustrates the IO be-
havior in writing three blocks to the storage. In Fig. 9(a),
each of three blocks is written with separate write()’s
(buffered IO) and then fdatasync() is called to syn-
chronize them. We observe two sets of writes: dark gray
ones and the light gray ones. The dark gray blocks cor-
respond to data blocks. They are flushed to the disk with
a single IO request. The set of light gray blocks corre-
spond to EXT4 journal writes. In Fig. 9(b), each of three
blocks is separately written via direct IO. Each of the IO
requests is synchronously delivered to disk, yielding sig-
nificant overhead. Fig. 9(c) illustrates the IO behavior in
the Group Synch. The IO requests are first accumulated
at the frame buffer and then flushed to the disk as a single
DIO write. With Group Synch, the three blocks are writ-
ten with single IO without accompanying the filesystem
journaling. The benefit of Group Synch is twofold: re-
duce the the overhead for synchronizing the DIO write’s
and align the IO with NAND Flash page size.

Group synch provides weaker transactional guaran-
tee than the other SQLite journaling modes since larger
number of logs may get lost under system failure. How-
ever, we carefully conjecture that the difference may be
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less than significant if the frame buffer size is properly
set. In our limited empirical study, we find that a single
SQLite transactions updates a number of database tables
and indexes. For example, in contact manager applica-
tion of Android, inserting an address book entry yields
more than 8 logs to to the WAL file. We currently set the
frame buffer size to four pages (16 KByte).

5.4 Durability
WALDIO should use Full Sync option to make the re-
sult of log-commit operation durable. When the WALDIO
mode is used with Full Sync option, the log commit
operation consists of two phases: (i) writing a log to the
storage via DIO write and (ii) flush the writeback cache
of the storage device via calling fdatasync() (Fig. 10).
For better performance, we exploit Reliable Write

command of eMMC standard [1] and implement persis-
tent direct IO, PDIO. With PDIO write, WALDIO mode
writes the logs directly to the storage surface bypassing
the writeback cache of the Flash storage (Fig. 10). The
blocks written with persistent direct IO are guaranteed
to survive the power crash. With PDIO write, we can
dispense with Full Sync option since each log-commit
becomes immediately durable.

HOST storage(eMMC) 

buffer cache  writeback cache NAND Flash 

buffered  

write() 

vola�le durable 

fdsync() 

Persistent DIO write()  

DIO write() 

DIO write() 

WAL-FS
 

 WALDIO-PD 

WALDIO-NS 

 

fdsync() 

WALDIO-FS

Figure 10: Making the log-commit durable: WAL with
Full Sync, WALDIO with Full Sync, WALDIO with
PDIO, WALDIO with Normal Sync

Non-removable battery in the smartphone can poten-
tially make the DIO write a persistent one. Different from
the logs in the buffer cache (Fig. 10), the logs in the
writeback cache of the storage can survive the warm fail-
ure, e.g. Operating System crash [6] or kernel-panic [14].
It is very unlikely that the software bugs power off the
device unexpectedly; Lue et.al. [35] reported that only
0.05% of AOSP software defect reports are related to the
unexpected power failure. Also, as long as the power sup-
ply leaves some slack for eMMC to flush its writeback
cache (typically a few msec), the content in the writeback
cache will eventually be written to the storage surface.
Given the rarity of the occasion, some application devel-
opers may prefer trading the perfect durability guarantee

with the almost perfect durability guarantee with perfor-
mance boost. For the device with non-removable battery,
we carefully argue that WALDIO makes the Normal Sync

option as one of the feasible choices for transactional
guarantee for practical purpose.

6 Experiment

We examine the performance of WALDIO mode. We com-
pare the behavior of the six SQLite journal modes:
DELETE, TRUNCATE, PERSIST, WAL, LS-MVBT [27] and
WALDIO. We implement these techniques in the recent
smartphone model (Galaxy S5, Samsung, Android 4.4.2
(KitKat), Qualcomm MSM8974 Quadcore 2.5 GHz, 2
GByte DRAM, 32 GByte eMMC with 8 Kbyte page).
We examine the performance of SQLite operations;
INSERT, UPDATE and DELETE. We use Mobibench [31]
and MOST [18] to generate the workload and to analyze
the trace, respectively. We use NO HIDE STALE DISCARD

flag in Preallocation.

6.1 IO Access Pattern
We first examine the IO access pattern of the newly
proposed journal mode, WALDIO. With WALDIO mode,
we insert a single 100 Byte record. Fig. 11 illustrates
the result. In WALDIO, INSERT operation generates sin-
gle page write (Fig. 11(a)). Be reminded that a single
INSERT of 100 Byte record yields 80 KByte page writes
and 28 KByte page writes in DELETE mode and WAL

mode, respectively (Table 1). For illustrative purpose, we
also show the IO accesses when the journal file is cre-
ated (Fig. 11(b)) and when the journal file is extended
(Fig. 11(c)), respectively.
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Figure 12: IO trace for ten INSERTs: WAL mode vs.
WALDIO mode (Full Sync option)

To visualize the improvement on IO volume, we exam-
ine the IO trace for 10 INSERT operations in WAL mode
(Fig. 12(a)) and in WALDIO mode (Fig. 12(b)), respec-
tively. In this figure, the center and the radius of each
circle denote the start address and the size of an IO, re-
spectively. The circle radius is linearly proportional to
the actual IO size. In WAL mode, each log-commit writes
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Figure 11: IO accesses in WALDIO mode (P+H: Header embedding WAL Frame, 3P: three DB Pages)

8 KByte to the SQLite journal file and 20 KByte to
EXT4 journal region. Due to the fragmented log struc-
ture, SQLite writes two 4 KByte blocks in committing
the 4120 Byte log (24 Byte header and 4096 Byte page).
In WALDIO, each log-commit yields 4 KByte IO since the
frame header is embedded within the B-tree node. It does
not entail any EXT4 journal IO since the log is com-
mitted with direct IO. An INSERT operation writes 28
KByte and 4 KByte to the storage in WAL and WALDIO,
respectively. WALDIO successfully eliminates the filesys-
tem journaling overhead and brings significant reduction
on the total IO volume written to the storage.

6.2 Performance of Header Embedding
We examine the performance of four different page
aligning schemes in WALDIO: sector padding, 4 KByte
page padding, 8 KByte page padding and Header Em-
bedding. We include the SQLite performance in WAL

mode as the baseline. Fig. 13 illustrates the result. When
the WAL file is sector padded (sector aligned), employ-
ing direct IO barely brings any performance gain against
the WAL mode. When IO size is not aligned with the
filesystem block size, the overhead of synchronously
writing each data block offsets the benefit of eliminating
the filesystem journaling overhead. When the WAL file
structure is aligned with block size (4 KByte), the per-
formance increases by 60% against the WAL. When the
WAL file structure is aligned with NAND Flash page size
(8 KByte), the SQLite performance increases by 100%
against WAL. Via embedding the frame header informa-
tion into the WAL frame, the SQLite yields 2.1× per-
formance against WAL mode from 587 insert/sec to 1239
insert/sec.

6.3 WALDIO, the performance
We discuss the performance impact of WALDIO journal
mode against existing SQLite journal modes: DELETE,
TRUNCATE, PERSIST, WAL and LS-MVBT [27]. In WALDIO,
we examine the performance under three synchroniza-
tion options: (i) Full Sync, WALDIO-FS, (ii) Persis-
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Figure 13: Page Aligning Schemes: Sector aligning, 4
KByte aligning, 8 KByte Aligning vs. Header Embed-
ding (Full Sync)

tent Direct IO, WALDIO-PD and (iii) Normal Sync,
WALDIO-NS. We examine the WALDIO performance with
and without Group Synch. In Group Synch, the frame
buffer size is set to 16 KByte with 2 msec grouping in-
terval.

We perform each of INSERT, UPDATE and DELETE

operations 1,000 times and measure the performance.
We put everything together in Fig. 14. The results in
Fig. 14 are categorized into five groups: stock SQLite
journal modes, LS-MVBT, WALDIO with Full Sync op-
tion, WALDIO with persistent direct IO and WALDIO with
Normal Sync option. In stock SQLite journal modes,
WAL mode yields the best performance (587 insert/sec).
With LS-MVBT, SQLite yields 1083 insert/sec perfor-
mance. With LS-MVBT, the SQLite performance in-
creases by 80% from the WAL mode. In all these jour-
nals modes, SQLite issues fdatasync() after every log-
commit.

In Full Sync option, WALDIO achieves 1219 in-
sert/sec in the absence of Group Sync. With Group Synch
with 16 KByte frame buffer, WALDIO performance leaps
to 2729 insert/sec. It corresponds to 4.6× performance
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Figure 14: Performance Summary, NoGS: without Group Synch, GS4: Group Sync size = 4 pages

against stock WAL mode and 2.5× performance against
LS-MVBT, respectively. Group Sync improves the perfor-
mance by 120% from 1219 insert/sec to 2729 insert/sec.
Group Synch is successful in eliminating the overhead of
guaranteeing the durability.

With persistent DIO, WALDIO performance increases
by 10% against WALDIO with Full Sync option. By-
passing the writeback cache at the storage device brings
significant improvement. The performance under persis-
tent DIO corresponds to 5.1 × performance against stock
WAL mode and 2.8× performance against LS-MVBT, re-
spectively.

In Normal Sync, the individual DIO based log-
commit operations are relieved from the burden of call-
ing the expensive fdatasync(). With Group Synch
with 16 KByte frame buffer, WALDIO achieves 4332 in-
sert/sec. The performance increases by more than 35%
against the case where individual log-commits are per-
sistently written to the storage surface; from 2967 in-
sert/sec (WALDIO-PD) to 4332 insert/sec (WALDIO-NS).
The WALDIO exhibits dramatic 7.4× and 4.0× perfor-
mance compared against the WAL and the LS-MVBT, re-
spectively. DELETE and UPDATE operations exhibit the
similar performance gain with the INSERT operation. Ta-
ble 2 illustrates the performance numbers for individual
modes.

6.4 IO Volume
We examine the total IO volume for performing
1,000 SQLite operations, insert, update and delete.
Fig. 15 illustrates the result. We limit our discussion to
insert operation due to the space limit. In rollback jour-
nal modes (DELETE, TRUNCATE and PERSIST), as much
as total 90 MByte is written to disk and 60% of which are
for EXT4 journal writes. Via using WAL mode, the total
page writes decreases to 29 MByte. LS-MVBT further de-

Journal Mode INS UPD DEL
DELETE 98 97 96
TRUNCATE 99 98 97
PERSIST 213 212 203
WAL 587 556 596
LS-MVBT 1083 1161 1191
WALDIO-FS + NoGS 1219 1254 1197
WALDIO-FS + GS 2729 2867 2546
WALDIO-PD + NoGS 1290 1380 1224
WALDIO-PD + GS 2967 3030 2839
WALDIO-NS + NoGS 2907 2973 2930
WALDIO-NS + GS 4332 4395 4507

Table 2: SQLite performance (WALDIO-FS: WALDIO

with Full Sync, WALDIO-PD: WALDIO with Persistent
Direct IO, WALDIO-NS: WALDIO with Normal Sync,
NoGS: Without Group Synch, GS: Group Synch with 4
pages)
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creases the write volume to 7 MByte. In WALDIO, SQLite
generates 4.6 MByte in executing an INSERT operation
1000 times. Compared to WAL mode, the total volume de-
creases to 1/6 from 29 MByte to 4.6 MByte.

Limited erase/write cycle of the NAND Flash storage
is one of the main governing factors for the lifespan and
the performance of the smartphone. The SQLite is re-
sponsible for dominant fraction of entire IO volume writ-
ten to the storage. Reducing the IO volume to 1/6, the
WALDIO technique can potentially allow the smartphone
vendors to adopt the NAND Flash device with smaller
Erase/Write cycle, e.g. TLC NAND Flash or NAND de-
vice with finer process technology, as the storage for their
smartphone.

7 Related Work

While not everybody entirely agrees [35], the perfor-
mance of the smartphone is governed by the performance
of the storage device, not by the performance of the air-
links [23]. In Android, it is reported that more than 70%
page writes generated by the smartphone application are
for filesystem journal and dominant fraction of which are
generated by SQLite DBMS [32]. The excessive filesys-
tem journaling activity is due to the fact that the SQLite
maintains a separate rollback journal file and synchro-
nizes the every update in the rollback journal file via
fsync() [19]. Tizen [16] also suffers from JOJ anomaly
[26].

Jeong et. al. applied various IO optimization tech-
niques, e.g. WAL mode, F2FS [30], external journal-
ing and polling based IO and achieved 300% perfor-
mance improvement against stock Android IO stack with
DELETE journal mode [19]. Shen et. al. modified the
EXT4 journal module and achieved 7% performance im-
provement against WAL mode [38]. Kim et. al. proposed
to use LS-MVBT (Multiversion B-tree with Lazy Split) in-
stead of B-tree in SQLite database [27]. LS-MVBT weaves
the crash recovery information into the database file so
that SQLite does not have to maintain separate file for
crash recovery. LS-MVBT brings 80% performance gain
against WAL mode in SQLite.

There are a number of benchmark programs for An-
droid IO performance [12, 18, 2]. Kim et. al. [25] pro-
posed to maintain the EXT4 journal region at NVRAM
and to exploit its byte-granularity accessibility. Lue
et. al. proposed to maintain the SQLite rollback jour-
nal file at DRAM [35] in the smartphone. Chidambaram
et. al. proposed OPTFS to reduce the fsync() overhead
involved in EXT4 journaling [7]. Kang et. al. proposed a
transactional API for block device so that filesystem op-
erations are free from the journaling overhead [20]. Pier-
nas et. al. proposed to maintain the data and the metadata
on the different blocks and maintains only single copy of

metadata [36].

8 Conclusion

In this work, we successfully resolve the Journaling of
Journal Anomaly in Android IO stack. We remove the
root cause for excessive IO behavior in Android IO stack:
the filesystem journaling. We develop a novel SQLite
journal mode, WALDIO. In WALDIO mode, SQLite uses
direct IO for log-commit operation so that it does not en-
tail the expensive filesystem journaling. We develop Pre-
allocation with Explicit Journaling, Header Embedding
and Group Synch to enable the SQLite to exploit the di-
rect IO semantics without compromising the filesystem
integrity optimizing its performance for NAND Flash
storage. The proposed features are implemented on the
commercially available smartphone. WALDIO achieves as
much as 7.4× increase against WAL mode and as much
as 4.0× increase against LS-MVBT, respectively. With
WALDIO mode, SQLite generates only 1/6 of the IO vol-
ume generated by SQLite in WAL mode.

Despite the dramatic improvement, WALDIO mode
does not cost any major changes on the existing interface
definitions of SQLite or of the filesystem, nor the intro-
duction of the new ones. It is achieved by the minimal set
of right modifications.

The contribution of this work should be viewed not
only from the performance perspective but also from the
NAND Flash endurance point of view. We carefully be-
lieve that via decreasing the IO volume generated by
SQLite to 1/6, WALDIO can make the TLC NAND Flash
not an infeasible choice for storage device in Android
platform. Adoption of TLC NAND Flash in Android de-
vice can significantly reduce the cost of the smartphone
and can make it available to wider community in the
world.
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Abstract
Most recent storage devices, such as NAND flash-based
solid state drives (SSDs), provide low access latency and
high degree of parallelism. However, conventional file
systems, which are designed for slow hard disk drives,
often encounter severe scalability bottlenecks in exploit-
ing the advances of these fast storage devices on many-
core architectures. To scale file systems to many cores,
we propose SpanFS, a novel file system which consists
of a collection of micro file system services called do-
mains. SpanFS distributes files and directories among
the domains, provides a global file system view on top of
the domains and maintains consistency in case of system
crashes.

SpanFS is implemented based on the Ext4 file sys-
tem. Experimental results evaluating SpanFS against
Ext4 on a modern PCI-E SSD show that SpanFS scales
much better than Ext4 on a 32-core machine. In micro-
benchmarks SpanFS outperforms Ext4 by up to 1226%.
In application-level benchmarks SpanFS improves the
performance by up to 73% relative to Ext4.

1 Introduction
Compared to hard disk drives (HDDs), SSDs provide the
opportunities to enable high parallelism on many-core
processors [9, 15, 29]. However, the advances achieved
in hardware performance have posed challenges to tradi-
tional software [9, 27]. Especially, the poor scalability
of file systems on many-core often underutilizes the high
performance of SSDs [27].

Almost all existing journaling file systems maintain
consistency through a centralized journaling design. In
this paper we focus on the scalability issues introduced
by such design: (1) The use of the centralized journaling
could cause severe contention on in-memory shared data
structures. (2) The transaction model of the centralized
journaling serializes its internal I/O actions on devices to
ensure correctness, such as committing and checkpoint-
ing. These issues will sacrifice the high parallelism pro-
vided by SSDs. An exhaustive analysis of the scalability
bottlenecks of existing file systems is presented in Sec-
tion 2 as the motivation of our work.

Parallelizing the file system service is one solution to
file system scalability. In this paper, we propose SpanFS,
a novel journaling file system that replaces the central-

ized file system service with a collection of independent
micro file system services, called domains, to achieve
scalability on many-core. Each domain performs its file
system service such as data allocation and journaling
independently. Concurrent access to different domains
will not contend for shared data structures. As a re-
sult, SpanFS allows multiple I/O tasks to work in parallel
without performance interference between each other.

Apart from performance, consistency is another key
aspect of modern file systems. Since each domain is ca-
pable of ensuring the consistency of the on-disk struc-
tures that belong to it, the key challenge to SpanFS is to
maintain crash consistency on top of multiple domains.
SpanFS proposes a set of techniques to distribute files
and directories among the domains, to provide a global
file system view on top of the domains and to maintain
consistency in case of system crashes.

We have implemented SpanFS based on the Ext4 file
system in Linux kernel 3.18.0 and would demonstrate
that SpanFS scales much better than Ext4 on 32 cores,
thus bringing significant performance improvements. In
micro-benchmarks, SpanFS outperforms Ext4 by up to
1226%. In application-level benchmarks SpanFS im-
proves the performance by up to 73% relative to Ext4.

The rest of the paper is organized as follows. Sec-
tion 2 analyzes the scalability issues of existing file sys-
tems. Section 3 presents the design and implementation
of SpanFS. Section 4 shows the performance result of
SpanFS. We relate SpanFS to previous work in Section 5
and present the conclusion and future work in Section 6.

2 Background and Motivation
Most modern file systems scale poorly on many-core
processors mainly due to the contention on shard data
structures in memory and serialization of I/O actions on
device. Our previous work [27] has identified some lock
bottlenecks in modern file systems. We now provide an
in-depth analysis of the root causes of the poor scalabil-
ity. We first introduce the file system journaling mecha-
nism to facilitate the scalability analysis. Then, through a
set of experiments we will 1) show the scalability issues
in existing modern file systems, 2) identify the scalabil-
ity bottlenecks and 3) analyze which bottlenecks can be
eliminated and which are inherent in the centralized file
system design.
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Figure 1: Scalability Evaluation. We carry out this experiment in Linux 3.18.0 kernel on a RAM disk. We preallocate all the pages of the

RAM disk to avoid contention within the RAM disk for the baselines and SpanFS. The total journaling sizes of SpanFS, Ext4, XFS and the ideal file

systems based on Ext4 and XFS are all set to 1024 MB, respectively. For ZFS, we compile the recently released version (0.6.3) on Linux. This test

is performed on a 32-core machine. For some lines the better than linear speedup is probably due to the Intel EIST technology.

Ext4 XFS

Lock Name Bounces
Total Wait Time

(Avg. Wait Time) Percent Lock Name Bounces
Total Wait Time

(Avg. Wait Time) Percent

journal->j wait done commit 11845 k 1293 s (103.15 µs) 27% cil->xc push lock 8019 k 329 s (37.26 µs) 13.8%
journal->j list lock 12713 k 154 s (11.34 µs) 3.2% iclog->ic force wait 2188 k 87.4 s (39.94 µs) 3.7%

journal->j state lock-R 1223 k 7.1 s (5.19 µs) 0.1% cil->xc ctx lock-R 1136 k 80.1 s (70.02 µs) 3.4%
journal->j state lock-W 956 k 4.3 s (4.29 µs) 0.09% pool->lock 3673 k 34.1 s (9.28 µs) 1.4%

zone->wait table 925 k 3.1 s (3.36 µs) 0.06% log->l icloglock 1555 k 25.8 s (16.18 µs) 1%

Table 1: The top 5 hottest locks. We show the top 5 hottest locks in the I/O stack when running 32 Sysbench instances. These numbers

are collected in a separated kernel with lock stat compiled. As lock stat introduces some overhead, the numbers does not accurately represent the

lock contention overhead in Figure 1. ”Bounces” represents the number of lock bounces among CPU cores. We calculate the percent of the lock

wait time in the total execution time by dividing the lock wait time divided by the number of instances (32) by the total execution time.

2.1 File System Journaling
Our discussion is based on the Ext3/4 journaling mech-
anism [39], which adopts the group commit mechanism
[23] for performance improvements. Specifically, there
is only one running transaction that absorbs all updates
and at most one committing transaction at any time [39].
As a result, one block that is to be modified in the OS
buffer does not need to be copied out to the journaling
layer unless that block has already resided within the
committing transaction, which largely reduces the jour-
naling overhead caused by dependency tracking [39].

Ext4 [13] adopts JBD2 for journaling. For each update
operation Ext4 starts a JBD2 handle to the current run-
ning transaction to achieve atomicity. Specifically, Ext4
passes the blocks (refer to metadata blocks in ordered
journaling mode) to be modified associated with the han-
dle to the JBD2 journaling layer. After modifying these
blocks, Ext4 stops the handle and then the running trans-
action is free to be committed by the JBD2 journaling
thread. These modified block buffers will not be written
back to the file system by the OS until the running trans-
action has been committed to the log [39]. For simplicity,
we refer to the above process as wrapping the blocks to
be modified in a JBD2 handle in the rest of the paper.

2.2 Scalability Issue Analysis
We use Sysbench [1] to generate update-intensive work-
loads to illustrate the scalability bottlenecks. Multi-

ple single-threaded benchmark instances run in parallel,
each of which issues 4KB sequential writes and invokes
fsync() after each write. Each instance operates over 128
files with a total write traffic of 512MB. We vary the
number of running instances from 1 to 32 and the num-
ber of used cores is euqal to the number of instances. We
measure the total throughput.

Four file systems are chosen as baseline for analysis:
Ext4, XFS [38], Btrfs [35] and OpenZFS [2], of which
Ext4 and XFS are journaling file systems while Btrfs and
ZFS are copy-on-write file systems. An ideal file system
is set up by running each benchmark instance in a sepa-
rated partition (a separated RAM disk in this test) man-
aged by the baseline file system, which is similar to the
disk partition scenario in [31]. It is expected to achieve
linear scalability since each partition can perform its file
system service independently.

Figure 1 shows that all the four baseline file systems
scale very poorly on many-core, resulting in nearly hori-
zontal lines. The ”ideal” file systems exhibit near-linear
scalability. We add the result of SpanFS with 16 domains
in Figure 1(a), which brings a performance improvement
of 4.29X in comparison with the stock Ext4 at 32 cores.

2.3 Scalability Bottleneck Analysis
To understand the sources of the scalability bottlenecks,
we collect the lock contention statistics using lock stat
[7]. Due to space limitation, we show the statistics on top
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SpanFS-16

Lock Name Bounces
Total Wait Time

(Avg. Wait Time)
journal->j wait done commit 3333 k 38.5 s (11.13 µs)

journal->j state lock-R 4259 k 16.6 s (3.70 µs)
journal->j state lock-W 2637 k 10.5 s (3.84 µs)

journal->j list lock 5042 k 10.2 s (2.00 µs)
zone->wait table 226 k 0.5 s (2.06 µs)

Table 2: The top 5 hottest locks. The top 5 hottest locks in

the I/O stack when running the sysbench benchmark on SpanFS.

hottest locks of Ext4 and XFS in Table 1. Table 2 shows
the top 5 hottest locks when running the same benchmark
on SpanFS at 32 cores. Ext4 and XFS spend substantial
wait time acquiring hot locks and the average wait time
for these hot locks is high. In contrast, SpanFS reduces
the total wait time of the hot locks by around 18X (76 s
vs 1461 s).

Btrfs also has a few severely contended locks, namely
eb->write lock wq, btrfs-log-02 and eb->read lock wq.
The total wait time of these hot locks can reach as much
as 14476 s, 5098 s and 2661 s respectively. We cannot
collect the lock statistics for ZFS using lock stat due to
the license compatible issue.
2.3.1 Contention on shared data structures

Now we look into Ext4 and discuss the causes of scala-
bility bottlenecks in depth, some of which are also gen-
eral to other file systems. As is well known, shared data
structures can limit the scalability on many-core [10, 11].
JBD2 contains many shared data structures, such as the
journaling states, shared counters, shared on-disk struc-
tures, journaling lists, and wait queues, which can lead
to severe scalability issues.
(a) Contention on the journaling states. The journaling
states are frequently accessed and updated, and protected
by read-write lock (i.e., j state lock). The states may in-
clude the log tail and head, the sequence numbers of the
next transaction and the most recently committed trans-
action, and the current running transaction’s state. The
lock can introduce severe contention. The RCU lock [33]
and Prwlock [30] are scalable for read-mostly workloads
while JBD2 have many writes to these shared data struc-
tures in general as shown in Table 1. Hence, they are not
effective to JBD2.
(b) Contention on the shared counters. The running
transaction in JBD2 employs atomic operations to seri-
alize concurrent access to shared counters, such as the
number of current updates and the number of buffers on
this transaction, which can limit the scalability. Some-
times, JBD2 needs to access the journaling states and
these shared counters simultaneously, which can cause
even more severe contention. For instance, to add up-
dates to the running transaction, JBD2 needs to check
whether there is enough log free space to hold the run-
ning transaction by reading the number of the buffers on

the running transaction and on the committing transac-
tion and reading the log free space. We have confirmed
the contention on shared counters using perf, which will
partly cause the JBD2 function start this handle to ac-
count for 17% of the total execution time when running
32 Filebench Fileserver instances. Adopting per-core
counters such as sloppy counter [11] and Refcache [18]
will introduce expensive overhead when reading the true
values of these counters [18].
(c) Contention on the shared on-disk structures. Al-
though the on-disk structures of Ext4 are organized in the
form of block groups, there is also contention on shared
on-disk structures such as block bitmap, inode bitmap
and other metadata blocks during logging these blocks.
These were not manifested in Table 1 since lock stat does
not track the bit-based spin locks JBD2 uses.
(d) Contention on the journaling lists. JBD2 uses
a spin lock (i.e., j list lock) to protect the transaction
buffer lists and the checkpoint transaction list that links
the committed transactions for checkpointing, which can
sabotage scalability. Replacing each transaction buffer
list with per-core lists may be useful to relieve the con-
tention. However, using per-core lists is not suitable for
the checkpoint transaction list as JBD2 needs to check-
point the transactions on the list in the order that the
transactions are committed to the log.
(e) Contention on the wait queues. JBD2 uses wait
queues for multi-thread cooperation among client threads
and the journaling thread, which will cause severe con-
tention when a wait queue is accessed simultaneously.
The wait queue is the most contended point in Ext4 dur-
ing our benchmarking. Simply removing this bottleneck,
i.e. per-core wait queue [30], cannot totally scale Ext4 as
other contention points will rise to become the main bot-
tlenecks, such as j state lock and shared counters. The
most contended point in XFS is not the wait queue as
shown in Table 1. Hence, we need a more thorough so-
lution to address the scalability issues.

2.3.2 Serialization of internal actions

The centralized journaling service usually needs to seri-
alize its internal actions in right order, which also limits
the scalability. Here we give two examples.

Parallel commit requests are processed sequentially in
transaction order by the journaling thread [39], which
largely sacrifices the high parallelism provided by SSDs.
Enforcing this order is necessary for correctness when
recovering the file system with the log after a crash due
to the dependencies between transactions [16].

Another example is when the free space in the log is
not enough to hold incoming update blocks. JBD2 per-
forms a checkpoint of the first committed transaction on
the checkpoint transaction list to make free space. Paral-
lel checkpoints also have to be serialized in the order that
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Figure 2: SpanFS Architecture.

transactions are committed to the log.

2.3.3 Summary

We analyzed the scalability bottlenecks of Ext4, which
are mainly caused by the contention on the shared data
structures in memory and the serialization of internal ac-
tions on devices. The use of shared data structures are
inherent in the centralized journaling design. The serial-
ization of journaling would also need to access and up-
date the shared data structures, such as log head and tail.

To address the scalability bottlenecks, file systems
should be restructured to reduce the contention on shared
data structures and to parallelize the file system service.

3 Design and Implementation
We present the design and implementation of SpanFS
and introduce the key techniques to provide a global file
system view and crash consistency.

3.1 SpanFS Architecture
Figure 2 shows the architecture of SpanFS, which con-
sists of multiple micro file system services called do-
mains. SpanFS distributes files and directories among
multiple domains to reduce contention and increase par-
allelism within the file system. Each domain has its in-
dependent on-disk structures, in-memory data structures
and kernel services (e.g., the journaling instance JBD2)
at runtime. As there is no overlap among the domains’
on-disk blocks, we allocate a dedicated buffer cache ad-
dress space for each domain to avoid the contention on
the single device buffer cache. As a result, concurrent
access to different domains will not cause contention on
shared data structures. Each domain can do its journaling
without the need of dependency tracking between trans-
actions and journaled buffers that belong to different do-
mains, enabling high parallelism for logging, committing
and checkpointing.

SpanFS provides a global file system view on top of
the domains by building global hierarchical file system
namespace and also maintains global consistency in case
of system crashes.

3.2 Domain
The domain is the basic independent function unit in
SpanFS to perform the file system service such as data al-
location and journaling. During mounting, each domain
will build its own in-memory data structures from its on-
disk structures and start its kernel services such as the
JBD2 journaling thread. In the current prototype SpanFS
builds the domains in sequence. However, the domains
can be built in parallel by using multiple threads.

3.2.1 SpanFS on-disk layout

In order to enable parallel journaling without the need
of dependency tracking, we partition the device blocks
among the domains. SpanFS creates the on-disk struc-
tures of each domain on the device blocks that are allo-
cated to the domain. The on-disk layout design of each
domain is based on the Ext4 disk layout [5]: each do-
main mainly has a super block, a set of block groups, a
root inode and a JBD2 journaling inode (i.e., log file).

Initially, the device blocks are evenly allocated to the
domains. Our architecture allows to adjust the size of
each domain online on demand in the unit of block
groups. Specifically, the block groups in one domain can
be reallocated to other domains on demand. To this end,
we should store a block group allocation table (BAT) and
a block group bitmap (BGB) on disk for each domain.
The BGB is maintained by its domain and is used to track
which block group is free by the file system. When the
free storage space in one domain drops to a predefined
threshold, the file system should reallocate the free block
groups in other domains to this domain. To avoid block
group low utilization each domain should allocate inodes
and blocks from the block groups that have been used
as far as possible. As the global block group realloca-
tion can cause inconsistent states in case of crashes, we
should create a dedicated journaling instance to main-
tain the consistency of the BATs. Each domain should
first force the dedicated journaling to commit the run-
ning transaction before using the newly allocated block
groups. This ensures the reallocation of block groups to
be persisted on disk and enables the block groups to be
correctly allocated to domains after recovery in case of
crashes. We leave the implementation of online adjust-
ing of each domain’s size on demand as our future work.

In our current implementation SpanFS only supports
static allocation of block groups. Specifically, we stati-
cally allocate a set of contiguous blocks to each domain
when creating the on-disk structures by simply storing
the first data block address and the last data block ad-
dress in each domain’s super block. Each domain’s super
block is stored in its first block group. In order to load all
the domains’ super blocks SpanFS stores the next super
block address in the previous super block. Each domain
adopts the same policy as Ext4 for inode and block allo-
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cation among its block groups.

3.2.2 Dedicated buffer cache address space
The Linux operating system (OS) adopts a buffer cache
organized as an address space radix tree for each block
device to cache recently accessed blocks and use a spin
lock to protect the radix tree from concurrent inserts.
Meanwhile, the OS uses another spin lock to serialize
concurrent access to each cache page’s buffer list. As a
result, when multiple domains access the single underly-
ing device simultaneously, the above two locks will be
contended within the buffer cache layer .

The device block range of each domain does not over-
lap with those of other domains and the block size is the
same with the page size in our prototype. Concurrent
accesses to different domains should not be serialized in
the buffer cache layer as they can commute [19, 18].

We leverage the Linux OS block device architecture to
provide a dedicated buffer cache address space for each
domain to avoid lock contention. The OS block layer
manages I/O access to the underlying device through the
block device structure, which can store the inode that
points to its address space radix tree and pointers to the
underlying device structures such as the device I/O re-
quest queue and partition information if it is a partition.
SpanFS clones multiple block device structures from the
original OS block device structure and maps them to
the same underlying block device. SpanFS assigns a
dedicated block device structure to each domain during
mounting so that each domain can have its own buffer
cache address space.

Under the block group reallocation strategy, the device
block range of each domain may be changed over time.
We should remove the pages in the domain’s buffer cache
address space corresponding to the block groups that are
to be reallocated to other domains. This process can be
implemented with the help of the OS interface (invali-
date mapping pages()). We leave the implementation of
buffer cache address space adjusting as our future work.

3.3 Global Hierarchical Namespace
In order to distribute the global namespace, SpanFS
chooses a domain as the root domain to place the global
root directory and then scatters the objects under each
directory among the domains. Specifically, SpanFS dis-
tributes the objects (files and directories) under each di-
rectory using a round-robin counter for the directory. The
use of per directory counter can avoid global contention.

To support this distribution, SpanFS introduces three
types of directory entries (dentries): normal dentry,
shadow dentry and remote dentry, as illustrated in Fig-
ure 3. We call an object placed in the same domain with
its parent directory a normal object. The domain where
the parent directory lies is referred to as the local domain.
SpanFS creates an inode and a normal dentry pointing

/spandir
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Figure 3: The connection between domains. This figure

illustrates how SpanFS distributes a object to a remote domain.

to this inode under the parent directory in the local do-
main. We call an object placed in the different domain
from its local domain a distributed object, the different
domain is referred to as remote domain. SpanFS creates
an inode and a remote dentry pointing this inode in the
remote domain and then creates a shadow dentry under
its parent directory in the local domain for look up. The
reason why SpanFS creates a remote dentry and an in-
ode rather than only an inode is due to consideration of
maintaining global consistency, which will be described
in Section 3.4. In this paper, the dentry and inode refer
to the on-disk structures rather than the VFS structures.

To store remote dentries from other domains, each do-
main creates a set of special directories called span direc-
tories which are invisible to users. The number of span
directories in each domain is set to 128 by default and the
span directories are evenly allocated to each CPU core.
When a thread is to create a remote dentry, SpanFS se-
lects a span directory randomly from the ones allocated
to the CPU core.

SpanFS constitutes the bidirectional index by embed-
ding enough information in both the shadow dentry and
remote dentry to make them point to each other. For each
shadow dentry, SpanFS stores in the shadow dentry fields
the remote dentry’s domain ID, the inode number of the
span directory where the remote dentry stays, the remote
inode number and the name. For each remote dentry,
SpanFS stores the shadow dentry’s domain ID, the inode
number of the parent directory where the shadow dentry
lies, the remote inode number and the name.

3.4 Crash Consistency Model
As each domain is capable of ensuring the consistency of
its on-disk structures in case of system crashes through
journaling, the most critical challenge to SpanFS is how
to maintain global consistency across multiple domains.

The following example will demonstrate the consis-
tency challenges. To create a distributed object, one ap-
proach is to create an inode in the remote domain, and to
add a dentry in the local domain which points to the re-
mote inode, which can result in two possible inconsistent
states in case of crashes. The first case is that the inode
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reaches the device but the dentry is lost. Then the newly
created inode becomes storage garbage silently, which
cannot be reclaimed easily. Another case is that the den-
try reaches the device but the inode fails. As a result the
dentry points to a non-existent inode.

Another approach to address the above problem is
adding dependency information to the running transac-
tions of the two domains. However, this approach will
end up with many dependencies between multiple do-
mains, with the cost of dependency tracking and serial-
izing the journaling actions among the domains.

Based on bidirectional index, SpanFS adopts two
mechanisms stale object deletion and garbage collec-
tion to address the problem. As discussed in Section 3.3,
SpanFS creates a remote dentry and inode in the remote
domain and then adds a shadow dentry under the parent
directory in the local domain. SpanFS wraps the blocks
to be modified in two JBD2 handles of the remote do-
main and local domain to achieve atomicity in the two
domains respectively.

The consistency of a distributed object is equivalent
to the integrity of the bidirectional index: (1) A shadow
dentry is valid only if the remote dentry it points to exists
and points back to it too. (2) A remote object (the remote
dentry and inode) is valid only if its shadow dentry exists
and points to it.

3.4.1 Stale object deletion.
The stale object deletion will validate any shadow den-
try by checking whether its remote dentry exists when
performing lookup and readdir. Specifically, for a dis-
tributed object SpanFS first locks the span directory via
the mutex lock, then looks up the remote dentry under
the span directory using the embedded index information
and unlocks the span directory in the end. If the remote
dentry does not exist, SpanFS deletes the shadow den-
try. Note that the parent directory would be locked by
the VFS during the above process.

3.4.2 Garbage collection (GC)
The GC mechanism deals with the scenario when the re-
mote dentry and inode exist while the shadow dentry is
lost. Under this circumstance, the file system consistency
is not impaired since the remote object can never be seen
by applications. But the remote dentry and inode will
occupy storage space silently and should be collected.

During mounting if SpanFS finds out that it has just
gone through a system crash, SpanFS will generate a
background garbage collection thread to scan the span
directories. The GC thread verifies the integrity of each
remote dentry in each span directory at runtime silently,
and removes the remote objects without shadow dentries.
Two-phase validation. In order to avoid contention
with the normal operations, the GC thread performs two-
phase validation: the scan phase and the integrity vali-

dation phase. During the scan phase the background GC
thread locks the span directory via the mutex lock, reads
the dentries under it and then unlocks the span directory.
Then the GC thread validates each scanned remote den-
try’s integrity. To avoid locking the span directory for a
long time, the GC thread reads a small number of remote
dentries (4 KB by default) each time until all the remote
dentries have been scanned and validated.

3.4.3 Avoiding deadlocks and conflicts
To avoid deadlocks and conflicts, for all operations that
involve the creation or deletion of a distributed object we
should first lock the parent directory of the shadow den-
try and then lock the span directory of the remote den-
try. By doing so, SpanFS can guarantee that new remote
objects created by the normal operations will not be re-
moved by the background GC thread by mistake and can
avoid any deadlocks.

During the integrity validation phase, the GC thread
first locks the parent directory (read from the bidirec-
tional index on the remote dentry) and then looks up the
shadow dentry under it. If the shadow dentry is found
and points to the remote dentry, the GC thread does noth-
ing and unlocks the parent directory. Otherwise, the GC
thread locks the span directory and then tries to delete
the remote object. If the remote object does not exist, it
might be deleted by the normal operation before the in-
tegrity validation phase. For such case, the GC thread
does nothing. The GC thread unlocks the span directory
and the parent directory in the end.

For normal operations such as create() and unlink(),
SpanFS first locks the span directory of the remote den-
try, then creates or deletes the remote object and the
shadow dentry, and unlocks the span directory in the end.
Note that the parent directory would be locked by the
VFS during the above process. For unlink() the inode
will not be deleted until its link count drops to zero.

3.4.4 Parallel two-phase synchronization
The VFS invokes fsync() to flush the dirty data and cor-
responding metadata of a target object to disk. As the
dentry and its corresponding inode may be scattered on
two domains, SpanFS should persist the target object and
its ancestor directory objects, their shadow/remote den-
tries if distributed, along the file path.

In order to reduce the distributed fsync() latency, we
propose a parallel two-phase synchronization mecha-
nism: the committing phase and the validating phase.
During the committing phase SpanFS traverses the target
object and its ancestor directories except for the SpanFS
root directory. For each traversed object, SpanFS wakes
up the journaling thread in its parent directory’s domain
to commit the running transaction and then records the
committing transaction id in its VFS inode’s field. Note
that if there does not exist a running transaction, SpanFS
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does nothing. This situation may occur when the running
transaction has been committed to disk by other syn-
chronization actions such as periodic transaction com-
mits in JBD2. Then, SpanFS starts to commit the tar-
get object. In the end SpanFS traverses the target object
and its ancestor directories again to validate whether the
recorded transaction commits have completed. If some
of the commits have not completed, SpanFS should wait
on the wait queues for their completion.

The synchronization mechanism utilizes JBD2 client-
server transaction commit architecture. In JBD2, the
client thread wakes up the journaling thread to commit
the running transaction and then waits for its completion.
In SpanFS, we leverage the journaling thread in each do-
main to commit the running transactions in parallel.

In order to avoid redundant transaction commits, we
use flags (ENTRY NEW, ENTRY COMMIT and EN-
TRY PERSISTENT) for each object to record its state.
Ext4 with no journaling has the counterpart of our com-
mitting phase but does not have validating phase, which
could potentially lead to inconsistencies.

During the committing phase SpanFS will clear
the ENTRY NEW flag of each traversed object. If
cleared, SpanFS stops the committing phase. The EN-
TRY COMMIT flag of the object would be set after the
transaction has been committed. If not set, SpanFS
would commit the transaction in its parent directory’s
domain and wait for the completion during the validat-
ing phase. During the validating phase, SpanFS will set
the ENTRY PERSISTENT flags of the traversed objects
when all the recorded transaction commits have been
completed. If set, SpanFS stops the validating phase.

3.4.5 Rename

The rename operation in Linux file systems tries to move
a source object under the source directory to the desti-
nation object with the new name under the destination
directory. SpanFS achieves atomicity of the rename op-
eration through the proposed ordered transaction commit
mechanism, which controls the commit sequence of the
JBD2 handles on multiple domains for the rename op-
eration. SpanFS ensures the commit order by marking
each handle with h sync flag, which would force JBD2 to
commit the corresponding running transaction and wait
for its completion when the handle is stopped.

For the case that the destination object does not ex-
ist, three steps are needed to complete a rename opera-
tion. Due to space limitation, we only demonstrate the
case where the source object is a distributed object. The
shadow dentry of the source object resides in Domain
A. The inode of the source directory that contains the
shadow dentry of the source object also resides in Do-
main A. The remote dentry and the inode of the source
object resides in Domain B. The inode of the destina-

tion directory resides in Domain C. SpanFS starts a JBD2
handle for each step.
Step 1: SpanFS adds a new shadow dentry, which points
to the remote dentry of the source object, to the des-
tination directory in Domain C. If system crashes after
this handle reaches the disk, the bidirectional index be-
tween the old shadow dentry and the remote dentry of the
source object is still complete. The newly added dentry
will be identified as stale under the destination directory
and be removed at next mount.
Step 2: The remote dentry of the source object is al-
tered to point to the newly added shadow dentry in Step
1. Then the bidirectional index between the old shadow
dentry and the remote dentry of the source object be-
comes unidirectional while the bidirectional index be-
tween the new shadow dentry and the remote dentry is
built. As long as the handle reaches disk, the old shadow
dentry of the source object in Domain A is turned stale
and the rename operation is essentially done.
Step 3: Remove the old shadow dentry of the source
object under the source directory.

During the above process, JBD2 handles could be
merged if they operate on the same domain. If the step
needs to lock the span directory, it must start a new han-
dle to avoid deadlocks, esp. step 2.

For the case that the destination object already ex-
ists, SpanFS first has the existing shadow dentry of
the destination object tagged with TAG COMMON, then
adds another new shadow dentry tagged with both
TAG NEWENT and TAG COMMON in the destination
directory in Step 1. Moreover, two extra steps are needed
to complete the rename: Step 4 to remove the inode and
the remote dentry of the destination object and step 5 to
delete the existing shadow dentry of the destination ob-
ject and untag the newly added shadow dentry under the
destination directory. As the existing shadow dentry has
the same name as the newly added dentry under the des-
tination directory, we use the tags to resolve conflicts in
case of system crashes. Specifically, a dentry tagged with
TAG COMMON should be checked during lookup(). If
there exist two tagged dentries with the same name under
a directory, SpanFS will remove the one without integral
bidirectional index. If their bidirectional indices are both
integral, the one with TAG NEWENT takes precedence
and the other is judged as stale and should be removed.

3.5 Discussion
The approach introduced in this paper is not the only way
to scale file systems. Another way to providing parallel
file system services is running multiple file system in-
stances by using disk partitions (virtual block devices in
[26]), stacking a unified namespace on top of them and
maintaining crash consistency across them, which is sim-
ilar to Unionfs [42] in the architecture. We previously
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adopt this approach as an extension to MultiLanes [27]
to reduce contention inside each container [26]. How-
ever, this approach has several drawbacks: First, manag-
ing a number of file systems would induce administra-
tion costs [31]. Second, adjusting storage space among
multiple file systems and partitions on demand also in-
troduces management cost. Although we can leverage
the virtual block device of MultiLanes to support stor-
age space overcommitment, it comes with a little cost of
lightweight virtualization [27]. Third, the cost of names-
pace unification will increase with the increasing number
of partitions [42].

4 Evaluation
We evaluate the performance and scalability of SpanFS
against Ext4 using a set of micro and application-level
benchmarks.

4.1 Test Setup
All experiments were carried out on an Intel 32-core ma-
chine with four Intel(R) Xeon(R) E5-4650 processors
(with the hyperthreading capability disabled) and 512
GB memory. Each processor has eight physical cores
running at 2.70 GHZ. All the experiments are carried out
on a Fusion-IO SSD (785 GB MLC Fusion-IO ioDrive).
The experimental machine runs a Linux 3.18.0 kernel.
We compile a separated kernel with lock stat enabled to
collect the lock contention statistics.

We use 256 GB of the SSD for evaluation. We evaluate
SpanFS with 16 domains and 4 domains in turn. We stat-
ically allocate 16 GB storage space to each domain for
the 16 domain configuration and 64 GB storage space to
each domain for the 4 domain configuration. For SpanFS
with 16 domains, each domain has 64 MB journaling
size, yielding a total journaling size of 1024 MB. To rule
out the effects of different journaling sizes, the journal-
ing sizes of both SpanFS with 4 domains and Ext4 are
all set to 1024 MB, respectively. Both SpanFS and Ext4
are mounted in ordered journal mode unless otherwise
specified.
Kernel Patch. The VFS uses a global lock to pro-
tect each super block’s inode list, which can cause con-
tention. We replace the super block’s inode list with per-
core lists and use per-core locks to protect them. We
apply this patch to both the baseline and SpanFS.

4.2 Performance Results
4.2.1 Metadata-Intensive Performance

We create the micro-benchmark suite called catd, which
consists of four benchmarks: create, append, truncate
and delete. Each benchmark creates a number of threads
performing the corresponding operation in parallel and
we vary the number of threads from 1 to 32.
Create: Each thread creates 10000 files under its private

directory.
Append: Each thread performs a 4 KB buffered write
and a fsync() to each file under its private directory.
Truncate: Each thread truncates the appended 4 KB files
to zero-size.
Delete: Each thread removes the 10000 truncated files.

We run the benchmark in the order of create-append-
truncate-delete in a single thread and multiple threads
concurrently. Figure 4 shows that SpanFS performs
much better than Ext4 except for the create benchmark.

For the create benchmark SpanFS performs worse
than Ext4 for two reasons: Ext4 has not encountered
severe scalability bottlenecks under this workload, and
SpanFS introduces considerable overhead as it needs to
create two dentries for each distributed object. Ext4 is
113% and 42% faster than SpanFS with 16 domains at
one core and at 32 cores, respectively. Note that the 4
domain configuration performs better than the 16 domain
configuration mainly due to that the percentage of the
distributed objects in SpanFS with 4 domains is lower.

Ext4

Lock Name Bounces
Total Wait Time

(Avg. Wait Time)
sbi->s orphan lock 478 k 534 s (1117.32 µs)

journal->j wait done commit 845 k 100.4 s (112.10 µs)
journal->j checkpoint mutex 71 k 56.5 s (789.70 µs)

journal->j list lock 694 k 10.5 s (14.64 µs)
journal->j state lock-R 319 k 9.8 s (28.58 µs)

SpanFS-16

Lock Name Bounces
Total Wait Time

(Avg. Wait Time)
journal->j checkpoint mutex 27 k 15.1 s (557.96 µs)

inode hash lock 323 k 8.1 s (25.07 µs)
sbi->s orphan lock 124 k 4.3 s (34.51 µs)

journal->j wait done commit 287 k 3.4 s (11.07 µs)
ps->lock (Fusionio driver) 789 k 2.4 s (2.87 µs)

Table 3: The top 5 hottest locks
As shown in Figure 4, for the append, truncate, delete

benchmark, SpanFS significantly outperforms Ext4 be-
yond a number of cores due to the reduced contention
and better parallelism. As the fsync() in append may span
several domains to persist the objects along the path and
the delete benchmark involves the deletion of two den-
tries for each distributed object, there exists some over-
head for these two benchmarks. Specifically, SpanFS is
113% and 33% slower than Ext4 for these two bench-
marks at one single core. However, due to the reduced
contention, SpanFS with 16 domains outperforms Ext4
by 1.15X, 7.53X and 4.13X at 32 cores on the append,
truncate and delete benchmark, respectively.

To understand the performance gains yielded by
SpanFS, we run the catd benchmark at 32 cores in a sep-
arated kernel with lock stat enabled. Table 3 shows that
Ext4 spends substantial time acquiring the hottest locks
during the benchmarking. In contrast, the total wait time
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Figure 4: Catd. This figure depicts the overall throughput (operations per second) with the benchmark create, append, truncate and delete,

respectively.
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Figure 5: IOzone. This figure shows the total throughput of IOzone on SpanFS against Ext4 under sequential buffered writes, random buffered

writes, sequential direct writes and sequential synchronous writes (open with O SYNC), respectively.

of the hot locks in SpanFS has been reduced by 20X.

4.2.2 Data-Intensive Performance

IOzone. The IOzone [3] benchmark creates a number
of threads, each of which performs 4KB writes to a sin-
gle file which ends up with 512 MB. Figure 5 shows that
SpanFS scales much better than Ext4, leading to signif-
icant performance improvements. Specifically, SpanFS
with 16 domains outperforms Ext4 by 1226%, 408%,
96% and 60% under the four I/O patterns at 32 cores,
respectively. For direct I/O, Ext4 scales poorly due to
the contention when logging the block allocation.
Sysbench. We run multiple single-threaded sysbench in-
stances in parallel, each of which issues 4 KB writes.
Each instance operates over 128 files with a total write
traffic of 512 MB. Figure 6 shows that SpanFS scales
well to 32 cores, bringing significant performance im-
provements. Specifically, SpanFS with 16 domains is
4.38X, 5.19X, 1.21X and 1.28X faster than Ext4 in the
four I/O patterns at 32 cores, respectively.

4.2.3 Application-Level Performance

Filebench. We use Filebench [6] to generate application-
level I/O workloads: the Fileserver and Varmail work-
loads. The Varmail workload adopts the parameter of
1000 files, 1000000 average directory width, 16 KB av-
erage file size, 1 MB I/O size and 16 KB average append
size. The Fileserver workload adopts the parameter of
10000 files, 20 average directory width, 128 KB average
file size, 1 MB I/O size and 16 KB average append size.
We run multiple single-threaded Filebench instances in
parallel and vary the number of instances from 1 to 32.
Each workload runs for 60 s.

As shown in Figure 7(a) and Figure 7(b) , for the File-
server and Varmail workloads SpanFS in all the two con-
figurations scales much better than Ext4. SpanFS with
16 domains outperforms Ext4 by 51% and 73% under
the Fileserver and Varmail workloads at 32 cores, re-
spectively. We have also evaluated the performance of
SpanFS against Ext4 in data journal mode under the Var-
mail workload. Figure 7(c) shows that SpanFS with 16
domains outperforms Ext4 by 88.7% at 32 cores.
Dbench. We use Dbench [4] to generate I/O workloads
that mainly consist of creates, renames, deletes, stats,
finds, writes, getdents and flushes. We choose Dbench
to evaluate SpanFS as it allows us to illuminate per-
formance impact of the rename operation overhead on
a realistic workload. We run multiple single-threaded
Dbench instances in parallel.

Due to the overhead, SpanFS with 16 domains is 55%
slower than Ext4 at one single core. However, as shown
in Figure 7(d), due to the reduced contention and better
parallelism SpanFS with 16 domains outperforms Ext4
by 16% at 32 cores.

4.2.4 Comparison with other file systems
We make a comparison of SpanFS with other file systems
on scalability using the Fileserver workload. Figure 8
(a) shows that SpanFS with 16 domains achieves much
better scalability than XFS, Btrfs and ZFS.

We also make a comparison with MultiLanes+ [26],
an extended version of our previous work [27]. As Multi-
Lanes+ stacks a unified namespace on top of multiple vir-
tual block devices, it comes at the cost of namespace uni-
fication. We evaluate SpanFS with 32 domains against
MultiLanes+ with 32 disk partitions using the create
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Figure 6: Sysbench. This figure depicts the total throughput of sysbench on SpanFS against Ext4 under sequential buffered writes, random

buffered writes, sequential synchronous writes and random synchronous writes, respectively. The first two buffered I/O patterns do not issue any

fsync() while the synchronous I/O patterns issue a fsync() after each write.
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Figure 7: Filebench and Dbench. This figure depicts the total throughput of Filebench (Fileserver and Varmail) and Dbench on SpanFS
against Ext4, respectively.
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Figure 8: Comparison with other major file systems.
The throughput of Filebench Fileserver on SpanFS against other three

major file systems: XFS, Btrfs and ZFS and the throughput of the create
benchmark on SpanFS against MultiLanes+.

benchmark. The journaling size of each domain/partition
is set to 128 MB. Figure 8 (b) shows the lines generated
by SpanFS against MultiLanes+. As the create operation
need to perform namespace unification which is expen-
sive in MultiLanes+, SpanFS performs much better than
MultiLanes+ from 1 to 28 cores. Especially, SpanFS is
faster than MultiLanes+ between 72% and 185% from 1
core to 20 cores. Due to the increased contention, the
performance improvement shrinks from 24 cores to 32
cores.

4.2.5 Garbage Collection Performance

We evaluate the time the GC takes to scan different num-
bers of files. We use the create benchmark to prepare
a set of files in parallel using 32 threads under 32 di-
rectories and then remount the file system with the GC
thread running at the background. As the GC thread only
needs to run when SpanFS finds out that it has just gone
through a crash we manually enable the GC thread. Ta-

ble 4 shows that the GC thread only needs 2.4 seconds
to scan and validate all the remote objects when there
are 320000 files in the file system, and the time only in-
creases to 20 seconds when there exist 3.2 millions of
files. The cost the GC thread incurred is relatively small
thanks to the high performance provided by the SSD.

# of files 32000 320000 3200000
# of remote dentries 30032 300030 3000030
Time 1071 ms 2403 ms 20725 ms

Table 4: Garbage collection performance. The time taken

to scan the span directories to perform garbage collection. As there ex-

ist normal objects, the number of remote dentries represents the actual

number of dentries that the GC thread has scanned and validated.

Then we measure the overhead that the background
GC activities contribute to the foreground I/O workloads.
Specifically, we prepare 3.2 millions of files as the above
does, remount the file system with the GC thread run-
ning and then immediately run 32 Varmail instances in
parallel. The Varmail workload runs for 60 s.

We measure the aggregative throughput of the 32 Var-
mail instances. Compared with the normal case without
the GC thread running, the total throughput of the Var-
mail workload has been degraded by 12% (357 MB vs
313 MB), and the GC thread has taken 21950 ms to val-
idate 3024296 remote objects. The number of the vali-
dated remote objects is higher than the number in Table 4
as the GC has scanned the remote objects created by the
running Varmail workload. Meanwhile, during the above
process, the GC thread has found four false invalid re-
mote objects. These false invalid objects are created by
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the Varmail workload and are deleted before the GC in-
tegrity validation phase. This test also demonstrates that
SpanFS can correctly deal with the conflicts between the
GC thread and the normal I/O operations.

Ext4 SpanFS-16
Open without VFS cache 13.9 µs 24.7 µs
Open with VFS cache 3.4 µs 3.5 µs
Rename (1 core) 24 µs 609 µs
Rename (32 cores) 65 µs 2591 µs
unmount 4.323 s 5.272 s
mount 0.021 s 0.086 s

Table 5: The operation latency.

4.2.6 Overhead Analysis
We use the average operation latency reported by the
above Dbench running in Section 4.2.3 to show the re-
name overhead. As shown in Table 5, SpanFS with 16
domains is 24X and 39X slower than Ext4 at one core
and at 32 cores for the rename operation in Dbench, re-
spectively. We also create a micro-benchmark to evaluate
the rename overhead. The rename benchmark renames
10000 files to new empty locations and renames 10000
files to overwrite 10000 existing files. The result shows
that SpanFS is 25X and 84X slower than Ext4 for the
rename and overwritten rename.

We construct a benchmark open to evaluate the over-
head of validating the distributed object’s integrity dur-
ing lookup() in SpanFS. The benchmark creates 10000
files, remounts the file system to clean the cache and then
opens the 10000 files successively. We measure the aver-
age latency of each operation. As shown in Table 5, the
average latency in Ext4 is around 13.9 µs. In contrast,
the average latency is around 24.7 µs in SpanFS with 16
domains. We then open the 10000 files again without
remounting the file system. The results show that with
the VFS cache SpanFS exhibits almost the same perfor-
mance with Ext4.

We create a benchmark mount to evaluate the perfor-
mance of the mount and unmount operation in SpanFS.
The mount benchmark untars the compressed Linux
3.18.0 kernel source, then unmounts the file system and
mounts it again. Table 5 shows the time taken for SpanFS
and Ext4 to unmount and mount the file system. As
SpanFS builds the domains in sequence, SpanFS with 16
domains performs significantly worse than Ext4 for the
mount operation. Nevertheless, the time taken to mount
SpanFS only costs 86 ms.

5 Related Work
Scalable I/O stacks. Zheng et al. [43] mainly focus on
addressing the scalability issues within the page cache
layer, and try to sidestep the kernel file system bottle-
necks by creating one I/O service thread for each SSD.
However, their approach comes at the cost of communi-

cation between application threads and the I/O threads.
Some work that tries to scale in-memory file systems

has emerged. ScaleFS [21] uses per core operation logs
to achieve scalability of in-memory file system opera-
tions that can commute [19]. Hare [25, 24] tries to build
a scalable in-memory file system for multi-kernel OS.
However, these work does not focus on the scalability
issues of the on-disk file systems that need to provide
durability and crash consistency.

Wang et al. [40] leverage emerging non-volatile mem-
ories (NVMs) to build scalable logging for databases,
which uses a global sequence number (GSN) for depen-
dency tracking between update records and transactions
across multiple logs. However, due to the need of com-
plex dependency tracking, applying their approach to the
file systems needs to copy the updates to the journaling
layer, which will introduce copying overhead that has al-
most been eliminated in the file system journaling [39].
Meanwhile, their work needs the support of emerging
NVMs.
Isolated I/O stacks. Some work that tries to build iso-
lated I/O stacks shares some similarities with the domain
abstraction in our work in functionality. MultiLanes [27]
builds an isolated I/O stack for each OS-level container
to eliminate contention. Vanguard [36] and its relative
Jericho [32] build isolated I/O stacks called slices and
place independent workloads among the slices to elimi-
nate performance interference by assigning the top-level
directories under the root directory to the slices in a
round-robin manner. IceFS [31] partitions the on-disk
resources among containers called cubes to provide iso-
lated I/O stacks mainly for fault tolerant and provides a
dedicated running transaction for each container to en-
able parallel transaction commits. However, these work
cannot reduce the contention within each single work-
load that runs multiple threads/processes as it is hosted
inside one single isolated I/O stack.

In contrast with the above work, our work distributes
all files and directories among the domains to achieve
scalability and proposes a set of techniques to build a
global namespace and to provide crash consistency.

Although the domain abstraction in our work shares
some similarities with the cube abstraction of IceFS [31],
they differ in the following aspects. First, the cubes of
IceFS still share the same journaling instance, which can
cause contention when multiple cubes allocate log space
for new transactions simultaneously. Meanwhile, their
approach may still need to serialize parallel checkpoints
to make free space due to the single log shared by mul-
tiple cubes. In contrast, each domain in SpanFS has its
own journaling instance. Second, IceFS does not focus
on the lock contention within the block buffer cache layer
while SpanFS provides a dedicated buffer cache address
space for each domain to avoid such contention. Third,



260 2015 USENIX Annual Technical Conference USENIX Association

although IceFS supports dynamic block group allocation,
their paper does not describe how to provide crash con-
sistency during allocation. In contrast, our work provides
a detailed design of the block group reallocation mecha-
nism as well as how to maintain crash consistency during
reallocation.

The online adjusting of each domain’s size in the unit
of block groups shares some similarities with the Ext2/3
online resizing [20]. However, the Ext2/3 online resiz-
ing only focuses on adjusting one file system’s size. Our
work provides a design on online adjusting of the storage
space among multiple domains on demand and maintain-
ing crash consistency during reallocation.

RadixVM [18] implements a scalable virtual mem-
ory address space for non-overlapping operations in their
research OS. However, applying their approach to the
buffer cache address space needs to modify the Linux
kernel. In contrast, we leverage the Linux OS block ar-
chitecture to provide a dedicated buffer cache address
space for each domain to avoid the lock contention.
Scalable kernels. Disco [12] and Cerberus [37] run
multiple operating systems through virtualization to pro-
vide scalability. Cerberus [37] provides a consistent clus-
tered file system view on top of the virtual machines
(VMs). However, their approach comes with the cost
of inter-VM communication. Moreover, their paper does
not explicitly discuss how to maintain consistency of the
clustered file system in case of system crashes. Hive
[14] and Barrelfish [8] achieve scalability on many-core
through the multikernel model. Some work proposes
new OS structures to achieve scalability on many-core,
such as Corey [10], K42 [28] and Tornado [22]. SpanFS
is influenced and inspired by these work but focuses on
scaling file systems on fast storage as well as providing
crash consistency.
File system consistency check. NoFS [17] stores the
backpointers in data blocks, files and directories to ver-
ify the file system inconsistencies online, avoiding the
journaling overhead. However, as NoFS cannot verify
the inconsistencies of allocation structures such as in-
ode bitmap, it needs to scan all the blocks and inodes
to build the allocation information at mount time [17]. In
contrast, SpanFS only needs to perform GC when it has
gone through a crash and only needs to scan the remote
dentries under the span directories rather than the whole
device in case of a system crash.
Distributed file system. Some distributed file systems,
such as Ceph [41] and IndexFS [34], partition the global
namespace across computer nodes to provide parallel
metadata service. These work relies on the intercon-
nected network in a cluster to maintain a consistent view
across machines. In contrast, SpanFS relies on the CPU
cache coherence prototype to maintain consistency on
data structures within a single many-core machine.

6 Conclusion and Future Work
In this paper, we first make an exhaustive analysis of
the scalability bottlenecks of existing file systems, and
attribute the scalability issues to their centralized de-
sign, especially the contention on shared in-memory data
structures and the serialization of internal actions on de-
vices. Then we propose a novel file system SpanFS to
achieve scalability on many cores. Experiments show
that SpanFS scales much better than Ext4, bringing sig-
nificant performance improvements.

In our future work, we will implement the online ad-
justing of each domain’s size, explore the adjusting poli-
cies and evaluate their performance. In our current pro-
totype, the number of domains is fixed. We will explore
the dynamic domain creation strategy.
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Abstract
Modern NUMA multi-core machines exhibit complex la-
tency and throughput characteristics, making it hard to
allocate memory optimally for a given program’s access
patterns. However, sub-optimal allocation can signifi-
cantly impact performance of parallel programs.

We present an array abstraction that allows data place-
ment to be automatically inferred from program analysis,
and implement the abstraction in Shoal, a runtime library
for parallel programs on NUMA machines. In Shoal,
arrays can be automatically replicated, distributed, or
partitioned across NUMA domains based on annotating
memory allocation statements to indicate access patterns.
We further show how such annotations can be auto-
matically provided by compilers for high-level domain-
specific languages (for example, the Green-Marl graph
language). Finally, we show how Shoal can exploit ad-
ditional hardware such as programmable DMA copy en-
gines to further improve parallel program performance.

We demonstrate significant performance benefits from
automatically selecting a good array implementation
based on memory access patterns and machine charac-
teristics. We present two case-studies: (i) Green-Marl,
a graph analytics workload using automatically anno-
tated code based on information extracted from the high-
level program and (ii) a manually-annotated version of
the PARSEC Streamcluster benchmark.

1 Introduction
Memory allocation in NUMA multi-core machines is
increasingly complex. Good placement of and access
to program data is crucial for application performance,
and, if not carefully done, can significantly impact scal-
ability [3, 13]. Although there is research (e.g. [7, 3])
in adapting to the concrete characteristics of such ma-
chines, many programmers struggle to develop software
applying these techniques. We show an example in Sec-
tion 5.1.

The problem is that it is unclear which NUMA opti-

mization to apply in which situation and, with rapidly
evolving and diversifying hardware, programmers must
repeatedly make manual changes to their software to
keep up with new hardware performance properties.

One solution to achieve better data placement and
faster data access is to rely on automatic online moni-
toring of program performance to decide how to migrate
data [13]. However, monitoring may be expensive due to
missing hardware support (if pages must be unmapped
to trigger a fault when data is accessed) or insufficiently
precise (if based on sampling using performance coun-
ters). Both approaches are limited to a relatively small
number of optimizations (e.g. it is hard to incrementally
activate large pages or switch to using DMA hardware
for data copies based on monitoring or event counters)

We present Shoal, a system that abstracts memory ac-
cess and provides a rich programming interface that ac-
cepts hints on memory access patterns at the runtime.
These hints can either be manually written or automati-
cally derived from high-level descriptions of parallel pro-
grams such as domain specific languages. Shoal includes
a machine-aware runtime that selects optimal implemen-
tations for this memory abstraction dynamically during
buffer allocation based on the hints and a concrete com-
bination of machine and workload. If available, Shoal
is able to exploit not only NUMA properties but also
hardware features such as large pages and DMA copy
engines. Our contributions are:
• a memory abstraction based on arrays that decou-

ples data access from the rest of the program,
• an interface for programs to specify memory access

patterns when allocating memory,
• a runtime that selects from several highly tuned ar-

ray implementations based on access patterns and
machine characteristics and can exploit machine
specific hardware, features

• modifications to Green-Marl [20], a graph analyt-
ics language, to show how Shoal can extract access
patterns automatically from high-level descriptions.
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Figure 1: Architecture of a modern multi-core machine.

2 Motivation
Modern multi-core machines have complex memory
hierarchies consisting of several memory controllers
placed across the machine – for example, Figure 1 shows
such a machine with four host main memory controllers
(one per processor socket). Memory latency and band-
width depend on which core accesses which memory lo-
cation [8, 10]. The interconnect may suffer congestion
when access to memory controllers is unbalanced [13].

Future machines will be more complex: they may not
provide global cache coherence [21, 25], or even shared
global physical addresses [1]. Even today, accelerators
like Intel’s Xeon Phi, GPGPUs, and FPGAs have higher
memory access costs for parts of the physical memory
space [1]. Such hardware demands even more care in
application data placement.

This poses challenges to programmers when allocat-
ing and accessing memory. First, detailed knowledge
of hardware characteristics and a good understanding of
their implications for algorithm performance is needed
for efficient scalable programs. Care must be taken when
choosing a memory controller to allocate memory from,
and how to subsequently access that memory.

Second, hardware changes quickly meaning that de-
sign choices must be constantly re-evaluated to ensure
good performance on current hardware. This imposes
high engineering and maintenance costs. This is worth-
while in high-performance computing or niche markets,
but general purpose machines have too broad a hardware
range for this to be practical for many domains. The re-
sult is poor performance on most platforms.

These problems can be seen in much code today. Pro-
grammers take little care of where memory is allocated
and how it is accessed. In cases like the popular Stream-
cluster benchmark (evaluated in Section 5.1) and appli-
cations from the NAS benchmark suite [13], memory is
allocated using a low-level malloc call which provides
no guarantees about where memory is allocated or other
details such as the page size to use.

For example, Linux currently employs a first-touch

memory allocation strategy. Memory is not allocated di-
rectly when calling malloc, but mapped only when the
corresponding memory is first accessed by a thread. This
resulting page fault will cause Linux to back the faulting
page from the NUMA node of the faulting core.

A surprising consequence of this choice is that on
Linux the implementation of the initialization phase of
a program is often critical to its memory performance,
even through programmers rarely consider initialization
as a candidate for heavy optimization, since it almost
never dominates the total execution time of the program.
To see why, consider that memset is the most widely
used approach for initializing the elements of an array.
Most programmers will spend little time evaluating al-
ternatives, since the time spent in the initialization phase
is usually negligible. An example is as follows:

// ---- Initialization (sequential) -----------
void *ptr = malloc(ARRSIZE);
memset(ptr, 0, ARRSIZE);
// ---- Work (parallel, highly optimized) -----
execute_work_in_parallel();

The scalability of a program written this way can be
limited. memset executes on a single core and so all
memory is allocated on the NUMA node of that core.
For memory-bound parallel programs, one memory con-
troller will be saturated quickly while others remain idle
since all threads (up to 64 on the machines we evaluate)
request memory from the same controller. Furthermore,
the interconnect close to this memory controller will be
more susceptible to congestion.

There are two problems here: (i) memory is not allo-
cated (or mapped) when the interface suggests (memory
is not allocated inside malloc itself but later in the exe-
cution) and (ii) the choice of where to allocate memory is
made in a subsystem (the OS kernel) that has no knowl-
edge of the intended access patterns of this memory.

This can be addressed by tuning algorithms to spe-
cific operating systems. For example, we could initialize
memory using a parallel for loop:

// ---- Initialization (parallel) -------------
void *ptr = malloc(ARRSIZE);
#pragma omp parallel for
for (int i=0; i<ARRSIZE; i++)

init(i);
// ---- Work (parallel, highly optimized) -----
execute_work_in_parallel();

This will be faster and retain scalability in current
versions of Linux. The first-touch strategy will equally
spread out memory across all memory controllers, which
balances the load on them and reduces contention on in-
dividual interconnect links.

One drawback of this strategy is the loss of portabil-
ity and scalability when the OS kernel’s internal memory

2
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allocation policies change. Furthermore, it also requires
correct setup of OpenMP’s CPU affinity to ensure that all
cores participate in this parallel initialization phase in or-
der to spread memory equally on all memory controllers.
Finally, we might do better: allocate memory close to the
cores that access it the most.

Beyond simple placement of data, ideas and tech-
niques from traditional distributed systems like replica-
tion and partitioning can help to improve memory man-
agement [31]. Replication localizes data access by stor-
ing several copies of the same data, distributing load and
reducing communication costs. Replication carries the
cost of maintaining consistency when updating data, as
well as increasing the program’s memory footprint. Par-
titioning chunks data and places these blocks onto differ-
ent nodes. This balances load, and, if work is scheduled
close to data it is accessing, also localizes array accesses.
The key challenge in applying these techniques is that the
choice of a good distribution strategy depends critically
on concrete combinations of machine and workload.

Our work starts with the observation that memory ac-
cess patterns of applications are often encoded in high-
level languages or known by programmers. We show
how this information can be used to tune memory place-
ment and access without programmers having to under-
stand the characteristics of the machine at hand.

Automatic annotations from high-level DSLs. A trend
we exploit is the emergence of high-level domain spe-
cific languages (DSLs) [20, 37, 41]. These languages are
known for the ease of programming since their seman-
tics closely match a specific application domain. DSLs
typically compile to a low-level language (such as C),
possibly with several backends depending on the target
machine to execute the program. DSLs can provide us
with memory access patterns directly from the input pro-
gram with relatively simple modifications to high-level
compilers. Listing 1 shows an example program for the
Green-Marl graph analytics DSL.

Memory access patterns from two of Green-Marl’s

Procedure pagerank(/* arguments */) {
// .. initialization here
Do {

diff = 0.0; cnt++;
Foreach (t: G.Nodes) {

Double val = (1-d) / N + d*
Sum(w: t.InNbrs) {

w.pg_rank / w.OutDegree()} ;
diff += | val - t.pg_rank |;
t.pg_rank <= val @ t;

}
} While ((diff > e) && (cnt < max));

}
Listing 1: Excerpt from Green-Marl’s PageRank

high-level constructs in the PageRank example can be
determined as follows: (i) Foreach (T: G.Nodes)
means the nodes-array will be accessed sequen-
tially, read-only, and with an index, and (ii) Sum(w:
t.InNbrs) implies read-only, indexed accesses on in-
neighbors array.

We argue that memory access patterns encoded in
DSLs present a significant performance opportunity, and
should be passed to the runtime to enable automatic
tuning of memory allocation and access. Since low-
level code is generated by the DSL compiler, it is also
relatively easy to change the programming abstractions
used by the generated code for accessing memory. Only
the compiler (rather than the input program) must be
changed in such a case.

Manual annotations. Even without a DSL, program-
mers often know data access patterns when writing a pro-
gram. They understand the semantics of their programs
and, hence, how memory is accessed, but have no way
of passing this knowledge to the runtime to guide data
placement and access. Existing interfaces intended to en-
able this coarse-grained and inflexible. One example is
libnuma’s [34] NUMA-aware memory allocation, which
allows a client to specify which node memory should be
allocated from, but does not allow combining this with
other allocation options (such as large pages), and re-
quires a programmer to manually integrate this with par-
allel task scheduling.

In Shoal, we automatically tune data placement and
access based on memory access patterns and hints pro-
vided by a high-level compiler or by programmers. We
introduce (i) a new interface for memory allocation, in-
cluding machine-aware malloc call that accepts hints to
guide placement and (ii) an abstraction for data access
based on arrays. For these arrays, we provide several im-
plementations including data distribution, replication and
partitioning. All implementations can be interchanged
transparently without the need to change programs. Our
abstraction also admits implementations that are tuned to
hardware features (such as DMA engines) or accelerators
(Xeon Phi). The Shoal library automatically selects ar-
ray implementations based on array access patterns and
machine specifications. We currently support adaptions
based on the NUMA hierarchy, DMA engines, and large
MMU pages.

The result is that Shoal allows programmers to write
programs that achieve good performance without having
(i) to understand machine characteristics and (ii) need-
ing to constantly rewrite applications in order to keep up
with hardware changes. We demonstrate Shoal using the
Green-Marl graph DSL, and the Streamcluster low-level
C program from the PARSEC benchmark suite.

3
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3 Shoal’s array abstraction
Shoal’s memory abstraction is based on arrays. We found
this sufficient for the workloads we have been looking at
in the context of this research, but we expect to add more
data types in the future. We provide several array imple-
mentations, but all of them implement the same interface.
This allows Shoal to select an implementation transpar-
ently to the programmer. The optimal choice depends on
machine characteristics and memory access patterns.

// allocate an array
template<class T>
shl_array<T>* shl__malloc_array(size_t size,

bool ro, bool indexed,
bool used);

// get element at position i
T get(size_t i);
// set element at position i to v
void set(size_t i, T v);
// number of elements
size_t get_size(void);
// copy from another Shoal array
int copy_from_array(shl_array<T> *src);
// initialize every element with value
int init_from_value(T value);
// copy from a non-Shoal array
void copy_from(T* src);
// calculate the CRC checksum
unsigned long get_crc(void);
// initialize the current thread
void shl__thread_init(void);
// synchronize replicas
void shl__repl_sync(void* src, void **dest,

size_t num_dest, size_t size);

Listing 2: Interface of Shoal

3.1 Interface and programming model
Listing 2 illustrates Shoal’s programming interface,
which decouples computation and memory access allow-
ing transparent selection of different array implementa-
tions. Besides the usual set() and get() operators, we
provide a collection of high-level functions to initialize
memory and copy between Shoal arrays.

Thread initialization. In OpenMP, Shoal uses builtin
functions to determine the thread ID and the cor-
responding replica to be used. Per-thread array
pointers can otherwise be setup by manually calling
shl__thread_init() on each thread.

Array allocation. shl__malloc_array allocates
Shoal arrays and selects the best implementation for
the machine it is running on based on memory access
pattern hints given as arguments. Shoal always maps all
pages of an array to guarantee memory allocation and
avoid non-determinism.

Data operations. Reads and writes to arrays are per-
formed with get() and set(), but we also provide op-

timized high-level array operations for initializing and
copying arrays. These provide relaxed consistency guar-
antees: the order in which elements are initialized or
copied is not specified, allowing these operations to be
parallelized and offloaded to DMA engines in an asyn-
chronous fashion. Writes to replicas can be realized by
writing to the master copy and propagating the changes
to all replicas using shl__repl_sync(). This allows to
re-initialize replicated arrays, for example to reuse other-
wise read-only buffers in streaming applications.

3.2 Array types
We currently provide four array implementations.

Single-node allocation. Allocates the entire array on the
local node. While limited in scalability, performance is
independent of the OS since memory is guaranteed to be
mapped in the allocation phase. Single-node arrays are
rarely used for parallel programs.

Distribution. Distributed arrays allocate data equally
across NUMA nodes. The precise distribution is not
specified and depends on the implementation. This re-
duces pressure on memory controllers, but can lead to
high latency or congestion if many accesses are re-
mote. The performance of distributed arrays can be non-
deterministic, as data is scattered semi-randomly and
might vary between program executions.

Replication. Several copies of the array are allocated.
We currently always place one replica on each memory
controller. All data is then accessed locally. In addition
to distributing load across the system, this reduces pres-
sure on the interconnect at the cost of increased memory
footprint.

Partitioning. Partitioning is a form of distribution where
data is spread out in the machine such that work units
can be executed local to where their data is allocated. If
done carefully, array accesses are local as with replica-
tion, but without the increased memory footprint. This
implies a scheduling challenge, since the working set for
each thread must be known and the jobs scheduled ac-
cordingly.

3.3 Selection of arrays
In selecting an array implementation, we try to: (i) max-
imize local access to minimize interconnect traffic, (ii)
load-balance memory on all available controllers to avoid
points of contention, and (iii) transparently use hardware
features when available (e.g. DMA and large pages).

We show our policy for selecting array implementa-
tions in Figure 2: 1. we use partitioning if the array is
only accessed via an index, 2. we enable replication if
the array is read-only and fits into every NUMA node
of the host machine, and 3. we otherwise use a uniform
distribution among all available memory controllers.

4
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We only replicate read-only arrays, as we found that
the cost for maintaining consistency dominates the per-
formance benefits in current NUMA machines (Sec-
tion 5.4) – however, we plan to revisit this for more com-
plex NUMA hierarchies. In case of limited RAM, where
the increase in working set size with replication is not
tolerable, we can selectively activate replication based
on the cost function of memory accesses extracted from
the high-level program.

start

indexed
access?

is read
only?

partitioned distributed

fits all
nodes?

replicated

yes

no yes

no

yes

no
Figure 2: Array Selection

Large pages. If available, we use large pages. This is
not always optimal, and the impact of using large pages
is hard to anticipate, but on average enabling large pages
improves performance (in the future, we plan to enable
large pages per-array). Most current multi-core machines
have independent TLBs for different page sizes, sug-
gesting it might be useful to retain some arrays on nor-
mal pages. Also, the TLBs coverage for randomly ac-
cessed large arrays is still not sufficient to prevent TLB
misses. One approach would use large pages for mostly-
sequential array access, and 4k pages for randomly ac-
cessed data. We also plan to use huge pages (typically
1GB), which may keep most of the working set covered
by the TLB even for big workloads.

Overall, we have found this policy to be simple, but
effective.

4 Implementation
The Shoal runtime library is structured in two parts: (i)
a high-level array representation as defined in Section 3
based on C++ templates and (ii) a low-level, OS-specific
backend. We now describe the work-flow invoked when
Shoal is used together with a high-level DSL, and then
describe our low-level backends.

Figure 3 shows how Shoal is used with high-level, par-
allel languages.

High-level program. The input program is written in
a high-level parallel language, which in this paper is
Green-Marl, a DSL for graph analysis. Many other
high-level languages such as SQL [18] and OptiML [37]
provide similar resource usage information to the kind
we extract from Green-Marl; we show an example of a
Green-Marl expression of PageRank in Listing 1.

high-level
program

high-level
compiler Shoal

low-level
code (e.g. C)

compiler

access
patterns

hardware spec
config file

program

Shoal
library

Figure 3: Shoal system overview

High-level compiler. High-level DSLs often encode ac-
cess patterns in an intuitive way: for instance, the Green-
Marl DSL features language constructs to access all
nodes in a graph (see Foreach (t: G.Nodes) in List-
ing 1). From the language specification, we know that
this represents a read-only and sequential data access to
the nodes array. The high-level compiler translates the
input into low-level code while such access information
is lost. Our modifications to the Green-Marl compiler
extract this knowledge about array access patterns from
the input source code and makes it accessible to the gen-
erated code which uses Shoal’s array abstraction.

Low-level code with array abstractions. The gener-
ated code – here, C++ – uses Shoal’s abstraction to al-
locate and access memory. At compile time the concrete
choice of array implementation is not made; this happens
later at runtime based on hardware specifications.

Access patterns. In high-level languages, memory ac-
cess are usually implicit and translated into simple load
and store instructions. In Shoal, however, we use the
compiler to generate important information about load/-
store patterns which is then used by the runtime library.

Firstly, we capture the read/write-ratio. The number
of reads and writes by a program is workload specific,
but Shoal can still in many cases extract a formula es-
timating the number of reads and writes for a given in-
put. For example, the number of reads in Green-Marl’s
PageRank rank array is: kE ∗ kN, where E is the number
of edges and N is the number of nodes. Currently, Shoal
derives these formulas but only uses them to determine if
the array is read-only; we expect more sophisticated uses
of this information in the future. Secondly, we infer if
all accesses to an array are based solely on the loop vari-
able of a parallel loop. tmp indicates the array is used for
temporary values, ro that it is read-only, etc.

An example of the automatically extracted informa-
tion for Green-Marl’s PageRank can be seen on Table 1.

Hardware specification. The Shoal runtime takes the
hardware configuration of the system into account when
selecting array implementations. Currently, we consider
the following hardware features: (i) NUMA topology:
Shoal has a NUMA-aware array allocation function that

5
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array N E ro std tmp indexed
begin y y y
r_begin y y y
r_node_idx y y y
pg_rank y
pg_rank_nxt y y y

Table 1: Shoal’s extracted array properties for PageRank

attempts to distribute load on all memory controllers and
localize access to reduce pressure on interconnects. (ii)
RAM size: available memory can limit which arrays can
be replicated. (iii) Page size: Modern systems offer var-
ious page sizes and often provide a dedicated TLB for
each size. The use of large and huge pages is useful in re-
ducing TLB misses [17] in large working sets. (iv) DMA
engines: Some CPUs have integrated DMA engines [22].
We make use of these for copy and initialization.

Shoal program. The Shoal library takes care of select-
ing array implementations based on the extracted access
patterns, and hardware specification of the machine. The
executable generated by the compiler is a program binary
which links against the Shoal library.

OS-specific backends. To improve portability, we sep-
arate high-level array implementations from low-level,
OS-dependent functions which mediate access to the
memory allocation facilities or DMA devices. Currently,
we run on the Linux and Barrelfish [6] OSes to demon-
strate portability.

Topology information. Shoal needs to obtain informa-
tion about the system architecture including number of
NUMA nodes, their sizes and corresponding CPU affini-
ties. On Linux, this information can be obtained us-
ing libnuma [34]. In Barrelfish, hardware information
is stored in the system knowledge base [33].

Scheduling. For replication and partitioning, Shoal must
map threads to cores. On Linux we pin threads by set-
ting the affinities, whereas on Barrelfish we directly cre-
ate threads on specific cores. Given a concrete data dis-
tribution, scheduling can be optimized to execute work
units close to where data is accessed. To date, Shoal
is not fully integrated with the OpenMP runtime and
we use a static OpenMP schedule for partitioning to
ensure that work units are executed close to the parti-
tions they are working on. This works well for bal-
anced workloads, but can lead to significant slowdown
compared to dynamic schedules if the cost of execut-
ing work units is non-uniform. In the future, we plan
to design and integrate our own OpenMP runtime to pro-
vide us fine-grained control of scheduling without losing
performance for unbalanced workloads. An alternative
approach would schedule work units on partitions using
OpenMP 4.0’s team-statement.

Memory allocation. We want to provide strong guaran-
tees on where memory is allocated, but allocation poli-
cies are not consistent across OSes – indeed, they even
change between different version of the same OS. Linux,
for instance, implements a first touch allocation policy,
which causes confusion about where and when memory
will actually be allocated. Libraries such as libnuma pro-
vide an interface which gives more control, but this lacks
support for large and huge pages. Barrelfish [7] gives the
user the ability to manage its own address space via self-
paging [19]: an application requests memory explicitly
from a specific NUMA node and maps it as it wishes.

These systems provide different trade-offs between
complexity, portability, and maintainability of applica-
tion code and efficient use of the memory system: an ex-
plicit, flexible interface imposes an additional burden on
the client. We believe that programmers should not have
to deal with this complexity and want to avoid manual
tuning to adapt programs to new machines.

5 Evaluation
Our goal in this section: we show that programs scale
and perform significantly better with Shoal than with a
regular memory runtime. We also show a comparison of
our array implementations and analyze Shoal’s initializa-
tion cost, and finally we investigate the benefits of using
a DMA engine for array copy.

Table 2 shows the machines used for our evaluation.
Our results on both, 8x8 AMD Opteron and 4x8x2 Intel
Xeon, are similar. For brevity, we focus on results from
our 8x8 AMD Opteron unless stated otherwise. We use
two workloads: Green-Marl and PARSEC Streamcluster.

Green-Marl. The Green-Marl compiler comes with a
variety of programs of which we have selected three
graph algorithms to demonstrate the performance char-
acteristics of Shoal: (i) PageRank [30] iteratively calcu-
lates the importance of each node in the graph as a sum of
the rank of all incoming neighbors divided by the number
of outgoing edges they have, (ii) hop-distance calculates
the distance of every node from the root using Bellman-
Ford, and (iii) triangle-counting that counts the number
of triangles in the input graph. This is implemented as a
triple loop: for all nodes in the graph, it looks at all com-
binations of nodes reachable from it and checks if there
is an edge connecting them.

For our evaluation we used two graphs: (i) the Twit-
ter graph [23] having 41M nodes and 1468M edges. The
total working set size is 2.459 GB with Green-Marl con-
figured to 64 bit node and edge types (excluding unused
arrays). We were not able to run triangle-counting on the
Twitter graph on our system, hence we were falling back
on the LiveJournal graph [5] for that workload. LiveJour-
nal has 4M nodes and 69M edges with a total working set
of 392 MB in Green-Marl.
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machine 8x8 AMD Opteron 4x8x2 Intel Xeon 2x10 Intel Xeon
CPU AMD Opteron 6378 Intel Xeon E5-4640 Intel Xeon E5-2670 v2
micro architecture Piledriver Sandy Bridge Ivy Bridge
#nodes/#sockets 8/4 @ 2.4 GHz 4/4 @ 2.4 GHz 2/2 @ 2.5 GHz
L1 data size 16K /thread 32K /core 32K /core
L2/L3 size 2048K / 6144K 256K / 20480K 256K / 25600K
memory 512 GB (64 GB per node) 512 GB (128 GB per node) 256 GB (128 GB per node)

Table 2: Machines used for evaluation (L2 shared by core, L3 shared by socket)

PARSEC – Streamcluster. Streamcluster [9] solves the
online clustering problem. Input data is given as an array
of multi-dimensional points. We manually modified it to
use Shoal for memory allocation and accesses.

5.1 Scalability
In highly parallel workloads, scalability is one of the key
concerns. In this section we show the benefits of using
Shoal over unmodified versions of the workloads and that
allocating memory based on access patterns, if available,
is favorable over online methods.

Green-Marl. We evaluated scalability of three Green-
Marl workloads on an 8x8 AMD Opteron comparing
Shoal ( ) against the original Green-Marl implemen-
tation ( ) and Carrefour [13] ( ). Figure 4 shows
that Shoal clearly outruns the original implementation
by almost 2x and also performs better than the online
method as a result of an optimized memory placement.
Furthermore, our results show that an online method
can harm the performance in case pages are getting mi-
grated back and forth (hop-distance). Overall, except for
triangle-counting, all implementations scale well. Note
that we do not include the graph loading time and Shoal
initialization.

We also executed the same measurements on Bar-
relfish ( ) to show Shoal’s portability. Our intention
is not to show that either operating system is faster than
the other, but rather their comparability. On Barrelfish,
only static OpenMP schedules are supported due to im-
plementation limitations. This negatively impacts the
performance for triangle-counting. However, Shoal still
performs better than the original implementation, which
uses dynamic OpenMP schedules.

PARSEC – Streamcluster. In contrast to Green-Marl,
Streamcluster is implemented in C and hence there is
no automatic method of extracting access patterns. We
modified Streamcluster to use Shoal’s array abstraction
to demonstrate that using Shoal directly by program-
mers can improve scalability with little efforts for man-
ual annotation. To make Streamcluster work with Shoal,
we had to (i) abstract access to arrays using Shoal’s
get and set methods, (ii) initialize each thread using
shl__thread_init() and change the array allocation
to use shl__malloc_array() instead of malloc().
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Figure 5: Scalability of PARSEC streamcluster on 8x8 AMD
Opteron

Since Streamcluster is a streaming application, arrays
for input coordinates are reused for each chunk of new
streaming data, but are otherwise read-only. We use (iii)
shl__repl_sync() to synchronize the master copy of
the array to it’s replicas once after a new chunk has been
read. We compare the original Streamcluster implemen-
tation with Carrefour and Shoal (Figure 5). Our results
confirm the bad scalability of Streamcluster due to the
use of memset() after allocating arrays [13, 17], which
causes all memory to be allocated on a single NUMA
node. This leads to congestion of the interconnect and
memory controllers of that node. Shoal achieves an 4x
improvement over the original implementation. Shoal’s
annotated access allocation function outperforms Car-
refour’s online method. We want to emphasize here, that
we replaced only one of the used arrays with a Shoal ar-
ray (large pages and replication) and did not apply further
optimizations.

5.2 Comparison of array implementations
We conducted a detailed analysis of Shoal’s different ar-
ray implementations using all physical cores of our ma-
chines. In this section we show, that Shoal achieves
better performance than the original Green-Marl imple-
mentation regardless of which array configuration we
use. Figure 6 shows our results normalized to the orig-
inal Green-Marl implementation and Figure 8 shows
the breakdown into initialization and computation times.
The measurements were executed on the 8x8 AMD
Opteron using all 32 physical cores. Following, we give
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Figure 6: Comparison of various combinations of array imple-
mentations on 8x8 AMD Opteron: distribution (-d), replication
(-r), partitioning (-p), large page (-l) (runtime normalized to
stock-Green-Marl)

explanations for each configuration and relate them to
our performance counter observations (Figure 7).

Distribution ( ). The original Green-Marl implemen-
tation already initializes memory for storing the graphs
with a OpenMP loop to distribute memory in the ma-
chine. However, this is not done for dynamically allo-
cated arrays (e.g. the rank_next in PageRank). With
Shoal, all arrays are ensured to be distributed among the
nodes, resulting in a more even distribution of memory
and a better performance across all workloads. Initial-
ization of distributed arrays relies on an OpenMP loop to
allocate memory evenly across all NUMA nodes. Initial-
izing memory is hence executed in parallel, which results
in small initialization cost compared to other array types.
We show this in Figure 8.

Our claims are supported by measurements of each
memory controller’s read- and write throughput. (Fig-
ure 7): compared to the original implementation (i)
where all reads and writes are executed on socket 0, en-
abling distribution (ii) results in an evenly distributed
load on all memory controllers. However, in both cases,

the memory controllers are not saturated. Memory
throughput suffers from the lower bandwidth of the in-
terconnect links, i.e. 9.6GB/s for QPI. With randomly
distribution of memory, only 1/4 of all memory accesses
are expected to be local.

Distribution + replication ( ). In contrast to distribu-
tion, replication is applied only to read-only data. In our
workloads, the graph itself is not altered by the program
and hence replicated among the nodes. This results in a
increased fraction of locally served memory accesses and
lower interconnect traffic: memory accesses are evenly
distributed among all memory controllers as shown in
(iv) of Figure 7. Note, enabling replication without dis-
tribution allocates non-read-only arrays into single-node
arrays resulting in an unbalanced memory access for that
part of the working set, see (iii) of Figure 7. Initializa-
tion cost for replicated arrays are higher than distributed
arrays because more memory needs to be allocated. We
force correct allocation by touching each replica on its
designated node. Finally, copying the master array to the
other replicas causes some additional overhead when ini-
tializing such an array (Figure 8).

Partitioning ( and ). Replication of data increases
the memory footprint of the application. Partitioning
tries to preserve the locality of replication without in-
creasing the memory footprint. Our current implemen-
tation requires a static OpenMP schedule for partitioning
to ensure scheduling of work units to the right partitions.
However, static schedules potentially lead to imbalance
of work among the execution units as workloads may be
skewed (e.g. in triangle-counting). Eventhough the same
amount of memory has to be allocated as with distributed
arrays, its initialization is more complex: using Linux’
first touch policy, Shoal ensures memory is touched on
the correct node by migrating a thread to where memory
should be allocated and touching each page from there.
This results in similar initialization time as with replica-
tion, but slightly less time to copy the data.
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Large Pages ( and ). Modern CPUs support vari-
ous page sizes and have a distinct TLB for each page
size. A miss in the TLB enforces the CPU to do a full
page table walk which drastically increases the access
time. Shoal supports large pages for its arrays. Enabling
large pages for PageRank and triangle-counting results
in a slightly better performance, while hop-distance run-
time increases slightly. Gaud et al. [17] concluded sim-
ilar findings in their experiments with large pages. En-
abling large pages reduces the total number of pages used
and therefore the number of required first touches in the
allocation process. This results in a decrease of the allo-
cation time (Figure 8).

We conclude that despite the additional overhead of
allocation and initialization, the total runtime with Shoal
is still reduced. However, we want to emphasize here,
that we do not consider initialization time as a main tar-
get of optimization as typically time spent for computa-
tion dominates the program execution. Nevertheless, al-
location could be improved by (i) maintaining a cache of
pre-allocated pages on each node, (ii) applying a smarter
page mapping strategy or (iii) by initializing Shoal while
input data (e.g. the graph) is loaded.
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Figure 8: Shoal initialization and runtime on 8x8 AMD
Opteron for various array configurations using PageRank with
Twitter workload

5.3 Use of DMA engines
Modern CPUs have integrated DMA engines, which pro-
vide a rich set of memory operations. For instance, re-
cent Intel server CPUs provide integrated CrystalBeach
3 DMA engines [22]. We evaluate the use of DMA en-
gines for initialization and copy operations on a 2x10 In-
tel Xeon (our 8x8 AMD Opteron and 4x8x2 Intel Xeon
do not have DMA engines). We run these experiments
on Barrelfish, as user-level support for DMA engines
is already integrated and requires no additional setup.

We now compare the raw copy performance of DMA
controllers to CPU memcpy() and further evaluate how
DMA engines can be used in Shoal. Asynchronous
memory operations offered by DMA controllers can free
up the CPU of the burden of copying data around and
provide cycles to do actual work. Shoal offers an inter-
face to start an asynchronous memory copy and to check
for completion of the operation.
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Figure 9: Comparison of parallel OpenMP copy and DMA
copy on 2x10 Intel Xeon for large buffers (� cache size)

Comparing raw memory throughput. Our results of a
raw throughput evaluation (Figure 9) show, that the use
of DMA engines does not necessarily improve the se-
quential performance, especially for blocking copy oper-
ations as used by PageRank. However, to outperform the
DMA controller, all threads of the CPU have to be used
for memory copying and hence no other computational
task can be executed in the meantime.

We now show the DMA engines are useful if only a
few threads are available for synchronously copying ar-
rays or asynchronous copies. For example, we are plan-
ing to evaluate the use of DMA engines to propagate
writes to replicas in the background.
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Figure 10: Initialization cost for copying data into Shoal arrays
using the Twitter working set with replication on Barrelfish

DMA engines for initialization. We benchmark the ini-
tialization phase of PageRank where data is copied from
the graph’s memory into the Shoal arrays. We copy
a certain ratio of the array using DMA engines asyn-
chronously while using parallel OpenMP loops to copy
the remaining elements. Figure 10 shows how varying
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the ratio of how much of the array is copied using DMA
engines vs. parallel OpenMP loops affects performance.
For the parallel copy, we show the result for using all 20
physical threads and 40 SMT-threads respectively. First,
we see a big difference if we enable SMT ( ): as
expected, memory access latency is hidden and the use
of a DMA engine improves performance only slightly
(about 10%). This is presumably because these 40 hyper-
threads are sufficient to saturate all memory controllers
on that machine. With SMT disabled ( ), the mem-
ory latency cannot be hidden. Our results show clearly,
that using DMA engines and CPU copy simultaneously
reduces the time for copying arrays by 2x.

DMA engines for array copy. In our PageRank work-
load, the ranks are copied between two arrays in every
iteration. With our implementation, we can use DMA
engines to improve the copy time in that case too. How-
ever, our measurements show, that depending on the ar-
ray configuration only 1-5% of the entire runtime is spent
copying and hence optimize that part does not have a no-
table effect on PageRank’s total runtime, hop-distance
behaves similarly. However, workloads allowing asyn-
chronously copy of data would be a more obvious candi-
date for optimizations based on DMA engines.

To sum up, the effect of using DMA controllers for
memory operations highly depends on whether the pro-
gram has to share the resources with other workloads or
not. If all resources are available, DMA engines provide
about 10% improvement. On the otherhand if resources
are shared with other users, DMA engines provide up to
2x improvement in our case.

5.4 Writeable replication
Finally, we look at the issue of write-shared arrays.

Efficiently maintaining consistency of replicated data
is difficult; updates must be propagated to all replicas.
This can be achieved by issuing writes to all replicas
or by applying techniques such as double-buffering and
asynchronous copies. Both relax consistency guarantees,
but are strong enough for use with OpenMP loops, where

concurrent writes and reads in the same loop iteration
would cause non-determinism.

In this section, we show that replicating non-read-only
data does not deliver much benefit on current NUMA
machines for already otherwise optimized workloads:
the additional cost of house-keeping (e.g. maintaining
write-sets) and propagating updates to all replicas out-
weighs the potential performance gain of replication.

We compare writeable replicas with single-node allo-
cation and distribution (Table 3). Our results show that
the cost of maintaining consistency grows with the num-
ber of replicas. Furthermore, replication not necessarily
achieves better performance compared to distributed ar-
rays as the load on the interconnect in the latter case is
already relatively low.

We believe that writeable replication will be useful
(and needed) in heterogeneous systems, where memory
non-uniformity is more drastic (e.g. more NUMA nodes,
slower links). In that case, replication of data in local
memory is crucial for performance even in the presence
of updates. Writeable replication could also have an ap-
plication for more complex workloads (e.g. a smaller
fraction of read-only data), where the simple mecha-
nisms we presented in this paper cannot be applied.

dist configuration cost stderr notes
single-node 214.0 11.0
distributed 203.0 0.9
wr-rep, 2 reps 248.8 7.0 nodes: 0,n-1
wr-rep, 4 reps 333.6 5.9 nodes: 0,n-1
wr-rep w/o copy op 202.9 7.2

Table 3: Writeable replicas on 8x8 AMD Opteron. Workload:
hop-distance with -d -r -h configuration

6 Related work
Our work was originally inspired by recent research in
domain specific languages. Such languages are based
on the observation that it is hard to write efficient code
for a wide-range of different systems, as algorithms need
to be tuned to a concrete machine in order to achieve
good performance. DLSs express algorithms in a rich
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and intuitive way. The Green-Marl [20] graph analytics
DSL, OptiML [37], a machine learning DSL , as well as
SPL [41], a signal processing language, all provide a rich
set of powerful high-level operators. They use a compiler
that generates code that is highly tuned to the target ma-
chine and makes heavy use of data parallelism. While
all of these languages encode memory access patterns in
their high-level languages, none uses them to adapt mem-
ory allocation at runtime.

Modern machines are becoming inherently complex:
Baumann et al. argued that computers are already a
distributed system in their own right [8]. They pro-
posed a multikernel approach [7] which avoids sharing
of state among OS nodes by replication and applying
techniques from distributed systems. Similarly, Went-
zlaff et al. [40] apply partitioning to OS services. Tech-
niques from distributed systems are beneficial not only
on an OS level, but also for applications. Multimed [31]
replicates database instances within a single multi-core
machine. Salomie et al. showed that congestion of
memory controllers and interconnects impact the over-
all performance. Carrefour [13] attempts to reduce the
contention on interconnect and memory controllers by
online monitoring of memory accesses and auto-tuning
NUMA-aware memory allocation. This approach can
be applied to any application without modifications to
the program code, but is less fine-grained. While Shoal
derives a program’s semantics from annotations or DSL
compiler analysis, the former these approaches need to
guess programmers’ intentions in retrospect.

Systems such as SGI’s Origin 2000 [35] use page-level
migration and replication of data. Hardware monitors de-
tect the access patterns to pages (e.g., which processors
tend to access the page, and whether these are reads or
writes). Based on the gathered data, pages are replicated
or migrated towards a frequently accessing CPU.

With highly parallel workloads, efficient synchroniza-
tion is crucial for application performance [14]. Lock
cohorting [15] implements NUMA-aware locks by tak-
ing cache hierarchy and NUMA-topology into account.
Shoal’s treatment of memory is analogous to these sys-
tems’ treatment of locks.

Access to large and huge MMU pages is provided by
services and libraries like libhugetlbfs [4]. The lat-
ter, however, requires static setup of a large page pool,
among other issues.

Cache coherence protocols like MOESI [2] allow
cache-lines to be in a shared state which is a form of
hardware-level replication. This is only effective with
workloads having good locality and small working set,
which is not the case for our graph workloads. Research
systems, such as Stanford FLASH, have provided soft-
ware control over this form of replication [36].

The Solaris operating system provides a madvise [28]

operation to let an application give hints on future ac-
cesses to a memory region which results in a distributed
or local allocation to the calling thread. Shoal extends
this approach with a wider range of possible usage pat-
terns, and infers appropriate settings to use.

Li [24] attempts to find the best algorithm for a specific
task depending on machine characteristics and work-
load based on empirical search. In contrast, we decide
a priori based on additional information extracted from
high-level languages or given by manual annotations.
Franchetti et al. [16] automatically tune FFT programs to
multi-core machines. They argue that programming such
machines is increasingly complicated, which increases
the burden for programmers and makes a case for auto-
matic tuning. Atune-IL [32] auto-tunes applications, in-
cluding the number of threads etc. It explores all possible
parameters, but tries to reduce the search space.

However, tuning data placement and parallelism indi-
vidually is not optimal, because data and threads may not
end up on the same node. Hence, affinity of threads and
data need to be enforced in order to improve the perfor-
mance of OpenMP programs [38].

Finally, PGAS languages such as UPC [39], co-array
Fortran [27], X10 [12], Chapel [11], and Fortress [29]
provide an abstraction of shared arrays which can be im-
plemented across a distributed system. Code iterating
over an array can execute on the node holding the por-
tion of the array being accessed.

In high-performance computing, array abstrac-
tions [26] have been used to simplify programming
while still providing good performance and scalability.
They support high-level operations on arrays e.g. matrix
multiplications or atomic operators.

7 Conclusion

In this paper, we presented Shoal, a library that provides
an array abstraction and rich memory allocation func-
tions that allow automatic tuning of data placement and
access depending on workload and machine characteris-
tics. Tuning is based on memory access patterns. These
are either (i) given by manual annotation, or, ideally, (ii)
by modifying compilers of high-level languages to ex-
tract that information automatically. We have shown that
we can use this additional information to automatically
choose array implementations that increase performance
on today’s NUMA systems. We report an up 2x improve-
ment for Green-Marl, a high-level graph analytics work-
load, without changing the Green-Marl input program.
We found our memory abstraction as well as the simple
policy for selecting the array implementation sufficient
for current workloads and machines, but believe that fu-
ture machines can benefit from a more fine-grained se-
lection of array implementations.
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Abstract
It is well known that the placement of threads and

memory plays a crucial role for performance on NUMA
(Non-Uniform Memory-Access) systems. The conven-
tional wisdom is to place threads close to their memory,
to collocate on the same node threads that share data,
and to segregate on different nodes threads that com-
pete for memory bandwidth or cache resources. While
many studies addressed thread and data placement, none
of them considered a crucial property of modern NUMA
systems that is likely to prevail in the future: asymmetric
interconnect. When the nodes are connected by links of
different bandwidth, we must consider not only whether
the threads and data are placed on the same or different
nodes, but how these nodes are connected.

We study the effects of asymmetry on a widely avail-
able x86 system and find that performance can vary by
more than 2× under the same distribution of thread and
data across the nodes but different inter-node connectiv-
ity. The key new insight is that the best-performing con-
nectivity is the one with the greatest total bandwidth as
opposed to the smallest number of hops. Based on our
findings we designed and implemented a dynamic thread
and memory placement algorithm in Linux that delivers
similar or better performance than the best static place-
ment and up to 218% better performance than when the
placement is chosen randomly.

1 Introduction

Typical modern CPU systems are structured as sev-
eral CPU/memory nodes connected via an interconnect.
These architectures are usually characterized by non-
uniform memory access times (NUMA), meaning that
the latency of data access depends on where (which
CPU-cache or memory node) the data is located. For
this reason, the placement of threads and memory plays
a crucial role in performance. This property inspired

many NUMA-aware algorithms for operating systems.
Their insight is to place threads close to their mem-
ory [19, 12, 9], spread the memory pages across the sys-
tem to avoid the overload on memory controllers and in-
terconnect links [12], to collocate data-sharing threads
on the same node [30, 31] while avoiding memory con-
troller contention [7, 31, 10], and to segregate threads
competing for cache and memory bandwidth on differ-
ent nodes [34].

Further, modern operating systems aim to reduce the
number of hops used for thread-to-thread and thread-
to-memory communication. When balancing the load
across CPUs, Linux first uses CPUs on the same node,
then those one hop apart and lastly two or more hops
apart. These techniques assume that the interconnect be-
tween nodes is symmetric: given any pair of nodes con-
nected via a direct link, the links have the same band-
width and the same latency. On modern NUMA systems
this is not the case.

Figure 1 depicts an AMD Bulldozer NUMA machine
with eight nodes (each hosting eight cores). Interconnect
links exhibit many disparities: (i) Links have different
bandwidths: some are 16-bit wide, some are 8-bit wide;
(ii) Some links can send data faster in one direction than
in the other (i.e., one side sends data at 3/4 the speed of a
16-bit link, while the other side can only send data at the
speed of an 8-bit link). We call these links 16/8-bit links;
(iii) Links are shared differently. For instance the link
between nodes 4 and 3 is only used by these two nodes,
while the link between nodes 2 and 3 is shared by nodes
0, 1, 2, 3, 6 and 7; (iv) Some links are unidirectional.
For instance node 7 sends requests directly to node 3, but
node 3 routes its answers via node 2. This creates an
asymmetry in read/write bandwidth: node 7 can write at
4GB/s to node 3, but can only read at 2GB/s.

The asymmetry of interconnect links has dramatic and
at times surprising effects on performance. Figure 2
shows the performance of 20 different applications on
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Machine A (Figure 1)1. Each application runs with 24
threads and so it needs three nodes to run on. We vary
which three nodes are assigned to the application and
hence the connectivity between the nodes. The rela-
tive placement of threads and memory on those nodes
is identical in all configurations. The only difference is
how the chosen nodes are connected. The figure shows
the performance on the best-performing and the worst-
performing subset of nodes for that application compared
to the average (obtained by measuring the performance
on all 336 unique subsets of nodes and computing the
mean). We make several observations. First, the perfor-
mance on the best subset is up to 88% faster than the
average, and the performance on the worst subset is up
to 44% slower. Second, the maximum performance dif-
ference between the best and the worst subsets is 237%
(for facerec). Finally, the mean difference between the
best and worst subsets is 40% and the median 14%. In
the following section we demonstrate that these perfor-
mance differences are caused by the asymmetry of the
interconnect between the nodes.

This work makes the following contributions:

• We quantify and characterize the effects of asym-
metric interconnect on a commercial x86 NUMA
system. The key insight is that the best-performing
connectivity is the one with the greatest total band-
width as opposed to the smallest number of hops.

• We design, implement and evaluate a new algorithm
that dynamically picks the best subset of nodes for
applications requiring more than one node. This
algorithm places the clusters of threads and their
memory to ensure that the most intensive CPU-to-
CPU or CPU-to-memory communication occurs be-
tween the best-connected nodes. Our evaluation
shows that this algorithm performs as well as or bet-
ter than the best set of nodes chosen statically.

• Our implementation revealed a limitation in hard-
ware counters, which prevented us from having cer-
tain flexibilities in the algorithm. We discuss them
and make suggestions for improvements.

The paper is structured as follows. Section 2 stud-
ies the impact of interconnect asymmetry and discusses
challenges in catering to this phenomenon in an oper-
ating system. Section 3 discusses current architectural
trends and shows that machines are becoming increas-
ingly asymmetric. Section 4 presents our algorithm, and
Section 5 reports on the evaluation. Section 6 discusses
related work, and Section 7 provides a summary.

1Additional details about the applications and the machine are pro-
vided in Section 5.

2 The Impact of Interconnect Asymmetry
on Performance

To explain the reasons behind the performance reported
in Figure 2, Figure 3 shows the memory latency mea-
sured when the application runs on the best and worst
node subsets relative to the latency averaged across all
336 possible subsets. We can see that memory accesses
performed by facerec are approximately 600 cycles faster
when running on the best subset of nodes relative to the
average, and 1400 cycles faster relative to the worst. We
can see that the latency differences are tightly correlated
with the performance difference between configurations.
The applications that are the most affected by the choice
of nodes on which to run are also those with the highest
difference in the memory latencies.

To further understand the cause of very high laten-
cies on “bad” configurations we analyzed streamcluster
– an application from the Parsec [26] benchmark suite,
which was among the most affected by the placement of
its threads and memory. In the following experiment we
run streamcluster with 16 threads on two nodes. Table 1
presents the salient metrics for each possible two-node
subset. Depending on which two nodes we chose, we
observe large (up to 133%) disparities in performance.
The data in Table 1 leads to several crucial observations:

• As shown earlier, performance is correlated with the
latency of memory accesses.

• Surprisingly, the latency of memory accesses is
not correlated with the number of hops between
the nodes: some two-hop configurations (shown in
bold) are faster than one-hop configurations.

• The latency of memory accesses is actually corre-
lated with the bandwidth between the nodes. Note
that this makes sense: the difference between one-
hop vs. two-hop latency is only 80 cycles when the
interconnect is nearly idle. So a higher number of
hops alone cannot explain the latency differences of
thousands of cycles.

Bandwidth between the nodes matters more than the

distance between them.
So the problem of choosing a “good” subset of nodes

is essentially the problem of the placement of threads

and memory pages on a well-connected subset of nodes.
When an application executes on only two nodes on a
machine similar to the one used in the aforementioned
experiments, the placement on the nodes connected with
the widest (16-bit) link is always the best because it max-
imizes the bandwidth and minimizes the latency between
the nodes. However, when an application needs more
than two nodes to run, no configuration exists with 16-
bit links between every pair of nodes, so we must decide

2
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Node 0 Node 4 Node 5 Node 1

Node 6 Node 2 Node 3 Node 7

8b link
16b link
16b/8b link

(Machines A and B)

Figure 1: Modern NUMA systems, with eight nodes. The width of links varies, some paths are unidirectional (e.g.,
between 7 and 3) and links may be shared by multiple nodes. Machine A has 64 cores (8 cores per node - not
represented in the picture) and machine B has 48 cores (6 cores per node). Not shown in the picture: the links between
nodes 4 and 1 and between nodes 2 and 7 are bidirectional on machine B. This changes the routing of requests from
node 7 to 2 and node 1 to 4.
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Master thread Execution Time Diff with Latency of memory % accesses Bandwidth to
node (s) 0-1 (%) accesses (cycles) via 2-hop the “master”

(compared to 0-1(%)) links node (MB/s)

0 1 - 148 0% 750 0 5598

0 4 - 228 56% 1169 (56%) 0 2999

0 2
0 228 56% 1179 (57%) 0 2973
2 168 15% 855 (14%) 0 4329

0 3
2

1

0 340 133% 1527 (104%) 98 1915
3 185 27% 1040 (39%) 98 3741

0 54
0 340 133% 1601 (113%) 98 1903
5 228 56% 1206 (61%) 98 2884

3 7
2 3 185 27% 1020 (36%) 0 3748

7 338 132% 1614 (115%) 98 1928

5 1
4 1 338 132% 1612 (115%) 98 1891

5 230 58% 1200 (60%) 0 2880

2 7
3

2 167 15% 867 (16%) 98 3748
7 225 54% 1220 (63%) 0 3014

4 1
5

4 230 58% 1205 (60%) 0 2959
1 226 55% 1203 (60%) 98 2880

Table 1: Performance of streamcluster executing with 16 threads on 2 nodes on machine A. The performance depends
on the connectivity between the nodes on which streamcluster is executing and on the node on which the master thread
is executing. Numbers in bold indicate 2-hops configurations that are as fast or faster than some 1-hop configurations.

which nodes to pick. When there is more than one ap-
plication running, we need to decide how to allocate the
nodes among multiple applications.

Nodes % perf. relative to best subset
streamcluster SPECjbb

0, 1, 3, 4, and 7 -64% 0% (best)
2, 3, 4, 5, and 6 0% (best) -9.4%

Table 2: Performance of streamcluster and SPECjbb on
two different set of nodes on machine A, relative to the
best set of nodes for the respective application.

In this paper, we present a new thread and memory
placement algorithm. Designing such an algorithm for
asymmetrically connected NUMA systems is challeng-
ing for the following reasons:

Efficient online measurement of communication
patterns is challenging: The algorithm must measure
the volume of CPU-to-CPU and CPU-to-memory com-
munication for different threads in order to determine the
best placement when we cannot run the entire application
on the best connected nodes. This measurement process
must be very efficient, because it must be done continu-
ously in order to adapt to phase changes.

Changing the placement of threads and mem-
ory may incur high overhead: Frequent migration of
threads may be costly, because of the associated CPU
overhead, but most importantly because cache affinity
is not preserved. Moreover, when threads are migrated
to “better” nodes, it might be necessary to migrate their
memory in order to avoid the overhead of remote ac-
cesses and overloaded memory controllers. Migrating
large amounts of memory can be extremely costly. Thus,

thread migration must be done in a way that minimizes
memory migration.

Accomodating multiple applications simultane-
ously is challenging: Applications have different com-
munication patterns and are thus differently impacted by
the connectivity between the nodes they run on. As an
illustration, Table 2 presents the performance of stream-
cluster and SPECjbb executing on two different sets of
five nodes (the best set of nodes for the two applications,
respectively). The two applications behave differently on
these two sets of nodes: streamcluster is 64% slower on
the best set of nodes for SPECjbb than on its own best
set. The algorithm must, therefore, determine the best
set of nodes for every application. Furthermore, it can-
not always place each application on its best set of nodes,
because applications may have conflicting preferences.

Selecting the best placement is combinatorially dif-
ficult: The number of possible application placements
on an eight-node machine is very large (e.g., 5040 possi-
ble configurations for four applications executing on two
nodes). So, (i) it is not possible to try all configurations
online by migrating threads and then choosing the best
configurations, and (ii) doing even the simplest compu-
tation involving “all possible placements” can still add a
significant overhead to a placement algorithm.

Before describing how we addressed these challenges,
we briefly discuss architectural trends and the increasing
impact of interconnect asymmetry.

3 Architectural trends

Asymmetric interconnect is not a new phenomenon.
Nevertheless, we show in this section that its effects on

4
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performance are increasing as machines are built with
more nodes and cores. For that purpose, we measured
the performance of streamcluster on four different asym-
metric machines: two recent machines with 64 and 48
cores respectively, and 8 nodes (Machines A and B, Fig-
ure 1), and two older machines with 24 and 16 cores
respectively, and 4 nodes (Machines C and D, not de-
picted). Machines A and B have highly asymmetric in-
terconnect; Table 1 lists all possible interconnect config-
urations between 2 nodes. Machines C and D have a less
pronounced asymmetry. Machine C has full connectiv-
ity, but two of the links are slower than the rest. Machine
D has links with equal bandwidth, but two nodes do not
have a link between them.

Table 3 shows the performance of streamcluster
with 16 threads on the best-performing and the worst-
performing set of nodes on each machine. The perfor-
mance difference between the best and worst configura-
tions increases with the number of cores in the machine:
from 3% for the 16-core machine to 133% for the 64-core
machine. We explain this as follows: (i) On the 16-core
Machine D, the only difference between configurations
is the longer wire delay between the nodes that are not
connected via a direct link. This delay is not significant
compared to the extra latency induced by bandwidth con-
tention on the interconnect. (ii) The CPUs on 24-core
Machine C have a low frequency compared to the other
machines. As a result, the impact of longer memory la-
tency is not as pronounced. More importantly, the net-
work on this machine is still a fully connected mesh, so
there is less asymmetry than on Machines A and B. (iii)
The 48- and 64-core Machines B and A offer a wider
range of bandwidth configurations, which increases the
difference between the best and the worst placements.
The 64-core machine is more affected than the 48-core
machine because it has more cores per node, which in-
creases the effects of bandwidth contention.

If this trend holds across different machines and archi-
tectures, then it is clear that the effects of asymmetry can
no longer be ignored.

Machine Best time Worst time Difference
A (64 cores) 148s 340s 133%
B (48 cores) 149s 277s 85%
C (24 cores) 171s 229s 33%
D (16 cores) 255s 262s 3%

Table 3: Performance of streamcluster executing on 2
nodes on machine A, B, C, and D. The performance of
streamcluster depends on the placement of its threads.
The impact of thread placement is more important on re-
cent machines (A and B) than on older ones (C and D).

4 Solution

4.1 Overview
We designed AsymSched, a thread and memory place-
ment algorithm that takes into account the bandwidth
asymmetry of asymmetric NUMA systems. Asym-
Sched’s goal is to maximize the bandwidth for CPU-
to-CPU communication, which occurs between threads
that exchange data, and CPU-to-memory communica-
tion, which occurs between a CPU and a memory node
upon a cache miss. To that end, AsymSched places
threads that perform extensive communication on rela-
tively well-connected nodes and places the frequently
accessed memory pages such that the data requests are
either local or travel across high-bandwidth paths.

AsymSched is implemented as a user level process and
interacts with the kernel and the hardware using system
calls and /proc file system, but could also be easily in-
tegrated with the kernel scheduler if needed.

AsymSched continuously monitors hardware counters
to detect opportunities for better thread placements. The
thread placement decision occurs every second, and
AsymSched only migrates threads when the benefits of
migration is expected to exceed its overhead. The place-
ment of memory pages follows the placement of threads.

AsymSched relies on three main techniques to manage
threads and memory: (i) Thread migration: changing
the node where a thread is running. (ii) Full memory mi-
gration: migrating all pages of an application from one
node to another. Full memory migration is performed us-
ing a new system call that we present in Section 4.3. (iii)
Dynamic memory migration: migrating only the pages
that an application actively accesses. Dynamic memory
migration uses Instruction-Based Sampling (IBS), a pro-
filing mechanism available in AMD processors2, to sam-
ple memory accesses and to identify the most frequently
accessed pages. Then, the pages that are not shared are
migrated to the node that accesses them. Shared pages
are spread across multiple nodes. We use the same al-
gorithm and techniques described in [12]; we therefore
omit further details on dynamic memory migration.

4.2 Algorithm
AsymSched relies on 3 components. The measurement
component continuously computes salient metrics. The
decision component uses these metrics to periodically
compute the best thread placements. The migration com-
ponent migrates threads and memory. Table 4 presents
the definitions relevant to AsymSched. Algorithm 1 sum-
marizes the algorithm.

2Intel processors have a similar mechanism called Precise Event-
Based Sampling (PEBS).
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Per cluster (C) statistics
Crbw Remote bandwidth: the number of mem-

ory accesses performed by threads in the
cluster to another node, i.e., remote ac-
cesses.

Cweight “Weight” of the cluster. Clusters with the
highest weights are scheduled on the nodes
with the highest interconnect bandwidth.
By default Cweight = log(Crbw).

Cbw(P) Maximum bandwidth of C threads on
placement P.
Per placement (P) statistics

Pwbw Weighted total bandwidth of P. Is equal to
the sum of the Cbw(P) ∗Cweight for every
placed cluster C.

Pmm Amount of memory that has to be migrated
to use this placement.
Per application (A) statistics

Atm Time already spent migrating memory.
Att Dynamic running time of the application.
Amm[node] Resident set size of the application, per

node.
AoldA Percentage of memory accesses performed

on nodes on which the application was
scheduled but is no longer scheduled on.

Table 4: Definitions relevant to AsymSched.

Measurement. AsymSched continuously gathers the
metrics characterizing the volume of CPU-to-CPU and
CPU-to-memory communication. On our experimental
system there is a single counter that captures both: it
measures the number of data accesses performed by a
CPU to a given node and includes both the accesses to
cached data (CPU-to-CPU communication) and to the
data located in RAM (CPU-to-memory communication).
Ideally, we would like to measure the communication
volume from every CPU to every other CPU, however
the counters available on AMD systems do not offer this
opportunity. One alternative is to use AMD’s Instruc-
tion Based Sampling (IBS)3. Unfortunately, to accurately
track CPU-to-CPU communication, IBS requires a high
sampling rate, and that introduces too much overhead.
Lightweight Profiling (LWP), a new profiling facility of
AMD processors, has a smaller overhead, but is only par-
tially implemented in current processors. Despite these
limitations, we believe that it is only a matter of time un-
til they are addressed in the mainstream hardware, so for
the time being we use the following work-around.

The algorithm described below relies on detecting
which threads share data. Since we can only practically

3PEBS, Precise Event-Based Sampling, is a similar feature on Intel
systems.

measure the communication between a CPU and a re-
mote node, but not CPU-to-CPU communication (either
across or within nodes), we make the following simpli-
fying assumptions: (a) a thread may share data with any
other thread running on the same node, (b) if there is a
high volume of communication between a CPU and a
node, a thread running on that CPU may share data with
any thread of the same application on that node. To re-
duce the occurrence of situations where we assume data
sharing while in reality there is none, we initially collo-
cate threads from the same application on the same node,
to the extent possible. Data sharing is far more common
between threads from the same application than between
threads from different applications.

The downside of this simplifying assumption is that
we may unnecessarily keep a group of threads collocated
on the same node even if they do not share data. But there
is also an important benefit: characterizing the commu-
nication in terms of CPU-to-node keeps the number of
sharing relationships to consider small and reduces the
complexity of the algorithm.

Decision. The following description relies on defini-
tions in Table 4. Step 1: AsymSched groups threads of
the same application that share data in virtual clusters.
A cluster is simply a list of threads that share data. It
then assigns a weight Cweight to each cluster; clusters with
the highest weights will be scheduled on the nodes with
the best connectivity. By default clusters are weighed
by the logarithm of the number of remote memory ac-
cesses performed by their threads (Cweight = log(Crbw)).
The logarithm deemphasizes small differences in Crbw
between the clusters, while preserving large differences.
This makes it much easier for the algorithm to pick out
the clusters with a relatively high Crbw and place them on
well-connected nodes.

Step 2: AsymSched computes possible placements for
all the clusters. A placement is an array mapping clus-
ters to nodes. It works at the node granularity, so the
number of possible placements is equal to the number of
node permutations (i.e., migrating all threads of node X
to node Y and vice versa). As this number can be very
large, it is important that AsymSched not test all possible
placements. Section 4.3 details how AsymSched avoids
testing all possible placements. For each placement P,
AsymSched computes the maximum bandwidth Cbw(P)
that each cluster C would receive if it were put in this
placement. Each placement is assigned a performance
metric, Pwbw, the weighted bandwidth of P, defined as
Pwbw = ∑

C∈clusters
Cbw(P) ∗Cweight . The higher Pwbw, the

higher the bandwidth available to clusters that perform a
lot of remote communications. The definition of Cweight
implies that our algorithm aims to optimize the overall
communication bandwidth across all applications. The
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algorithm can be easily changed to optimize a different
metric, e.g., one that takes into account application pri-
orities, by changing the definition of Cweight .

Step 3: AsymSched filters placements to keep only
those that have a weighted bandwidth value at least equal
to 90% of the maximum weighted bandwidth. Among
these remaining placements AsymSched chooses those
that will minimize the number of page migrations.

Step 4: For each application, AsymSched estimates
the overhead of memory migration assuming the cost
of 0.3s per GB, which was derived on our system us-
ing simple experiments. If the overhead is deemed too
high, the new placement will not be applied. Another
goal here is to avoid migrating the applications back
and forth because of recurring changes in communica-
tion patterns and accumulating a high overhead. To that
end, AsymSched keeps track of the total time already
spent doing memory migration for the application: Atm.
If that time plus the estimated cost of additional migra-
tion ( ∑

n∈migrated nodes
Amm[n]∗0.3) exceeds 5% of the run-

ning time of the application (Att ), then AsymSched does
not apply the new thread placement. We chose 5% as
a reasonable maximum overhead value. In practice, the
highest overhead we observed was around 3%.

Migration. Step 1: AsymSched migrates threads us-
ing system calls that are available in the Linux kernel.

Step 2: AsymSched relies on dynamic migration to mi-
grate the subset of pages that the application uses. If,
after two seconds, the application still performs more
than 90% of its memory accesses on the nodes where
it was previously running (AoldA > 90%), then Asym-
Sched concludes that dynamic migration was not able to
migrate the working set of the application and performs
a full memory migration.

The Measurement, Decision and Migration phases de-
scribed above are performed continuosly to account for
phase changes in applications and other dynamics.

4.3 Optimizations and tricks

We integrated several optimizations within AsymSched
to ensure that it runs accurately and with low overhead.

Fast memory migration. When AsymSched performs
full memory migration, all the pages located on one node
are migrated to another node. The applications we tested
have large working sets (up to 15GB per node), and
migrating pages is costly. We measured that migrating
10GB of data using the standard migrate pages sys-
tem call takes 51 seconds on average, making migration
of large applications impractical.

Therefore, we designed a new system call for memory
migration. This system call performs memory migration
without locks in most cases, and exploits the parallelism

Algorithm 1 AsymSched algorithm
1: if Threads of nodes N1 and N2 access a common

memory controller and threads of N1 and N2 have
the same pid then

2: Put all threads running on N1 and N2 in a cluster
C and Increase Crbw

3: end if
4: Compute relevant cluster placements
5: Maxwbw = 0
6: for all P ∈ computed placements do
7: Pwbw = ∑

C∈clusters
Cbw(P)∗Cweight

8: Maxwbw = max(Maxwbw,Pwbw)
9: end for

10: for all P ∈ computed placements do
11: Skip if Pwbw <90%*Maxwbw
12: Compute Pmm
13: end for
14: Choose the placement with the lowest Pmm
15: for all A ∈ migrated applications do
16: if Atm + ∑

n∈migrated nodes
Amm[n] ∗ 0.3 > 0.05*Att

then
17: Do not change thread placement
18: end if
19: end for
20: Migrate threads
21: Use dynamic memory migration
22: After 2 seconds:
23: for all A ∈ migrated applications do
24: if AoldA > 90% then
25: Fully migrate memory of A
26: end if
27: end for

available on multicore machines. Using our system call,
migrating memory between two nodes is on average 17×
faster than using the default Linux system call and is only
limited by the bandwidth available on interconnect links.
Unlike the Linux system call, our system call can migrate
memory from multiple nodes simultaneously. So if we
are migrating the memory simultaneously between two
pairs of nodes that do not use the same interconnect path,
our system call will run about 34 times faster.

Fast migration works as follows. (i) First, we “freeze”
the application by sending SIGSTOP to all its threads.
Freezing the application is done to ensure that the appli-
cation does not allocate or free pages during migration.
This allows removing many locks taken by the Linux
memory migration mechanism, and since up to 80% of
migration time can be wasted waiting on locks, the re-
sulting performance improvements are significant. (ii)
Second, we parse the memory map of the application
and store all pages in an array. We then launch worker
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threads on the node(s) on which the application is sched-
uled. Worker threads process pages stored in the array
in chunks of 30 thousand. The old page is unmapped,
data is copied to a new page, the new page is remapped,
and the old page is freed. Shared pages or pages that are
currently swapped are ignored.

Avoiding evaluation of all possible placements. The
number of all possible thread placements on a machine
can be very large. We use two techniques to avoid com-
puting all thread placements: (i) A lot of thread place-
ment configurations are “obviously” bad. For instance,
when a communication-intensive application uses two
nodes, we only consider configurations with nodes con-
nected with a 16-bit link. (ii) Several configurations are
equivalent (e.g., the bandwidth between nodes 0 and 1
and between nodes 2 and 3 is the same). To avoid esti-
mating the bandwidth of all placements, we create a hash
for each placement. The hash is computed so that equiva-
lent configurations have the same hash. Using simple dy-
namic programming techniques, we only perform com-
putations on non-equivalent configurations.

These two techniques allow skipping between 67%
and 99% of computations in all tested configurations
with clusters of 2, 3 or 5 nodes (e.g., with 4 clusters of 2
nodes, we only evaluate 20 configurations out of 5040).

5 Evaluation

Our goal is to evaluate the impact of asymmetry-aware
thread placement in isolation from other effects, such
as those stemming purely from collocating threads that
share data on the same node. Performance benefits of
sharing-aware thread clustering are well known [30].
AsymSched clusters threads that share data as described
in the Section 4; the Linux thread scheduler, how-
ever, does not. We experimentally observed that Linux
performed worse than clustered configurations. E.g.,
when graph500 and specjbb are scheduled simultane-
ously, both run 23% slower on Linux than on an av-
erage clustered placement. Since comparing Linux to
AsymSched would not be meaningful because of that, we
instead compare AsymSched4 to the best and the worst
static placements of data-sharing thread clusters. We
also compare the average performance achieved under all
static placements that are unique in terms of connectiv-
ity. We obtain all unique static placements with respect to
connectivity by examining the topology of the machine.
There are 336 placements for single-application scenar-
ios and 560 placements for multi-application scenarios.

Further, we want to isolate the effects of thread place-
ment with AsymSched from the effects of dynamic mem-

4When running AsymSched, thread clusters are initially placed on a
randomly chosen set of nodes.

ory migration. To that end, we compare AsymSched to
the subset of our algorithm that performs the dynamic
placement of memory only, turning off the parts perform-
ing thread placement.

5.1 Experimental platform
We evaluate AsymSched on machine A. It is equipped
with four AMD Opteron 6272 processors, each with two
NUMA nodes and 8 cores per node (64 cores in total).
The machine has 256GB of RAM and uses HyperTrans-
port 3.0. It runs Linux 3.9.

We used several benchmark suites: the NAS Paral-
lel Benchmarks suite [6] which is composed of numeric
kernels, MapReduce benchmarks from Metis [25], paral-
lel applications from Parsec [26], Graph500 [1], a graph
processing application with a problem size of 21, Fac-
eRec from the ALPBench benchmark suite [11], and
SPECjbb [2] running on OpenJDK7. From the NAS
and Parsec benchmark suites we picked the benchmarks
that run for at least 15 seconds, and that can be exe-
cuted with arbitrary numbers of threads. The memory
usage of the benchmarks ranges from 518MB for EP
from the NAS suite to 34,291MB for IS from NAS. Ex-
cept for SPECjbb, we use the execution time of applica-
tions as performance indicator. SPECjbb runs during a
fixed amount of time; we use the throughput (measured
in SPECjbb bops) as performance indicator.

5.2 Single application workloads
The results are presented in Figure 4. AsymSched always
performs close to the best static thread placement. In
a few cases where it does not, the difference is not sta-
tistically significant. For applications that produce the
highest degree of contention on the interconnect links
(streamcluster, pca, and facerec), AsymSched achieves
much better performance than the best thread placement,
because the dynamic memory migration component bal-
ances memory accesses across nodes, thus reducing con-
tention on interconnect links and memory controllers.

We also observe that dynamic memory migration
without the migration of threads is not sufficient to
achieve the best performance. More precisely, dynamic
memory migration alone often achieves performance
close to average. Moreover, it produces a high standard
deviation for many benchmarks: the minimum and max-
imum performance often being the same as that of the
best and worst static thread placement. For instance,
on SPECjbb, the difference between the minimum and
maximum performance with dynamic memory migration
alone is 91%.

In contrast, AsymSched produces a very low standard
deviation for most benchmarks. Two exceptions are is.D
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Figure 4: Performance difference between the best and worst static thread placement, dynamic memory placement,
AsymSched and the average thread placement on machine A. Applications run with 24 threads on 3 nodes.
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Figure 5: Memory latency under the best and worst static thread placement, dynamic memory placement, AsymSched
and the average thread placement on machine A. Applications run with 24 threads on 3 nodes.

and SPECjbb. This is because in both cases, AsymSched
migrates a large amount of memory. Both applications
become memory intensive after an initialization phase,
and AsymSched starts migrating memory only after the
entire working set has been allocated. For instance, in
the case of is.D, AsymSched migrates between 0GB and
20GB, depending on the initial placement of threads.

Figure 5 shows the latency of memory accesses com-
pared to the average. For most applications, the dynam-
ics of latency closely matches that of the performance.
A few exceptions are is.D, lu.B and kmeans. For is.D,
the latency is drastically improved by AsymSched but
the impact on performance is not visible because of the
time lost performing memory migrations. Lu.B is ex-
tremely memory intensive during its first seconds of ex-
ecution, but performs very few memory accesses there-
after; AsymSched improves this initial phase but has no
impact on the rest of the running time. Kmeans is very
bursty; placing its threads has a huge impact on the la-
tency of memory accesses performed during bursts of
memory accesses but not on the rest of the execution.

5.3 Multi application workloads
We evaluate several multi-application workloads us-
ing the applications studied in section 5.2. We chose
four applications that benefit to various degrees from

AsymSched: streamcluster (benefits to a high degree),
SPECjbb (benefits to a moderate degree), graph500 (ben-
efits to a small degree), and matrixmultiply (does not
benefit). Some of these applications have different
phases during their execution; for instance, streamclus-
ter processes its input set in five distinct rounds, and
SPECjbb spends significant amount of time initializing
data before emulating a three-tier client/server system.

Figure 6 presents the performance on multi application
workloads. We chose two different clustering configura-
tions: (i) Three applications executing on three, three and
two nodes, respectively; (ii) Two applications executing
on five and three nodes respectively.

In all workloads, AsymSched achieves performance
that is close or better than the best static thread place-
ment on Linux. Furthermore, it produces a very low
standard deviation. In constrast, dynamic memory mi-
gration alone exhibits high standard deviation and, like
with single application workloads, is unable to improve
performance for Graph500 and SPECjbb.

AsymSched significantly improves the latency of ap-
plications that benefit from thread and memory migra-
tion (Figure 7), in particular for streamcluster. This is
because AsymSched chooses configurations in which the
links used by streamcluster are not shared with any other
application.
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Figure 7: Performance difference between the best thread placement, the worst thread placement, dynamic memory
placement, AsymSched and the average thread placement of applications on machine A.

cg.B ft.C is.D sp.A streamcluster graph500 specJBB
Migrated memory (GB) 0.17 2.5 20 0.1 0.15 0.3 10

Average time - Linux syscall (ms) 860 12700 101000 490 750 1500 50500
Average time - fast migration (ms) 51 380 3050 30 45 90 1500

Table 5: Average amount of migrated memory for various applications running on 3 nodes and required time to
perform the migration using the standard Linux system call and using fast memory migration.

5.4 Overhead

The main overhead of AsymSched is due to memory mi-
gration. This explains why we implemented a custom
system call (see Section 4.3). Table 5 compares the mi-
gration time when running the standard Linux system
call and when running our custom system call. For in-
stance, for is.D, migration takes 101 seconds using the
Linux system call (50% overhead), but only 3 seconds
using our custom system call (1.5% overhead). To keep
the overhead low, AsymSched performs migrations only
if the predicted overhead is below 5%. In practice, the
maximum migration overhead we observed was 3%.

The cost of collecting metrics and computing clus-
ter placement is below 0.5% on all studied applications.
Moreover, AsymSched requires less than 2MB of RAM.

The overhead of thread migration is negligible and we
did not observe any noticeable effect of thread migrations
on cache misses.

Finally, when dynamic memory placement is used,
IBS sampling incurs a light overhead (within 2% in
our experiments) and statistics on memory accesses are
stored in about 20MB of RAM.

5.5 Discussion - Applicability on future
NUMA machines

We believe that the findings and the solution presented
in this paper are likely to be applicable on future NUMA
systems. First, we believe that the clustering and place-
ment techniques used in AsymSched can scale on ma-
chines with a much larger number of nodes. With very
simple heuristics we were able to avoid computing up
to 99% of the possible thread placements. Such op-
timizations will still likely be possible on future ma-
chines, as machines are usually made of multiple iden-
tical cores/sockets (e.g., our 64-core machine has 4 iden-
tical sockets). On machines that offer a wider diversity
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of thread placements, a possibility is to use statistical ap-
proaches, such as that of Radojkovic et al. [27] to find
good thread placements with a bounded overhead.

Furthermore, AsymSched can easily be adapted to dif-
ferent optimization goals. On current NUMA machines,
maximizing the bandwidth between threads was the key
to achieving good performance, but our solution could be
easily adapted to take other metrics into account.

6 Related Work

NUMA optimizations and contention management:
Optimizing thread and memory placement on NUMA
systems has been extensively studied [8, 9, 20, 33, 19, 12,
9, 7, 31, 5, 23, 22, 10]. However, as shown in [19, 12, 5,
23], contention on interconnect links and memory con-
trollers remains a major source of inefficiencies on mod-
ern NUMA machines. Our work complements these pre-
vious studies by minimizing contention on interconnect
links on asymmetrically connected NUMA systems. We
adopt a dynamic memory management algorithm pre-
sented in [12] for memory placement, but the key contri-
bution of our work is the algorithm that efficiently com-
putes the placement of threads on nodes to maximize the
bandwidth between communicating threads.

Several extensions to Linux improve data-access lo-
cality on NUMA systems, but do not improve the band-
width for communicating threads and do not address in-
terconnect asymmetry. For example, Sched/NUMA [32]
adds the notion of a “home node”: when scheduling
threads, Linux will try to collocate threads and data on
the “home node” of the corresponding process. While
this may improve communication bandwidth for applica-
tions with the number of threads not exceeding the num-
ber of cores in a node, it does not address applications
spanning several nodes. Another extension, called Au-
toNUMA [4], implements locality optimizations by mi-
grating pages on the nodes from which they are accessed.
AsymSched uses a similar dynamic algorithm to migrate
memory, but unlike AutoNUMA it also places threads so
as to optimize communication bandwidth.

Several studies addressed contention for the memory
hierarchy of UMA systems [16, 24, 34] by segregating
competing threads on different nodes. None of these sys-
tems, however, addressed contention on the interconnect.

Scheduling on asymmetric architectures: Several
thread schedulers catered to the asymmetry of CPUs
[29, 15, 21, 17]. They optimize thread placement on pro-
cessors with asymmetric characteristics (e.g., different
frequencies, or different hardware features). The tech-
niques used to address processor asymmetry are funda-
mentally different than those needed to address intercon-
nect asymmetry, so there is no overlap with our study.

Thread clustering: Pusukuri et al. [18] cluster
threads based on lock contention and memory access la-
tencies. Kamali [14] and Tam [30] proposed algorithms
that cluster threads that share data on the same shared
cache. AsymSched uses a similar high-level idea: it sam-
ples hardware counters to detect communicating threads
and place them onto a well-connected nodes. However,
the problem addressed in AsymSched (asymmetric inter-
connect) and the specific algorithm proposed is quite dif-
ferent from those in the aforementioned studies.

Radojkovic et al. [28] present a scheduler that takes
into account resource sharing inside a processor. They
model the benefits and drawbacks of data and instruction
cache sharing between threads, and they schedule threads
on the the set of cores that will maximize performance.
Their solution explores all possible thread placements.
Their follow-up work [27] refines the solution to use a
statistical approach to find the optimal placement. Our
solution could benefit from a similar technique on ma-
chines with a much larger number of dissimilar nodes.

Network optimizations: Network traffic optimization
is a well studied problem. Machines are often intercon-
nected with asymmetric Ethernet links; optimizing the
bandwidth on asymmetric NUMA systems shares a lot of
similarities with optimizations problems found in these
systems. For instance, Volley [3] proposed an algorithm
to place data used by Cloud services. As AsymSched,
this algorithm takes into account the available bandwidth
between nodes (that are geographically distributed com-
puters in their case) in order to optimize performance.

Hermenier et al. [13] present a consolidation man-
ager for distributed systems. The goal of their system
is to minimize energy consumption in a cluster. To this
end, they place virtual machines on the smallest pos-
sible number of physical machines while meeting cer-
tain performance constraints. They model the problem
as the multiple knapsack problem and use a constraint-
satisfaction solver to find good placements. AsymSched
could use a similar technique, but we found that on ex-
isting systems a much simpler solution was sufficient.

7 Conclusion

We showed that the asymmetry of the interconnect
in modern NUMA systems drastically impacts perfor-
mance. We found that the performance is more affected
by the bandwidth between nodes than by the distance be-
tween them. We developed AsymSched, a new thread and
memory placement algorithm that maximizes the band-
width for communicating threads.

As the number of nodes in NUMA systems increases,
the interconnect is less likely to remain symmetric.
AsymSched design principles will, therefore, be of grow-
ing importance in the future.
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Abstract
We present Grappa, a modern take on software distributed
shared memory (DSM) for in-memory data-intensive ap-
plications. Grappa enables users to program a cluster as
if it were a single, large, non-uniform memory access
(NUMA) machine. Performance scales up even for ap-
plications that have poor locality and input-dependent
load distribution. Grappa addresses deficiencies of previ-
ous DSM systems by exploiting application parallelism,
trading off latency for throughput. We evaluate Grappa
with an in-memory MapReduce framework (10⇥ faster
than Spark [74]); a vertex-centric framework inspired by
GraphLab (1.33⇥ faster than native GraphLab [48]); and
a relational query execution engine (12.5⇥ faster than
Shark [31]). All these frameworks required only 60-690
lines of Grappa code.

1 Introduction
Data-intensive applications (e.g., ad placement, social
network analysis, PageRank, etc.) make up an important
class of large-scale computations. Typical hardware com-
puting infrastructures for these applications are a collec-
tion of multicore nodes connected via a high-bandwidth
commodity network (a.k.a. a cluster). Scaling up per-
formance requires careful partitioning of data and com-
putation; i.e., programmers have to reason about data
placement and parallelism explicitly, and for some ap-
plications, such as graph analytics, partitioning is diffi-
cult. This has led to a diverse ecosystem of frameworks—
MapReduce [26], Dryad [43], and Spark [74] for data-
parallel applications, GraphLab [48] for certain graph-
based applications, Shark [31] for relational queries, etc.
They ease development by specializing to algorithmic
structure and dynamic behavior; however, applications
that do not fit well into one particular model suffer in
performance.

Software distributed shared memory (DSM) systems
provide shared memory abstractions for clusters. Histor-
ically, these systems [15, 19, 45, 47] performed poorly,
largely due to limited inter-node bandwidth, high inter-
node latency, and the design decision of piggybacking on
the virtual memory system for seamless global memory
accesses. Past software DSM systems were largely in-
spired by symmetric multiprocessors (SMPs), attempting
to scale that programming mindset to a cluster. How-
ever, applications were only suitable for them if they
exhibited significant locality, limited sharing and coarse-
grain synchronization—a poor fit for many modern data-

analytics applications. Recently there has been a re-
newed interest in DSM research [27, 51], sparked by the
widespread availability of high-bandwidth low-latency
networks with remote memory access (RDMA) capabil-
ity.

In this paper we describe Grappa, a software DSM sys-
tem for commodity clusters designed for data-intensive
applications. Grappa is inspired by the Tera MTA [10,11],
a custom hardware-based system. Like the MTA, instead
of relying on locality to reduce the cost of memory ac-
cesses, Grappa depends on parallelism to keep processor
resources busy and hide the high cost of inter-node com-
munication. Grappa also adopts the shared-memory, fine-
grained parallel programming mindset from the MTA. To
support fine-grained messaging like the MTA, Grappa in-
cludes an overlay network that combines small messages
together into larger physical network packets, thereby
maximizing the available bisection bandwidth of com-
modity networks. This communication layer is built in
user-space, utilizing modern programming language fea-
tures to provide the global address space abstraction. Effi-
ciencies come from supporting sharing at a finer granu-
larity than a page, avoiding the page-fault trap overhead,
and enabling compiler optimizations on global memory
accesses.

The runtime system is implemented in C++ for a clus-
ter of x86 machines with an InfiniBand interconnect, and
consists of three main components: a global address space
(§3.1), lightweight user-level tasking (§3.2), and an ag-
gregating communication layer (§3.3). We demonstrate
the generality and performance of Grappa as a common
runtime by implementing three domain-specific platforms
on top of it: a simple in-memory MapReduce frame-
work; a vertex-centric API (i.e. like GraphLab); and a
relational query processing engine. Comparing against
GraphLab itself, we find that a simple, randomly parti-
tioned graph representation on Grappa performs 2.5⇥
better than GraphLab’s random partitioning and 1.33⇥
better than their best partitioning strategy, and scales com-
parably out to 128 cluster nodes. The query engine built
on Grappa, on the other hand, performs 12.5⇥ faster than
Shark on a standard benchmark suite. The flexibility and
efficiency of the Grappa shared-memory programming
model allows these frameworks to co-exist in the same ap-
plication and to exploit application-specific optimizations
that do not fit within any existing model.

The next section provides an overview of how data-
intensive application frameworks can easily and effi-
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ciently map to a shared-memory programming model.
§3 describes the Grappa system. §4 presents a quantitive
evaluation of the Grappa runtime. §5 describes related
work, and §6 concludes.

2 Data-Intensive Application Frameworks
Analytics frameworks—such as MapReduce, graph pro-
cessing and relational query execution—are typically im-
plemented for distributed private memory systems (clus-
ters) to achieve scale-out performance. While implement-
ing these frameworks in a shared-memory system would
be straightforward, this has generally been avoided be-
cause of scalability concerns. We argue that modern
data-intensive applications have properties that can be
exploited to make these frameworks run efficiently and
scale well on distributed shared memory systems.

Figure 1 shows a minimal example of implementing a
“word count”-like application in actual Grappa DSM code.
The input array, chars, and output hash table, cells, are
distributed over multiple nodes. A parallel loop over the
input array runs on all nodes, hashing each key to its
cell and incrementing the corresponding count atomically.
The syntax and details will be discussed in later sections,
but the important thing to note is that it looks similar to
plain shared-memory code, yet spans multiple nodes and,
as we will demonstrate in later sections, scales efficiently.

Here we describe how three data-intensive computing
frameworks map to a DSM, followed by a discussion
of the challenges and opportunities they provide for an
efficient implementation:

MapReduce. Data parallel operations like map and
reduce are simple to think of in terms of shared memory.
Map is simply a parallel loop over the input (an array or
other distributed data structure). It produces intermediate
results into a hash table similar to that in Figure 1. Reduce
is a parallel loop over all the keys in the hash table.

Vertex-centric. GraphLab/PowerGraph is an exam-
ple of a vertex-centric execution model, designed for im-
plementing machine-learning and graph-based applica-
tions [35, 48]. Its three-phase gather-apply-scatter (GAS)
API for vertex programs enables several optimizations
pertinent to natural graphs. Such graphs are difficult to
partition well, so algorithms traversing them exhibit poor
locality. Each phase can be implemented as a parallel
loop over vertices, but fetching each vertex’s neighbors
results in many fine-grained data requests.

Relational query execution. Decision support, often
in the form of relational queries, is an important domain
of data-intensive workloads. All data is kept in hash
tables stored in a DSM. Communication is a function of
inserting into and looking up in hash tables. One parallel
loop builds a hash table, followed by a second parallel
loop that filters and probes the hash table, producing
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Figure 2: Grappa design overview

the results. These steps rely heavily on consistent, fine-
grained updates to hash tables.
The key challenges in implementing these frameworks on
a DSM are:

Small messages. Programs written to a shared mem-
ory model tend to access small pieces of data, which
when executing on a DSM system lead to small inter-node
messages. What were load or store operations become
complex transactions involving small messages over the
network. Conversely, programs written using a message
passing library, such as MPI, expose this complexity to
programmers, and hence encourage them to optimize it.

Poor locality. As previously mentioned, data-intensive
applications often exhibit poor locality. For example,
how much communication GraphLab’s gather and scatter
operations conduct is a function of the graph partition.
Complex graphs frustrate even the most advanced parti-
tioning schemes [35]. This leads to poor spatial locality.
Moreover, which vertices are accessed varies from itera-
tion to iteration. This leads to poor temporal locality.

Need for fine-grain synchronization. Typical data-
parallel applications offer coarse-grained concurrency
with infrequent synchronization—e.g., between phases
of processing a large chunk of data. Conversely, graph-
parallel applications exhibit fine-grain concurrency with
frequent synchronization—e.g., when done processing
work associated with a single vertex. Therefore, for a
DSM solution to be general, it needs to support fine-grain
synchronization efficiently.

Fortunately, data-intensive applications have properties
that can be exploited to make DSMs efficient: their abun-
dant data parallelism enables high degrees of concurrency;
and their performance depends not on the latency of exe-
cution of any specific parallel task/thread, as it would in
for example a web server, but rather on the aggregate exe-
cution time (i.e., throughput) of all tasks/threads. In the
next section we explore how these application properties
can be exploited to implement an efficient DSM.

3 Grappa Design
Figure 2 shows an overview of Grappa’s DSM system. Be-
fore describing the Grappa system in detail, we describe
its three main components:

2
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Global Heap

Local heap

"a"→7
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Cell[2] Cell[5]Cell[3] Cell[4]Cell[1]Cell[0]

Node 0 Node 1 Node 2 ...

...
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"b"→1

"o"→1

"i"→5

"c"→3

"e"→1 "f"→2

"l"→1

// distributed input array
GlobalAddress<char> chars = load_input();

// distributed hash table:
using Cell = std::map<char,int>;
GlobalAddress<Cell> cells = global_alloc<Cell>(ncells);

forall(chars, nchars, [=](char& c) {
  // hash the char to determine destination
  size_t idx = hash(c) % ncells;
  delegate(&cells[idx], [=](Cell& cell)
  { // runs atomically
    if (cell.count(c) == 0) cell[c] = 1;
    else cell[c] += 1;
  });
});

hash("i")

Figure 1: “Character count” with a simple hash table implemented using Grappa’s distributed shared memory.
Distributed shared memory. The DSM system pro-

vides fine-grain access to data anywhere in the system.
Every piece of global memory is owned by a particular
core in the system. Access to data on remote nodes is
provided by delegate operations that run on the owning
core. Delegate operations may include normal memory
operations such as read and write as well as synchronizing
operations such as fetch-and-add [36]. Due to delegation,
the memory model offered is similar to what underpins
C/C++ [17, 44], so it is familiar to programmers.

Tasking system. The tasking system supports
lightweight multithreading and global distributed work-
stealing—tasks can be stolen from any node in the system,
which provides automated load balancing. Concurrency
is expressed through cooperatively-scheduled user-level
threads. Threads that perform long-latency operations
(i.e., remote memory access) automatically suspend while
the operation is executing and wake up when the operation
completes.

Communication layer. The main goal of our commu-
nication layer is to aggregate small messages into large
ones. This process is invisible to the application pro-
grammer. Its interface is based on active messages [69].
Since aggregation and deaggregation of messages needs
to be very efficient, we perform the process in parallel and
carefully use lock-free synchronization operations. For
portability, we use MPI [50] as the underlying messaging
library as well as for process setup and tear down.

3.1 Distributed Shared Memory
Below we describe how Grappa implements a shared
global address space and the consistency model it offers.

3.1.1 Addressing Modes

Local memory addressing. Applications written for
Grappa may address memory in two ways: locally and
globally. Local memory is local to a single core within a
node in the system. Accesses occur through conventional
pointers. Applications use local accesses for a number
of things in Grappa: the stack associated with a task, ac-
cesses to global memory from the memory’s home core,
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Figure 3: Using global addressing for graph layout.

and accesses to debugging infrastructure local to each
system node. Local pointers cannot access memory on
other cores, and are valid only on their home core.

Global memory addressing. Grappa allows any local
data on a core’s stacks or heap to be exported to the global
address space to be made accessible to other cores across
the system. This uses a traditional PGAS (partitioned
global address space [30]) addressing model, where each
address is a tuple of a rank in the job (or global process
ID) and an address in that process.

Grappa also supports symmetric allocations, which al-
locates space for a copy (or proxy) of an object on every
core in the system. The behavior is identical to perform-
ing a local allocation on all cores, but the local addresses
of all the allocations are guaranteed to be identical. Sym-
metric objects are often treated as a proxy to a global
object, holding local copies of constant data, or allowing
operations to be transparently buffered. A separate pub-
lication [41] describes how this was used to implement
Grappa’s synchronized global data structures, including
vector and hash map.

Putting it all together. Figure 3 shows an example of
how global, local and symmetric heaps can all be used
together for a simple graph data structure. In this example,
vertices are allocated from the global heap, automatically
distributing them across nodes. Symmetric pointers are
used to access local objects which hold information about
the graph, such as the base pointer to the vertices, from
any core without communication. Finally, each vertex
holds a vector of edges allocated from their core’s local
heap, which other cores can access by going through the
vertex.

3
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Global Heap

0 0 00 0 00 000 10

GlobalAddress<int> A = global_alloc<int>(N);

forall(0, N, [A](int i) {
  int j = random(i) % N;
  delegate( A + j, [](int& A_j){
    A_j += 1;
  });
});

[](int& A_j){
 A_j += 1;
}

move execution

notify completion

Node 0 Node 2Node 1

Figure 4: Grappa delegate example.
3.1.2 Delegate Operations

Access to Grappa’s distributed shared memory is provided
through delegate operations, which are short operations
performed at the memory location’s home node. When
the data access pattern has low locality, it is more efficient
to modify the data on its home core rather than bringing a
copy to the requesting core and returning a modified ver-
sion. Delegate operations [49, 53] provide this capability.
While delegates can trivially implement read/write oper-
ations to global memory, they can also implement more
complex read-modify-write and synchronization opera-
tions (e.g., fetch-and-add, mutex acquire, queue insert).
Figure 4 shows an example.

Delegate operations must be expressed explicitly to
the Grappa runtime, a change from the traditional DSM
model. In practice, even programmers using implicit
DSMs had to work to express and exploit locality to ob-
tain performance. In other work we have developed a
compiler [40] that automatically identifies and extracts
productive delegate operations from ordinary code.

A delegate operation can execute arbitrary code pro-
vided it does not lead to a context switch. This guarantees
atomicity for all delegate operations. To avoid context
switches, a delegate must only touch memory owned by
a single core. A delegate is always executed at the home
core of the data addresses it touches. Given these restric-
tions, we can ensure that delegate operations for the same
address from multiple requesters are always serialized
through a single core in the system, providing atomic-
ity with strong isolation. A side benefit is that atomic
operations on data that are highly contended are faster.
When programmers want to operate on data structures
spread across multiple nodes, accesses must be expressed
as multiple delegate operations along with appropriate
synchronization operations.

3.1.3 Memory Consistency Model

Accessing global memory though delegate operations al-
lows us to provide a familiar memory model. All synchro-
nization is done via delegate operations. Since delegate
operations execute on the home core of their operand in
some serial order and only touch data owned by that single
core, they are guaranteed to be globally linearizable [38],
with their updates visible to all cores across the system

in the same order. In addition, only one synchronous
delegate will be in flight at a time from a particular task,
i.e., synchronization operations from a particular task are
not subject to reordering. Moreover, once one core is
able to see an update from a synchronous delegate, all
other cores are too. Consequently, all synchronization
operations execute in program order and are made visi-
ble in the same order to all cores in the system. These
properties are sufficient to guarantee a memory model
that offers sequential consistency for data-race-free pro-
grams [5], which is what underpins C/C++ [17, 44]. The
synchronous property of delegates provides a clean model
but is restrictive: we discuss asynchronous operations
within the next section.

3.2 Tasking System
Each hardware core has a single operating system thread
pinned to it; all Grappa code runs in these threads. The
basic unit of execution in Grappa is a task. When a task is
ready to execute, it is mapped to a user-level worker thread
that is scheduled within an operating system thread; we
refer to these as workers to avoid confusion. Scheduling
between tasks is carried out entirely in user-mode without
operating system intervention.

Tasks. Tasks are specified by a closure (also referred to
as a “functor” or “function object” in C++) that holds both
code to execute and initial state. The closure can be speci-
fied with a function pointer and explicit arguments, a C++
struct that overloads the parentheses operator, or a C++11
lambda construct. These objects, typically small (⇠ 32
bytes), hold read-only values such as an iteration index
and pointers to common data or synchronization objects.
Task closures can be serialized and transported around
the system, and are eventually executed by a worker.

Workers. Workers execute application and system
(e.g., communication) tasks. A worker is simply a collec-
tion of status bits and a stack, allocated at a particular core.
When a task is ready to execute it is assigned to a worker,
that executes the task closure on its own stack. Once a
task is mapped to a worker it stays with that worker until
it finishes.

Scheduling. During execution, a worker yields control
of its core whenever performing a long-latency operation,
allowing the processor to remain busy while waiting for
the operation to complete. In addition, a programmer
can direct scheduling explicitly. To minimize context-
switch overhead, the Grappa scheduler operates entirely
in user-space and does little more than store state of one
worker and load that of another. When a task encounters
a long-latency operation, its worker is suspended and
subsequently woken when the operation completes.

Each core in a Grappa system has its own independent
scheduler. The scheduler has a collection of active work-
ers ready to execute called the ready worker queue. Each

4
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scheduler also has three queues of tasks waiting to be
assigned a worker. The first two run user tasks: a public
queue of tasks that are not bound to a core yet, and a
private queue of tasks already bound to the core where the
data they touch is located. The third is a priority queue
scheduled according to task-specific deadline constraints;
this queue manages high priority system tasks, such as
periodically servicing communication requests.

Context switching. Grappa context switches between
workers non-preemptively. As with other cooperative
multithreading systems, we treat context switches as func-
tion calls, saving and restoring only the callee-saved state
as specified in the x86-64 ABI [12] rather than the full
register set required for a preemptive context switch. This
requires 62 bytes of storage.

Grappa’s scheduler is designed to support a very large
number of concurrently-active workers—so large, in fact,
that their combined context data will not fit in cache. In or-
der to minimize unnecessary cache misses on context data,
the scheduler explicitly manages the movement of context
data into the cache. To accomplish this, we establish a
pipeline of ready worker references in the scheduler. This
pipeline consists of ready-unscheduled, ready-scheduled,
and ready-resident stages. When context prefetching is
on, the scheduler is only ever allowed to run workers that
are ready-resident; all other workers are assumed to be
out-of-cache. The examined part of the ready queue itself
must also be in cache. In a FIFO schedule, the head of the
queue will always be in cache due to its spatial locality.
Other schedules are possible as long as the amount of data
they need to examine to make a decision is independent
of the total number of workers.

When a worker is signaled, its reference is marked
ready-unscheduled. Every time the scheduler runs, one of
its responsibilities is to pick a ready-unscheduled worker
to transition to ready-scheduled: it issues a software
prefetch to start moving the task toward L1. A worker
needs its metadata (one cache line) and its private working
set. Determining the exact working set might be difficult,
but we find that approximating the working set with the
top 2-3 cache lines of the stack is the best naive heuristic.
The worker data is ready-resident when it arrives in cache.
Since the arrival of a prefetched cache line is generally
not part of the architecture, we must determine the latency
from profiling.

At our standard operating point on our cluster (⇡1,000
workers), context switch time is on the order of 50 ns. As
we add workers, the time increases slowly, but levels off:
with 500,000 workers context switch time is around 75
ns. Without prefetching, context switching is limited by
memory access latency—approximately 120 ns for 1,000
workers. Conversely, with prefetching on, context switch-
ing rate is limited by memory bandwidth—we determine
this by calculating total data movement based on switch

rate and cache lines per switch in a microbenchmark. As a
reference point, for the same yield test using kernel-level
Pthreads on a single core, the switch time is 450ns for a
few threads and 800ns for 1000–32000 threads.

Expressing parallelism. The Grappa API supports
spawning individual tasks, with optional data locality
constraints. These tasks may run as full-fledged workers
with a stack and the ability to block, or they may be
asynchronous delegates, which like delegate operations
execute non-blocking regions of code atomically on a
single core’s memory. Asynchronous delegates are treated
as task spawns in the memory model.

For better programmability, tasks are automatically
generated from parallel loop constructs, as in Figure 1.
Grappa’s parallel loops spawn tasks using a recursive
decomposition of iterations, similar to Cilk’s cilk for con-
struct [16], and TBB’s parallel for [59]. This generates
a logarithmically-deep tree of tasks, stopping to execute
the loop body when the number of iterations is below a
user-definable threshold.

Grappa loops can iterate over an index space or over a
region of shared memory. In the former case, tasks are
spawned with no locality constraints, and may be stolen
by any core in the system. In the latter case, tasks are
bound to the home core of the piece of memory on which
they are operating so that the loop body may optimize for
this locality, if available. The local region of memory is
still recursively decomposed so that if a particular loop
iteration’s task blocks, other iterations may run concur-
rently on the core.

3.3 Communication Support
Grappa’s communication layer has two components: a
user-level messaging interface based on active messages,
and a network-level transport layer that supports request
aggregation for better communication bandwidth.

Active message interface. At the upper (user-level)
layer, Grappa implements asynchronous active mes-
sages [69]. Our active messages are simply a C++11
lambda or other closure. We take advantage of the fact
that our homogeneous cluster hardware runs the same
binary in every process: each message consists of a
template-generated deserializer pointer, a byte-for-byte
copy of the closure, and an optional data payload.

Message aggregation. Since communication is very
frequent in Grappa, aggregating and sending messages
efficiently is very important. To achieve that, Grappa
makes careful use of caches, prefetching, and lock-free
synchronization operations.

Figure 5 shows the aggregation process. Cores keep
their own outgoing message lists, with as many entries as
the number of system cores in a Grappa system. These
lists are accessible to all cores in a Grappa node to allow
cores to peek at each other’s message lists. When a task
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Figure 5: Message aggregation process.
sends a message, it allocates a buffer from a pool, deter-
mines the destination system node, writes the message
contents into the buffer, and links the buffer into the corre-
sponding outgoing list. These buffers are referenced only
twice for each message sent: once when the message is
created, and (much later) when the message is serialized
for transmission. The pool allocator prefetches the buffers
with the non-temporal flag to minimize cache pollution.

Each processing core in a given system node is respon-
sible for aggregating and sending the resulting messages
from all cores on that node to a set of destination nodes.
Cores periodically execute a system task that examines
the outgoing message lists for each destination node for
which the core is responsible; if the list is long enough
or a message has waited past a time-out period, all mes-
sages to a given destination system node from that source
system node are sent by copying them to a buffer visible
to the network card. Actual message transmission can be
done purely in user-mode using MPI, which in turn uses
RDMA.

The final message assembly process involves manipu-
lating several shared data-structures (the message lists),
so it uses CAS (compare-and-swap) operations to avoid
high synchronization costs. This traversal requires careful
prefetching because most of the outbound messages are
not in the processor cache at this time (recall that a core
can be aggregating messages originating from other cores
in the same node). Note that we use a per-core array of
message lists that is only periodically modified across
processor cores, having experimentally determined that
this approach is faster (sometimes significantly) than a
global per-system node array of message lists.

Once the remote system node has received the message
buffer, a management task is spawned to manage the
unpacking process. The management task spawns a task
on each core at the receiving system to simultaneously
unpack messages destined for that core. Upon completion,
these unpacking tasks synchronize with the management
task. Once all cores have processed the message buffer,
the management task sends a reply to the sending system
node indicating the successful delivery of the messages.

3.3.1 Why not just use native RDMA support?

Given the increasing availability and decreasing cost of
RDMA-enabled network hardware, it would seem log-

ical to use this hardware to implement Grappa’s DSM.
Figure 6 shows the performance difference between na-
tive RDMA atomic increments and Grappa atomic incre-
ments using the GUPS cluster-wide random access bench-
mark using the cluster described in §4. The cluster has
Mellanox ConnectX-2 40Gb InfiniBand cards connected
through a QLogic switch with no oversubscription. The
RDMA setting of the experiment used the network card’s
native atomic fetch-and-increment operation, and issued
increments to the card in batches of 512. The Grappa
setting issued delegate increments in a parallel for loop.
Both settings perform increments to random locations in a
32 GB array of 64-bit integers distributed across the clus-
ter. Figure 6(left) shows how aggregation allows Grappa
to exceed the performance of the card by 25⇥ at 128
nodes. We measured the effective bisection bandwidth of
the cluster as described in [39]: for GUPS, performance
is limited by memory bandwidth during aggregation, and
uses ⇠ 40% of available bisection bandwidth.

Figure 6(right) illustrates why using RDMA directly
is not sufficient. The data also shows that MPI over In-
finiBand has negligible overhead. Our cluster’s cards are
unable to push small messages at line rate into the net-
work: we measured the peak RDMA performance of our
cluster’s cards to be 3.2 million 8-byte writes per second,
when the wire-rate limit is over 76 million [42]. We be-
lieve this limitation is primarily due to the latency of the
multiple PCI Express round trips necessary to issue one
operation; a similar problem was studied in [34]. Fur-
thermore, RDMA network cards have severely limited
support for synchronization with the CPU [27, 51]. Fi-
nally, framing overheads can be large: InfiniBand 8-byte
RDMA writes moves 50 bytes on the wire; Ethernet-
based RDMA using RoCE moves 98 bytes. Work is
ongoing to improve network card small message perfor-
mance [1, 4, 28, 34, 55, 57, 61, 68]: even if native small
message performance improves in future hardware, our
aggregation support will still be useful to minimize cache
line movement, PCI Express round trips, and other mem-
ory hierarchy limitations.

3.4 Fault tolerance discussion
A number of recent “big data” workload studies [22, 60,
62] suggest that over 90 percent of current analytics jobs
require less than one terabyte of input data and run for
less than one hour. We designed Grappa to support this
size of workload on medium-scale clusters, with tens to
hundreds of nodes and a few terabytes of main memory.
At this scale, the extreme fault tolerance found in systems
like Hadoop is largely wasted — e.g., assuming a per-
machine MTBF of 1 year, we would estimate the MTBF
of our 128-node cluster to be 2.85 days.

We could add checkpoint/restart functionality to
Grappa, either natively or using a standard HPC library
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Figure 6: On the left, random updates to a billion-integer
distributed array with the GUPS benchmark. On the right,
ping-pong bandwidth measured between two nodes.

[29]. Writing a checkpoint would take on the order of
minutes; for instance, our cluster can write all 8 TB of
main memory to its parallel filesystem in approximately
10 minutes. It is important to balance the cost of taking
a checkpoint with the work lost since the last checkpoint
in the event of a failure. We can approximate the opti-
mum checkpoint interval using [73]; assuming a check-
point time of 10 minutes and a per-machine MTBF of 1
year, we should take checkpoints every 4.7 hours. These
estimates are similar to what Low et al. measured for
Graphlab’s checkpoint mechanism in [48]. In this regime,
it is likely cheaper to restart a failed job than it is to pay
the overhead of taking checkpoints and recovering from a
failure.

Given these estimates, we chose not to implement fault
tolerance in this work. Adding more sophisticated fault
tolerance to Grappa for clusters with thousands of nodes
is an interesting area of future work.

4 Evaluation
We implemented Grappa in C++ for the Linux operating
system. The core runtime system system is 17K lines
of code. We ran experiments on a cluster of AMD Inter-
lagos processors with 128 nodes. Nodes have 32 cores
operating at 2.1GHz, spread across two sockets, 64GB
of memory, and 40Gb Mellanox ConnectX-2 InfiniBand
network cards. Nodes are connected via a QLogic In-
finiBand switch with no oversubscription. We used a
stock OS kernel and device drivers. The experiments
were run in a machine without administrator access or
special privileges. GraphLab and Spark communicated
using IP-over-InfiniBand in Connected mode.

4.1 Vertex-centric Programs on Grappa
We implemented a vertex-centric programming frame-
work in Grappa with most of the same core functionality
as GraphLab [35, 48] using the graph data structure pro-
vided by the Grappa library (Figure 3). Unlike GraphLab
we do not focus on intelligent partitioning, instead choos-

ing a simple random placement of vertices to cores. Edges
are stored co-located on the same core with vertex data.
Using this graph representation, we implement a subset
of GraphLab’s synchronous engine, including the delta
caching optimization, in ⇠60 lines of Grappa code. Par-
allel iterators are defined over the vertex array and over
each vertex’s outgoing edge list. Given our graph struc-
ture, we can efficiently support gather on incoming edges
and scatter on outgoing edges. Users of our Vertex-centric
Grappa framework specify the gather, apply, and scatter
operations in a “vertex program” structure. Vertex pro-
gram state is represented as additional data attached to
each vertex. The synchronous engine consists of several
parallel forall loops executing the gather, apply, and
scatter phases within an outer “superstep” loop until all
vertices are inactive.

We implemented three graph analytics applications
from GraphBench [3] using vertex program definitions
equivalent to GraphLab’s: PageRank, Single Source
Shortest Path (SSSP), and Connected Components (CC).
In addition, we implemented a simple Breadth-first search
(BFS) application in the spirit of the Graph500 bench-
mark [37], which finds a “parent” for each vertex with a
given source. The implementation in the GraphLab API
is similar to the SSSP vertex program.

4.1.1 Performance

To evaluate Grappa’s Vertex-centric framework imple-
mentation, we ran each application on the Twitter fol-
lower graph [46] (41 M vertices, 1 B directed edges) and
the Friendster social network [72] (65 M vertices, 1.8 B
undirected edges). For each we run to convergence—for
PageRank we use GraphLab’s default threshold criteria—
resulting in the same number of iterations for each. Addi-
tionally, for PageRank we ran with delta caching enabled,
as it proved to perform better. For Grappa we use the no-
replication graph structure with random vertex placement;
for GraphLab, we show results for random partitioning
and the current best partitioning strategy: “PDS” which
computes the “perfect difference set”, but can only be run
with p2 + p + 1 (where p is prime) nodes. Most of the
comparisons are done at 31 nodes for this reason.

Figure 7a depicts performance results at 31 nodes, nor-
malized to Grappa’s execution time. We can see that
Grappa is faster than random partitioning on all the bench-
marks (on average 2.57⇥), and 1.33⇥ faster than the best
partitioning, despite not replicating the graph at all. Both
implementations of PageRank issue application-level re-
quests on the order of 32 bytes (mostly communicating
updated rank values). However, since these would per-
form terribly on the network, both systems aggregate
updates into larger wire-level messages. Grappa’s per-
formance exceeds that of GraphLab primarily because it
does this faster.
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Figure 7: Performance characterization of Grappa’s Vertex-centric framework (a) shows time to converge (same number
of iterations) normalized to Grappa, on the Twitter and Friendster datasets. (b) shows scaling results for PageRank out
to 128 nodes—Friendster and Twitter measure strong scaling, and weak scaling is measured on synthetic power-law
graphs scaled proportionally with nodes. (c) On top, cluster-wide message rates (average per iteration) while computing
PageRank. On the bottom, GUPS message rates for GraphLab, Spark, and Grappa on 31 nodes. Grappa is shown using
both TCP-based and RDMA-based configuration, with message prefetching on and off.

Figure 7c(bottom) explores this difference using the
GUPS benchmark from §3.3.1. All systems send 32-
byte updates to random nodes which then update a 64-
bit word in memory: this experiment models only the
communication of PageRank and not the activation of
vertices, etc. For GraphLab and Spark, the messaging
uses TCP-over-IPoIB and the aggregators make 64KB
batches (GraphLab also uses MPI, but for job startup
only). At 31 nodes, GraphLab’s aggregator achieves 0.14
GUPS, while Grappa achieves 0.82 GUPS. Grappa’s use
of RDMA accounts for about half of that difference; when
Grappa uses MPI-over-TCP-over-IPoIB it achieves 0.30
GUPS. The other half comes from Grappa’s prefetching,
more efficient serialization, and other messaging design
decisions. The Spark result is an upper bound obtained
by writing directly to Spark’s java.nio-based messaging
API rather than Spark’s user-level API.

During the PageRank computation, Grappa’s unsophis-
ticated graph representation sends 2⇥ as many messages
as GraphLab’s replicated representation. However, as can
be seen in Figure 7c(top), Grappa sends these messages
at up to 4⇥ the rate of GraphLab over the bulk of its exe-
cution. At the end of the execution when the number of
active vertices is low, both systems’ message rates drop,
but Grappa’s simpler graph representation allows it to
execute these iterations faster as well. Overall, this leads
to a 2⇥ speedup.

Figure 8 demonstrates the connection between concur-
rency and aggregation over time while executing PageR-
ank. We see that at each iteration, the number of concur-
rent tasks spikes as scatter delegates are performed on

outgoing edges, which leads to a corresponding spike in
bandwidth due to aggregating the many concurrent mes-
sages. At these points, Grappa achieves roughly 1.1 GB/s
per node, which is 47% of peak bisection bandwidth for
large packets discussed in §3.3.1, or 61% of the band-
width for 80 kB messages, the average aggregated size.
This discrepancy is due to not being able to aggregate
packets as fast as the network can send them, but is still
significantly better than unaggregated bandwidth.

Figure 7b(left) shows strong scaling results on both
datasets. As we can see, scaling is poor beyond 32 nodes
for both platforms, due to the relatively small size of the
graphs—there is not enough parallelism for either system
to scale on this hardware. To explore how Grappa fares
on larger graphs, we show results of a weak scaling exper-
iment in Figure 7b(right). This experiment runs PageR-
ank on synthetic graphs generated using Graph500’s Kro-
necker generator, scaling the graph size with the number
of nodes, from 200M vertices, 4B edges, up to 2.1B ver-
tices, 34B edges. Runtime is normalized to show distance
from ideal scaling (horizontal line), showing that scaling
deteriorates less than 30% at 128 nodes.

4.2 Relational queries on Grappa

We used Grappa to build a distributed backend to Raco, a
relational algebra compiler and optimization framework
[58]. Raco supports a variety of relational query language
frontends, including SQL, Datalog, and an imperative
language, MyriaL. It includes an extensible relational
algebra optimizer and various intermediate query plan
representations.
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Figure 8: Grappa PageRank execution over time on 32
nodes. The top shows the total number of concurrent tasks
(including delegate operations), over the 85 iterations,
peaks diminishing as fewer vertices are being updated.
The bottom shows message bandwidth per node, which
correlates directly with the concurrency at each time step,
compared against the peak bandwidth, and the bandwidth
for the given message size.

We compare performance of our system to that of
Shark, a fast implementation of Hive (SQL-like), built
upon Spark. We chose this comparison point because
Shark is optimized for in-memory execution and performs
competitively with parallel databases [71].

Our particular approach for the Grappa backend to
Raco is source-to-source translation. We generate
foralls for each pipeline in the physical query plan.
We extend the code generation approach for serial code
in [54] to generating parallel shared memory code. The
generated code is sent through a normal C++11 compiler.

All data structures used in query execution (e.g. hash
tables for joins) are globally distributed and shared. While
this a departure from the shared-nothing architecture of
nearly all parallel databases, the locality-oriented execu-
tion model of Grappa makes the execution of the query
virtually identical to that of traditional designs. We ex-
pect (and later demonstrate) that Grappa will excel at hash
joins, given that it achieves high throughput on random
access.

Implementing the parallel Grappa code generation was
a relatively simple extension of the generator for serial
C++ code that we use for testing Raco. It required less
than 90 lines of template C++/Grappa code and 600 lines
of support and data structure C++/Grappa code to imple-
ment conjunctive queries, including two join implementa-
tions.

4.2.1 Performance

We focus on workloads that can be processed in memory,
since storage is out of scope for this work. For Grappa, we
scan all tables into distributed arrays of rows in memory,
then time the query processing. To ensure all timed pro-
cessing in Shark is done in memory, we use the methodol-
ogy that Shark’s developers use for benchmarking [2]. In

particular, all input tables are cached in memory and the
output is materialized to an in-memory table. The number
of reducer tasks for shuffles was set to 3 per Spark worker,
which balances overhead and load balance. Each worker
JVM was assigned 52GB of memory.

We ran conjunctive queries from SP2Bench [63]. The
queries in this benchmark involve several joins, which
makes it interesting for evaluating parallel in-memory sys-
tems. We show results on 16 nodes (we found Shark failed
to scale beyond 16 nodes on this data set) in Figure 9a.
Grappa has a geometric mean speedup of 12.5⇥ over
Shark. The benchmarks vary in performance due to dif-
ferences in magnitude of communication and output size.

There are many differences between the two runtime
systems (e.g. messaging layers, JVM and native) and the
query processing approach (e.g. iterators vs compiled
code), making it challenging to clearly understand the
source of the performance difference between the two
systems. To do so, we computed a detailed breakdown
(Figure 9b) of the execution of Q2. We took sample-based
profiles of both systems and categorized CPU time into
five components: network (low-level networking over-
heads, such as MPI and TCP/IP messaging), serialization
(aggregation in Grappa, Java object serialization in Shark),
iteration (loop decomposition and iterator overheads), ap-
plication (actual user-level query directives), and other
(remaining runtime overheads for each system).

Overall, we find that the systems spend nearly the same
amount of CPU time in application computation, and
that more than half of Grappa’s performance advantage
comes from efficient message aggregation and a more
efficient network stack. An additional benefit comes from
iterating via Grappa’s compiled parallel for-loops com-
pared to Shark’s dynamic iterators. Finally, both systems
have other, unique overheads: Grappa’s scheduling time
is higher than Shark due to frequent context switches,
whereas Shark spends time dynamically checking the
types of data values.

Shark’s execution of these queries appears to place
bursty demands on the network, and is sensitive to net-
work bandwidth. On query Q2, Shark achieves the
same peak bandwidth as GUPS (Figure 7c) sustains
(200MB/s/node), but its sustained bandwidth is just over
half this amount (116 MB/s/node).

4.3 Iterative MapReduce on Grappa
We experiment with data parallel workloads by imple-
menting an in-memory MapReduce API in 152 lines of
Grappa code. The implementation involves a forall over
inputs followed by a forall over key groups. In the all-
to-all communication, mappers push to reducers. As with
other MapReduce implementations, a combiner function
can be specified to reduce communication. In this case,
the mappers materialize results into a local hash table, us-
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periments using k-means on
a 8.9GB Seaflow dataset with
64 nodes.

ing Grappa’s partition-awareness. The global-view model
of Grappa allows iterations to be implemented by the
application programmer with a while loop.

4.3.1 Performance

We pick k-means clustering as a test workload; it exer-
cises all-to-all communication and iteration. To provide
a reference point, we compare the performance to the
SparkKMeans implementation for Spark. Both versions
use the same algorithm: map the points, reduce the clus-
ter means, and broadcast local means. The Spark code
caches the input points in memory and does not persist par-
titions. Currently, our implementation of MapReduce is
not fault-tolerant. To ensure the comparison is fair, we
made sure Spark did not use fault-tolerance features: we
used MEMORY ONLY storage level for RDDs, which does
not replicate an RDD or persist it to disk and verified
during the runs that no partitions were recomputed due to
failures. We run k-means on a dataset from Seaflow [66],
where each instance is a flow cytometry sample of sea-
water containing characteristics of phytoplankton cells.
The dataset is 8.9GB and contains 123M instances. The
clustering task is to identify species of phytoplankton so
the populations may be counted.

The results are shown in Figure 10 for K = 10
and K = 10000. We find Grappa-MapReduce to be
nearly an order of magnitude faster than the comparable
Spark implementation. Absolute runtime for Grappa-
MapReduce is 0.13s per iteration for K = 10 and 17.3s
per iteration for K = 10000, compared to 1s and 170s
respectively for Spark.

We examined profiles to understand this difference.
We see similar results as with Shark: the bulk of the
difference comes from the networking layer and from
data serialization. As K grows, this problem should be
compute-bound: most execution time is spent assigning
points to clusters in the map step. At large K, Grappa-
MapReduce is clearly compute-bound, but Spark spends
only 50% of its time on compute; the rest is in network
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code in the reduce step. Grappa’s efficient small message
support and support for overlapping communication and
computation help it perform well here.

4.4 Writing directly to Grappa
Not all problems fit perfectly into current restricted pro-
gramming models—for many, a better solution can be
found by breaking these restrictions. An advantage of
building specialized systems on top of a flexible, high-
performance platform is that it makes it easier to imple-
ment new optimizations into domain-specific models, or
implement a new algorithm from scratch natively. For ex-
ample, for BFS, Beamer’s direction-optimizing algorithm
has been shown to greatly improve performance on the
Graph500 benchmark by traversing the graph “bottom-up”
in order to visit a subset of the edges [13]. This cannot be
written in a pure Vertex-centric framework like GraphLab.
We implemented the Beamer’s BFS algorithm directly on
the existing graph data structure in 70 lines of code. Per-
formance results in Figure 11 show that this algorithm’s
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performance is nearly a factor of 2 better than the pure
Vertex-centric abstraction can achieve.

5 Related Work
Multithreading. Hardware-based implementations of
multithreading to tolerate latency include the Denelcor
HEP [65], Tera MTA [11], Cray XMT [33], Simultaneous
multithreading [67], MIT Alewife [6], Cyclops [9], and
GPUs [32]. Hardware multithreading often pays with
lower single-threaded performance that may limit appeal
in the mainstream market. As a software implementa-
tion of multithreading for mainstream general-purpose
processors, Grappa provides the benefits of latency toler-
ance only when warranted, leaving single-threaded per-
formance intact.

Grappa’s closest software-based multithreading ances-
tor is the Threaded Abstract Machine (TAM) [24]. TAM
is a software runtime system designed for prototyping
dataflow execution models on distributed memory super-
computers. Like Grappa, TAM supports inter-node com-
munication, management of the memory hierarchy, and
lightweight asynchronous scheduling of tasks to proces-
sors, all in support of computational throughput despite
the high latency of communications. A notable conclu-
sion [25] was that threading for latency tolerance was
fundamentally limited because the latency of the top-level
store (e.g. L1 cache) is in direct competition with the
number of contexts that can fit in it. However, we find
prefetching is effective at hiding DRAM latency in con-
text switching. Indeed, a key difference between Grappa’s
support for lightweight threads and that of other user level
threading packages, such as QThreads [70], TBB [59],
Cilk [16] and Capriccio [14] is Grappa’s context prefetch-
ing. Grappa’s prefetching could likely improve from com-
piler analyses inspired by those of Capriccio for reducing
memory usage.

Software distributed shared memory. Much of the
innovation in DSM over the past 30 years has focused
on reducing the synchronization costs of updates. The
first DSM systems, including IVY [47], used frequent
invalidations to provide sequential consistency, induc-
ing high communication costs for write-heavy workloads.
Later systems relaxed the consistency model to reduce
communication demands; some systems further mitigated
performance degradation due to false sharing by adopting
multiple writer protocols that delay integration of concur-
rent writes made to the same page. The Munin [15, 19]
and TreadMarks [45] systems exploited both of these
ideas, but still incurred some coherence overhead. Munin
and Blizzard [64] allowed the tracking of ownership with
variable granularity to reduce the cost due to false shar-
ing. Grappa follows the lead of TreadMarks and provides
DSM entirely at user-level through a library and runtime.
FaRM [27] offers lower latency and higher throughput up-

dates to DSM than TCP/IP via lock free and transactional
access protocols exploiting RDMA, but remote access
throughput is still limited to the RDMA operation rate
which is typically an order of magnitude less than the per
node network bandwidth.

Partitioned Global Address Space languages. The
high-performance computing community has largely dis-
carded the coherent distributed shared memory approach
in favor of the Partitioned Global Address Space (PGAS)
model. Examples include Split-C [23], Chapel [20],
X10 [21], Co-array Fortran [56] and UPC [30]. What is
most different between general DSM systems and PGAS
ones is that remote data accesses are explicit, thereby
encouraging developers to use them judiciously. Grappa
follows this approach, implementing a PGAS system at
the language level, thereby facilitating compiler and pro-
grammer optimizations.

Distributed data-intensive processing frameworks.
There are many other data-parallel frameworks like
Hadoop, Haloop [18], and Dryad [43]. These are de-
signed to make parallel programming on distributed sys-
tems easier; they meet this goal by targeting data-parallel
programs. There have also been recent efforts to build
parameter servers for distributed machine learning al-
gorithms using asynchronous communication and dis-
tributed key-value storage built from RPCs [7, 8]. The
incremental data-parallel system Naiad [52] achieves both
high-throughput for batch workloads and low-latency for
incremental updates. Most of these designs eschew DSM
as an application programming model for performance
reasons.

6 Conclusions

Our work builds on the premise that writing data-intensive
applications and frameworks in a shared memory envi-
ronment is simpler than developing custom infrastructure
from scratch. To that end, Grappa is inspired not by SMP
systems, but by novel supercomputer hardware – the Cray
MTA and XMT line of machines. This work borrows
the core insight of those hardware systems and builds it
into a software runtime tuned to extract performance from
commodity processors, memory systems and networks.
Based on this premise, we show that a DSM system can
be efficient for this application space by judiciously ex-
ploiting the key application characteristics of concurrency
and latency tolerance. Our data demonstrates that frame-
works such as MapReduce, vertex-centric computation,
and query execution are easy to build and efficient. Our
MapReduce and query execution implementations are an
order of magnitude faster than the custom frameworks
for each. Our vertex-centric GraphLab-inspired API is
1.33⇥ faster than GraphLab itself, without the need for
complex graph partitioning schemes.

11
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Abstract
Cache pollution, by which weak-locality data unduly re-
places strong-locality data, may notably degrade applica-
tion performance in a shared-cache multicore machine.
This paper presents NightWatch, a cache management
subsystem that provides general, transparent and low-
overhead pollution control to applications. NightWatch
is based on the observation that data within the same
memory chunk or chunks within the same allocation con-
text often share similar locality property. NightWatch
embodies this observation by online monitoring current
cache locality to predict future behavior and restricting
potential cache polluters proactively. We have integrated
NightWatch into two popular allocators, tcmalloc and pt-
malloc2. Experiments with SPEC CPU2006 show that
NightWatch improves application performance by up to
45% (18% on average), with an average monitoring over-
head of 0.57% (up to 3.02%).

1 Introduction
Modern multicore processors usually have a shared last
level cache, where all cores place their data to improve
cache utilization. This, however, creates a new challenge
of cache management, due to cache pollution. One major
problem is that data with weak locality may unduly evict
other data with strong locality, if both are mapped into
the same cache set [6, 12, 16, 18, 24, 30].

The major challenge to mitigate cache pollution is
that the locality property of an application is implic-
itly determined by the runtime behavior. There has
been much work [6, 16, 27, 28, 31] that has demon-
strated the great potential of performance improvement
via cache-aware memory allocation. However, they fall
short in several aspects, such as requiring off-line anal-
ysis [3, 5, 16, 21, 23, 25, 26], special hardware sup-
port [7, 22, 27, 29, 31], or changing allocation inter-
faces [6, 28]. Hence, these techniques can hardly be used

∗Corresponding author

for general, unmodified applications.
This paper presents NightWatch, an online, transpar-

ent cache management subsystem for memory allocators.
NightWatch dynamically characterizes the locality prop-
erties of allocated memory chunks, and provides hints to
the memory allocator about the proper cache assignment
for future allocation requests.

There are two main challenges to implement Night-
Watch efficiently. First, monitoring locality properties
online is usually expensive and may easily cancel out the
benefit from mitigated cache pollution. Second, it is hard
to determine a priori whether a requested memory chunk
will be a polluter before its actual use, due to the fact
that the memory allocator has no knowledge about the
application logic. NightWatch addresses the challenges
by leveraging two new insights on the locality correlation
among memory chunks1:

1. Insight 1: Intra-chunk locality similarity, where dif-
ferent pages in the same memory chunk tend to have
similar locality properties;

2. Insight 2: Inter-chunk locality similarity, where dif-
ferent memory chunks in the same allocation con-
text2 tend to have similar locality properties.

Based on these insights, NigthWatch is built with
mechanisms to monitor the access behavior of allocated
memory chunks in a lightweight way, and to predict the
behavior of new chunks with high reliability. Based on
Insight 1, NightWatch infers the locality properties of a
memory chunk by monitoring and sampling only a small
part of each chunk. Based on Insight 2, NightWatch
leverages the locality properties of previously allocated
chunks to predict the locality properties of new chunks
in the same allocation context.

We have integrated NightWatch into two popular
memory allocators, tcmalloc [9] and ptmalloc2 [10].
Specifically, NightWatch analyzes the historical locality

1A chunk is a memory block returned by malloc.
2The allocation context is identified as the call stack when the allo-

cation function is called.
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profile of allocated chunks and provides advices to the
allocator on the proper cache assignment for the current
allocation. In summary, we make three contributions:

• We demonstrate locality similarity within the same
memory chunk, and between chunks in the same al-
location context. These findings lay the foundation
of practical online cache pollution control, which
completely frees common programmers from cum-
bersome tasks of analyzing the program’s cache de-
mand.

• We present an open source implementation of
NightWatch3. The cache management support is
orthogonal to the traditional memory management
techniques, and can be easily integrated into popu-
lar memory allocators [1, 8, 9, 10, 15].

• We have performed extensive evaluation of Night-
Watch with 27 programs from the SPEC CPU2006
benchmark suite. Compared with the popular al-
locator implementation of tcmalloc, NightWatch
helps improve performance by up to 45%, with an
average prediction accuracy of over 93%. Night-
Watch incurs very small extra overheads: the over-
head is only 0.57% on average (up to 3.02%).

2 Motivation and Background
This section describes conventional ways of memory
mapping, potential issues with cache pollution, and the
concept of restrictive mapping.

2.1 Conventional Mapping
Since physical pages and cache sets are both physically
indexed4, the allocation of physical memory automati-
cally determines the allocation of CPU caches. This re-
lation is illustrated in Figure 1. A physical memory ad-
dress is divided into two parts, i.e., page offset and phys-
ical page number. Several lower bits of the physical page
number also serve as cache set index. The common bits
divide cache sets and physical pages into different colors.
Pages sharing a color are mapped to the same cache sets.

The memory allocator, as part of the runtime system,
works at user level and is unaware of the mapping be-
tween cache and pages. The mapping is transparently
handled by the operating system (OS). When the alloca-
tor acquires free memory, the OS returns memory with
a unified mapping type. Conventional memory map-
ping techniques [20] attempt to maximize the number
of cache sets assigned to consecutive virtual pages. As
shown in Figure 2(a), physical pages in different col-
ors are mapped to virtual pages in a round-robin man-
ner. Such mapping allows even distribution of adjacent

3https://github.com/grtoverflow/PC-Malloc
4CPU caches are commonly physically indexed [2, 11]. However,

there are also some designs using virtual address as cache index. In this
case, NightWatch’s cache control mechanism will NOT work.
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Figure 1: The relation between physical page number
and cache set index

C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
1

C
2

C
3

C
5

C
6

C
7

C
8...

Shared cache

Physical pages C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

...
Virtual pages

(a) Open mapping

C
1

C
2

C
3

C
4

C
1

C
2

C
1

C
2

C
1

C
2

C
1

C
2

C
1

C
2

C
1

C
5

C
6

C
7

C
8Shared cache

Physical pages C
1

C
2 ... C

1
C
2 ... C

1
C
2 ... C

1
C
2 ... C

1
C
2 ... C

1
...

Virtual pages

(b) Restrictive mapping
Figure 2: Two types of memory mapping. Each bin in
the shared cache represents a group of cache sets in the
same color, and the bins in the following two rows are
consecutive virtual pages and physical pages. The pages’
labels distinguish the color.

data over the cache for the benefit of load balance be-
tween cache sets. The downside of this approach is that
it allows weak-locality data to spread all over the cache,
causing cache pollution to a maximum degree. Since
there is no restriction on the pollution scope, we call this
approach of memory mapping open mapping.

2.2 Issues with Conventional Mapping

The coexistence of both strong-locality and weak-
locality data is very common. During execution, pro-
grams may have a large number of memory chunks with
various locality properties.

Figure 3 shows the cache miss rate of the memory
chunks of eight memory-intensive applications. It can be
seen that the chunks differ in locality properties signif-
icantly. Take dealII as an example, 10% of its chunks
have a miss rate below 10%, while 50% have a miss
rate above 90%. In addition, the portion of the weak-
locality chunks can be fairly large – two out of eight pro-
grams find a miss rate over 90% for more than half of
their chunks. If not properly handled, the weak-locality
chunks can overuse cache for little benefit, and leave lit-
tle cache space to strong-locality chunks, thus degrading
overall system performance.
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Figure 3: Chunk distributions of eight memory intensive
programs. The cache size is 8MB.

2.3 Pollution Restrictive Mapping
A possible solution to the cache pollution issue would
be to restrict the size of cache to which weak-locality
chunks are mapped, and leaves more cache space to
strong-locality ones. In this solution, page mapping is
done in a restrictive way for polluters, and an open way
for the rest of the chunks. Figure 2(b) depicts the princi-
ple of restrictive mapping for this solution. In the figure,
the selection of physical pages are restricted in a limited
color region (with two colors in this case) and mapped
to consecutive virtual pages. Under such mapping, the
weak-locality data are constrained and thus the pollution
effect can be largely reduced.

While the idea of dual-mapping is conceptually
straightforward, realizing it in an efficient way is non-
trivial: the use of both open and restrictive mapping re-
quires the memory allocator to be able to distinguish be-
tween polluter and normal chunks at runtime. As mem-
ory allocator is a core routine in most programs, such
locality identification process needs to be performed in
a lightweight manner. Otherwise, the monitoring over-
head may easily nullify the benefit from improved cache
locality.

3 Locality Similarity
Underlying our design are two observations of locality
correlation between memory units. The first observa-
tion is concerned with locality similarity between pages
within the same chunk, and the second on the locality
similarity across different chunks within the same allo-
cation context.

We use the SPEC CPU2006 benchmark suite to study
the locality similarities. The benchmark consists of 27
programs5. We employ PIN [17] to collect the pro-
grams’ memory allocation events and the full trace of
data accesses. We then feed the data accesses to a cache
simulator to track the cache miss rate of each memory
chunk, and of each page within each chunk. The data

5Two programs, 434.zeusmp and 458.sjeng, are excluded, as they
do not use dynamic memory allocation, and optimizing the cache allo-
cation of stack and data segments are beyond the scope of this work.

img->mb_data 
 = calloc(img->FrameSizeInMbs, sizeof(Macroblock));

......
/* encode a picture */
while (NumberOfCodedMBs < img->total_number_mb) {

......
 /* encode a macroblock in img->mb_data */   
 encode_one_macroblock ();      
NumberOfCodedMBs++;

}

Figure 4: An example of intra-chunk access similarity
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Figure 5: CDF of cache miss rate difference between
pages and chunks

accesses are first filtered by a 256KB private cache, and
then tracked in an 8MB set-associative shared cache. All
the caches are configured with the LRU replacement pol-
icy, with 64B cache line size.

3.1 Intra-Chunk Locality Similarity
As discussed in Section 2, page is the basic unit for
a memory allocator to manipulate a chunk’s cache re-
source allocation. A chunk commonly consists of multi-
ple pages, but managing cache allocation on a per-page
basis is costly – that needs online monitoring for every
page throughout the chunk’s life cycle. Such an approach
is necessary only if pages differ significantly in their lo-
cality properties.

Figure 4 shows an example of locality similarity
within a single memory chunk, which is taken from
h264ref, an implementation of the H.264/AVC (Ad-
vanced Video Coding) standard. The memory chunk,
img->mb data, is used to hold a whole frame of data
during encoding. For an input video with 512x320 res-
olution, img->mb data contains around 100 4KB pages.
The frame is divided into macroblocks, each with 632B
in size. In the main encoding iterations, each of the
macroblocks is processed by encode one macroblock (),
with identical intra-frame and inter-frame compression
algorithms. As a consequence, all the pages within
img->mb data will share similar locality properties.
This implies that manipulating cache allocation for img-
>mb data on a per page basis is unnecessary, since we
can take the whole chunk as a basic cache allocation unit.

To verify the generality of the intra-chunk locality
similarity, we examine all the chunks comprising more
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for (img->number=0; img->number < input->no_frames; 
      img->number++) {

    …...
    buf = malloc (xs * ys * symbol_size_in_bytes);
    /* read one frame */
    read(p_in, buf, bytes_y);
    /* convert file read buffer to source picture structure */             
    buf2img(imgY_org_frm, buf, xs, ys, symbol_size_in_bytes);        
    …...
    free (buf);
}

Figure 6: An example of inter-chunk access similarity

than one page in the 27 programs. We record the differ-
ence between each page’s miss rate and its chunk’s. The
cumulative distribution function (CDF) of the difference
is illustrated in Figure 5. The figure shows that most of
the pages share a very similar miss rate with their chunks.
Specifically, more than 98% of the pages have an identi-
cal miss rate as their chunks’, and less than 0.5% of the
pages have a miss rate difference from their chunks by
10%. This suggests that it is possible to manage cache
allocation on a per chunk basis. More importantly, it is
safe to reduce the number of monitored pages for lower
overhead with little sacrifice of monitoring quality.

3.2 Inter-Chunk Locality Similarity
The locality monitor works only for allocated data. For a
new memory request, the allocator has to perform cache
mapping in a default way. If the monitoring results later
on suggest that the default mapping does not fit the data’s
cache behavior, then a mapping switch, or remapping, is
needed. This operation is prohibitively expensive: in the
OS, data on the original pages needs to be copied to the
new pages with proper physical indexing, followed by
the update to the corresponding page table entries. In our
experiments, for example, the time of remapping 1MB of
data is as long as 1.8ms. Worse still, the effort may turn
out not worthwhile, as many chunks are short-lived. For
example, for the 27 programs we tested, over 90% of the
chunks have a lifetime less than one second. After the
monitoring and remapping phases, the cache allocation
adjustment is too late to take effect, bringing very limited
benefit compared with the cost.

To avoid cache remapping for a chunk, the allocator
should make the initial mapping match the chunk’s lo-
cality property, which calls for a reliable prediction of
the chunk’s access behavior. Fortunately, we find that
the allocation context, defined as the call stack of an al-
location request, provides important hints of the future
behavior of to-be-allocated chunks, due to inter-chunk
locality similarity.

Within an allocation context, a program commonly
triggers memory allocation more than once. From Fig-
ure 7, we can see that for the 27 programs we tested, 99%
of the chunk allocations fall in contexts that contain more
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Figure 7: CDF of number of allocations
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Figure 8: CDF of cache miss rate variance of the chunks
sharing the same context

than 100 times of allocations. This indicates that most of
the chunks are generated in “big” contexts, where they
can find sufficient previously allocated chunks for local-
ity prediction.

Figure 6 illustrates an example of chunk allocations in
an allocation context, which is taken from h264ref. In
the example, a group of memory chunks named buf are
involved. Each of them lives in one encoding iteration:
when a frame encoding iteration begins, buf is allocated
to load one frame of data from the input file, then the
data is converted to source picture format. After that, the
memory chunk is freed back to the memory allocator.
All the buf share the same allocation context, because
the call stacks of malloc() in each encoding iteration are
identical. Furthermore, these chunks also exhibit simi-
lar data access patterns – each of them serves one round
of data installation and data conversion. As such, it is
possible to use previously allocated chunks for locality
prediction in later memory allocations.

In addition, the inter-chunk locality similarity also
provides opportunities for reducing monitoring over-
head. For contexts with good locality similarity, only a
small part of the chunks need to be monitored to maintain
a high prediction success rate.

To confirm the inter-chunk locality similarity in the
same context, we calculate the variance of miss rate of
chunks in each context. The CDF of miss rate variance
is shown in Figure 8. Over 90% of the chunks share an
identical miss rate with other chunks in the same context;
less than 2% of the contexts have a miss rate variance
greater than 0.1. As we will show later, this high level
of locality similarity among the chunks leads to a high
prediction success rate of 95.5% on average.
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Figure 9: System overview of a NightWatch assisted al-
locator

4 Overview
NightWatch leverages the two observations of locality
similarity, which inspire the design of efficient monitor-
ing mechanisms, and help to make correct locality pre-
dictions. The system framework is shown in Figure 9.

The locality monitor collects locality information
from previously allocated chunks. It periodically sam-
ples the references from the target chunks, and evaluates
the chunk’s locality property, which is sent to the locality
predictor. Based on the historical locality information,
the locality predictor determines the proper mapping for
pending allocation requests. When a new request arrives,
the predictor first checks its allocation context, and uses
its predecessor chunks’ locality profiles to predict the
pending chunk’s locality property. Then, the predictor
notifies the memory allocator to perform the allocation.

The memory allocator is an extended allocator (i.e.
extended from tcmalloc, ptmalloc, ssmalloc, etc). In
most cases, a traditional allocator is unaware of cache
pollution, and serves allocation requests with unique
mapping (commonly the open mapping). To work with
NightWatch, the allocator needs to be slightly modified
to support both open mapping and restrictive mapping.
The original allocator includes a set of data structures
to maintain memory, for example, size classes used for
containing small chunks [4, 9], and thread-local cache
designed to manage per thread allocations [10, 15]. We
extend the allocator to use two sets of these data struc-
tures, with each set maintaining memory under one of
the two mapping types. The modified allocator uses
an internal interface to serve allocation with both mem-
ory and cache demand, for instance, malloc(mem size,
cache map), where the mem size is the user program’s
memory requirement, and the cache map comes from the
NightWatch’s advice for cache mapping. The design of
NigthWatch is general and portable so that it is quite con-
venient to extend the original allocator to support Night-
Watch. For example, it takes less than 700 lines of code
modification to integrate NightWatch into tcmalloc, and

500+ lines of code modification for ptmalloc2.
The operating system manages the memory mappings.

We modify the Linux kernel to support both open map-
ping and restrictive mapping, as discussed in Section 2.
When the memory allocator runs out of certain type of
memory, it acquires more memory via system calls. In
our design, we extend the mmap system call as the inter-
face to return free memory with multiple mappings.

5 Design and Implementation
In this section, we describe in detail the design and im-
plementation of NightWatch’s main components.

5.1 The Locality Monitor
Types of chunks. The locality monitor aims to evalu-
ate a chunk’s locality property by sampling its data ac-
cesses, and then classifies the chunk into two types: pol-
luter chunk and normal chunk.

A polluter chunk is one with poor locality and caching
it brings little performance gain, and therefore should be
mapped to cache in a restrictive way. In practice, only a
small fraction of the polluter chunks are completely non-
temporally accessed: many of them still receive burst
temporal accesses. As long as the burst accesses can fit
in a cache region provided by the restrictive mapping, the
chunks are treated as polluters. The remaining chunks
are normal chunks. Data of normal chunks can get timely
reuse before getting evicted from the cache. They are the
normal users of the cache, and the potential victims of the
polluter chunks. If normal chunks are identified, Night-
Watch will suggest to allocate them with open mapping.

Monitoring and mapping. The monitor samples a
subset of the pages in each chunk periodically (i.e., every
five seconds in our implementation). For each sampled
page, the monitor records a hit or miss according to its
access events and obtains a miss rate for the chunk. To
obtain a stable result, multiple rounds of sampling are
performed within each sample collection period, until the
miss rate converges. Here, the condition of convergence
is that the recent rate differs from the historical average
rate by at most a given margin (0.1 in our case).

After the sample collection phase, the current miss rate
of the chunk is generated. The miss rate is used to deter-
mine the chunk type and the proper mapping type, called
the target mapping type. The current mapping type of
the chunk may not match the target mapping type, and
calls for a mapping switch. NightWatch does not no-
tify the allocator to switch the mapping immediately, as
many chunks are short-lived and may exhibit short-term
locality variation; instead it waits until the next monitor-
ing phase and checks the situation again. If the mismatch
persists, it starts mapping switch.

In practice, a chunk’s access pattern may change over
time and remain unstable in the long term. In this case,
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NightWatch does not keep switching between the map-
ping types, as remapping is expensive. There are two
possible ways in which a chunk’s role starts alternat-
ing: polluter→normal→ . . . and normal→ . . .. In the first
case, NightWatch performs remapping only once, that is,
from restrictive to open mapping, and stops monitoring
the chunk afterwards. In the second case, NightWatch
only performs the first open mapping and ignores future
changes. The principle of mapping switch is that Night-
Watch would rather treat an unstable or primarily pol-
luter chunk as a normal one, than restrict a normal one to
its disadvantages. The consequence of this conservative
mapping policy is that, for these particular cases, Night-
Watch degenerates the cache-aware allocator to a tra-
ditional memory allocator, and does not perform worse
than a cache pollution unaware allocator. The conserva-
tive policy also has downsides. For example, for chunks
with infrequent changing locality properties, the bene-
fit from cache control may exceed the remapping over-
head. One possible approach is to use methods similar to
Branch History Table to detect phases of stable chunks
and to make more aggressive cache control.

For small chunks below one page, NightWatch per-
forms page alignment before monitoring. When a small
chunk is selected as a sample, NightWatch will force the
allocator to align the chunk to page size, so that the lo-
cality information monitored at page granularity can still
represent the sampled chunk. The alignment will not
cause much space waste, as NightWatch only needs to
sample a very small percentage of the allocations.

Identification of access misses. To evaluate whether a
sampled page encounters an access hit or miss, the mon-
itor records a pair of successive references for the page,
and estimates whether the second reference is timely
enough to hit the CPU cache. There are two issues to
be considered here. First, due to the nature of access
locality, the reference events to a certain page tend to
be clustered. As a result, a simple sampling procedure
may find most of the collected reference pairs falling into
the page’s burst access interval. For mapping selection,
such samples are meaningless, because they are frequent
enough to hit the cache in any of the mapping types.

The second issue is the locality measurement. Access
locality is commonly measured by reuse distance, which
is defined as the number of distinct data accessed since
the last access to the sampled data. Reuse distance is the
same as LRU stack distance [19]. Although reuse dis-
tance provides a basis for precise cache miss prediction,
it is very costly to be used directly for on-line monitoring
– measuring reuse distance requires tracing the full data
references. At present, no commodity hardware supports
such measurement, and there is no efficient software ap-
proach either.

In NightWatch, we exploit the relation between cache
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Figure 10: Cache miss estimation false rate

events and reuse distance to address the two issues. Let
∆n and ∆m be the number of cache accesses and the
number of cache misses between a reference pair, respec-
tively. Also, let Crestrict and Copen be the cache spaces (at
cache line granularity) assigned by restrictive mapping
and open mapping, respectively. Then we have

1. If ∆n <Crestrict , the data reuse is frequent enough to
fit either of the mapping types;

2. If ∆m > Copen, the data will be evicted from cache
before its reuse even with open mapping.

Note that the reuse distance measures distinct data ac-
cesses on the cache, and ∆n is an access measurement
without the distinct condition. Hence, ∆n is an upper
bound for the data’s reuse distance. If ∆n is less than
Crestrict , the reuse distance will not exceed Crestrict . On
the other hand, if ∆m is larger than Copen, the distinct
data installed on the cache is beyond Copen. Thus the
reuse distance is already larger than Copen before the data
reuse. So, even with open mapping, the data reuse will
still trigger a cache miss.

The sampling process is as follows. In each monitor-
ing cycle, a sampled page will be set with read/write pro-
tection for trapping page references. When the first ref-
erence arrives, the protection will be removed until the
cache access volume reaches Copen, so that meaningless
burst accesses can be skipped. Then, the monitor records
the current number of cache misses, and waits for the
second reference. When the second reference is trapped,
the monitor checks the increment of cache misses ∆m,
and compares ∆m and Copen to estimate whether the sec-
ond page reference misses the cache or not.

Effectiveness of sampling. To evaluate the effec-
tiveness of our sampling mechanism, we evaluate SPEC
CPU 2006 benchmark suite. There are 1 million data ac-
cess randomly sampled from each of the programs. For
each of the sample, we compare our estimation of cache
miss with the precise result given by off-line reuse dis-
tance analysis. Figure 10 shows an average false rate of
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6.0%. Six out of the 27 programs have a false rate over
10% (mcf, namd, gobmk, soplex, omnetpp, xalancbmk).
Compared with the reuse distance analysis, our method
is much more lightweight and thus practical. As we will
show later, it is accurate enough for the purpose of cache
management. More importantly, since ∆m > Copen is a
sufficient condition for cache miss events, our monitor
can only take a miss event for a hit mistakenly, and may
further regard a polluter chunk as a normal one, which is
in line with our conservative mapping principle.

Minimizing monitoring overhead The optimization
of monitoring overhead is carried out at two levels: 1)
Page level. Due to high locality similarity between pages
within a chunk, page sampling rate does not need to be
high to allow accurate locality estimation. As we will
show later in Section 6.3, for an estimation error below
5%, the required number of sampled pages is approxi-
mately s0.65, where s is the total number of pages in a
chunk. This sublinear relation means that the sampling
method can scale to large chunks. 2) Chunk level. Night-
Watch tries to skip chunks in the request stream when
it finds a chunk’s prediction type to match the monitor-
ing result. Specifically, upon each successful prediction,
NightWatch doubles the sampling interval for reduced
overhead. On the other hand, when a prediction is found
to be false, the sampling interval falls back to zero. Based
on inter-chunk locality similarity, this mechanism dra-
matically reduces chunk sampling rate, while guarantee-
ing a high prediction success rate.

5.2 The Locality Predictor
As we have described, once the locality monitor detects
that a chunk’s current mapping type does not match its
actual locality pattern, the monitor will look for chances
of mapping switch. The mapping switch mainly targets
the first few chunks in their allocation context. For sub-
sequent chunks in the context, their locality information
can be predicted from the previously allocated chunks
and thus mapping switch becomes much less necessary.

The prediction process is as follows. The predictor
first analyzes the call stack of the allocation request to
determine its allocation context. Then, it checks the map-
ping type of its two preceding chunks to make a predic-
tion. If the current allocation request is the first one of its
context, or the monitor has not yet determined the chunk
type of its predecessors, the predictor assigns open map-
ping to the current request. If one of the predecessors is
a normal chunk, the open mapping will also be applied.
For other cases, restrictive mapping will be applied.

Notice the conservative policy of mapping that the pre-
dictor performs. Whenever there is inconsistency, the
predictor chooses open mapping for the allocation re-
quest, for the same reason of the locality monitor’s bias
toward normal chunks in chunk type determination.

Accelerating locality prediction. NightWatch uses
call stack as the identifier of an allocation context. We
trace the 10-depth call stack of the current allocation
function, and hash together all the program counters in
every stack frame, so that the allocation context of a
chunk can be determined by the hash value.

Some programs, especially those programmed with
object-oriented languages, may extensively use small
chunks. For those small chunks, we use a size-to-
mapping table to provide a faster way to give the map-
ping type predictions. In our design, the table contains
64K entries, each corresponding to a set of chunks whose
size equals the entry’s index. The monitor’s results are
used to determine whether to invalidate a table entry or
not. If the chunks in a table entry have the same mapping
type, NightWatch directly returns a mapping type predic-
tion for the coming allocation requests; otherwise, if the
locality monitor detects inconsistency in this respect later
on, the corresponding entry will be invalidated, in which
case NightWatch will resort to the call stack tracing ap-
proach to find the allocation context and make prediction.

6 Evaluation
6.1 Experiment Setup
We conducted our experiments on a machine with four
2.13GHz quad-core Intel Xeon E7420 processors. The
four cores in each of the processor share a set-associative
8MB cache, with 16,384 sets in total. Both stride
prefetching and adjacent-line prefetching are enabled on
the processors. The cache contains 256 colors; open
mapping can use all the colors, while restrictive mapping
can use only 32 colors. The server has 16GB memory,
with eight 2GB fully buffered DIMMs. The operating
system is CentOS 6.0, with Linux kernel 2.6.32-71.

We compare the NightWatch assisted tcmalloc (here-
inafter nw tcmalloc for short) with the original tcmalloc
implementation. The tcmalloc used in our experiment is
gperftools-2.4. The benchmark set consists of 27 pro-
grams of the SPEC CPU2006 benchmark suite. These
programs are compiled with gcc 4.4.4.

6.2 Performance Improvement
We classify the 27 programs into three categories: pol-
luters, victims, and neutral, based on two metrics: cache
sensitivity and cache access rate. Cache sensitivity is de-
fined as Topen/Trestrict , where Topen and Trestrict are the
program’s execution times under open mapping only and
restrictive mapping only, respectively. The cache ac-
cess rate is the number of cache accesses per 1K cycles.
The polluter programs have cache sensitivity < 10% and
cache access rate > 5%. Their data can hardly get
timely reuse after installed into the cache. The second
category is victim programs, with cache sensitivity >
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Category
cache cache access rate

Benchmark
sensitivity (access per 1k cycle)

Polluter < 10% > 5 410.bwaves 433.milc 459.GemsFDTD 462.libquantum 481.wrf

Victim > 20% —
401.bzip2 403.gcc 429.mcf 447.dealII 450.soplex 470.lbm 471.omnetpp 473.astar
482.sphinx3 483.xalancbmk

Neutral [10%,20%] < 5
400.perlbench 416.gamess 435.gromacs 436.cactusADM 437.leslie3d 444.namd
445.gobmk 453.povray 454.calculix 456.hmmer 464.h264ref 465.tonto

Table 1: Categories of benchmark programs. Cache sensitivity reflects the slowdown of program execution under pure
restrictive mapping compared with under conventional (open) mapping.
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Figure 11: Performance speedup of polluter-victim combinations

20%, meaning that they have a high demand on cache,
and are vulnerable to cache pollution. The remaining
programs fall in the neutral category, which has limited
demand on cache. They neither pollute cache, nor get
polluted. The program classification is listed in Table 1.

Each workload used in our performance evaluation is a
unique combination of four programs selected from two
categories. Programs from different categories are com-
bined only once to increase variety. There is one quad-
core processor used in our experiments. We bind the pro-
grams to the four cores on this processor, so as to avoid
the overhead of task migration. In addition, to make sure
every program has three co-runners throughout the ex-
ecution, we restart the early terminated programs until
the longest one is completed, following the approach in
previous work [14, 22].

In our experiment, we mainly evaluate the polluter-
victim combination, in order to highlight the impact of
polluters. The result is illustrated in Figure 11. As we
can see, most of the victim programs can benefit substan-
tially from NightWatch, with an average speedup of 1.18.
In the combination (bwaves,milc,bzip,gcc), for exam-
ple, gcc achieves the highest speedup of 1.45. On the
other hand, NightWatch has little impact on the polluter
programs’ performance in general. Compared with tc-
malloc – which uses open mapping only – nw tcmalloc’s
dual-mapping scheme imposes little side effect on the
polluters, due to two reasons. First, by leveraging intra-
and inter-chunk locality similarities, nw tcmalloc incurs

very low overhead. As we will show later, for most of
the programs, the overhead is less than 1%. The second
reason is that nw tcmalloc is able to distinguish between
polluter and normal chunks and map them to cache in
different ways. Thus, it does not harm the performance
of the normal chunks used by the polluter programs.

It is worth noting that instead of staying unaffected
or showing slight slowdown, several polluter programs,
for example bwaves and milc, get noticeable speedup
from nw tcmalloc. This is somewhat counterintuitive,
since for these programs, almost all the chunks are pol-
luters. After applying restrictive mapping, the available
cache space assigned to these programs is reduced from
8MB (under open mapping) to 1MB. We have run the
two programs separately on two cores using nw tcmalloc
in comparison with tcmalloc, and observed speedups of
0.996 and 0.984 for bwaves and milc, respectively, which
confirms the negative effect of reduced cache resource.
Yet, when run with the victim programs bzip and gcc,
the speedups surprisingly exceed one. A similar phe-
nomenon was also observed by Lin et al. [14]. The rea-
son behind this phenomenon is as follows: once the pol-
luter chunks get restricted in cache usage, the normal
chunks will get more cache space and thus their cache
miss rate will be reduced. This results in a reduction of
memory bandwidth pressure, and a smaller queuing de-
lay at the memory controller. For example, for the first
workload we tested, when nw tcmalloc is applied, the
overall cache miss rate is reduced by 4%. This reduction
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Figure 12: Performance speedup of five program combi-
nations

turns out to be beneficial to the overall system perfor-
mance, positively affecting bwaves and milc as well.

Figure 12 shows the performance of other combina-
tions of benchmark programs, including all-polluter, all-
victim, all-neutral, polluter-neutral, and victim-neutral.
Overall, the programs experience very small changes in
their performance, agreeing with the nature of these com-
binations, and suggesting that nw tcmalloc retains sys-
tem performance when it cannot bring improvement.

6.3 Efficiency of Locality Monitor
The locality monitor needs to collect access information
of a random subset of pages in a chunk to determine the
locality property of the chunk. The number of pages
sampled, or sampling count, reflects a trade-off between
sampling overhead and accuracy of locality estimation.
Given a target upper bound of estimation error (e.g., 5%),
we want to find the minimum sampling count, MSC, as a
function of chunk size (in number of pages). We collect
the page access statistics of all the programs’ chunks, and
for each chunk size, we experiment with increasing sam-
pling count until the estimation error rate drops below
5%. For clarity purpose, we divide the chunk sizes into
intervals, and calculate the average MSC for chunk sizes
within each interval. Figure 13 shows the sampling count
against chunk size in dot line. The measured curve can be
roughly approximated by a straight line with slope 0.65,
which translates to a sub-linear sampling count function
MSR(s) = s0.65, where s is the chunk size. This means
the required sampling overhead grows much slower than
a linear function, and thus can scale to large chunks while
ensuring good accuracy of locality estimation.

6.4 Accuracy of Locality Predictor
For backward compatibility, nw tcmalloc adopts the
standard allocation interfaces. Since these interfaces
only allow the programmer to specify the request’s mem-
ory demand, nw tcmalloc has to rely on NightWatch’s
locality predictor to infer the implicit cache demand.
Therefore, a high prediction success rate is crucial to the

100 101 102 103 104 105
100

101

102

103

104

 

 

#
of

sa
m

pl
ed

pa
ge

s

Chunk size (# of pages)

α = 0.65

Figure 13: Number of sampled pages vs. chunk size

Benchmark Succ. rate Benchmark Succ. rate
perlbench 99.8% povray 99.7%
bzip2 95.8% calculix 92.9%
gcc 96.2% hmmer 99.5%
bwaves 99.3% GemsFDTD 100.0%
gamess 98.6% libquantum 77.8%
milc 99.7% h264ref 92.2%
gromacs 100.0% tonto 100.0%
cactusADM 100.0% omnetpp 100.0%
leslie3d 100.0% astar 97.5%
namd 58.1% wrf 99.4%
gobmk 92.8% sphinx3 100.0%
dealII 93.6% xalancbmk 100.0%
soplex 94.3% Average 95.5%

Table 2: Mapping type prediction success rate

efficiency of nw tcmalloc.
If a chunk’s predicted mapping type matches its ac-

tual locality property, the prediction is considered a suc-
cess. Since NightWatch does not monitor every chunk,
we collect prediction results and monitoring results in
different runs in order to calculate prediction success
rate. In the first run, the prediction results are collected
in standard system configurations. In the second run, we
force NightWatch to monitor every chunk throughout the
benchmark’s execution, and use the monitoring results
to evaluate the predictor’s accuracy. There are two pro-
grams (mcf and lbm) with no prediction information, be-
cause they do not provide any prediction opportunities.
For example, lbm allocates two 214400KB chunks, each
with an exclusive allocation context. Since there is no
chunks previously allocated in the contexts, there is no
clue for prediction.

Table 2 shows the prediction success rate of Night-
Watch. Due to inter-chunk locality similarity, a high
prediction success rate is attained for most of the pro-
grams – 14 out of 23 programs have a prediction suc-
cess rate over 99%. Note that the predictor falls short
for namd, with a low success rate of 58%. This is due
to the adaptive sampling method of the locality moni-
tor, which doubles the sampling interval (i.e., number of
skipped chunks in a row) upon every successful predic-
tion. While helping to reduce monitoring overhead, such
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Figure 14: The overhead of nw tcmalloc, defined as the
fraction of a program’s execution time spent on cache
management

a design responds slowly to locality property change oc-
curring across chunks within an allocation context. If
mapping switching happens during a large sequence of
skipped chunks, all follow-up chunk requests will re-
ceive a wrong prediction, until the next sampling point
is reached. Nevertheless, such a case rarely happens for
the 27 benchmarks; for most of the programs inter-chunk
locality similarity remains valid, yielding an average pre-
diction success rate of 95.5%.

6.5 Overhead Analysis
nw tcmalloc’s integrated cache management adds an ex-
tra time cost to a program’s execution. The ratio be-
tween this time cost and a program’s overall execu-
tion time defines nw tcmalloc’s overhead. Specifically,
nw tcmalloc’s cost consists of three parts: the monitor’s
time cost Tmon, the predictor’s time cost Tpred , and the
time spent on mapping switching Tmswitch. Due to the
high prediction success rate, Tmswitch is negligible – com-
pared with the overall execution times of the 27 bench-
marks, which range from 250 to 1000 seconds, Tmswitch
is less than 1 second.

Figure 14 presents the overheads of nw tcmalloc. On
average, the overhead is only 0.57%, with a maxi-
mum 3.02%. Furthermore, for 22 of the 27 programs,
nw tcmalloc’s overhead is less than 1%. This indicates
that nw tcmalloc is highly efficient while offering per-
formance benefits.

The monitor’s cost, Tmon, is caused by locality evalua-
tion for sampled pages and chunks, and thus depends on
the total size of allocated chunks, denoted by SIZEtotal .
NightWatch implements a number of optimization strate-
gies to reduce the cost. Figure 15 shows Tmon of the 27
benchmark programs sorted by SIZEtotal . It can be seen
that Tmon, which varies across two orders of magnitude,
increases much more slowly than SIZEtotal , which spans
four orders of magnitude. This sublinear growing trend
suggests that the monitoring cost scales very well with
total allocation size. Notice that Tmon does not always in-
crease with SIZEtotal , because Tmon also depends on the
size distribution of chunks, and how chunks are clustered
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Figure 15: Tmon vs. SIZEtotal for 27 programs, sorted by
SIZEtotal
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Figure 16: Tpred vs. ALLOCtotal for the programs, sorted
by ALLOCtotal

in contexts: small sized chunks and low clustering effect
in contexts will reduce the benefit of locality similarities,
thus causing a higher time cost.

The predictor’s cost of a program, Tpred , is deter-
mined by the total number of allocations, denoted by
ALLOCtotal . Figure 16 presents Tpred of the 27 bench-
mark programs sorted by ALLOCtotal . With the help
of size-to-context lookup table, Tpred grows much more
slowly than a linear function of ALLOCtotal . On average,
one second’s cost allows NightWatch to make 34 million
predictions, which make it suitable for programs that in-
volve extremely frequent chunk allocation. For example,
the wrf program takes 1000.4 seconds to complete, mak-
ing a total of 500 million allocations. It takes NightWatch
only 23 seconds to make all the predictions, accounting
for 2.3% of the program’s execution time.

6.6 Evaluation on Ptmalloc2
Due to space limits, we only briefly report on our evalu-
ation on ptmalloc2. For the pollter-victim combinations,
the NightWatch integrated allocator improves victim’s
performance by up to 51% (18% on average), with an
average overhead of 0.6% (up to 3.0%).

7 Related Work
There has been extensive research on improving cache
efficiency for multi-programmed workloads. In this sec-
tion we discuss the main technical approaches used and
related work in the area. For clarity, we list the represen-
tative work in Table 3.
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Cache-aware memory allocator: From the perspec-
tive of resource management, perhaps the closest sys-
tems to NightWatch assisted allocators are ULCC [6] and
ccontrol [28]. Both designs attempt to incorporate cache
control into the memory allocator in order to achieve
higher cache efficiency. They enable cache control by
providing special interfaces to programmers to modify
the program’s source code for improved resource utiliza-
tion. Apparently this approach requires a deep under-
standing of the program’s data access behavior. Adding
to the complexity of this problem is the fact that many
programs’ data locality property varies at run time due to
multiple factors (such as input, software configuration).
A proper grasp of these complicated issues is thus be-
yond the capability of common programmers. Given the
nonstandard interfaces, these designs also fail to provide
transparent support for legacy programs.

Our work is the first to transparently integrate cache
management into dynamic memory allocation. Com-
pared with previous solutions, NightWatch assisted al-
locators hide the complexity of cache management and
provides standard interfaces. This makes it easy to use
and fully compatible with legacy software.

Cache bypassing: Commodity processors provide
cache bypass instructions to bypass weak-locality data.
Rus et al. [23] propose to develop automatical tools to
help identify weak-locality string operations and trans-
form them to cache bypass instructions. Sandberg et
al. [25] employ off-line reuse distance analysis to char-
acterize the access locality of the overall program, and
replace non-temporal data accesses with bypass instruc-
tions. These approaches need off-line analysis and hence
fail to adapt to a program’s dynamic runtime behavior.

Software cache partitioning: Cache partitioning has
been proven an effective approach to improve cache uti-
lization [7, 13, 14, 22, 27, 32, 33]. Lin et al. [14] propose
to partition the shared cache for co-running programs
and isolate cache pollution from weak-locality data ac-
cesses. Their dynamic partitioning technique adjusts
the cache partitions to accommodate locality changes
of data. RapidMRC [29] guides cache partitioning to
achieve optimal speedup, with the help of the Miss Rate
Curves (MRC) of each program. The hot-page col-
oring method [31] enforces cache partitioning for hot
pages to reduce the overhead of cache re-partitioning.
ROCS [27] clusters weak-locality pages to a dedicated
pollution buffer on cache. Soft-OLP [16] analyzes the
reuse distance of each major data object, and performs
proper cache allocation based on the object’s locality
properties and interactions. These techniques suffer from
a number of limitations. First, some techniques need spe-
cialized hardware support from the processor. For ex-
ample, [27, 29] use POWER processor’s Sampled Data
Address Register (SDAR) to evaluate MRC and pages’

Locality
analysis

Dynamic
memory
allocation

Transparent
to user

Specific
hardware
support

ULCC [6] manually yes no no
ccontrol [28] manually yes no no
Soft-OLP [16] off-line yes no no
Sandberg et al. [25] off-line no yes no
Rus et al. [23] off-line no yes no
RapidMRC [29] on-line no yes yes
hot-page color [31] on-line no yes yes
ROCS [27] on-line no yes yes
NightWatch on-line yes yes no

Table 3: Comparison of shared cache pollution manage-
ment techniques

miss rate, which is not available in other processors. Sec-
ond, it is hard to effectively obtain data reuse informa-
tion [5, 16, 26]. It is reported in [21] that the collection
of reuse information can degrade the performance by a
factor of 13 to 50, even with accelerated instrumentation
on 64 processors. Third, re-partitioning cache is expen-
sive. Page recoloring for cache re-partitioning incurs sig-
nificant overheads [31].

Compared with the above solutions, NightWatch pro-
vides the benefits without their limitations. It can effi-
ciently obtain the data locality information on commod-
ity processors and reduce the cache re-partitioning over-
head with the help of data locality prediction.

8 Conclusion
In this paper we have presented NightWatch, an effi-
cient cache management subsystem designed for mem-
ory allocators. The distinguishing feature is that Night-
Watch provides runtime support for pollution control, us-
ing only standard allocation interfaces and assuming no
special hardware support. At the heart of the solution are
two observations about locality correlation of data that
are exploited to realize highly efficient locality monitor-
ing and prediction. We have demonstrated the efficacy
of NightWatch through extensive experiments, showing
speedup of up to 1.5X for pollution victim programs at
very low overheads. It should be noted that NightWatch
is not limited to multi-program workloads; the multi-
threaded version is also open-sourced. In future, we plan
to conduct a comprehensive evaluation on the effective-
ness of the multithreaded version.
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Abstract
The world’s fast-growing data has become highly con-

centrated on enterprise or cloud storage servers. Data
deduplication reduces redundancy in this data, saving
storage and simplifying management. While existing
systems can deduplicate computations on this data by
memoizing and reusing computation results, they are in-
secure, not general, or slow.

This paper presents UNIC, a system that securely dedu-
plicates general computations. It exports a cache service
that allows applications running on behalf of mutually
distrusting users on local or remote hosts to memoize and
reuse computation results. Key in UNIC are three new
ideas. First, through a novel use of code attestation, UNIC
achieves both integrity and secrecy. Second, it provides
a simple yet expressive API that enables applications to
deduplicate their own rich computations. This design
is much more general and flexible than existing systems
that can deduplicate only specific types of computations.
Third, UNIC explores a cross-layer design that allows the
underlying storage system to expose data deduplication
information to the applications for better performance.

Evaluation of UNIC on four popular open-source ap-
plications shows that UNIC is easy to use, fast, and with
little storage overhead.

1 Introduction

The world’s data has been fast exploding for many years.
It is estimated that in 2011 alone, 1.8 zettabytes of data
were created, and the overall data will grow by 50× by
2020 [21]. This massive amount of data comes in greatly
varying forms, ranging from personal photos and videos,
to office documents and web pages, to source files, bi-
nary programs, and virtual machine images, and to data
collected from user clicks or physical sensors.

Meanwhile, the storage of this data has become highly
concentrated. It is common practice for enterprises

to store data on centralized, powerful storage servers
for ease of management [34]. The cloud computing
paradigm has migrated data into the cloud so that the
computations can be closer to the data. For instance,
several organizations have put 56 public data sets to-
taling 761.2TB onto Amazon Web Services [2]. Even
consumers are beginning to aggregate their personal data
into the cloud for convenience. For instance, Google,
Dropbox, Amazon, and Microsoft all provide the option
for users to automatically upload pictures and videos shot
using their mobile devices. Facebook stores over 260 bil-
lion personal photos [6].

This highly concentrated, massive data poses chal-
lenges for storage provisioning and management. For-
tunately, prior work has shown that a significant portion
of the data is redundant [22] and that data deduplication
can hugely reduce the storage needed to hold the data
and simplify management [13]. For instance, file dedu-
plication detects when multiple files have the same data
and stores the unique data only once [8]. This scheme is
particularly useful when the same file is copied, such as
when a user makes a copy of her friend’s shared video
on Dropbox. Block deduplication breaks files down to
variable [20, 24] or fixed [36] size blocks and stores each
unique block of data once. This scheme is particularly
useful for files that are similar but not exactly identi-
cal, such as different versions of a document and virtual
machine images built from the same OS family. These
deduplication schemes have been long prevalent in en-
terprise storage servers [13]. With the trend of moving
consumer data into the cloud, these schemes have also
become popular among cloud storage providers such as
Dropbox [31].

Not only can data be redundant, the computations on
top of the data can also be redundant. For instance, a user
may scan her Dropbox files for viruses, while another
user runs the same virus scanner on a similar set of files.
Different users may be doing the same computations on
the public data sets in AWS, such as building an inverted

1
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index for the web pages in CommonCrawl [11]. Given
the same input data, the same deterministic computation
always produces the same result. Thus, if the computa-
tion is slow, it is typically more efficient to memoize [23]
and reuse the result than redoing the computation. We
term this technique computation deduplication.

Several prior systems deduplicate computations
(e.g., [9, 15]). However, three main challenges prevent
these systems from effectively deduplicating computa-
tions in today’s cloud or enterprise environments:

First, how can we deduplicate computations done by
mutually distrusting users? Storage providers such as
Dropbox aggregate data from many users who do not
necessarily trust each other. Even in an enterprise setting,
users frequently have different data access permissions.
One naı̈ve approach is to memoize computation results
in a cache every user can read or write, but this approach
provides neither integrity or security. A malicious user
can easily poison the cache, by for instance marking files
that contain viruses safe. She can also read results in the
cache even though she has no permission to access the
actual data in the results. Although this challenge may
be solved with information flow tracking or access con-
trol systems, these systems are known to be difficult to
configure and use.

Second, how can we deduplicate general computa-
tions? Prior systems deduplicate computations purely
at the system level, assuming no cooperation from ap-
plication developers. As a result, they handle only spe-
cific computations. For instance, ccache [9] dedupli-
cates only the compilations of C/C++ programs, and
Nectar [15] deduplicates the computations of programs
written only in DryadLINQ [35], a specially designed
language for large scale data-parallel workloads. How-
ever, the computations that users want to do on their data
can be extremely rich, and it is unrealistic to require stor-
age providers to understand all of them. For instance,
while it may be feasible for Amazon to run some ba-
sic virus scanning software on the files it hosts, it is im-
possible for Amazon to understand every advanced virus
scanner, every compression tool, and every image/video
manipulation utility users want to run on their data.

Third, how can we effectively deduplicate computa-
tions on top of deduplicated data? Prior systems rely
on custom methods to detect that data is redundant. For
instance, ccache computes a hash of a preprocessed
C/C++ source file and uses this hash to search its com-
pilation cache. These methods incur unnecessary over-
head when the data is deduplicated because the underly-
ing storage system already knows what data is redundant.

This paper presents UNIC,1 a system that securely
deduplicates general computations. It exports a cache

1We name our system UNIC (pronounced “unique”) because it is
conceptually similar to the Unix uniq utility applied to computations.

service that allows applications running on behalf of mu-
tually distrusting users on local or remote hosts to memo-
ize and reuse computation results. Key in UNIC are three
new ideas:

First, through a novel use of code attestation, a clas-
sic primitive to attest what code is running to a (remote)
party [29, 30], UNIC achieves both integrity and secrecy.
To insert or query the result cache that UNIC maintains,
UNIC generates a secure, non-forgeable key that attests
to both the application code and the input data. This key
strongly isolates applications from each other in the re-
sult cache. For instance, if a malicious user modifies the
code of a virus scanner in attempt to poison the cached
results of this virus scanner, the attempt would fail be-
cause the modified code leads to a different key. In ad-
dition, since this key is not forgeable, a malicious user
cannot query UNIC’s cache without already knowing the
application code and the input. Since the user knows the
code and input already, she can already compute the re-
sult by herself.

Second, UNIC provides a simple yet expressive API
that enables applications to deduplicate their own rich
computations. From a high level, this API supports an
application to (1) insert input → result to the result cache
UNIC maintains; and (2) query the cache with input and
get back the cached result if any. This application-level
computation deduplication design is much more general
and flexible than prior system-level designs.

Third, UNIC explores a cross-layer design that allows
the underlying storage system to expose data deduplica-
tion information to the applications for speed. Applica-
tions thus do not need to re-detect whether the input data
is redundant. For instance, suppose two files A and B are
identical so the filesystem deduplicates them, and UNIC
exposes this data deduplication information to the appli-
cations. After a virus scanner scans file A, it can im-
mediately skip file B without reading any data from B,
significantly increasing its scanning speed.

Our implementation of UNIC stores cached results in
Redis, a fast, scalable, replicated key-value store [27].
UNIC implements code attestation in a dynamically load-
able Linux kernel module and considers the kernel to
be trusted. It implements the computation deduplica-
tion API as a library, which applications link with. UNIC
leverages ZFS [36], a file system that supports both file
and block deduplication, to detect when data is dedupli-
cated on behalf of the applications running with UNIC.

Evaluation of UNIC on four popular open-source ap-
plications shows that (1) it is easy to use (to support each
application, we needed to change fewer than 1% lines of
source code); (2) it is fast (it sped up applications by up to
21.4×); and (3) it incurs little storage overhead (it needed
only 3.45% additional storage to cache the results).

The remainder of this paper is organized as follows.
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The next section discusses the security model and UNIC’s
design. §3 describes UNIC’s API and usage. §4 presents
how UNIC leverages deduplicated data. §5 describes the
implementation. §6 shows evaluation results. §7 dis-
cusses UNIC’s security implications, §8 describes related
work, and §9 concludes.

2 Security Model and Design

We begin with UNIC’s assumptions, threat model, and the
design of UNIC’s protocol.

2.1 Assumptions and Non-assumptions

First, UNIC relies on a code attestation mechanism for
integrity and secrecy of the cached results. It leverages
this mechanism to bind a result to the code and input
data that together produce the result. This mechanism
can be implemented in multiple ways with different se-
curity strengths. For instance, UNIC could use TPM and
isolation technologies such as Intel TXT [18] to realize
code attestation, but doing so would incur both deploy-
ment and runtime overhead, negating our goal of being
easy to use and fast. Therefore, for practical reasons,
UNIC assumes that the OS is trusted and provides a func-
tion to attest the application code, and that the user does
not have superuser privileges to interfere with that mech-
anism. This assumption matches well with many of to-
day’s mobile devices that run Chrome OS [14], iOS, and
Android.

Second, UNIC assumes correct application code. For
instance, when using UNIC, an application developer
should use UNIC’s API correctly. She should only mem-
oize computations with deterministic results. UNIC also
assumes that the application is free of vulnerabilities
such as buffer overflows. We note that this assumption
is common to almost all prior code attestation work.

Third, UNIC assumes that its underlying storage sys-
tem provides reasonable security guarantees. To reuse
results across sessions, UNIC persists them in an under-
lying storage system such as a file system. UNIC assumes
that this storage system is properly configured such that
an attacker cannot access the data stored without going
through UNIC. This guarantee and UNIC’s security mech-
anisms described in §2.3 together ensure the integrity and
secrecy of its cache of computation results.

2.2 Threats

UNIC enables deduplicating computation among mutu-
ally distrusting users. Two attacks are particularly seri-
ous for UNIC: cache poisoning attacks UNIC’s integrity,
and query forging attacks UNIC’s secrecy.

Cache poisoning. A malicious user may write a new ap-
plication or modify an existing application in an attempt
to poison the result cache. Her application may attempt
to insert or overwrite entries belonging to a legitimate
application. UNIC prevents this attack by isolating appli-
cations in the result cache: it guarantees that the cached
data for one application can never be accessed by another
application. Specifically, UNIC securely binds the com-
putation code and the input data to the computation result
leveraging a code attestation mechanism.

Query forging. A malicious user may write a new ap-
plication or modify an existing application in attempt to
query entries in the result cache that she cannot access,
and gain information. UNIC prevents this attack again by
isolating applications. When an application queries the
cache, UNIC generates a search key that attests to both
the code and the input data that generate the query. This
key is unique to each application. One application thus
cannot query entries of another application.

Several other attacks are possible, some of which can
be prevented using simple mechanisms such as rate-
limiting queries sent to UNIC. We briefly describe how
they can be prevented in §7, and leave the implementa-
tion for future work.

2.3 Design
UNIC novelly leverages code attestation to cryptographi-
cally bind the result with the code and the input that pro-
duced the result, preventing cache poisoning and query
forging attacks.

UNIC assumes a trusted OS that securely computes
SHA-1 hash and HMAC. A secret key K is shared
among trusted OSes. (Existing work [30] details how to
distribute this key. We use symmetric key for efficiency;
however asymmetric key works, too.) An attacker cannot
forge HMAC(data,K) without knowing K.

UNIC leverages code attestation to bind result to code
and input that produced result. Specifically, it uses code
attestation to compute two things:

(1) result = code(input)
// Run code on input to compute result.

(2) sig = HMAC(hash(code)||hash(input)||result,K)
// Bind code, input, and result. We use || as the con-
catenation operator.

The assumptions on trusted OS, unprivileged user, and
correct application code together guarantee that result is
the correct result of running code on input. This code at-
testation mechanism further guarantees that (a) sig cryp-
tographically attests that result is indeed produced by
running code on input, which anyone with access to
code, input, result, and K can verify; and (b) sig can-
not be forged.
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application

hash(code)||hash(input)

UNIC cache

result

application

hash(code)||hash(input)

UNIC cache

cache does not exist

hash(code)||hash(input), result, sig

compute result = code(input)
and sig = HMAC(hash(code)||hash(input)||result, K)

validate sig and update cache

(a) cache hit

(b) cache miss

Figure 1: UNIC protocol.

UNIC protocol. The UNIC cache is a mapping of

hash(code)||hash(input) → result

Since the hash function is collision resistant, the cache
space for different computations are isolated.

When an application wants to compute code(input),
it sends hash(code)||hash(input) to the UNIC cache.
If cache exists (Figure 1a), UNIC sends back re-
sult. If cache does not exist (Figure 1b), the ap-
plication computes both result and sig, and sends
hash(code)||hash(input), result, and sig to the UNIC
cache. The UNIC cache validates that sig is in-
deed HMAC(hash(code)||hash(input)||result,K), and
updates the cache.

2.4 Security Analysis
The design of UNIC prevents cache poisoning as follows.
Suppose an attacker replaces result with bad result when
inserting into UNIC. Because of code attestation, she can-
not forge sig, so UNIC cannot validate sig. Suppose she
modifies code into bad code and computes bad result to
poison the cache. Because UNIC validates sig, she can
only insert

hash(bad code)||hash(input) → bad result

which cannot affect the cache entry of
hash(code)||hash(input). To avoid a malicious client
from polluting the cache space, UNIC can employ a
quota mechanism to limit the cache space for each client
application.

This design also prevents an attacker from forging a
query to steal result. To query cache, she must send
hash(code)||hash(input), so she must already have code
and input because otherwise she would not be able to

1: void simple virus scanner(file, options) {
2: buffer = read(file);
3: result = scan signature(buffer, options);
4: print(result);
5: }

Figure 2: A simple virus scanning application.

compute the hashes. Once an attacker has code and in-
put, she can already compute result simply by running
code on input herself. Thus, she cannot gain additional
information with this query other than whether there is a
result in the cache. §7 further discusses its implications.

3 UNIC API and Usage

UNIC provides a simple yet expressive API for applica-
tions to deduplicate their own rich computations. We first
motivate our API design through an example, and then
formally describe its interface.

3.1 Example
We motivate the design of UNIC API through a step-by-
step example showing how a simple virus scanning ap-
plication could use memoization to deduplicate compu-
tation. Conceptually, the application works like Figure 2.
It reads the file content into a buffer, executes virus scan-
ning algorithm on the buffer, and outputs the result.

In this piece of code, line 2 reads the file content from
disk, potentially a time-consuming I/O operation. Line 3
performs some CPU-bound virus signature matching al-
gorithm, potentially another time-consuming operation.
Line 4 prints the result, which is relatively fast because
the length of the scanning result (e.g., “no virus found”)
is much smaller than the original file content. Therefore,
we want to improve the performance on lines 2 and 3.

Memoizing Computations. We first examine how to
use memoization to avoid duplicate computation on line
3. Since scan signature() is a deterministic function
over the input buffer and the signature-scanning options,
if we could memoize the result the first time we perform
the computation, we would be able to safely reuse the
result later on the same input. To do so, we modify the
application into Figure 3, using three functions that UNIC
provides: exists(), get(), and put(). It first checks
if the computation for the given buffer and options exists
in the result cache (line 3). If so, it simply gets the mem-
oized result (line 4). Otherwise, it performs the compu-
tation as before (line 6) and then puts the result into the
cache (line 7).

As discussed in §2.3, the cache is not merely a map-
ping from the input to the result, but binds the computa-
tion code together with them. UNIC internally computes
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1 : void simple virus scanner(file, options) {
2 : buffer = read(file);
3 : if (exists(scan signature, buffer, options)) {
4 : result = get(scan signature, buffer, options);
5 : } else {
6 : result = scan signature(buffer, options);
7 : put(scan signature, buffer, options, result);
8 : }
9 : print(result);
10: }

Figure 3: First step: memoize the computation result.

a non-forgeable authentication code that guarantees that
the result (result) is indeed generated by the computa-
tion code (scan signature()) over the input (buffer
and options). The result cache is updated only if it can
verify this authentication code.

Reducing I/O Operations. Memoizing the computation
is good, but it would be better if we could also eliminate
the need of reading the file content on line 2. This is
not trivial because if we did not read the file in the first
place, we would never know if the signature scanning is
performed on the same content. Fortunately, it is possible
if the file is stored on a deduplication-enabled storage.

A deduplication-enabled filesystem, such as ZFS [36],
stores all files with the same content as a single copy.
It does so by identifying the file content using a crypto-
graphically collision-resistant hash (e.g., SHA-256), and
mapping all files with the same content to the same hash.
These hashes are stored on the filesystem metadata, sep-
arate from the actual file content. Therefore, it creates a
perfect opportunity for our application to tell if the file
contents are the same without actually reading them.

Figure 4 shows the final version of the application. In-
stead of reading the file content up front, it now gets the
unique hash of the file directly from the filesystem meta-
data using UNIC’s get file hash() function (line 2),
and uses the hash to identify the memoization (lines 3, 4,
and 8). Since getting the hash is much faster than reading
the whole file, we have further avoided the slow I/O op-
eration when reusing a previously cached computation.

In practice, when using UNIC, the application devel-
oper does not need to worry whether the storage has
deduplication enabled or not — she should always follow
the final version in Figure 4 and use hash to identify the
memoization. This is because UNIC transparently lever-
ages storage deduplication information. Where such in-
formation is absent, UNIC computes and caches the hash
by itself. This process is detailed in §4.

3.2 The API
The previous example illustrates the usage of the UNIC
API which we now formally describe. It wraps OS-

1 : void simple virus scanner(file, options) {
2 : hash = get file hash(file);
3 : if (exists(scan signature, hash, options)) {
4 : result = get(scan signature, hash, options);
5 : } else {
6 : buffer = read(file);
7 : result = scan signature(buffer, options);
8 : put(scan signature, hash, options, result);
9 : }
10: print(result);
11: }

Figure 4: Final version: use filesystem metadata to further re-
duce I/O operations.

and filesystem-specific details by exporting the follow-
ing functions:

• init() initializes UNIC.
• get file hash(file) returns the hash of a file,

where file can be the name of a file, a file descrip-
tor, or an inode number. If the underlying filesystem
has deduplication enabled (e.g., ZFS), it gets the
hash of the file from the filesystem metadata with-
out reading the file content. Otherwise, it computes
the hash from the file content using libcrypto.

• get block hash(file, block) is similar as
above, but returns the hash of a block of a file,
where block specifies the block number. This is
particularly useful if the application’s computation
is based on blocks, such as a bzip2 compression.
The application should decide whether to use get -

file hash() or get block hash() based on its
own logic, which is discussed in §4.

• exists(computation, hash, id) checks if a
given computation and input exists in the result
cache. The parameter hash is the hash of input
data. The parameter id is an optional string iden-
tifier defined by the application, used for differenti-
ating multiple computations performed on the same
input. For example, the virus scanning application
may let id be the signature-scanning options.

• get(computation, hash, id) gets the result of
a given computation and input from the result cache.

• put(computation, hash, id, result, ttl)

puts an entry of computation, input, and result
into the result cache. An optional ttl specifies
its time-to-live in seconds, and the result cache
automatically deletes the entry upon expiration.

4 Leveraging Storage Deduplication

UNIC explores a cross-layer design allowing underlying
storage system to expose data deduplication information
to the applications.
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Typically, a deduplication-enabled filesystem main-
tains the hash of each file as its metadata. Since UNIC
also uses hash to identify the memoization input, it is
both convenient and efficient to leverage such filesystem
metadata. Therefore, when an application needs to get a
hash, UNIC automatically detects the underlying storage
system type, and returns the hash directly from the meta-
data if the filesystem has enabled deduplication. If not,
UNIC reads the file content and computes the hash itself.
In this way, UNIC provides a consolidated interface for
both scenarios, making the storage system details trans-
parent to the applications.

Furthermore, the application does not need to know
whether the underlying storage system is file-level or
block-level deduplicated. It should decide whether to use
get file hash() or get block hash() solely based
on the application’s own logic. Generally, if the appli-
cation’s computation works with the file on a block-by-
block basis, such as the bzip2 compression algorithm, it
should use get block hash(). Otherwise, if the appli-
cation’s computation uses the file as a whole or randomly
accesses the file, such as an anti-virus program, it should
use get file hash().

5 Implementation

We now describe UNIC’s components and implementa-
tion details.

5.1 UNIC Components
Figure 5 shows the architecture of UNIC. It is deployed
on a network of multiple hosts. Each user can log into
multiple hosts, and each host can have many users logged
in. Because of UNIC’s security design (§2), different
users do not need to mutually trust each other.

The UNIC module on each host handles application’s
memoization requests. Since memoization works best
when the reuses of computations are frequent, reading
data from the result cache should be more common than
writing data to it. In light of this, we design UNIC to
make read operations as fast as possible. A trusted mas-
ter cache server handles all write operations. It can be
either standalone or co-located with the enterprise’s stor-
age (e.g., NFS) server. Each host has an optional read-
only slave cache, which periodically syncs from the mas-
ter cache server. If the slave cache is present, all read op-
erations happen locally. For security, all network com-
munications are encrypted with SSL/TLS. To reduce the
handshake latency, the UNIC module on each host estab-
lishes a connection with the master cache server when
the host boots up, and keeps the connection alive.

Because data updates on the slave caches happen asyn-
chronously, it is possible that a host does not have the

Application

UNIC

Master cache server

Host 1

async

Host n

...

Users

Slave cache

Figure 5: UNIC architecture. Additional hosts each have the
same architecture as Host 1, and are omitted here due to limited
space.

latest cached results. However, we point out that memo-
ized computations are deterministic (§2.1), therefore the
consistency on the slave caches should not affect the in-
tegrity of computations. The only contingency would be
that an application may not be able to leverage recently
cached results but have to compute on its own.

UNIC inserts a kernel module into the Linux kernel
as a virtual device for computing hash(code) and sig.
It represents code by the image of the executable pro-
cess, with all libraries statically linked. The secret key
K is inaccessible to the user space. The user-space ap-
plication talks to the kernel module via ioctl. For im-
proved performance, the kernel module internally caches
hash(code) for each caller.

UNIC uses a modified Redis key-value store [27] as the
result cache. It modifies Redis to support UNIC’s proto-
col (§2.3), and removes nonessential functions (such as
KEYS which can list all cache entries) from Redis for se-
curity. Therefore, users cannot access the result cache
except through UNIC.

5.2 Opportunistic Memoization
When using UNIC, the application developer needs to
judge the best opportunity to use memoization because
of two reasons. First, memoizing an already-fast com-
putation may not justify the overhead of accessing the
result cache. Second, abusing memoization for low-
redundancy computations could result in exceeded over-
head for entries that are never reused later. However,
making the optimal decision at compile time is usually
hard because input data cannot be predicted. Therefore,
UNIC provides an optimization to opportunistically en-
able memoization only when the computation is slow and
its reuse happens to be frequent at runtime.

To do so, UNIC internally has a model of
Tput(result size) and Tget(result size), meaning

6



USENIX Association  2015 USENIX Annual Technical Conference 325

how long it would take to put and get a certain size of
result, respectively. This model is independent of the ac-
tual content of the result, and it can be learned from a mi-
crobenchmark upon the installation of UNIC (see §6.2.1
for our evaluation). UNIC also maintains an accumulator
tsave for each computation, initialized to 0, for the total
time that could have been saved for the future.

UNIC further provides two functions for an applica-
tion to mark the boundary of a computation. An applica-
tion calls begin() to indicate that a computation starts,
and UNIC records the current timestamp as tbegin. An
application calls end() to indicate that the computation
has finished, and UNIC records the current timestamp as
tend. When put() is called, UNIC does not put the data
into the result cache immediately, but updates tsave to be

tsave = tsave + tend − tbegin − Tget(result size)

Therefore, the slower and the more frequent a compu-
tation is, the larger tsave becomes. UNIC only per-
forms the put() operation when tsave is greater than
Tput(result size), i.e., the time that could have been
saved from a computation is greater than the time that
would be spent for memoizing the computation. In the
case that tsave < Tput(result size), UNIC ignores the
put() request, and simply updates tsave.

6 Evaluation

We evaluated UNIC on a workstation with an Intel Core
i7-2600 CPU and 32GB RAM, running Fedora 20 with
Linux 3.16.2. The cache server was running Redis
2.6.17. Our goal is to show that UNIC significantly im-
proves performance with memoization while requiring
minimal developers’ effort and storage space.

The rest of this section focuses on three questions:
§6.1 Is UNIC easy to use?
§6.2 Does UNIC reduce computation time?
§6.3 What is UNIC’s storage overhead?

6.1 Application Adaptation Effort
To evaluate whether UNIC is easy to use, we picked four
popular open-source applications that we use daily: (1)
clamav-0.98.1, an anti-virus software that scans a direc-
tory for viruses [10]; (2) pbzip2-1.1.8, a multi-threaded
compression utility that compresses a single file [25]; (3)
grep-2.18, a tool that searches for a regular expression
within one or many files; and (4) the compiler gcc-4.8.3.
We adapted them to use UNIC’s API2. We used file-level
memoization for grep, clamav, and gcc, and block-
level memoization for grep and pbzip2.

2Our adaptation of gcc is based on ccache [9].

Application Total LoC Changes Percentage
clamav (file) 1,732,762 12 <0.01%
pbzip2 (block) 4,376 18 0.41%
grep (file) 9,658 35 0.36%
grep (block) 9,658 69 0.71%
gcc (file) 29,023 30 0.10%

Table 1: Lines of code changed for each application. Paren-
thesis indicates whether the adaptation uses file-level or block-
level memoization. The numbers for gcc are based on ccache.

Table 1 shows the lines of changed code for each ap-
plication to use UNIC’s APIs. Changing dozens of lines
(<1% of total lines) suffices for all these applications.

To further illustrate, we next present how we adapted
grep, the application with the most code changes.

6.1.1 Case Study: grep

GNU grep is a line-based pattern searching utility. To
invoke grep, the user specifies a search pattern and the
path to a file or directory. Then grep iterates through all
files in the directory and search for the pattern.

Common to all applications, the first step is to add a
call to init() at the beginning of main() in order to
initialize UNIC. For grep specifically, there are two de-
sign choices: we can memoize either at file-level or at
block-level. Memoizing at file-level is faster when the
whole file is unchanged, whereas memoizing at block-
level can exploit sub-file similarities for different files.
Next we discuss each of them.

File-level Memoization. Adapting grep for file-level
memoization is relatively straightforward. When grep

works on a new file, we call get file hash() to get the
hash of the file from ZFS and call exists() to check if
there is a corresponding entry in the result cache. If so,
we call get() to retrieve the memoized result, output
it, and move on to the next file. If not, we follow the
original algorithm and call put() to memoize whatever
is output. We also call put() to memoize the number
of matched lines in the current file, which grep uses for
internal bookkeeping purposes.

Block-level Memoization. Adapting grep to memoize
at block-level requires tighter integration with its work-
flow. For each file, grep reads its content in 32KB
chunks, and performs pattern searching one chunk at a
time. However, since the searching is line-based (delim-
ited by ‘\n’), it is possible that lines are not well-aligned
with chunk boundaries. For example, one line may span
across the end of the previous chunk and continue at the
following chunk. In this case, grep adjusts its chunk
boundary to include the residue of the line in the previ-
ous chunk and exclude the partial line at the end of cur-
rent chunk, as shown in the shaded region in Figure 6.

7



326 2015 USENIX Annual Technical Conference USENIX Association

.........................

......\nThis line crosses

chunk boundary\n.........
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...........\nAnother line
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Figure 6: Misalignment between line and chunk boundaries in
grep. Shaded region is the adjusted chunk for computation.

Unfortunately, this poses a challenge to using UNIC di-
rectly, because ZFS keeps hash metadata only for entire
aligned 32KB disk blocks. On the other hand, we cannot
simply use the hash of the unadjusted chunk to address
the cache, because this would err if two chunks were the
same but their residues in the previous chunk differed.
Our solution is to combine the hash of all chunks from
the beginning of the residue until the current chunk. Note
that this may lose the rare opportunity of reusing memo-
ized results for chunks who only differ at the last partial
line, but it preserves correctness nevertheless.

Our experience with adapting the other three applica-
tions were straightforward. Overall, we found UNIC easy
to use and the adaptation effort was generally little.

6.2 Performance
To understand the performance of UNIC, we first use mi-
crobenchmarks to evaluate the throughput of UNIC’s ba-
sic operations. We then run UNIC on four real-world ap-
plications to see how UNIC reduces application running
time. Next, we study how UNIC is able to reuse previous
computation results for some evolving data. Finally, we
study how UNIC performs with a group of multiple users
whose data are similar yet different.

6.2.1 Microbenchmark

We first use microbenchmarks to evaluate the throughput
of the get() and put() operations. We wrote a program
that calls put() 10,000 times followed by calling get()

10,000 times. The hashes of the 10,000 entries are all
different, and we varied the result size from 1KB to 1MB.

Figure 7 shows the results, where each data point is an
average of 10 individual experiments with an error bar
showing the maximum and minimum value in the 10 ex-
periments. The x-axis is the size of the memoized result.
The y-axis is the total time in performing the 10,000 op-
erations. The solid line is for put() and the dashed line
is for put(). From the results we find that the time for
an operation is on the order of ten microseconds when
the memoized result is small in size (<10KB), which is
mostly the case (see §6.3). Even if the memoized result is
as large as 1MB, the time to get a memoized entry is only
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Figure 7: Throughput of put() and get() operations. The x-
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0.33ms, which is normally much faster than doing real
computation on that size of data. Therefore, UNIC’s basic
operations are sufficiently fast for doing useful caching
of computations.

6.2.2 Application Performance

We next show how real-world applications benefit from
UNIC, and how storage deduplication further helps.
We conducted the following experiments. (1) We used
clamav to scan for viruses on two data sets. The first
is the linux-3.12 kernel source code tree. The second
is the Dropbox folder for one of the co-authors, which
contains 10.8GB of documents, music, pictures, videos,
and applications. (2) We used pbzip2 to compress
linux-3.12.tar into linux-3.12.tar.bz2. (3) We
ran grep on two data sets. The first is the linux-3.12
kernel source code tree, which consists of 47,336 small
files totaling 508MB. The second is the tags file of the
linux-3.12 kernel source code generated by ctags -R,
which is a single text file of 250MB. For each data set,
we ran a simple query (‘void’) and a complex query
(‘^\s*struct\s+\w+\s+\**\s*\w+\s*=\s*\w+\((\
w+(,)*)+\);’ for the source code tree, which matches
declaring and initializing a structure pointer to the
return value of a function, such as “struct task -

struct *task = get proc task(inode);”, and
‘/[A-Za-z]+\.c.*d.*file’ for the tags file, which
matches a specific type of tag). (4) We used gcc

to compile linux-3.12 kernel with the allnoconfig

configuration. Because gcc has a nontrivial way to
represent input dependencies for cache reusability
rather than a file hash, our adaptation does not leverage
storage deduplication information. All data files are on a
freshly-formatted ZFS disk with cold buffer cache.
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For each application, we compared the running time
(1) without UNIC (the baseline), (2) with UNIC but with-
out filesystem deduplication (the first and second bars on
Figure 8), and (3) with both UNIC and filesystem dedu-
plication support (the third and fourth bars). For experi-
ments with UNIC, we further compared the running time
(1) for execution on an initially empty result cache, caus-
ing cache misses and thus putting entries to the cache (the
first and third bars), and (2) for execution when the result
cache had already been pre-populated, causing cache hits
(the second and fourth bars).

Figure 8 shows the running time for each experiment.
Each number is an average of 10 individual runs. Al-
though running applications on an empty result cache in-
curs an average overhead of 68.2%, running them on a
warm result cache gives an average speedup of 2.39×. If
filesystem deduplication is available, the average over-
head of cache-miss execution drops to 59.3% and the
average speedup with memoization increases to 7.58×.
Furthermore, complex computations (e.g., scanning for
viruses or compressing a file) benefit the most from
memoization (up to 21.4× speedup), while simple com-
putations (e.g., searching for a short string) suffer more
from the cache-miss overhead. Therefore, opportunisti-
cally enabling memoization would be the best practice.
With our strategy described in §5.2, memoization is en-
abled at the second occurrence of put() for one appli-
cation (“grep tags” with simple query), and at the first
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occurrence for all other applications.

6.2.3 Effectiveness with Evolving Data

The previous evaluation focused on the memoization
benefit on exactly the same computation. Next we show
the effectiveness of memoization if the input data is
evolving, i.e., if UNIC has memoized computation on an
old version of data, how it can speed up computation on
a new version of the data.

We used grep to search for ‘void’ on thirteen major
versions of the Linux kernel source code, from v3.0 to
v3.12. All files are on a freshly-formatted deduplication-
enabled ZFS disk with cold buffer cache. We performed
three sets of experiments. The first one used the origi-
nal grep without UNIC. In the second experiment, we
first populated the result cache when running grep on
v3.0, and then measured the time for running grep on
each version based on the same memoization of v3.0. In
the third experiment, we ran grep on each version in a
“rolling” manner, i.e., each execution was based on the
memoization of the immediate previous version, which
resembles a more practical scenario.

Figure 9 shows the running time for all executions,
where each number is an average of 10 runs. With a sin-
gle memoization of v3.0, the speedup is significant for
running on v3.1 (1.61×), but diminishes along the incre-
ment of version number, and eventually becomes inef-
fective after v3.8, because the source code differs signif-
icantly from the memoized version and the cache hit rate
drops below 0.3. On the other hand, when memoized
the immediate previous version, the speedup is almost
constant, with an average of 1.50×. The reason is that
the amount of source code difference is almost constant
between each two consecutive versions, and many mem-

9
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oized results can be reused (hit rates are between 0.73
and 0.81). Therefore, UNIC is more effective when the
divergence of the actual input data from the memoized
data is small, which is likely true in a practical scenario.

6.2.4 Effectiveness with Multiple Users

We next evaluate the memoization effectiveness for mul-
tiple users with similar yet different data. We took
the project directories of seven groups of students in a
graduate-level operating system course offered by our
university. The average size of each directory is 1.6GB.
We performed two executions on each group’s directory:
(1) use grep to search for ‘void’, and (2) use clamav

to scan for viruses. This resembles the enterprise setting
where multiple people working on the same project have
similar data and perform common computing tasks such
as virus scanning. The result cache was originally empty,
and was gradually filled by UNIC during the process.

Figure 10 shows the breakdown of each application’s
running time on each group. The trend is that the original
application takes almost the same amount of time for all
groups. With UNIC, although the first group takes longer
time to execute (24.1% for grep and 51.9% for clamav),
all subsequent groups consistently take a much shorter
time (5.17× speedup for grep and 5.57× speedup for
clamav). This is because for the first group, all com-
putations are new and UNIC needs to insert them to the
result cache. Once this is done, all subsequent groups can
benefit from it. The overall speedups for the executions
on all seven groups are 2.94× for grep and 2.71× for
clamav. We foresee that with more number of groups
the overall speedup should be even higher. Therefore,
UNIC is practical for a group of users working together
or doing similar tasks.

6.3 Storage Space

We now evaluate the storage overhead of UNIC. For each
application we used for the performance evaluation in
§6.2.2, we examined the number of entries in the result
cache. To study the total space used for memoization, we
also let Redis dump a snapshot of all data and measured
the size of the dump file.

Table 2 shows the results. Column (a) is the number
of input files. Column (b) is the total size of input files.
Column (c) is the number of entries in the result cache.
Column (d) is the size of the Redis dump file. The rel-
ative storage overhead is thereby Column (d) divided by
Column (b), which is shown in Column (e). The results
depict that the average overhead of the memoization stor-
age for all applications is 3.45%, negligible compared
with the storage of all file data. Therefore, UNIC incurs
little storage overhead.

7 Discussion and Limitations

We discuss UNIC’s security implications and limitations.

Denial-of-service attacks. A malicious user may issue a
large number of put requests on manufactured inputs, and
pollute the result cache with useless results. Several ap-
proaches can be used to defend against it. For example,
UNIC may rate-limit puts to the result cache, employ a
quota mechanism to limit the cache space for each client
application, or enforce time-to-live limits on cached re-
sults. We argue that even if the result cache is full, the
worst outcome would be that future computations cannot
be memoized and have to be recomputed, yet the secrecy
and integrity of computations are not violated.

Side-channel information leakage. A malicious user
may enumerate through a large set of inputs on an appli-
cation, and observe if some executions are significantly
faster than others. Based on the observed timings, she
may infer what computations have been done by other
users and what have not. While defending against this
side-channel attack is out of the scope of this paper, we
note that the application developers may defend against
it by rate-limiting queries to the result cache or randomly
forcing cache misses even if the result exists in the cache.

Brute-force attacks. A malicious user may enumerate
through all possible hash values of the application code
and input, in hopes of getting cached results. We argue
that the possibility for an unprivileged user to get a valid
hash is minimal. Even if she manages to get an entry,
she only knows the result, but she cannot generate the
original code and input from the hash. In the example
of virus scanning, she might brute-force a hash and dis-
cover the result of scanning some file, but she cannot de-
termine the original content of that file. Again, UNIC

10
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Application (a) File count (b) File size (c) Entry count (d) Dump size (e) Overhead
clamav (Linux) 47,336 508.1MB 44,277 2.8MB 0.55%
clamav (Dropbox) 2,792 10.8GB 82,061 4.4MB 0.04%
pbzip2 1 544.0MB 4,151 106.4MB 19.55%
grep linux (simple) 47,336 508.1MB 70631 11.2MB 2.21%
grep linux (complex) 47,336 508.1MB 51532 4.2MB 0.83%
grep tags (simple) 1 250.0MB 2 5.3MB 2.13%
grep tags (complex) 1 250.0MB 2 4.5MB 1.80%
gcc3 47,336 508.1MB 522 2.3MB 0.46%

Table 2: Storage overhead. Columns are: (a) the number of input files, (b) total size of input files, (c) number of entries in the result
cache, (d) size of the Redis dump file, and (e) relative storage overhead.

may defend against this attack by rate-limiting queries to
the result cache. Furthermore, if the result is sensitive
by itself (e.g., cat), the application developer may en-
crypt it before putting it to the result cache, or the system
administrator may disable UNIC for such applications.

Application bugs. Ensuring bug-free code is a hard
problem orthogonal to UNIC and code attestation. If
the application contains a bug such as buffer overflow,
a malicious user may exploit the bug to poison the result
cache. Existing systems such as baggy bounds check-
ing [1] and AddressSanitizer [28] can prevent many
memory access bugs. Other countermeasures include
letting the application rerun the computation and ver-
ify the cached result periodically, and purging the result
cache when a bug is found. In addition, using hardware-
enforced isolation mechanisms such as Intel TXT [18]
with TPM, or Intel SGX [5, 17] may avoid this issue.

8 Related Work

Storage deduplication. Storage deduplication reduces
data redundancy at either file-level [22] or block-
level [12, 32]. ZFS [36] is a widely used cross-platform
filesystem that does block deduplication at the time data
is written. These works are orthogonal to UNIC, and
UNIC’s cross-layer design allows it to transparently lever-
age storage deduplication information.

Ad-hoc caching. Many applications use ad-hoc caching
to improve performance, but they either trust all users,
or simply disallow cross-user caching. For example,
ccache [9] caches compiler outputs on the local filesys-
tem, but the cache can be easily exploited or poisoned by
any user. On the other hand, clamav [10] only caches
virus scanning results within a single session, rendering
cross-session and cross-user caching impossible. UNIC
improves the status quo with strong security guarantees.

Memoization. Memoization [19, 23, 26] is a technique
that reuses prior computation results of functions with-

3Not all files are used for compilation due to our experiment con-
figuration.

out side effects. Vesta [16] uses memoization for soft-
ware configuration management. Nectar [15] memoizes
intermediate results from DryadLINQ [35] programs. In-
coop [7] uses memoization to build a MapReduce frame-
work for incremental computations. However, these sys-
tems handle only specific computations, and it is non-
trivial to generalize their use cases. UNIC can be used to
deduplicate general computations.

Code attestation. Many code attestation techniques ex-
ist to provide integrity of computations. For example,
result-checking [33] verifies the result produced by a pro-
gram by computing it in two ways. Secure boot mech-
anisms [3, 4] verify the integrity of the software stack
after booting. BIND [30] ties the proof of what compu-
tation has been run to the result that the computation has
produced. Pioneer [29] provides code integrity guaran-
tees for running software on an untrusted system. UNIC
makes novel use of the code attestation mechanism to
protect the secrecy and integrity of memoization.

9 Conclusion

We presented UNIC, a general system for applications
to securely deduplicate their rich computations. It uses
code attestation mechanism to achieve both secrecy and
integrity. It explores a cross-layer design that allows ap-
plications to leverage storage deduplication information
for speed. Evaluation results show that UNIC is easy to
use, speeds up applications by up to 21.4×, and incurs
little storage overhead.
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Abstract
Many storage customers are adopting encryption solu-
tions to protect critical data. Most existing encryption
solutions sit in, or near, the application that is the source
of critical data, upstream of the primary storage system.
Placing encryption near the source ensures that data re-
mains encrypted throughout the storage stack, making it
easier to use untrusted storage, such as public clouds.

Unfortunately, such a strategy also prevents down-
stream storage systems from applying content-based fea-
tures, such as deduplication, to the data. In this paper, we
present Lamassu, an encryption solution that uses block-
oriented, host-based, convergent encryption to secure
data, while preserving storage-based data deduplication.
Unlike past convergent encryption systems, which typi-
cally store encryption metadata in a dedicated store, our
system transparently inserts its metadata into each file’s
data stream. This allows us to add Lamassu to an applica-
tion stack without modifying either the client application
or the storage controller.

In this paper, we lay out the architecture and security
model used in our system, and present a new model for
maintaining metadata consistency and data integrity in a
convergent encryption environment. We also evaluate its
storage efficiency and I/O performance by using a variety
of microbenchmarks, showing that Lamassu provides ex-
cellent storage efficiency, while achieving I/O through-
put on par with similar conventional encryption systems.

1 Introduction
Storage users are understandably sensitive to data secu-
rity on shared storage systems. Adding encryption to an
existing solution can help to address such concerns by
preventing unauthorized parties from accessing the con-
tents of critical data. One popular approach that seems
to have quite a lot of traction is to encrypt data close
to the application, or even inside an application itself.
This strategy simplifies down-stream security by ensur-
ing that data is in an encrypted state by default as it

moves downstream through the stack. This strategy can
take many forms, such as built-in application encryption,
OS-based file system encryption or VM-level encryp-
tion [3, 19, 22]. We term any encryption that runs on
the same physical hardware as the primary application
data-source encryption.

In general, existing data-source encryption solutions
interfere with content-driven data management features
provided by storage systems — in particular, deduplica-
tion. If a storage controller does not have access to the
keys used to secure data, it cannot compare the contents
of encrypted data to determine which sections, if any, are
duplicates.

In this paper, we present an alternative encryption
strategy that provides the benefits of upstream encryp-
tion while preserving storage-based data deduplication
on downstream storage. Based on these conflicting pri-
orities, we name our system Lamassu, after the Assyrian
guardian deity that combines elements of several crea-
tures. Our system builds upon existing work in con-
vergent encryption [10, 6, 18] to enable deduplication
of encrypted data, but extends it to provide its services
in a manner transparent to both application and stor-
age, without the need for dedicated metadata storage
or additional files. This makes our system flexible and
portable, allowing it to be self-contained, and greatly
simplifying deployment in existing application environ-
ments. Our work also introduces a scheme for providing
crash-tolerant data consistency in a convergent system,
as well as a mechanism for verifying the integrity of data
after a crash.

Lamassu preserves deduplication at the storage back
end by using a message-locked, convergent encryption
strategy [10] to secure data in a way that preserves block-
equality relationships in the ciphertext. In such a scheme,
data is encrypted using keys that are derived from the
plaintext, thus the message is locked under itself [5]. The
actual cipher used to secure the data can be any stan-
dard encryption scheme, such as the Advanced Encryp-
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tion Standard (AES). By using this approach, any two
users who have access to the same plaintext will deter-
ministically arrive at the same ciphertext before storing it
on the back end. As a result, the storage system receiving
that data will be able to identify and deduplicate redun-
dant blocks, even though it is unable to decrypt them.

Convergent encryption provides strong security on
data that has high min-entropy, where it is very difficult
to guess at the contents of messages accurately. Unfor-
tunately, real production data is often much less random
than ideal data; there are often identifiable patterns that
an outsider can exploit to guess at data contents with a
much higher success rate than random guessing. As a re-
sult, this approach is vulnerable to the so-called chosen-
plaintext attack [6, 20]. In this attack, an adversary takes
advantage of the nonrandom nature of production data
by guessing the data rather than the encryption key. If
attackers guess correctly, they can generate the match-
ing key and verify their guesses by generating ciphertext
blocks that match the victim’s blocks.

Other work in this field has explored alternative de-
fenses against the chosen-plaintext attack. For example,
DupLESS [6] provides a mechanism that uses a double-
blind key generation scheme to allow an application host
and a key server to cooperatively derive convergent keys.
In the DupLESS scheme, the key server never sees the
data to be encrypted, and the application host never has
access to the secret keys stored on the key server. The
disadvantage of that system is that each key generation
operation requires multiple network round-trips between
the application host and the key server, making it imprac-
tical for block-level operation.

We have chosen a relatively simple defense against
the chosen-plaintext attack by adding in a secret key
to derive the convergent key before using it for encryp-
tion [20]. This mechanism is similar to the domain key
used to derive keys in DupLESS, but in Lamassu, clients
are permitted direct access to the secret key and gener-
ate their convergent keys locally. With this mechanism,
an attacker executing a chosen-plaintext attack needs to
guess both the contents of the plaintext and the secret
key in order to generate a matching convergent key, and
to succeed.

Lamassu instances that use different secret keys will
produce different ciphertext from the same plaintext, and
data across those instances will not be deduplicated. On
the other hand, if two (or more) clients share a single se-
cret key, they can all read and write data to a shared stor-
age system through Lamassu, and their shared data can
be deduplicated by that system. In effect, a set of clients
that share a single secret constitute both a security zone
and a deduplication group. We collectively term a group
of tenants that share a key an isolation zone. The details
of how this shared secret is implemented is discussed in

further detail in §2.
In order to retrieve Lamassu-encrypted data from stor-

age, a user must have access to the encryption keys used
to secure that data. Because message-locked encryption
produces keys based on plaintext, it produces a large
number of keys that must be fetched along with the ci-
phertext in order to retrieve data. This unbounded mass
of keys presents a metadata management problem that is
intrinsic to a message-locked encryption strategy.

Past solutions have managed this cryptographic meta-
data by storing keys alongside the encrypted file data [10,
6], or by building a dedicated metadata store that stores
the keys separately from the primary data [18]. In both
cases, the cryptographic metadata itself must be secured,
usually by means of either symmetric or asymmetric key
encryption. Such solutions complicate the process of
replicating or migrating encrypted data, because the sep-
arated key information must be managed in parallel. For
cases in which the cryptographic metadata is kept in a
dedicated store, that functionality must also be replicated
wherever the data is to be housed. Providing full replica-
tion or migration capabilities may require either modifi-
cation to the underlying storage controller’s facilities or
the addition of external tools to provide those capabilities
outside of the controller.

In contrast, Lamassu implicitly inserts the crypto-
graphic metadata generated by encryption into the data
stream for each file. In order to avoid polluting the file’s
data blocks with highly entropic key information, thus
hindering deduplication, Lamassu places this data into
reserved sections of the file. In effect, a predetermined
fraction of the blocks stored at the storage controller will
be devoted to encrypted metadata, rather than file data.
These encrypted metadata blocks are indistinguishable
from random data, and will not be deduplicated by the
storage controller.

Contributions. To the best of our knowledge, Lamassu
is the first system that achieves the following: First,
it provides strong data-source encryption that preserves
storage-based block deduplication, without requiring
modifications to the application or storage, and without
requiring a dedicated metadata store to manage conver-
gent keys; second, by embedding cryptographic meta-
data inside encrypted files, Lamassu allows both data and
metadata to be automatically managed by existing tools
and storage features; and third, our metadata structure
provides a mechanism for maintaining consistency be-
tween a file’s data and its cryptographic metadata. In
order to accomplish those goals, Lamassu uses these key
techniques: block-oriented convergent encryption, inser-
tion of encryption metadata to the data stream, efficient
metadata layout and multiphase commit algorithm, and a
built-in data integrity check mechanism.

The rest of this paper is organized as follows. In §2, we
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will lay out the design of our system, including our threat
model, detailed encryption strategy, and metadata lay-
out. We will also describe our consistency and integrity
model. §3 provides details on our prototype implemen-
tation, followed by §4 which shows our experimental re-
sults. Finally, we discuss related work and conclude in
§5 and §6, respectively.

2 Design
2.1 Threat Model
Our threat model is informed by the ones used by past
secure deduplication work [10, 6], and by our own anal-
ysis of the level of security that could make sense in an
enterprise environment. Our threat model takes the form
of a series of explicit assumptions about the capabilities
of a potential attacker, and of the hardware and software
available in our expected deployment environment, as
follows:

• We assume that the basic cryptographic primitives
such as AES that we use, represent an “ideal” en-
cryption function and cannot be broken by attack-
ers. We further assume that any potential attacker
is aware of the encryption mechanism that we have
chosen and how it works.

• We assume that data will be stored on an untrusted,
shared storage system. We further assume that the
shared system may behave as an honest-but-curious
attacker [11], attempting to read stored data, but not
acting to maliciously destroy data. An example of
such an environment might be a public cloud stor-
age system, which can reasonably be expected to
preserve stored data, but which must be prevented
from viewing data contents.

• We assume that the storage system will have full ac-
cess to all data that it stores, but that it will not have
any prior knowledge of the contents of encrypted
data, or of the keys used to encrypt that data.

• We assume that the storage system stores data from
multiple tenants, and that those tenants might not
trust each other. We assume that these tenants might
gain access to any data stored on the storage system,
including access to data blocks that they are not au-
thorized to access, such as through improperly ap-
plied access control.

• We assume that the data-source systems that belong
to a single trust domain may share secret informa-
tion through some mechanism, such as a key server
and KMIP (Key Management Interoperability Pro-
tocol).

Convergent encryption, applied upstream of the stor-
age system, effectively prevents that system from read-
ing the contents of the data. We assume that an attacker
cannot compromise the key manager shared by clients to
gain access to their shared master keys. If that happens,
the attacker can effectively read the data stored by clients
sharing that trust domain. Note that it would be feasible
to adapt our system to use a double-blind key generation
system that protects against that sort of attack, such as
that described by Bellare et al. [6] at the cost of reduced
I/O performance. However, we have not pursued this op-
tion due to the large performance overhead involved.

The work presented here focuses on protecting the
contents of user data from an outside attacker, while pre-
serving deduplication, but does not include protection for
directory structure information. It should be possible to
improve on this limitation by adding encryption for file
and directory names in a future revision.

2.2 Encryption
The term convergent encryption describes any encryp-
tion scheme that preserves the following property: Given
a particular plaintext, it will always generate the same
ciphertext. In every other respect, a convergent encryp-
tion scheme should share the same properties as stan-
dard encryption schemes. Lamassu exploits this prop-
erty to enable deduplication of encrypted data by ensur-
ing that identical plaintext blocks are stored as identical
ciphertext blocks. This means that Lamassu exposes in-
formation about block equality to any potential outside
observer, but does not expose any additional informa-
tion about the data. Existing work on convergent en-
cryption strategies discusses the cryptographic security
of this approach [10, 6]. In general, larger block sizes re-
duce the granularity of information exposed to a potential
attacker, and reduce the amount of information that can
be gleaned from the pattern of blocks stored on disk.

Lamassu uses a two-tier encryption strategy, laid out in
Figure 1. The first tier is the convergent encryption ap-
plied to the application data written to each file. To pro-
tect against the chosen-plaintext attack, described previ-
ously, Lamassu uses a secret key in the process of de-
riving each convergent key. The second tier is standard
(nonconvergent) encryption applied to the cryptographic
metadata stored inside each file by using a second secret
key. Data encrypted by separate Lamassu instances can
be read or written by either instance, provided that those
two instances share both of these secret keys.

The first of the two secret keys used by Lamassu is an
inner key (Kin), used when encrypting file data blocks.
When Lamassu writes a block to storage, it starts by
taking a cryptographic hash1 (H) of the data block in

1 Our current prototype is using SHA-256 in order to generate 32-
byte hashes from fixed-size data blocks.
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memory. The convergent encryption key for that block
(CEKey) is derived from the hash value and the inner
key by the following equation:

CEKeyi = F(H(Blocki),Kin) (1)

where F represents a key derivation function (KDF).
In our current implementation, this is accomplished by
AES-encryption of the block hash using the inner key,
but other key derivation functions could also work. This
modified CEKey is used to encrypt the actual data block
before it is sent to disk as shown in the following equa-
tion:

CipherBlocki = EAES(Blocki,CEKeyi, IVf ixed) (2)

where EAES represents the AES encryption function. For
data block encryption, Lamassu uses AES-256 in CBC
mode. As with previous convergent encryption systems,
Lamassu uses a fixed initialization vector2 (IVf ixed) for
this process, so that future encryption of the same data
will result in identical ciphertext [10]. The block key
is stored inside the file so that it can be easily retrieved
when reading the file, allowing Lamassu to decrypt the
data block and recover its contents. The block key is
stored in a reserved metadata section of the encrypted
file. Further details will be described in §2.3.

Because the convergent keys are derived with key
derivation function that uses a secret inner key (Kin), it
is extremely unlikely that at encrypted block will match
any data encrypted with the same technique, but using a
different inner key. This property allows the inner key to
be used to define a deduplication domain for data by re-
stricting deduplication to just the data encrypted with the
same inner key. In addition to preventing unauthorized
parties from decrypting stored data, this also prevents
an attacker from learning anything about secured data
through the behavior of deduplication on multi-tenant,
shared storage. This property allows tenants to define
their own security isolation zone through the use of secret
keys that are kept outside of the shared storage system.

The second shared secret used by Lamassu is an outer
key (Kout ) that is used to secure the metadata stored in-
side specially reserved sections of the file, including the
per-block keys described previously. Lamassu encrypts
the metadata blocks by using the AES in Galois/Counter
mode (GCM), rather than in CBC mode as when en-
crypting data blocks. Lamassu also seeds its metadata
block encryption with a randomly generated initializa-
tion vector (IVrand) like conventional encryption systems,
as shown in the following equation:

CipherMetai = EAES(Metai,Kout , IVrand) (3)

2Standard AES-CBC takes a randomly generated initialization vec-
tor (IV) as well as a key as inputs. Convergent encryption uses an
invariant IV to preserve data equality in the ciphertext [10].



 



























Figure 1: Lamassu’s two-tier encryption model

where Metai denotes a metadata block. A message au-
thentication code (or tag) generated from AES-GCM will
be added to each metadata block and used for anintegrity
check. (The details will be discussed in §2.4.)

In order to read any of the data in the file, a Lamassu
instance must have access to the outer key, thus defining
a trust domain based on access to this key. Note that the
outer key does not affect the boundaries of data dedupli-
cation, only data access. It would be possible to broadly
share the inner key among many clients, while giving
each one a separate outer key. The result would allow
all of those clients to share a single deduplication isola-
tion zone, while restricting them to reading and writing
only their own private data. However, note that cryp-
tographic security among those clients would be exactly
equal to that of basic convergent encryption. They would
no longer have any protection against chosen-plaintext
attacks executed by their peers.

The inner and outer keys dictate how Lamassu would
approach periodic key rotation. Our experimental sys-
tem does not include a mechanism to re-key Lamassu
files, but it would be possible to approach the problem
by rotating the secret keys stored in the key server. Key
rotation would have to be initiated by a higher layer in
the application with the ability to update the key server
and to identify which files or directories need to be reen-
crypted with the new keys. An interesting side effect of
Lamassu’s encryption model is that it is possible to per-
form a less secure, but much faster partial re-keying of
Lamassu data by changing the outer key, but not the in-
ner key. In that case, only the metadata blocks in each
file would need to be re-keyed, rather than entire files.

2.3 Metadata Layout
Lamassu’s convergent encryption strategy operates on a
per-block basis. This means that the base unit for any
read or write is a full block. It is not possible for Lamassu
to update a piece of a block without fully reencrypting
the whole block with its new data. Furthermore, any
change to a data block must be accompanied by a cor-
responding update to the hash key for that block in the
metadata section of the file. We will discuss our strategy
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for maintaining consistency between data and metadata
in §2.4.

Lamassu embeds its extra metadata into a file’s data
stream. This metadata is highly entropic by nature, and is
extremely unlikely to result in any identifiable redundant
sections for the storage controller to deduplicate. Be-
cause our metadata is produced in 32-byte sections rather
than in full block-sized chunks, writing the data into ar-
bitrary sections of the file can pollute potentially dedu-
plicable chunks, preventing them from matching other,
similar blocks. It can also interfere with block-alignment
throughout the file, making it harder for a fixed-block
deduplication to work.

Our solution is to place metadata in reserved sections
of each file, segregating cryptographic metadata from en-
crypted primary data completely. These sections are de-
signed to align with the underlying file system’s block
size so that they do not alter the block-alignment of
any primary data. Our system is designed so that the
chosen block size is easily variable. The chosen block
size for our tests is 4096 bytes, with matching, aligned,
4096-byte reserved metadata sections inserted into the
stream. This arrangement favors files that are at least
a few megabytes in size, because this pre-allocation of
space magnifies the space overhead of our solution in
very small files. A smaller block size reduces the rel-
ative penalty for smaller files, but slightly increases the
overall metadata space overhead for each file.

Because a file’s size may be very large, and, more im-
portantly, may change over time, Lamassu does not pre-
allocate space for all of a file’s metadata in advance. In-
stead, Lamassu distributes metadata blocks at regular in-
tervals throughout the file, adding more as necessary. For
simplicity, these blocks are placed in regular, predictable
locations within the file, rather than in dynamically se-
lected positions. Furthermore, each metadata block is
placed in a position adjacent to the data blocks whose
encryption keys it contains. We refer to a section of a
file containing a single metadata block and all of the data
blocks associated with it as a segment.

Figure 2 shows the internal layout of a Lamassu file,
based on a 4KB block size, with the file further broken
up into smaller segments and blocks. The size of each
segment is defined by the number of 32-byte encryption
keys that can be stored inside a single metadata block.
That number is affected by several factors, including the
amount of space occupied by additional metadata infor-
mation, and on tunable factors that are outlined in §2.4.

Inside each metadata block, the first 48 bytes of space
are used for general file metadata, rather than for encryp-
tion keys. Figure 3 shows the contents of this metadata
space, which includes the random initialization vector
(IV) used to encrypt the remainder of that block, a mes-
sage authentication tag generated by AES-GCM, and the



    


 



  















Figure 2: Internal layout of a Lamassu file



  





  














Figure 3: Internal layout of a Lamassu metadata block

logical size of the file’s contents. The remaining space
in each metadata block is taken up by a table of 32-byte
encryption keys.

The size of each metadata block’s key table deter-
mines the number of data blocks that can follow a single
metadata block, and, by extension the size of a segment.
Because each segment carries a mandatory one-block
penalty for storing the metadata block, the most space-
efficient arrangement is to maximize the size of each seg-
ment by filling as much space as possible with encryption
keys. Lamassu trades away some of that space efficiency
for better crash consistency, as will be discussed in §2.4.
When the size of plaintext data is n bytes and each meta-
data block can store up to NumKeysMB keys, the num-
ber of data blocks (NDB) and metadata blocks (NMB), the
size of the encrypted file (n′), and the space overhead
of Lamassu can be formulated with the following set of
equations:

NDB = �n/BlockSize� (4)
NMB = �NDB/NumKeysMB� (5)

n′ = (NDB +NMB) ·BlockSize (6)
Overhead = n′ −n (7)

The space overhead is minimized when n is exactly
a multiple of the Lamassu block size and the last meta-
data block has no empty key table slot, as shown in the
following equation:

Overheadmin = n/NumKeysMB (8)

As previously mentioned, the metadata stored at the
beginning of each metadata block includes a logical file
size. The reason for this is that Lamassu always encrypts
data in full block-sized chunks, and, therefore, it both
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reads and writes data in full-block chunks. As a result,
when writing to the end of a file whose size is not an
integer multiple of the block size, Lamassu will pad the
final block with zeroes before writing it. In order to keep
track of this padding and report a correct file size to the
application at a later time, Lamassu maintains the log-
ical size of the file without this padding. (The logical
size does not include the extra space taken up by key
blocks stored inside the file.) This information is stored
inside the Lamassu metadata blocks of the file. Since it
is highly inefficient to update every such block in a large
file whenever the file changes, and it is always necessary
to write to the file’s last metadata block when changing
its size, the updated size is written to the metadata block
only for the final segment. The system always treats the
file size stored in the final metadata block as the authori-
tative logical size for the file and ignores stale sizes that
might be stored in any other blocks.

2.4 Crash Consistency
Lamassu’s encryption model requires that the key for
each data block be stored in the corresponding seg-
ment metadata block. Without a matching key, a data
block cannot be decrypted, and becomes unreadable.
This means that there is a critical failure mode wherein
Lamassu crashes in between updating a data block in a
segment and updating the metadata block for that seg-
ment, leaving the two in an unmatched, inconsistent
state.

Lamassu addresses the threat of inconsistency due to
incomplete writes by implementing a multiphase com-
mit algorithm for writes. The sequence for each update
is to first update the metadata block for the affected seg-
ment, and mark the segment as being in a midupdate
state. When that has been completed, the modified data
block is written out, and then, finally, the metadata block
is re-marked to indicate that the update has completed.

To enable segment recovery after a failure, Lamassu
stores extra key information in each metadata block dur-
ing the update process. When Lamassu updates the seg-
ment metadata at the beginning of a data block write,
it stores both the new key and the existing key for that
block in the metadata block. Lamassu overprovisions the
key table in each metadata block to provide space for a
small number of transient, extra keys, stored during file
writes. If the data block write succeeds, the subsequent
update to the metadata block clears the update flag to in-
dicate that the keys in the key table and the data in the
data blocks are once again in sync. Key table overpro-
visioning slightly reduces the number of keys stored in
each segment, and consequently the amount of data in
each segment, but we believe this to be a good trade-off
for increased crash resiliency.

If Lamassu fails during the update process, it can re-

cover based on the contents of the metadata block. If the
system discovers a segment that is marked as midupdate,
it can infer that a data block update was previously inter-
rupted. If that is the case, it can detect which data block
was in the middle of an update by reading the block num-
ber attached to the key, or keys, stored in the reserved
space at the end of the key table. Once it has identified
an affected block, it will be able to decrypt it using ei-
ther the current key, stored in the key table, or the older
key, stored in the reserved space, depending on whether
or not the new version of the data block made it to disk
before the crash.

Lamassu depends on the underlying storage system
to provide consistency guarantees on whether or not a
single block-level write reaches disk. Therefore, our
method does not provide any mechanism for handling a
partial-block write failure or disk write failures.

The penalty for the consistency model outlined above
is an amplification in the number of disk I/Os that
Lamassu has to perform whenever it updates a data
block. To ameliorate this draw-back, Lamassu includes
the ability to batch updates for multiple data blocks into a
single update operation. To do this, Lamassu writes mul-
tiple keys to a metadata block as a single block update.

Because each block included in the update must have
two versions of its key written to the metadata block dur-
ing the update, the number of blocks that can be com-
bined into a single update is limited by the number of
keys that can fit in the reserved space at the end of each
metadata block. The precise amount of extra space re-
served is adjustable at build time in our implementation.
We use the parameter R to represent the number of ex-
tra keys that can be stored in the reserved space for each
metadata block. Thus, with a single extra slot reserved
(i.e., R = 1), Lamassu will update a single data block at
a time, requiring three I/Os for each block write: two for
the metadata updates, and one for the data block itself.
Increasing the number of reserved slots in each metadata
block allows Lamassu to batch multiple data block writes
into a single commit operation, amortizing the cost of the
metadata updates across R block updates.

Batching effectively reduces the system’s I/O over-
head. However, reserving more key slots for old keys re-
duces the number of blocks that can be managed in a sin-
gle segment, increasing the space overhead of Lamassu
metadata. We will discuss the space and performance
trade-offs introduced by varying R in §4.3 with experi-
mental results. Increasing R also increases the amount of
data that might be lost as a result of a midupdate crash.

2.5 Data Integrity
A useful property of Lamassu’s encryption strategy is
that it can automatically check whether the encryption
key it uses to decrypt a data bock is the correct key for

6



USENIX Association  2015 USENIX Annual Technical Conference 339

that block. When Lamassu decrypts a data block by us-
ing a convergent hash key, it can immediately attempt to
re-hash the decrypted block and recompute the hash key
based on the resulting plaintext. If the plaintext is cor-
rect, the resulting hash key will match the one used in the
decryption. If not, the resultant key is extremely unlikely
to match the original hash key. Thus, a hash mismatch
indicates a block-key mismatch. Lamassu takes advan-
tage of this property to check the integrity of individual
data blocks, checking the hash of decrypted data against
the hash key stored inside the metadata blocks.

In the event of a crash and recovery, this hash-
checking mechanism is what allows Lamassu to deter-
mine which of the two keys assigned to a data block
matches the contents of that block. If Lamassu detects
a block-key mismatch that does not result from an in-
terrupted write, it cannot correct the problem, but it can
detect it and notify the client application.

Lamassu also includes integrity checking for meta-
data blocks, using AES-GCM authenticated encryp-
tion. AES-GCM attaches a message authentication code
(MAC) to the encrypted metadata block. Decrypting the
metadata block requires that the reader provide the MAC
as well. In order to do that, the reader must already have
access to the encryption key used to secure the block,
and the secure hash of the block’s original contents with
which to verify its integrity.

Our design does not provide file integrity protection
beyond the segment level. A malicious or defective stor-
age system could, for example, roll the contents of a seg-
ment back from a current valid state to a previous valid
state without having to read the contents of that segment.
Our scheme would not detect such a change. To provide
integrity checking at the level of a complete file, Lamassu
would need to store data outside of the primary storage
system, such as an on-premises store or, perhaps, in the
key server. Lamassu’s stackable design makes it possible
to add an integrity layer on top of Lamassu, using a new,
or existing, integrity checking system.

3 Implementation
The Lamassu prototype system takes the form of a shim
layer, sitting in the data path between the application and
the back-end storage system. Lamassu encrypts the data
written by the application, inserts its metadata into the
input data stream, and writes them all to the the back-
ing store. The precise amount of space overhead from
metadata depends on the size of the files involved, and
on the block size used. Assuming the block size is 4096
bytes and that a single metadata block can store 125 keys
per segment (when R = 1), the minimum space overhead
ratio is 1/125 = 0.8%.

We selected the Linux File System in User Space
(FUSE) [2] as the infrastructure for our prototype. This
























Figure 4: Lamassu prototype architecture

arrangement allowed us to build our prototype as a self-
contained user-mode program that can easily be ported
into another application or infrastructure in the future.
Placing everything in a user space module also simpli-
fied our development and experimentation work.

Figure 4 shows the flow of data through the system. At
start time, the Lamassu prototype selects a configurable
directory, mounted on the native Linux file system, as its
backing store. Lamassu will treat all files and directories
in that mount point as Lamassu objects for it to manage.
The underlying storage infrastructure for that directory
can take any form, such as a local Linux file system, or
an NFS mount point. Lamassu exports a file system in-
terface to any Linux-resident application through FUSE
and the Linux VFS layer. It accepts standard I/O re-
quests and implicitly applies encryption, segmentation,
and block chunking to each file before forwarding them
to the backing storage system. For most of our exper-
iments, we used a NetApp R© clustered Data ONTAP R©

storage controller mounted over NFS as a deduplicating
store. Linux applications can access the encrypted file
system through the Lamassu export by using standard file
I/O interfaces.

For key management, we used the Cryptsoft KMIP
(Key Management Interoperability Protocol) SDK [9].
Two 256-bit AES encryption keys are retrieved at start
time from a KMIP server: One is used as an inner key
(Kin), and the other is used as an outer key (Kout ), as de-
scribed in §2.2. Every key created at the KMIP server
contains an associated integer attribute called an isola-
tion zone: The clients in a single isolation zone obtain the
same set of encryption keys. This arrangement allows us
to consistently match each Lamassu isolation zone to a
KMIP isolation zone.

Our implementation exploits the architectural features
provided by Intel processors to accelerate certain crypto-
graphic operations. For the SHA-256 hash function, we
make use of the Advanced Vector Extensions (AVX) in-
struction set by using an assembler library provided by
Intel [14]. Where supported, our prototype also takes ad-
vantage of Intel’s AES acceleration instruction set, AES-
NI (Advanced Encryption Standard New Instructions), to
maximize encryption performance. In such cases, the
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Figure 5: Experimental setup

prototype uses AES-256 CBC encryption and decryp-
tion functions provided by the Intel AES-NI Sample Li-
brary [15]. On platforms where hardware acceleration
is not available, our prototype defaults to the OpenSSL
implementations for these functions.

4 Experimental Results
Setup. For experiments, we set up an IBM server
x3550 running 64-bit Linux (Fedora 20, Linux Kernel
3.3) as a host machine. It has an Intel Xeon CPU E5-
2630, an 8-core processor supporting AES-NI, which is
critical for AES encryption/decryption performance. The
host machine is connected with a NetApp FAS3250 con-
troller running clustered Data ONTAP 8 via a Gigabit
Ethernet switch. Figure 5 illustrates the experimental
setup.

In addition to LamassuFS, our FUSE-based Lamassu
file system implementation, we set up two additional file
systems that operate via FUSE.3 First, for a compari-
son with a conventional encrypted file system, we chose
EncFS [12], an open-source FUSE-based encrypted file
system that uses standard AES in CBC mode for encryp-
tion.4 Second, we also set up an unencrypted file system
via FUSE, which we refer to as PlainFS. This is mainly
to provide a fair comparison of performance against an
unencrypted system that still inludes the FUSE overhead.
PlainFS is a simple pass-through front end for the rel-
evant Linux system calls associated with FUSE opera-
tions.5

We created three separate volumes — plainvol,
encfsvol, and lmsfsvol — to be used as backing
stores for PlainFS, EncFS, and LamassuFS, respectively.
Each volume is mounted on the host via NFSv3 at a
distinct mount point, and is used as a backing store for

3FUSE version 2.9.3-2
4EncFS version 1.8-rc1
5 Most code from fuse-examplefs [1]
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Figure 6: Storage efficiency with synthetic files

the corresponding FUSE-based file system. We used the
same 4096-byte block size for both EncFS and Lamas-
suFS. This helped to keep our comparisons fair, and en-
sured that I/O operations for both would be aligned with
the native block sizes of our storage controller. For most
experiments, the number of reserved key slots in the
metadata block (R) was fixed to 8. With this setup, a sin-
gle segment is composed of one metadata block followed
118 data blocks, and the minimum amount of space over-
head is 0.85%.

4.1 Storage Efficiency
We first evaluated Lamassu storage efficiency to make
sure that we could achieve the deduplication goals we
had set. To do this, we wrote a simple tool to generate
4GB synthetic data files with various redundancy profiles
(as the percentage of redundant 4KB blocks in a file, de-
noted α) ranging from 10% to 50%. Each data file was
copied over NFS to different volumes in the storage sys-
tem through PlainFS, EncFS, and LamassuFS. When the
copy completed, we manually triggered deduplication on
the storage system. We measured the difference in disk
space usage before and after deduplication using df, run
on the controller itself.

The relative percentage disk usage after deduplication
is plotted in Figure 6. EncFS shows 100% for all cases
because no deduplication occurred by using standard
AES encryption. For PlainFS where data files are stored
as unencrypted blocks, the relative disk usage is exactly
(1−α). These results match our expectations, with the
space savings from deduplication on unencrypted data
mapping 1-to-1 with the known level of data redundancy
on the test data. LamassuFS achieved nearly the same
storage efficiency as PlainFS, but with a small amount of
space overhead due to the embedded cryptographic meta-
data. This overhead is constant, relative to the nondedu-
plicated size of a file, but the relative overhead on dedu-
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Table 1: Storage efficiency with VM images
VM image Size % deduplicated Space

PlainFS LamassuFS overhead
FreeDOS.vdi 379M 9.35% 9.18% 1.07%
FreeBSD-7.1-i386.vdi 1.8G 15.40% 15.11% 1.35%
xubuntu 1204.vdi 2.3G 22.07% 21.95% 1.01%
Fedora-17-x86.vdi 2.6G 36.73% 36.46% 1.83%
opensolaris-x86.vdi 3.5G 8.08% 7.87% 1.14%

plicated storage increases as the data file redundancy (α)
increases: 1.01%, 1.06%, 1.21%, 1.43%, and 1.81% re-
spectively, i.e., inversely proportional to (1−α).

The same set of experiments was performed by us-
ing real virtual machine images6 with various sizes as
shown in Table 1. Note that EncFS results have omit-
ted because they were all zero. The storage efficiency
results with real files are completely consistent with the
results from synthetic data shown in Figure 6: Lamas-
suFS achieves almost the same amount of deduplication
as PlainFS, with a small amount of space overhead of
less than 2%.

4.2 Performance
Because AES encryption and decryption are a compute-
intensive jobs, using encryption in a file system incurs
a performance overhead. In order to examine this, we
evaluated the I/O performance of PlainFS, EncFS, and
LamassuFS. For a fair comparison, we carefully chose
the EncFS configuration parameters: 4096 bytes for
a block size, AES-256 in CBC mode for an encryp-
tion algorithm, and no file name encryption. We also
turned off all EncFS features that insert metadata be-
tween blocks. This change caused EncFS to write data
in a block-aligned pattern, similar to Lamassu’s. We did
this because we have observed that EncFS performs quite
poorly when allowed to write in an unaligned pattern.
EncFS also uses AES-NI through the OpenSSL library
on platforms that support it.

In order to examine the performance of Lamassu under
a larger variety of circumstances, we used FIO-tester [4],
which generates various types of synthetic workloads to
all 3 file systems. We applied 5 different workloads to a
single 256MB file with 4KB-block synchronous I/O: se-
quential reads (seq-read), sequential writes (seq-write),
random reads (rand-read), random writes (rand-write),
and mixed random reads/writes with the read/write ratio
of 7:3 (rand-rw). The I/O throughput (bandwidth) was
measured through 10 runs; the Linux kernel page cache
was flushed before each run so that no data block was
cached at the host memory. For LamassuFS, one more
variation was added: LamassuFS(meta-only), where the
read path only checks the integrity of metadata blocks
without checking the integrity of data blocks. This would

6Obtained from http://virtualboxes.org/images/
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Figure 7: Single-file I/O throughput with a remote filer

give a good indication of how much performance is pe-
nalized when providing a full data integrity check to the
system.

Figure 7 shows the single-file I/O throughput of
PlainFS, EncFS, LamassuFS, and LamassuFS(meta-
only) working with the remote filer via NFS. With pure
write workloads (seq-write and rand-write), we see that
PlainFS performs much better than both EncFS and
LamassuFS. With pure read workloads (seq-read and
rand-read), the throughput does not show any meaning-
ful difference across all FS: LamassuFS shows slightly
worse performance than EncFS (1.6% to 12.4% worse)
with read workloads. However, LamassuFS is noticeably
worse than EncFS with write workloads: 32.9% for seq-
write and 32.2% for rand-write.

The difference in write performance is due to per-
block SHA-256 hash computations that are necessary
for convergent encryption. Because this happens at
the very beginning of block encryption process, ex-
tra latency caused by SHA-256 computation has a di-
rect negative impact on I/O throughput. On the other
hand, extra SHA-256 computation that happens dur-
ing the LamassuFS read path (for data block integrity
checking) rarely affects the performance: LamassuFS
and LamassuFS(meta-only) do not show any meaning-
ful throughput difference. This suggests that NFS I/O
is a dominant performance bottleneck in read workloads,
and therefore the rest of the computation that happens af-
ter I/O has almost has no impact on overall I/O through-
put. This also explains why both EncFS and LamassuFS
are as good as PlainFS with read workloads. A possible
option for improving the write performance is to increase
the number of reserved key slots (R) in a metadata block
— with some trade-offs; we will discuss this later in §4.3.

Overall, despite the performance overhead caused by
the extra hash computation and metadata I/O, we can
say that the performance of LamassuFS is competitive
with that of EncFS in an NFS-shared storage environ-
ment. Lamassu’s strategy of inserting metadata blocks in

9
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a block-aligned fashion turns out to play a significant role
in terms of performance in our experimental environ-
ment. We have observed that block-unaligned accesses
over NFS incur a huge performance overhead. For exam-
ple, block-unaligned EncFS is at least 10x slower than
block-aligned one when used over NFS: 7MB/s versus
85MB/s throughput in the case of seq-write. For this rea-
son, to ensure as fair a comparison as possible, we have
configured EncFS so that it does not add any unaligned
metadata in our experiments.

In order to evaluate the pure performance overhead of
encryption without the impact of NFS I/O affected by the
network bandwidth, we ran the same set of FIO tests by
setting up all file systems so that they used a local RAM
disk (tmpfs in Linux) as backing stores, instead of the
remote filer. Figure 8 shows the single-file I/O through-
put of all FS with a local RAM disk. PlainFS always
noticeably performed better than EncFS and LamassuFS
across all workloads: The difference is the greatest with
seq-read showing 2.80x over EncFS, 16.70x over Lamas-
suFS (note that the graph has a short y-axis).

After removing the NFS I/O bottleneck from the read
path, computation that occurs after I/O becomes a domi-
nant bottleneck. In particular, extra SHA-256 hash com-
putation that is added for a data block integrity check
negatively affects the read throughput of LamassuFS
significantly: LamassuFS performs 83.2% worse than
EncFS with a full data integrity check, but it performs
only 22.8% worse without it. LamassuFS also performs
worse than EncFS with the rand-read workload: 47%
worse than EncFS. However, it shows a slightly better
(8.1%) throughput than EncFS without full data integrity
checking (meta-only): This is due to a small amount
of write buffering introduced to provide consistency and
reduce overall I/O. (Recall that R = 8 in these experi-
ments.) The seq-write and rand-write results are quite
similar to those of NFS cases: EncFS performs 26.8% to
27.5% better than LamassuFS with write workloads.

In order to evaluate the impact of SHA-256 hash com-
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putation on performance, we broke down the write and
read latency of LamassuFS when it operates on a local
RAM disk. By inserting the instrumentation code, the
time spent on the LamassuFS read or write path is mea-
sured and divided into five categories: Encrypt, Decrypt,
GetCEKey, I/O and Misc. Note that the major work-
load of GetCEKey is SHA-256 hash computation. Fig-
ure 9 shows seq-write and seq-read latency breakdown of
LamassuFS with, and without, full data integrity check.
For both writes and reads, GetCEKey consumes the most
time: 58% of seq-write, 80% of seq-read latency. With-
out full data integrity check (meta-only), the read latency
reduces drastically (81%) because SHA-256 hash com-
putation is not on the read path.

There are a couple of possible options to improve
the performance of LamassuFS. Since we have identi-
fied that the SHA-256 hash computation is the biggest
performance bottleneck, the first option is using a dif-
ferent cryptographic hash function that consumes fewer
CPU cycles. For example, our microbenchmark results
showed that OpenSSL SHA-1 consumes 58% fewer, and
OpenSSL MD5 consumes 38% fewer CPU cycles for
computing the same 4KB block-hash compared with our
SHA-256 function using the Intel AVX instruction set.
The exact implication of using a less secure hash func-
tion (e.g., SHA-1 or MD5 generates 128-bit keys instead
of 256-bit keys) for convergent encryption could be un-
derstood only with comprehensive cryptographic analy-
sis, and hence we will leave it for future work.

The second option is to forgo data block integrity
check in the read path. This will improve the read
performance significantly, as shown in Figure 8 with
LamassuFS(meta-only). Remember that Lamassu is still
doing metadata block integrity checking via AES-GCM:
It is always able to detect any data corruption that oc-
curs within or across metadata blocks (e.g., first 4KB
block from one hundred and nineteen 4KB blocks if

10
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R = 8). This covers cases such as accidentally overwrit-
ing a whole file, or the beginning of a file. In an enter-
prise storage environment with no malicious user who
intentionally corrupts the user data, this could be a vi-
able option for improving performance while sacrificing
a little on security.

4.3 Number of Reserved Key Slots
As described in §2.4, Lamassu maintains a certain num-
ber of reserved key slots (denoted R) in a metadata block
to maintain consistency. As R increases, the amount of
space taken up by Lamassu metadata in each file in-
creases, and thus storage efficiency decreases. On the
other hand, increasing R reduces the number of addi-
tional metadata I/Os that Lamassu must perform. To
maintain consistency, Lamassu caches block writes in
memory and writes them to disk along with their meta-
data as part of a commit operation. That occurs once
for every R data block writes. The decreased number
of writes positively affects the write throughput, while
the increased metadata space overhead negatively affects
storage efficiency. In order to understand this trade-off,
we evaluated the performance and storage efficiency of
LamassuFS by varying R = 1, 2, 8, 32, 48, 52, 56, and
60.

Figure 10 shows the single-file I/O throughput in
bandwidth when applying four different FIO-tester

workloads to LamassuFS with a local RAM disk back-
end. By increasing R, the write throughput continuously
improves up to a certain point and then decreases: The
throughput reaches its peak around R = 48 achieving
1.60x and 1.57x speedups over R = 1 for seq-write and
rand-write respectively. For write workloads, the posi-
tive impact of buffering and batching of writes (i.e., re-
duced metadata I/O) is a dominant factor as it increases
the write throughput significantly. On the other hand, the
read throughput tends to decrease slightly as R increases:
from 1 to 60, 4.71% and 4.40% decreases for seq-read
and rand-read, respectively. This is because Lamassu
must read more metadata blocks per unit file size with a
larger R value (i.e., metadata space overhead increases),
resulting in a slight increase in I/O overhead.

Figure 11 shows storage efficiency as the percent-
age of data blocks, excluding metadata blocks, in dif-
ferent encrypted files with various redundancy profiles
(denoted as α in §4.1). The storage efficiency decreases
as R increases because of the larger space overhead of
metadata. The storage efficiency also decreases as there
are more redundant blocks in a plaintext file (i.e., α in-
creases) because the metadata blocks are not dedupli-
cated, as previously shown in §4.1.

The right value of R should be chosen with consider-
ation for this trade-off. If an application requires higher
write IOPS, a larger R can be chosen while sacrificing a
little space efficiency. However, with larger R, the gran-
ularity of crash consistency becomes coarser, (i.e., it in-
creases the recovery point objective [RPO] of the sys-
tem.), and LamassuFS consumes the additional memory
space for more write buffers. For the proceeding set of
experiments, we fixed R to be 8 to achieve a balanced
trade-off.

5 Related Work

5.1 Encrypted File Systems
Full disk encryption (FDE) is a popular choice for
the storage encryption. NetApp Storage Encryption
(NSE) [16] is a hardware-based implementation of FDE
that uses self-encrypting drives (SEDs) from drive ven-
dors. FileVault 2 [3] is a software-based FDE in Mac
OS X that uses Intel’s AES-NI. As encryption occurs at
the lowest stack just before data blocks are written to the
disk, FDE is quite a different approach from our data-
source encryption strategy.

FDE encrypts whole blocks in a volume, including
file system metadata, while file-system-level encryption
enables encryption of individual files or directories, of-
fering a finer granularity of control. There are general-
purpose file systems that have integrated encryption fea-
tures, such as ZFS and Encrypting File System (EFS)
in NTFS. Some cryptographic file systems — such as
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CFS [7], TCFS [8], Cryptfs [22] and eCryptfs [13] —
are stackable on top of another general-purpose file sys-
tem; eCryptFS is widely used, included in Ubuntu’s en-
crypted home directory and Google’s Chrome OS. There
are a few FUSE-based encrypted file systems available;
only EncFS [12] is notable in terms of its maturity and
wide acceptance.

With regard to our data-source encryption strategy,
any stackable or FUSE-based encrypted file systems can
serve the same purpose because they can transparently
work on top of an existing system. However, to the best
of our knowledge, none of them provides the explicit
ability to enable deduplication at downstream storage de-
vices as Lamassu does. We chose a FUSE-based file sys-
tem for our prototype implementation due to its better
debuggability and easier deployment; it can also be im-
plemented as a kernel-level file system if necessary.

5.2 Convergent Encryption
Deduplication of previously encrypted data is normally
impossible because of the nature of encrypted data. Con-
vergent encryption (CE) was proposed to address this is-
sue. The concept of convergent encryption was intro-
duced by Douceur et al. [10]: By definition, CE produces
identical ciphertext files from identical plaintext files. A
common approach is deriving the encryption key from a
secure hash of the plaintext. Using convergent encryp-
tion results in the ciphertext having the same levels of
duplication as the plaintext. However, the weakness of
CE is the leakage of information about the plaintext; an
attacker can observe the ciphertext and deduce the con-
tents of the plaintext by using a variety of different at-
tacks [20].

While the system described by Douceur, et al.[10]
works only with the whole files, Storer et al. [18] later
designed a CE solution that provides sub-file granular-
ity encryption and deduplication, in both fixed and vari-
able sized chunks. Bellare et al. [5] formalized CE
as Message-Locked Encryption (MLE) with a crypto-
graphic analysis. DupLESS [6] tried to overcome CE’s
weakness — leakage of information about the plaintext
— with an obfuscated key exchange mechanism with
a key server in order to achieve stronger confidential-
ity; however, the performance overhead turns out to be
quite costly as it requires 3-way key exchange with a key
server for every block access. ClouDedup [17] uses a
semi-trusted server between users and the cloud provider
to encrypt the ciphertext resulting from CE with another
encryption algorithm, and a metadata manager to store
encryption keys and block signatures. It introduces much
more complexity to the system, compared to Lamassu,
and might incur performance penalty due to double en-
cryption.

Lamassu is targeted at enterprise environments in

which multiple hosts store data in a large shared storage
appliance. Therefore, it tries to achieve a balance be-
tween performance and security. Lamassu can be easily
added to an existing enterprise environment. It only in-
curs a mimal performance overhead, and does not require
an extra system for a metadata store. In a multitenant sys-
tem, tenant data can be securely separated by using per-
tenant keys to create isolation zones. Tahoe-LAFS [21]
used a similar approach of adding a secret during hash
key generation [20], but its convergent encryption works
on a per-file basis, limiting the storage efficiency com-
pared with Lamassu’s per-block approach.

6 Conclusion
In this paper, we presented Lamassu, a new, transpar-
ent, encryption system that provides strong data-source
encryption, while preserving downstream storage-based
data deduplication. Lamassu uses block-oriented conver-
gent encryption to align with existing block-based dedu-
plication systems. It takes a new approach to manage
convergent encryption key metadata by inserting it into
each file’s data stream, eliminating the need for addi-
tional infrastructure. Therefore, it can be inserted into
an existing application stack without any modification to
either host-side applications or the storage controller. We
also introduced a strategy for maintaining consistency
between file data and convergent metadata, and for pro-
viding data integrity checking for application data in a
convergent encryption system.

Our results showed that it is possible to insert conver-
gent encryption into an application with a performance
overhead similar to non-convergent options, placing en-
cryption near the top of the application stack, and making
it easier to provide strong security across the whole stack.
Our security model leaks only the information that is ab-
solutely necessary for deduplication to the storage sys-
tem, resulting in strong encryption, well suited to many
applications. Our system provides a clear advantage over
analogous solutions by preserving storage-based dedu-
plication without compromising on encryption.
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abstract

The OS kernel is critical to the security of a computer
system. Many systems have been proposed to improve
its security. A fundamental weakness of those systems
is that page tables, the data structures that control the
memory protection, are not isolated from the vulnera-
ble kernel, and thus subject to tampering. To address
that, researchers have relied on virtualization for reliable
kernel memory protection. Unfortunately, such memory
protection requires to monitor every update to the guest’s
page tables. This fundamentally conflicts with the re-
cent advances in the hardware virtualization support. In
this paper, we propose SecPod, an extensible framework
for virtualization-based security systems that can provide
both strong isolation and the compatibility with mod-
ern hardware. SecPod has two key techniques: paging
delegation delegates and audits the kernel’s paging opera-
tions to a secure space; execution trapping intercepts the
(compromised) kernel’s attempts to subvert SecPod by
misusing privileged instructions. We have implemented
a prototype of SecPod based on KVM. Our experiments
show that SecPod is both effective and efficient.

1 Introduction

With its privilege, an operating system (OS) kernel is crit-
ical to the security of the whole system. Unfortunately,
modern kernels are too complicated to be secure – they
often consist of tens of million lines of source code. Con-
sequently, an increasingly large number of vulnerabilities
are discovered in all major kernels each year [10]. These
vulnerabilities are routinely being exploited to take over
the system. To address that, researchers and practition-
ers have proposed many solutions. For example, modern
kernels all have built-in exploit mitigation mechanisms
such as address space layout randomization(ASLR) [26]
and data execution prevention (DEP, or W ⊕ X) [12].
They significantly raise the bar of functioning kernel
exploits. However, these systems are built on top of
a weak foundation that page tables, the data structures
that control the memory protection, are always writable
in the kernel (to facilitate frequent page table updates).
Any in-kernel memory protection accordingly can be cir-

cumvented by manipulating page tables. To that end, a
stream of research has proposed to deploy memory and
other protections “out-of-the-box” in a virtualized envi-
ronment [22, 27, 28, 31, 33, 35, 37, 45]. For example,
Patagonix extends the hypervisor to identify and protect
the code running in the VM [28]. NICKLE achieves a
similar goal through memory shadowing [31].

Virtualization-based security systems are often at odds
with recent advances in the hardware virtualization sup-
port: many security tools need to intercept and respond
to key events in the VM. Each intercepted event causes
one or more expensive world switches between the vir-
tual machine and the hypervisor. On the other hand, the
hardware virtualization support, such as AMD-V and In-
tel VT, strives to reduce world switches. In particular, the
nested paging allows guests to freely update their page
tables without involving the hypervisor. However, the
guest page table update is a key event that many secu-
rity tools are interested in [27, 28, 31, 45]. This forces
the hypervisor to run in the less-efficient shadow paging
mode where updates to guest page tables are trapped and
verified by the hypervisor. To reconcile this conflict, it
calls for a new approach that can accommodate the needs
of virtualization-based security tools, but also take full
advantage of the hardware virtualization support.

In this paper, we propose SecPod, an extensible frame-
work for virtualization-based security systems. SecPod
encapsulates a security tool in a trusted execution envi-
ronment that coexists with and yet is strictly isolated from
the vulnerable kernel. Specifically, it creates a dedicated
address space (the secure space) in parallel to the exist-
ing kernel address space (the normal space). The secure
space is rigorously protected from the normal space by
the two key techniques of SecPod, paging delegation and
execution trapping: in the former, the kernel delegates
all its paging operations, including page tables and their
updates, to the secure space. The kernel is deprived of
the privilege to directly modify the effective page tables.
The secure space enforces a non-bypassable memory iso-
lation by sanitizing the guest page table updates. The
latter foils the attacker’s attempts to subvert the secure
space by misusing privileged instructions. The hypervi-
sor notifies the secure space any such attempts via signals.
The secure space can accordingly respond to the event by,
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say, issuing an alert or terminating the VM. The synergy
of these two techniques isolates a security tool from the
(compromised) kernel.

We have implemented a prototype of SecPod based
on the popular KVM hypervisor [24]. Our prototyping
efforts show that SecPod can be integrated into an existing
hypervisor with a minimal increase to its code base. Our
experiments demonstrate the efficiency and effectiveness
of SecPod. For example, SecPod introduces about 3%
of overhead on average for the I/O-intensive SysBench
FileIO benchmark, and about 5% overhead on average
for the SysBench online database transaction benchmark.

The rest of this paper is organized as the following: in
Section 2, we define the scope of the problem and the
threat model. We then describe the design, implemen-
tation, and evaluation of SecPod in Section 3, 4, and
5, respectively. Finally, we present the related work in
Section 6 and conclude the paper in Section 7.

2 Problem Overview

In this section, we give a brief overview of the hardware
virtualization support, particularly the memory virtual-
ization support, and explain how they impact the de-
sign of security tools. Early hypervisors for x86 virtu-
alize the guest memory with shadow paging, in which
a guest page table (GPT) is superseded by its shadow
page table (SPT) [3] (Figure 1). Specifically, the hyper-
visor manages a SPT for each guest page table. Any
changes to the GPT must be synchronized to its SPT
to take effect. This provides an opportunity for secu-
rity tools to examine and control every change to guest
page tables [27, 28, 31, 33, 38, 45]. In shadow paging,
GPTs translate guest virtual addresses to guest physical
addresses, i.e., the virtual and physical addresses from
the guest’s perspective. Guest physical addresses must
be further translated to the actual physical addresses used
by the memory controller. Since SPTs are the only ef-
fective page tables, they map directly from guest virtual
addresses to physical addresses (Figure 1).

Recent x86 processors have the hardware virtualiza-
tion support. Early extensions focus on trapping sen-
sitive guest instructions, such as SGDT, SIDT and MOV
to CR3, to allow the hypervisor to virtualize the related
resources. Later revisions aim at improving the perfor-
mance with the direct support for critical virtualization

tasks. Particularly, nested paging is a hardware support
for memory virtualization in which the processor trans-
lates guest memory accesses with two levels of page ta-
bles (Figure 2): the GPT maps guest virtual addresses to
guest physical addresses, and the nested page table fur-
ther maps guest physical addresses to physical addresses
(NPT is also called extended page table. For clarity, we
use NPT.) The guest has full control over its GPTs, while
the hypervisor manages NPTs and is not aware of changes
to GPTs. Consequently, memory protection enforced in
NPTs can be circumvented by remapping the (protected)
guest virtual memory in GPTs. For example, data ex-
ecution prevention (DEP) enforced in the NPT can be
foiled by remapping the guest kernel code to the writable-
and-executable physical memory. Because of this, many
virtualization-base security systems cannot take full ad-
vantage of nested paging, which has tremendous advan-
tages in performance than shadow paging [42].

Threat model: in this paper, we assume a trusted boot-
ing protocol, such as tboot [41], is used to securely load
the hypervisor, which in turn loads the guest OS and ini-
tializes SecPod. The guest kernel is benign but contains
exploitable vulnerabilities. After boot, we assume a pow-
erful attacker exists that can change arbitrary memory of
the kernel by exploiting some vulnerabilities. Moreover,
we consider the hypervisor to be trusted. This can be
guaranteed by recent advances in the hypervisor integrity
through formal verification and integrity protection and
monitoring [25, 29, 40, 44, 46].

3 System Design
3.1 System overview
SecPod aims at providing a trusted execution environment
for virtualization-based security tools. Figure 3 gives an
overview of SecPod with the two key techniques: paging
delegation and execution trapping. In this architecture,
security tools run in a dedicated secure space defined by
the SecPod page table, while the kernel runs in the normal
space defined by the kernel page table. An entry gate and
an exit gate are responsible for switching these two spaces.
This is essentially a page table based isolation [35, 39, 46].
To switch the space, the entry or exit gate only needs to
load the respective next page table into CR3, the page
table base register of x86. The entry gate is the only
way to enter the secure space from the normal space as
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guaranteed by execution trapping. SecPod provides one-
way visibility into the kernel – a security tool in SecPod
can introspect and even modify the kernel memory, but
not the other way around.

However, simple page table based isolation is not se-
cure for three reasons: first, the kernel still has full control
over its page table. This allows the (compromised) kernel
to subvert SecPod by mapping and modifying the secure
space memory. It is thus critical to validate the kernel’s
page table updates to enforce strict memory isolation.
SecPod solves this challenge with the first technique, pag-
ing delegation, in which the kernel delegates all its paging
operations to the secure space, including page tables, page
table updates, and task switches (one step of a task switch
is to load the page table of the next process to CR3). Ac-
cordingly, the kernel, including kernel exploits, cannot
modify its page tables. All the updates must be delegated
to and sanitized by the secure space. Second, the kernel
is still privileged and free to execute privileged instruc-
tions. These instructions can be misused to compromise
SecPod. For example, the kernel could use the MOV to
CR3 instruction to load a crafted page table to bypass the
secure space. SecPod relies on the second technique, ex-
ecution trapping, to eliminate this threat. Specifically,
the hypervisor intercepts sensitive privileged instructions
executed by the kernel, and forwards the captured events
to the secure space as signals. The secure space can
decide how to respond, for example, by issuing alerts,
ignoring them, or terminating the violating kernel. It
can also dispatch the events to the security tools. This
whole process is similar to the signal handling in tradi-
tional OSes. Third, the attacker could attempt to subvert
SecPod through DMA attacks [47]. DMA operations by
hardware devices use physical addresses, and thus are not
translated by page tables (page tables are used by the CPU
to translate software memory accesses.) The hypervisor
should have already employed IOMMU to thwart DMA
attacks. The secure space should be excluded from the
memory accessible to devices in IOMMU as well. In the
rest of this section, we describe these two key techniques
in detail.
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3.2 Paging Delegation

SecPod delegates the kernel’s paging operations to the se-
cure space in order to enforce memory isolation. Specif-
ically, the secure space maintains the shadow page tables
(SPTs) for the kernel. SPTs stay synchronized with the
kernel’s page tables. Any updates to the kernel page ta-
bles must be merged to SPTs to take effect because SPTs
are the only page tables used by the CPU. The kernel may
keep its own page tables to facilitate implementation, but
they are never loaded to the CPU for address translation.
This is technically similar to shadow paging in the tra-
ditional virtualization systems. Figure 4 compares these
two shadow paging designs. In virtualization, SPTs are
managed by the hypervisor, which is responsible for syn-
chronizing any GPT updates to SPTs. SPTs are the only
page tables in use for the guest. Accordingly, SPTs trans-
late guest virtual addresses directly to physical addresses
(Figure 1); In SecPod, SPTs are instead managed by the
in-VM secure space. It is further backed by the nested
page tables (NPTs). Both SPTs and NPTs are used by the
CPU to translate guest addresses. SPTs thus map guest
virtual addresses to guest physical addresses. In most
cases, a SPT in SecPod is a simple replica of the kernel’s
page table (unless a memory safety violation is detected
and rejected). Shadow paging in SecPod is thus straight-
forward to implement. This is in stark contrast against
shadow paging in virtualization, which is one of the most
complicated modules in a hypervisor due to its support of
many paging modes of x86 and the intricate out-of-sync
shadowing. Shadow paging in SecPod is also more effi-
cient than the traditional shadow paging – updating SPTs
in SecPod take a fast context switch, instead of a much
slower world switch in virtualization. In short, SecPod
keeps both the simplicity and efficiency of the nested pag-
ing. Even though shadow paging has long been used in
virtualization, it is, to the best of our knowledge, the first
time to be proposed in this architecture.

The kernel delegates its page tables and all paging-
related operations to the secure space, such as page table
allocation, page table updates, task switches (to write
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to CR3), and TLB flushing. The secure space exposes,
through the entry gate, a service for each of these op-
erations. To delegate these operations, we could re-
place every paging operation in the kernel with a call
to the respective service in the secure space. Fortu-
nately, for kernels that can run in a para-virtualized
(PV) VM [3], these hooks have already been embed-
ded into the kernel. For example, the Linux kernel
has a pvops framework that can figure out at run-time
whether it is running in a virtualized system and ac-
cordingly switch to the optimized low-level operations.
The pvops framework consists of several groups of low-
level operations, such as pv_time_ops, pv_cpu_ops,
pv_mmu_ops, and pv_lock_ops (defined in file arch/
x86/include/asm/paravirt_types.h). We can re-
purpose pv_mmu_ops to implement paging delegation
(Section 4.1). For a kernel without the PV interface, we
can potentially patch the kernel to implement a similar
interface.

3.2.1 SecPod Address Space Layout

Figure 5 shows the layout of the normal and secure spaces.
The normal space, as usual, consists of the kernel and the
user space. The kernel is mapped at the same location
in the secure space as in the normal space. Accordingly,
a security tool in SecPod can access the kernel as if it
is running inside it since key kernel data structures re-
main at their supposed locations. This helps mitigate the
semantic gap problem [5]. The kernel memory is set
to non-executable in the secure space to prevent security
tools from executing the (untrusted) kernel code. In the
secure space, the secure code and its data are placed in
the lower address space because the kernel usually sits
at the top (e.g., the Linux kernel often occupies the top
1GB of the address space.) The secure code provides
security tools with a compact library of useful functions
such as malloc, free, and string functions. The se-
cure data includes a repository of shadow page tables and
several hash-based data structures for fast index of that
repository (Section 3.2.3). The entry gate is the only en-
trance to the secure space from the normal space, while
the exit gate returns to the normal space. Both gates
should be mapped at the same location in the normal and
secure spaces because the page table is reloaded during
each context switch, and the page-table-reloading code is
architecturally required to remain unchanged before and
after a context switch [20]. There is also a shared page to
pass data between two spaces.

The memory for the secure space is allocated from the
kernel when the secure space is created. It is subsequently
removed from the kernel so that the kernel will not use
it for other purposes. We enforce W ⊕ X in the secure
space; i.e., the secure space can be either writable or ex-
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Figure 5: SecPod address space layout

ecutable, but not both simultaneously [12]. This thwarts
code injection attacks against the secure space in case the
security tool contains exploitable vulnerabilities. Other
attack mitigation mechanisms can also be employed to
provide stronger protection of the secure space [1, 26].

3.2.2 Secure and Efficient Context Switch

SecPod implements the page-table based isolation. To
switch the spaces, we need to load the page table of the
next space into CR3. The secure space only has one
page table, the SecPod page table, but the normal space
has many shadow page tables, one for each user process.
We need to ensure the security and atomicity of context
switches. To this end, the entry gate saves the kernel state
to the stack (generic registers and interrupt enable/disable
status), clears the interrupt (twice), and then enters the
secure space by loading its page table and stack to the
processor. This process has been described in detail by
earlier papers [35, 38]. Interested readers please refer
to those papers. The exit gate performs the opposite
operations in the reverse order to return to the normal
space.

To prevent the kernel from subverting the secure space
by loading a crafted page table, we request the hypervisor
to intercept and check every write to CR3 by the guest
(Section 3.3). However, trapping every CR3 write could
cause substantial performance overhead due to frequent
context switches. To reduce the overhead, we leverage a
hardware feature called CR3 target-list [20]. Loading CR3
with one of the four page tables in the CR3 target-list will
not be trapped by the hypervisor. This feature has been
employed by earlier work for similar purposes [35, 38].
The major difference lies in how memory is virtualized.
The previous systems use shadow paging to virtualize the
guest memory. Guest task switches are thus handled by
and in the hypervisor. This provides a convenient op-
portunity to update the CR3 target-list (CR3 target-list can
only be updated by the hypervisor). On the downside, this
prevents these systems from taking advantage of nested
paging. SecPod is designed to avoid this problem.



USENIX Association  2015 USENIX Annual Technical Conference 351

Guest Page Table Shadow Page Table

SPT Update
Verification

①

③

④
②

Fast Index
Tables

PT

PD SPD

SPT

N
orm

al S
pace

S
ecure S

pace

Entry Gate

Figure 6: Kernel Page table update verification

The hypervisor in SecPod uses nested paging, and the
guest delegates its paging operations to the secure space,
including task switches. Ideally, task switches in the
guest should not involve the hypervisor, just like in the
normal nested paging. However, there are many shadow
page tables for the guest yet the CR3 target list can only
hold four page table roots. The entry gate will never cause
any VM exits because the SecPod page table is locked in
the list. But the exit gate will if the SPT for the normal
space is not in the list. Neither the kernel nor the secure
space can update the CR3 target-list because they both
run in the guest mode. To address that, we allocate a
fixed top-level page table (FTLPT) in the secure space
and copy the top-level page table of the next SPT to it
during the task switch. As such, SecPod appears (to the
hardware) to be using only two page tables, FTLPT and
the SecPod page table. Both of them can be registered in
the CR3 target-list. Therefore, legitimate context switches
between the normal and secure spaces will not be trapped
by the hypervisor. Our prototype uses the PAE (Physi-
cal Address Extension) mode of x86 [20], in which the
top-level page table consists of four entries and can thus
be copied quickly. Most modern Linux distributions by
default use the PAE mode in their kernels because the
NX (non-executable) bit is only available in this mode.
We would like to emphasize that FTLPT is a part of the
SPT pool in the secure space and thus is not accessible
by the kernel. Note that we cannot use PCID (Process
Context Identifier, also known as ASID) to tag the TLB
– the TLB needs to be flushed during context switches
because FTLPT translates addresses for many processes.
Moreover, PCID is set in the CR3 register, but the CR3
target-list can only be changed by the hypervisor.

3.2.3 Page Table Update and Validation

The kernel delegates paging to the secure space to prevent
unauthorized modifications to its page tables. It leverages
the para-virtualized MMU interface (pv_mmu_ops) to for-
ward low-level paging operations to the secure space.
Figure 6 illustrates how a new level-3 (L3) page table is
created and filled. When the kernel needs to allocate a

new L3 page table, it sends the request to the secure space
(� in Figure 6), which responds by allocating a blank L3
page table from the SPT pool and linking it to the parent
shadow page table (�) . The mapping between the GPT
and the SPT is then recorded in a hash table for fast in-
dexing (�). When new page table entries are added to the
GPT later, it is synchronized to the associated SPT only
if no violation of memory protection is found (�). The
verifier uses several hash tables for fast fact checking.

The secure space has full control over the kernel’s
memory protection. Any updates to shadow page tables
must be vetted by the secure space. By default, the secure
space enforces the normal/secure space isolation and W ⊕
X for the kernel:
Normal/secure space isolation: this policy prevents the
(untrusted) kernel from manipulating the secure space
memory. Specifically, the kernel is prohibited from map-
ping any of the secure space memory, except the entry
and exit gates at their fixed location. For each request to
change a shadow page table, SecPod checks whether the
physical page belongs to the secure space and whether
the virtual address overlaps with the two gates (one code
page and one data page). The update is denied if either
test returns true. By doing so, the kernel cannot map the
secure space memory or change the gates.
Kernel W ⊕ X : Kernel code integrity (W ⊕ X) is es-
sential to many security tools [28, 33, 45]. Previous
virtualization-based systems leverage shadow paging in
the hypervisor to protect kernel integrity. SecPod pro-
vides the same level of protection in the VM. We use a
template-based approach to enforce W ⊕ X . Specifically,
modern kernels have already deployed W ⊕ X (without
protecting the page table) [12]. The initial kernel page
table could serve as a template for the kernel memory
protection. For each update to the kernel mapping, Sec-
Pod only needs to compare the new memory protection
against the template. Note that SecPod does not intend
to externally address weaknesses in the kernel’s original
W ⊕ X implementation (it is better to root-cause and fix
them in the kernel.) Enforcing W ⊕ X in the secure space
makes it much harder to bypass. Moreover, key kernel
data structures like the system call table are also write-
protected for both their virtual addresses and the physical
contents.

3.3 Execution Trapping
In SecPod, the kernel still has the necessary privilege
to execute critical system instructions. Without con-
straints, this privilege could be misused to subvert the
secure space, for example, by loading a malicious page
table or even disabling paging. Hence, it is necessary to
control the instructions executed by the guest. Simply dis-
allowing these instructions in the kernel’s binary does not
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Table 1: Trapped Sensitive Instructions

Instruction Semantics
LGDT Load global descriptor table
LLDT load local descriptor table
LIDT load interrupt descriptor table
LMSW load machine status word
MOV to CR0 write to CR0
MOV to CR4 write to CR4
MOV to CR8 write to CR8
MOV to CR3 load a new page table
WRMSR write machine-specific registers

work because the x86 architecture has variable instruction
lengths and “unintended” instructions can be created out
of legitimate instructions [34]. Previous software fault
isolation systems remove unintended instructions through
compiler or binary transformations [46, 48]. In SecPod,
we instead configure the virtualization hardware to trap
these instructions, no matter whether they are benign or
“unintended”. Table 1 gives a (partial) list of sensitive
instructions trapped by SecPod. Each of them controls
some important aspects of the processor. For example,
LIDT loads the interrupt descriptor table, which deter-
mines how interrupts are handled; MOV to CR0writes to
CR0, which consists of switches for many CPU operation
modes (e.g., paging enable, protected mode, write-protect
bits) [20]. Intercepting these instructions will not cause
large performance overhead because most of them are not
executed frequently after the kernel has initialized. A no-
table exception is the MOV to CR3 instruction that is used
by the entry and exit gates for context switches. However,
our design guarantees that legitimate context switches
will not be trapped by the hardware (Section 3.2.2). Note
that, SecPod not only protects these registers, but also the
associated data structures, such as the global descriptor
table and the interrupt descriptor table (Section 3.2.3).

After the hypervisor intercepts a sensitive instruction
executed by the guest, it notifies the secure space of the
event. This is similar to the signal delivery in traditional
OSes [36]. In fact, they both implement an up-call, except
that a signal is delivered from the kernel to a user process
while an event in SecPod is delivered from the hypervisor
to the secure space. When an instruction is intercepted,
the hypervisor saves the current virtual CPU state to the
virtual machine control block (VMCB) [20], and copies
the saved registers to the data page of the entry gate (to
provide the context of the violating instruction). The
hypervisor then updates the saved instruction pointer in
VMCB to the entry gate and returns to the guest. The CPU
restores the guest state from the VMCB and continues its
execution to the entry gate. The secure space recognizes
that this is an up-call from the hypervisor and handles the
violation accordingly.

4 Implementation

We have implemented a prototype of SecPod based on
the popular KVM hypervisor [24]. Both the host and the
guest run Linux. We added about 100 lines of source
code to the hypervisor to set the CR3 target-list and trap
the execution of sensitive instructions. Another 800 lines
of source code were added to the guest kernel for paging
delegation. The secure space has about 2,300 lines of
source code. In the rest of this section, we describe this
prototype in detail.

4.1 Paging Delegation
In SecPod, the guest kernel delegates its paging oper-
ations to the secure space. This gives the latter full
control over the guest’s memory mapping and protec-
tion. In our prototype, we leverage the Linux ker-
nel’s pvops interface to forward paging requests to
the secure space. The pvops interface originates
from the Xen project’s efforts to create a generic para-
virtualized kernel that can adapt to different hypervi-
sors as well as the native, non-virtualized platforms.
Pvops groups the key para-virtualization operations into
several structures, such as pv_time_ops, pv_cpu_ops,
pv_mmu_ops, pv_lock_ops, and pv_irq_ops, and sub-
stitutes native operations in the kernel with the corre-
sponding PV operations. For example, the native x86
system uses a single MOV to CR3 instruction to load the
page table. Pvops replaces it with an indirect call to
the pv_mmu_ops→write_cr3 function. Each virtual-
ization system, as well as the native platform, provides
its own implementation of these functions. Particularly,
functions for the native platform are simple wrappers of
the original native instructions or functions. Pv_mmu_ops
has all the necessary functions for SecPod to delegate pag-
ing to the secure space. For example, it has functions for
write_cr3, set_pte, set_pmd, flush_tlb_kernel,
etc. We only need to implement the required functions
of pv_mmu_ops with the respective services provided by
the secure space. In essence, this creates a MMU-only
para-virtualized platform as all the other PV operations
remain the same as the native platform.
Pvops replaces the native low-level hardware opera-

tions with indirect calls through the pv_xxx_ops struc-
tures. This introduces some minor but measurable per-
formance overhead to native systems as some of these
functions are frequently used by the kernel. Kernel de-
velopers have to reclaim the lost performance for na-
tive systems. Observing that these functions remain un-
changed after initialization, they patch the kernel code to
specialize each indirect pvops call with a direct call to
the corresponding native function, and even inline sim-
ple operations like write_cr3. Therefore, we need to
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replace the function pointers in pv_mmu_ops before the
specialization. Changes to the pv_mmu_ops structure af-
ter the specialization will not take effect. To this end, we
modify the kernel source code to set up the pv_mmu_ops
structure early in the boot process. Because the secure
space has not been initialized yet, we use a temporary
page table as an in-kernel “shadow page table” and com-
mit the page table updates to it. The temporary page table
has to be statically allocated because the kernel memory
allocator has not be initialized either. After the secure
space is ready to run, we copy the temporary page table
to a shadow page table in the secure space.

Our guest kernel is essentially a native kernel with the
para-virtualized MMU. We intercepts the MMU opera-
tions during the early boot stage. However, any page
tables created before that have to be manually copied to
the secure space. Swapper_pg_dir is one such case. It
is statically allocated in the kernel and serves as a mas-
ter page table for the kernel address space [4]. Each
process in Linux has its own user space memory map-
ping but shares an identical kernel part copied from
swapper_pg_dir. No other processes except the idle
task use swapper_pg_dir for address translation. If
swapper_pg_dir is being loaded to CR3 for the first
time, we simply create a new shadow page table for it.

SecPod provides the entry and exit gates for the normal
space to call services of the secure space (e.g., to update
a page table). Because these gates are the only shared
code between the two spaces, context switches have to
go through them. The secure space enforces a strict nor-
mal/secure space isolation to protect these gates. The
implementation details of these gates resemble that of
SIM [35]. Specifically, the entry gate first saves the cur-
rent CPU state to the stack and disables the interrupt with
the CLI instruction. It then loads the SecPod page ta-
ble into CR3 to enter the secure space. The entry gate
has to execute CLI again in the secure space in case
the (untrusted) kernel has skipped the first CLI instruc-
tion [35]. Without a second CLI instruction if the first
is skipped, interrupts happened in the secure space halt
the (virtual) processor because the interrupt handlers are
not executable in the secure space, leading to a denial-
of-service attack. Finally, the entry gate loads the secure
stack to the stack pointer (the ESP register) and calls the
service handler. The exit gate performs the opposite op-
erations in the reverse order to return to the normal space.
We also fill the unused space around the entry and exit
gates with nop instructions to avoid accidental instruc-
tions out of otherwise random bytes [34].

There is a subtle issue in the implementation of the
entry and exit gates regarding TLB (translation looka-
side buffer) [19]. TLB is a fast cache of the virtual to
physical address translation. To access the memory, the
CPU first searches the TLB for a matching virtual ad-

dress. If a match is found in the TLB (a TLB hit), the
resulting physical address is sent to the memory unit to
access the data. If the mapping is not cached by the TLB
(a TLB miss), the CPU walks the page table to trans-
late the address and saves the result in a TLB entry for
future references. Therefore, the TLB ultimately deter-
mines accessibility of the memory. Simply reloading a
new page table cannot guarantee that the TLB contains
fresh address translations because global pages will not
be flushed out of the TLB during context switches (non-
global pages are flushed each time a page table is loaded.
For example, one way to flush all the TLB entries for
the user-space is to simply reload the current page table.)
The Linux kernel sets its kernel pages to global because
all the processes share the same kernel memory mapping.
It is thus unnecessary to flush the kernel mapping from
the TLB during task switches. Note that global pages
are accessible regardless of the PCID settings. Therefore
using PCID cannot solve this problem.

Global pages could potentially cause serious vulnera-
bilities in SecPod. For example, an attacker could syn-
thesize1, in an executable global page, a function that
loads the SecPod page table and manipulates the secure
space memory. This function remains executable after
entering the secure space because its mapping remains in
the TLB after the context switch. On the other hand, if
the secure space memory is set to global, it remains ac-
cessible after returning to the normal space. To address
this pitfall, we clear the global bits in both shadow page
tables and the SecPod page table, except for the entry and
exit gates. By doing so, the TLB will always contain
fresh address mappings after context switches, avoiding
the aforementioned pitfalls. The entry and exit gates can
be set to global because their memory is protected by
the secure space and they do not contain enough useful
gadgets for return-oriented programming [34]. TLB also
allows us to batch page table updates because these up-
dates will not take effect unless the TLB is freshened with
new translations. Therefore, we can temporarily delay the
page table updates until the TLB is flushed by the kernel,
either explicitly using special instructions or implicitly
through task switches. Our current prototype does not
fully support this optimization yet.

4.2 Security Tool Case Study
SecPod is an extensible framework for virtualization-
based security tools. A security tool running in SecPod
is strictly isolated from the vulnerable kernel, but still has
flexible visibility into the kernel. First, the kernel memory
is mapped identically in the secure and normal spaces (but
with different protection). Key kernel symbols and data
structures thus can be accessed at their original locations.
Second, any changes to the kernel’s memory mapping
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can be intercepted and adjusted, if necessary, because the
kernel delegates its paging to the secure space. SecPod
also has a simple loader and linker to dynamically load
security tools, similar to the kernel module support.

To demonstrate the flexibility of the SecPod frame-
work, we have build a security tool for SecPod to de-
tect and prevent unauthorized kernel code from execution
(e.g., kernel rootkits) [28, 31]. This tool is relatively sim-
ple to implement in SecPod, assuming the cryptographic
hashes of benign kernel code are known. Specifically,
it registers a call back function for kernel page table up-
dates. If a new executable page is created in the kernel,
it verifies whether the hash of the page belongs to the
hashes of benign code pages. If so, the page is marked
executable in the shadow page table. Otherwise, it has
detected an attempt to execute unauthorized kernel code
and raises an exception. There are a number of challenges
in implementing this system. For example, when a kernel
module is loaded, the kernel needs to resolve the called
kernel functions (e.g., printk) and patches the module
with the correct offsets to these functions. This effec-
tively changes the page’s hash, leading to a false positive
if the hash is calculated on the modified code. We solve
this problem by reversing the changes made by the kernel
module loader and computing the hash based on the clean
code page. After that, we restore the changes and verify
that each patched function is an exposed kernel function.
Many such challenges have been addressed by previous
work [28, 31]. Moreover, we employ a new feature called
supervisor mode execution protection (SMEP) in recent
Intel processors to prevent the kernel from executing user
code. The x86 architecture allows the kernel to execute
user code with the kernel privilege. SMEP is designed to
specifically address this attack. Software based defense
is also available [23].

This tool provides a similar security guarantee as
Patagonix [28] and NICKLE [31]. Both systems are
based on the then-current virtualization technologies, the
Xen hypervisor with shadow paging and hypervisors us-
ing dynamic binary translation, respectively. In contrast,
the implementation based on SecPod can take advantage
of nested paging. Note that detecting unauthorized code
solely in the NPT is vulnerable unless all the code in the
guest is authorized. Otherwise, an attacker can manipu-
late the GPT, which he has full control over, to map kernel
code pages to the unauthorized user code.

5 Evaluation

In this section, we evaluate the security and performance
of our SecPod prototype. All the experiments were con-
ducted on a physical machine with a 2.5GHz Intel Core i5
CPU and 8GB of memory. The host system runs Ubuntu
12.04 LTS with a kernel version of 3.11.0. The guest is

configured with 2GB of memory, and runs Ubuntu 12.04
LTS Server with a kernel version of 3.10.32.

5.1 Security analysis
We first evaluate the security guarantee of SecPod by
analyzing how SecPod can prevent various attacks. We
organize these attacks from three perspectives: memory
isolation violation, instruction misuse, and malicious de-
vices, with a focus on the first two. Malicious devices can
subvert the secure space (and the hypervisor) via DMA
attacks. This can be prevented using IOMMU.

Memory isolation violation: a key requirement of
SecPod is to strictly isolate the security tool from the
vulnerable kernel. This isolation is enabled by the syn-
ergy of SecPod’s two key techniques: paging delegation
and execution trapping. The first category of attacks at-
tempts to maliciously modify the secure space memory.
Because the secure space memory is not mapped in the
normal space (except the entry and exit gates), the at-
tacker cannot directly change it. Instead, the attacker has
to map the secure space memory into the normal space
directly or by tricking the secure space to do so. Both
attacks are prevented in SecPod. First, the kernel dele-
gates its paging operations to the secure space. Its own
page tables are never put in effect as prevented by execu-
tion trapping. Shadow page tables in the secure space are
not directly accessible by the compromised kernel either.
Second, the kernel might request SecPod to map the se-
cure space memory to the normal space. This is foiled by
SecPod’s page table update validation which enforces the
normal/secure space isolation. Specifically, it disallows
the normal space from mapping any physical pages of the
secure space, and protects both the virtual address and
the physical content of the entry and exit gates.

Instruction misuse: the second category of attacks
tries to subvert the secure space by misusing existing in-
structions. No new code can be injected to the kernel as
SecPod enforces W ⊕ X for the kernel, but code reuse at-
tacks like return-oriented programming (ROP) [34] may
still succeed due to the lack of control flow integrity [1].
In addition, the kernel still has the required right to exe-
cute privileged instructions. For example, it could load
a crafted page table that allows manipulating the secure
space. We address this type of attacks by trapping and
vetting the execution of critical instructions by the ker-
nel, such as MOV to CR3 (Table 1). SecPod ensures that
loading a page table other than the two legitimate ones
will be trapped and denied. It also protects the associ-
ated data structures for instructions like LGDT. Since the
kernel cannot load arbitrary page tables, it might try to
enter the secure space with interrupts enabled. This can
be achieved through the entry gate, for example, by skip-
ping the first CLI and triggering an interrupt right before
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the second CLI. The CPU would then execute the inter-
rupt handler in the secure space. Our design can foil this
attack because the interrupt handler is not executable as
soon as the CPU switches to the secure space. Never-
theless, this might cause the virtual CPU to halt because
of the non-executable interrupt handler. The attack can
also be launched with the return-oriented programming
(ROP). Normally, as soon as the CPU enters the secure
space, the kernel code becomes non-executable and the
ROP program cannot continue. However, there is a sub-
tle case in which the ROP program switches to gadgets
in the secure space upon entering it. By doing so, the
program can continue running across the context switch
because the attacking stack is mapped in the secure space.
This attack overall is hard to use because the secure space
might not contain enough useful gadgets. It can also be
mitigated by applying existing ROP defenses to the secure
space, such as control flow integrity [1], code random-
ization [26], and systematic removal of gadgets [27].

Synthetic attack: to further validate the security of
SecPod, we create a synthetic kernel rootkit that hooks the
system call table to intercept system calls like sys_read
and sys_mkdir. Our experimental security tool can de-
tect the loading of the malicious rootkit because its hash
is not in the list of hashes of benign code pages. Even
without this tool, SecPod can detect the rootkit’s attempts
to modify the (read-only) system call table – the rootkit
calls a kernel function to make the syscall table writable.
This request is forwarded to the secure space and subse-
quently denied because the secure space does not allow
the syscall table to be changed.

5.2 Performance Evaluation
To evaluate the performance of SecPod, we experimented
with micro-benchmarks and system benchmarks. The
former measures SecPod’s impact to fine-grained oper-
ations (e.g., system calls), and the latter measures the
overall system performance under SecPod. All the ex-
periments were repeated 10 times and the average results

are reported here. The deviation of these experiments is
negligible. We compare the performance of SecPod with
that of an unmodified VM backed by the nested paging
(the baseline). SecPod’s VM is also backed by the nested
paging. However, its paging operations are expected to be
less efficient than the baseline because they are delegated
to the secure space. Even though we did not compare
the performance of SecPod to that of the VMs backed by
shadow paging, previous benchmarks demonstrate that
Intel EPT provides substantial performance gains over
shadow paging for most tested benchmarks. For exam-
ple, Intel EPT can achieve an acceleration of up to 48%
for MMU-intensive benchmarks [42].

5.2.1 Micro-benchmarks

Figure 7 shows the performance overhead of SecPod for
LMBench, a set of benchmarks to measure the system call
performance. Our prototype incurs less than 5% overhead
for most of the system calls LMBench tests, such as open,
close, signal_install, and stat. These system calls
do not contain operations that require services from the
secure space. Consequently, the impact of SecPod over
these system calls is minimal. The performance degrade
is probably caused by normal task switches (of other pro-
cesses) during the tests. On the other hand, system calls
that involve page table operations suffer most. Particu-
larly, fork has the highest overhead (52.8%), followed by
execve, mmap, file creation, and context switch
(all at around 17%). Most of these system calls involve
heavy page table operations. For example, the fork sys-
tem call creates a child process that duplicates the parent
process’s address space (with copy-on-write) [36], and
each task switch in SecPod requires an extra loading of
the SecPod page table (Section 3.2.2). Our current pro-
totype does not yet support the batch-update of the page
table, an optimization that could help reduce the over-
head of these cases, especially for the fork system call.
On average, SecPod introduces about 10% performance
overhead for LMBench.
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5.2.2 Application Benchmarks

To measure SecPod’s impact on the overall system
performance, we experimented with two benchmarks,
ApacheBench and SysBench. ApacheBench is a program
to measure how fast the system can process web traffic.
In this experiment, we run the Apache server (2.2.22) in
the VM, and ApacheBench on another physical machine
with a similar hardware configuration. Figure 8 shows the
throughput of the Apache server with regard to different
file sizes (from 128 bytes to 256KB). Each file was gen-
erated by collecting random data from the /dev/random
device. For file sizes up to 16KB, the overhead of SecPod
is less than 9% and increases to about 16% for 128KB
files and 11% for 256KB files. When the file size in-
creases, the kernel needs to update the page table more
frequently to accommodate frequent file accesses, leading
to a relatively high performance overhead. The average
performance overhead for ApacheBench is about 9%.

SysBench is a suite of multi-threaded benchmarks to
evaluate the performance of a database system under in-
tensive workloads. We use SysBench to measure Sec-
Pod’s impacts on the file I/O and the MySQL processing.
Both experiments are repeated with many different num-
bers of threads. In the file I/O experiment, we measure
the throughput using 128 files (1GB in total) and a block
size of 16KB. The results are shown in Figure 9. The
largest overhead is 3.25%. We also measure the MySQL
performance with SysBench’s online transaction process-
ing (OLTP) benchmark. Specifically, we build a MySQL
database with 1,000,000 entries and query the database
using various numbers of threads. The results are shown
in Figure 10. The performance loss is in the range of 2%
to 14% with an average of 5%. Interestingly, the perfor-
mance overhead reduces as the number of threads exceeds
32. This is probably because the performance loss caused
by the contention over shared resources outweighs that of
SecPod starting at that point. This is reflected in the de-
creasing numbers of transactions processed per second
when more than 32 threads are used.

6 Related Work

Virtualization-based Security: the first category of the
related work is a long stream of virtualization-based secu-
rity systems with diverse focuses, such as malware anal-
ysis [13], virtual honeypot [21], kernel rootkit detection
and prevention [27, 32] etc. In particular, virtualization
has been applied often in the context of virtual machine
introspection. Livewire pioneers the concept of “out-of-
VM” introspection to understand the in-VM states and
activities by parsing the raw VM resources [17]. Seman-
tic gap is one of the main challenges for VMI systems
because VMI aims at semantically inferring the in-VM
activities and states from the raw VM data (e.g., mem-
ory, disk). A number of recent systems try to address this
challenge from different perspectives [14, 16, 22, 35]. For
example, Virtuoso [14] can effectively automate the pro-
cess of building introspection-based security tools. SIM
is the most closely related system. It firstly leverages the
CR3 target-list to effectively and efficiently turn out-of-
VM monitoring in-VM. SIM is a monitoring framework
while SecPod targets at supporting generic virtualization-
based systems. Particularly, SecPod creates a trusted
execution environment for the security tool by combin-
ing two key techniques, paging delegation and execution
trapping. In addition, SecPod uses the CR3 target-list
differently to support the nested paging (Section 3.2.2).
VMI systems can be integrated with and benefit from
SecPod’s code integrity guarantee and fine-grained page
table monitoring.

Virtualization is also a popular choice of platforms to
enhance the kernel or application security [6, 28, 31, 38,
45]. For example, Overshadow is designed to protect
the secrecy of the user data even if the kernel is com-
pletely compromised [6]. Patagonix protects the kernel
code integrity through virtualization-based code identi-
fication [28]. HookSafe addresses the protection granu-
larity problem through systematic hook redirection [45].
Most of these systems require a reliable kernel code in-
tegrity. Otherwise, an attacker could subvert their pro-
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tection by injecting malicious code. SecPod is an ideal
platform for these systems. Security tools in SecPod
are strictly isolated from the vulnerable kernel, but still
have the visibility of an in-kernel tool. As a proof-of-
concept, we implemented a security tool based on Sec-
Pod to prevent the unauthorized code from executing in
the kernel. This provides a security guarantee similar to
Patagonix [28] and NICKLE [31] (Section 4.2).

Virtualization-based systems, including SecPod, as-
sume that the hypervisor is trusted due to its smaller
code base and attack surface. However, the bloated code
base of modern hypervisors and recent attacks put this
assumption into question. There have been a series of
recent efforts in protecting the hypervisor integrity, via
formal verification [25, 30], security enhancements [44],
and size reduction and disaggregation [7, 29, 40]. These
systems can be naturally integrated with SecPod to pro-
vide a strong foundation of security.
Kernel/User Application Security: the second category
of related work includes a large number of research ef-
forts in the kernel and user application security. Address
space layout randomization (ASLR) [18] and data ex-
ecution prevention (DEP) [12] are two popular exploit
mitigation mechanisms in modern kernels. These kernel-
level protection schemes suffer from the pitfall that the
page table is not protected from exploits. SecPod reliably
enforces DEP for the kernel. ASLR and DEP could be by-
passed mainly by return-oriented-programming (ROP).
Control flow integrity is an effective defense against most
control flow attacks, including ROP, by mandating that
run-time control flow must follow the program’s control
flow graph [1, 49, 50]. Recent efforts in CFI has signif-
icantly improved its performance and compatibility with
commercial off-the-shelf applications. DEP is a prereq-
uisite of CFI. Most of the previous CFI systems target
user applications. They rely on the kernel to provide the
necessary memory protection of the code and read-only
data. Recent efforts to adapt CFI to the kernel turn to
virtualization for essential supports [8]. For example,
KCoFI [8] leverages the Secure Virtual Architecture [9]
to interpose the software and hardware interactions. All
software, including the kernel, is compiled to the virtual
instruction set of SVA. Kernel CFI can also be support
by SecPod as it provides both strong isolation and reli-
able memory protection for security tools. There is also
a series of prior efforts in implementing software fault
isolation (SFI) [15, 43, 48]. SFI aims at confining un-
trusted code in a host application. For example, Native
Client [48] uses two layers of sandboxes to safely run un-
trusted native plugins in a web browser. SFI technologies
have been utilized to isolate untrusted device drivers in
the kernel [15, 38, 39].

TZ-RKP [2], HyperSafe [44], and nested kernel [11]
are three closely related systems. TZ-RKP leverages the

ARM TrustZone to protect the kernel running in the nor-
mal world. Specifically, it instruments the kernel to pre-
vent it from executing certain privileged instructions or
updating page tables. These operations instead must be
handled by the secure world. Recently, Intel introduced a
security enclave called Software Guard Extension (SGX).
However, the instrumentation-based instruction access
control of TZ-RKP is not directly applicable to the x86
architecture because x86 has variable instruction lengths
and thus unintended privileged instructions can be cre-
ated out of the existing ones [34]. This problem can be
solved by adopting the techniques of NaCl [48]. Hyper-
Safe write-protects the hypervisor page table and uses
the x86 write-protect (WP) bit to allow benign page table
updates. It further enforces the control flow integrity [1]
to prevent that from being bypassed. Nested kernel simi-
larly protects page tables for the OS kernel, but enforces
the kernel code integrity and removes unintended priv-
ileged instructions from the kernel code (instead of en-
forcing CFI). SecPod also controls the guest page table
updates though paging delegation, but its design revolves
around the goal to provide security tools with an extensi-
ble framework that is not only compatible with the recent
virtualization hardware, but also allows them to intercept
key events in the guest kernel. For example, the sepa-
ration of the normal and secure spaces isolates security
tools from the untrusted kernel and simultaneously en-
ables an easy access to the kernel data.

7 Summary

We have presented the design, implementation, and
evaluation of SecPod, an extensible framework for
virtualization-based security systems. SecPod provides
a trusted execution environment for security tools. They
are not only strictly isolated from the vulnerable kernel,
but also have full visibility into it. Particularly, any up-
dates to the guest’s page tables can be intercepted and
regulated by these tools, allowing the fine-grained con-
trol over the guest kernel’s memory protection. By using
the in-VM shadow paging, SecPod is fully compatible
with the recent advances in the hardware virtualization
support, particularly the nested paging.
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Abstract
Threads in a multithreaded process share the same ad-

dress space and thus are implicitly assumed to be mutu-
ally trusted. However, one (compromised) thread attack-
ing another is a real world threat. It remains challenging
to achieve privilege separation for multithreaded applica-
tions so that the compromise or malfunction of one thread
does not lead to data contamination or data leakage of
other threads.

The Arbiter system proposed in this paper explores
the solution space. In particular, we find that page table
protection bits can be leveraged to do efficient reference
monitoring if data objects with the same accessibility stay
in the same page. We design and implement Arbiter
which consists of a new memory allocation mechanism, a
policy manager, and a set of APIs. Programmers specify
security policy through annotating the source code. We
apply Arbiter to three applications, an in-memory key/-
value store, a web server, and a userspace file system,
and show how they can benefit from Arbiter in terms of
security. Our experiments on the three applications show
that Arbiter reduces application throughput by less than
10% and increases CPU utilization by 1.37-1.55×.

1 Introduction
While multithreaded programming brings clear advan-

tages over multiprocessed programming, the classic mul-
tithreaded programming model has an inherent security
limitation, that is, it implicitly assumes that all the threads
inside a process are mutually trusted. This is reflected by
the fact that all the threads run in the same address space
and thus share the same privilege to access resources, es-
pecially data.

However, one thread attacking another thread of the
same application process is a real world threat. Here are
a few examples: (1) For the multithreaded in-memory
key/value store Memcached [9], it has been shown that
many large public websites had left it open to arbitrary
access from Internet [2], making it possible to connect to
(a worker thread of) such a server, dump and overwrite
cache data belonging to other threads [7]. In addition,
vulnerabilities [11, 10] could be exploited by an adver-
sary (e.g., buffer overflow attack via CVE-2009-2415) so
that the compromised worker thread can arbitrarily ac-
cess data privately owned by other threads. (2) For the
multithreaded web server Cherokee [3], an attacker could

1work was done while this author was at Pennsylvania State Univer-
sity.

exploit certain vulnerabilities (e.g., format string CVE-
2004-1097) to inject shellcode and thus access the private
data of another connection served by a different thread.
Meanwhile, logic bugs (e.g., Heartbleed [8]) might ex-
ist so that an attacker can fool a thread to steal private
data belonging to other threads. (3) For the multithreaded
userspace file system FUSE [6], logic flaws or vulner-
abilities might also allow one user to read a buffer that
contains private data of another user, which violates the
access control policy. This is especially critical for en-
crypted file systems built upon FUSE (e.g., EncFS [5]),
wherein data can be stored as cleartext in memory and a
malicious user could enjoy a much easier and more ele-
gant way to crack encrypted files than brute force.

A common characteristic of the above applications is
that they may concurrently serve different users or clients,
which represent distinct principals that usually do not
fully trust each other. This characteristic directly con-
tradicts the “threads-are-mutually-trusted” assumption.
Therefore, a fundamental multithreaded application secu-
rity problem arises, that is, how to retrofit the classic mul-
tithreaded programming model so that the “threads-are-
mutually-trusted” assumption can be properly relaxed?
In other words, could different principal threads have dif-
ferent privileges to access shared data objects so that the
compromise or malfunction of one thread does not lead
to data contamination or data leakage of another thread?

1.1 Prior Work and Our Motivation
From a programmer’s point of view, we identify two

kinds of privilege separation problems. The first prob-
lem is to split a monolithic application into least-privilege
compartments. For example, an SSH server only requires
root privilege for its monitor (listening to a port and per-
forming authentication), rather than the slave (process-
ing user commands). Since the two parts are usually
closely coupled, developers in the old days simply put
the two into one program. Due to the emergence of buffer
overflow and other relevant attacks against the root privi-
leged part, however, this monolithic program design is no
longer appropriate. Separation of the two parts into dif-
ferent privileged processes with IPC mechanisms in be-
tween (e.g., via pipes) becomes a more appropriate ap-
proach. Actually, OpenSSH has already adopted this ap-
proach.

The second problem is to do fine-grained privilege sep-
aration in multithreaded applications. As introduced ear-
lier, threads in a multithreaded program were implicitly
assumed to be mutually trusted. However, the evolving
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of multithreaded applications tends to break this assump-
tion by concurrently serving different principals. Usually
the principals do not fully trust one another.

The first problem has been studied for many years
[29, 27, 19, 15, 14]. Provos et al. [27] pioneered the
methodology and design of privilege separation. Priv-
trans [15] can automatically partition a program into a
privileged monitor and an unprivileged slave. Wedge [14]
combines privilege separation with capabilities to do
finer-grained partitioning. For the second one, however,
there are no systematic research investigations that we are
aware of.

This paper focuses on the second privilege separation
problem. Our goal is to apply least privilege principle on
(shared) data objects so that a data object can be read-
writable, read-only, or inaccessible to different threads at
the same time and, more importantly, to require minimum
retrofitting effort from programmers. First of all, let’s
look at existing mechanisms to see whether they can be
applied to solve this problem.

1) Process isolation. Process isolation is the essen-
tial idea behind existing approaches to the first privilege
separation problem. OpenSSH [27] and Privtrans [15]
leverage process address space isolation while using IPC
to make the privileged part and the unprivileged part
work together. However, neither of them handles data
object granularity. In addition, when there are many
principal threads, IPC might become very inefficient.
Wedge [14] advances process isolation with new ideas.
It creates compartments with default-deny semantics and
maps shared data objects into appropriate compartments.
However, Wedge is proposed to address the first privilege
separation problem, which has very different nature from
the problem we consider, as shown in Table 1. Due to
these differences, Wedge’s all-or-nothing privilege model
with default-deny semantic is not very applicable to a
multithreaded program, wherein threads by default share
lots of resources. To apply Wedge on our problem, one
still needs to address the challenges considered in this pa-
per.

Manually retrofitting a multithreaded program to use
multiple processes is possible. However, commodity
shared memory mechanisms, such as shm open and
mmap, do not allow one thread to specify the access right
of another thread on the shared memory. Alternatively,
designing a sophisticated one-on-one message passing
scheme (e.g., using Unix socket) can enforce more con-
trol on data. However, the programming difficulty and
complexity (e.g., process synchronization, policy han-
dling and checking) could be much higher and thus re-
quires lots of retrofitting effort from programmers.

Another notable idea is to redesign an application from
scratch using a multi-process architecture, as what is
done in Chrome [4]. However, one of our quick survey

1st PS Problem (OpenSSH [27],
Privtrans [15], Wedge [14], etc.)

2nd PS Problem (Arbiter)

Sequential invocation of compartments
with different privileges

Concurrent execution

Only privileged process/thread can
access sensitive data

Data shared among different
(unprivileged) principal threads

Static capability policy Dynamic (label) policy

Table 1: Different assumptions of 1st and 2nd privilege separa-
tion (PS) problem

reveals that over 80% of existing web servers are multi-
threaded. It is impractical to redesign all those applica-
tions that are already multithreaded.

2) Software fault isolation. Address space isolation
puts each process into a protection domain, but does not
do finer-grained isolation inside an address space. Soft-
ware fault isolation [30, 17] did an innovative work on
making a segment of address space as a protection do-
main by using software approaches like a compiler. Nev-
ertheless, it is difficult for SFI to map program data ob-
jects (e.g., array) into a protection domain: address-based
confinement and static instrumentation cannot easily deal
with dynamically allocated data. LXFI [24] instruments
kmalloc so that the principal and address information of
dynamic kernel data objects are made aware to the ref-
erence monitor. However, this is done only to kernel
modules and kernel data. In addition, LXFI focuses on
integrity and does not check memory reads due to per-
formance reasons. However, our goal is to prevent both
unauthorized reads and writes. Therefore, we need to
catch invalid reads as well.

3) Other related mechanisms. We investigate four
additional types of related mechanisms to see whether
they can handle our problem. (a) OS abstraction level ac-
cess control has been extensively studied (e.g., SELinux
[23], AppArmor [1], Capsicum [31]). However, these
mechanisms treat a process/thread as an atomic unit and
do not deal with data objects “inside” a process. So a
granularity gap exists between these techniques and our
goal. (b) HiStar [33] is a from-scratch OS design of
decentralized information flow control (DIFC). Perhaps
HiStar can meet our goal of privilege separation on data
objects. However, HiStar does not apply to commod-
ity systems. Besides, to use HiStar to achieve our goal,
there still needs to be a major change in the program-
ming paradigm. Flume [20] implements DIFC in Linux.
However, it focuses on OS-level abstractions such as pro-
cesses, files, and sockets and thus does not address the
privilege separation problem at data object granularity
within a multithreaded program. It can be complemen-
tary to the approach proposed in this paper. (c) With
the tagged memory in Loki [34] or the permission ta-
ble lookup mechanism in MMP [32], as new features to
the CPU, access to each individual memory word can be
checked. Both methods can enforce privilege separation
policy on data objects. However, they require architec-
tural changes to commodity CPUs. (d) Language-based
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solutions, such as Jif [26], Joe-E [25], and Aeolus [16]
can realize information flow control and least privilege
at the granularity of program data object. However, they
need to rely on type-safe languages like Java. As a re-
sult, programmers have to rewrite legacy applications not
originally developed in a type-safe language.
1.2 Challenges and Our Approach

We would like to solve this problem in a new way
based on this insight: we find that page table protection
bits can be leveraged to do efficient reference monitor-
ing, if the privilege separation policy can be mapped to
those protection bits. We find that this mapping is pos-
sible through a few new kernel primitives and a tailored
memory management library. However, doing so still in-
troduces three major challenges:
• Mapping Challenge (C1) In the current multithreaded

programming paradigm, all the threads in the same
process share one set of page tables. This convention,
however, would disable the needed mapping from priv-
ilege separation policy to protection bits.

• Allocation Challenge (C2) To make the protection
bits work, data objects that demand distinct privileges
cannot be simply allocated onto the same page because
this will result in the same access rights. Existing
memory management algorithms have difficulty meet-
ing such a requirement because they were not designed
to enforce privilege separation.

• Retrofitting Challenge (C3) It is challenging to mini-
mize programmers’ retrofitting effort to communicate
complex privilege separation policies with the under-
lying system without modifying the source code dras-
tically.
We present Arbiter to address the above challenges.

To address the mapping challenge (C1), we associate
a separate page table to each thread and create a new
memory segment named Arbiter Secure Memory Seg-
ment (ASMS) for all threads. ASMS maps the shared
data objects onto the same set of physical pages and set
the page table permission bits according to the privilege
separation policy. To deal with the allocation challenge
(C2), we design a new memory allocation mechanism to
achieve privilege separation at data-object granularity on
ASMS. To resolve the retrofitting challenge (C3), we pro-
vide a label-based security model and a set of APIs for
programmers to make source-level annotations to express
privilege separation policy. We design and implement Ar-
biter based on Linux, including a new memory allocation
mechanism, a policy manager, and a set of kernel primi-
tives.

We port three types of multithreaded applications to
Arbiter, i.e., an in-memory key/value store (Memcached),
a web server (Cherokee), and a userspace file system
(FUSE), and show how they can benefit from Arbiter
in terms of security. Our own experiences indicate that

porting programs to Arbiter is a smooth procedure. The
changes to the program source code is 0.5% LOC on aver-
age. Regarding performance, our experiments show that
the runtime throughput reduction is below 10% and CPU
utilization increase is 1.37-1.55×.

2 Overview
2.1 Motivating Examples

Programmers have both intended privilege separation
and intended sharing of data objects when writing mul-
tithreaded programs. We classify these intentions into
three categories.
• Category 1: A data object is intended to be exclu-

sively accessed by its creator thread.
Figure 1(a) shows the request processing code snip-

pet from Cherokee. The data object buf is allocated
by a worker thread and then used to store the incoming
packet. Therefore, this data object belongs to that partic-
ular worker thread and other worker threads are not sup-
posed to access it.
• Category 2: A data object is intended to be accessed

by a subset of threads.
Figure 1(b) and 1(c) show the connection handling

code snippets from Memcached. The main thread re-
ceives a network request, allocates a data object item to
store the connection information, selects a worker thread
and then pushes the item into the thread’s connection
queue. The worker thread wakes up, dequeues the con-
nection information and handles the request. Ideally, the
data object item is only intended to be accessed by the
main thread and the particular worker thread, excluding
any other worker thread.
• Category 3: A data object is intended to be shared

among all the threads.
This data sharing intention is commonly seen, es-
pecially on metadata. For instance, the struct

cherokee server and the struct fuse store the
global configurations of Cherokee and FUSE, respec-
tively, and are intended to be accessible to all the threads.

Overall, Category 1 and 2 are two very representative
privilege separation intentions. Unfortunately, there is ac-
tually no such enforcement in real world execution en-
vironments. Only the intention in Category 3 has been
taken care. We propose Arbiter, a general purpose mech-
anism so that every category is respected.

2.2 Threat Model
We consider two types of threats. First, some threads

could get compromised by malicious requests (e.g.,
buffer overflow attacks, shellcode injection, return-to-libc
attacks, ROP attacks). Second, application has certain
logic bugs (a.k.a. logic vulnerabilities [18] or logic flaws
[22]). For example, the logic bug exploited by Heart-
Bleed [8] can potentially lead to a buffer overread attack,
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process_active_connections(cherokee_thread_t *thd) {
...
buf = (char *) malloc (size);
...

 len = recv (SOCKET_FD(socket), buf, buf_size, 0);
...

}

(a) Cherokee-1.2.2

void dispatch_conn_new(...) {
...
CQ_ITEM *item = malloc(sizeof(CQ_ITEM));
...
cq_push(thread->new_conn_queue, item);
...

}

(b) Memcached-1.4.13 Main thread

static void *worker_libevent(...) {
...
item = cq_pop(me->new_conn_queue);
...

}

(c) Memcached-1.4.13 Worker thread
Figure 1: Motivating examples

which allows an attacker to steal sensitive information of
other users from a web server. In reality, both threats can
lead to data leakage and data contamination of a victim
thread, which usually result in the compromise of end
user’s data secrecy and integrity. Besides, we assume
that the application is already properly confined by well-
defined OS level access control policies (e.g., which files
the application can access) using SELinux, AppArmor,
etc. We also assume that the kernel is inside TCB. The
fact that the kernel could be compromised is orthogonal
to the problem we aim to solve.

2.3 Problem Statement
How to deal with the two types of threats through a

generic data object-level privilege separation mechanism
so that all of the three categories of how a data object is
intended to be accessed by threads can get respected?

2.4 System Architecture
Figure 2 shows the architecture of our system. In Ar-

biter, threads are created in a new way, resulting in what
we call Arbiter threads. Arbiter threads resemble tradi-
tional threads in almost every aspect such as shared code
segment (.text), data segment (.data,.bss), and open
files, but they have a new dynamically allocated memory
segment ASMS. To give threads different permissions to
access the same data object, we maintain a separate page
table for each thread and maps the shared data objects
on ASMS to the same set of physical pages. To set the
needed permissions, protection bits inside each page ta-
ble will be set up according to the privilege separation
policy. In kernel, these are realized by the ASMS Man-
agement component, including system call code plus a
set of kernel functions, and the corresponding additions
to the page fault handling routine. Due to ASMS, two ob-
jects with different accessibility will be allocated on two
different pages. By accessibility, we mean which threads
can access an object in what way. However, many pages

Security Manager
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User Space
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ASMS  Management

Page Fault Handler

Arbiter API

Arbiter
Thread 1

Arbiter
Thread K

ASMS Library
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Figure 2: System architecture. Shaded parts indicate Arbiter’s
trusted computing base (TCB).

Main Thread Thread A Thread B
A’s Data buf – RW –
B’s Data buf – – RW

Shared Data item RW R R

Table 2: Accessibility generated from Figure 1

could end up with being half empty by doing so. Our
solution is to leverage homogeneity, that is, objects with
the same accessibility are put into the same page. Such
memory allocation is achieved by the ASMS Library.

There are three things a thread needs to go through Ar-
biter: (1) memory allocation and deallocation, (2) thread
creation, and (3) policy configuration. For security pur-
pose, Arbiter threads delegate these operations to the Se-
curity Manager running in a different address space via
remote procedure calls (RPC).

To specify security policy, programmers will need to
make annotations to the source code via the Arbiter API
according to our label-based security model. The Secu-
rity Manager will figure out the permissions at runtime
and the page table protection bits will be set up properly
before the corresponding data object is accessed by an
Arbiter thread.

3 Design
3.1 Accessibility

In our system, accessibility means which threads can
access an object in what way. Conceptually, we need
to map the aforementioned three categories of intentions
onto accessibility before we can enforce fine-grained
privilege separation.

Table 2 shows a formally defined accessibility gener-
ated from the motivating examples in Figure 1. Accessi-
bility is defined in terms of a set of threads. Given a set
of threads {th1, · · · , thk}, the accessibility of data object
x is defined as a vector of k elements. For example, the
accessibility vector of A’s data buf is < /0,RW, /0 >. Two
data objects have the same accessibility if and only if they
have the same vector in term of all of the k threads.

3.2 Design Goal
At a high level, our goal is that through Arbiter the

accessibility originated from the privilege separation in-
tentions can be enforced. This goal boils down to the fol-
lowing three design requirements. (1) From a system’s
perspective, separate page tables are required in order to
enforce accessibility vectors and a synchronized virtual-
to-physical mapping is required to make such separation
transparent to the threads. (2) From a program’s perspec-
tive, a smart memory allocation strategy is required in
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order to bridge the granularity gap between page-level
protection and individual data objects and do it in an effi-
cient way, for which we propose the idea of “same acces-
sibility, same page”. These two requirements lead to the
kernel-level and user-level design of ASMS (§3.3). (3)
From a programmer’s perspective, it is important to cor-
rectly code accessibility in the program without changing
the program drastically. We create a label-based security
model and a set of APIs for this purpose (§3.4). In ad-
dition, how Arbiter converts accessibility into protection
bits is introduced in §3.5. §3.6 discusses the thread cre-
ation and context switch issues incurred by our design.

3.3 ASMS Mechanism
Kernel Memory Region Management. To grant

threads with different permissions to the shared memory,
our initial thought was to leverage the file system access
control mechanism user/group/others to mmap files
with allowed open modes so as to realize different ac-
cess rights. Since this method has to assign a unique
UID for each principal thread, however, it would mess
up the original file access permission configurations. In
addition, mmap cannot automatically do memory alloca-
tion and configuration for multiple sets of page tables in
a single invocation.

We design a new memory abstraction called Arbiter
Secure Memory Segment (ASMS) to achieve efficient
privilege separation. ASMS is a special memory segment
compared to other segments like code, data, stack, heap,
etc. The difference is that when creating or destroying
ASMS memory regions for a calling thread, the operation
will also be propagated to all the other Arbiter threads.
In other words, ASMS has a synchronized virtual-to-
physical memory mapping for all the Arbiter threads, yet
the access permissions (page protection bits Present and
Read/Write) could be different. Furthermore, only the
Security Manager has the privilege of controlling ASMS.
Arbiter threads, in contrast, cannot directly allocate/deal-
locate memory on ASMS. Neither can they modify their
access rights of ASMS data objects on their own.

User-level Memory Management Library. A gran-
ularity gap exists between page-level protection (enabled
by the per-page protection bits) and individual program
data objects. Data objects demanding distinct accessibil-
ity can no longer be allocated on the same page. To this
end, existing memory allocation algorithms (e.g., dlmal-
loc [21]) cannot directly work for ASMS. An intuitive
solution is to allocate one page per data object. However,
this is not preferable mainly because a huge amount of
memory will be wasted if the sizes of data objects are
much smaller than the page size.

We design a special memory allocation mechanism for
ASMS: permission-oriented allocation. The key idea is
to put data objects with identical accessibility onto the
same page, or “same accessibility, same page”. When we
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Figure 3: A typical memory layout of ASMS. L1/L2/L3 indi-
cate different accessibility.

allocate memory for a new data object x with accessibil-
ity vector v, we search for a page containing data objects
with the same vector v and put x into that page. If that
page is full, we search for another candidate page. If all
candidate pages are full, we allocate a new page and put x
into it. In practice, we allocate from the system one mem-
ory block instead of one page per time so as to save the
number of system calls. Here a memory block means a
contiguous memory area containing multiple pages. Fig-
ure 3 demonstrates this idea (further details in §4.1). In
this way, both memory waste and performance overhead
can be reduced.

3.4 Label-based Security Model
To accommodate programmers’ privilege separation

intentions, we need a security model for specifying and
enforcing accessibility vectors. Our initial attempt was to
load the entire accessibility table into the Security Man-
ager as an access control list (ACL) so that it can check
and determine each thread’s permission for a data object.
However, to regulate each thread’s capability of making
allocation requests (e.g., thread A is not allowed to allo-
cate objects that are accessible by everyone) and to deal
with dynamic policies (e.g., thread A first grants thread
B permission and later on revokes it), ACL is insufficient
and further mechanisms must be employed. It is desirable
to have a unified and flexible security model.

To achieve unification and flexibility, we develop a
label-based security model wherein threads and data ob-
jects are associated with labels so that data access per-
missions and allocation capabilities can be dynamically
derived and enforced. Essentially, it is a special form
of “encoding” of the accessibility table. The basic no-
tions and rules follow existing dynamic information flow
(DIFC) models [33, 28] with a few adaptations. It should
be noted that Arbiter itself is not a DIFC system (see §7
for more discussion).

We use labels to describe the security properties of
principal threads and data objects. A label L is a set that
consists of secrecy categories and/or integrity categories.
For a data object, secrecy categories and integrity cate-
gories help to protect its secrecy and integrity, respec-
tively. For a thread, the possession of a secrecy category
(∗r, where ∗ represents the name of a category) denotes
its read permission to data objects protected by that cat-
egory; likewise, an integrity category (∗w) grants a thread
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the corresponding write permission. Meanwhile, we use
the notion ownership O to mark a thread’s privilege to by-
pass security checks on specific categories. A thread that
creates a category also owns that category (i.e., has the
ownership). Different from threads, data objects do not
have ownership.

We define the rules that govern threads’ permissions
and activities as follows:

RULE 1 – Data Flow: We use LA � LB, to denote that
data can flow from A to B (A and B represent threads or
data objects). This means: 1) every secrecy category in
A is present in B; and 2) every integrity category in B is
present in A. If the bypassing property of ownership is
considered, a thread T can read object A iff: LA −OT �
LT −OT , which can be written as: LA �OT LT . Similarly,
thread T can write object A iff: LT �OT LA.

RULE 2 – Thread Creation: Thread creation is an-
other way of data flow and privilege inheritance. There-
fore, a thread T is allowed to create a new thread with
label L and ownership O iff: LT �OT L,O ⊆ OT . The
new thread is not allowed to modify its own labels.

RULE 3 – Memory Allocation: Memory allocation
also implies that data flows from a thread to the allocated
memory. As the result, a thread T can get a memory ob-
ject allocated on ASMS with label L iff: LT �OT L.

Therefore, one could make the following label assign-
ment to realize the accessibility vectors in Table 2. For
instance, Thread A can read but not write the Shared Data
item because of Litem �OA LA and LA ��OA Litem. Nei-
ther can Thread A create a thread with the Main Thread’s
privilege (OA �⊆ OMain) nor allocate a forged data item
(LA ��OA Litem). As such, our model unifies permission
and capability.

Thread Main A B
label {} {mr} {mr}

ownership {mr,mw} {ar,aw} {br,bw}
Data A’s Data buf B’s Data buf Shared Data item

label {ar,aw} {br,bw} {mr,mw}

The labels are attached by a programmer to the cor-
responding threads or data objects through annotating the
source code via Arbiter API. Appendix A.1 presents a list
of Arbiter API.

3.5 Protection Bits Generation
The Security Manager is responsible for converting la-

bels to page table protection bits. The Security Manager
maintains a real-time registry containing label informa-
tion of every thread and every ASMS memory block. The
conversion happens in two occasions: memory allocation
and thread creation. First, whenever a thread wants to al-
locate memory with certain labels, the Security Manager
determines the permissions for every thread by checking
our label model, and then invokes our system calls to con-
struct and configure ASMS memory regions accordingly.
Second, when a new thread is created, the Security Man-
ager walks through every ASMS memory block, deter-

mines the allowed permissions, and initializes the ASMS
correspondingly.

Note that in Linux a page table entry is not established
until the data on that page is actually accessed. There-
fore, the page fault handler will eventually further con-
vert the permissions stored in the flags of ASMS memory
regions into page table protection bits (further details in
§4.2). As the result, before a data object is accessed by
any thread, the page table protection bits would have been
set up properly.
3.6 Thread Creation and Context Switch

We identify two options to create an Arbiter thread.
Option 1: Conceptually, one can create a new address
space for every new Arbiter thread, reconfigure ASMS
permissions, and disable copy-on-write for all the other
memory segments to retain memory sharing. In this case,
although the context switch between two Arbiter threads
will lead to TLB flush (which is just like the context
switch between two processes), it can be automatically
done by existing kernel procedure and requires no further
code modification.

Option 2: A possible optimization is to create a new set
of page table only for ASMS when creating a new Arbiter
thread. Thus only part of the TLB needs to be flushed dur-
ing context switch between two Arbiter threads. While
this can potentially reduce the TLB-miss rate, it would re-
quire lots of modifications to the kernel, especially on the
context switch procedure to determine the type of con-
text switch, reload the page table for ASMS, and flush
the TLB partially.

In sum, there is a trade-off between “TLB-miss over-
head” and “how much code modification is needed”.
Both options have pros and cons. We take the first option
and our evaluation shows that the performance overhead
is already acceptable.
4 Implementation

We implement Arbiter based on Linux. This section
highlights a few implementation details.
4.1 ASMS Mechanism

Kernel Memory Region Management. To properly
create or destroy ASMS memory regions in the kernel
so as to enlarge or shrink ASMS, we implement a set of
kernel functions similar to their Linux equivalents such
as do mmap and do munmap. The difference is that when
creating or destroying ASMS memory regions for a call-
ing thread, the operation will also be propagated to all the
other Arbiter threads. How to configure the protection
bits is determined by the arguments passed in from our
special system calls (by the Security Manager), including
absys sbrk, absys mmap, and absys mprotect. They
all have similar semantics to their Linux equivalents, but
with additional arguments to denote the permissions.

We add a special flag AB VMA to the vm flags field
of the memory region descriptor (i.e., vm area struct),
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which differentiates ASMS from other memory seg-
ments. The page fault handler also relies on this flag
to identify ASMS page faults. To make sure that only
the Security Manager can do allocation, deallocation, and
protection modification on ASMS memory regions, we
modify related system calls, such as mmap and mprotect,
to prevent them from manipulating ASMS.

User-level Memory Allocation Library. Built on top
of our special ASMS system calls is our user-level mem-
ory allocation library Memory blocks are sequentially al-
located from the start of ASMS. Some data objects might
have larger size and cannot fit in a regular block. In this
case, large blocks will be allocated backward starting at
the end of ASMS. The pattern of this memory layout is
shown in the top half of Figure 3. Inside each block, we
take advantage of the dlmalloc algorithm [21] to allocate
memory chunks for each data object. The bottom half of
Figure 3 depicts the memory chunks on pages inside a
block. Further details on our allocation/deallocation al-
gorithms can be found in Appendix A.2.

4.2 Page Fault Handling
A page fault on ASMS typically leads to two possible

results: ASMS demand paging and segmentation fault.
ASMS demand paging happens when a Arbiter thread
legally accesses an ASMS page for the first time. In this
case, the page fault handler should find the shared phys-
ical page frame and create and configure the correspond-
ing page table entry for the Arbiter thread. The protec-
tion bits of the page table entry are determined accord-
ing to the associated memory region descriptor. In this
way, subsequent accesses to this page will be automati-
cally checked by MMU and trapped if illegal. This hard-
ware enforced security check significantly contributes to
the runtime performance of Arbiter. An illegal access to
an ASMS page will result in a SIGSEGV signal sent to
the faulting thread. We implement a kernel procedure
do ab page as a subprocedure to the default page fault
handler to realize the above idea.

4.3 Miscellaneous
Application Startup. In Arbiter, an application is al-

ways started by a Security Manager. A Security Manager
first executes and initializes the needed data structures,
such as the label registry. Then, it registers its identity
to the kernel so as to get privileges of performing subse-
quent operations on ASMS. We implement a system call
ab register for this purpose. Next, the Security Man-
ager starts the application using fork and exec, and then
blocks until a request coming from the Arbiter threads.
The application process can create child thread by call-
ing ab pthread create, which is implemented based
on the system call clone. The label and ownership of the
new thread, if not specified, default to its parent’s.

RPC. A reliable RPC connection between Arbiter
threads and the Security Manager is quite critical in our

system. We implement the RPC based on Unix socket. A
major advantage of Unix socket for us is about security:
it allows a receiver to get the sender’s Unix credentials
(e.g., PID), from which the Security Manager is able to
verify the identity of the sender. This is especially impor-
tant in situations where the sender thread is compromised
and manipulated by the attacker to send illegal requests
or forged information on behalf of an innocent thread.

Authentication and Authorization. The Security
Manager needs to perform two actions before processing
an RPC: authentication and authorization. Authentica-
tion helps to make sure the caller is a valid Arbiter thread.
This is done by verifying the validity of its PID acquired
from the socket. Authorization ensures that the caller has
the needed privilege for the requested operation. For ex-
ample, RULE 2 must be satisfied for a thread creation
request, and RULE 3 must be satisfied for a memory al-
location request. If either of the two verifications fail, the
Security Manager simply returns the RPC with an indica-
tion of security violation.

Futex. Due to our implementation of thread creation,
a problem arises with the futexes (i.e., fast userspace mu-
tex) located on data segment (including both .data and
.bss). Multithreaded programs often utilize mutexes and
condition variables for mutual exclusion and synchro-
nization. In Pthreads, both of them are implemented us-
ing futex. Originally, kernel assigns the key (i.e., iden-
tifier) of each futex as either the address of mm struct

if the futex is on an anonymous page or the address
of inode if the futex is on a file backed page. In Ar-
biter, since data segment is anonymous mapping but the
mm struct’s of the Arbiter threads are different, kernel
will treat the same mutex or condition variable as dif-
ferent ones. Nonetheless, we can force programmers to
declare them on ASMS (which resembles file mapping)
that does not have this issue. However, we decide to re-
duce programmers’ effort by modifying the correspond-
ing kernel routine get futex key and set the key to a
same value (i.e., the address of mm struct of the Secu-
rity Manager). As such, the futex identification problem
is resolved.

5 Application
We explore Arbiter’s applicability through case studies

across various multithreaded applications. We find that
the inter-thread privilege separation problem are indeed
real-world security concerns. This section introduces our
case studies on three different applications: (1) Mem-
cached, (2) Cherokee, and (3) FUSE.

5.1 Memcached
Overview. Memcached [9] is an in-memory data ob-

ject caching system. It caches data objects from the re-
sults of database queries, API calls, or page renderings
into memory so that the average response time can be
largely reduced. There are mainly three types of threads
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in a Memcached process: main thread, worker thread,
and maintenance thread. Upon arrival of each client re-
quest, the main thread first does some preliminary pro-
cessing (e.g., packet unwrapping) and then dispatches a
worker thread to serve that request. Periodically, mainte-
nance threads wake up to maintain some important assets
like the hash table.

Security concern. We identify two potential security
concerns. (1) It is reported that a number of large pub-
lic websites had left Memcached open to arbitrary access
from the Internet [2]. This is probably due to the fact
that the default configuration of Memcached allows it to
accept requests from any IP address plus its authentica-
tion support SASL (Simple Authentication and Security
Layer) is by default disabled (as Memcached is designed
for speed, not security). It has been shown possible to
connect to such a server, extract a copy of cache, and
write data back to the cache [7]. (2) The vulnerabilities
in Memcached [11, 10] could be exploited by an adver-
sary (e.g., buffer overflow attack via CVE-2009-2415) so
that the compromised worker thread can arbitrarily access
data privately owned by other threads.

Retrofitting. We adapt Memcached to realize the ac-
cessibility shown in Table 2. In particular, we assume that
a Memcached server is used to serve two applications or
two users, A and B. Both A and B privately own their
cached data objects that are not supposed to be viewed
by the other. For the Shared Data, we make CQ ITEM

and a few other metadata read-writable to the main thread
but read-only to the worker threads. We slightly change
the original thread dispatching scheme so that requests
from different principals can be delivered to the associ-
ated worker threads. This modification does not affect
other features of Memcached.

5.2 Cherokee
Overview. Cherokee [3] is a multithreaded web server

designed for lightweight and high performance. Essen-
tially there is only one type of thread in Cherokee: worker
thread. Every worker thread repeats the same procedure,
that is, it first checks and accepts new connections, adds
the new connections to the per-thread connection list, and
then processes requests coming from these connections.
All the requests coming from the entire life cycle of a
connection will be handled by the same thread.

Security concern. (1) An attacker could exploit the
vulnerabilities of the Cherokee (e.g., format string vul-
nerability CVE-2004-1097) to inject shellcode and thus
access the data of another connection served by a differ-
ent thread. (2) Logic bugs might exist in the web server
so that an attacker can fool the thread to overread a buffer,
which may contain the data belonging to another connec-
tion/thread. A recent bug of this type is the Heartbleed
bug in OpenSSL [8].

Retrofitting. Our goal is to prevent the threads from

accessing each other’s private data without affecting the
normal functionality. Therefore, we make the buffers al-
located for individual connections only accessible by the
corresponding thread. Global data structures are made
accessible to all the threads, for example, the struct

cherokee server which stores the server global con-
figuration, listening sockets file descriptors, mutexes, etc.

5.3 FUSE
Overview. FUSE (Filesystem in Userspace) [6] is a

widely used framework for developing file systems in
user space. Common usages include archive file systems–
accessing files inside archives like tar and zip, database
file systems– storing files in a relational database or
allowing searching using SQL queries, encrypted file
systems– storing encrypted files on disk, and network file
systems– storing files on remote computers.

When a FUSE volume is mounted, all file system op-
erations against the mount point will be redirected to the
FUSE kernel module. The kernel module is registered
with a set of callback functions in a multithreaded user
space program, which implements the corresponding file
system operations. Each worker thread can individually
accept and handle kernel callback requests.

Security concern. (1) Logic flaws like careless bound-
ary checking might allow one user to overread a buffer
that contains private data of another user. The two users
could have very different file system permissions and thus
should not share the same set of files. This is especially
critical for encrypted file systems (e.g., EncFS [5]), since
the intermediate file data is in memory as cleartext. A
malicious user can enjoy a much easier and more elegant
way to steal data, compared with cracking the encrypted
file on disk by brute force. (2) Although the chance is
low due to the limited attack surface, we envision a type
of attack in which an attacker can compromise a particu-
lar thread and inject shellcode. Then the attacker will be
able to directly read the data of another user in memory.

Retrofitting. In general, we make the buffers allocated
inside process cmd() private to each thread. The global
data structure struct fuse is shared among all threads,
which contains information like callback function point-
ers, lookup table, metadata of the mount point, etc. In
addition, we change the thread dispatching scheme from
round robin to associating users with threads, which is
similar to what we do for Memcached.

5.4 Summary of Porting Effort
Porting these applications to Arbiter was a smooth ex-

perience. Actually, most of our time is spent on under-
standing the source code and data sharing semantics. Af-
ter that, we define accessibility and devise label assign-
ments accordingly. Finally, we modify the source code,
replacing related thread creation and memory allocation
functions with Arbiter API. Table 3 summarizes the total
LOC and the LOC added/changed for each application.
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Application Total LOC (approx.) LOC added/changed
Memcached-1.4.13 20k 100 (0.5%)

Cherokee-1.2.2 60k 188 (0.3%)
FUSE-2.3.0 8k 129 (1.6%)

Table 3: Summary of porting effort in the amount of source
code change

6 Evaluation
6.1 Protection Effectiveness

As stated in our threat model, we assume that the target
application is already properly confined by OS abstrac-
tion level access control mechanisms, such as SELinux
or AppArmor. To this end, our system can be consid-
ered complementary to these OS abstraction level mech-
anisms. Here our goal is not to evaluate whether our sys-
tem can achieve the OS abstraction level access control
(e.g., preventing a compromised thread from accessing a
confidential file). Instead, we want to see under the pro-
tection of Arbiter whether a compromised thread can still
contaminate or steal the data belonging to another thread.

We assume that an adversary has exploited a program
flaw or vulnerability in the three applications ported by us
and thus taken control of a worker thread. We simulate
various malicious attempts based on the security concerns
we presented earlier in §5.

Memcached. We simulate two types of attacks men-
tioned in §5.1. (1) We simulate an attacker connect-
ing to Memcached via telnet. For the vanilla Mem-
cached, the attacker can successfully extract or overwrite
any data using the corresponding keys. On the ported
Memcached (protected by Arbiter), our attempts to re-
trieve data belonging to a different user always fail. (2)
We then simulate the scenario presented in §5.1 to simu-
late a buffer overflow attack. We assume that B is an at-
tacker. To simplify simulation, we hard-code our “shell-
code” in the source code. Our “shellcode” try to over-
write CQ ITEM and read A’s data by traversing the slab-
list ((&slabclass[i])->slab list[j]). We find that
writing to CQ ITEM always fail and traversing the slablist
will fail whenever encountering a slab storing A’s data.

Note that in both (1) and (2), a failed attempt always
triggers a segmentation fault and thus program crash. In
practice, the signal handler can be used with Arbiter to
deal with such security violations in a more robust way
(e.g., sending no response back or dropping the connec-
tion). In our experiments, we simply omit this part.

Cherokee. (1) We first simulate the format
string attack. We add our “shellcode” to the
source code to get another thread’s data via the
header and buffer field of the connection struc-
ture (struct cherokee connection), which is ref-
erenced by the victim thread’s active connection list
(&thd->active list). We observe that both read and
write attempts fail without exception. (2) Then we
simulate the logic bug. Particularly, we craft a buffer

overread bug by substituting the buf size parameter in
the cherokee socket write() function with a number
from our input. When we use a small value for buf size,
the buffer overread does not fail in most cases because
the adjacent memory is also allocated with the same la-
bel. This is tolerable since the attacker only gets the data
of his own. When we input a value that is larger than the
size of a regular block (i.e., 40KB in our case), the attack
always fail. Again, in both (1) and (2), a failure always
leads to a segmentation fault in the web server.

FUSE. The simulation of FUSE is very similar to what
we do for Cherokee. Arbiter can successfully defeat both
(1) logic flaw exploits and (2) code injection attacks.

Counterattacks. We enumerate a few typical counter-
attacks that are intended to bypass the Arbiter protection.

1) The adversary may want to call mprotect to change
the permission of ASMS and then access the data.

2) The adversary may attempt to call ab munmap first
and then ab mmap to indirectly modify the permission.

3) The adversary may call fork or pthread create

to create a normal process or thread that is out of the Se-
curity Manager’s control so as to access the data.

4) The adversary may also want to fork a child process
and let the child process call ab register to set itself as
a new Security Manager. In this way, the adversary hopes
to gain full control of the ASMS.

5) The adversary forges a reference and fools an inno-
cent thread to access data on behalf of the adversary.

We try each of the above counterattacks for multiple
times, but no one succeeds. The reasons are as below.
For 1), it is because Arbiter forbids normal system calls
including mprotect to operate ASMS. For 2), since the
adversary does not have permission to access the data,
the Security Manager simply denies the ab munmap re-
quest. For 3), unfortunately ASMS will not be mapped
to the normal processes or threads. For 4), there do ex-
ist ASMS now and the child process does gain full con-
trol. However, the ASMS no longer has the same physical
mapping. For 5), it would actually have a chance to suc-
ceed. However, Arbiter provides an API get privilege

which allows the innocent thread to verify if the request-
ing thread has the necessary permission. As such, Arbiter
can still defeat this counterattack. In sum, we believe that
within our threat model no counterattack can succeed.

6.2 Microbenchmarks
We build a set of microbenchmarks to examine the

performance overhead of Arbiter API. Our experiments
were run on a Dell T310 server with Intel Xeon quad-
core X3440 2.53GHz CPU and 4GB memory. We use 32-
bit Ubuntu Linux (10.04.3) with kernel 2.6.32 and glibc
2.11.1. Since we implement the ASMS Library based on
uClibc 0.9.32, we use the same version for comparison
on memory allocation. Each result is averaged over 1,000
times of repeat.
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Operation Linux (µs) Arbiter (µs) Overhead
(ab )malloc 4.14 9.09 2.20
(ab )free 2.06 8.36 4.06
(ab )calloc 4.14 8.41 2.03
(ab )realloc 3.39 8.27 2.43
(ab )pthread create 91.45 145.33 1.59
(ab )pthread join 36.22 41.00 1.13
(ab )pthread self 2.99 1.98 0.66
create category – 7.17 –
get label – 7.65 –
get ownership – 7.55 –
get mem label – 7.66 –
ab null (RPC round trip) – 5.84 –
(absys )sbrk 0.65 0.76 1.36
(absys )mmap 0.60 0.83 1.38
(absys )mprotect 0.83 0.92 1.11

Table 4: Microbenchmark results in Linux and Arbiter

Table 4 shows the comparison of microbenchmarks.
The overhead of memory allocation functions (e.g.,
ab free) is non-trivial. This is because they have to
go through the Security Manager via an RPC round trip,
which consists of RPC marshalling, socket latency, etc.
We find that a pure RPC round trip (ab null) itself al-
ready takes 5.84µs, which helps to justify the time con-
sumption of most Arbiter API functions. Due to our im-
plementation of thread creation, we directly use getpid

to return the thread ID. As the result, ab pthread self

runs even faster than its Linux equivalent. In addition to
the RPC latency, the system calls made by the Security
Manager also contribute to the API overhead. We ex-
amine sbrk, mmap, and mprotect and find that Arbiter
incurs 28% overhead on average.

There are two other factors that might affect the over-
head of Arbiter API: (1) The number of threads can af-
fect the memory allocation overhead. Figure 4(a) shows
that the time consumption of ab malloc is roughly cor-
related with the number of threads. The time consump-
tion increases by around 5.7% per additional thread. This
is because memory allocation on ASMS for one thread
is also propagated to other threads. For comparison, we
also show the result of get label. This operation does
not involve any “propagation” and thus is not affected by
the number of threads. (2) The size of allocated ASMS
can affect the thread creation overhead. This is because
thread creation involves the permission reconfiguration
of ASMS. Figure 4(b) shows that the time consumption
of ab pthread create increases along with the size of
allocated ASMS (note the logarithmic scale on x-axis).
This is also in line with our expectation.
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Figure 4: Arbiter API performance regarding number of
threads and allocated ASMS size
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Figure 5: Performance comparison for Memcached

6.3 Application Performance
Memcached. We build a security-enhanced Mem-

cached based on its version 1.4.13 and we use libMem-
cached 1.0.5 as the client library. We measure the
throughput of two basic operations, SET and GET, with
various value sizes and key sizes. The results are com-
pared with unmodified Memcached. In Figure 5(a) and
5(b), we anchor the key size to 32 bytes and change the
value size. In Figure 5(c) and 5(d), we fix the value size
to 256 bytes and adjust the key size. Each point in the fig-
ure is an average of 100,000 times of repeat. All together,
the average performance decrease incurred by Arbiter is
about 5.6%.

Cherokee. We port Cherokee based on its version
1.2.2. We use the ApacheBench version 2.3 and static
HTML files to measure its performance. First, we mea-
sure the influence of file size. We choose files with sizes
of 1KB, 10KB, 100KB, and 1MB. Figure 6(a) shows the
comparison between vanilla Cherokee and the ported ver-
sion. The average slowdown is 1.8%. Second, we test the
system scalability by tuning the number of threads from 5
to 40. We fix the file size to 1KB during this round of test.
The throughput comparison is shown in Figure 6(b). The
average performance degradation is around 3.0%. This
comparison indicates that running more threads does not
necessarily induce more overhead. For each individual
test, we set ApacheBench to issue 10,000 requests with
the concurrency level of 10.

FUSE. We retrofit FUSE based on its version 2.3.0.
For the custom userspace file system, we use the exam-
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Figure 7: Performance comparison for FUSE

ple implementation fusexmp provided by FUSE source
package. It simply emulates the native file system. We
then select 8 representative commands relevant to file
system operations, namely, cd, ls, touch, cp, mv,

echo, cat, and rm. Note that the echo command is used
to write a 32-byte string to files. Each command is re-
peated for 10,000 times. Figure 7 shows the comparison
between unmodified FUSE and the ported version. On
average, the slowdown is 7.4%.

Overall, the application performance overhead is ac-
ceptable. This is partially contributed by the fact that the
extra cost of Arbiter API calls is amortized by other op-
erations of these programs.

6.4 CPU and Memory Overhead
In addition to the throughput comparison, we further

evaluate the CPU cost. As shown in Table 5, Arbiter in-
creases the CPU utilization by 1.29–1.55×. We leverage
the CPU time information in /proc/[pid]/stat to do the cal-
culation. We also count the types of labeled objects (not
to be confused with runtime instances), shown in the last
column of Table 5. Interestingly, the number of labeled
objects is roughly correlated with the CPU overhead.

Although our “same accessibility, same page” strat-
egy has already come with much less memory waste than
“one object per page”, it still incurs some memory over-
head. Table 6 shows the average resident memory (RSS)
usage of the three applications during the performance
test. We measure RSS by checking the VmRSS value of
/proc/[pid]/status around ten times per second. Given that
the policy we used for the three applications are quite typ-
ical, we believe real-world memory overhead should be
close to the measured overhead.

7 Discussion and Limitations
We believe that Arbiter provides a generic and prac-

tical mechanism for inter-thread privilege separation on
data objects. Nonetheless, it still has limitations in de-
fending against certain security threats. When two princi-
pal users or clients are served by the same thread, Arbiter
can no longer enforce privilege separation for the two
principals. Thus, programmers have to be very careful
dealing with user authentication and thread dispatching to

Application Original Arbiter Overhead Labeled objects
memcached 49.4% 76.7% 1.55× 14

cherokee 58.8% 76.1% 1.29× 8
FUSE 42.3% 58.0% 1.37× 10

Table 5: Comparison of CPU utilization and labeled objects

Application Original (KB) Arbiter (KB) Overhead
memcached 60,664 64,452 6.2%

cherokee 3,916 4,120 5.2%
FUSE 732 760 3.9%

Table 6: RSS memory overhead

associate principals with appropriate worker threads. To
fully address this issue, one possible solution is to have a
per-principal-user “virtual” thread to further separate the
privileges. We leave this as a future work.

One limitation of our implementation is that the user-
space memory allocator uses a single lock for alloca-
tion/deallocation. Therefore, the processing of allocation
and deallocation requests have to be serialized. A finer
lock granularity can help to improve parallelism and scal-
ability, such as Hoard [13] and TCMalloc [12]. In fact,
Arbiter’s memory allocation mechanism inherently has
the potential to adopt a per-label lock. We are looking at
ways to implement such a parallelized allocator.

Arbiter’s security relies on the correctness of privilege
separation policy configured by the programmer. How-
ever, it may not be that easy to get all the label assign-
ments correct, especially in complex and dynamic de-
ployment scenarios. Actually, DIFC systems also con-
front similar policy configuration challenges and research
efforts have been made to debug DIFC policy misconfig-
uration [35]. Our system is also able to incorporate a pol-
icy debugging or model checking tool that can verify the
correctness of label assignments.

Arbiter’s security model, including notions and rules,
is inspired by DIFC. However, it should be noted that Ar-
biter does not perform information flow tracking inside
a program, mainly due to two observations: (1) For a
runtime system approach, tracking fine-grained data flow
(e.g., moving a 4-byte integer from memory to a CPU
register) could incur tremendous overhead, making Ar-
biter impractical to use; (2) The fact that information
flow tracking can enhance security does not logically ex-
clude the possibility of solving real security problems
without information flow tracking. The main contribu-
tion of Arbiter is that it provides fine-grained privilege
separation for data objects using commodity hardware,
while still preserving the traditional multithreaded pro-
gramming paradigm.

8 Conclusion
Arbiter is a system targeting at fine-grained, data

object-level privilege separation for multi-principal mul-
tithreaded applications. Particularly, we find that page
table protection bits can be leveraged to do efficient ref-
erence monitoring if data objects with same accessibility
are put into the same page. We find that Arbiter is ap-
plicable to a verity of real-world applications. Our ex-
periments demonstrate Arbiter’s ease of adoption, effec-
tiveness of protection, as well as reasonable performance
overhead.
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A Appendix
A.1 Arbiter API

Figure 8 lists the Arbiter’s API, which are used for la-
beling, threading, and memory allocation. To preserve
the multithreaded programming paradigm, the function
syntax is fully compatible with the C Standard Library
and the Pthreads Library. For example, if a program-
mer uses ab malloc without assigning any label (L =

NULL;), it will behave in the same way as libc malloc,
i.e., allocating a memory chunk read-writable to every
thread. This makes it possible for programmers to in-
crementally adapt their programs to our system.

A.2 ASMS Memory Allocation Algorithm
§3.3 and §4.1 described our permission-oriented allo-

cation mechanism. Here we explain the detailed algo-
rithm shown in Figure 9. For clarity, we omit the dis-
cussion on the strategy of memory chunk management
adopted from dlmalloc.
• Allocation If the size of the data is larger than a reg-

ular block size (i.e., threshold), a large block will be
allocated using absys mmap (line 5). Otherwise, the
allocator will search for free chunks inside blocks with
that label (line 7). If there is an available free chunk,
the allocator simply returns it. If not, the allocator will
allocate a new regular block using absys sbrk (line
12).

• Deallocation For a large block, the allocator simply
frees it using absys munmap (line 3) so that it can
be reused later on. Otherwise, the allocator puts the
chunk back to the free list (line 5). Next, the allocator
checks if all the chunks on this block are free. If so,
this block will be recycled for later use (line 7).

• cat t create category(cat type t);
Create a new category of type t, which can be either secrecy cat-
egory CAT S or integrity category CAT I.

• void get label(label t L);
Get the label of a thread itself into L.

• void get ownership(own t O);
Get the ownership of a thread itself into O.

• void get mem label(void *ptr, label t L);
Get the label of a data object into L.

• int ab pthread create(pthread t
*thread, const pthread attr t *attr,
void *(*start routine)(void *),
void *arg, label t L, own t O);
Create a new thread with label L and ownership O.

• int ab pthread join(pthread t thread, void
**value ptr);
Wait for thread termination.

• pthread t ab pthread self(void);
Get the calling thread ID.

• void *ab malloc(size t size, label t L);
Allocate dynamic memory on ASMS with label L.

• void ab free(void *ptr);
Free dynamic memory on ASMS.

• void *ab calloc(size t nmemb, size t size,
label t L);
Allocate memory for an array of elements on ASMS with label L.

• void *ab realloc(void *ptr, size t size);
Change the size of the memory on ASMS.

• void *ab mmap(void *addr, size t length, int
prot, int flags, int fd, off t offset, label t
L);
Map files to ASMS with label L.

• int get privilege(pthread t thread, void *ptr);
Query the permission of a thread to accessing memory on ASMS.

Figure 8: List of Arbiter API

1 ablib malloc(sz , L)
2 if sz > threshold then
3 for every member thread do
4 Compute permission
5 Allocate a large block
6 return
7 Search free chunks in blocks with label L
8 if there is an available free chunk then
9 return

10 for every member thread do
11 Compute permission
12 Allocate a regular block
13 return

1 ablib free ( ptr )
2 if it is a large block then
3 Free the block
4 return
5 Free the chunk pointed by ptr
6 if the whole block is free now then
7 Free the block
8 return

Figure 9: ASMS memory allocation algorithm
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Abstract

In this paper, we present GridGraph, a system for pro-
cessing large-scale graphs on a single machine. Grid-
Graph breaks graphs into 1D-partitioned vertex chunks
and 2D-partitioned edge blocks using a first fine-grained
level partitioning in preprocessing. A second coarse-
grained level partitioning is applied in runtime. Through
a novel dual sliding windows method, GridGraph can
stream the edges and apply on-the-fly vertex updates,
thus reduce the I/O amount required for computation.
The partitioning of edges also enable selective schedul-
ing so that some of the blocks can be skipped to reduce
unnecessary I/O. This is very effective when the active
vertex set shrinks with convergence.

Our evaluation results show that GridGraph scales
seamlessly with memory capacity and disk bandwidth,
and outperforms state-of-the-art out-of-core systems, in-
cluding GraphChi and X-Stream. Furthermore, we show
that the performance of GridGraph is even competitive
with distributed systems, and it also provides significant
cost efficiency in cloud environment.

1 Introduction

There has been increasing interests to process large-scale
graphs efficiently in both academic and industrial com-
munities. Many real-world problems, such as online so-
cial networks, web graphs, user-item matrices, and more,
can be represented as graph computing problems.

Many distributed graph processing systems like Pregel
[17], GraphLab [16], PowerGraph [8], GraphX [28], and
others [1, 22] have been proposed in the past few years.
They are able to handle graphs of very large scale by ex-
ploiting the powerful computation resources of clusters.
However, load imbalance [11, 20], synchronization over-
head [33] and fault tolerance overhead [27] are still chal-
lenges for graph processing in distributed environment.
Moreover, users need to be skillful since tuning a cluster

and optimizing graph algorithms in distributed systems
are non-trivial tasks.

GraphChi [13], X-Stream [21] and other out-of-core
systems [9, 15, 31, 34] provide alternative solutions.
They enable users to process large-scale graphs on a sin-
gle machine by using disks efficiently. GraphChi par-
titions the vertices into disjoint intervals and breaks the
large edge list into smaller shards containing edges with
destinations in corresponding intervals. It uses a vertex-
centric processing model, which gathers data from neigh-
bors by reading edge values, computes and applies new
values to vertices, and scatters new data to neighbors
by writing values on edges. By using a novel parallel
sliding windows method to reduce random I/O accesses,
GraphChi is able to process large-scale graphs in rea-
sonable time. However, its sharding process requires
the edges in every shard to be sorted by sources. This
is a very time consuming process since several passes
over edges are needed. Fragmented accesses over several
shards are often inevitable, decreasing the usage of disk
bandwidth. X-Stream introduces an edge-centric scatter-
gather processing model. In the scatter phase, X-Stream
streams every edge and generates updates to propagate
vertex states. In the gather phase, X-Stream streams ev-
ery update, and applies it to the corresponding vertex
state. Accesses to vertices are random and happen on
a high level of storage hierarchy which is small but fast.
And accesses to edges and updates fall into a low level of
storage hierarchy which is large but slow. However, these
accesses are sequential so that maximum throughput can
be achieved. Although X-Stream can leverage high disk
bandwidth by sequential accessing, it needs to generate
updates which could be in the same magnitude as edges,
and its lack of support on selective scheduling could also
be a critical problem when dealing with graphs of large
diameters.

We propose GridGraph, which groups edges into a
“grid” representation. In GridGraph, vertices are parti-
tioned into 1D chunks and edges are partitioned into 2D
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blocks according to the source and destination vertices.
We apply a logical higher level of partitioning in run-
time. Chunks and blocks are grouped into larger ones
for I/O efficiency. Different from current vertex-centric
or edge-centric processing model, GridGraph combines
the scatter and gather phases into one “streaming-apply”
phase, which streams every edge and applies the gener-
ated update instantly onto the source or destination ver-
tex. By aggregating the updates, only one pass over the
edge blocks is needed. This is nearly optimal for itera-
tive global computation, and is suited to both in-memory
and out-of-core situations. Moreover, GridGraph offers
selective scheduling, so that streaming on unnecessary
edges can be reduced. This significantly improves per-
formance for many iterative algorithms.

We evaluate GridGraph on real-world graphs and
show that GridGraph outperforms state-of-the-art out-of-
core graph engines by up to an order of magnitude. We
also show that GridGraph has competitive performance
to distributed solutions, and is far more cost effective and
convenient to use. In summary, the contributions of this
paper are:

• A novel grid representation for graphs, which can
be generated from the original edge list using a fast
range-based partitioning method. Different from
the index plus adjacency list or shard representation
that requires sorting, edge blocks of the grid can be
transformed from an unsorted edge list with small
preprocessing overhead, and can be utilized for dif-
ferent algorithms and on different machines.

• A 2-level hierarchical partitioning schema, which
is effective for not only out-of-core but also in-
memory scenarios.

• A fast streaming-apply graph processing model,
which optimizes I/O amount. The locality of ver-
tex accesses is guaranteed by dual sliding windows.
Moreover, only one sequential read of edges is
needed and the write amount is optimized to the or-
der of vertices instead of edges.

• A flexible programming interface consisting of two
streaming functions for vertices and edges respec-
tively. Programmers can specify an optional user-
defined filter function to skip computation on inac-
tive vertices or edges. This improves performance
significantly for iterative algorithms that active ver-
tex set shrinks with convergence.

The remaining part of this paper is organized as fol-
lows. Section 2 describes the grid representation, which
is at the core of GridGraph. Section 3 presents the com-
putation model, and the 2-level hierarchical partitioning
schema. Section 4 evaluates the system, and compares it

with state-of-the-art systems. Section 5 discusses related
works, and finally Section 6 concludes the paper.

2 Graph Representation

The grid representation plays an important role in Grid-
Graph. We introduce the details of the grid format, as
well as how the fast partitioning process works. We also
make a comparison with other out-of-core graph engines
and discuss the trade-offs in preprocessing.

2.1 The Grid Format
Partitioning is employed to process a graph larger than
the memory capacity of a single machine. GraphChi de-
signs the shard data format, and stores the adjacency list
in several shards so that each shard can be fit into mem-
ory. Vertices are divided into disjoint intervals. Each
interval associates a shard, which stores all the edges
with destination vertex in the interval. Inside each shard,
edges are sorted by source vertex and combined into the
compact adjacency format. X-Stream also divides the
vertices into disjoint subsets. A streaming partition con-
sists of a vertex set, an edge list and an update list, so that
data of each vertex set can be fit into memory. The edge
list of a streaming partition (in the scatter phase) consists
of all edges whose source vertex is in the partition’s ver-
tex set. The update list of a streaming partition (in the
gather phase) consists of all updates whose destination
vertex is in the partition’s vertex set.

GridGraph partitions the vertices into P equalized ver-
tex chunks. Each chunk contains vertices within a con-
tiguous range. The whole P×P blocks can be viewed as
a grid, and each edge is put into a corresponding block
using the following rule: the source vertex determines
the row of the block and the destination vertex deter-
mines the column of the block. Figure 1(b) illustrates
how GridGraph partitions the example graph in Figure
1(a). There are 4 vertices in this graph and we choose
P = 2 for this example. {1, 2} and {3, 4} are the 2 ver-
tex chunks. For example, Edge (3, 2) is partitioned to
Block (2, 1) since Vertex 3 belongs to Chunk 2 and Ver-
tex 1 belongs to Chunk 1.

In addition to the edge blocks, GridGraph creates a
metadata file which contains global information of the
represented graph, including the number of vertices V
and edges E, the partition count P, and the edge type T
(to indicate whether the edges are weighted or not). Each
edge block corresponds to a file on disks.

GridGraph does preprocessing in the following way:

1. The main thread sequentially reads edges from
original unordered edge list and divides them into
batches of edges and pushes each batch to the task
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(a) An example graph (b) Grid representation

Figure 1: Organization of the edge blocks

Figure 2: Edge block size distribution of Twitter graph
using a 32×32 partitioning.

queue (to achieve substantial sequential disk band-
width, we choose 24MB to be the size of each edge
batch).

2. Each worker thread fetches a task from the queue,
calculates the block that each edge in this batch be-
longs to, and appends the edge to the correspond-
ing edge block file. To improve I/O throughput,
each worker thread maintains a local buffer of each
block, and flushes to files once the buffer is full.

After the partitioning process, GridGraph is ready to
do computation. However, due to the irregular struc-
ture of real world graphs, some edge blocks might be
too small to achieve substantial sequential bandwidth on
HDDs. Figure 2 shows the distribution of edge block
sizes in Twitter [12] graph using a 32× 32 partitioning,
which conforms to the power-law [7], with a large num-
ber of small files and a few big ones. Thus full sequential
bandwidth can not be achieved sometimes due to poten-
tially frequent disk seeks. To avoid such performance
loss, an extra merge phase is required for GridGraph to
perform better on HDD based systems, in which the edge
block files are appended into a large file one by one and
the start offset of each block is recorded in metadata. The
time taken by each phase is shown in Section 4.

2.2 Discussion
Different from the shard representation used in
GraphChi, GridGraph does not require the edges in each
block to be sorted. This hence reduces both I/O and com-
putation overhead in preprocessing. We only need to
read and write the edges from and to disks once, rather
than several passes over the edges in GraphChi. This
lightweight preprocessing procedure can be finished very
quickly (see Table 2), which is much faster than the pre-
processing of GraphChi.

X-Stream, on the other hand, does not require explicit
preprocessing. Edges are shuffled to several files accord-
ing to the streaming partition. No sorting is required and
the number of partitions is quite small. For many graphs
that all the vertex data can be fit into memory, only one
streaming partitions is needed. However, this partition-
ing strategy makes it inefficient for selective scheduling,
which can largely affect its performance on many itera-
tive algorithms that only a portion of the vertices are used
in some iterations.

It takes very short time for GridGraph to complete the
preprocessing. Moreover, the generated grid format can
be utilized in all algorithms running on the same graph.
By partitioning, GridGraph is able to conduct selective
scheduling and reduce uncessary accesses to edge blocks
without active edges1. We can see that this contributes a
lot in many iterative algorithms like BFS and WCC (see
Section 4), which a large portion of vertices are inactive
in many iterations.

The selection of the number of partitions P is very im-
portant. With a more fine-grained partitioning (which
means a larger value of P), while the preprocessing time
becomes longer, better access locality of vertex data and
more potential in selective scheduling can be achieved.
Thus a larger P is preferred in partitioning. Currently,
we choose P in such a way that the vertex data can be fit
into last level cache. We choose P to be the minimum
integer such that

V
P
×U ≤C,

where C is the size of last level cache and U is the data
size of each vertex. This partitioning shows not only
good performance (especially for in-memory situations)
but also reasonable preprocessing cost. In Section 4, we
evaluate the impact of P and discuss the trade-offs inside.

3 The Streaming-Apply Processing Model

GridGraph uses a streaming-apply processing model in
which only one (read-only) pass over the edges is re-
quired and the write I/O amount is optimized to one pass
over the vertices.

1An edge is active if its source vertex is active.
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3.1 Programming Abstraction
GridGraph provides 2 functions to stream over vertices
(Algorithm 1) and edges (Algorithm 2).

Algorithm 1 Vertex Streaming Interface
function STREAMVERTICES(Fv,F)

Sum = 0
for each vertex do

if F(vertex) then
Sum += Fv(edge)

end if
end for
return Sum

end function

Algorithm 2 Edge Streaming Interface
function STREAMEDGES(Fe,F)

Sum = 0
for each active block do � block with active edges

for each edge ∈ block do
if F(edge.source) then

Sum += Fe(edge)
end if

end for
end for
return Sum

end function

F is an optional user defined function which accepts
a vertex as input and should returns a boolean value to
indicate whether the vertex is needed in streaming. It is
used when the algorithm needs selective scheduling to
skip some useless streaming and is often used together
with a bitmap, which can express the active vertex set
compactly. Fe and Fv are user defined functions which
describe the behavior of streaming. They accept an edge
(for Fe), or a vertex (for Fv) as input, and should return a
value of type R. The return values are accumulated and
as the final reduced result to user. This value is often
used to get the number of activated vertices, but is not
restricted to this usage, e.g. users can use this function to
get the sum of differences between iterations in PageR-
ank to decide whether to stop computation.

GridGraph stores vertex data on disks. Each vertex
data file corresponds to a vertex data vector. We use the
memory mapping mechanism to reference vertex data
backed in files. It provides convenient and transparent
access to vectors, and simplifies the programming model:
developers can treat it as normal arrays just as if they are
in memory.

We use PageRank [19] as an example to show how
to implement algorithms using GridGraph (shown in Al-
gorithm 32). PageRank is a link analysis algorithm that

2Accum(&s, a) is an atomic operation which adds a to s.

calculates a numerical weighting to each vertex in the
graph to measure its relative importance among the ver-
tices. The PR value of each vertex is initialized to 1.
In each iteration, each vertex sends out their contribu-
tions to neighbors, which is the current PR value divided
by its out degree. Each vertex sums up the contribu-
tions collected from neighbors and sets it as the new PR
value. It converges when the mean difference reaches
some threshold3.

Algorithm 3 PageRank
function CONTRIBUTE(e)

Accum(&NewPR[e.dest], PR[e.source]
Deg[e.source] )

end function
function COMPUTE(v)

NewPR[v] = 1−d +d ×NewPR[v]
return |NewPR[v]−PR[v]|

end function
d = 0.85
PR = {1, ...,1}
Converged = 0
while ¬Converged do

NewPR = {0, ...,0}
StreamEdges(Contribute)
Diff = StreamVertices(Compute)
Swap(PR, NewPR)
Converged = Diff

V ≤ Threshold
end while

3.2 Dual Sliding Windows
GridGraph streams edges block by block. When stream-
ing a specific block, say, the block in the i-th row and
j-th column, vertex data associated with this block falls
into the i-th and j-th chunks. By selecting P such that
each chunk is small enough to fit into the fast storage
(i.e. memory for out-of-core situations or last level cache
for in-memory situations), we can ensure good locality
when accessing vertex data associated with the block be-
ing streamed.

The access sequence of blocks can be row-oriented or
column-oriented, based on the update pattern. Assume
that a vertex state is propagated from the source vertex to
the destination vertex (which is the typical pattern in a lot
of applications), i.e. source vertex data is read and des-
tination vertex data is written. Since the column of each
edge block corresponds to the destination vertex chunk,
column oriented access order is preferred in this case.
The destination vertex chunk is cached in memory when
GridGraph streams blocks in the same column from top
to bottom, so that expensive disk write operations are ag-
gregated and minimized. This property is very impor-

3Sometimes we run PageRank for certain number of iterations to
analyze performance.
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Figure 3: Illustration of dual sliding windows. It shows the first iteration of PageRank on the example graph. Shaded
block and chunks are active (loaded into memory).

tant in practical use, especially for SSDs, since the write
performance might degrade after writing large volume of
data due to the write amplification phenomenon. On the
other hand, since SSDs have upper limits of write cycles,
it is thus important to reduce disk writes as much as pos-
sible to achieve ideal endurance.

Figure 3 visualizes how GridGraph uses dual sliding
windows to apply updates onto vertices. PageRank is
used as the example. The read window (in which we read
current PageRank value and out degree from the source
vertex) and the write window (in which we accumulate
contributions to the new PageRank value of the destina-
tion vertex) slide as GridGraph streams edge blocks in
the column-oriented order.

Since GridGraph applies in-place updates onto the ac-
tive vertex chunk, there might exists data race, i.e. data of
one vertex is concurrently modified by multiple worker
threads. Thus, inside the process function Fe, users need
to use atomic operations to apply thread-safe updates to
vertices, so as to ensure the correctness of algorithms.

Utilizing the fact that the bandwidth of parallel ran-
domized access to fast level storage is still orders of
magnitude bigger than the sequential bandwidth of slow
level storage (such as main memory vs. disks, and cache
vs. main memory), the time of applying updates is over-
lapped with edge streaming. GridGraph only requires
one read pass over the edges, which is advantageous to
the solutions of GraphChi and X-Stream that need to mu-
tate the edges (GraphChi) or first generating and then
streaming through the updates (X-Stream).

Through read-only access to the edges, the memory
required by GridGraph is very compact. In fact, it only
needs a small buffer to hold the edge data being streamed
so that other free memory can be used by page cache to
hold edge data, which is very useful when active edge
data becomes small enough to fit into memory.

Another advantage of this streaming-apply model is
that it not only supports classical BSP [25] model, but
also allows asynchronous [3] updates. Since vertex up-
dates are in-place and instant, the effect of an update can
be seen by following vertex accesses, which makes lots
of iterative algorithms to converge faster.

3.3 2-Level Hierarchical Partitioning

We first give the I/O analysis of GridGraph in a com-
plete streaming-apply iteration, which all the edges and
vertices are accessed. Assume edge blocks are accessed
in the column-oriented order. Edges are accessed once
and source vertex data is read P times while destination
vertex data is read and written once. Thus I/O amount is

E +P×V +2×V

for each iteration. Thus a smaller P should be preferred
to minimize I/O amount which seems opposite to the grid
partitioning principle discussed in Section 2 that a larger
P can ensure better locality and selective scheduling ef-
fect.

To deal with this dilemma, we apply a second level
partitioning above the edge grid to reduce I/O accesses
of vertices. The higher level partitioning consists of a
Q×Q edge grid. Given a specified amount of memory
M, and the size of each vertex data U (including source
and destination vertex), Q is selected to be the minimum
integer which satisfies the condition

V
Q
×U ≤ M.

As we mentioned in Section 2, P is selected to fit ver-
tex data into last level cache of which the capacity is
much smaller than memory. Hence P is much bigger
than Q, i.e. the Q×Q partitioning is more coarse-grained
than the P×P one, so that we can just virtually group the
edge blocks by adjusting the accessing orders of blocks.
Figure 4 illustrates this concept. The preprocessed grid
consists of 4× 4 blocks, and a virtual 2× 2 grid parti-
tioning is applied over it. The whole grid is thus divided
into 4 big blocks, with each big block containing 4 small
blocks. The number inside each block indicates the ac-
cess sequence. An exact column-oriented access order is
used in the original 4× 4 partitioning. After the second
level 2× 2 over 4× 4 partitioning is applied, we access
the coarse-grained (big) blocks in column-oriented order,
and within each big block, we access the fine-grained
(small) blocks in column-oriented order as well.
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1 5 9 13 

2 6 10 14 

3 7 11 15 

4 8 12 16 

(a) 4x4 grid

1 3 9 11 

2 4 10 12 

5 7 13 15 

6 8 14 16 

(b) 2x2 virtual grid

Figure 4: A 2-Level Hierarchical Partitioning Example.
The number inside each block indicates the access se-
quence.

This 2-level hierarchical partitioning provides not only
flexibility but also efficiency since the higher level par-
titioning is virtual and GridGraph is able to utilize the
outcome of lower level partitioning thus no more actual
overhead is added. At the same time, good properties of
the original fine-grained edge grid such as more selective
scheduling chances can still be leveraged.

3.4 Execution Implementation
Thanks to the good locality ensured by the property of
dual sliding windows, the execution engine of GridGraph
mainly concentrates on streaming edge blocks.

GridGraph streams each block sequentially. Before
streaming, GridGraph first checks the activeness of each
vertex chunk. Edge blocks are streamed one by one in
the sequence that dual sliding windows needs, and if the
corresponding source vertex chunk of the block is active,
it is added to the task list.

GridGraph does computation as follows:

1. The main thread pushes tasks to the queue, contain-
ing the file, offset, and length to issue each read re-
quest. (Length is set to 24MB like in preprocessing
to achieve full disk bandwidth.)

2. Worker thread fetches tasks from the queue until
empty, read data from specified location and pro-
cess each edge.

Each edge is first checked by a user defined filter func-
tion F , and if the source vertex is active, Fe is called on
this edge to apply updates onto the source or destination
vertex (note that we do not encourage users to apply up-
dates onto both the source and destination vertex, which
might make the memory mapped vector suffer from un-
expected write backs onto the slow level storage).

4 Evaluation

We evaluate GridGraph on several real world social
graphs and web graphs, and shows significant perfor-
mance improvement compared with current out-of-core

Dataset V E Data size P

LiveJournal 4.85M 69.0M 527MB 4
Twitter 61.6M 1.47B 11GB 32

UK 106M 3.74B 28GB 64
Yahoo 1.41B 6.64B 50GB 512

Table 2: Graph datasets used in evaluation.

graph engines. GridGraph is even competitive with dis-
tributed systems when more powerful hardware can be
utilized.

4.1 Test Environment
Experiments are conducted on AWS EC2 storage op-
timized instances, including d2.xlarge instance, which
contains 4 hyperthread vCPU cores, 30.5GB memory
(30MB L3 Cache), and 3 HDDs of 2TB, and i2.xlarge in-
stance, which has the same configuration with d2.xlarge
except that it contains 1 800GB SSD instead of 3 2TB
HDDs (and the L3 cache is 24MB). I2 instances are able
to provide high IOPS while D2 instances can provide
high-density storage. Both i2.xlarge and d2.xlarge in-
stances can achieve more than 450GB/s sequential disk
bandwidth.

For the I/O scalability evaluation, we also use more
powerful i2.2xlarge, i2.4xlarge, and i2.8xlarge instances,
which contain multiple (2, 4, 8) 800GB SSDs, as well
as more (8, 16, 32) cores and (61GB, 122GB, 244GB)
memory.

4.2 System Comparison
We evaluate the processing performance of GridGraph
through comparison with the latest version of GraphChi
and X-Stream on d2.xlarge4 and i2.xlarge instances.

For each system, we run BFS, WCC, SpMV and
Pagerank on 4 datasets: LiveJournal [2], Twitter [12],
UK [4] and Yahoo [29]. All the graphs are real-world
graphs with power-law degree distributions. LiveJour-
nal and Twitter are social graphs, showing the follow-
ing relationship between users within each online social
network. UK and Yahoo are web graphs that consist of
hyperlink relationships between web pages, with larger
diameters than social graphs. Table 2 shows the magni-
tude, as well as our selection of P for each graph. For
BFS and WCC, we run them until convergence, i.e. no
more vertices can be found or updated; for SpMV, we
run one iteration to calculate the multiplication result;
and for PageRank, we run 20 iterations on each graph.

4A software RAID-0 array consisting of 3 HDDs is set up for eval-
uation on d2.xlarge instances.
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i2.xlarge (SSD) d2.xlarge (HDD)

BFS WCC SpMV PageR. BFS WCC SpMV PageR.

LiveJournal
GraphChi 22.81 17.60 10.12 53.97 21.22 14.93 10.69 45.97
X-Stream 6.54 14.65 6.63 18.22 6.29 13.47 6.10 18.45
GridGraph 2.97 4.39 2.21 12.86 3.36 4.67 2.30 14.21

Twitter
GraphChi 437.7 469.8 273.1 1263 443.3 406.1 220.7 1064
X-Stream 435.9 1199 143.9 1779 408.8 1089 128.3 1634
GridGraph 204.8 286.5 50.13 538.1 196.3 276.3 42.33 482.1

UK
GraphChi 2768 1779 412.3 2083 3203 1709 401.2 2191
X-Stream 8081 12057 383.7 4374 7301 11066 319.4 4015
GridGraph 1843 1709 116.8 1347 1730 1609 97.38 1359

Yahoo
GraphChi - 114162 2676 13076 - 106735 3110 18361
X-Stream - - 1076 9957 - - 1007 10575
GridGraph 16815 3602 263.1 4719 30178 4077 277.6 5118

Table 1: Execution time (in seconds) with 8GB memory. “-” indicates that the corresponding system failed to finish
execution in 48 hours.

GraphChi runs all algorithms in asynchronous mode, and
an in-memory optimization is used when the number of
vertices are small enough, so that vertex data can be al-
located and hold in memory and thus edges are not mod-
ified during computation, which contributes a lot to per-
formance on Twitter and UK graph.

Table 1 presents the performance of chosen algorithms
on different graphs and systems with memory limited to
8GB to illustrate the applicability. Under this configu-
ration, only the LiveJournal graph can be fit into mem-
ory, while other graphs require access to disks. We can
see that GridGraph outperforms GraphChi and X-Stream
on both HDD based d2.xlarge and SSD based i2.xlarge
instances, and the performance does not vary much ex-
cept for BFS on Yahoo, which lots of seek is experienced
during the computation, thus making SSDs more advan-
tageous than HDDs. In fact, sometimes better results can
be achieved on d2.xlarge instance due to the fact that the
peak sequential bandwidth of 3 HDDs on d2.xlarge is
slightly greater than that of 1 SSD on i2.xlarge.

Figure 5 shows the disk bandwidth usage of 3 systems,
which records the I/O throughput of a 10-minute interval
running PageRank on Yahoo graph, using a d2.xlarge in-
stance. X-Stream and GridGraph are available to exploit
high sequential disk bandwidth while GraphChi is not
so ideal due to more fragmented reads and writes across
many shards. GridGraph try to minimize write amount
thus more I/O is spent on read while X-Stream has to
write a lot more data.

Figure 5: Disk bandwidth usage chart of a 10-minute in-
terval on GraphChi, X-Stream and GridGraph. R̄ = aver-
age read bandwidth; W̄ = average write bandwidth.

For algorithms that all the vertices are active in com-
putation, like SpMV and PageRank (thus every edge
is streamed), GridGraph has significant reduction in
I/O amount that is needed to complete computation.
GraphChi needs to read from and write to edges to prop-
agate vertex states, thus 2×E I/O amount to edges are
required. X-Stream needs to read edges and generate up-
dates in scatter phase, and read updates in gather phase,
thus a total I/O amount of 3×E is required (note that
the size of updates is in the same magnitude as edges).
On the other hand, GridGraph only requires one read
pass over the edges and several passes over the vertices.
The write amount is also optimized in GridGraph, which
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(a) PageRank on Yahoo graph (b) WCC on Twitter graph (c) WCC on Twitter graph

Figure 6: I/O amount comparison.

only one pass over the vertex data is needed. Figure 6(a)
shows the I/O amount that each system needs to com-
plete 5 iterations of PageRank on Yahoo graph. We can
see that the input amount of GridGraph is about 60 per-
cent of X-Stream and GraphChi, while the output amount
of GridGraph is about 4.5 times less. Thanks to the nice
vertex access pattern of dual sliding windows, vertex up-
dates are aggregated within a chunk, which can be a very
useful feature in practical use. For graphs that all the ver-
tex data can be cached in memory (like in Figure 6(b)),
only one disk read in the first iteration and one disk write
after the final iteration is required no matter how many
iterations are needed.

For iterative algorithms that only a portion of the
whole vertex set participates in the computation of some
iterations, such as BFS and WCC, GridGraph can ben-
efit from another good property of grid partitioning that
we can skip lots of useless reads with selective schedul-
ing. We compare the I/O amount versus X-Stream and
GraphChi using WCC on Twitter graph in Figure 6(b),
and provide a per iteration I/O amount in Figure 6(c).
We can see that I/O amount decreases with the conver-
gence of the algorithm. In fact, when the volume of ac-
tive edges reaches a certain level such that the data size
is smaller than memory capacity, the page cache could
buffer almost all of the edges that might be needed in
latter iterations, thus complete the following computa-
tions very fast. This phenomenon is more obvious in
web graphs than in social graphs, since the graph diam-
eter is much bigger. GraphChi also supports selective
scheduling, and its shard representation can have even
better effect than GridGraph on I/O reduction. Though
I/O amount required by GraphChi is rather small, it has
to issue many fragmented reads across shards. Thus the
performance is not ideal enough due to limited band-
width usage.

Another interesting observation from Figure 6(c) is
that GridGraph converges faster than X-Stream. This is
due to the availability to support asynchronous update in
GridGraph that applied updates can be used directly in

the same iteration. In WCC, we always push the latest
label through edges, which can speed up the label prop-
agation process.

We conclude that GridGraph can perform well on
large-scale real world graphs with limited resource. The
reduction in I/O amount is the key to the performance
gain.

4.3 Preprocessing Cost
Table 3 shows the preprocessing cost of GraphChi and
GridGraph on i2.xlarge (SSD) and d2.xlarge (HDD) in-
stances5. For SSDs, we only need to partition the edges
and append them to different files. For HDDs, a merg-
ing phase that combines all the edge block files is re-
quired after partitioning. It is known that HDDs do not
perform well on random access workloads due to high
seek time and low I/O concurrency while SSDs do not
have such severe performance penalty. As P increases,
edge blocks become smaller and the number of blocks
increases, thus making it hard for HDDs to achieve full
sequential bandwidth since more time will be spent on
seeking to potentially different positions. By merging all
the blocks together and use offsets to indicate the region
of each block, we can achieve full sequential throughput
and benefit from selective scheduling at the same time.

We can see that GridGraph outperforms GraphChi in
preprocessing time. GridGraph uses a lightweight range
based partitioning, thus only one sequential read over the
input edge list and append-only sequential writes to P×P
edge block files are required, which can be handled very
well by operating systems.

Figure 7 shows the preprocessing cost on a d2.xlarge
instance using Twitter graph with different selections of
P. We can see that as P becomes larger, the partitioning
time and especially the merging time becomes longer,
due to the fact that more small edge blocks are generated.
Yet we can see the necessity of this merging phase on

5X-Stream does not require explicit preprocessing. Its preprocess-
ing is covered in the first iteration before computation.
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C (S) G (S) C (H) G (H) P G (H) M G (H) A

LiveJournal 14.73 1.99 13.06 1.64 1.02 2.66
Twitter 516.3 56.59 425.9 76.03 117.9 193.9

UK 1297 153.8 1084 167.6 329.7 497.3
Yahoo 2702 277.4 2913 352.5 2235.6 2588.1

Table 3: Preprocessing time (in seconds) for GraphChi and GridGraph on 4 datasets. C = GraphChi, G = GridGraph;
S = SSD, H = HDD; P = time for partitioning phase, M = time for merging phase, A = overall time.

Figure 7: Preprocessing time on Twitter graph with dif-
ferent selections of P (from 2 to 512).

Figure 8: Execution time of PageRank on Twitter graph
with different selections of P (from 2 to 512).

HDD based systems since several passes over the edge
blocks are often required in multi-iteration computations,
which can benefit a lot from this extra preprocessing cost.

We conclude that the preprocessing procedure in Grid-
Graph is very efficient and essential.

4.4 Granularity of Partitioning

First, we evaluate the impact on performance with dif-
ferent selections of P for in-memory situations. Figure 8
shows the execution time of PageRank (5 iterations) on
Twitter graph. We use all the available memory (30.5GB)
of an i2.xlarge instance, so that the whole graph (includ-

Figure 9: Execution time of SpMV on Yahoo graph with
different selections of Q (from 512 to 2).

ing vertex and edge data) can be fit into memory. We
can see that P should be neither too small nor too large
to achieve a good performance. When P is too small, i.e.
each vertex chunk can not be put into last level cache,
the poor locality significantly affects the efficiency of
vertex access. When P is too large, more data race be-
tween atomic operations in each vertex chunk also slows
down the performance. Thus we should choose P by con-
sidering the size of last level cache as we mentioned in
Section 2 to achieve good in-memory performance either
when we have a big server with large memory or when
we are trying to process a not so big graph that can be fit
into memory.

Next, we evaluate the impact of second level partition-
ing on performance for out-of-core scenarios. Figure 9
shows the execution time of SpMV on Yahoo graph with
different selections of Q. Memory is limited to 8GB on
an i2.xlarge instance so that the whole vertex data can
not be cached in memory (via memory mapping). As Q
decreases, we can see that the execution time descends
dramatically due to the fact that a smaller Q can reduce
the passes over source vertex data. Thus we should try
to minimize Q when data of V

Q vertices can be fit into
memory, according to the analysis in Section 3.

We conclude that the 2-level hierarchical partitioning
used in GridGraph is very essential to achieve good per-
formance for both in-memory and out-of-core scenes.
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Memory Twitter WCC Yahoo PageRank

8GB 286.5 1285
30.5GB 120.6 943.1

Table 4: Scalability with Memory. Execution time is in
seconds.

Figure 10: Scalability with I/O.

4.5 Scalability
We evaluate the scalability of GridGraph by observing
the improvement when more hardware resource is added.

Table 4 shows the performance variance of WCC on
Twitter graph and PageRank (5 iterations) on Yahoo
graph when usable memory increases. With the mem-
ory increased from 8GB to 30.5GB, the whole undirected
Twitter graph (22GB) can be fit into memory, so that
edge data is read from disks only once. Meanwhile, with
30.5GB memory, the whole vertex data of Yahoo graph
(16GB) can be cached in memory via memory mapping,
thus only one pass of read (when program initializes) and
write (when program exits) of vertex data is required.

We also evaluate the performance improvement with
disk bandwidth. Figure 10 shows the performance when
using other I2 instances. Each i2.[n]xlarge instance con-
tains n 800GB SSDs, along with 4×n hyperthread vCPU
cores, and 30.5×n RAM. Disks are set up as a software
RAID-0 array. We do not limit the memory that Grid-
Graph can use, but force direct I/O to the edges to by-
pass the effect of page cache. We can see that GridGraph
scales almost linearly with disk bandwidth.

We conclude that GridGraph scales well when more
powerful hardware resource can be utilized.

4.6 Comparison with Distributed Systems
From the result in Figure 10, we find that the per-
formance of GridGraph is even competitive with dis-
tributed graph systems. Figure 11 shows the performance
comparison between GridGraph using an i2.4xlarge in-

Figure 11: Performance comparison with PowerGraph
and GraphX.

stance (containing 16 hyperthread cores, 122GB RAM, 4
800GB SSDs, $3.41/h), versus PowerGraph and GraphX
on a cluster with 16 m2.4xlarge instances (each with 8
cores, 68.4GB RAM, 2 840GB HDDs, $0.98/h), using
the result from [28]. We can find that even single-node
disk based solutions can provide good enough perfor-
mance (note that we do edge streaming via direct I/O
in Figure 10) and significant reduction in cost ($3.41/h
vs. $15.68/h). Moreover, GridGraph is a very conve-
nient single-node solution to use and deploy, thus re-
ducing the effort that cluster-based solutions concerns
about. In fact, limited scaling is observed in distributed
graph engines ([28]) due to high communication over-
head relative to computation in many graph algorithms
while GridGraph can scale smoothly as the memory and
I/O bandwidth being increased.

We conclude that GridGraph is competitive even with
distributed systems when more powerful hardware is
available.

5 Related Work

While we have discussed GraphChi and X-Stream in
detail, there are other out-of-core graph engines using
alternative approaches. TurboGraph [9] manages adja-
cency lists in pages, issues on-demand I/O requests to
disks, and employs a cache manager to maintain fre-
quently used pages in memory to reduce disk I/O. It
is efficient for targeted queries like BFS while for ap-
plications that require global updates, the performance
might degrade due to frequent accesses to the large vec-
tor backed on disks. FlashGraph [34] implements a semi-
external memory graph engine which stores vertex states
in memory and adjacency lists on SSDs, and presents im-
pressive performance. Yet it lacks the ability to process
extremely large graphs of which vertices can not be fit
into memory. MMap [15] presents a simple approach
by leveraging memory mapping mechanism in operating
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systems by mapping edge and vertex data files in mem-
ory. It provides good programmability and is efficient
when memory is adequate, while may suffer from dras-
tic random writes when memory is not enough due to the
random vertex access pattern. These solutions require
a sorted adjacency list representation of graph, which
needs time-consuming preprocessing, and SSDs to effi-
ciently process random I/O requests. GraphQ [26] di-
vides graphs into partitions and uses user programmable
heuristics to merge partitions. It aims to answer queries
by analyzing subgraphs. PathGraph [31] uses a path-
centric method to model a large graph as a collection
of tree-based partitions. Its compact design in storage
allows efficient data access and achieves good perfor-
mance on machines with sufficient memory. Galois [18]
provides a machine-topology-aware scheduler, a prior-
ity scheduler and a library of scalable data structures,
and uses a CSR format of graphs in its out-of-core im-
plementation. GridGraph is inspired by these works on
out-of-core graph processing, such as partitioning, local-
ity and scheduling optimization, but is unique in its wide
applicability and hardware friendliness that only limited
resource is required and writes to disks are optimized.
This not only provides good performance, but also pro-
tects disks from worn-out, especially for SSDs.

There are many graph engines using shared memory
configurations. X-Stream [21] has its in-memory stream-
ing engine and uses a parallel multistage shuffler to fit
vertex data of each partition into cache. Ligra [23] is a
shared-memory graph processing framework which pro-
vides two very simple routines for mapping over vertices
and edges, inspiring GridGraph for the streaming inter-
face. It adaptively switches between two modes based
on the density of active vertex subsets when mapping
over edges, and is especially efficient for applications
like BFS. Polymer [32] uses graph-aware data allocation,
layout and access strategy that reduces remote memory
accesses and turns inevitable random remote accesses
into sequential ones. While GridGraph concentrates on
out-of-core graph processing, some of the techniques in
these works can be integrated to improve in-memory per-
formance further.

The 2D grid partitioning used in GridGraph is also
utilized similarly in distributed graph systems and ap-
plications [10, 28, 30] to reduce communication over-
head. PowerLyra [6] provides an efficient hybrid-cut
graph partitioning algorithm which combines edge-cut
and vertex-cut with heuristics that differentiate the com-
putation and partitioning on high-degree and low-degree
vertices. GridGraph uses grid partitioning to optimize
the locality of vertex accesses when streaming edges and
applies a novel 2-level hierarchical partitioning to adapt
to both in-memory and out-of-core situations.

6 Conclusion

In this paper, we propose GridGraph, an out-of-core
graph engine using a grid representation for large-scale
graphs by partitioning vertices and edges to 1D chunks
and 2D blocks respectively, which can be produced ef-
ficiently through a lightweight range-based shuffling. A
second logical level partitioning is applied over this grid
partitioning and is adaptive to both in-memory and out-
of-core scenarios.

GridGraph uses a new streaming-apply model that
streams edges sequentially and applies updates onto ver-
tices instantly. By streaming edge blocks in a locality-
friendly manner for vertices, GridGraph is able to ac-
cess the vertex data in memory without involving I/O
accesses. Furthermore, GridGraph could skip over un-
necessary edge blocks. As a result, GridGraph achieves
significantly better performance than state-of-the-art out-
of-core graph systems, such as GraphChi and X-Stream,
and works on both HDDs and SSDs. It is particularly
interesting to observe that in some cases, GridGraph is
even faster than mainstream distributed graph processing
systems that require much more resources.

The performance of GridGraph is mainly restricted
by I/O bandwidth. We plan to employ compression
techniques[5, 14, 24] on the edge grid to further reduce
the I/O bandwidth required and improve efficiency.
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Abstract

This paper introduces GraphQ, a scalable querying

framework for very large graphs. GraphQ is built on

a key insight that many interesting graph properties —

such as finding cliques of a certain size, or finding ver-

tices with a certain page rank — can be effectively com-

puted by exploring only a small fraction of the graph, and

traversing the complete graph is an overkill. The center-

piece of our framework is the novel idea of abstraction

refinement, where the very large graph is represented as

multiple levels of abstractions, and a query is processed

through iterative refinement across graph abstraction lev-

els. As a result, GraphQ enjoys several distinctive traits

unseen in existing graph processing systems: query pro-

cessing is naturally budget-aware, friendly for out-of-

core processing when “Big Graphs” cannot entirely fit

into memory, and endowed with strong correctness prop-

erties on query answers. With GraphQ, a wide range of

complex analytical queries over very large graphs can

be answered with resources affordable to a single PC,

which complies with the recent trend advocating single-

machine-based Big Data processing.

Experiments show GraphQ can answer queries in

graphs 4-6 times bigger than the memory capacity, only

in several seconds to minutes. In contrast, GraphChi, a

state-of-the-art graph processing system, takes hours to

days to compute a whole-graph solution. An additional

comparison with a modified version of GraphChi that ter-

minates immediately when a query is answered shows

that GraphQ is on average 1.6–13.4× faster due to its

ability to process partial graphs.

1 Introduction

Developing scalable systems for efficient processing of

very large graphs is a key challenge faced by Big Data de-

velopers and researchers. Given a graph analytical task

expressed as a set of user-defined functions (UDF), ex-

isting processing systems compute a complete solution

over the input graph. Despite much progress, computing

a complete solution is still time-consuming. For example,

using a 32-node cluster, it takes Preglix [5], a state-of-the-

art graph processing system, more than 2,500 seconds to

compute a complete solution (i.e., all communities in the

input graph) over a 70GB webgraph for a simple commu-

nity detection algorithm.

While necessary in many cases, the computation of

complete solutions — and the overhead of maintaining

them — seems an overkill for many real-world applica-

tions. For example, queries such as “find one path be-

tween LA and NYC whose length is ≤ 3,000 miles” or

“find 10 programmer communities in Southern Califor-

nia whose sizes are ≥ 1000” have many real-world us-

age scenarios e.g., any path whose length is smaller than

a threshold between two cities is acceptable for a navi-

gation system. Unlike database queries that can be an-

swered by filtering records, these queries need (iterative)

computations over graph vertices and edges. In this pa-

per, we refer to such queries as analytical queries. Fur-

thermore, it appears that many of them can be answered

by exploring only a small fraction of the input graph — if

a solution can be found in a subgraph of the input graph,

why do we have to exhaustively traverse the entire graph?

This paper is a quest driven by two simple questions:

given the great number of real-world applications that

need analytical queries, can we have a ground-up re-

design of graph processing systems — from the pro-

gramming model to the runtime engine — that can fa-

cilitate query answering over partial graphs, so that a

client application can quickly obtain satisfactory results?

If partial graphs are sufficient, can we answer analytical

queries on one single PC so that the client can be satisfied

without resorting to clusters?

GraphQ This paper presents GraphQ, a novel graph

processing framework for analytical queries. In GraphQ,

an analytical query has the form “find n entities from the

graph with a given quantitative property”, which is gen-

eral enough to express a large class of queries, such as

page rank, single source shortest path, community detec-

tion, connected components, etc. A detailed discussion

of GraphQ’s answerability can be found in §3. At its

core, GraphQ features two interconnected innovations:

• A simple yet expressive partition-check-refine

programming model that naturally supports pro-

grammable analytical queries processed through in-

cremental accesses to graph data

• A novel abstraction refinement algorithm to sup-

port efficient query processing, fundamentally de-

coupling the resource usage for graph processing

from the (potentially massive) size of the graph

1
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From the perspective of a GraphQ user, the very large

input graph can be divided into partitions. How parti-

tions are defined is programmable, and each partition on

the high level can be viewed as a subgraph that GraphQ

queries operate on. Query answering in GraphQ follows

a repeated lock-step check-refine procedure, until either

the query is answered or the budget is exhausted.

In particular, (1) the check phase aims to answer the

query over each individual partition without considering

inter-partition edges connecting these partitions. A query

is successfully answered if a check predicate returns true;

(2) if not, a refine process is triggered to identify a set of

inter-partition edges to add back to the graph. These re-

covered edges will lead to a broader scope of partitions to

assist query answering, and the execution loops back to

step (1). Both the check procedure (determining whether

the query is answered) and the refine procedure (deter-

mining what new inter-partition edges to include) are pro-

grammable, leading to a programming model suitable for

defining complex analytical queries with significant in-

graph computations.

Key to finding the most profitable inter-partition edges

to add in each step is a novel abstraction refinement algo-

rithm at the core of its query processing engine. Con-

ceptually, the “Big Graph” under GraphQ is summa-

rized into an abstraction graph, which can be intuitively

viewed as a “summarization overlay” on top of the com-

plete concrete graph (CG). The abstraction graph serves

as a compact “navigation map” to guide the query pro-

cessing algorithm to find profitable partitions for refine-

ment.

Usage Scenarios We envision that GraphQ can be used

in a variety of real-world data analytical applications. Ex-

ample applications include:

• Target marketing: GraphQ can help a business

quickly find a target group of customers with given

properties;

• Navigation: GraphQ can help navigation systems

quickly find paths with acceptable lengths

• Memory-constrained data analytics: GraphQ can

provide good-enough answers for analytical appli-

cations with memory constraints

Contributions To the best of our knowledge, our tech-

nique is the first to borrow the idea of abstraction re-

finement from program analysis and verification [8] to

process graphs, resulting in a query system that can

quickly find correct answers in partial graphs. While

there exists a body of work on graph query systems and

graph databases (such as GraphChi-DB [17], Neo4j[1],

and Titan[2]), the refinement-based query answering in

GraphQ provides several unique features unseen in exist-

ing systems.

First, GraphQ reflects a ground-up redesign of graph

processing systems in the era of “Big Data”: unlike the

predominant approach of graph querying where only sim-

ple graph analytics—those often involving SQL-like se-

mantics where graph vertices/edges are filtered by meet-

ing certain conditions or patterns [13, 14, 7], GraphQ

has a strong and general notion of “answerability” which

allows for a much wider range of analytical queries

to be performed with flexible in-graph computation (cf.

§3). Furthermore, the abstraction-guided search process

makes it possible to answer a query by exploring the

most relevant parts of the graph, while a graph database

treats all vertices and edges uniformly and thus can be

much less efficient.

Second, the idea of abstraction refinement in GraphQ

provides a natural data organization and data movement

strategy for designing efficient out-of-core Big Data sys-

tems. In particular, ignoring inter-partition edges (that

are abstracted) allows GraphQ to load one partition at

a time and perform vertex-centric computation on it in-

dependently of other partitions. The ability of explor-

ing only a small fraction of the graph at a time enables

GraphQ to answer queries over very large graphs on

one single PC, thus in compliance with the recent trend

that advocates single-machine-based Big Data process-

ing [16, 23, 29, 17]. While our partitions are conceptu-

ally similar to GraphChi’s shards (cf. §4), GraphQ does

not need data from multiple partitions simultaneously,

leading to significantly reduced random disk accesses

compared to GraphChi’s parallel sliding window (PSW)

algorithm.

Third, GraphQ enjoys a strong notion of budget aware-

ness: its query answering capability grows proportion-

ally with the budget used to answer queries. As the refine-

ment progresses, small partitions are merged into larger

ones and it is getting increasingly difficult to load a par-

tition into memory. Allowing a big partition to span be-

tween memory and disk is a natural choice (which is simi-

lar to GraphChi’s PSW algorithm). However, continuing

the search after the physical memory is exhausted will

involve frequent disk I/O and significantly slow down

query processing, rendering GraphQ’s benefit less obvi-

ous compared to whole-graph computation. Hence, we

treat the capacity of the main memory as a budget and

terminate GraphQ with an out-of-budget failure when a

merged partition is too big to fit into memory. There are

various trade-offs that can be explored by the user to tune

GraphQ; a more detailed discussion can be found at the

end of §2.

It is important to note that GraphQ is fundamentally

different from approximate computing [3, 30, 6], which

terminates the computation early to produce approximate

answers that may contain errors. GraphQ always pro-

duces correct answers for the user-specified query goals,

2
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Figure 1: An example graph, its abstraction graph, and the computation steps for finding a clique whose size is ≥5.

The answer of the query is highlighted.

but improves the computation scalability and efficiency

by finding a scope on the input graph that is sufficient to

answer a query.

Summary of Experimental Results Our experimen-

tal results show that GraphQ can answer queries in

the magnitude of seconds to hundreds of seconds for

graphs with several billions of edges. For example, over

the twitter-2010 graph, GraphQ quickly identified 64

large communities in 49 seconds while it took a state-

of-the-art system, GraphChi [16], 6.4 hours to com-

pute a whole-graph solution over the same graph. We

have also compared GraphQ with a modified version of

GraphChi that attempts to answer the same queries by

terminating immediately when a satisfiable solution is

found. The results demonstrate that GraphQ is, on av-

erage, 1.6–13.4× faster than this modified version due

to the reduced I/O and computation from the process-

ing of partial graphs. GraphQ is publicly available at

https://bitbucket.org/wangk7/graphq.

2 Overview and Programming Model

Background Common to graph processing systems,

the graph operated by GraphQ can be mathematically

viewed as a directed (sparse) graph, G = (V , E). A

value is associated with each vertex v ∈ V , indicating an

application-specific property of the vertex. For simplic-

ity, we assume vertex values are labeled from 1 to |V |.
Given an edge e of the form u → v in the graph, e is

referred to as vertex v’s in-edge and as vertex u’s out-

edge. The developer specifies an update(v) function,

which can access the values of a vertex and its neigh-

boring vertices. These values are fed into a function

f that computes a new value for the vertex. The goal

of the computation is to “iterate around” vertices to up-

date their values until a global “fixed-point” is reached.

This vertex-centric model is widely used in graph pro-

cessing systems, such as Pregel [20], Pregelix [5], and

GraphLab [18].

Figure 1 shows a simple directed graph that we will

use as a running example throughout the paper. For

each GraphQ query, the user first needs to find a re-

lated base application that performs whole-graph vertex-

centric computation. This is not difficult, since many of

these algorithms are readily available. In our example,

the base application is Maximal Clique, and the query

aims to find a clique whose size is no less than 5 (i.e.

goal) over the input graph.

GraphQ first divides the concrete graph in Figure 1 (a)

into three partitions — {1, 2, 3}, {4, 5, 6}, and {7, 8,

9} — a “pre-processing” step that only needs to be per-

formed once for each graph. When the query is submit-

ted, the goal of GraphQ is to use an abstraction graph

to guide the selection of partitions to be merged, hoping

that the query can be answered by merging only a very

small number of partitions. Initially, inter-partition edges

(shown as arrows with dashed lines) are disabled; they

will be gradually recovered.

Programming Model A sample program for answer-

ing the clique query can be found in Figure 2. Overall,

GraphQ is endowed with an expressive 2-tier program-

ming model to balance simplicity and programmability:

• First, GraphQ end users only need to write 2-3 lines

of code to submit a query. For example, the end user

writes lines 2-5, submitting a CliqueQuery to look

for Clique instances whose size is no fewer than 5

over the ExampleGraph.

• Second, GraphQ library programmers define how a

query can be answered through a flexible program-

ming model that fully supports in-graph computa-

tion. In the example, the clique query is defined

between lines 7-40, by extending the Query and

QueryResult classes in our library.

We expect regular GraphQ users — those who only

care about what to query but not how to query it — to pro-

gram only the first tier (between lines 2-5). The appeal

of the GraphQ programming model lies in its flexibility.

On one hand, the simplicity of the GraphQ first-tier inter-

face is on par with query languages for similar purposes

(such as SQL). On the other hand, for programmers con-

cerned with graph processing efficiency, GraphQ pro-

vides opportunities for full-fledged programming “under

the hood” at the second tier.

3



390 2015 USENIX Annual Technical Conference USENIX Association

1

2 / / end−u s e r

3 Graph g = new ExampleGraph ( ) ; / / A p a r t i t i o n e d graph

4 C l iqueQuery cq = new Cl iqueQuery ( g , 5 ) ;

5 L i s t<Cl ique> qr = cq . s ubmi t ( ) ;

6

7 / / l i b r a r y programmer

8 c l a s s Cl iqueQuery extends Query {
9 f i n a l Graph G; / / graph

10 f i n a l i n t N; / / goa l

11 f i n a l i n t M; / / max # o f r e s u l t s t o r e f i n e w i t h

12 f i n a l i n t K; / / max # o f p a r t i t i o n s t o merge

13 f i n a l i n t d e l t a ; / / t h e i n c over K a t each r e f i n e m e n t

14

15 L i s t<P a r t i t i o n > i n i t P a r t i t i o n s ( )

16 { re turn g . p a r t i t i o n s ; }
17

18 boolean check ( C l i q u e c ) {
19 i f ( c . s i z e ()>=N) { r e p o r t ( c ) ; re turn true ; }
20 }
21

22 L i s t<Abs t rac tE dge > r e f i n e ( C l i q u e c1 , C l i q u e c2 ) {
23 L i s t<Abs t rac tE dge> l i s t ;

24 foreach ( Ve r tex v i n c1 . v e r t i c e s ( ) )

25 foreach ( Ve r tex u i n c2 . v e r t i c e s ( ) )

26 A b s t r a c t E d g e ae = g . a b s t r a c t E d g e ( u , v ) ;

27 i f ( ae != n u l l ) { l i s t . add ( ae ) ; }
28 re turn l i s t ;

29 }
30

31 i n t r e s u l t T h r e s h o l d ( ) { re turn M; }
32 i n t p a r t i t i o n T h r e s h o l d ( ) { re turn K; }
33

34 C l iqueQuery ( Graph g , i n t n ) {
35 t h i s .G = g ; t h i s . N = n ;

36 }
37 }
38 c l a s s C l i q u e extends QueryRes u l t {
39 i n t r e f i n e P r i o r i t y ( ) { re turn s i z e ( ) ; }
40 i n t s i z e ( ) { . . . }
41 }

Figure 2: Programming for answering clique Queries.

Partitions Given a very large graph, one can specify

how it is partitioned using GraphQ parameters. A parti-

tion is both a logical and a physical concept. Logically,

a partition is a subgraph (connected component) of the

concrete graph. Physically, it is often aligned with the

physical storage unit of data, such as a disk file. In our

formulation where the graph vertices are labeled with

numbers from 1 to |V |, we select partitions as containing

vertices with continuous label numbers, and edges con-

necting those vertices in the concrete graph. Beyond this

mathematical formulation is an intuitive goal: if we use

labels 1 to |V | to mimic the physical sequence of vertex

storage, the partitions should be created to be as aligned

with physical storage as possible. Thanks to this design,

loading a partition is very efficient due to sequential disk

accesses with strong locality.

When a query is defined — such as CliqueQuery

— the programmer first decides what partitions should

be initially considered to compute local solutions

(e.g. cliques). This is supported by overriding the

initPartitions method of the Query class, as in line

16. In our example, this method selects all partitions

because we have no knowledge of whether and what

cliques exist in each partition initially. GraphQ loads

one partition into memory at a time and performs vertex-

centric computation on the partition to compute local

cliques independently of other partitions.

Observe that this does not contradict with our early dis-

cussion of incremental graph data processing: at the lo-

cal computation phase, all partition-based computations

are independent of each other. Therefore, when the data

for one partition is loaded, the data for previously loaded

partitions can be written back to disk, and at this phase

GraphQ does not need to hold data in memory for more

than one partition. Overall, this phase is very efficient be-

cause all inter-partition edges are ignored and there are

only a very small number of random disk accesses.

Abstraction Graph The abstraction graph (AG) sum-

marizes the concrete graph. Each abstract vertex in the

AG abstracts a set of concrete vertices and each abstract

edge connects two abstract vertices. An abstract edge

can have an abstract weight that abstracts the weights of

the actual edges it represents, which we have omitted in

this short example.

To see the motivation behind the design of AG, ob-

serve that inter-partition edges can scatter across the

partitions (i.e., disk files) they connect, and knowing

whether a concrete edge exists between two partitions

requires loading both partitions into memory and a lin-

ear scan of them, a potentially costly step with a large

number of disk accesses. As a “summarization” of the

concrete graph, the AG is much smaller in size and can

be always held in memory.

GraphQ first checks the existence of an abstract edge

on the AG: the non-existence of an abstract edge be-

tween two abstract vertices ū and v̄ guarantees the non-

existence of a concrete edge between any pair of concrete

vertices (u, v) abstracted by ū and v̄; hence, we can safely

skip the check of concrete edges. On the other hand, the

existence of an abstract edge does not necessarily imply

the existence of a concrete edge, and hence, the abstract

edge needs to be refined to recover the concrete edges it

represents.

The granularity of the AG is a design issue to be deter-

mined by the user. At one extreme, each partition can be

an abstract vertex in the AG. This very coarse-grained

abstraction may not be precise enough for GraphQ to

quickly eliminate infeasible concrete edges. At the other

extreme, a very fine-grained AG may take much space

and the computation over the AG (such as a lookup) may

take time. Since the AG is always in memory to provide

quick guidance, a rule of thumb is to allow the abstrac-

tion granularity (i.e., the number of concrete vertices rep-

resented by one abstract vertex) to be proportional to the

memory capacity.

Using parameters, the user can specify the ratio be-

tween the size of the AG and the main memory — the

4
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more memory a system has, the larger AG will be con-

structed by GraphQ to provide more precise guidance.

Figure 1 (b) shows the AG for the concrete graph in Fig-

ure 1 (a). The GraphQ runtime uses the simple interval

domain [9] to abstract concrete vertices — each abstract

vertex represents two concrete vertices that have consec-

utive labels. This simple design turns out to be friendly

for performance as well: each abstract edge represents

a set of concrete edges stored together in the partition

file; since refining an abstract edge needs to load its cor-

responding concrete edges, storing/loading these edges

together maximizes sequential disk accesses and data lo-

cality. A detailed explanation of the storage structure can

be found in §4.

An alternative route we decide not to pursue is to pro-

vide the user full programmability to construct their own

AGs. The issue at concern is correctness. Our design of

the abstraction graph is built upon the principled idea of

abstraction refinement, with correctness guarantees (§3).

The correctness is hinged upon that the AG is indeed a

“sound” abstraction of the concrete graph. We rely on

the GraphQ runtime to maintain this notion of sound ab-

straction.

Abstraction Refinement At the end of each local com-

putation (i.e., over a partition), GraphQ invokes the

check method of the Query object. The method returns

true if the query can be answered, and the result is re-

ported through the report method (see line 19). Query

processing terminates. If all local computations are com-

plete and all check invocations return false, GraphQ

tries to merge partitions to provide a larger scope for

query answering. Recall that in our initial partition def-

inition, all inter-partition edges have been ignored. The

crucial challenge of partition merging thus becomes re-

covering the inter-partition edges, a process we call ab-

straction refinement.

In GraphQ, the refinement process is guided by the

QueryResult — Clique in our example — from lo-

cal computations. The key insight is that the results

so far should offer clues on which partitions should be

merged at a higher priority. The “priority” here can

be customized by programmers through overriding the

refinePrioritymethod of class QueryResult. In the

clique query example here, the programmer uses the size

of the clique as the metric for priority (see line 39). Intu-

itively, merging partitions where larger cliques have been

discovered is more likely to reach the goal of finding a

clique of a certain size.

GraphQ next selects M (returned by

resultThreshold in line 31) results with the highest

priorities (i.e. largest cliques) for pairwise inspection.

For each pair of cliques resulting from different parti-

tions, the refine method (line 22) is invoked to verify

if there is any potential for the two input cliques to

combine into a larger clique. refine returns a list of

abstract edges that should be refined. The implementa-

tion of refine is provided by programmers, typically

involving the consultation of the AG. In our example, the

method returns a list of candidate abstract edges whose

corresponding concrete edges may potentially connect

vertices from the two existing cliques (in two partitions)

in order to form a larger clique.

Based on the returned abstract edges, GraphQ consults

the AG to find the concrete edges these abstract edges

represent. GraphQ then merges the partitions in which

these concrete edges are located. To avoid a large num-

ber of partitions to be merged at a time — that would

require the data associated all partitions to be loaded

into memory at the same time — programmers can set

a threshold specified by partitionThresold, in line

32. GraphQ adopts an iterative merging process: in

each pass, merging only happens when the refinement

leads to the merging of no more than K (returned by

partitionThresold) partitions. If the merged parti-

tions cannot answer the queries, GraphQ increases K by

δ (line 13) at each subsequent pass to explore more parti-

tions. This design enables GraphQ to gradually use more

memory as the query processing progresses.

GraphQ terminates query processing in one of the 3

scenarios: (1) the check method returns true, in which

case the query is answered; (2) all partitions are merged

in one, and the check method still returns false — a sit-

uation in which this query is impossible to answer; and

(3) a (memory) budget runs out, in which case GraphQ

returns the best QueryResults that have been found so

far. We will rigorously define this notion in §3.

Example Figure 1 (c) shows the GraphQ computa-

tional steps for answering the clique query. The three

columns in the table show the partitions considered in

the beginning of each iteration, the local maximal cliques

identified, and the abstract edges selected by GraphQ to

refine at the end of the iteration, respectively. Before

iteration #0, the user selects all the three partitions via

initPartitions. The vertex-centric computation of

these partitions identifies four local cliques {1, 2, 3}, {4,

6}, {5}, and {7, 8, 9}.

Since the check function cannot find a clique whose

size is ≥ 5, GraphQ ranks the four local cliques based

on their sizes (by calling refinePriority) and invokes

refine five times with the following clique pairs: ({1,

2, 3}, {7, 8, 9}), ({1, 2, 3}, {4, 6}), ({4, 6}, and {7, 8,

9}), ({5},{1, 2, 3}), ({5},{7, 8, 9}). For instance, for

input ({1, 2, 3}, {7, 8, 9}), no abstract edge exists on the

AG that connects any vertex in the first clique with any

vertex in the second. Hence, refine returns an empty

list.

For input ({1, 2, 3}, {4, 6}), however, GraphQ de-

tects that there is an abstract edge between every abstract

5
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vertex that represents {1, 2, 3} and every abstract ver-

tex that represents {4, 6}. The abstract edges connecting

these two cliques (i.e., a, b, and c) are then added into list

list and returned.

After checking all pairs of cliques, GraphQ obtains 6

lists of abstract edges, among which five span two parti-

tions and one spans three. Suppose K is 2 at this moment.

The one spanning three partitions is discarded. For the

remaining five lists, (a, b, c) is the first list returned by

refine (on input ({1, 2, 3}, {4, 6})). These three ab-

stract edges are selected and their refinement adds the fol-

lowing four concrete (inter-partition) edges back to the

graph: 4→2, 3→4, 1→5, and 2→6. The second itera-

tion repeats vertex-centric computation by considering a

merged partition {1, 2, 4, 5, 6}. When the partition is

processed, a new clique {1, 2, 3, 4, 6} is found. Func-

tion check finds that the clique answers the query; so it

reports the clique and terminates the process.

Programmability Discussions In addition to answer-

ing queries with user-specified goals, our programming

model can also support aggregation queries (min, max,

average, etc.). For example, to find the largest clique un-

der a memory budget, only minor changes are needed to

the CliqueQuery example. First, we can define a private

field called max to the class. Second, we need to update

the check method as follows:

if(c.size()>max)

{max=c.size(); return false;}

The observation here is that check should always re-

turn false. GraphQ will continue the refinement until the

(memory) budget runs out, and the result c aligns with

our intuition of being “the largest Clique under the bud-

get based on the user-specified refinement heuristics”, a

flavor of the budget-aware query processing.

GraphQ can also support multiplicity of results, such

as the top 30 largest cliques. This is just a variation of

the example above. Instead of reporting a clique c, the

CliqueQuery should maintain a “top 30” list, and use it

as the argument for report.

Trade-off Discussions It is clear that GraphQ provides

several trade-offs that the user can explore to tune its per-

formance. First, the memory size determines GraphQ’s

answerability. A higher budget (i.e. more memory) will

lead to (1) finding more entities with higher goals, or (2)

finding the same number of entities with the same goals

more quickly. Since GraphQ can be embedded in a data

analytical application running on a PC, imposing a mem-

ory budget allows the application to perform intelligent

resource management between GraphQ an other parts of

the system, obtaining satisfiable query answers while pre-

venting GraphQ from draining the memory.

Another tradeoff is defined by abstraction granularity,

that is, the ratio between the size of the AG and the mem-

ory size. The larger this ratio is, the more precise guid-

ance the AG provides. On the other hand, holding a very

large AG in memory could hurt performance by eclipsing

the memory that could have been allocated for data load-

ing and processing. Hence, achieving good performance

dictates finding the sweetspot.

3 Abstraction-Guided Query Answering

This section formally presents our core idea of applying

abstracting refinement to graph processing. In particular,

we rigorously define GraphQ’s answerability.

Definition 3.1 (Graph Query). A user query is a 5-tuple

(∆, φ , π , ⋄, g) that requests to find, in a directed graph

G = (VG,EG), ∆ entities satisfying a pair of predicates

�φ ,π ⋄g�. Definition predicate φ ∈Φ is a logical formula

(P(G)→ B) over the set of all G’s subgraphs that defines

an entity, π ∈ Π is a quantitative function (P(G) → R)

over the set of subgraphs satisfying φ , measuring the

entity’s size, and ⋄ is a numerical comparison operator

(e.g., ≥ or =) that compares the output of π with a user-

specified goal of the query g ∈ R.

This definition is applicable to a wide variety of user

queries. For example, for the clique query discussed in

§2, φ is the following predicate on the vertices and edges

of a subgraph S ⊆ G, defining a clique:

∀ v1,v2 ∈VS: ∃e ∈ ES: e = (v1,v2)∨ e = (v2,v1),
while π is a simple function that returns the number of

vertices |VS| in the subgraph. ⋄ and g are ≥ and 5, respec-

tively. From this point on, we will refer to φ and π as the

definition predicate and the size function, respectively.

Definition 3.2 (Monotonicity of the Size Function). A

query (∆, φ , π , ⋄, g) is GraphQ-answerable if π ∈ Π is

a monotone function with respect to operator ⋄: ∀S1 ∈
P(G),S2 ∈ P(G) : S2 ⊆ S1 ∧φ(S1)∧φ(S2) =⇒ π(S1)⋄
π(S2).

While the user can specify an arbitrary size function π
or goal g, π has to be monotone in order for GraphQ to

answer the query. More precisely, for any subgraphs S1

and S2 of the input graph G, if S2 is a subgraph of S1 and

they both satisfy the definition predicate φ , the relation-

ship between their sizes π(S1) and π(S2) is π(S1)⋄π(S2).
For example, if S2 is a clique with N vertices, and S1 is

a supergraph of S2 and also a clique, S1’s size must be

≥ N. Monotonicity of the size function implies that once

GraphQ finds a solution that satisfies a query at a certain

point, the solution will always satisfy the query because

GraphQ will only find better solutions in the forward ex-

ecution. It also matches well with the underlying vertex-

centric computation model that gradually propagates the

information of a vertex to distant vertices (i.e., which

has the same effect as considering increasingly large sub-

graphs).
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Definition 3.3 (Partition). A partition P of graph G is

a subgraph (VP, EP) of G such that vertices in VP have

contiguous labels [i, i + |VP|], where i ∈ I is the min-

imum integer label a vertex in VP has and |VP| is the

number of vertices of P. A partitioning of G produces

a set of partitions P1,P2, . . .Pk such that ∀ j ∈ [1,k− 1] :

maxv∈VPj
label(v)+1 = minv∈VPj+1

label(v). An edge e =

(v1,v2) is an intra-partition edge if v1 and v2 are in the

same partition; otherwise, e is an inter-partition edge.

Logically, each partition is defined by a label range,

and physically, it is a disk file containing the edges whose

targets fall into the range. The physical structure of a

partition will be discussed in §4.

Definition 3.4 (Abstraction Graph). An abstraction

graph (V̄ , Ē,α,γ) summarizes a concrete graph (V,E) us-

ing abstraction relation α: V → V̄ . The AG is a sound

abstraction of the concrete graph if ∀e = (v1,v2) ∈ E :

∃ē = (v̄1, v̄2)∈ Ē : v̄1, v̄2 ∈ V̄ ∧(v1, v̄1) ∈ α ∧(v2, v̄2) ∈ α .

γ: V̄ →V is a concretization relation such that (v̄,v) ∈ γ
iff (v, v̄) ∈ α .

α and γ form a monotone Galois connection [9] be-

tween G and AG (which are both posets). There are

multiple ways to define the abstraction function α . In

GraphQ, α is defined based on an interval domain [9].

Specifically, each abstract vertex v̄ has an associated in-

terval [i, j]; (v, v̄) ∈ α iff label(v) ∈ [i, j]. The primary

goal is to make concrete edges whose target vertices have

contiguous labels stay together in a partition file. To

concretize an abstract edge, GraphQ will only need se-

quential accesses to a partition file, thereby maximizing

locality and refinement performance. Different abstract

vertices have disjoint intervals. The length of the inter-

val is determined by a user-specified percentage r and

the maximum heap size M—the size of the AG cannot

be greater than r×M. The implementation details of the

partitioning and the AG construction can be found in §4.

Clearly, the AG constructed by the interval domain is a

sound abstraction of the input graph.

Lemma 3.5 (Edge Feasibility). If no abstract edge ex-

ists from v̄1 to v̄2 on the AG, there must not exist a con-

crete edge from v1 to v2 on the concrete graph such that

(v1, v̄1) ∈ α and (v2, v̄2) ∈ α .

The lemma can be easily proved by contradiction. It

enables GraphQ to inspect the AG first to quickly skip

over infeasible solutions.

Definition 3.6 (Abstraction Refinement). Given a sub-

graph S = (Vs, Es) of a concrete graph G = (V, E) and

its AG = (V̄ , Ē) of G, an abstraction refinement ⊑ on S

selects a set of abstract edges ē ∈ Ē and adds into Es all

such concrete edges e that e ∈ E \Es : (ē,e) ∈ α . An ab-

straction refinement of the form S ⊑ S′ produces a new

subgraph S′ = (V ′
s , E ′

s), such that Vs = V ′
s and Es ⊆ E ′

s. A

refinement is an effective refinement if Es ⊂ E ′
s.

The concretization function is used to obtain concrete

edges for a selected abstract edge. After an effective re-

finement, the resulting graph S′ becomes a (strict) super-

graph of S, providing a larger scope for query answering.

Lemma 3.7 (Refinement Soundness). An entity satisfy-

ing the predicates (φ , π ⋄ g) found in a subgraph S is

preserved by an abstraction refinement on S.

The lemma shows an important property of our anal-

ysis. Since our goal is to find ∆ entities, this property

guarantees that the entities we find in previous iterations

will stay as we enlarge the scope. The lemma can be eas-

ily proved by considering Definition 3.2: since the size

function π is monotone, if the predicate π(S) ⋄ g holds

in subgraph S, the predicate π(S′) ⋄ g must also hold in

subgraph S′ that is a strict supergraph of S. Because S′

contains all vertices and edges of S, the fact the defini-

tion predicate φ holds on S implies that φ also holds on

S′ (i.e., φ (S) =⇒ φ (S′)).

Definition 3.8 (Essence of Query Answering). Given an

initial subgraph S = (V , Es) composed of a set P of dis-

joint partitions ((V1, E1), . . ., (Vj, E j)) such that V =

V1 ∪ . . .∪Vj and Es = E1 ∪ . . .∪E j, as well as an AG

= (V̄ , Ē), answering a query (∆, φ , π , ⋄, g) aims to find a

refinement chain S ⊑∗ S′′ such that there exist at least ∆
distinct entities in S′′, each of which satisfies both φ and

π ⋄g.

In the worst case, S′′ becomes G and graph answer-

ing has (at least) the same cost as computing a whole-

graph solution. Each refinement step bridges multiple

partitions. Suppose we have a partition graph (PG) for

G where each partition is a vertex. The refinement chain

starts with a PG without edges (i.e., each partition is a

connected component), and gradually adds edges and re-

duces the number of connected components. Suppose

PGS is the PG for a subgraph S, ρ is a function that takes

a PG as input and returns the maximum number of par-

titions in a connected component of the PG, and each

initial partition has the (same) size η . We have the fol-

lowing definition:

Definition 3.9 (Budget-Aware Query Answering). An-

swering a query under a memory budget M aims to find

a refinement chain S ⊑∗ S′′ such that ∀ (S1 ⊑ S2) ∈ ⊑∗:

η ×ρ(PGS2
) ≤ M.

In other words, the number of (initial) partitions con-

nected by each refinement step must not exceed a thresh-

old t such that t ×η ≥ M. Otherwise, the next iteration

7
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would not have enough memory to load and process these

t partitions.

Theorem 3.10 (Soundness of Query Answering).

GraphQ either returns correct solutions or does not

return any solution if the vertex-centric computation is

correctly implemented.

Limitations Despite its practical usefulness, GraphQ

can only answer queries whose vertex update functions

are monotonic, while many real-world problems may

not conform to this property. For example, for machine

learning algorithms that perform probability propagation

on edges (e.g., belief propagation and the coupled EM

(CoEM)), the probability in a vertex may fluctuate during

the computation, preventing the user from formulating a

probability problem as GraphQ queries.

4 Design and Implementation

We have implemented GraphQ based on GraphChi [16],

a high-performance single-machine graph processing

system. GraphChi has both C++ and Java versions;

GraphQ is implemented on top of its Java version to

provide an easy way for the user to write UDFs. Our

implementation has an approximate of 5K lines of code

and is available for download on BitBucket. The pre-

processing step splits the graph file into a set of small

files with the same format, each representing a partition

(i.e., a vertex interval). We modify the shard construc-

tion algorithm in GraphChi to partition the graph. Sim-

ilarly to a shard in [16], each partition file contains all

in-edges of the vertices that logically belong to the parti-

tion; hence, edges stored in a partition file whose sources

do not belong to the partition are inter-partition edges.

The AG is constructed when the graph is partitioned.

To allow concrete edges (i.e., lines in each text file) rep-

resented by the same abstract edge to be physically lo-

cated together, we first sort all edges in a partition based

on the labels of their source vertices — it moves together

edges from contiguous vertices. Next, for each abstract

vertex (i.e., an interval), we sort edges that come from

this interval based on the labels of their target vertices —

now the concrete edges represented by the same abstract

edge are restructured to stay in a contiguous block of the

file. This is a very important handling and will allow effi-

cient disk accesses, provided that large graph processing

is often I/O dominated.

For example, for an abstract edge [40, 80] → [1024,

1268], its concrete edges are located physically in the

partition file containing the vertex range [1024, 1268].

The first sort moves all edges coming from [40, 80] to-

gether. However, among these edges, those going to

[1024, 1268] and those not are mixed. The second sort

moves them around based on their target vertices, and

thus, edges going to contiguous vertices are stored con-

tiguously. Although the interval length used in the ab-

straction is statically fixed (i.e., defined as a user parame-

ter), we do not allow an abstract vertex to represent con-

crete vertices spanning two partitions — we adjust the

abstraction interval if the number of the last set of ver-

tices in a partition is smaller than the fixed interval size.

Each abstract edge consists of the starting and ending

positions of the concrete edges it represents (including

the partition ID and the line offsets), as well as various

summaries of these edges, such as the number of edges,

and the minimum and maximum of their weights. The

AG is saved as a disk file after the construction. It will

be loaded into memory upon query answering. When an

(initial or merged) partition is processed, we modify the

parallel sliding window algorithm in GraphChi to load

the entire partition into memory. In GraphChi, a memory

shard is a partition being processed while sliding shards

are partitions containing out-edges for the vertices in the

memory shard. Since inter-partition edges are ignored,

GraphQ eliminates sliding shards and treats each parti-

tion p as a memory shard. The number of random disk

accesses at each step thus equals the number of initial

partitions contained in p.

The loaded data may include both enabled and dis-

abled edges; the disabled edges are ignored during pro-

cessing. Initially, all inter-partition edges are disabled.

Refining an abstract edge loads the partitions to be

merged and enables the inter-partition edges it represents

before starting the computation. We treat the refinement

process as an evolving graph, and modify the incremen-

tal algorithm in GraphChi to only compute and propagate

values from the newly added edges.

A user-specified ratio r is used to control the size of

the AG. Ideally, we do not want the size of the AG to

exceed r× the memory size. However, this makes it very

difficult to select the interval size (i.e. abstraction granu-

larity) before doing partitioning, because the size of the

AG is related to its number of edges and it is unclear how

this number is related to the interval size before scanning

the whole graph. To solve the problem, we use the fol-

lowing formula to calculate the interval size i: i =
size(G)
M×r

,

under a rough estimation that if the number of vertices

is reduced by i times, the number of edges (and thus the

size of the graph) is also reduced by i times. In practice,

the size of the AG built using i is always close to M× r,

although it often exceeds the threshold.

5 Queries and Methodology

We have implemented UDFs for five common graph al-

gorithms shown in Table 1. The pre-processing time

is a one-time cost, which does not contribute to the ac-

tual query answering time. For PageRank and Path,

GraphQ does not need to compute local results; what par-
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Name Query GraphQ to Find Init RefinePriority GraphChi Time GraphQ Pre-proc. Time

PageRank ∆ vertices whose pageranks are ≥ N none X-percentages (↑) 1754, 2880 secs. 120+0, 200+0 secs.

Clique ∆ cliques whose sizes are ≥ N all clique sizes (↑) 5.5, 50.2 hrs. 400+500, 800+1060 secs.

Community ∆ communities whose sizes are ≥ N all community sizes (↑) 3.4, 6.4 hrs. 150+200, 300+400 sec.

Path ∆ paths whose lengths are ≤ N none path lengths (↓) ?, ? 200+0, 400+0 secs.

Triangle ∆ vertices whose edge triangles are ≥ N all triangle counts (↑) 1990, 3194 secs. 200+300, 400+600 secs.

Table 1: A summary of queries performed in the evaluation: reported are the names and forms of the queries, initial

partition selection, priority of partition merging, whole-graph computation times in GraphChi for the uk-2005 [4] and

the twitter-2010 [15] graphs, and the time for pre-processing them; ↑ (↓) means the higher (lower) the better; each

pre-processing time has two components a + b, where a represents the time for partitioning and AG construction, and

b represents the time for initial (local) computation; “?” means the whole-graph computation cannot finish in 48 hours.

Name Type |V | |E| #IP #MP δ

uk-2005 [4] webgraph 39M 0.75B 50 30 10

twitter-2010 [15] social network 42M 1.5B 100 50 10

Table 2: Our graph inputs: reported in each section

are their names, types, numbers of vertices, numbers of

edges, numbers of initial partitions (IP), numbers of max-

imum partitions allowed to be merged before out of bud-

get (MP), and numbers of partitions increased at each

step (δ , cf. line 13 in Figure 2).

titions to be merged can be determined simply based on

the structure of each partition. We experimented GraphQ

with a variety of graphs. Due to space limitations, this

section reports our results with the two largest graphs,

shown in Table 2. Since the focus of this work is not to

improve the whole-graph computation, we have not run

other distributed platforms.

PageRank Answering PageRank queries is based

on the whole-graph PageRank algorithm used widely

to rank pages in a webgraph. The algorithm is not

strictly monotone, because vertices with few incoming

edges would give out more than they gain in the begin-

ning and thus their pageranks values would drop in the

first few iterations. However, after a short “warm-up”

phase, popular pages would soon get their values back

and their pageranks would continue to grow until the con-

vergence is reached. To get meaningful pagerank values

to query upon, we focus on the top 100 vertices reported

by GraphChi (among many million vertices in a graph).

Their pageranks are very high and these vertices repre-

sent the pages that a user is interested in and wants to

find from the graph.

Focusing on the most popular vertices also allows

us to bypass the non-monotonic computation problem—

since the goals are very high, it is only possible to an-

swer a query during monotonic phase (after the non-

monotonic warm-up finishes). The refinement logic we

implemented favors the merging of partitions that can

lead to a larger X-percentage. The X-percentage of a par-

tition is defined as the percentage of the outgoing edges

of the vertex with the largest degree that stay in the parti-

tion. It is a metric that measures the completeness of the

edges for the most popular vertex in the partition. The

higher the X-percentage is, the quicker it is for the pager-

ank computation to reach a high value and thus the eas-

ier for GraphQ to find popular vertices. PageRank does

not need a local phase—from the AG, we directly iden-

tify a list of partitions whose merging may yield a large

X-percentage.

Clique is based on the Maximal Clique algorithm that

computes a maximal clique for each vertex in the graph.

Since the input is a directed graph, a set of vertices forms

a clique if for each pair of vertices u and v, there are two

edges between them going both directions. GraphChi

does not support variable-size edge and vertex data, and

hence, we used 10 as the upper-bound for the size of a

clique we can find. In other words, we associated with

each edge and vertex a 44-byte buffer (i.e., 10 vertices

take 40 bytes and used an additional 4-byte space in the

beginning to save the actual length). Due to the large

amount of data swapped between memory and disk, the

whole-graph computation over twitter-2010 took more

than 2 days.

Path is based on the SSSP algorithm and aims to find

paths with acceptable length between a given source and

destination. Similarly to Clique, we associated a (fixed-

length) buffer with each edge/vertex to store the short-

est path for the edge/vertex. Since none of our input

graphs have edge weights, we assigned each edge a ran-

dom weight between 1 and 5. However, the whole-graph

computation could not finish processing these graphs in

2 days. To generate reasonable queries for GraphQ, we

sampled each graph to get a smaller graph (that is 1/5

of the original graph) and ran the whole-graph SSSP al-

gorithm to obtain the shortest paths between a specified

vertex S (randomly chosen) and all other vertices in the

sample graph. If there exists a path between S and an-

other vertex v in the small graph, a path must also exist

in the original graph. The SSSP computation over even

the small graphs took a few hours.

Community is based on a community detection algo-

rithm in which a vertex chooses the most frequent label

9
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of its neighbors as its own label. Triangle uses a trian-

gle counting algorithm that counts the number of edge

triangles incident to each vertex. This problem is used in

social network analysis for analyzing the graph connec-

tivity properties [27]. For both applications, we obtained

their whole-graph solutions and focus on the 100 largest

entities (i.e., communities and vertices with most trian-

gles). Community and Triangle favor the merging of

partitions that can yield large communities and triangle

counts, respectively.

6 Evaluation

Test Setup All experiments were performed on a nor-

mal PC with one Intel Core i5-3470 CPU (3.2GHz) and

10GB memory, running Ubuntu 12.04. The JVM used

was the HotSpot Client VM (build 24.65-b04, mixed

mode, sharing). Some of our results for GraphChi may

look different from those reported in [16] due to differ-

ent versions of GraphChi used as well as different hard-

ware configurations. We have conducted three sets of

experiments. First, we performed queries with various

goals and ∆ to understand the query processing capability

of GraphQ. Second, we compared the query answering

performance between GraphQ and GraphChi-ET (i.e.,

acronym for “GraphChi with early termination”) — a

modified version of GraphChi that terminates immedi-

ately when a query is answered. Third, we varied the ab-

straction granularity to understand the impact of abstrac-

tion refinement. The first and third sets of experiments

ran GraphQ on the PC’s embedded 500GB HDD to un-

derstand the query performance on a normal PC while a

Samsung 850 250GB SSD was used for the second set to

minimize the I/O costs, enabling a fair comparison with

GraphChi-ET.

6.1 Query Efficiency

In this experiment, the numbers of initial partitions for

the two graphs are shown in Table 2. The maximum

heap size is 8GB, and the ratio between the AG size

and the heap size is 25%. For the two graphs, the max-

imum number of partitions that can be merged before

out of budget is 30 and 50. For each algorithm, GraphQ

first performed local computation on initial partitions (as

specified by the UDF initPartitions). Next, we gen-

erated queries whose goals were randomly chosen from

different value intervals. Queries with easy goals/small

∆ were asked earlier than those with more difficult goal-

s/larger ∆, so that the computation results for earlier

queries could serve a basis for later queries (i.e., incre-

mental computation). This explains why answering a dif-

ficult query is sometimes faster than answering an easy

query (as shown later in this section).

PageRank To better understand the performance,

we divided the top 100 vertices (with the highest pager-

ank values from the whole-graph computation) into sev-

eral intervals based on their pagerank values. Each inter-

val is thus defined by a pair of lower- and upper-bound

pageranks. We generated 20 queries for each interval,

each requesting to find ∆ vertices with the goal being

a randomly generated value that falls into the interval.

For each interval reported in Table 3, all 20 queries were

successfully answered. The average running time for an-

swering these queries over uk-2005 is shown in the Time

sections.

∆ (a) Top20 (b) 20-40 (c) 40-60 (d) 60-100

Time Par Time Par Time Par Time Par

1 56.1 20 5.6 10 3.0 10 4.3 10

2 32.2 20 5.0 10 5.1 10 6.6 10

4 120.0 20 27.0 10 19.2 10 21.6 10

8 350.1 30 182.9 30 54.3 20 41.9 20

Table 3: GraphQ performance for answering PageRank

queries over uk-2005; each section shows the perfor-

mance of answering queries on pagerank values that be-

long to an interval in the top 100 vertex list; reported in

each section are the number of entities requested to find

(∆), the average query answering time in seconds (Time),

and the number of partitions merged when a query is an-

swered (Par).

The largest ∆ we have tried is 8—GraphQ ran out

of budget for most of the queries when a larger ∆ was

used. When ∆ ≤ 4, GraphQ could successfully answer

all queries even including those from the top 10 cate-

gory. For twitter-2010, GraphQ always failed on queries

whose goals were selected from the top 10 category. Oth-

erwise, it successfully answered all queries. For example,

the average time for answering 8 queries whose goals are

from the top 10-20 category is 754.7 seconds.

Clique The biggest clique found in twitter-2010 (by

the 52-hour whole-graph computation) has 6 vertices and

there are totally 66 of them. The (relatively small) size of

the maximum clique is expected because a clique in a di-

rected graph has a stronger requirement: bi-directional

edges must exist between each pair of vertices. The

largest ∆ we have tried is 64. Table 4 shows GraphQ’s

performance as we changed ∆; the running time reported

is the average time across answering 20 queries in each

interval. GraphQ could easily find 8 of the 66 6-clique (in

823 seconds), but the time increased significantly when

we asked for 16 of them. GraphQ could find no more

than 26 6-cliques before running out of budget. If a

user is willing to sacrifice her goal and look for smaller

cliques (say 5-cliques), GraphQ can find 64 of them in

460 seconds (by merging only 10 partitions).

Community The whole-graph computation of com-

munity detection took 1.5 hours on uk-2005 and 6.4

hours on twitter-2010. Similarly to PageRank, we

10
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∆ (a) Size = 6 (b) Size = 5 (c) Size = 4 (d) Size = 3

Time Par Time Par Time Par Time Par

1 98.3 10 2.0 10 2.0 10 2.0 10

2 248.1 10 2.0 10 2.3 10 2.0 10

4 489.5 20 2.1 10 2.0 10 8.3 10

8 823.9 20 51 10 2.1 10 8.2 10

16 5960.3 30 49.1 10 2.1 10 9.6 10

32 - 50 144.1 10 2.8 10 16.4 10

64 - 50 460.0 10 128.3 10 20.0 10

Table 4: GraphQ’s performance for answering Clique

queries over twitter-2010; a “-” sign means some queries

in the group could not be answered.

focused on the top 100 largest communities and asked

GraphQ for communities of different sizes (that belong

to different intervals on the top 100 list). For each in-

terval, we picked 20 random sizes to run GraphQ and the

average running time over uk-2005 is reported in Table 5.

The whole-graph result shows that there are a few (less

than 10) communities that are much larger than the other

communities on the list. These communities have many

millions of vertices and none of them could be found by

GraphQ before the budget ran out. Hence, Table 5 does

not include any measurement for queries with a size that

belongs to the top 10 interval.

∆ (a) Top10-20 (b) 20-40 (c) 40-60 (d) 60-100

Time Par Time Par Time Par Time Par

1 8.2 10 4.9 10 4.3 10 4.5 10

2 51.8 10 34.5 10 20.1 10 14.2 10

4 142.1 20 63.3 10 27.1 10 25.4 10

8 292.3 20 160.6 20 56.9 10 35.5 10

16 563.4 30 236.7 30 196.7 20 97.7 20

32 - 30 - 30 - 30 332.8 30

Table 5: GraphQ’s performance for answering Commu-

nity queries over uk-2005; each section reports the aver-

age time for finding communities whose sizes belong to

different intervals in the top 100 community list.

Interestingly, we found that GraphQ performed much

better over twitter-2010 than uk-2005: for twitter-

2010, GraphQ could easily find (in 162.1 seconds) 256

communities from the top 10-20 range by merging only

20 partitions as well as 1024 communities (in 188.2 sec-

onds) from the top 20-40 range by merging 20 partitions.

This is primarily because twitter-2010 is a social net-

work graph in which communities are much “better de-

fined” than a webgraph such as uk-2005.

Path We inspected the whole-graph solution for each

sample graph (cf. §5) and found a set t of vertices v such

that the shortest path on the small graph between S (the

source) and each v is between 10 and 25 and contains at

least 5 vertices. We randomly selected 20 vertices u from

t and queried GraphQ for paths between S and u over

the original graph. Based on the length of their shortest

paths on the small graph, we used 10, 15, 20, and 25 as

the goals to perform queries (recall that each edge has

an artificial length between 1 and 5). The average time

to answer these queries on twitter-2010 is reported in

Figure 6.

∆ (a) 10 (b) 15 (c) 20 (d) 25

Time Par Time Par Time Par Time Par

1 59.5 10 57.6 10 58.1 10 45.2 10

2 55.5 20 53.2 20 49.1 20 65.0 10

4 230.1 50 111.8 20 110.7 20 115.6 20

Table 6: GraphQ’s performance for answering Path

queries over twitter-2010.

Our results for Path clearly demonstrate the bene-

fit of GraphQ: it took the whole-graph computation 6.2

hours to process a graph only 1/5 as big as twitter-2010,

while GraphQ can quickly find many paths of reasonable

length in the original twitter graph.

Triangle A similar experiment was performed for

Triangle (as shown in Figure 7): we focused on the top

100 vertices with the largest numbers of edge triangles.

GraphQ could find only two vertices when a value from

the top 10 triangle count list was used as a query goal.

However, if the goal is chosen from the top 10-20 inter-

val, GraphQ can easily find 16 vertices (which obviously

include some top 10 vertices). It is worth noting that

GraphQ found these vertices by combining only 10 par-

titions. This is easy to understand—edge triangles are

local to vertices; computing them does not need to prop-

agate any value on the graph. Hence, vertices with large

triangle counts can be easily found as long as (most of)

their own edges are recovered.

∆ (a) Top10-20 (b) 20-40 (c) 40-60 (d) 60-100

Time Par Time Par Time Par Time Par

1 3.3 10 3.0 10 2.9 10 4.5 10

2 3.2 10 3.6 10 3.9 10 7.6 10

4 3.4 10 3.2 10 3.1 10 8.7 10

8 2.8 10 3.3 10 3.0 10 19.6 10

16 2.9 10 2.9 10 3.2 10 313.3 10

Table 7: GraphQ’s performance for answering Triangle

queries over uk-2005.

The measurements in Table 3–7 also demonstrate the

impact of the budget. For twitter-2010, merging 50,

30, 20, and 10 partitions requires, roughly, 6GB, 3.6GB,

2.4GB, and 1.2GB of memory, while, for uk-2005, the

amounts of memory needed to merge 30, 20, and 10 par-

titions are 5.5GB, 4GB, and 2GB, respectively. From

these measurements, it is easy to see what queries can

and cannot be answered given a memory budget.

11
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(a) PageRank (b) Clique (c) Community

Figure 3: Ratios between the running times of GraphChi-ET and GraphQ over twitter-2010: (a) PageRank: Max =

3.0, Min = 0.5, GeoMean = 1.6; (b) Clique: Max = 48.3, Min = 4.1, GeoMean = 13.4; and (c) Community: Max =

7.5, Min = 1.4, GeoMean = 4.2.

System Time(s) Comp. Comp.Perc. I/O IO.Perc.

Q:PR 520.0 147.6 28.4% 372.4 71.6%

ET:PR 301.0 69.0 22.9% 232.0 77.1%

Q:Clique 637.0 548.5 86.1% 88.5 13.9%

ET:Clique 3208.0 2857.1 89.1% 351.0 10.9%

Q:Comm 81.5 25.6 31.4% 55.9 68.6%

ET:Comm 112.0 45.0 40.2% 68.0 60.7%

Table 8: A breakdown of time on computation and I/O

for GraphQ and GraphChi-ET for PageRank, Clique,

and Comm; measurements were obtained by running the

most difficult queries from Figure 3.

6.2 Comparison to GraphChi-ET

GraphChi-ET is a modified version of GraphChi in

which we developed a simple interface that allows the

user to specify the ∆ and goal for a query and then

run GraphChi’s whole-graph computation to answer the

query – the computation is terminated immediately when

the query is answered. Figures 3 shows performance

comparisons between GraphQ and GraphChi-ET over

twitter-2010 on three algorithms using SSD. A similar

trend can also be observed on the other two algorithms;

their results are omitted due to space limitations.

Note that for PageRank, GraphQ outperforms

GraphChi-ET in all cases except when ∆ = 8. In this

case, GraphQ is about 2× slower than GraphChi-ET be-

cause GraphQ needs to merge 50 partitions and is al-

ways close to running out of budget. The memory pres-

sure is constantly high, making in-memory computation

less efficient than GraphChi-ET’s PSW algorithm. For

all the other benchmarks, GraphQ runs much faster than

GraphChi-ET. An extreme case is when ∆ = 1 for Clique,

as shown in Figure 3 (b), GraphChi-ET found a 3-clique

in 159.5 seconds, while GraphQ successfully answered

the query only in 3.3 seconds. This improvement stems

primarily from GraphQ’s ability of prioritizing partitions

and intelligently enlarging the processing scope.

Table 8 shows a detailed breakdown of running time

on I/O and computation for answering the most difficult

queries from Figure 3 (i.e., those represented by points

at the bottom right corner of each plot). These queries

have the longest running time, which enables an easier

comparison. Clearly, GraphQ reduces both computation

and I/O because it loads and processes fewer partitions.

However, the percentages of I/O and computation in the

total time of each query are roughly the same for GraphQ

and GraphChi-ET.

6.3 Impact of Abstraction Refinement

To understand the impact of abstraction refinement, we

varied the abstraction granularity by using 0.5GB, 1GB,

and 2GB of the heap to store the AG. The numbers of ab-

stract vertices for each partition corresponding to these

sizes are a = 25, 50, and 100, respectively, for twitter-

2010. We fixed the budget at 50 partitions (which con-

sume 6GB memory), so that we could focus on how per-

formance changes with the abstraction granularity. We

have also tested GraphQ without abstraction refinement:

partitions are randomly selected to merge. These experi-

ments were conducted for all the algorithms; due to space

limitations, we show our results only for PageRank.

Figure 4 compares performance under different ab-

straction granularity for ∆ = 1, 4, and 8. While con-

figuration a = 100 always yields the best performance,

its running time is very close to that of a = 50. It is

interesting to see that, in many cases (especially when

∆ = 4), a = 25 yields worse performance than random

selection. We carefully inspected this AG and found that

the abstraction level is so high that different abstract ver-

tices have similar degrees. The X-percentages for differ-

ent partitions computed based on the AG are also very

similar, and hence, partitions are merged almost in a se-

quential manner (e.g., partitions 1–10 are first merged,

followed by 10–20, etc.). In this case, the random selec-

tion has a higher probability of finding the appropriate

partitions to merge.

12
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Figure 4: GraphQ’s running time (in seconds) for answering PageRank queries over twitter-2010 using different

abstraction graphs: Random means no refinement is used and partitions are merged randomly; a = i means a partition

is represented by i abstract vertices.

Despite its slow running time, random selection found

all vertices requested by the queries. This is because, in

the twitter graph, the edges of high-degree vertices are

reasonably evenly distributed in different partitions of the

graph. A similar observation was made for Triangle. But

for the other three algorithms, their dependence on the

AG is much stronger. For example, GraphQ could not

answer any path query without the AG. As another ex-

ample, no cliques larger than 3 could be found by using

random selection.

7 Related Work

Graph Analytics A large body of work [16, 24, 19,

18, 5, 20, 26, 12] exists on efficient processing of large

graphs. Existing work focuses on developing either new

programming models [5, 18, 20] or algorithms that can

reduce systems cost of graph processing such as commu-

nication overhead, random disk accesses, or GC effort.

GraphChi [16], X-Stream [23], and GridGraph [29] are

systems that perform out-of-core graph processing on a

single machine. GraphQ differs from all these systems in

its way to analyze partial graphs.

Work from [22] proposes Galois, a lightweight infras-

tructure that uses a rich programming model with co-

ordinated and autonomous scheduling to support more

efficient whole-graph computation. Unlike the existing

systems that compute whole-graph solutions, GraphQ

employs abstraction refinement to answer various kinds

of analytical queries, facilitating applications that only

concern small portions of the graph. There also ex-

ists work on graph databases such as Neo4j [1] and

GraphChiDB [17]. They focus primiarily on enabling

quick lookups on edge and vertex properties, while

GraphQ focuses on quickly answering analytical queries.

Approximate Queries There is a vast body of

work [13, 14, 7] on providing approximate answers to

relational queries. These techniques use synopses like

samples [13], histograms [14], and wavelets [7] to effi-

ciently answer database queries. However, they have lim-

ited applicability to graph queries. Graph compression/-

clustering/summarization [21, 28, 10, 25, 11] has been

extensively studied in the database community. These

techniques focus on (lossy and lossless) algorithms to

summarize the input graph so that graph queries can be

answered efficiently on the summary graph. Unlike the

graph compression techniques that trade off graph accu-

racy for efficiency, GraphQ never answers queries over

a summary graph, but instead, it only uses the summary

graph to rule out infeasible solutions and always resorts

to the concrete graph to find a solution. In addition, the

graphs used to evaluate the aforementioned systems are

relatively small—they only have a few hundreds of ver-

tices and edges, which can be easily loaded into memory.

In comparison, the graphs GraphQ analyzes are at the

scale of several billions of edges and cannot be entirely

loaded into memory.

8 Conclusion

This paper presents GraphQ, a graph query system based

on abstraction refinement. GraphQ divides a graph into

partitions and merges them with the guidance from a

flexible programming model. An abstraction graph is

used to quickly rule out infeasible solutions and identify

mergeable partitions. GraphQ uses the memory capac-

ity as a budget and tries its best to find solutions before

exhausting the memory. GraphQ is the first graph pro-

cessing system that can answer analytical queries over

partial graphs, opening up new possibilities to scale up

Big Graph processing with small amounts of resources.
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Abstract
The nature of congestion feedback largely governs the
behavior of congestion control. In datacenter networks,
where RTTs are in hundreds of microseconds, accurate
feedback is crucial to achieve both high utilization and
low queueing delay. Proposals for datacenter congestion
control predominantly leverage ECN or even explicit in-
network feedback (e.g., RCP-type feedback) to minimize
the queuing delay. In this work we explore latency-based
feedback as an alternative and show its advantages over
ECN. Against the common belief that such implicit feed-
back is noisy and inaccurate, we demonstrate that latency-
based implicit feedback is accurate enough to signal a
single packet’s queuing delay in 10 Gbps networks.

DX enables accurate queuing delay measurements
whose error falls within 1.98 and 0.53 microseconds us-
ing software-based and hardware-based latency measure-
ments, respectively. This enables us to design a new
congestion control algorithm that performs fine-grained
control to adjust the congestion window just enough to
achieve very low queuing delay while attaining full utiliza-
tion. Our extensive evaluation shows that 1) the latency
measurement accurately reflects the one-way queuing de-
lay in single packet level; 2) the latency feedback can
be used to perform practical and fine-grained congestion
control in high-speed datacenter networks; and 3) DX
outperforms DCTCP with 5.33x smaller median queueing
delay at 1 Gbps and 1.57x at 10 Gbps.

1 Introduction
The quality of network congestion control fundamentally
depends on the accuracy and granularity of congestion
feedback. For the most part, the history of congestion
control has largely been about identifying the “right” form
of congestion feedback. From packet loss and explicit
congestion notification (ECN) to explicit in-network feed-
back [1, 2], the pursuit for accurate and fine-grained feed-
back has been central tenet in designing new congestion
control algorithms. Novel forms of congestion feedback

have enabled innovative congestion control behaviors that
formed the basis of a number of flexible and efficient
congestion control algorithms [3, 4], as the requirements
for congestion control diversified [5].

With the advent of datacenter networking, identifying
and leveraging more accurate and fine-grained feedback
mechanisms have become even more crucial [6]. Round
trip times (RTTs), which represent the interval of the
control loop, are few hundreds of microseconds, where
as TCP is designed to work in the wide area network
(WAN) with hundreds of milliseconds of RTTs. Preva-
lence of latency-sensitive flows in datacenters (e.g., Parti-
tion/Aggregate workloads) requires low latency while the
end-to-end latency is dominated by in-network queuing
delay [6]. As a result, proposals for datacenter congestion
control predominantly leverage ECN (e.g., DCTCP [6]
and HULL [7]) or explicit in-network feedback (e.g.,
RCP-type feedback [2]), to minimize the queuing delay
and the flow completion times.

This paper takes a relatively unexplored path of identi-
fying a better form of feedback for datacenter networks.
In particular, this paper explores the prospect of using
network latency as congestion feedback in the datacen-
ter environment. We believe latency can be a good form
of congestion feedback in datacenters for a number of
reasons: (i) by definition, it includes all queuing delay
throughout the network, and hence is a good indicator
for congestion; (ii) a datacenter is typically owned by
a single entity who can enforce all end hosts to use the
same latency-based protocol, effectively removing poten-
tial source of errors originating from uncontrolled traffic;
and (iii) finally, latency-based feedback does not require
any switch support.

Although latency-based feedback has been previously
explored in WAN [8, 9], the datacenter environment is
very different, posing unique requirements that are diffi-
cult to address. Datacenters have much higher bandwidth
(10 Gbps to even 40 Gbps) at the end host and very low
latency (few hundreds of microseconds) in the network.

1
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This makes it difficult to measure the queuing delay of
individual packets for a number of reasons: (i) I/O batch-
ing at the end host, which is essential for high throughput,
introduces large measurement error (§2). (ii) Measuring
queuing delay requires high precision because a single
MSS packet introduces only 0.3 (1.2) microseconds of
queuing delay in 40GbE (10GbE) networks. As a result,
the common belief is that latency measurement might be
too noisy to serve as reliable congestion feedback [6, 10].

On the contrary, we argue that it is possible to accu-
rately measure the queuing delay at the end-host, so that
even a single packet queuing delay is detectable. Realiz-
ing this requires solving several design and implementa-
tion challenges. First, even with very accurate hardware
measurement, bursty I/O (e.g., DMA bursts) leads to in-
accurate delay measurements. Second, ACK packets on
the reverse path may be queued behind data packets and
add noise to the latency measurement. To address these
issues, we leverage a combination of recent advances in
software low latency packet processing [11, 12] and hard-
ware technology [13] that allows us to measure queuing
delay accurately.

Such accurate delay measurements enable a more fine-
grained control loop for datacenter congestion control.
In particular, we envision a fine-grained feedback con-
trol loop achieves near zero-queuing with high utilization.
Translating latency into feedback control to achieve high-
utilization and low queuing is non-trivial. We present DX,
a latency based congestion control that addresses these
challenges. DX performs window adaptation to achieve
low queuing delay (as low as that of HULL [7] and 6.6
times smaller than DCTCP), while achieving 99.9% uti-
lization. Moreover it provides advantages over recent
works in that it does not require any switch modifications.

To summarize, our contributions in this paper are the
followings: (i) novel techniques to accurately measure
in-network queuing delay based on end-to-end latency
measurements; (ii) a congestion control logic that exploits
latency-based feedback to achieve just a few packets of
queuing delay and high utilization without any form of in-
network support; and (iii) a prototype that demonstrates
the feasibility and its benefits in our testbed.

2 Accurate queuing delay measurement
Latency measurement can be inaccurate for many reasons
including variability in end-host stack latency, NIC queu-
ing delay, and I/O batching. In this section, we describe
several techniques to eliminate such sources of errors.
Our goal is to achieve a level of accuracy that can dis-
tinguish even a single MSS packet queuing at 10 Gbps,
which is 1.2 µs. This is necessary to target near zero
queuing as congestion control should be able to back off
even when a single packet is queued.

Before we introduce our solutions to each source of

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

C
D

F

Round-trip time (μs)

Total range: 710μs 

Interquartile range: 111μs 

Figure 1: Round-trip time measured in kernel

Source of error Elimination technique

End-host network stack
(∼ 100µs) Exclude host stack delay

I/O batching
& DMA bursts

(tens of µs)

Burst reduction
& error calibration

Reverse path queuing
(∼ 100µs)

Use difference
in one-way latency

Clock drift
(long term effect)

Frequent base delay
update

Table 1: Sources of errors in latency measurement and
our techniques for mitigation.

error, we first show how noisy the latency measurement is
without any care. Figure 1 shows the round trip time mea-
sured by the sender’s kernel when saturating a 10 Gbps
link; we generate TCP traffic using iperf [14] on Linux
kernel. the sender and the receiver are connected back
to back, so no queueing is expected in the network. Our
measurement shows that the round-trip time varies from
23 µs to 733 µs, which potentially gives up to 591 pack-
ets of error. The middle 50% of RTT samples still exhibit
wide range of errors of 111 µs that corresponds to 93
packets. These errors are an order of magnitude larger
than our target latency error, 1.2 µs.

Table 1 shows four sources of measurement errors and
their magnitude. We eliminate each of them to achieve
our target accuracy (∼1µsec).

Removing host stack delay: End-host network stack
latency variation is over an order of magnitude larger
than our target accuracy. Our measurement shows about
80µs standard deviation, when the RTT is measured in the
Linux kernel’s TCP stack. Thus, it is crucial to eliminate
the host processing delay in both a sender and a receiver.

For software timestamping, our implementation choice
eliminates the end host stack delay at the sender as we
timestamp packets right before the TX, and right after

2
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Figure 2: Timeline of timestamp measurement points
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Figure 3: H/W timestamped inter-packet gap at 10 Gbps

the RX on top of DPDK [12]. Hardware timestamping
innately removes such delay.

Now, we need to deal with the end-host stack delay at
the receiver. Figure 2 shows how DX timestamps packets
when a host sends one data packet and receives back an
ACK packet. To remove the end host stack delay from the
receiver, we simply subtract the t3 − t2 from t4 − t1. The
timestamp values are stored and delivered in the option
fields of the TCP header.
Burst reduction: TCP stack is known to transmit packets
in a burst. The amount of burst is affected by the win-
dow size and TCP Segmentation Offloading (TSO), and
ranges up to 64 KB. Burst packets affect timestamping
because all packets in a TX burst get the almost the same
timestamp, and yet they are received by one by one at the
receiver. This results in an error as large as 50µs.

To eliminate packet bursts, we use a software token
bucket to pace the traffic at the link capacity. The to-
ken bucket is a packet queue and drained by polling in
SoftNIC [15].

At each poll, the number of packets drained is calcu-
lated based on the link rate and the elapsed time from the
last poll. The upper bound is 10 packets, which is enough
to saturate 99.99% of the link capacity even in 10 Gbps
networks. We note that our token bucket is different from
TCP pacing or the pacer in HULL [7] where each and
every packet is paced at the target rate; our token bucket
is simply implemented with very small overhead. In addi-
tion, we keep a separate queue for each flow to prevent
the latency increase from other flows’ queue build-ups.
Error calibration: Even after the burst reduction, pack-
ets can be still batched for TX as well as RX. Interestingly,
we find that even hardware timestamping is subject to the

N bytes

N bytes

t1

t2
N bytes

N bytes

t1

t2’

t2’ = max(t2, t1 + N / C(link capacity))

time time

Figure 4: Example delay calibration for bursty packet
reception
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queuing delay:               (-3) – (-4) = 1

Figure 5: One-way queuing delay without time synchro-
nization

noise introduced by packet bursts due to its implementa-
tion. We run a simple experiment where sending a traffic
near line rate 9.5 Gbps from a sender to a receiver con-
nected back to back. We measure the inter packet gap
using hardware timestamps, and plot the results in Fig-
ure 3. Ideally, all packets should be spaced at 1.23µs. As
shown in the figure, a large portion of the packet gaps
of TX and RX falls below 1.23µs. The packet gaps of
TX are more variable than that of RX, as it is directly af-
fected by I/O batching, while RX DMA is triggered when
a packet is received by the NIC. The noise in the H/W
is caused by the fact that the NIC timestamps packets
when it completes the DMA, rather than timestamping
them when the packets are sent or received on the wire.
We believe this is not a fundamental problem, and H/W
timestamping accuracy can be further improved by minor
changes in implementation.

In this paper, we employ simple heuristics to reduce
the noise by accounting for burst transmission in software.
Suppose two packets are received or transmitted in the
same batch as in Figure 4. If the packets are spaced with
timestamps whose interval is smaller than what the link
capacity allows, we correct the timestamp of the latter
packet to be at least transmission delay away from the for-
mer packet’s timestamp. In our measurement at 10Gbps,
68% of the TX timestamp gaps need such calibration.

One-way queuing delay: So far, we have described tech-
niques to accurately measure RTT. However, RTT in-
cludes the delay on the reverse path, which is another
source of noise for determining queuing on the forward
path. A simple solution to this is measuring one-way
delay which requires clock synchronization between two
hosts. PTP (Precision Time Protocol) enables clock syn-
chronization with sub-microseconds [16]. However it
requires hardware support and possibly switch support to

3



406 2015 USENIX Annual Technical Conference USENIX Association

remove errors from queuing delay. It also requires peri-
odic synchronization to compensate clock drifts. Since
we are targeting a microsecond level of accuracy, even a
short term drift could affect the queuing delay measure-
ment. For these reasons, we choose not to rely on clock
synchronization.

Our intuition is that unlike one-way delay, queuing de-
lay can be measured simply by subtracting the baseline
delay (skewed one-way delay with zero queuing) from
the sample one-way delay even if the clocks are not syn-
chronized. For example, suppose a clock difference of
5 seconds, as depicted in Figure 5. When we measure
one-way delay from A to B, which takes one second prop-
agation delay (no queuing), the one-way delay measured
would be -4 seconds instead of one second. When we
measure another sample where it takes 2 seconds due to
queuing delay, it would result in -3 seconds. By subtract-
ing -4 from -3, we get one second queuing delay.

Now, there are two remaining issues. First is obtain-
ing accurate baseline delay, and second is dealing with
clock drifts. The base line can be obtained by picking the
minimum one-way delay amongst many samples. The
frequency of zero queuing being measured depends on the
congestion control algorithm behavior. Since we target
near zero-queuing, we observe this every few RTTs.
Handling clock drift: A standard clock drifts only 40
nsecs per msec [17]. This means that the relative error
between two measurements (e.g., base one-way delay
and sample one-way delay) taken from two clocks during
a millisecond can only contain tens of nanoseconds of
error. Thus, we make sure that base one-way delay is
updated frequently (every few round trip times). One last
caveat with updating base one-way delay is that clock
drift differences can cause one-way delay measurements
to continuously increase or decrease. If we simply take
minimum base one-way delay, it causes one side to update
its base one-way delay continuously, while the other side
never updates the base delay because its measurement
continuously increases. As a workaround, we update
the base one-way delay when the RTT measurement hits
the new minimum or re-observe the current minimum;
RTT measurements are not affected by clock drift, and
minimum RTT implies no queueing in the network. This
event happens frequently enough in DX, and it ensures
that clock drifts do not cause problems.

3 DX: Latency-based Congestion Control
The ability to accurately measure the switch queue length
from end-hosts enables new opportunities. In particu-
lar, DX leverages its power for finer-grained congestion
control.

We present a congestion control algorithm for data-
centers that targets near zero queueing delay based on
implicit feedback, without any form of in-network sup-

port. Because latency feedback signals the amount of
excessive packets in the network, it allows senders to
calculate the maximum number of packets to drain from
the network while achieving full utilization. This section
presents the basic mechanisms and design of our new
congestion control algorithm, DX. Our target deployment
environment is datacenters, and we assume that all traffic
congestion is controlled by DX, similar to the previous
work [3, 5–7, 10].

DX is a window-based congestion control algorithm.
DX’s congestion avoidance follows the popular Additive
Increase Multiplicative Decrease (AIMD) rule. The key
difference from TCP (e.g., TCP Reno) is its congestion
avoidance algorithm. DX uses the queueing delay to make
a decision on whether to increase or decrease congestion
window in the next round at every RTT. Zero queueing
delay indicates that there is still more room for packets
in the network, so the window size is increased by one at
a time. On the other hand, any positive queueing delay
means that a sender must decrease the window.

DX updates the window size using the formula below:

new CWND =




CWND+1, if Q = 0

CWND× (1− Q
V
), if Q > 0,

(1)

where Q represents the latency feedback, that is, the av-
erage queueing delay in the current window, and V is a
self-updated coefficient of which role is critical in our
congestion control.

When Q > 0, DX decreases the window proportional
to the current queueing delay. The amount to decrease
should be just enough to drain the currently queued pack-
ets not to affect utilization. An aggressive decrease in the
congestion window will cause the network utilization to
drop below 100%. For DX, the exact amount depends
on the number of flows sharing the bottleneck because
the aggregate sending rate of these flows should decrease
to drain the queue. V is the coefficient that accounts for
the number of competing flows. We drive the value of V
using the analysis below.

We denote the link capacity (packets / sec) as C, the
base RTT as R, single-packet transmission delay as D,
the number of flows as N, and the window size and the
queueing delay of flow k at time t as Wk

(t) and Qk
(t),

respectively. Without loss of generality, we assume at
time t the bottleneck link fully utilized and the queue
size is zero. We also assume that their behaviors are
synchronized to derive a closed-form analysis and verify
the results using simulations and testbed experiments. At
time t, because the link is fully utilized and the queuing
delay is zero, the sum of the window size equals to the
bandwidth delay product C ·R:
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N

∑
k=1

Wk
(t) =C ·R (2)

Since none of the N flows experiences congestion, they
all increase their window size by one at time t +1:

N

∑
k=1

Wk
(t+1) =C ·R+N (3)

Now all the senders observe a positive queueing delay,
and they respond by decreasing the window size using
the multiplicative factor, 1−Q/V , as in (1). As a result,
at time t + 2, we expect fewer packets in the network;
we want just enough packets to fully saturate the link
and achieve zero queuing delay in the next round. We
calculate the total number of packets in the network (in
both the link and the queues) at time t +2 from the sum
of window size of all the flows.

N

∑
k=1

Wk
(t+2) =

N

∑
k=1

Wk
(t+1)(1− Qk

(t+1)

V
) (4)

Assuming every flow experiences maximum queueing
delay N ·D in the worst case, we get:

N

∑
k=1

Wk
(t+2) =

N

∑
k=1

Wk
(t+1)(1− N ·D

V
)

= (C ·R+N)(1− N ·D
V

) (5)

We want total number of in-flight packets at time t +2
to equal to the bandwidth delay product:

(C ·R+N)(1− N ·D
V

) =C ·R (6)

Solving for V results in:

V =
N ·D

(1− C·R
C·R+N )

(7)

Among the variables required to calculate V, the only
unknown is N, which is the number of concurrent flows.
The number of flows can be estimated from the sender’s
own window size because DX achieves fair-share through-
put at steady state. For notational convenience, we denote
Wk

(t+1) as W ∗ and rewrite (3) as:

N

∑
k=1

Wk
(t+1) = N ×W ∗ =C ·R+N ⇔ N =

C ·R
W ∗ −1

Using (5) and replacing D, single-packet transmission
delay, with (1/C), we get:

V =
R ·W ∗

W ∗ −1
(8)

In calculating V, the sender only needs to know the
based RTT, R, and the previous window size W ∗. No
additional measurement is required. We do not need
to rely on external configuration or parameter settings
either, unlike the ECN-based approaches. Even if the link
capacity in the network varies across links, it does not
affect our calculation of V .

4 Implementation
We have implemented DX in two parts: latency measure-
ment in DPDK-based NIC driver and latency-based con-
gestion control in the Linux’s TCP stack. This separation
provides a few advantages: (i) it measures latency more
accurately than doing so in the Linux Kernel; (ii) legacy
applications can take advantage of DX without modi-
fication; and (iii) it separates the latency measurement
from the TCP stack, and hides the differences between
hardware implementations, such as timestamp clock fre-
quencies or timestamping mechanisms. We present the
implementation of software- and hardware-based latency
measurements and modifications to the kernel TCP stack
to support latency feedback.

4.1 Timestamping and delay calculation
We measure four timestamp values as shown in section 2
Figure 2: t1 and t2 are the transmission and reception time
of a data packet, and t3 and t4 are the transmission and
reception time of a corresponding ACK packet.
Software timestamping: To eliminate host processing
delay, we perform TX timestamping right before pushing
packets to the NIC, and RX timestamping right after the
packets are received, at the DPDK-based device driver.
We use rdtsc to get CPU cycles and transform this into
nanoseconds timescales. We correct timestamps using
techniques described in §2. All four timestamps must be
delivered to the sender to calculate the one-way delay and
the base RTT. We use TCP’s option fields to relay t1, t2,
and t3 (§4.2).

To calculate one-way delay, the DX receiver stores a
mapping from expected ACK number to t1 and t2 when
it receives a data packet. It then puts them in the corre-
sponding ACK along with the ACK’s transmission time
(t3). The memory overhead is proportional to the arrived
data of which the corresponding ACK has not been sent
yet. The memory overhead is negligible as it requires
store 8 bytes per in-flight packet. In the presence of de-
layed ACK, not all timestamps are delivered back to the
sender, and some of them are discarded.
Hardware timestamping: We have implemented
hardware-based timestamping on Mellanox ConnectX-
3 using a DPDK-ported driver. Although the hardware
supports RX/TX timestamping for all packets, its driver
did not support TX timestaming. We have modified the
driver to timestamp all RX/TX packets.
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The NIC hardware delivers timestamps to the driver
by putting the timestamps in the ring descriptor when it
completes DMA. This causes an issue with the previous
logic to carry t1 in the original data packet. To resolve
this, we store mapping of expected ACK number to the t1
at the sender, and retrieve this when ACK is received.
LRO handling: Large Receive Offload (LRO) is a widely
used technique for reducing CPU overhead on the receiver
side. It aggregates received TCP data packets into a large
single TCP packet and passes to the kernel. It is cru-
cial to achieve 10 Gbps or beyond in today’s Linux TCP
stack. This affects DX in two ways. First, it makes the
TCP receiver generate fewer number of ACKs, which in
turn reduces the number of t3 and t4 samples. Second,
even though t1 and t2 are acquired before LRO bundling
at the driver, we cannot deliver all of them back to the
kernel TCP stack due to limited space in the TCP option
header. To work around the problem, for each ACK that
is processed, we scan through the previous t1 and t2 sam-
ples, and deliver average one-way delay with the sample
count. In fact, instead of passing all timestamps to the
TCP layer, we only passes one-way delay t2 - t1 and RTT
((t4 − t1)− (t3 − t2))
Burst mitigation: As shown in § 2, burstiness from I/O
batching incurs timestamping errors. To control bursti-
ness, we implement a simple token bucket with burst
size of MTU and rate set to link capacity. SoftNIC [15]
does polling on the token bucket to draw packets and
passes them to the timestamping module or the NIC. If
the polling loop takes longer than the transmission time
of a packet, the token bucket emits more than one packet,
but limits the number of packets to keep up with link
capacity.

4.2 Congestion control
We implement DX congestion control algorithm in the
Linux 3.13.11 kernel. We add DX as a new TCP option
that consumes 14 bytes of additional TCP header. The
first 2 bytes are for the option number and the option
length required by the TCP option parser. The remaining
12 bytes are divided into three 4 byte spaces and used for
storing timestamps and/or an ACK number.

Most of modifications are made in the tcp ack() func-
tion in TCP stack. This is triggered when an ACK packet
is received. An ACK packet carries one-way delay and
RTT in the header that are pre-calculated by the DPDK-
based device driver. For each round trip time, the received
delay samples are averaged and used for new CWND cal-
culation. The current implementation takes the average
one-way delay observed during the last round trip.
Practical considerations: In real-world networks, a tran-
sient increase in queueing delay Q does not always mean
network congestion. Reacting to wrong congestion sig-
nals results in low link utilization. There are two sources

of error: measurement noise and instant queueing due to
packet bursts. Although we have shown that our latency
measurement has a low standard deviation up to about a
microsecond, it can still trigger undesirable window re-
duction as DX reacts to a positive queueing delay whether
large or small. On the other hand, instant queueing can
happen with even very small number of packets. For
example, if two packets arrive at the switch at the ex-
actly same moment, one of them will be served after the
first packet’s transmission delay, hence positive queueing
delay.

To tackle such practical issues, we come up with two
simple techniques. First, we use headroom when deter-
mining congestion; DX does not decrease window size
when Q < headroom.

Second, to be robust against transient increase in delay
measurements, we use the average queueing delay during
an RTT period. In an ideal network without packet bursts,
the maximum queueing delay is a good indication of
excess packets. In real networks, however, taking the
maximum is easily affected by instant queueing. Taking
the minimum removes the burstiness most effectively, but
it detects congestion only when all the packets in the
window experience positive queueing delay. Hence we
choose the average to balance them out.

Note that DCTCP, a previous ECN-based solution, also
suffers from bursty instant queueing and requires higher
ECN threshold in practice than theoretic calculation [6].

5 Evaluation
Throughout the evaluation, We answer three main ques-
tions:

• Can DX obtain the accuracy of a single packet’s
queuing delay in high-speed networks?

• Can DX achieve minimal queuing delay while
achieving high utilization?

• How does DX perform in large scale networks with
realistic workloads?

By using testbed experiments, we show that our noise
reduction techniques are effective and queuing delay can
be measured with an accuracy of a single MSS packet at
10 Gbps. We evaluate DX against DCTCP and verify that
it reduces queuing in the switch up to five times.

Next, we use ns-2 packet level simulation to conduct
more detailed analysis and evaluate DX in large-scale with
realistic workload. First, we verify the DX’s effectiveness
by looking at queuing delay, utilization and fairness. We
then quantify the impact of measurement errors on DX to
evaluate its robustness. Finally, we perform large-scale
evaluation to compare DX’s overall performance against
the state of the art: DCTCP [6] and HULL [7].
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Figure 7: Effect of calibration in H/W timestamped inter-
packet gap at 10 Gbps

5.1 Accuracy of queuing delay in testbed
For testbed experiments, we use Intel 1 GbE/10 GbE
NICs for software timestamping and Mellanox ConnectX-
3 40 GbE NIC for hardware timestamping; the Mellanox
NIC is used in 10 Gbps mode due to the lack of 40 GbE
switches.
Effectiveness of noise reduction techniques: To quan-
tify the benefit of each technique, we apply the techniques
one by one and measure RTT using both software and
hardware. Two machines are connected back to back,
and we conduct RTT measurement at 10 Gbps link. We
plot the standard deviation in Figure 6. Ideally, the RTT
should remain unchanged since there is no network queue-
ing delay. In software-based solution, we reduce the mea-
surement error (presented as standard deviation) down
to 1.98 µs by timestamping at DPDK and applying burst
control and calibration. Among the techniques, burst con-
trol is the most effective, cutting down the error by 23.8
times. In hardware solution, simply timestamping at NIC
achieves comparable noise with all techniques applied in
the software solution. After inter-packet interval calibra-
tion, the noise drops further down to 0.53 µs, less than
half of a single packet’s queueing delay at 10 Gbps, which
is within our target accuracy.
Calibration of H/W timestamping: We look further
into how calibration affects the accuracy of hardware
timestamping. Figure 7 shows the CDF of inter packet
gap measurements before and after calibration for both
RX and TX. The calibration effectively removes the inter
packet gap samples smaller than link transmission delay
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Figure 9: Accuracy of queuing delay measurement

which originally took up 68% for TX and 32% for RX.
Overall RTT measurement accuracy improvement:
Now, we look at how much overall improvements we
made on the accuracy of RTT measurement. We plot
the CDF of RTT measurement for our technique using
hardware and RTT measured in the Kernel in Figure 8.
The total range of RTT has decreased by 62 times, from
710 µs to 11.38 µs. The standard deviation is improved
from 80.7 µs to 0.53 µs by two orders of magnitude, and
falls below a single packet queuing at 10 Gbps.
Verification of queuing delay: Now that we can mea-
sure RTT accurately, the remaining question is whether it
leads to accurate queuing delay estimation. We conduct a
controlled experiment where we have a full control over
the queuing level. To create such scenario, we saturate a
port in a switch by generating full throttle traffic from one
host, and inject a MTU-sized ICMP packet to the same
port at fixed interval from another host. This way, we
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increase the queuing by a packet at fixed interval, and we
measure the queuing statistics from the switch to verify
our queuing delay measurement.

Figure 9 shows the time series of queuing delay mea-
sured by DX along with the ground truth queue occupancy
measured at the switch (marked as red squares). We use
software and hardware timestamping for 1 Gbps and 10
Gbps, respectively. Every time a new ping packet enters
the network, the queueing delay increases by one MTU
packet transmission delay: 12 µs at 1 Gbps and 1.2 µs at
10 Gbps. The queue length retrieved from the switch also
matches our measurement result. The result at 10 Gbps
seems noisier than at 1 Gbps due to the smaller transmis-
sion delay; note that the scale of Y-axis is different in two
graphs.

Overall, we observe that our noise reduction techniques
can effectively eliminate the sources of errors and result
in accurate queuing delay measurement.

5.2 DX congestion control in testbed
Using the accurate queueing delay measurements, we run
our DX prototype with three servers in our testbed; two
nodes are senders and the other is a receiver. We use
iperf [14] to generate TCP flows for 15 seconds. For com-
parison, we run DCTCP in the same topology. The ECN
marking threshold for DCTCP is set to the recommended
value of 20 at 1 Gbps and 65 at 10 Gbps [6]. During the
experiment, the switch queue length is measured every 20
ms by reading the register values from the switch chipset.
We first present the result at 1 Gbps bottleneck link in
Figure 10a. In both protocols, two senders saturate the
bottleneck link with fair-share throughput. The queue
length is measured in bytes and converted into time.

We observe that DX consistently reduces the switch
queue length compared to that of DCTCP. The average
queueing delay of DX, 37.8 µs, is 4.85 times smaller than
that of DCTCP, 183.4 µs. DX shows 5.33x improvement
in median queue length over DCTCP (3 packets for DX
and 16 packets for DCTCP). DCTCP’s maximum queue
length goes up to 24 packets, while DX peaks at 8 packets.

We run the same experiment with 10 Gbps bottleneck.
For 10 Gbps, we additionally run DX with hardware
timestamp using Mellanox ConnectX-3 NIC. Figure 10b
shows the result. DX (HW) denotes hardware timestamp-
ing, and DX (SW) denotes software timestamping. DX
(HW) decreases the average queue length by 1.67 times
compared to DCTCP, from 43.4 µs to 26.0 µs. DX (SW)
achieves 31.8 µs of average queuing delay. The result
also shows that DX effectively reduces the 99th-percentile
queue length by a factor of 2 with hardware timestamp-
ing; DX (HW) and DX (SW) achieve 52 packets and 38
packets respectively while DCTCP achieves 78 packets.

To summarize, latency feedback is effective in main-
taining low queue occupancy than ECN feedback, while
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Figure 10: Queue length comparison of DX against
DCTCP in Testbed
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Figure 11: Impact of latency noise to headroom and queue
length

saturating the link. DX achieves 4.85 times smaller av-
erage queue size at 1 Gbps and 1.67 times at 10 Gbps
compared to DCTCP. DX reacts to congestion much
earlier than DCTCP and reduces the congestion window
to the right amount to minimize the queue length while
achieving full utilization. DX achieves the lowest queue-
ing delay among existing end-to-end congestion controls
with implicit feedback that do not require any switch
modifications,

In the next section, we also show that DX is even com-
parable to HULL, a solution that requires in-network sup-
port and switch modification.

5.3 Large-scale simulation
In this section, we run DX, DCTCP, and HULL in simu-
lation to observe the performance in larger-scale environ-
ment.
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Figure 12: Queueing delay and utilization of HULL, DCTCP, and DX

First, we run ns-2 simulation using a dumbbell topology
with 10 Gbps link capacity. Before the main simulation,
we evaluate the impact of latency noise to the headroom
size and average queue length. We generate latency noise
using normal distribution with varying standard deviation.
The noise level is multiples of 1.2 µs, single packet’s
transmission delay. As the simulated noise level increases,
we need more headroom for full link utilization. Figure 11
shows the required headroom for full utilization and the
resulting queue length in average. We observe that even if
the noise becomes as large as 6 µs, DX can sustain noise
error by simply increasing headroom size followed by the
same amount of increase in queue length. Note that the
standard deviation of our hardware timestamping is only
0.53 µs.

For scalability test, we now vary the number of simulta-
neous flows from 10 to 30 as queuing delay and utilization
are correlated with it; the number of senders has a direct
impact on queueing delay as shown in DCTCP [6]. We
measure the queuing delay and utilization, and plot them
in Figure 12.
Queueing delay: Many distributed applications with
short flows are sensitive to the tail latency as the slowest
flow that belongs to a task determines the completion time
of the task [18]. Hence, we look at the 99th percentile
queuing delay as well as the average queueing delay. On
average, DX achieves 6.6x smaller queueing delay than
DCTCP with ten senders, and slightly higher queuing de-
lay than HULL. At 99th percentile, DX even outperforms
HULL by 1.6x to 2.2x. The reason that DX achieves such
low queuing is because of the immediate reaction to the
queuing whereas both DCTCP and HULL uses weighted
averaging for reducing congestion window size that takes
multiple round trip times.
Utilization: DX achieves 99.9% of utilization which is
comparable to DCTCP, but with much smaller queuing.
HULL sacrifices utilization to reduce the queuing delay
achieving about 90% of the bottleneck link capacity. We
note that low queueing delay of DX does not sacrifice the
utilization.
Fairness and throughput stability: To evaluate the
throughput fairness, we generate 5 identical flows in the
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Figure 13: Fairness of five flows with DCTCP and DX

10 Gbps link one by one with 1 second interval and stop
each flow after 5 seconds of transfer. In Figure 13, we
see that both protocols offer fair throughput to exiting
flows at each moment. One interesting observation is
that DX flows have more stable throughput than DCTCP
flows. This implies that DX provides higher fairness than
DCTCP in small time scale. We compute the standard de-
viation of throughput to quantify the stability; 268 Mbps
for DCTCP and 122 Mbps for DX.

To understand the performance of DX in a large-scale
data center environment, we perform simulations with
realistic topology and traffic workload. The network con-
sists of 192 servers and 56 switches that are connected
as a 3-tier fat tree; there are 8 core switches, 16 aggrega-
tion switches, and 32 top-of-rack switches. All network
links have 10 Gbps bandwidth, and the path selection is
done by ECMP routing. The network topology we use is
similar to that of HULL [7]. Once the simulation starts,
the flow generator module selects a sender and a receiver
randomly and starts a new flow. Each new flow is gener-
ated following Poisson process to produce 15% load at
the edge. We run simulation until we have 100,000 flows
started and finished. To test realistic workload, we choose
flow size according to empirical workload reported from
real-world data centers. We use two workload data: web
search [6] and data mining [19].

Web search workload: The web search workload mostly
contains small and medium-sized flows from a few KB
to tens of MB; more than 95% of total bytes come from
the flow smaller than 20MB, and the average flow size is
654KB [20]. In Figure 14, we present the flow comple-
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Figure 14: Flow completion time of search workload

0.059
0.026 0.023

0.459

0.15

0.077

0

0.1

0.2

0.3

0.4

0.5

DCTCP HULL DX

F
C

T
 (

m
s)

Avg 99th

(a) 0KB-10KB

0.191 0.098 0.084

1.658

0.837

0.498

0

0.5

1

1.5

2

DCTCP HULL DX

F
C

T
 (

m
s)

Avg 99th

(b) 10KB-100KB

1.745 1.238 0.995

27.184
25.424

20.377

0

5

10

15

20

25

30

DCTCP HULL DX

F
C

T
 (

m
s)

Avg 99th

(c) 100KB-10MB

130.13 170.33 156.558

2821.282

3478.742
3239.785

0

1000

2000

3000

4000

DCTCP HULL DX

F
C

T
 (

m
s)

Avg 99th

(d) 10MB-

Figure 15: Flow completion time of data mining workload

tion time (FCT) in four flow-size groups: (0KB,10KB),
[10KB,100KB), [100KB,10MB), and [10MB,∞).

For the flows smaller than 10KB, DX significantly re-
duces the 99th percentile FCT; it is 4.9x smaller than
DCTCP and 1.9x smaller than HULL. DX also achieves
minimal flow completion time in the 10KB-100KB group.

In larger flow size group, the performance of DX falls
between DCTCP and HULL. DX achieves 7.7% lower
average flow completion time compared to HULL and
20.9% higher than DCTCP for flows of size 10 MB and
greater. This is because when ACK packets from other
flows share the same bottleneck link, the queuing delay
increases slightly. As a result, DX senders respond to the
increased queuing delay. This is a side effect of targeting
zero queueing. Because ACK packets are small and often
piggy-backed on data packets we believe this is not a
serious problem, but leave this as future work.

Data mining workload: The data mining workload is
comprised of tiny and large-sized flows from hundreds of
bytes to 1GB. The flow size is highly skewed that 80%
of flows are smaller than 10KB [20] so 95% of bytes
come from flows larger than 30MB; the average flow size
is 7,452KB. The flow completion time of data mining
workload is presented in Figure 15.

The performance improvement of DX is more outstand-
ing for data minining workload than for search workload.
In the three flow groups up to 10MB, DX flows finish early
in every case. The biggest benefit comes from the small-
est flow group as tail FCT is 6.0x smaller than DCTCP
and 1.9x than HULL. For the largest flow group, DX
suffers the same problem from the search workload but
still shows shorter completion time than HULL’s.

6 Discussion

NIC support for latency measurements: Current com-
modity NICs’ support for timestamping is primarily for
IEEE 1588 PTP, a hardware-based time synchronization
protocol, designed to achieve sub-microsecond accuracy.
While we leverage this functionality in DX, it is not per-
fectly suitable for our network latency measurements as
explained in §2. In particular, it timestamps TX packets
after completing DMA, and it does not support recording
the TX time directly on the packets at the time of trans-
mission. Although, our implementation works around
these issues in software to reduce measurement errors,
we believe changes in hardware will be more effective,
especially for 10G/40G networks. If the hardware times-
tamps packets as it sends them out in the wire, the errors
from NIC queueing and DMA bursts would be eliminated.
Also, if it allows us to directly write timestamps on the
packet header, this can shorten the feedback loop of DX
by an RTT.

Deployment and co-existence with TCP: DX strictly
targets datacenter networks for deployment. Datacenter
environment favors DX deployment in that 1) it belongs
to a single administration domain that can readily adopt
a new protocol, and 2) network structure is more homo-
geneous and static than WAN, which helps latency mea-
surement stability. As DX does not require any changes
to the existing network switches, we can deploy DX with
only end-host modification. Software-based solution can
be deployed on existing machines, and hardware-based
solution requires timestamping-enabled NICs. IEEE 1588
PTP-enabled NICs are already popular [21], and we envi-
sion timestamping-enabled NICs become more popular
in the near future.
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DX is specifically designed for handling only internal
datacenter traffic, not external traffic to WAN. Separation
between internal and external traffic is attainable by using
load balancers and application proxies in existing data-
centers [6]. We do not claim that DX can operate with
conventional TCP sharing the same queue at network
switches; a single TCP flow can cause a switch queue to
overflow, which is directly against DX’s goal. Our best
resort to co-existing with TCP flows is to exploit priority
queues at the switch and separate DX traffic from other
TCP traffic. How to design such network efficiently is out
of this paper’s scope and we leave it as future work.

7 Related Work
Latency-based feedback in wide area network: There
have been numerous proposals for network congestion
control since the advent of the Internet. Although the
majority of proposals use packet loss to detect network
congestion, a large body of work has studied latency feed-
back. Latency-based TCP all agree on latency being
more informative source of measuring congestion level,
but the purpose and control mechanism is different in
each protocol. TCP Vegas [8] is one of the earliest work
and aims at achieving high throughput by avoiding loss.
FAST TCP [9] is designed to quickly reach the fair-share
throughput and uses latency for an equation parameter.
TCP Nice [22] and TCP-LP [23] operate in low prior-
ity minimizing interference with other flows. So far, the
latency-based approach has only been used in wide area
network, and no protocol is known to target zero queueing
delay.
ECN-based feedback in datacenter networks: Moni-
toring congestion level at the switch can help controlling
the rate of TCP to minimize queuing. ECN marking
in the TCP header has received much attention recently.
DCTCP [6] uses a predefined threshold, and end-nodes
then count the number of ECN marked packets to deter-
mine the degree of congestion and decrease the window
size accordingly. HULL [7] is a similar to DCTCP, but
sacrifices a small portion of the link capacity with phan-
tom queue implemented at switches to detect congestion
early and to achieve lower queueing delay than DCTCP.
D2TCP [24] also follows the same line of idea as DCTCP,
and it uses gamma correction function to take into ac-
count each flow’s deadline when adjusting the window
size. As another variant of DCTCP, L2DCT [25] consid-
ers flows’ priority when reducing window size, and the
priority is determined by the scheduling policy used in
the network. ECN* [26] proposes dequeue marking for
ECN to work effectively in datacenters. The aforemen-
tioned ECN marking approaches require modification of
the TCP stack in end-node OS as well as minor parameter
tunings at switches.
In-network feedback in datacenter networks: A few

approaches have proposed to modify network switches
in a way that TCP senders or middle switches can learn
congestion status more quickly and accurately. D3 [3]
employs similar mechanism to RCP so that it can con-
trol flow rates to implement deadline based scheduling.
DeTail [27] has implemented a new cross-layer network
stack so that flows can avoid congested paths in the net-
work, and PDQ [28] proposes distributed scheduling of
flows that posses different priorities. These solutions are
much harder to deploy than end-to-end solutions.

Flow scheduling in datacenter networks: Finally, we
note that flow scheduling approaches, such as pFabric,
PDQ, Varys, and PASE, also offer low flow completion
times using prioritization and multiple queues. While
some solutions intermix the congestion control and flow
scheduling [29], we believe that congestion control and
flow scheduling are largely orthogonal. For example,
PASE adopts a DCTCP-like rate control scheme for lower
priority queues [29] to ensure fairsharing and low queuing
delay. Thus, in general, our latency-based feedback is
orthogonal to flow scheduling approaches.

8 Conclusion

In this paper, we explore latency feedback for conges-
tion control in data center networks. To acquire reliable
latency measurements, we develop both software and
hardware level solutions to measure only the network-
side latency. Our measurement results show that we can
achieve sub-microseconds level of accuracy. Based on the
accurate latency feedback, we develop DX that achieves
high utilization and low queueing delay in datacenter net-
works. DX outperforms DCTCP [6] with 5.33x smaller
queueing delay at 1 Gbps and 1.57x at 10 Gbps in testbed
experiment. The queueing delay reduction is comparable
or better than HULL [7] in simulation. Our prototype
implementation shows that DX has much potential to be
a practical solution in the real-world datacenters.
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Abstract
This paper presents Mahimahi, a framework to record

traffic from HTTP-based applications, and later replay it
under emulated network conditions. Mahimahi improves
upon prior record-and-replay frameworks in three ways.
First, it is more accurate because it carefully emulates the
multi-server nature of Web applications, present in 98%
of the Alexa US Top 500 Web pages. Second, it isolates
its own network traffic, allowing multiple Mahimahi in-
stances emulating different networks to run concurrently
without mutual interference. And third, it is designed as
a set of composable shells, providing ease-of-use and ex-
tensibility.

We evaluate Mahimahi by: (1) analyzing the perfor-
mance of HTTP/1.1, SPDY, and QUIC on a corpus of 500
sites, (2) using Mahimahi to understand the reasons why
these protocols are suboptimal, (3) developing Cumu-
lus, a cloud-based browser designed to overcome these
problems, using Mahimahi both to implement Cumulus
by extending one of its shells, and to evaluate it, (4) us-
ing Mahimahi to evaluate HTTP multiplexing protocols
on multiple performance metrics (page load time and
speed index), and (5) describing how others have used
Mahimahi.

1 INTRODUCTION

HTTP is the de facto communication protocol for client-
server applications today [27]. Beyond its widespread
use as an application-layer protocol for loading Web
pages, HTTP is now used for mobile apps [22], video
streaming [14], and instant messaging [19].

It is useful to evaluate the performance of these ap-
plications under controlled experimental conditions. For
example, browser developers may wish to evaluate how
changes to their document object model (DOM) and
JavaScript parsers affect Web page load times, while
network-protocol designers might want to understand the
application-level impact of new multiplexing protocols
like QUIC [30]. Similarly, a mobile app developer may
wish to determine the user-perceived latency [28] for
user interactions over different wireless networks.

Motivated by such questions, we developed
Mahimahi1, a framework to record traffic from ap-
plications that use HTTP, and later replay recorded
traffic under emulated network conditions. Mahimahi
works with any application that uses HTTP or HTTPS.
Application clients (Web browsers, video players, and

1Mahimahi was previously introduced in a demo [23].

apps within mobile-phone emulators) can be run unmod-
ified within Mahimahi. Additionally, Mahimahi’s replay
semantics can be extended to support the server-side
logic of many applications, such as YouTube.

Mahimahi has three notable features that distinguish
it from other record-and-replay tools such as Google’s
web-page-replay [11] and Fiddler [34]:

1. Accuracy: Mahimahi is careful about emulating
the multi-server nature of Web applications. Instead
of responding to all requests from a single server,
Mahimahi creates a separate server for each distinct
server contacted while recording. We find that em-
ulating multiple servers is a key factor in accurately
measuring Web page load times (§4.1).

2. Isolation: Using Linux’s network namespaces [7],
Mahimahi isolates its traffic from the rest of the host
system, allowing multiple instances of its shells to
run in parallel with no mutual interference (§4.2).
Because other tools modify the network configura-
tion of the entire host [11, 34], they cannot provide
this feature.

3. Composability and extensibility: Mahimahi is
structured as a set of UNIX shells, allowing the user
to run unmodified client binaries within each shell.
RecordShell allows a user to record all HTTP traffic
for any process spawned within it. ReplayShell re-
plays recorded content using local servers that em-
ulate the application servers. To emulate network
conditions, Mahimahi includes DelayShell, which
emulates a fixed network propagation delay, and
LinkShell, which emulates both fixed-capacity and
variable-capacity links. These shells can be nested
within one another, allowing the user to flexibly
experiment with many different network configu-
rations. Mahimahi makes it easy to modify these
shells and add new ones; e.g., to record-and-replay
YouTube videos, emulate packet losses, implement
active queue management algorithms, etc. (§4.3).

We used Mahimahi to evaluate Web multiplexing pro-
tocols. We were able to easily extend Mahimahi to sup-
port QUIC, a new protocol in active development at
Google. We compared HTTP/1.1, SPDY [3], and QUIC
to a hypothetical optimal protocol and found that all three
are suboptimal. We then used Mahimahi to understand
the shortcomings of these multiplexing protocols. We
found that each protocol is suboptimal because of the re-
quest serialization caused by source-level object depen-
dencies present in today’s Web pages. Resolving each
dependency requires an RTT between the client and ori-
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Configuration HTTP/1.1 SPDY QUIC-toy Cumulus Optimal
1 Mbit/s, 120 ms 8.7, 15.0 8.6, 12.6 7.6, 10.8 6.4, 9.8 5.3, 8.8

14 Mbits/s, 120 ms 4.3, 6.0 3.9, 5.6 3.8, 5.4 2.4, 3.6 1.8, 2.9
25 Mbits/s, 120 ms 4.3, 6.0 3.9, 5.4 3.6, 4.9 2.0, 3.2 1.7, 2.7

Table 1: Median, 75%ile page load times, in seconds, for the Alexa US Top 500 sites for different link rates and the
same minimum RTT (120 ms). Comparing the median page load times, Cumulus is between 18-33% of the hypo-
thetical optimal, outperforming the best of the other schemes (shown in each row in italics) by between 19% to 80%
in these configurations. Moreover, we show later that as RTT grows, the gap from optimal for HTTP/1.1, SPDY and
QUIC grows quickly, whereas Cumulus is a lot closer to optimal.

gin Web servers; Mahimahi allowed us to pinpoint the
problem because we were able to conduct a large number
of emulation experiments under different network condi-
tions quickly.

We used these findings to develop Cumulus, a new
system to improve HTTP application performance, es-
pecially on long-delay paths. Cumulus has two compo-
nents: the “Remote Proxy,” a headless browser that the
user runs on a well-provisioned cloud server, and the
“Local Proxy,” a transparent, caching HTTP proxy that
runs on the user’s computer. These two components co-
operate to move the resolution of object dependencies
closer to origin Web servers, reducing the effective RTT.
Mahimahi’s shell structure allowed us to implement Cu-
mulus with ease by adapting RecordShell to implement
the Local Proxy.

To evaluate Cumulus, we used Mahimahi yet again,
this time on the same large number of network configu-
rations used to understand HTTP/1.1, SPDY, and QUIC.
Our key result is that page load times with Cumulus
do not degrade dramatically with increasing round-trip
times (RTTs), unlike the other multiplexing protocols.
Some representative results are shown in Table 1. We
have also evaluated Cumulus on AT&T’s live cellular
network in Boston, finding that it outperforms existing
Web accelerators such as Opera Turbo [1] and Chrome
Data Compression Proxy [15].

Mahimahi has been used in other projects, including
an analysis of mobile app traffic patterns to compare
single-path and multi-path TCP [13], and an evaluation
of intelligent network selection schemes [12]. Mahimahi
has also been used in Stanford’s graduate networking
course [41] and at Mozilla to understand and improve
networking within browsers. Mahimahi and our experi-
mental data are available under an open source license at
http://mahimahi.mit.edu. Mahimahi has been
queued for inclusion with the Debian distribution.

2 RELATED WORK

This section describes prior work on Web record-and-
replay tools and network emulation frameworks.

2.1 Record-and-replay tools
The most prominent Web page record-and-replay tools
are Google’s web-page-replay [11] and Telerik’s Fid-
dler [34]. web-page-replay uses DNS indirection to in-
tercept HTTP traffic during both record and replay, while
Fiddler adjusts the system-wide proxy settings in the
Windows networking stack. With both tools, all HTTP
requests from a browser are sent to a proxy server that
records the request and forwards it to the correspond-
ing origin server. Responses also pass through the proxy
server and are recorded and sent back to the browser.

Both tools suffer from two shortcomings. First, be-
cause they serve all HTTP responses from a single server,
neither tool preserves the multi-server nature of Web ap-
plications. Consolidating HTTP resources onto a single
server during replay allows browsers to use a single con-
nection to fetch all resources, which is impossible when
resources are on different servers. Mahimahi faithfully
emulates the multi-server nature of Web applications,
leading to more accurate measurements (§4.1).

Second, these tools do not provide isolation: the net-
work conditions that web-page-replay and Fiddler em-
ulate affect all other processes on the host machine.
These include the link rate, link delay, and DNS in-
direction settings for web-page-replay, and the system
proxy address, specified in the Windows networking
stack, for Fiddler. During replay, this lack of isolation
could lead to inaccurate measurements if cross traffic
from other processes reaches the replaying proxy server.
The lack of isolation also precludes multiple indepen-
dent instances of web-page-replay or Fiddler from run-
ning concurrently—a useful feature for expediting ex-
periments, or for experimenting with different applica-
tions concurrently. Mahimahi overcomes these problems
by using Linux’s network namespaces [7].

Other record-and-replay tools such as Time-
lapse/Dolos [8] and WaRR [6] target reproducible
application debugging by capturing program executions
(including user input and activity) and replaying them,
while providing popular debugging abstractions includ-
ing breakpoints. These systems are complementary to
Mahimahi; they can be run within ReplayShell, which
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ensures that served HTTP content, including dynamic
content such as JavaScript, does not vary during replay.

2.2 Emulation Frameworks
Tools like dummynet [10] and netem [20] emulate net-
work conditions including link rate, one-way delay, and
stochastic loss. Mahimahi uses its own network emula-
tion shells, LinkShell and DelayShell. Unlike dummynet
and netem, LinkShell can emulate variable-rate cellu-
lar links, in addition to static link rates, because it runs
over packet-delivery traces. Mahimahi also allows users
to evaluate new in-network algorithms (instead of Drop
Tail FIFO) by modifying the source code of LinkShell. A
similar evaluation using web-page-replay would require
developing a new kernel module for dummynet, a more
complicated task.

Mahimahi is general enough to record and replay any
HTTP client-server application under emulated condi-
tions. It is, however, limited in that it only emulates
one physical client connected to an arbitrary number of
servers. Mahimahi supports a single shared link from the
client to all servers, as well as multi-homed clients (§5.5),
allowing the evaluation of multipath-capable transport
protocols such as MPTCP [25]. Mahimahi cannot emu-
late arbitrary network topologies such as transit-stub [9];
for emulating applications over such topologies, tools
like Mininet [21] are more suitable.

3 MAHIMAHI

Mahimahi is structured as a set of four UNIX shells,
allowing users to run unmodified client binaries within
each shell. Each shell creates a new network names-
pace for itself prior to launching the shell. Quoting from
the man page, “a network namespace is logically an-
other copy of the network stack, with its own routes,
firewall rules, and network devices” [7]. A separate net-
work namespace minimizes disruption to the host ma-
chine during recording, prevents accidental download of
resources over the Internet during replay, and ensures
that the host machine is isolated from all network con-
figuration changes that are required to evaluate an appli-
cation.

RecordShell (§3.1) records all HTTP traffic for sub-
sequent replay. ReplayShell (§3.2) replays previously
recorded HTTP content. DelayShell (§3.3) delays all
packets originating from the shell by a user-specified
amount and LinkShell (§3.4) emulates a network link by
delivering packets according to a user-specified packet-
delivery trace. All components of Mahimahi run on a sin-
gle physical machine (which we call the host machine)
and can be arbitrarily composed with each other. For ex-
ample, to replay recorded content over a cellular network
with a 10 ms minimum RTT, one would run a client ap-

(a) RecordShell (b) ReplayShell

Figure 1: RecordShell has a transparent proxy for HTTP
traffic. ReplayShell handles all HTTP traffic inside a pri-
vate network namespace. Arrows indicate the direction
of HTTP Request and Response traffic.

plication inside DelayShell inside LinkShell inside Re-
playShell.

3.1 RecordShell
RecordShell (Figure 1a) records HTTP data and stores it
on disk in a structured format for subsequent replay. On
startup, RecordShell spawns a man-in-the-middle proxy
on the host machine to store and forward all HTTP
traffic both to and from an application running within
RecordShell. To operate transparently, RecordShell adds
an iptable rule that forwards all TCP traffic from within
RecordShell to the man-in-the-middle proxy.

When an application inside RecordShell attempts to
connect to a server, it connects to the proxy instead. The
proxy then establishes a TCP connection with the ap-
plication, uses the SO ORIGINAL DST socket option to
determine the server’s address for the connection, and
connects to the server on the application’s behalf. An
HTTP parser running at the proxy captures traffic pass-
ing through it to parse HTTP requests and responses
from TCP segments. Once an HTTP request and its cor-
responding response have both been parsed, the proxy
writes them to disk, associating the request with the re-
sponse. At the end of a record session, a recorded direc-
tory consists of a set of files, one for each HTTP request-
response pair seen during that session.

SSL traffic is handled similarly by splitting the SSL
connection and establishing two separate SSL connec-
tions: one between the proxy and the application and an-
other between the proxy and the server. The proxy can
establish a secure connection with the application in two
ways. In the first approach, RecordShell’s proxy uses a
new Root CA, in the same way Fiddler does [35]. Clients
must manually trust this CA once and individual certifi-
cates are signed by this Root CA.

Another approach is for RecordShell’s proxy to use a
self-signed certificate. This approach may trigger warn-
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ings within applications that only accept certificates
signed by any one of a list of trusted Certificate Author-
ities (CAs). Most modern browsers allow users to dis-
able these warnings. Certain applications, such as mobile
phone emulators, do not allow these warnings to be dis-
abled; the first approach handles these applications [31].

3.2 ReplayShell
ReplayShell (Figure 1b) also runs on the test machine
and mirrors the server side of Web applications using
content recorded by RecordShell. ReplayShell accurately
emulates the multi-server nature of most Web applica-
tions today by spawning an Apache 2.2.22 Web server
for each distinct IP/port pair seen while recording. Each
server handles HTTPS traffic using Apache’s mod ssl
module and may be configured to speak HTTP/1.1 or
SPDY (using mod spdy).

To operate transparently, ReplayShell binds each
Apache server to the same IP address and port number
as its recorded counterpart. To do so, ReplayShell cre-
ates a separate dummy (virtual) interface for each distinct
server IP. These interfaces can have arbitrary IPs because
they are in a separate network namespace.

All client requests are handled by one of ReplayShell’s
servers, each of which can read all of the previously
recorded content. Each server redirects all incoming re-
quests to a CGI script using Apache’s mod rewrite
module. The CGI script on each server compares each in-
coming HTTP request to the set of all recorded request-
response pairs to locate a matching request and return
the corresponding response. Incoming requests may be
influenced by local state present in the client application
(e.g. time-sensitive query string parameters) and may not
exactly match any recorded request. We handle such re-
quests using a matching heuristic that enforces that some
parts of the request must match exactly, while tolerating
some degree of imperfection in other parts.

We expect the Host and User-Agent header fields,
along with the requested resource (without the query
string), to exactly match the corresponding values in
some stored request. If multiple stored requests match on
these properties, the algorithm selects the request whose
query string has the maximal common substring to the
incoming query string.

3.3 DelayShell
DelayShell emulates a link with a fixed minimum one-
way delay. All packets sent to and from an application
running inside DelayShell are stored in a packet queue.
A separate queue is maintained for packets traversing the
link in each direction. When a packet arrives, it is as-
signed a delivery time, which is the sum of its arrival
time and the user-specified one-way delay. Packets are
released from the queue at their delivery time. This tech-
nique enforces a fixed delay on a per-packet basis.

Figure 2: LinkShell supports live graphing of network us-
age, comparing the link capacity of the input traces (red
shading) to the amount of data a client application at-
tempts to transmit (blue line).

3.4 LinkShell

LinkShell emulates a link using packet-delivery traces.
It emulates both time-varying links such as cellular links
and links with a fixed link rate. When a packet arrives
into the link, it is directly placed into either the uplink
or downlink packet queue. LinkShell is trace-driven and
releases packets from each queue based on the corre-
sponding packet-delivery trace. Each line in the trace
is a packet-delivery opportunity: the time at which an
MTU-sized packet will be delivered in the emulation.2

Accounting is done at the byte-level, and each delivery
opportunity represents the ability to deliver 1500 bytes.
Thus, a single line in the trace file can correspond to
the delivery of several packets whose sizes sum to 1500
bytes. Delivery opportunities are wasted if bytes are un-
available at the instant of the opportunity.

LinkShell supports live graphing of network usage
and per-packet queuing delay, giving near-instantaneous
feedback on the performance of applications and net-
work protocols. Uplink and downlink capacity are cal-
culated using the input packet-delivery traces, while net-
work usage, in each direction, is based on the amount of
data that a client application attempts to transmit or re-
ceive. Per-packet queuing delay is computed as the time
each packet remains in LinkShell’s uplink or downlink
queues.

Figure 2 illustrates the downlink network usage of a
single Web page load of http://www.cnn.com, us-
ing Google Chrome over an emulated Verizon LTE cellu-
lar network with a minimum RTT of 100 ms. As shown,
Web servers try to exceed the link capacity at around 9.3
seconds into the trace.

2For example, a link that can pass one MTU-sized packet per mil-
lisecond (12 Mbits/s) can be represented by a file that contains just “1”
(LinkShell repeats the trace file when it reaches the end).
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4 NOVELTY

Mahimahi introduces three new features in comparison
to existing record-and-replay tools. We describe each of
these in greater detail below.

4.1 Multi-server emulation for greater accuracy
A key component of ReplayShell is that it emulates the
multi-server nature of Web applications. As discussed
in §3, ReplayShell creates a network namespace contain-
ing an Apache server for each distinct server encountered
in a recorded directory. We show through three experi-
ments that emulating this multi-server nature is critical
to the accurate measurement of Web page load times.

A large number of websites today are multi-server. We
measure the number of physical servers used by each site
in the the Alexa US Top 500 [5]. We find that the median
number of servers is 20, the 95%ile is 51, and the 99%ile
is 58. Only 9 of the 500 Web pages (1.8%) we consider
use a single server.

Next, we illustrate the importance of preserving the
multi-server nature of Web applications by comparing
measurements collected using ReplayShell and web-
page-replay to real page load times on the Internet. To
obtain measurements on the Internet, we use Selenium
to automate Google Chrome loading 20 Web pages from
the Alexa US Top 500, 25 times each, inside a LinkShell
of 5 Mbits/s and a DelayShell with a minimum RTT of
100 ms. We chose a minimum RTT of 100 ms to equalize
delays to Web servers contacted while loading each Web
page.3 For a fair comparison, we record copies of each
Web page with RecordShell and web-page-replay imme-
diately following the completion of these Internet mea-
surements; Web content can change frequently, which
can significantly affect page load time. We then replay
each recorded Web page 25 times using ReplayShell, a
modified version of ReplayShell that serves all resources
from a single server, and web-page-replay. With Re-
playShell, we perform each page load inside LinkShell
with a 5 Mbits/s trace and DelayShell with a minimum
RTT of 100 ms, as described above. We emulate these
same network conditions with web-page-replay.

We define the error, per site, as the absolute value of
the percent difference between mean page load times
(over 25 runs) within an emulation environment and on
the Internet. As shown in Figure 3, ReplayShell with
multi-server emulation yields page load times that most
accurately resemble page load times collected on the In-
ternet. The median error is 12.4%, compared to 36.7%
and 20.5% with web-page-replay and single-server Re-
playShell, respectively.4

3The 20 sites used here are all hosted by CDNs in close proximity
with ping times of less than 5 ms.

4We are not certain why single-server ReplayShell is so much more
accurate than web-page-replay.
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Figure 3: Preserving a Web page’s multi-server nature
yields measurements that more closely resembles mea-
surements on the Internet.

30 ms 120 ms 300 ms

1 Mbit/s 1.6%, 27.6% 1.7%, 10.8% 2.1%, 9.7%
14 Mbits/s 19.3%, 127.3% 6.2%, 42.4% 3.3%, 20.3%
25 Mbits/s 21.4%, 111.6% 6.3%, 51.8% 2.6%, 15.0%

Table 2: Median and 95%ile difference in page load time
without multi-server emulation.

Finally, we run more exhaustive experiments to show
the effect that multi-server emulation has on Web page
load times across different network conditions. Using
an Amazon EC2 m3.large instance located in the US-
east-1a region and running Ubuntu 13.10, we measure
page load times for each recorded page in the Alexa US
Top 500 when loaded with Google Chrome. We con-
sider 9 different configurations: link rates in {1,14,25}
Mbits/s and RTTs in {30,120,300} ms. We load each
page over each configuration using both ReplayShell
and the modified version of ReplayShell used above that
eliminates the multi-server nature altogether by setting
up one Apache server to respond to all HTTP requests
and resolving all DNS queries to that server alone.

Table 2 shows the median and 95%ile difference in
page load time when multi-server nature is not preserved,
compared to when multi-server nature is preserved. Al-
though the page load times are comparable over a 1
Mbit/s link, the lack of multi-server emulation yields sig-
nificantly worse performance at higher link rates.

4.2 Isolation
By creating a new network namespace for each shell,
Mahimahi eliminates much experimental variability that
results from interfering cross traffic during an experi-
ment. Each namespace is separate from the host ma-
chine’s default namespace and every other namespace
and thus, processes run inside the namespace of a
Mahimahi tool are completely isolated from those run-
ning directly on the host or in other namespaces. As a
result, host machine traffic does not affect the measure-
ments reported by Mahimahi. Similarly, network emu-
lation done by Mahimahi’s tools does not affect traffic
outside of Mahimahi’s network namespaces. This prop-
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Machine 1 Machine 2

CNBC 7584 ms +- 120 ms 7612 ms +- 111 ms
wikiHow 4804 ms +- 37 ms 4800 ms +- 37 ms

Table 3: Mean and standard deviation for page load times
across two similarly configured machines.
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Figure 4: DelayShell and LinkShell have a negligible ef-
fect on page load times in ReplayShell.

erty of Mahimahi, along with the fact that its shells can
be arbitrarily nested, enables many different configura-
tions to be simultaneously tested on a host machine, in
complete isolation from one another.

Using distinct network namespaces for each shell also
enables Mahimahi to produce reproducible results while
imposing low overhead on collected measurements.
Reproducibility: To evaluate the reproducibility of
Mahimahi’s measurements, we perform repeated exper-
iments on the same host machines and across different
host machines with similar hardware specifications. We
choose two sites from the Alexa US Top 500 for this
experiment, http://www.cnbc.com/ and http:
//www.wikihow.com/, as they are are at the median
and 95%ile site sizes (1.2 MB and 5.5 MB, respectively).

We use two different Amazon EC2 m3.large instances,
each in the US-east-1a region and running Ubuntu 13.10.
On each machine, we load the CNBC and wikiHow
Web pages 100 times each inside ReplayShell, over a 14
Mbits/s link with a minimum RTT of 120 ms. Table 3
shows a summary of the distribution of page load times
from these experiments. Mean page load times for each
site are less than 0.5% apart across the two machines
suggesting that Mahimahi produces comparable results
across different host machines. Similarly, standard devi-
ations are all within 1.6% of their corresponding means,
implying that Mahimahi produces consistent results on a
single host machine.
Fidelity: Mahimahi’s shells impose low overhead on
collected measurements, even when they are nested
within one another, leading to high fidelity in the results.
We illustrate this property in Figure 4, which shows the
overhead DelayShell and LinkShell impose on page load
time measurements. We first load our recorded copies of
the Alexa US Top 500 sites inside ReplayShell, with-
out LinkShell or DelayShell. For comparison, we then

load the 500 sites inside DelayShell, with 0 ms fixed
per-packet delay, inside ReplayShell. Separately, we load
the 500 sites inside LinkShell, with 1000 Mbits/s uplink
and downlink traces, inside ReplayShell.5 Each of these
experiments was performed on the same Amazon EC2
m3.large instance configured with Ubuntu 13.10 and lo-
cated in the US-east-1a region. We find that the median
per-site errors with DelayShell and LinkShell, relative to
ReplayShell alone, are 0.33% and 0.31%, respectively.

4.3 Composability and extensibility
Unmodified application clients can be run within any of
Mahimahi’s shells. For instance, as described in §5.5, a
mobile device emulator can be run within Mahimahi to
measure mobile app performance. Similarly, to measure
new performance metrics such as the speed index, virtual
machines can be run within Mahimahi’s shells (§5.4).

The default replay algorithm is but one instance of a
server-side HTTP matching algorithm. Mahimahi’s re-
play semantics can be easily extended to support the
server-side logic of many other applications and multi-
plexing protocols; for example, in §5.1.1, we extend Re-
playShell to use QUIC Web servers rather than default
Apache Web servers. It has also been extended to handle
record-and-replay for YouTube videos (§5.5).

In addition to DelayShell and LinkShell, which emu-
late different minimum RTTs and link rates, Mahimahi
can be extended to support other network characteristics.
For example, to emulate different levels of stochastic
packet loss, we created LossShell [24], which probabilis-
tically drops packets stored in LinkShell’s upstream and
downstream queues. Similarly, Mahimahi can be mod-
ified to evaluate in-network algorithms such as queu-
ing disciplines. By default, LinkShell implements a Drop
Tail FIFO queue, but we have extended it to implement
CoDel, an active queue management scheme [32].

Mahimahi could also be used to replay recorded con-
tent to a different physical machine. Consider a scenario
where the application to be evaluated is only available on
Machine M, and a separate Linux Machine, A, is avail-
able. An EthShell could ferry packets from an Ethernet
interface between M and A to a virtual network inter-
face on A. Analogously, a UsbShell could ferry pack-
ets between an Ethernet-over-USB interface connected
to a phone and a virtual interface on A. UsbShell could
be used to run performance regression tests on actual
phones rather than emulators. Neither of these has been
developed yet, but Mahimahi’s design allows these shells
to be nested inside any of Mahimahi’s existing shells. For
instance, to test a mobile phone’s browser over an LTE
link with a 100 ms RTT, we would nest UsbShell inside
DelayShell inside LinkShell inside ReplayShell.

5We chose 1000 Mbits/s to ensure that link capacity was not a lim-
iting factor in page load time.
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5 CASE STUDIES

5.1 Understanding Web Performance
We use Mahimahi to evaluate Web page load times un-
der three multiplexing protocols: HTTP/1.1, SPDY [3],
and QUIC [30], a protocol currently in development at
Google. To put these measurements in context, we com-
pare each protocol with an optimal protocol for each net-
work configuration.

To automate the page load process and measure page
load times, we use Selenium, a widely used browser-
automation tool, along with Chrome Driver version 2.8
and the Web Driver API [38]. We measure page load time
by calculating the time elapsed between the navigation-
Start and loadEventEnd events [38].

In all evaluations, traffic originates from the Web
browser alone. We emulate link rates and minimum
RTTs (§3), but do not emulate competing cross traffic.
For each network configuration, we emulate a buffer size
of 1 bandwidth-delay product and evaluate all sites in the
Alexa US Top 500.

5.1.1 Setup
HTTP/1.1: We evaluate HTTP/1.1 using ReplayShell
running unmodified Apache 2.2.22.

SPDY: To evaluate SPDY, we create SPDYShell, which
enables the mod spdy extension on all Apache servers
within ReplayShell. The SPDY configuration evaluated
here does not include server push because the push pol-
icy is specific to each website and is hard to infer auto-
matically. If push policies were known, however, the CGI
script within ReplayShell’s servers could be modified to
reflect them.

QUIC: QUIC inherits several SPDY features, such as
multiplexing streams onto a single transport-protocol
connection and stream priorities. By using UDP and its
own security instead of TCP and TLS, QUIC overcomes
two drawbacks of SPDY: head-of-line blocking between
streams due to lost packets and the three-way handshake
required to establish a secure connection.

Unlike SPDY, Apache currently has no extensions
for QUIC. We create QUICShell by replacing Apache
within ReplayShell with an adapted version of the QUIC
toy server [29] from the Chromium project (commit
5bb5b95 from May, 2015, available at https://goo.
gl/Jdr8hi). We modify the toy server, which origi-
nally searched for exact URL matches, to use the match-
ing semantics in ReplayShell’s CGI script.

5.1.2 Optimal page load time
We define the optimal page load time for a website as:

minimumRTT+(siteSize/linkRate)+browserTime.

The first term represents the minimum time between
when the first HTTP request is made at the client and the

first byte of the first HTTP response is received by the
client, ignoring processing time at the server.

The second term represents the minimum time to
transfer all bytes belonging to the Web page over a fixed
capacity link. We calculate the site size by counting the
total number of bytes delivered over the emulated link
from the Web servers to the browser between the naviga-
tionStart and loadEventEnd events.

The third term represents the time for the browser to
process all the HTTP responses and render the Web page
(using the definition of “loaded” above). We measure
this as the page load time in ReplayShell alone without
network emulation, emulating an infinite-capacity, zero-
delay link.

5.1.3 Canonical network results
We evaluate each protocol on 110 configurations: link
rates in {0.2,0.3,0.6,1,1.7,2.9,5,8.5,14,25} Mbits/s
and RTTs between 0 ms and 300 ms in steps of 30 ms.
These link rates and RTTs cover the majority of global
network conditions reported by Akamai [4]. We also
perform evaluations over cellular networks using modi-
fied versions of the Verizon and AT&T traces collected
in [40]. For each network configuration, we compare
HTTP/1.1, SPDY, and QUIC (and in the next subsec-
tion, Cumulus) with the optimal page load times defined
above.

Figure 5 shows the distributions of page load times
with each protocol for six of these configurations: 1
Mbit/s and 25 Mbits/s, with RTTs of 30 ms, 120 ms, and
300 ms. We find that the gap from optimal for HTTP/1.1,
SPDY, and QUIC grows quickly with the RTT, and grows
with the link rate (although not as quickly). For example,
on a 1 Mbit/s link with a minimum RTT of 30 ms, the
median page load time for SPDY is 1.08× worse than
optimal. When the minimum RTT increases to 120 ms,
the median SPDY page load time is 1.63× worse than op-
timal, worsening to 2.02× worse than optimal when the
minimum RTT rises to 300 ms. For this RTT, increasing
the link rate from 1 Mbit/s to 25 Mbits/s degrades median
SPDY performance to 4.93× worse than optimal.

5.1.4 Understanding suboptimality
In addition to quantifying the extent of suboptimality
of multiplexing protocols for the Web, the results pre-
sented in this case study corroborate the qualitative find-
ings of many previous measurement studies [26, 37, 39].
We used Mahimahi in conjunction with browser devel-
oper tools to identify the root cause of this suboptimality.
We found that the suboptimal performance of each multi-
plexing protocol is a result of request serialization caused
by source-level dependencies between objects on a Web
page; this problem is exacerbated by small limits on the
number of concurrent connections from the browser, but
persists even if those browser limits are removed.
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Figure 5: The gap between page load times with HTTP/1.1, SPDY, or QUIC and Optimal grows as link rate or mini-
mum RTT increases. Cumulus is introduced in §5.2.
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Figure 6: A single page load using Cumulus.

The fundamental issue is that resolving each depen-
dency requires a round-trip communication between the
client and origin Web servers. As a result, the negative
effect of request serialization is more pronounced at high
RTTs (Figure 5). This finding motivated us to develop
Cumulus, a system that uses Mahimahi to improve page
load times on long-delay paths.

5.2 Improving Web performance with Cumulus
Cumulus has two components: the “Remote Proxy,” a
headless browser that the user runs on a well-provisioned
cloud server, and the “Local Proxy,” a transparent,
caching HTTP proxy that runs on the user’s computer.
These two components cooperate to move the resolution
of object dependencies closer to origin Web servers—
reducing the effective RTT—without modifying Web
browsers or servers.

The Remote Proxy listens for new requests from the
Local Proxy. For each incoming request, the Remote
Proxy launches an unmodified RecordShell and runs a

headless browser, PhantomJS [2], to load the specified
URL using the original HTTP headers. Once the page
is loaded, the Remote Proxy packages and compresses
the recorded HTTP request/response pairs into a bulk re-
sponse, which it sends to the Local Proxy.

The Local Proxy is a modified version of RecordShell
that caches HTTP objects rather than storing them in
files. When the user’s browser requests a URL not res-
ident in the Local Proxy’s cache, the Local Proxy for-
wards the request to the Remote Proxy. Upon receiving
a bulk response from the Remote Proxy, the Local Proxy
responds to the user’s browser with the appropriate re-
sponse and caches the remaining objects to handle sub-
sequent browser requests. Figure 6 illustrates how Cu-
mulus loads a single Web page.

5.3 Evaluating Cumulus with Mahimahi
We first evaluate Cumulus over each emulated network
configuration listed in §5.1.3. Page loads with Cumulus
used Google Chrome and a Remote Proxy running on the
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Figure 7: Cumulus’s performance does not degrade dramatically as RTTs increase (at fixed link rates), unlike
HTTP/1.1, SPDY, and QUIC. Each point plots the ratio of median protocol performance to median performance of the
optimal scheme (lower is better).
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Figure 8: Evaluating Cumulus on the live AT&T Cellular
Network in Boston.

other side of each emulated link. We find that Cumulus
outperforms SPDY by 1.03–3.60× over these configura-
tions (Figure 5). Figure 7 shows how the ratio between
median page load times with each protocol and the opti-
mal varies as RTTs increase at fixed link rates. We find
that Cumulus is less affected by increases in RTT com-
pared to today’s multiplexing protocols. For example, at
a link rate of 14 Mbits/s and an RTT of 60 ms, Cumulus
is 1.13× worse than optimal while SPDY is 1.44× worse
than optimal. When RTT increases to 180 ms, Cumulus
is 1.39× worse, whereas SPDY is 2.61× worse than op-
timal.

5.3.1 Some live experiments
We also compare the performance of Google Chrome
run inside Cumulus with Chrome, and with Chrome Data
Compression Proxy [15, 16] and Opera Turbo [1], which
are cloud browsers that use proxy servers for compres-
sion. We load each page in the Alexa US Top 500 five
times with each system, rotating among the systems un-
der test to mitigate the effects of network variability. We
define Cumulus’s “speedup” relative to a system as the
ratio of the page load time using that system to the page
load time using Cumulus.

We ran experiments over the live AT&T
LTE/GSM/WCDMA cellular network in Boston using a
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Figure 9: Benefits with Cumulus increase as RTT or Web
page complexity increase.

PC laptop tethered to a Samsung Galaxy Note running
Android OS version 4.2.2. Cumulus used a Remote
Proxy running on an Amazon EC2 instance in Virginia.
Cumulus had median speedups of 1.36×, 1.23×, and
1.28× over Chrome, Chrome Data Compression Proxy,
and Opera Turbo, respectively. Figure 8 shows the CDF
of speedups.

5.3.2 Understanding Cumulus’ gains

Cumulus moves dependency resolution to the Remote
Proxy where RTTs to Web servers are lower than from
the client. The benefit of this technique depends on:

1. The RTT between the user and origin Web servers.
2. The complexity of the Web page.
To understand the importance of each factor, we use

Mahimahi’s shell abstraction to load two Web pages in
emulation: TMZ’s homepage with 508 objects and the
Google homepage with only 15 objects. We use De-
layShell to emulate fixed minimum RTTs from 0 ms to
400 ms. For each RTT, we load each page five times with
Chrome Data Compression Proxy—which compresses
objects in-flight, but does not perform dependency res-
olution on the user’s behalf—and Cumulus, which per-
forms dependency resolution and compresses objects in-
flight.

9
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Page loads with Cumulus used a Remote Proxy run-
ning on the other side of the emulated long-delay link.
Speedups for Cumulus relative to Chrome Data Com-
pression Proxy are shown in Figure 9.

We observe two trends:
1. For a given Web page, speedups with Cumulus in-

crease as RTT increases.
2. For a fixed RTT, speedups with Cumulus are larger

for more complex Web pages.
Our results show a 4× speedup relative to Chrome

Data Compression Proxy at an RTT of 100 ms, a typi-
cal RTT for cellular and transcontinental links. This cor-
roborates the well-known intuition that Web page load
times are dominated by network latencies rather than link
rates, and suggests that the combination of remote depen-
dency resolution and object compression helps Cumulus
achieve performance not far from optimal.

5.4 Speed index
All of our measurements thus far have been of page load
time. We now show that it is straightforward to use a
different performance metric. We use Google’s proposed
speed index [17] as an example.

5.4.1 Definition
Page load time may not accurately measure when a page
is usable by the client. For long Web pages, content
“above-the-fold” of the screen is important to retrieve
quickly, but other content may not be. Taking this point
into consideration for measurement is especially relevant
for pages that support infinite scrolling. For example,
Facebook “preloads” wall postings below the user’s cur-
rent location on its page in anticipation of a user scroll.
In such cases, the “onload” event used to measure page
load time would fire long after the page is ready for user
interaction. Speed index is an attempt to address this is-
sue.

Speed index tracks the visual progress of a Web page
in the visible display area. A lower speed index signifies
that the content is rendered more quickly. For example,
a page that immediately paints 90% of its visual content
will receive a lower speed index than a page that progres-
sively paints 90% of its content, even if both pages fire
their onload event at the same time.

Speed index is calculated by measuring the complete-
ness of a page’s display area over time. Completeness is
defined as the pixel-by-pixel difference of a page snap-
shot with the final loaded Web page. Once the entire page
has loaded, the completeness percentage of the page ren-
dering over time is plotted. Speed index is defined as the
area “above-the-curve” (Figure 10a).

5.4.2 Measuring speed index
We calculate speed index using WebPagetest [17], which
records videos of page loads at 10 frames per second
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Figure 10: Speed index calculation.

and plots the percentage completeness over time by com-
paring each frame with the final captured frame. To
measure speed index, we create SpeedIndexShell where
we run a private instance of WebPagetest inside Re-
playShell. To automate testing, we use WebPagetest’s
wpt batch.py API [18]. Because WebPagetest runs
only on Windows, we run WebPagetest within a Virtual-
Box Windows virtual machine, inside ReplayShell.

5.4.3 Optimal speed index
Calculating an optimal speed index is difficult. Instead,
we define an upper bound6 on the optimal speed index.
We assume that a site renders in one shot at the opti-
mal page load time; Figure 10b illustrates its implica-
tions on the “optimal” speed index. As shown, the per-
centage completeness of a given Web page is 0% until
the optimal page load time where the percentage com-
pleteness jumps to 100%. As a result, the “area above the
curve,” or optimal speed index, equals the optimal page
load time. There could be better rendering strategies that
more gradually render the page between 0 and the opti-
mal page load time, but such improved characterizations
of the optimal speed index will only further increase the
already large slowdowns (Figure 11) from the optimal
speed index.

5.4.4 Static link results
We measure the speed index for each site in the Alexa US
Top 500 over networks with link rates between 1 Mbit/s
and 25 Mbits/s and a fixed minimum RTT of 120 ms
(Figure 11). We notice similar patterns to those discussed
with page load times: the gap between speed index with
HTTP/1.1 and optimal speed index grows as link rates

6Recall that a lower speed index is better.
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Figure 11: Gap between speed index with HTTP/1.1 and Optimal grows as link rate increases (fixed minimum RTT).

increase; over a 1 Mbit/s link with a 120 ms minimum
RTT, speed index with HTTP/1.1 is 1.52× worse than
optimal at the median, while over a 25 Mbits/s link with
a 120 ms minimum RTT, the median speed index with
HTTP/1.1 is 3.63× worse than optimal.

5.5 External case studies
This section describes external use cases of Mahimahi in
research, educational, and industrial settings.
Mobile app record-and-replay: RecordShell has
been used to characterize mobile app traffic by record-
ing all HTTP traffic to and from mobile apps running in-
side an Android emulator [13]. Using this recorded traf-
fic, they evaluated the performance of mobile apps over
Wi-Fi and LTE networks by running an Android emu-
lator inside ReplayShell to measure the duration of data
transfers for mobile apps over these wireless networks.
The results showed that LTE outperforms Wi-Fi 40% of
the time on flow completion time.
Mobile multi-homing: To emulate mobile multi-
homing with Wi-Fi and LTE, the authors in [12] extended
LinkShell to create MpShell [33]. They then compared
single-path TCP and MPTCP by replaying mobile app
traffic over 20 different emulated network conditions.
Record-and-replay for video streaming: Mahimahi
has been extended to handle record and replay for
YouTube videos [36]. Compared to Web pages, video
replay requires more involved matching logic on the
server side. HTTP requests encode the location (start and
end time) and quality of video chunks requested by the
client’s video player. Both the location and quality at-
tributes can change significantly from run to run, and be-
tween record and replay.
Educational uses: Mahimahi is being used by stu-
dents in Stanford’s graduate networking course [41] to
understand the performance of their networked applica-
tions under controlled conditions. As part of a protocol
design contest conducted in the same course, students
used LinkShell’s live graphing of network usage and per-
packet queuing delay to obtain real-time feedback on the
performance of their congestion-control protocols.

Browser networking: Engineers at Mozilla are using
Mahimahi to improve the speed of Firefox’s network-
ing. Here, Mahimahi is helpful in understanding how im-
provements to link utilization and pipelining of HTTP
requests affect Web performance over various networks.

6 CONCLUSION
Mahimahi is an accurate and flexible record-and-replay
framework for HTTP applications. Mahimahi’s shell-
based design makes it composable and extensible, allow-
ing the evaluation of arbitrary applications and network
protocols. It accurately emulates the multi-server nature
of Web applications during replay, and by isolating its
own traffic, allows several instances to run in parallel
without affecting collected measurements.

We presented several case studies to evaluate
Mahimahi and demonstrate its benefits. These include a
study of HTTP/1.1, SPDY, and QUIC under various em-
ulated network conditions. We used Mahimahi both to
conduct the experiments and to understand the reasons
for the suboptimality of these protocols. We then used
our key finding—that these protocols are suboptimal due
to source-level dependencies in Web pages—to design
Cumulus. Mahimahi was useful in our implementation
of Cumulus, as well as in our experiments to measure its
performance. As round-trip times and link rates increase,
the performance of Cumulus degrades much slower than
previous HTTP multiplexing protocols.

We have released Mahimahi under an open source li-
cense at http://mahimahi.mit.edu.
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Abstract

We present Slipstream, a userspace solution for trans-
parently selecting efficient local transports in distributed
applications written to use TCP/IP, when such applica-
tions communicate between local processes. Slipstream is
easy to deploy because it is language-agnostic, automatic,
and transparent. Our design in particular (1) requires
no changes to the kernel or applications, (2) correctly
identifies (and optimizes) pairs of communicating local
endpoints, without knowledge of routing performed
locally or by the network, and (3) imposes little or no
overhead when optimization is not possible, including
communication with parties not using our technology.
Slipstream is sufficiently general that it can not only
optimize traffic between local applications, but can also be
used between Docker containers residing on the same host.
Our results show that Slipstream significantly improves
throughput and latency, 16-100% faster throughput for
server applications (and 100-200% with Docker), while
imposing an overhead of around 1-3% when not in use.
Overall, Slipstream enables programmers to write simpler
code using TCP/IP “everywhere” and yet obtain the
significant benefits of faster local transports whenever
available.

1 Introduction

TCP has become one of the most commonly used
communication protocols because of its ubiquity on
standard platforms (e.g., Windows, Android, Linux)
and its location transparency: instead of creating one
communication channel for host-local and another for
remote communications, which would reduce portability
and increase complexity of the application, developers
use TCP because it works for all cases. Unfortunately, by
using TCP, developers eschew faster host-local transport
mechanisms (e.g., Unix domain sockets, pipes, or shared
memory) resulting in missed performance opportunities:
a claim supported by a comprehensive study providing
clear evidence for the potential improvements to be had
by replacing the TCP transport with other local IPC
mechanisms [27].

Using TCP for its location transparency to reduce
programming burden and enhance portability is common
in several application domains. Web sites are commonly

deployed on a single system, yet the Web server front-
end communicates with database engines and application
servers over TCP, hurting both latency and throughput
of Web requests (e.g., LAMP). In some instances,
application logic depends on TCP parameters [16],
e.g., Memcached uses the IP address and TCP port to
implement consistent hashing [10], thereby requiring TCP
addressing to function correctly, but not necessarily TCP
data transport.

Perhaps the most compelling future need for optimizing
local TCP communication is the increasing popularity
of lightweight virtualized environments like Docker.
Docker strongly encourages separating communicating
services into distinct Linux containers, using TCP to
communicate with each other because portability is a
key goal [21]. For example, Yelp developers created a
service discovery architecture in which client applications
communicate with remote endpoints through a host-local
proxy (haproxy [1]) via TCP [8]. One of the primary
deployment scenarios for this architecture is to run a client
application and its local proxy in separate containers,
which puts the TCP latency on the critical path for
every client request and response. Optimizing local
TCP communication over Docker can therefore provide
important performance gains (as our experiments with
other containerized Docker services show).

In fact, the problem is important enough that there are
several approaches that optimize TCP communication
between communicating processes within single oper-
ating system environments. This includes commercial
operating systems like Windows [5], AIX [23] and
Solaris [19] and several userspace libraries [2, 25, 29].
However, these approaches either require changes to the
operating system [5, 19, 23] or application code [2, 25,
29]—thus eliminating one of the key benefits of using
TCP in the first place—or they are only applicable to
specific language runtimes. In legacy deployments, it
might not be possible to modify the OS or application, and
furthermore, in cases where modifications are possible,
they may not be feasible: any modifications may cost too
much to make to existing application logic.

We present Slipstream, a userspace solution that
identifies and optimizes the use of TCP between two
host-local communicating endpoints without requiring
changes to the operating system or applications (except
for the use of a shim library above libc). Slipstream
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transparently reduces latency and increases throughput
without requiring modifications to either the kernel or the
application by interposing on TCP related events to detect
and optimize the communication channel.

We built a Linux prototype of Slipstream that detects
TCP-based host-local communications by inserting an
optional shim library above libc to intercept TCP
communication operations.1 Our solution is portable
across UNIX-like systems. Slipstream uses this vantage
point to collect information on connections in order to
apply a general detection algorithm that relies only on
observable characteristics of TCP, without knowledge
of the underlying network topology, to detect host-
local communication endpoint pairs. Once a host-
local TCP communication stream is detected, Slipstream
transparently replaces TCP with a faster host-local
transport while emulating all TCP operations to maintain
application transparency. The primary complexity in
the design and implementation of Slipstream arises in
replicating kernel-level TCP state at the user-level and
preserving the interface semantics of the TCP sockets API
on top of the host-local transport.

Our results indicate significant performance benefits
for applications using Slipstream: throughput improves
up to 16-100% on server applications and 100-200% with
Docker, and microbenchmarks show that latency is cut
in half. Our results also show that when Slipstream
tries but fails to optimize a connection (e.g., because
one of the two endpoints is not using Slipstream),
the throughput is impacted by only 1-3% on average.
Moreover, Slipstream is an opt-in system that imposes
zero overhead for applications that do not explicitly
request the optimizations.

Our work makes the following contributions:

• We describe a novel backwards-compatible, trans-
parent algorithm for classifying communication
between two endpoints as host-local or remote.

• We describe a fully automatic optimization to replace
TCP with Unix domain sockets as the transport
layer, while preserving the interfaces, reliability
guarantees, and failure semantics of the original
transport.

• We show by use of microbenchmarks and server
applications that Slipstream achieves significant im-
provements in throughput, without requiring manual
tuning, custom APIs, or special configuration.

There are certain system configurations that will cause
our system to mismatch connections; violations of our
correctness conditions, while unlikely in practice, must
be avoided during system setup.

1 The source code for Slipstream and the scripts used in the
evaluation are available at: http://wdtz.org/slipstream.

Overall, our experience suggests that the improvements
achieved automatically by Slipstream are comparable in
terms of performance (as we show in the Netperf results)
to those that can be achieved by modifying applications
to explicitly use Unix domain sockets for host-local
connections.

2 Slipstream Overview
Slipstream transparently identifies and dynamically trans-
forms TCP streams between local endpoints into streams
that employ more efficient IPC mechanisms, such as Unix
domain sockets (UDS). This optimization improves com-
munication performance for many existing applications,
and alleviates the burden on programmers to manually
detect and select the fastest transport mechanism. To
accomplish this task, Slipstream interposes on TCP
interactions between the application and the operating
system to track TCP endpoints, detect local TCP streams,
switch the underlying transport mechanism on-the-fly, and
emulate TCP functionality on top of the local transport
mechanism.

Performing all of these in userspace means that
Slipstream must replicate critical stream state at the
userspace level and it must adequately emulate TCP on
a non-TCP-based transport mechanism. In this section
we describe the key design goals we aim to meet, discuss
the challenges presented by TCP, and then provide a high
level description of Slipstream.

2.1 Design Goals

We specify three key design goals for the optimization,
which are desirable for real-world use and present new
design challenges. None of the previous systems meet all
three requirements. First, we aim to preserve application
transparency, i.e., requiring no changes to application
code in order to perform this replacement. However,
application end-users can choose whether or not to
enable the optimization. Second, we aim to avoid any
operating system changes, not even through dynamically
loadable kernel modules, i.e., the optimization should be
implemented entirely via userspace code (in fact, we do
not even require root privileges). Although aspects of the
optimization would be simpler to implement within the
OS, those extra challenges are solvable in userspace as
well (as we show), and a solution that does not require
kernel changes is far easier to deploy. Third, unoptimized
communication (i.e., between an optimized component
and an unoptimized one) must continue to work correctly
and, again, with no application changes.

Of course, the system must also meet essential
correctness requirements: the reliable stream delivery
guarantees of TCP must be preserved, and the semantics
of socket operations must be implemented correctly.
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2.2 TCP Optimization Challenges
Within an OS, a TCP endpoint is a kernel-level object
represented as a 2-tuple, �local IP address, TCP port
number�. A TCP stream is a pair of TCP endpoints,
and is also referred to as a socket pair. The kernel
provides userspace access to TCP via the standard
socket interface, which applications use for creating and
managing connections and for sending and receiving data.
The socket interface represents instances of streams in
the form of a socket descriptor, a special case of a file
descriptor. These file descriptors are the only way in
which userspace code can access TCP endpoints. Since
Slipstream is a userspace mechanism but must emulate
details of the TCP protocol, it operates by replicating the
notion of a TCP endpoint in userspace.

TCP, the POSIX socket interface, and their implementa-
tion in modern operating systems present some key design
challenges:

• Although a socket pair uniquely identifies TCP
connections in a network, a single host can be part of
multiple networks with overlapping network name
spaces. For example, via use of virtual environments,
it is possible to have the same IP address assigned to
multiple network interfaces within the same system.
This allows duplicate combinations of IP address /
TCP port pair to be used for distinct TCP streams
within the same host. Each such combination would
be a distinct TCP endpoint in the kernel.

• It is common for the kernel to map a single
TCP endpoint into multiple process address spaces,
thereby creating several userspace file descriptors
for a single kernel-level TCP endpoint. This
feature is widely used in applications, such as
Apache. Consequently, Slipstream must also track
all application interactions with the kernel that might
create or delete multiple instances of such endpoints.

• The TCP protocol does not support any reliable
mechanism for transferring extra data “out-of-band”
between the endpoints2. On the other hand, injecting
any such data into the stream “in-band” would
break an application that isn’t using Slipstream
and so cannot filter out the extra data. This
significantly complicates the task of detecting when
two endpoints are on the same machine and capable
of using Slipstream.

• POSIX file descriptors support a large number of
non-trivial functional features through numerous
system calls, which must be correctly emulated
to preserve application functionality transparently.
Some are specific to sockets (e.g., bind, connect,
listen, accept, setsockopt) while others are

2There is a TCP urgent data feature, but its use to communicate
lengthy amounts of data is unreliable.

Figure 1: Network layers and local IPC within Slipstream.

generic to file descriptors (e.g., poll, dup, dup2,

fcntl, fork, exec, and the various send/receive
operations). Slipstream supports all of these system
calls and other less common ones that interact with
TCP.

2.3 Slipstream Overview
Figure 1 shows a high-level diagram of a typical OS
network stack, enhanced with Slipstream. Slipstream
inserts a shim library we call libipc that interposes
on all TCP interactions between the application and the
kernel. libipc is responsible for tracking TCP endpoints
at all TCP-relevant system calls and for reporting all TCP
stream identifying information to a system-wide process,
ipcd. ipcd collects and records all stream information
and analyzes all existing streams using a stream matching
algorithm.

Once Slipstream detects that both endpoints of a stream
are local, libipc modifies the underlying communication
channel to use a local IPC transport (in the case of
our implementation, UDS). The use of emulation also
indicates one of the major contributions of our efforts:
emulating a sufficient subset of the TCP protocol in
userspace to correctly support real applications, as
demonstrated in our evaluation.

Overall, this sequence of steps ensures that (a)
Slipstream can replace TCP with a local IPC transport
without requiring any changes to application code; (b)
Slipstream does not break remote streams or local streams
that cannot be identified by Slipstream; and (c) the
protocols used by Slipstream never introduce new errors
in communication for identified local streams. In this
sense, the optimizations are transparent to application
code, are backwards-compatible with non-participating
endpoints, and do not require kernel modification.

3 Design and Implementation
The functionality of Slipstream has three major aspects:
(1) identifying TCP communication streams in which both
endpoints are local; (2) replacing TCP with an alternative
local transport; and (3) emulating most of the functionality
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of the TCP sockets interface. The first two subsections
below describe preliminary design aspects for interposing
on and tracking TCP events. Subsections 3.3– 3.5 then
discuss the three major aspects of the design.

3.1 Interposing on TCP Events
In order to identify local streams and emulate TCP on
optimized transport, we monitor applications and track
the creation and use of TCP endpoints. We do this using
our per-process library, libipc, which intercepts all TCP-
related calls exposed by the system. In our implementa-
tion, we insert libipc into a client application by using
the LD PRELOAD environment variable or by specifying
the full path to libipc in /etc/ld.so.preload. We
prefer dynamic interposition in favor of replacing libc so
as to avoid requiring modifications to the system libraries
and, importantly, to enable applications to choose whether
or not to use our technology.

3.2 TCP Endpoints in Userspace
In order to track TCP streams, Slipstream assigns a unique
endpoint identifier (EPid) to each TCP endpoint created
and used by the application. Each EPid represents an
in-kernel TCP endpoint. To manage the optimization
state, libipc assigns a state to each EPid to track its
optimization status:

Pre-opt Optimization not yet attempted.
No-opt Optimization attempted and failed.
Opt Optimization successful.

As explained in Section 2.2, in order to fully track
streams, Slipstream must replicate endpoint state at the
user level (in libipc) by tracking TCP state at critical
system calls, such as fork, as well as traditional TCP
modifying operations. For each EPid, libipc maintains
a reference count representing how many processes have
at least one file descriptor open to this endpoint. libipc
updates this reference count on events that affect it,
such as fork, exec, and exit. Moreover, instead of
communicating with ipcd on every use of a socket, as
many details as possible about file descriptors and EPids
are retained by libipc.

In our implementation, libipc state information is
maintained in two tables, one tracking file descriptors and
the other tracking endpoints. The file descriptor table
tracks much of what the kernel also tracks at a per-file
descriptor granularity, such as the CLOSE ON EXEC flag
or epoll state. In addition, this table also tracks the
mapping of file descriptors to endpoint identifiers. The
EPid table tracks the optimization state for each EPid,
explained above. It also tracks information that is relevant
for the optimization procedure, such as the handle for
local transport if optimized and running hashes of sent
and received data.

3.3 Identifying Host-Local Flows

The first major step of Slipstream is to identify when two
endpoints of a TCP stream are located on the same host.
As noted in Section 2.2, the combination of IP address and
TCP port is insufficient to do so because it is possible to
have access to two network domains on a single host, even
though this may be rare. Instead, to identify local TCP
streams, Slipstream augments the usual IP address and
port pairs with extra information passively obtained by
watching the initial TCP conversation. This information
consists of hashes of the first N bytes of the stream and
precise timing of the connection creation calls. Together,
these components are sufficient to pair endpoints in the
vast majority of situations. When they are not sufficient,
Slipstream detects such situations and does not attempt to
optimize the socket.

More specifically, the steps Slipstream takes are as
follows. When a new TCP socket is connected, libipc
immediately records the time of the connection attempt
and forwards it to ipcd along with the IP and port
information. ipcd uses this information (all but the
hashes) to identify endpoints that are likely candidates
for pairing. By receiving this information immediately,
without waiting for the hashes, ipcd can eagerly detect
if multiple pairings are possible due to overlapping
address/port pairs and timing information. After N
bytes have been sent in one direction on the stream,
libipc contacts ipcd to attempt to find a matching
endpoint. Since the N-byte transfer almost certainly
takes significantly longer than reporting the connection
information to ipcd for reasonable3 values of N, this
ensures that if a mis-pairing is possible it is detected
before the optimization happens. In this case, the
stream is conservatively switched to the No-opt state,
and optimization is aborted.

If a single matching endpoint is found, ipcd initiates
the optimization procedure, explained in Section 3.4.
If a matching endpoint is not found, ipcd records the
current endpoint in a list and waits for a match, while
libipc tries again several times after which it declares
the procedure has failed. In this case, libipc changes the
state of the EPid to the ‘No-opt’ state. The last request
by libipc for a matching endpoint is sent with a flag
telling ipcd to remove the list entry if it is not matched.
This removal serves two purposes: first, it helps eliminate
matching errors by preventing stale endpoint data from
being matched; second, the atomic “request-or-removal”
avoids the issue of having only one endpoint aware of
a pairing: ipcd only pairs endpoints if they have both
indicated they will check again for a pair.

3In our prototype, we use N = 216.
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3.4 Transparent Transport Switching

Once ipcd has determined that two local endpoints are
communicating with each other over TCP, ipcd generates
a pair of connected sockets using a faster transport (in our
implementation, Unix domain sockets) and passes them
to the libipc instances controlling the communicating
endpoints. Generating the new sockets in ipcd and not
libipc allows the procedure to work even when the two
libipc instances cannot directly communicate, such as
between separate Docker containers. Upon receiving its
side of the faster socket, libipc copies appropriate flags
from the old socket to the new socket and then changes
the state of the EPid to ‘Opt’.
libipc then migrates communication to the new

channel for improved throughput and latency. The
primary challenge in doing this correctly is ensuring that
both endpoints will switch to the new channel at the same
position in the data streams.

To make this switch, libipc ensures that a send or
recv request ends at exactly N bytes. For a non-blocking
send or recv operation on the TCP socket, libipc

merely truncates this request, returns a short write and
lets the application issue the next request as normal. For
blocking operations, in which a short write could be
misinterpreted by the application, libipc instead splits
the request into two pieces and processes them internally
as two requests but only returns control to the application
after both requests have been processed. After splitting
the request, libipc attempts to optimize the endpoint as
detailed above, and subsequently transfers the remaining
bits of the request using the selected transport, except that
the request is handled in a non-blocking manner to better
emulate what would have occurred if the entire request
had been processed without libipc intervention.

3.5 Emulating TCP in User-Space

The bulk of the socket API has a straightforward
implementation in libipc: whenever a file descriptor
that has an underlying endpoint identifier is mentioned,
the real API is called with either the optimized transport’s
file descriptor (if in the ‘Opt’ state) or the original TCP
socket’s file descriptor (otherwise). Some system calls,
however, require a more complex implementation.

A global connection table is maintained by ipcd to
coordinate the matching process. Entries are created in
this global table whenever functions like socket and
accept request to create a TCP socket and are initialized
with properties about the socket such as the local and
remote IP address. Removal from the global table only
happens when a libipc instance determines that all
file descriptors within that process that refer to a single
endpoint have been closed. Since it is is possible to share
endpoints across multiple processes via use of fork, ipcd

maintains a count of the number of processes using a
single endpoint identifier.

The basic read and write functions (send, recv,
recvmsg, etc.) require more work when the endpoint
identifier is in the ‘Pre-opt’ state, where the tracking of the
first N bytes and the seamless transition steps described in
Section 3.4 need to be executed in addition to the normal
I/O.

Emulating fork requires more care due to the introduc-
tion of multiple processes that could potentially race on
communication to ipcd. This race is resolved by having
libipc inform ipcd that all of its endpoint identifiers
are about to be duplicated before making the call to fork;
should the call to fork fail, libipc tells ipcd to close
the duplicated file descriptors. If libipc were to notify
ipcd of the endpoint identifier duplication after the call to
fork, then a child process that immediately calls close
on its copy of the file descriptor would cause ipcd to
prematurely clean up the connection.

While fork is emulated by libipc, the implementa-
tion is only sufficient to support sharing file descriptors
across multiple processes if only one process at a time
communicates on it. This level of support is sufficient
to support most forking server applications, in which the
parent creates a socket, forks, and then closes the socket
while the child process does all of the communication on
said socket.

The exec family of functions implicitly refer to file
descriptors by the need to clean up those that have the
CLOSE ON EXEC flag, but they also pose a challenge
to support since the internal memory, including both
the code and data segments of libipc, is completely
wiped. libipc retains its memory across the exec call
by copying it to a shared memory object tied to a file
descriptor that is retained across the exec call. If the
new process uses libipc, the initialization process first
reads this table and initializes its current state. If the new
process does not use libipc, the tie to the file descriptor
at least ensures that the eventual death of the process will
clean up the system resources allocated by libipc.

4 Discussion
The current design of Slipstream assumes no ability
to communicate protocol data using packets within the
original stream, i.e., to add reliable “out-of-band” (OOB)
signaling between two libipc instances connected
in a stream. This has implications for performance,
correctness, and security.

4.1 Performance
The implication for performance is that Slipstream
may fail to optimize some instances of host-local TCP
communication, i.e., we may have false negatives. For
example, Slipstream may conservatively decide not to
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Figure 2: Parallel Network Configuration Example

optimize a stream if it exchanges fewer than N bytes, or
if the match is not identified within a short time interval.

More generally, we focus on optimizing using ob-
servations external to the TCP stream itself that are
readily available on any system. Moreover, we design
the protocol conservatively to avoid false positives,
which represent correctness violations. To avoid such
errors, Slipstream must be able to disambiguate TCP
streams in fairly complicated scenarios such as multiple
identical virtual networks with endpoints having identical
conversations.

4.2 Correctness
It is virtually impossible through an accidental misconfig-
uration for Slipstream to incorrectly match and optimize
endpoint communication. A “mispairing” (or “false
positive” or “incorrect match”) can only occur if all of
the following are true:

1. There are multiple TCP streams described by the
same 4-tuple 〈SrcIP, SrcPort, DstIP, DstPort〉, and
there must be at least one common host system
running more than one stream.

2. These streams were established with overlapping
timings.

3. The first N bytes of these streams are identical.
4. Slipstream is deployed to some, but not all, of the

endpoints described in these streams.

An example of a scenario that would be needed to cause
false positives is shown in Figure 2. In this example, A
and B are using Slipstream but X and Y are not. The ports
used by A and Y (not shown in figure) must be the same,
and so must be the ports used by B and X. This scenario
would then satisfy condition 1 as the same 4-tuple of the
IP addresses and ports identifies both concurrent TCP
streams, A−X and B−Y. In addition, these endpoints
must establish connections at approximately the same
time (within the time window used by a libipc instance
to poll its associated ipcd for a match; not greater than
100ms), and both connections must communicate the
same first N bytes of data. Only if all these conditions
hold will Slipstream erroneously attempt to pair endpoints
A and B.

The need for the first three conditions is obvious from
our endpoint matching protocol. The first condition
cannot occur within a single well-behaved network; for

the same IP address to occur in multiple distinct streams,
there must be local endpoints that reside on distinct
networks making use of the same IP addresses. Even
in such scenarios, the ports used must match as well,
which is unlikely because it is very common for clients to
use randomly generated port numbers (called ephemeral
ports) when setting up connections with servers, by
using a range of dynamic port numbers set aside for this
purpose [12].

Condition 4 is required because if Slipstream is
deployed to all endpoints, the possibility of mispairing
will be detected before optimization is attempted, and
Slipstream will conservatively avoid the pairing.

While these four conditions are possible, they are
unlikely to occur accidentally. A well-configured system
would not assign identical IP addresses to different
interfaces. The use of ephemeral ports, which are drawn
randomly from a fairly large range (e.g., 32768-61000 by
default on recent Linux kernels, for IPv4) makes condition
(1) even more unlikely. The two connections using those
two ports must both be started within a very small window
of time. Finally, the connections must send exactly the
same N bytes of data, for moderately large values of N
(e.g., 216). As a result, Slipstream is well-suited for most
real-world applications and is only unsafe when deployed
to applications known to intentionally violate one or more
conditions (e.g., regularly sending the same first N bytes).

4.3 Security
The key new security risk posed by Slipstream is that
an attacker (any unauthorized third party) could try to
force a mispairing, i.e., that the attacker is given read or
write access to a TCP stream to which she did not have
access previously. The threat model we assume is that
the attacker must have local access to a machine where
either endpoint of some local stream lives (necessary to
talk to ipcd), and does not have root privileges on that
machine (with root, more powerful attacks are possible
even without Slipstream).

In the absence of root access, it is impossible for the
attacker to forge IP headers or to misconfigure a second
network to obtain duplicate IP addresses as an existing
network. In our current implementation, however, we
trust that each libipc is being honest in describing
the information about its socket connection. A libipc

controlled by a local attacker could simply “lie” about
its IP address and port number and could potentially
construct the remaining information, including the N-byte
hash, in order to fool ipcd into giving it an optimized
endpoint incorrectly. A simple solution is to give ipcd

sufficient privileges to verify the IP address sent to it. On
a well-configured system that is not running a Docker-
like environment, this is sufficient to prevent a non-root
attacker from impersonating another endpoint.
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Figure 3: System call overheads. Values for Slipstream in
microseconds are shown above the bars. (Lower is better.)

On a system running a Docker-like environment, it is
plausible that multiple containers are assigned the same
IP address in a virtual network configuration. The default
Docker configuration, however, is to assign all containers
unique IP addresses from a single virtual network, which
prevents condition 1. Restricting Slipstream to use only in
the default configuration therefore eliminates any security
risk from untrusted containers. We leave it to future
work to support non-default Docker configurations with
duplicate IP addresses securely. For example, it might
be possible to abandon our initial assumption and extend
Slipstream to exchange data reliably “out-of-band” but
within the TCP stream by building on existing approaches
in the literature, e.g., through covert use of various
TCP/IP headers [31]. This would add some complexity to
libipc, but would be justified in large installations (e.g.,
a data center) in which the one-time cost of enhancing
libipc would benefit many customers.

5 Results

To evaluate Slipstream, we use a suite of microbench-
marks and applications that measure the performance of
various aspects of networking. We have two primary
goals in this evaluation. First, we aim to measure
the performance impact of Slipstream for network mi-
crobenchmarks and for networked applications. Second,
to investigate the performance impacts in more detail, we
measure the performance overheads incurred by common
system calls due to the extra bookkeeping necessary for
Slipstream.

We perform all of our experiments on a workstation
with a 4-core Intel x86-64 processor with 16GB of DDR3-
1333 RAM. This workstation runs Ubuntu 14.04 using
stock packages, including most notably Linux 3.13.0-36
as the base kernel, Docker 1.0.1, and OpenJDK 1.7.0 75
for the Java VM. All of the networking configuration

parameters for the Linux kernel have been left set to their
default values.

5.1 Microbenchmarks
We use the NetPIPE and Netperf microbenchmarks to
measure total networking throughput under different net-
working communication patterns. We use two variants of
NetPIPE, one in C and one in Java, to show the impact for
two different programming languages; in fact, Slipstream
is able to optimize Java code running on OpenJDK as
transparently as it does for C code, as explained below.
Another microbenchmark, lmbench [20], measures the
overhead of Slipstream on common system calls.

5.1.1 lmbench

lmbench [20] is a microbenchmark that measures the
overhead of various system calls, which gives an
indication of the penalty incurred by using Slipstream in
code that may not benefit from its improvements. Selected
results are shown in Figure 3; the other numbers are
omitted because they are unaffected by Slipstream.

Due to the tracking of file descriptors within userspace,
Slipstream naturally adds a small amount of overhead
to most system calls that interact with file descriptors.
For example, an open and close pair is 5% slower with
Slipstream, while a select over 100 socket descriptors
is 15% slower.

The tracking of file descriptors imposes the largest
overheads on fork or exec. For fork, this is due in large
part to synchronous communication between libipc and
ipcd that blocks the actual system call. In contrast, the
overhead in exec is due to loading libipc in the memory
space of the new process, as well as the overhead of
setting up the shared memory object to retain libipc

state across the call (see Section 3.5).
TCP latency, when the connections have been opti-

mized, is brought down to the same latency as UDS:
about 10 microseconds, about half the original TCP
latency. However, the initial connection latency is greatly
increased due to our need to register the new connection
to ipcd.

5.1.2 Netperf

Netperf [15] is a microbenchmark to measure total
throughput of network connections. Netperf sends data
unidirectionally, creating a new socket for each transfer
size. The sizes transferred are chosen in logarithmic
fashion. Results are presented in Figure 4.

At certain smaller buffer sizes (e.g., 32B-256B), both
Slipstream and UDS perform roughly 25-50% worse than
the TCP baseline in terms of total throughput. This
effect is due to synchronization overhead inside the Linux
kernel, which is not observed by the baseline because
TCP NODELAY is disabled and TCP buffer coalescing
occurs. To validate this, we also compared TCP
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Figure 4: Throughput as measured by Netperf, with a baseline
of TCP without Slipstream or TCP NODELAY specified. The table
contains a subset of the throughput results, measured in MB/s.

performance with TCP NODELAY enabled; that curve
clearly shows the negative impact of eliminating TCP
buffering. At higher data sizes, the relative overhead
of the synchronization vs. data transfer is reduced, and
Slipstream and UDS sockets both perform better than the
baseline, mimicking the results for other benchmarks.

Surprisingly, we observed an increase in throughput
with Slipstream compared to using UDS for some of the
larger data sizes. On further investigation, we found that
this extra speed is primarily due to Netperf using a very
small socket receive buffer size (2304 bytes) for the UDS
tests. When we changed the Netperf code to not set a
socket buffer size (labeled “UDS-modified” in the graph),
the apparent effect largely disappears.

Finally, to measure the impact of using Slipstream
when optimization is not possible, we ran Netperf using
Slipstream only on the client. As shown in the figure,
performance was generally very close to that without
using Slipstream, on average 3.5% slower than baseline.

5.1.3 NetPIPE

NetPIPE [28] is another microbenchmark that measures
the throughput of TCP. NetPIPE differs from Netperf in
that it transfers its data bidirectionally and that it reuses
the same socket for all of the transfer sizes.

Both variants of NetPIPE use the same basic net-
working structure, in which the client socket sends
data of a given buffer size that the server receives,
and then the server sends back that data; the process
repeats until sufficient measurements are taken to reliably
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Figure 5: NetPIPE-C performance both with and without
Docker containers.
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Figure 6: NetPIPE-Java, run only outside of Docker.

estimate the throughput. They also both use the id-
iomatic synchronized socket functions for the language—
send and recv in C, and java.io.InputStream and
java.io.OutputStream in Java.

The results of running NetPIPE-C are presented in
Figure 5, and the results for NetPIPE-Java are presented
in Figure 6. For sizes less than about 64KB, Slipstream
is able to consistently achieve around 70-150% more
throughput compared to baseline TCP. At higher sizes,
Slipstream does not provide as much improvement, but is
still able to produce at least a 40% increase in throughput.

We also observe that Slipstream optimizes Java
networking performance transparently, with no changes to
the JVM or the application. Slipstream is able to achieve
this because it interposes on libc, which is also used by
OpenJDK, providing essentially the same benefits to Java
programs as to C programs.

5.2 Application Benchmarks
Memcached and PostgreSQL are two example appli-
cations that are sometimes used in ways that put the
client and server on the same host. We evaluate

8
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Figure 7: Memcached throughput on host system

these applications with representative workloads to (a)
demonstrate that Slipstream is indeed fully transparent
for important real applications; and (b) to determine
the impact of improving TCP performance for real
applications. In addition to measuring performance
benchmarks, we used Slipstream on a set of applications—
ZeroMQ, OpenSSH, Jenkins (Java), Apache, iperf, simple
python TCP client/server, nepim—to informally evaluate
compatibility when local to remote TCP communications
operate through Slipstream: all of these functioned
correctly, and all except OpenSSH were successfully
optimized. OpenSSH writes to a socket from multiple
processes in a way that we do not currently support in our
implementation.

5.2.1 Memcached

Memcached [10] is a distributed, in-memory key-value
store that is primarily intended to be used to cache
database queries for web applications. While Memcached
can be configured to listen on Unix domain sockets
instead of TCP, feature requests to allow it to listen on
both have been rejected since the particulars of the socket
it listens on are used in the distributed hash function [16].

For testing, we run Memcached using a single server
and 2GB of storage. Queries are executed against a pool
of 10000 items each between 1 byte and 4KB in size. The
number of connections is varied, and the average number
of operations executed per second is observed. Results
are presented in Figure 7. Slipstream provides a 25%-
to-100% improvement in throughput, which would be a
substantial benefit for small Web sites where most of the
traffic is local. When using Slipstream on the client but
not the server, we measured on average 1-3% slowdown.

5.2.2 pgbench

pgbench [13] is a benchmark for PostgreSQL, a widely
used open-source relational database. We run pgbench
with two separate workloads, one based on the industry-
standard TPC-B benchmark and the other based on a
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Figure 8: pgbench transactions per second, TPC-B

 0

 5000

 10000

 15000

 20000

 25000

 20  40  60  80  100

TP
S

Scale Factor

Slipstream
Baseline
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SELECT-only benchmark, which spends more time in
communication. Slipstream successfully optimizes all
TCP communication in both cases. A benchmark scale
factor, N, creates 100000N rows in the database or about
N · 16 MB of total database size [26]. Figures 8 and 9
show the results (in database transactions per second, or
TPS). Each data point represents the average of multiple
runs; the variance observed was negligible.

The TPC-B workload shows little improvement, which
is not surprising because the workload is designed to
stress the database’s internals (primarily disk access) [30]:
communication changes have little impact.

In contrast, the SELECT workload shows 16-23%
improvement in database throughput for all scale factors.
This workload performs simple queries that are processed
by the database at a much higher rate and, as a result,
benefits significantly from communication optimization.

5.3 Docker
Slipstream is able to detect and optimize local TCP
traffic within a single network (i.e., to localhost), but
also across virtualized networks executing on the same
machine such as those created by Docker. To demonstrate

9
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Figure 10: Memcached throughput with Docker

this functionality, and evaluate the performance charac-
teristics of Slipstream in this environment, we conducted
additional experiments across Docker containers on the
same host. Rerunning our experiments within the same
Docker container do not produce different results than by
running them on a regular Linux setup.

As different Docker containers have distinct filesystems
from the host system, using Slipstream from within a
container requires an extra configuration step. If ipcd
is installed into a Docker container of its own, then
the directory containing the UDS that ipcd listens on
can be also installed on other containers by leveraging
the volumes feature of Docker. Alternatively, it is also
possible to bind this directory from the host system to
a Docker container. Either way, using Slipstream with
Docker only requires ensuring that libipc is installed
within the container and adding a single flag when running
the container. This flexibility is a key benefit of the routing-
oblivious design of Slipstream.

5.3.1 Docker Microbenchmark

We reran our NetPIPE-C microbenchmark using Docker
to illustrate the basic performance of Docker networking,
also shown in Figure 5. The graph shows that Slipstream
is not slowed down when used across Docker containers,
whereas normal TCP is, magnifying the TCP throughput
improvement to between 150% and 350%. Since Docker
containers use separate networking namespaces, the
kernel layers need to swap packets between different
interfaces, which imposes an extra overhead on TCP
transfer, layers which are bypassed by Slipstream. Thus
Slipstream’s benefits are only enhanced when Docker is
in use.

5.3.2 Docker Application Benchmark

In addition to the basic TCP throughput benchmark,
we also evaluate the performance of Memcached across
Docker containers on the same host. This experiment
is identical to the Memcached experiment without

containers, with the sole difference that the server and
client live in separate containers. These results are shown
in Figure 10. Comparing with Figure 7, we again see
substantially greater improvements due to Slipstream
with Docker than without, ranging from about 100% to
200% speedup. These are very large application-level
improvements, showing that Slipstream can be a valuable
and transparent way to improve the overall performance
of services that use Docker containers.

6 Related Work
A number of previous systems aim to optimize local
interprocess communication. A brief summary and a
feature comparison are presented in Table 1, and are
discussed in more detail below.

In-Kernel Solutions Recently, operating systems such
as Windows [5], AIX [23], and Solaris [19], have made
available localhost TCP optimizations. In general, they
all bypass the lower levels of the kernel networking
stack, only forming TCP and not IP packets. Performing
these optimizations within the existing networking stack
simplifies identifying local-only traffic and provides a
fast-path for local streams.

Unfortunately, performing these optimizations within
the OS has several drawbacks: the implementations are
kernel-specific and other systems cannot benefit (e.g.,
Linux does not support it, although there have been
efforts to add it [7]); OS upgrades are often slow to be
adopted widely; and applications have no control over
whether or not the optimization is available on a given
system. In contrast, Slipstream is relatively easy to port,
at least across Unix-like systems; it is easy to deploy
(e.g., it does not even require superuser privileges to
install); and application developers that choose to do so
can incorporate the system fairly easily.

VMM solutions for inter-VM communication: Sev-
eral approaches to improving performance of communi-
cation between co-located virtual machines have been
described [17, 34, 35], all focusing on Xen. These solve
similar communication inefficiencies as Slipstream, but
either require application modification [35], guest kernel
modification [17, 34, 35], are not fully automatic [17, 35],
or operate at the IP layer so TCP overheads are not
eliminated [34].

Language-Specific Solutions: The interfaces provided
by languages for IPC are often at a much higher level
than the basic operations provided by the system. For
example, Java Fast Sockets [29] is able to greatly improve
communication of Java applications with techniques
such as avoiding costly serialization in situations in
which the data can be passed through shared memory.
While these optimizations are difficult with a language-
agnostic solution like Slipstream, Slipstream is able to

10
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Category Prior Work Application Transparency1 OS Transparency2 Sockets3 Misc.
OS Impl. Win. FastPath [5] � Opt-in � Included in OS already �

Solaris TCP Fusion [19] � Opt-Out � Included in OS already �
AIX fastlo [23] � Opt-in � Included in OS already �
Linux TCP Friends [7] ? � Floating Kernel patch �

VM-VM XWay [17] � � Guest kernel patch
XenSocket [35] � AF XEN – �
XenLoop [34] � � Guest kernel module

User. Stack mTCP [14] � Similar API � NIC driver for packet library �
Sandstorm [18] � Specialized for App. � requires netmap [24] kernel support �

User. Shim Fable [27] � Limited, ns-based � System call for name service �
Java Fast Sockets [29] � Java.net.Socket � � Java-Only
Universal Fast Sockets [2] � � � Commercial
FastSockets [25] � � Uses Active Messages �
Slipstream � � �

1 Application Transparency (no application modifications required)
2 OS Transparency (no OS modifications required, no use of OS-specific tech)
3 Provides Socket Interface (POSIX, Linux)

Table 1: Prior Work: Categories and Features

optimize applications that use sockets regardless of source
language, as our results illustrate for C/C++ and Java.

Transparent Userspace Libraries: The FABLE li-
brary, which is only described in a position paper [27],
provides automatic transport selection and dynamic
reconfiguration of the I/O channel. FABLE provides
a socket compatibility layer that uses a new system
call for looking up a name mapping (implying that
FABLE is not a pure userspace solution) to identify
communication with hosts for which it may be able
to provide a more efficient transport. Without any
information about an implementation, it is unclear how
well this compatibility layer works. However, the
dynamic switching of transports in Slipstream is very
similar to their reconfigurable I/O channels.

Fast Sockets [25] is a userspace library that provides
a sockets interface on top of Active Messages [33].
This is superficially similar to Slipstream, but Fast
Sockets assumes it can determine which transport to
use by inspecting the address, which requires static
configuration and a rigid network topology. In contrast,
Slipstream focuses on automatic detection of inefficient
communication without relying on network topology
details and switches transports on-the-fly.

Universal Fast Sockets (UFS)[2] is a commercial
solution to optimize local communication transparently.
Like Slipstream, UFS uses a shared userspace library to
interpose on application activity, but other details of how
it operates are proprietary and unclear.

Explicit Userspace Solutions Many software libraries
provide explicit messaging abstractions for application
use [3, 6, 32]. Without the limitations of existing
interfaces, impressive performance results are possible,
but applications need to be modified to use these
frameworks, and seeing the best results may require deep
changes to the fundamental structure of an application.

Several researchers have explored moving the network
stack out of the operating system and entirely into
userspace, citing many performance benefits [14, 22, 24]
Userspace networks stacks are components of popular OS
designs including the microkernel [11] and exokernel [9]
approaches. Some work goes further and collapses the
entire network stack into the application [18], providing a
specialized stack entirely in userspace. More recent work
refactors the OS network stack into a control plane (which
stays in the kernel) and separate data planes (which run
in protected, library-based operating systems) [4]. All
of these efforts redesign the networking stack from the
ground up and require kernel modification, application
modification, or both. These solutions do not directly
aim to optimize local communication, but similar to the
in-kernel approaches described above this could likely be
added in a straightforward if not portable manner.
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8 Conclusion
Slipstream is a novel system for the optimization of TCP
communication that requires neither OS nor application
modification, which allows it to be easily and rapidly
deployed. Our evaluations show that our system is capable
of achieving significant performance benefits, at least 16%
more throughput than TCP, and up to 200% if Docker is
involved, both on real applications in real usage scenarios.
Slipstream’s minimal assumptions allow it to be used in a
variety of network topologies and to use a variety of faster
local transports, capabilities we plan to explore in future
work. We believe that Slipstream provides an excellent
base for reducing the overhead of IPC in applications that
is usable across a wide variety of applications and setups.
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Abstract
Network packet capture performs essential functions

in network management such as attack analysis, network
troubleshooting, and performance debugging. As the net-
work edge bandwidth exceeds 10 Gbps, the demand for
scalable packet capture and retrieval is rapidly increasing.
However, existing software-based packet capture systems
neither provide high performance nor support flow-level
indexing for fast query response. This would either pre-
vent important packets from being stored or make it too
slow to retrieve relevant flows.

In this paper, we present FloSIS, a highly scalable,
software-based flow storing and indexing system. Flo-
SIS is characterized as the following three aspects. First,
it exercises full parallelism in multiple CPU cores and
disks at all stages of packet processing. Second, it con-
structs two-stage flow-level indexes, which helps mini-
mize expensive disk access for user queries. It also stores
the packets in the same flow at a contiguous disk loca-
tion, which maximizes disk read throughput. Third, we
optimize storage usage by flow-level content deduplica-
tion at real time. Our evaluation shows that FloSIS on
a dual octa-core CPU machine with 24 HDDs achieves
30 Gbps of zero-drop performance with real traffic, con-
suming only 0.25% of the space for indexing.

1 Introduction
Network traffic capture plays a critical role in attack
forensics and troubleshooting of abnormal network be-
haviors. Network administrators often resort to packet
capture tools such as tcpdump [6], wireshark [8], netsniff-
ng [3] to dump all incoming packets and to analyze the
behaviors from multiple dimensions. These tools can
help pinpoint a problem in network configuration and per-
formance and even reconstruct the entire trace of an in-
trusion attempt by malicious hackers.

As the edge network bandwidth upgrades to beyond
10 Gbps, existing packet capture systems have exposed a

few fundamental limitations. First, they exhibit poor per-
formance in packet capture and dumping, sometimes un-
able to catch up with packet transmission rates in a high-
speed network. This is mainly because these tools do not
properly exploit the parallelism with multiple CPU cores
and disks, and the existing kernel is not optimized for
high packet rates. Second, most existing tools do not sup-
port indexing of stored packets. Lack of indexing would
incur a long delay to retrieve the content of interest since
the search performance would be limited by sequential
disk access throughput, often translating to hours of de-
lay in a multi-TB disk. Third, the huge traffic volume at
a high-speed link would significantly limit the monitor-
ing period. For example, it takes less than 17 hours to
fill up 24 disks of 3TB at the rate of 10 Gbps. For ex-
tended monitoring period, one must enhance the storage
efficiency by compressing the stored content.

Recent development of high-performance packet I/O
libraries [1, 22, 26, 28] has in part alleviated some of the
problems. For instance, n2disk10g [17] and tcpdump-
netmap [7] exploit a scalable packet I/O library to achieve
a packet capture performance of multi-10 Gbps. More-
over, n2disk10g allows parallel packet dumping to disk
and packet-level indexing for fast access. However, the
primary problem with these solutions is that they still
deal with packets instead of network flows. Working
with packets presents a few fundamental performance is-
sues. First, query processing would be inefficient. Most
content-level queries would inspect the packets in the
same TCP flow rather than those that belong to com-
pletely unrelated flows. Time-ordered packet dumping
would scatter the packets in the same flow across a disk.
Even with indexing, gathering all relevant packets for a
query could either increase disk seeks or waste disk band-
width from reading unrelated packets nearby the targets.
Second, per-packet indexing would be more expensive
than per-flow indexing. Per-packet indexing would not
only use more metadata disk space but also significantly
increase the search time.
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In this paper, we present FloSIS (Flow-aware Stor-
age and Indexing System), a highly scalable software-
based network traffic capture system that supports effi-
cient flow-level indexing for fast query response. Flo-
SIS is characterized by three design choices. First, it
achieves high performance packet capture and disk writ-
ing by exercising full parallelism in computing resources
such as network cards, CPU cores, memory, and hard
disks. It adopts the PacketShader I/O Engine (PSIO) [22]
for scalable packet capture, and performs parallel disk
write for high-throughput flow dumping. Towards high
zero-drop performance, it strives to minimize the fluctu-
ation of packet processing latency. Second, FloSIS gen-
erates two-stage flow-level indexes in real time to reduce
the query response time. Our indexing utilizes Bloom fil-
ters [13] and sorted arrays to quickly reduce the search
space of a query. Also, it is designed to consume small
amount of memory while it allows flexible queries with
wildcards, ranges of connection tuples, and flow arrival
times. Third, FloSIS supports flow-level content dedupli-
cation in real time for storage savings. Even with dedu-
plication, the system preserves the packet arrival time and
packet-level headers to provide exact timing and size in-
formation. For an HTTP connection, FloSIS parses the
HTTP response header and body to maximize the hit rate
of deduplication for HTTP objects.

We find that our design choice brings enormous perfor-
mance benefits. On a server machine with dual octa-core
CPUs, four 10 Gbps network interfaces, and 24 SATA
disks, FloSIS achieves up to 30 Gbps for packet capture
and disk writing without packet drop. Its indexes take up
only 0.25% of the stored content while avoiding slow lin-
ear disk search and redundant disk access. On a machine
with 24 hard disks of 3 TB, this translates into 180 GB for
72 TB total disk space, which could be managed entirely
in memory or stored into solid state disks for fast random
access. Finally, FloSIS deduplicates 34.5% of the storage
space for 67 GB of a real traffic trace only with 256 MB
of extra memory consumption for a deduplication table.
In terms of performance, it achieves about 15 Gbps zero-
drop throughput with real-time flow deduplication.

We believe that our key techniques in producing high
scalability and high zero-drop performance are applicable
to other high-performance flow processing systems like
L7 protocol analyzers, intrusion detection systems, and
firewalls. We show how one should allocate various com-
puting resources for high performance scalability. Also,
our efforts for maintaining minimal processing variance
should be valuable in high-speed network environments
where packet transmission rates vary over time.

2 Design Goals and Overall Architecture

In this section, we highlight our system design goals and
describe overall system architecture of FloSIS.

2.1 Design Goals
(1) High scalability: A high-speed network traffic cap-
ture system should acquire tens of millions of packets per
second from multiple 10G network interfaces, and write
them to many hard disks without creating a hotspot. To
achieve high performance, the system requires a highly
scalable architecture that enhances the overall perfor-
mance by utilizing multiple CPU cores and hard disks
in parallel. Moreover, it should be easily configurable.

(2) High zero-drop performance: The system should
ensure high zero-drop performance. A peak zero-drop
performance refers to the maximum throughput that the
system can achieve without any packet drop. It is an im-
portant performance metric of a network traffic capture
system since we need to minimize packet drop for accu-
rate network monitoring and attack forensics. It typically
differs from the peak throughput that allows packet drop.
Even if the input traffic rate is much lower than the peak
throughput, a temporary spike of delay caused by block-
ing I/O calls or scheduling can incur packet drop regard-
less of the amount of available computation resources.

(3) Flow-level packet processing: Indexing plays a crit-
ical role in fast query response. Instead of packet-level
indexing [17, 19], we make an index per each flow. Flow-
level indexing significantly reduces the index space over-
head and improves disk access efficiency. However, it
requires managing the packets by their flows so that the
packets in the same flow are written to the same disk lo-
cation. While this incurs extra CPU and memory over-
heads, it also provides an opportunity to deduplicate the
flow content, making more efficient use of the storage.

(4) Flow-aware load balancing: For efficient flow pro-
cessing, the packets in the same flow need to be trans-
ferred to the same CPU core from the NICs while the
per-core workload should be balanced on a multicore sys-
tem. Otherwise, packets should be moved across the CPU
cores for flow management, which might cause severe
lock contention and degrade CPU cache efficiency.

2.2 Overall Architecture
The basic operation of FloSIS is simple. It captures the
network packets mirrored by one or a few switch ports,
manages them by their flows 1, and writes them to disk.
It also generates per-flow metadata and its associated in-
dex entries, and responds to user queries that find a set
of matching flows on disk. In case a flow content is re-
dundant, the system deduplicates the flow by having its
on-disk metadata point to a version that exists in a disk.

For scalable operation, FloSIS adopts a parallelized
pipelined architecture that effectively exploits the paral-
lelism in modern computing resources, and minimizes

1We mainly focus on TCP flows in this paper, and non-TCP packets
are written to disk as they arrive without flow-level indexing.

2



USENIX Association  2015 USENIX Annual Technical Conference 447

Symmetric RSS

10 Gbps NIC

Symmetric RSS

10 Gbps NIC

CPU Core

Engine Thread

Packet Acquisition

Packet Classification

Flow Metadata & Index Creation

Flow Data Buffering

HDD HDD

Writing Thread Writing Thread

Rx queue

SSD

Indexing Thread Indexing Thread

Packet Processing Procedure

1. Packet acquisition

Read a batch of packets using PSIO

2. Packet classification

Decode packets & update flow buffers

3. Flow metadata & index creation

Create flow metadata & index if a flow is terminated

Indexing threads sort the indexes and write to SSD

4. Flow data buffering

Copy data in flow buffers to w-buffer

Writing threads write fully loaded w-buffers to HDD× 2

Figure 1: The half of overall architecture and thread arrangement of FloSIS on a machine with 16 CPU cores, four 10G NIC ports,
24 HDDs, and 2 SSDs

the contention among them. It is multi-threaded with
three distinct thread types: engine, writing, and index-
ing threads. The engine thread is responsible for packet
acquisition from NICs, flow management, and index gen-
eration. It also coordinates flow and index writing to disk
with writing and indexing threads. The writing thread
shares the buffers for writing with an engine thread, and
periodically writes them onto a disk. All packets in the
same flow are written consecutively to disk unless they
are deduplicated. The indexing thread shares the flow
metadata and indexes with an engine thread, and sorts the
indexes when it gathers enough entries. Also, it writes the
metadata and indexes to disk for durability and helps with
resolving the queries by searching through the indexes.
We use hard disk drives (HDDs) for storing the flow
data and solid state drives (SSDs) for metadata and in-
dex information. Our system benefits from cost-effective
packet data dumping and prompt query response from
fast retrieval of flow metadata and indexes.

Figure 1 shows the mapping of FloSIS threads into a
server machine with 16 CPU cores, four 10G NIC ports,
and 24 HDDs and 2 SSDs, which we use as a reference
platform in this paper. The guiding principle in resource
mapping is to parallelize each thread type as much as
possible to maximize the throughput while minimizing
packet drop from resource contention. Every thread is
affinitized to a CPU core to avoid undesirable interfer-
ence from inter-core thread migration. We co-locate mul-
tiple writing threads with an engine thread on the same
CPU core since writing threads rarely consume CPU cy-
cles and mostly perform blocking disk operations. Since
a writing thread shares the buffers that its engine thread
fills in, it would benefit from shared CPU cache if it is
co-located with an engine thread. In contrast, an index-
ing thread runs on a different CPU core since it period-

ically executes CPU-intensive operations, which might
interfere with high-speed packet acquisition with engine
threads. Since indexing thread operations are not time-
critical, we can place multiple indexing threads on the
same CPU core. Each writing thread has its own disk
to benefit from sequential disk I/O without concurrent
access by other threads. However, SSDs are shared by
multiple indexing threads since they do not suffer from
performance degradation by concurrent random access.

3 High-speed Flow Dumping
In this section, we describe scalable packet capture and
flow dumping of FloSIS. FloSIS uses a fast user-level
packet capture library that exploits multiple CPU cores,
and performs direct I/O to bypass redundant memory
buffering at disk writing while minimizing CPU and
memory consumption for disk I/O.

3.1 High-speed Packet Acquisition
The first task of FloSIS is to read packets from NICs. It
is of significant importance to allocate enough resource
on the packet acquisition, because its performance serves
as an upper-bound of the achievable system throughput.
Thus, we allocate so many CPU cores as to read the pack-
ets from NICs at line rate. For scalable packet I/O, Flo-
SIS employs the PSIO library [22], which allows parallel
packet acquisition by flow-aware distribution of incom-
ing packets across available CPU cores. PSIO is known
to achieve a line rate regardless of packet size with batch
processing and efficient memory management [22]. Also,
we use symmetric receive-side scaling (S-RSS) [31] that
maps both upstream and downstream packets in the same
TCP connection to the same CPU core. S-RSS hashes the
4-tuple of a TCP packet to place the packets in the same
connection in the same RX queue inside a NIC. Each RX
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Figure 2: Flow data in the flow buffers and the disk (U: Upstream, D: Downstream, H: Head, B: Body). (a) a typical TCP flow,
(b) an HTTP flow with a request in an upstream buffer, and a response in a downstream buffer, and (c) another HTTP flow with the
same response body as (b)’s.

queue in a NIC is dedicated to one of the engine threads,
and all packets in the queue are processed exclusively
by the thread. This architecture eliminates the need of
inter-thread synchronization and achieves high scalabil-
ity without sharing any state across engine threads.

One may have concern that S-RSS may not distribute
the packet load evenly across multiple CPU cores. How-
ever, a recent study reveals that S-RSS effectively dis-
tributes real traffic at a 10 Gbps link almost evenly across
multiple CPU cores, by curbing the maximum load dif-
ference at 0.2% for a 16-core machine [31].

3.2 Flow-aware Packet Buffering
When packets are read from NIC RX queues, the engine
thread manages them by their flows. The engine thread
classifies the received packets into individual flows, and
each flow maintains its current TCP state as well as its
packet content. FloSIS keeps all packets in the same
TCP connection at a single conceptual buffer called flow
buffer. A flow buffer consists of three data buffers: packet
header, upstream and downstream buffers as shown in
Figure 2. The packet header buffer collects all packet
headers (e.g., Ethernet and TCP/IP headers) and their
timestamps in the order of their arrival. While FloSIS
focuses on flow-level indexing and querying, it also sup-
ports packet-level operations to provide information such
as packet retransmission, out-of-order packet delivery,
inter-packet delay, etc, where packet header buffers are
needed to reconstruct such information. The upstream
and downstream buffers maintain reassembled content of
TCP segments so that the user can check the entire mes-
sage at one disk seek. In case of an HTTP flow, the down-
stream buffer is further divided into response header and
body buffers. This header-body division adds efficiency
in deduplication, since the response header tends to differ
for the same object (see Section 5 for more details).

One challenge in maintaining the flow buffer is mem-
ory management of three data buffers. Since a flow
size is variable, one might be tempted to dynamically
(re)allocate the buffers. However, we find that dynamic
memory allocation often induces unpredictable delays,

which increases random packet drops at engine threads.
Instead, FloSIS uses user-level memory management
with pre-allocated memory pools of fixed-sized chunks.
For the flow buffer, one chunk is allocated initially for
each data buffer when a flow starts. If more memory is
needed, a new chunk is allocated but the new chunk is
linked to the previous one with doubly-linked pointers.
The flow management module has to follow the links to
write the data into right memory chunks. While manag-
ing non-contiguous memory chunks is more difficult, the
benefit of fixed-cost operations ensures a predictable per-
formance at high-speed packet processing.

When a TCP flow terminates, the engine thread gener-
ates a flow metadata consisting of the following informa-
tion: (i) start and end timestamps, (ii) source and desti-
nation 2 IP addresses and port numbers, and (iii) the lo-
cation and length of the flow data on disk. Then the data
in the flow buffer is moved to a large contiguous buffer
called w-buffer, and the flow buffer is recycled for other
flows. The flow data is also moved to w-buffer if its size
grows larger than a single w-buffer. The w-buffer serves
two purposes. First, it enables to have all flow data at a
contiguous location before disk writing, which ensures to
read all flow data with one disk seek. Second, it buffers
the data from multiple flows to maximize the sequential
write throughput of an HDD. It is the unit of disk writing,
where a larger size would lead to a higher disk through-
put while reducing the CPU usage. When the w-buffer
is filled up, the engine thread gives the ownership to its
writing thread, which writes to disk and recycles it.

For each flow, a flow data map is written prior to its
flow data in w-buffer. The flow data map contains an
array of disk locations and lengths of flow data buffers.
In most cases, three (or four) flow data buffers follow the
flow data map, but for a deduplicated buffer, the flow data
map points to an earlier version. If a flow consists of
multiple w-buffers, the flow data map is responsible for
keeping track of all data buffers in the same flow, allow-
ing flows of arbitrary size.

2Interpreted from the client side
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Figure 3: Disk writing throughput and CPU utilization

We comment that FloSIS avoids using buffered I/O,
because the file system cache would be of little use for
flow dumping and random disk access for user queries.
Worse yet, the file system cache behavior becomes unpre-
dictable when the cache buffer is full, which often leads
to a catastrophic result such as kernel thrashing. In con-
trast, direct I/O in FloSIS performs I/O operations by di-
rect DMA-mapping of user buffer to disk, and minimizes
the effect of file system cache.

To figure out what size of w-buffer is appropriate as a
good design choice in our reference platform, we run a
benchmark test with varying buffer sizes. Figure 3 shows
disk writing throughputs and CPU utilization of direct I/O
using the O DIRECT flag (Dwrite) and buffered I/O us-
ing fwrite() (Fwrite), where we compare the perfor-
mance of buffered I/O just to understand the maximum
disk performance. In these microbenchmarks, we run 24
threads on our platform, each of which occupies its own
HDD and calls write() (fwrite() in Fwrite) contin-
uously, and measure the aggregate throughputs and CPU
utilization. Not surprisingly, Fwrite shows good perfor-
mance regardless of the buffer size due to its data batch-
ing in the file system buffer. Since memory copying to
a file system write buffer is much faster than actual disk
I/O, the kernel always has enough data to feed to disk.
This allows Fwrite to achieve the maximum disk through-
put, whereas Dwrite achieves a similar performance only
at 128 KB or larger buffer sizes due to the absence of
kernel-level buffering. As expected, the CPU usage of
Dwrite decreases as the buffer size increases. In FloSIS,
we choose 512 KB as the size of w-buffer, which achieves
almost peak performance only with 10% CPU usage.

4 Flow-level Indexing & Query Processing
In this section, we explain the two-stage flow-level index-
ing of FloSIS and real-time index generation.

4.1 Two-stage Flow-level Indexing
FloSIS writes flow data to a file (called a dump file) on
each disk. When the current file size reaches a given

threshold (e.g., 1GB), FloSIS closes it and moves on to
the next file for flow data dumping. The reason for file
I/O instead of raw disk I/O is to allow other tools to ac-
cess the dumped content. For sequential disk I/O, we pre-
allocate the disk blocks contiguously in the files (e.g., us-
ing Linux’s fallocate()).

FloSIS handles flow data stored on each disk by two-
stage flow-level indexes as shown in Figure 4. It uses the
first-stage indexes to determine the files that contain the
queried flows (file indexing). If a dump file has relevant
flows, it filters the exact flows using the second-stage in-
dexes (flow indexing). The details are as follows.

File indexing: The first-stage indexing is file indexes.
Each dump file has in-memory file indexes that consist
of two timestamps and four Bloom filters. These indexes
are used to determine whether queried flows do not ex-
ist in the dump file, and the file can be passed. The two
timestamps record the arrival times of the first and the
last packet stored in the file. Each Bloom filter holds the
information about one of the 4-tuple of a flow. For ex-
ample, the source IP Bloom filter records all source IPs
of the flows stored in the dump file. Using the filters,
we can quickly figure out whether the dump file does not
have any flow with a queried IP (or a port number).

Even if a Bloom filter confirms a hit with a queried
IP address or a port number, there is still a small prob-
ability that it is a false positive. To achieve a tolerable
false positive rate, we need to adjust the size of a Bloom
filter and the number of hash functions, considering the
number of elements. Assuming that an average flow size
is 32 KB [31], we expect 32K flows in a dump file of
1 GB. A Bloom filter with 7 hash functions and 128 KB
(or 220 bits) of size, would reduce the false positive rate to
0.0011%, which should be small enough. This means that
the memory requirement for file indexes is about 1.5 GB
per 3 TB HDD or 36 GB for 24 HDDs.

Flow indexing: The second-stage is flow indexes. Flow
indexes of a dump file consist of all flow metadata of
those stored in the file and four sorted arrays. These are
used to retrieve the flow metadata entries that match a
user query. Using these entries, FloSIS reads the matched
flow data from the dump file.

Each sorted array contains one of the flow tuple val-
ues in increasing order. An element in the array consists
of a tuple value and a pointer to the flow metadata with
that value. For example, a sorted array for destination IP
has the entries with (a flow’s destination IP, a pointer to
the flow metadata) for all flows in the dump file, sorted
by the destination IPs. When a query determines a target
dump file in the first stage, sorted arrays are used to con-
firm if there are such flows that match the query. Using a
binary search, one can locate the flow metadata fast with
a specific tuple value in a query.
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In terms of the space overhead, assuming a dump file

contains 32K flows, four sorted arrays would take up
1 MB, and the array of 32-byte flow metadata would con-
sume another 1 MB. The total space overhead for flow
indexes for 24 HDDs of 3 TB would be 140 GB. Since
this might be too large to fit in memory, we store these
indexes on SSDs, and keep a fraction of them in memory
if they are necessary for query processing.

4.2 Real-time Index Generation
To create the two-stage flow-level indexes in real time,
FloSIS needs to produce the flow metadata, and updates
the Bloom filters and the sorted arrays, for each com-
pleted flow with a budget of a few CPU cycles. However,
sorting is a memory-intensive operation that consumes
many CPU cycles. To avoid the interference caused by
sorting, FloSIS separates the index creation in two steps.

In the first step, an engine thread creates the flow meta-
data with the 4-tuple values, start time, duration, and disk
location of the flow when the flow terminates. Then,
the engine thread computes Bloom filter hash values of
source and destination IP addresses and port numbers,
and updates the Bloom filters. Also, it adds an element
at the end of each sorted array and leaves the array un-
sorted. The new element has one of the 4-tuple values
and a pointer to the newly-created flow metadata. Sorting
of the arrays is postponed until the engine thread fills up
the dump file with flow data. Since sorting is skipped, the
engine thread creates an index just in a few CPU cycles.

When a dump file is filled up, the second step begins.
The engine thread sends an event to an indexing thread
to sort the arrays for the 4-tuple values. The indexing
thread sorts the arrays, and writes the flow metadata and
the sorted arrays into the SSD. While the indexing thread
performs CPU-intensive sorting, other threads working
on the same core could suffer from a lack of computation
cycles, which could affect the overall performance. To
prevent this contention, FloSIS runs the indexing threads
on dedicated CPU cores. We note that array sorting and
index writing happen once every few seconds since it
would take at least 5 seconds to fill a dump file of 1 GB,
assuming the disk write throughput is 200 MBps. Dedi-
cating a CPU core for each indexing thread would waste

CPU cycles, so we co-locate several indexing threads on
the same CPU core as shown in Figure 1.

4.3 Flow Query Processing
A FloSIS query consists of all or a part of six fields; a
period of time (a time range), source and destination IP
addresses and port numbers, and a packet-level condition
in the BPF syntax. Each field can be a singleton value or
a range of values using an IP prefix, a hyphen (-), or a
wildcard (‘*’). FloSIS searches the flows that satisfy ev-
ery condition in the query, i.e., the query fields are inter-
preted as conjunctive. Every query field is optional and it
is assumed to be any (’*’) in case it is missing in a query.

An example query looks like following.

./flowget -st 2015-1-1:0:0:0 -et
2015-1-2:0:0:0 -sip 10.1.2.3 -dip
128.142.33.1/24 -sp 20000-30000 -dp
80 -bpf tcp[tcpflags]&(tcp-syn) != 0

flowget is a query client program that accepts a user
query and sends it to the query front-end server of FloSIS.
The query searches the flows that overlap with the time
range of one day from January 1st in 2015, and the source
IP is 10.1.2.3 with ports between 20000 and 30000 with
any destination IPs in 128.142.33.1/24 with port 80. It
wants to see only the SYN packets of the matching flows.

When the query front-end server receives the user
query, it distributes the query to all indexing threads and
collects the results. Each indexing thread processes the
query independently using the two-staged indexes of the
dump files on their disks. The first step is ‘dump-file fil-
tering’ using the file indexes. In this step, the indexing
thread identifies which dump files might have matching
flows. The indexing thread first finds a set of dump files
whose timestamps overlap with the queried time range,
and then checks the Bloom filters to see if the dump file
might contain the flows with the requested fields. If a
query field is a range, the indexing thread assumes that
the corresponding Bloom filter returns a hit since check-
ing all possible values would be too costly.

The second step is ’flow filtering’ using flow indexes.
With the target dump files to look up, the indexing thread
performs a binary search on each sorted array to find the
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entries with the requested field. If the field is a range, it
first checks whether the array has any overlap with the
range, and a lookup for the closest entry to one end of
the range would find all matching entries. Assuming the
number of entries in an array is 32K, each binary search
would require at most 15 entry lookups. That is, 60 entry
lookups would be enough to find all matching flows in a
dump file in the worst case, which takes a few microsec-
onds on our platform. For each dump file, the indexing
thread takes an intersection of the results from the four
sorted arrays. After that, the indexing thread retrieves the
matching flow metadata entries, and reads the flow data
using the disk location in each flow metadata entry.

The last step in query processing is ‘packet filtering’.
The indexing thread runs BPF for detailed query condi-
tion on each packet header in the matching flows. A BPF
provides a user-friendly filtering syntax, and is widely
used for packet capture and filtering. While this step re-
quires sequential processing, it is applied to a much re-
duced set of packets compared to brute-force filtering. If
a BFP field is missing, then the last step is omitted and
all data is passed to the query front-end, which relays it
to the query client on a per-flow basis.

5 Flow-level Content Deduplication
It is well-known that the Internet traffic exhibits a sig-
nificant portion of redundancy in the transferred con-
tents [11, 31]. For example, a recent study reveals that
one can save up to 59% of the cellular traffic bandwidth
with simple network deduplication with 4KB fixed-sized
chunking [31]. Thus, if we apply flow content dedupli-
cation to FloSIS, we may expect a non-trivial saving on
storage space, which would help to extend the monitoring
period at a high-speed network.

In FloSIS, we choose to adopt “whole-flow dedupli-
cation,” which uses the entire flow data as a unit of re-
dundancy (i.e., a chunk). If the size of a flow exceeds
that of the w-buffer, we make each w-buffer for the flow
as a chunk. Whole-flow deduplication is a reasonable
design choice, given that 80 to 90% of the total redun-
dancy comes from serving the same or aliased HTTP ob-
jects [31], and that it consumes a smaller fraction of CPU
cycles compared to other alternatives with fine-grained
chunking [11]. Note that CPU cycles are important re-
sources in FloSIS that regularly runs CPU-intensive tasks
such as packet acquisition and index sorting.

For flow-level deduplication, an engine thread calcu-
lates the SHA-1 hash of the flow-assembled content in
each direction (or only the response body in case of an
HTTP transaction). CPU cycles for hash computation
are amortized over the packets in a flow as the hash is
partially updated on each packet arrival. This minimizes
the fluctuation of CPU usage, which produces more pre-
dictable latency in hash computation. Out-of-order pack-

ets are buffered until missing packets arrive, and the hash
is updated over the partially reassembled data. When a
flow finishes (or when the flow size exceeds the w-buffer
size), the SHA-1 hash is finalized. The hash is used as the
content name to look up in a global deduplication table
for cache hit. The deduplication table is a hash table that
stores previous content hashes and their disk locations. It
is shared by all engine threads to maximize the dedupli-
cation rate. When a lookup is a cache hit, the flow data
map would be made point to the location of the earlier
version when the flow is written to disk. If it is a cache
miss, the SHA-1 hash and its disk location is inserted to
the table.

We implement the deduplication table so as to min-
imize CPU usage and maximize the deduplication per-
formance. We use a per-entry access lock to minimize
the lock contention due to frequent accesses by multiple
engine threads. We also pre-allocate a fixed number of
table entries at initialization and use FIFO as the replace-
ment policy (known to perform as well as LRU in net-
work deduplication [31]). Each entry in the table is de-
signed to be as small as possible to maximize the number
of in-memory entries: 44 bytes per entry, 20 bytes SHA-1
hash, 8 bytes for disk location, and 16 bytes for doubly-
linked pointers. The size of the deduplication table (or
simply cache size) is a design parameter that trades off
memory usage and deduplication performance. However,
it is expected that the cache size does not have to be very
big, because it is known that even a small cache signif-
icantly helps and the performance improvement dimin-
ishes as the cache size increases (i.e., diminishing return)
[31, 11]. A recent study reveals that one can achieve 30
to 35% of deduplication rates with only 512 GB of con-
tent cache for a 10 Gbps cellular traffic link [31]. This
translates to 16 million entries (or 1 GB) in a dedupli-
cation table assuming 32KB of average flow size. We
understand that the actual numbers would vary in differ-
ent environments, but we believe that a few GB of table
entries should suffice in most cases.

6 Implementation
We implement FloSIS with 7,271 lines of C code that
include engine, writing, and indexing threads as well as a
query front-end server and a client. We mainly use Linux
kernel version 2.6.32-47 for development and testing, but
the code does not depend on the kernel version except for
the PSIO library that requires Linux kernel 2.6.3x due to
its driver code.

The number of engine, writing and indexing threads
and their CPU core mapping are configurable depend-
ing on the hardware configuration. Each thread is affini-
tized to a CPU core and we replicate the thread mapping
per each non-uniform memory access (NUMA) domain.
FloSIS ensures that the network cards deliver the packets
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only to the CPU cores in the same NUMA domain since
crossing NUMA domains is expensive [22].

Since high zero-drop performance is one of our de-
sign goals, we pay special attention to the implementation
that avoids unpredictable processing delay, whose key
techniques are summarized in what follows: First, Flo-
SIS limits maximum processing latency per each batch
of packets from a NIC. Normally, an engine thread reads
a batch of packets, processes them all, and moves on to
read the next batch. However, when the number of pack-
ets in a batch is too large, it handles only a fraction of
them at a time while leaving the rest in the buffer to min-
imize packet drop in a NIC. This technique is applied
to other implementations such as SHA-1 hash calcula-
tion and flow management. Second, FloSIS pins each
thread to a CPU core to avoid random scheduling de-
lay and to improve CPU cache utilization. Also, it pre-
allocates performance-critical memory chunks such as
data, flow, and write buffers, and core data structures like
flow metadata, indexes, flow and deduplication table en-
tries at initialization to avoid the run-time overhead of dy-
namic memory allocation. FloSIS efficiently recycles the
memory space, and dynamically allocates memory only
when there is no more available pre-allocated memory
space. The amount of pre-allocated memory is config-
urable, which in our prototype is set based on the recent
traffic measurement [31]. Third, FloSIS minimizes un-
predictable disk I/O delay as much as possible. We use
direct I/O with enough buffer size to saturate the disk I/O
capacity, and pre-allocate disk blocks in each file so that
they are accessed sequentially. This significantly reduces
the variance in disk I/O latency.

For evaluating FloSIS’s performance, we extend a net-
work workload generator initially developed for [23]. We
implement the workload generator to (i) produce syn-
thetic TCP packets with a random payload at a specified
rate up to 40 Gbps regardless of packet size, and (ii) re-
play a real traffic packet trace (in the pcap file format) at a
configurable replay speed. We ensure that the packets in
the same flow are forwarded to the same destination NIC
port in the order of their original record.

7 Evaluation

The goals of our evaluation are three folds. First, we eval-
uate if FloSIS provides a good performance 3 of packet-
and flow-level capture and disk dumping with synthetic
and real traffic. Second, we show how much reduction in
query response time FloSIS’s two-stage flow-level index-
ing brings over the existing state-of-the-art packet-level
indexing. Third, we evaluate the effectiveness of flow

3Unless specified otherwise, the throughput numbers include Ether-
net frame overhead (24 bytes) to reflect the actual line rate.
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Figure 5: Synthetic TCP packet dumping throughputs of Flo-
SIS, n2disk10g, and tcpdump at 40 Gbps input rate with various
packet sizes

content deduplication with a real traffic trace and mea-
sure the overhead.

7.1 Experiment Setup
We run FloSIS and other packet capture systems on our
reference server machine with dual Intel E5-2690 CPUs
(2.90 GHz, 16 cores in total), two dual-port Intel 10 Gbps
NICs with 82599 chipsets, 128 GB of RAM, 24 3TB
SATA HDDs of 7200 RPM, and 2 SSDs of 512 GB Sam-
sung 840 Pro. For workload generation, we run our
packet generator on a similar machine with the same
number of CPUs and NICs as the server. For synthetic
workload, the packet generator sends the packets of the
same size at a specified rate. For real traffic tests, the
packet generator replays 67.7 GBs of a packet trace ob-
tained from a large cellular ISP in South Korea [31]. This
trace represents a few minutes of real traffic at one of
10 Gbps cellular backhaul links, and has 89 million TCP
packets with 760 bytes of average packet size. The client
and server machines are directly connected by four 10G
cables since the traffic is either synthetically generated or
replayed. However, in practice, the live traffic should be
port-mirrored to the server via a switch.

7.2 Packet Capture & Dumping
We measure the performance of traffic capture and disk
dumping of FloSIS for synthetic and real traffic work-
loads and compare them with those of existing solutions.

7.2.1 Synthetic Packet Workload
We first evaluate whether FloSIS achieves a good perfor-
mance with packet capture and disk dumping regardless
of incoming packet size. We have the packet generator
transmit the packets of the same size at 40 Gbps, and
measure the disk writing performance of captured pack-
ets. To compare the performance of packet-level capture
and disk dumping with other tools, we disable other fea-
tures of FloSIS such as flow management, index genera-
tion and writing, and deduplication.

8
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Figure 6: Peak and zero-drop throughput of FloSIS and
n2disk10g with real traffic trace replay

We compare the performances with tcpdump [6],
tcpdump-netmap [7], and n2disk10g [17]. tcpdump is
a popular packet capture system based on the libpcap
library, but the libpcap library allows only one pro-
cess/thread for each network interface. Since our ma-
chine has four 10G interfaces, we run 4 tcpdump pro-
cesses and have each process write the captured pack-
ets to its dedicated HDD. On the other hand, tcpdump-
netmap uses the netmap packet I/O framework [28] to ac-
celerate the libpcap library performance. n2disk10g [17]
uses PF RING DNA [26] as scalable packet acquisition
library, and can be configured to write to multiple disks
in parallel. We select the parameters suggested by the
manual of n2disk10g [2] for the best behavior. For fair
comparison, we disable the indexing module for this test.

Figure 5 shows the throughputs 4 of the systems. Flo-
SIS achieves 35.8 to 36.5 Gbps regardless of packet size,
which is close to the peak aggregate disk writing perfor-
mance as shown in Figure 3. This implies that FloSIS’s
packet buffering works well to achieve a sequential disk
write performance. We observe that n2disk10g performs
as well (34.9 to 35.6 Gbps), which is not surprising since
its packet capture and parallel disk I/O is similar to that
of FloSIS. Unfortunately, tcpdump and tcpdump-netmap
perform poorly, achieving only 0.4 to 3.2 Gbps and 0.9
to 4.4 Gbps, respectively. While the netmap support im-
proves the performance of tcpdump, the inefficiency in
the libpcap library itself seems to limit the improvement.

7.2.2 Real Traffic Workload
We now measure the performance of handling the real
traffic by replaying the LTE packet trace at a high speed.
For this test, we enable flow management and indexing in
FloSIS but disable flow deduplication to focus on the per-
formance of flow processing. For comparison, we show
the performances of n2disk10g with and without packet-
level indexing. We also measure the peak zero-drop per-

4We do not include the Ethernet frame overhead in throughput cal-
culation in this test to focus on the performance of disk writing rather
than packet capturing.
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Figure 7: Query processing times over various number of
matching flows

formances of both systems to estimate the practical per-
formance for accurate monitoring.

As depicted in Figure 6, the peak performances of
FloSIS and n2disk10g with/without indexing are simi-
larly high as 36.4 Gbps, implying that disk writing band-
width is the primary bottleneck, as in the synthetic work-
load case. This, in turn, implies that the extra overhead
for flow management and two-stage flow index genera-
tion is small enough not to degrade the overall perfor-
mance. However, FloSIS achieves better than n2disk10g
in terms of zero-drop performance, 30 Gbps by FloSIS
and 20 Gbps by n2disk10g regardless of indexing. We
believe that our design choices such as minimizing the
contention by separating the resources between interfer-
ing tasks, and aggressive amortization of resource con-
sumption help produce more predictable processing de-
lays, despite extra tasks like flow management and index-
ing. We do not know the root cause for lower zero-drop
performance with n2disk10g since we do not have access
to the source code, but it seems to pay less attention to the
latency burstiness in packet capturing and disk dumping.

7.3 Query Processing
We evaluate the effectiveness of flow-level indexing of
FloSIS. For the experiments, we replay the LTE traffic
trace, and issue 10 queries to retrieve all flows between
two IP addresses randomly chosen by us. The number
of matching flows ranges from 119 to 21,300, and they
are scattered around the disks. We compare the query re-
sponse times with those of n2disk10g. The indexing of
n2disk10g similar to that of FloSIS in that it uses tuple-
based Bloom filters to skip the dump files, but it performs
linear search on per-packet indexes called packet digests.
Per-packet indexing not only incurs more space overhead
but also requires more disk seeks to read the packets scat-
tered around the disks.

Figure 7 compares the response times of 10 queries.
We find that FloSIS outperforms n2disk10g by a factor
of 2.2 to 4.9. As the number of flows increases, the per-

9
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Queries Q1 Q2 Q3 Q4
Bloom filter 100% 0.05% - -
Sorted array - 10.83% 100% 99.43%
Flow read - 89.12% - 0.57%
Latency 3.3ms 330.2ms 80.5s 82.2s

Response 0B 2.7KB 0B 2.7KB

Table 1: Query processing times of singleton and range queries
with/without disk access to read indexes and flow data

formance gap widens since n2disk10g suffers from more
disk activity to gather all data. Unfortunately, we could
not fill more data to examine the performance difference
further since n2disk10g that we have is an evaluation ver-
sion that runs for only a few minutes.

To investigate the FloSIS behavior with more flow
data, we disable deduplication in FloSIS and fill the LTE
trace repeatedly until we have 10 TBs of stored data.
During the data filling phase, we feed in a few random
flows that we retrieve in our queries. We use four types
of queries to evaluate the effectiveness of our indexing
structure. We use two singleton (Q1, Q2) and two range
queries (Q3, Q4) for the entire time period. One of the
two queries in each query type (Q1, Q3) looks for a flow
that does not exist on disk, while the other queries (Q2,
Q4) would return a small flow (2.7 KB) as a response.

Table 1 shows the response times for all queries. Q1
takes only 3.3 milliseconds (ms) since it would require
checking only the Bloom filters in memory. Q2 takes
more time (330.2 ms) since it has to read in the sorted ar-
rays and flow metadata for the matching dump file from
an SSD after cache hits with the Bloom filters. It also
needs to read in the flow data from an HDD. Q3 and Q4
take much longer, 80.5 and 82.2 seconds, respectively,
since FloSIS skips the Bloom filters for range queries,
and reads in sorted arrays and flow metadata for all dump
files. Since there are about 10,000 dump files for 10 TBs
of data, the total size of all sorted arrays and flow meta-
data would be 20 GB. Actually, we could optimize the
behavior further by reading the sorted arrays first, and
read the flow metadata only if the query is a hit with the
sorted arrays. Without indexing, it would require reading
all data from HDDs which could take at least a few hours
to resolve the queries.

7.4 Deduplication
We evaluate flow content deduplication with the real traf-
fic trace. Deduplication is the most CPU-intensive task
in FloSIS due to the overhead of real-time content hash-
ing. We see almost full CPU utilization when we enable
deduplication at a high traffic rate. While we expect to
improve the performance in a cost-effective manner with
SHA-1 computation offloading to off-chip GPUs [24], we
focus on the CPU-only performance here. We also mea-
sure the level of storage compression by deduplication as
we use more deduplication table entries.
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Figure 8: Deduplication rates over various numbers of dedu-
plication table entries

FloSIS achieves about 15 Gbps of the peak zero-
drop performance with deduplication. The performance
is almost halved from the peak zero-drop performance
without deduplication (in Figure 6), but its performance
reaches 75% of the peak zero-drop performance of
n2disk10g. Even if we amortize the latency of SHA-1
hashing over time, even a short spike of SHA-1 com-
putation delay induces random packet drop, which drags
the zero-drop performance. Nevertheless, we believe that
one can monitor a full 10 Gbps link with deduplication
without worrying about packet drop.

Finally, we estimate how many deduplication table en-
tries are needed for a good deduplication rate. This ques-
tion is difficult to answer given that we have only 67
GB of real traffic workload. For this workload, we draw
a graph that shows the deduplication rates over various
deduplication table size. Figure 8 presents the results
over the entire period of traffic replay at 13.5 Gbps. The
trend we find here is that (i) even a small cache works
very effectively: A table with only 64K entries (or just 4
MB of content cache on disk) provides about 14% dedu-
plication rate, (ii) it requires almost eight times more en-
tries to double the deduplication rate, (iii) once the entries
are filled up, the deduplication rate stabilizes over time.
We obtain 34.5% of deduplication rate with 4 million en-
tries, which is enough to suppress the actual redundancy
in the original data. We do note that our trace is too small
to draw any definitive conclusions, but we observe that
a much larger workload shares a few similarities as our
workload [31]. Given that 512 GB of content cache with
4KB chunks (or 16 million entries in the deduplication
table) gives 30 to 35% of deduplication rate at a busy 10
Gbps link, we believe that a few GB of entries would be
enough to achieve a good performance in practice.

8 Related Work
We briefly discuss the related work here. Due to a large
body of works, comprehensive coverage is difficult, so
we attempt to provide a summary of representative works.

10
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High-speed packet acquisition and writing: Scal-
able and fast packet capture heavily affects the per-
formance of network security monitoring systems such
as firewalls and intrusion detection/prevention systems
(IDS/IPS). High-end security systems typically adopt a
parallel packet acquisition architecture that exploit the
parallelism in modern CPUs and network cards. For ex-
ample, software-based IDSes such as SnortSP [4], Suri-
cata [5] and Para-Snort [14] deploy parallelized pipelin-
ing architectures suitable for a multi-core environment.
Gnort [20], MIDeA [30] and Kargus [23] adopt a sim-
ilar parallelized architecture for fast packet capture, but
use general-purpose GPUs to offload the heavy pattern
matching operations for extra performance improvement.
n2disk10g [17] is a recent high-speed packet capture and
storing system that adopts PF RING DNA for packet
acquisition, and uses direct disk I/O for scalable disk
throughput. FloSIS shares the parallel packet capture ar-
chitecture with these systems, but it goes beyond scalable
packet capture and shows how one should map hetero-
geneous tasks of different computation budget (e.g., en-
gine, writing, indexing threads) to computing resources
for high zero-drop performance.

Intelligent indexing for fast retrieval: It is of critical
importance to have an intelligent indexing structure for
fast query response. pcapIndex [19] uses compressed
bitmap indexes to index pcap files at off-line, and sup-
ports user queries with the BPF syntax. Hyperion [18]
presents a stream file system optimized for sequential
immutable streaming writes to store high-volume data
streams, and proposes a two-level index structure based
on Bloom filters. Gigascope [16] supports SQL-like
queries on a packet stream, however, without archiving
long-duration data. n2disk10g [17] supports per-packet
indexing based on the Bloom filter and a packet metadata
called packet digest. However, the per-packet indexing
structures are used only for rough filtering of the entire
data and it still requires linear search for query process-
ing, often causing a long delay. FloSIS adopts flow-level
indexing and query processing, which eliminates linear
disk search and minimizes disk access in query process-
ing. The required storage space for indexing is much
smaller than that of packet-level indexing.

Network Traffic Compression: There have been many
works on network traffic deduplication [9, 10, 11, 12, 29,
31]. These works show that typical Internet traffic has
significant content-level redundancy. In terms of dupli-
cate suppression, a smaller chunking unit and content-
based chunking algorithm like Rabin’s fingerprinting [27]
generally leads to a higher deduplication rate at the cost
of a larger computation overhead. To the best of our
knowledge, FloSIS is the first traffic capture system that
employs deduplication, and our choice of whole-flow

deduplication is reasonable given the trade-off of com-
putation overhead and the level of storage savings.

Cooke et al. present a multi-format storage that stores
detailed information for recent data, but maintains only
the summary of old data as time goes by [15]. Hori-
zon Extender [21] proposes Web traffic classification and
storing based on white-listing, considering the Web ser-
vice popularity. It mainly focuses on compressing stored
HTTP data for storage savings while minimizing the loss
of data required to find the evidence of data leakage.
Time Travel [25] stores only the first part of the large
flows considering the heavy-tailed nature of network traf-
fic. While these works reduce the storage requirement at
the cost of losing a fraction of the data, FloSIS focuses on
lossless storing of full flow data at a high-speed network
for accurate traffic monitoring. However, we believe a
hybrid approach is possible for further storage savings.

9 Conclusion
As the network edge bandwidth exceeds 10 Gbps, the
demand for scalable packet capture and retrieval, used
for attack analysis, network troubleshooting and perfor-
mance debugging, is rapidly increasing. However, exist-
ing software-based packet capture systems neither pro-
vide high performance nor support flow-level indexing
for fast query response. In this paper, we have proposed a
highly scalable, software-based flow storing and indexing
system, FloSIS, characterized by three features: exercis-
ing full parallelism, flow-aware processing for minimiz-
ing expensive disk access for user queries, and dedupli-
cation for efficient storage usage.

We have demonstrated that FloSIS achieves up to
30 Gbps of zero-drop performance without deduplica-
tion, and 15 Gbps with deduplication with real traffic
storing and indexing, at the indexing storage cost of only
0.25% of the stored data. The two-stage flow-level index-
ing of FloSIS completes searching and reading 2.7 KB
of flow data from 10 TB in 330.2 ms. Finally, our flow
content deduplication reduces 34.5% of storage space for
67 GB of the real traffic trace with 256 MB of additional
memory consumption.
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Abstract

Data-intensive batch jobs increasingly compete for re-

sources with customer-facing online workloads in mod-

ern data centers. Today, the two classes of workloads run

on separate infrastructures using different resource man-

agers that pursue different objectives. Batch processing

systems strive for coarse-grained throughput whereas on-

line systems must keep the latency of fine-grained end-

user requests low. Better resource management would

allow both batch and online workloads to share infras-

tructure, reducing hardware and eliminating the inefficient

and error-prone chore of creating and maintaining copies

of data. This paper describes Facebook’s Bistro, a sched-

uler that runs data-intensive batch jobs on live, customer-

facing production systems without degrading the end-user

experience. Bistro employs a novel hierarchical model

of data and computational resources. The model enables

Bistro to schedule workloads efficiently and adapt rapidly

to changing configurations. At Facebook, Bistro is replac-

ing Hadoop and custom-built batch schedulers, allowing

batch jobs to share infrastructure with online workloads

without harming the performance of either.

1 Introduction

Facebook stores a considerable amount of data in many

different formats, and frequently runs batch jobs that pro-

cess, transform, or transfer data. Possible examples in-

clude re-encoding billions of videos, updating trillions of

rows in databases to accommodate application changes,

and migrating petabytes of data among various BLOB

storage systems [11, 12, 31].

Typical large-scale data processing systems such as

Hadoop [41] run against offline copies of data. Creating

copies of data is awkward, slow, error-prone, and some-

times impossible due to the size of the data; maintain-

ing offline copies is even more inefficient. These troubles

overshadow the benefits if only a small portion of the of-

fline data is ever used, and it is used only once. Further-

more, some batch jobs cannot be run on copies of data;

e.g., bulk database updates must mutate the online data.

Running batch jobs directly on live customer-facing pro-

duction systems has the potential to dramatically improve

efficiency in modern environments such as Facebook.

Unfortunately, existing batch job schedulers are mostly

designed for offline operation [13, 15, 25, 28, 29, 32, 33,

36, 40, 42] and are ill-suited to online systems. First, they

do not support hard constraints on the burdens that jobs

place upon data hosts. The former may overload the lat-

ter, which is unacceptable for online data hosts serving

end users. Second, batch schedulers assume immutable

data, whereas online data changes frequently. Finally, a

batch scheduler typically assumes a specific offline data

ecosystem, whereas online systems access a wide range

of data sources and storage systems.

Facebook formerly ran many data-intensive jobs on

Hadoop, which illustrates the shortcomings of conven-

tional batch schedulers. Hadoop tasks can draw data from

data hosts outside the Hadoop cluster, which can easily

overload data hosts serving online workloads. Our engi-

neers formerly resorted to cumbersome distributed lock-

ing schemes that manually encoded resource constraints

into Hadoop tasks themselves. Dynamically changing

data poses still further challenges to Hadoop, because

there is no easy way to update a queued Hadoop job; even

pausing and resuming a job is difficult. Finally, Hadoop

is tightly integrated with HDFS, which hosts only a small

portion of our data; moving/copying the data is very inef-

ficient. Over the years, our engineers responded to these

limitations by developing many ad hoc schedulers tai-

lored to specific jobs; developing and maintaining per-job

schedulers is very painful. On the positive side, the ex-

perience of developing many specialized schedulers has

given us important insights into the fundamental require-

ments of typical batch jobs. The most important obser-

vation is that many batch jobs are “map-only” or “map-

heavy,” in the sense that they are (mostly) embarrassingly

parallel. This in turn has allowed us to develop a sched-
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resources jobs

name capacity video re-encoding volume compact

volume 1 lock 1 lock 1 lock

host 200 IOPS 100 IOPS 200 IOPS

rack 40 Gbps 1 Gbps 0 Gbps

(a) Resource capacity and job consumption

(b) Forest resource model

Figure 1: The scheduling problem: maximum resource

utilization subject to hierarchical resource constraints.

uler that trades some of the generality of existing batch

schedulers for benefits heretofore unavailable.

This paper describes Bistro, a scheduler that allows of-

fline batch jobs to share clusters with online customer-

facing workloads without harming the performance of ei-

ther. Bistro treats data hosts and their resources as first-

class objects subject to hard constraints and models re-

sources as a hierarchical forest of resource trees. Admin-

istrators specify total resource capacity and per job con-

sumption at each level. Bistro schedules as many tasks

onto leaves as possible while satisfying their resource re-

quirements along the paths to roots.

The forest model conveniently captures hierarchical re-

source constraints, and allows the scheduler to flexibly

accommodate varying data granularity, resource fluctu-

ations, and job changes. Partitioning the forest model

corresponds to partitioning the underlying resource pools,

which makes it easy to scale both jobs and clusters relative

to one another, and allows concurrent scheduling for bet-

ter throughput. Bistro reduces infrastructure hardware by

eliminating the need for separate online and batch clus-

ters while improving efficiency by eliminating the need

to copy data between the two. Since its inception at

Facebook two years ago, Bistro has replaced Hadoop and

custom-built schedulers in many production systems, and

has processed trillions of rows and petabytes of data.

Our main contributions are the following: We define

a class of data-parallel jobs with hierarchical resource

constraints at online data resources. We describe Bistro,

a novel tree-based scheduler that safely runs such batch

jobs “in the background” on live customer-facing pro-

duction systems without harming the “foreground” work-

loads. We compare Bistro with a brute-force scheduling

solution, and describe several production applications of

Bistro at Facebook. Finally, Bistro is available as open-

source software [2].

Section 2 discusses the scheduling problem, resource

model, and the scheduling algorithm of Bistro. Section 3

explains the implementation details of Bistro. Section 4

includes performance experiments and production appli-

cations, followed by related work and conclusion in Sec-

tions 5 and 6, respectively.

2 Scheduling

Bistro schedules data-parallel jobs against online clus-

ters. This section describes the scheduling problem,

Bistro’s solution, and extensions.

2.1 The Scheduling Problem

First we define a few terms. A job is the overall work to

be completed on a set of data shards, e.g., re-encoding all

videos in Haystack [12], one of Facebook’s proprietary

BLOB storage systems. A task is the work to be com-

pleted on one data shard, e.g., re-encoding all videos on

one Haystack volume. So, a job is a set of tasks, one per

data shard. A worker is the process that performs tasks.

A scheduler is the process that dispatches tasks to work-

ers. A worker host, data host, or scheduler host is the

computer that runs worker processes, stores data shards,

or runs scheduler processes, respectively.

Consider the scheduling problem depicted in Figure 1a.

We want to perform two jobs on data stored in Haystack:

video re-encoding and volume compaction. The for-

mer employs advanced compression algorithms for bet-

ter video quality and space efficiency. The latter runs

periodically to recycle the space of deleted videos for

Haystack’s append-only storage. Tasks of both jobs op-

erate at the granularity of data volumes. To avoid disrupt-

ing production traffic, we constrain the resource capacity

and job consumption in Figure 1a, which effectively al-

lows at most two video re-encoding tasks or one volume

compaction task per host, and twenty video re-encoding

tasks per rack.

Volumes, hosts, and racks naturally form a forest by

their physical relationships, illustrated in Figure 1b. Job

tasks correspond to the leaf nodes of trees in this forest;

each job must complete exactly one task per leaf. This

implies a one-to-one relationship between tasks and data

units (shards, volumes, databases, etc.), which is the com-

mon case for data-parallel processing at Facebook. A task
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Figure 2: Head-of-line blocking using FIFO queue for

our scheduling problem. Here tk
2

can block the rest of

the queue while waiting for the lock on vol k held by tk1 ,

and possibly other resources at higher-level nodes.

requires resources at each node along the path from leaf

to root. In this figure, the two jobs have a total of four

running tasks. Volumes i, j, k, and hosts A1, An are run-

ning at full capacity, while other nodes have extra capacity

for more tasks. More formally, our problem setting is the

following.

• A resource forest with multiple levels, and a resource

capacity defined at each level.

• A set of jobs J = {J1, ..., Jm}, where Ji consists

of a set of tasks {ta
i
, tb

i
, ...}, corresponding to leaf

nodes a, b, ..., respectively. This encodes the one-to-

one relationship between tasks and data units.

• A task requires resources on nodes along its path to

the root, and the demand at each level is defined per

job.

Subject to resource constraints, the scheduling objec-

tive is to maximize resource utilization. The scheduler

should never leave a task waiting if its required resources

are available. High resource utilization often leads to high

throughput, which in turn reduces the total makespan, i.e.,

the time required to finish all jobs. We do not directly

minimize makespan, because the execution time of each

task is unpredictable, and long tails are common [17]. We

instead use scheduling policies to prioritize jobs, and mit-

igate long tails as described in Section 3.3. At large scale,

the main challenge is to minimize scheduling overhead,

i.e., to quickly find tasks to execute whenever extra re-

sources become available.

In our scheduling problem formulation, each task re-

quires resources along a unique path in our forest model.

This is fundamentally different from the typical schedul-

ing problem that considers only interchangeable computa-

tional resources on worker hosts. The latter is extensively

studied in the literature, and First-In-First-Out (FIFO)

queue-based solutions are common [13, 15, 25, 28, 29, 32,

33, 36, 40, 42]. For our problem, FIFO queues can be ex-

tremely inefficient. Figure 2 shows an example using the

example of Figure 1. Assuming the worker pool has suf-

ficient computational resources to run tasks in parallel, a

task can easily block the rest of the FIFO queue if its re-

quired resources are held by running tasks. A non-FIFO

Algorithm 1 Brute-force scheduling algorithm (baseline)

1: procedure SCHEDULEONE(M )

2: for job Ji ∈ J do

3: for node l ∈ all leaf nodes of M do

4: if task tl
i

has not finished and there are enough

resources along l to root then

5: update resource(M, tl
i
)

6: run(tl
i
)

7: end if

8: end for

9: end for

10: end procedure

11: procedure BRUTEFORCE( )

12: while True do

13: SCHEDULEONE(snapshot of the resource forest)

14: end while

15: end procedure

Algorithm 2 Tree-based scheduling algorithm (Bistro)

1: procedure TREESCHEDULE( )

2: while True do

3: t ← finished task queue.blockingRead()
4: d ← the highest ancestor of the leaf node corre-

sponding to t where t consumes resources

5: SCHEDULEONE(snapshot of the subtree at d

and the path from d to root)

6: end while

7: end procedure

scheduler might look ahead in the queue to find runnable

tasks [42], but unless the scheduler examines the entire

queue, it might overlook runnable tasks. Unfortunately,

for large-scale computations, the overhead of inspecting

the entire queue for every scheduling decision is unac-

ceptable. Section 2.2 introduces a more efficient schedul-

ing algorithm and contrasts it to this brute-force approach.

2.2 Our Scheduling Algorithms

Our performance baseline is the aforementioned brute-

force scheduler that avoids unnecessary head-of-line

blocking by searching the entire queue for runnable tasks.

The pseudocode is in Algorithm 1. The BRUTEFORCE

function executes in an infinite loop. Each iteration ex-

amines all tasks of all jobs to find runnable tasks to exe-

cute, and updates resources on the forest model accord-

ingly. The complexity of each scheduling iteration is

O(number of jobs×number of leaves×number of levels).
In practice, each iteration of the brute-force scheduler
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is slow—around ten seconds for a modest million-node

problem. This incurs a significant scheduling overhead for

short tasks. On the other hand, one iteration can schedule

multiple tasks because it runs asynchronously using snap-

shots of the resource model. So, as tasks finishes more

quickly, each iteration reacts to larger batches of changes,

amortizing the scheduling complexity.

Algorithm 2 is Bistro’s more efficient tree-based

scheduling algorithm. The algorithm exploits the fact that

a task requires only resources in one tree of the resource

forest, or just a subtree if it does not consume resources all

the way to root. We can therefore consider only the associ-

ated tree for scheduling when a task finishes and releases

resources. This algorithm again executes the scheduling

procedure in an infinite loop, but instead of blindly exam-

ining all tasks of all jobs in each iteration, it waits for a

finished task, and invokes the scheduling iteration on the

corresponding subtree only. Although TREESCHEDULE

may not schedule tasks in large batches as BRUTEFORCE

does, it enables multi-threaded scheduling since different

tasks often correspond to non-overlapping trees or sub-

trees. Bistro uses reader-writer locks on tree nodes for

concurrency control.

2.3 Model Extensions and Limitations

The forest resource model is easy to extend. First, the

scheduling problem described in Section 2.1 assigns one

resource to each level, but it is straightforward to have

multiple resources [24]. This allows heterogeneous jobs

to be throttled independently, e.g., I/O bound jobs and

computation bound jobs can co-exist on a host. In ad-

dition, different jobs can execute at different levels of

the trees, not necessarily the bottom level. For example,

we may run maintenance jobs on server nodes alongside

video encoding jobs on volume nodes.

For periodic jobs like volume compaction in Figure 1,

Bistro has a built-in module to create and refresh time-

based nodes. We add these nodes to volumes nodes as

children, so volume compaction runs at this new level pe-

riodically as the nodes refresh.

Partitioning the forest model for distributed scheduling

is flexible too. Node names are unique, so we can partition

trees by a hash of the names of their root nodes. Partition-

ing by location proximity is another choice. Some of our

applications prefer filtering by leaf nodes, such that after

failover, the new host that contains the same set of vol-

umes or databases is still assigned to the same scheduler.

In addition to the forest model, Bistro supports Directed

Acyclic Graphs (DAGs). A common case is data replicas,

where multiple servers store the same logical volume or

database. With DAGs, resources are still organized by

levels, and tasks run at the bottom level. For each bot-

tom level node, Bistro examines all paths to root and can

schedule a task if any path has all the resources it needs.

Finally, Bistro is designed for embarrassingly parallel

jobs, or “map-only” jobs, where each task operates on its

own data shard independently. At Facebook, other than

data analytic jobs on Hive [37], many batch jobs are map-

only or map-heavy. Bistro applies to map-heavy jobs

by running the reduce phase elsewhere, e.g., as a Thrift

service [1]. For jobs with non-trivial “reduce” phases,

our engineers came up with a solution that runs “map”

and “reduce” phases on separate Bistro setups, buffering

the intermediate results in RocksDB [5] or other high-

performance data store; see Section 4.2.1 for an example.

2.4 Scheduling Against Live Workloads

Bistro requires manual configuration of resource capacity

based on the characteristics of live foreground workloads,

and manual configuration of the resource consumption of

background jobs. Users can adjust these settings at run-

time upon workload changes, which Bistro will enforce in

the subsequent scheduling iterations by scheduling more

or killing running tasks. Bistro could monitor realtime

resource usage at runtime and adjust these settings auto-

matically. However, live workloads are often spiky, such

that aggressive dynamic scheduling requires reliable and

rapid preemption of background jobs. This is challenging

if the data, worker, and scheduler hosts are all distributed,

and it complicates the task design by the requirement of

handling frequent hard kills. At Facebook, job owners

usually prefer static resource allocation for simplicity.

3 Implementation

This section discusses the implementation details of

Bistro, including its architecture and various components.

3.1 Architecture

Figure 3 depicts the architecture of Bistro, which con-

sists of six modules. All of these modules work

asynchronously, communicating via either snapshots or

queues. The Config Loader reads and periodically updates

the resource and job configuration from some source, such

as a file, a URL, or a Zookeeper instance [27]. Based

on the current resource configuration, the Node Fetcher

builds and periodically updates the resource model. For

example, if we want to process all files in a directory,
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Figure 3: Bistro architecture

the Node Fetcher can periodically scan the directory to

maintain an up-to-date view of its contents. Most of our

large-scale jobs receive their nodes from a set of Thrift [1]

servers for scalability and reliability. These servers obtain

the resource model from databases or Zookeeper, typi-

cally with an intermediate Memcached layer. The Sched-

uler chooses tasks to execute based on the latest configu-

ration and resource model, as well as the statuses of run-

ning and unfinished tasks. These statuses are maintained

by the Status Store. The Task Runner receives a list of

tasks to start, and can either run them locally or dispatch

them to remote workers depending on the configuration,

discussed in the next subsection. The Runner also moni-

tors task execution and sends status updates to the Status

Store. Users observe job progress through a Web UI pro-

vided by the Monitor.

3.2 Scheduling Modes

The forest resource model of Bistro facilitates flexible

scheduler/worker configuration. We can have either one

Bistro instance for centralized scheduling or multiple in-

stances for distributed scheduling. Workers can reside on

either data hosts or separate worker pool. This leads to

four scheduling modes to accommodate diverse job re-

quirements in large data centers, described below.

The single/co-locate mode has one central Bistro in-

stance, and one worker on each data host, which receives

only tasks that access local data. In addition to data lo-

callity, the centralized scheduler can enforce optimal load

balancing and fair scheduling. Since the entire forest

model is on one Bistro instance, we can add a common

root to all trees to enforce global resource contraints too.

The scheduler is a single point of failure but Bistro can

log task statuses to redundant storage for fail over. We

employ this mode whenever the data hosts have sufficient

compute resources and the total number of nodes is small.

The multi/co-locate mode is for large-scale jobs that

a single scheduler cannot handle efficiently due to an

excessively large resource model or an excessively high

turnover rate. The latter happens if tasks are short or high

concurrency. If each data host corresponds to an inde-

pendent resource tree, we often run one Bistro instance

on each data host too, which avoids network communi-

cation by connecting to the co-located worker directly.

This scheduling mode is very robust and scalable since

each Bistro instance works independently. One downside

of share-nothing schedulers is poor load balancing. For

a view of the global state, Bistro’s monitoring tools effi-

ciently aggregate across all schedulers.

If data hosts have limited compute resources, we have

to move the workers elsewhere. The single/remote mode

is similar to single/co-locate with one scheduler and mul-

tiple workers on dedicated worker hosts, good for load

balancing. The multi/remote mode has multiple Bistro

instances. In this case, similar to multi/co-locate, we

can have one Bistro instance per worker to avoid net-

work communication if we assign a fixed partition to each

worker. Alternatively we can run schedulers on dedicated

hosts for dynamic load balancing. Bistro’s Task Runner

module can incorporate probabilistic algorithms such as

two-choice for scalability [30, 32].

3.3 Scheduling Policies

Bistro implements four scheduling policies to prioritize

among jobs. Round robin loops through all jobs repeat-

edly and tries to find one task from each job to execute,

until no more task can be selected. Randomized priority is

similar to weighted round robin. We repeatedly pick a job

with probability proportional to its priority, and schedule

one of its tasks. Ranked priority sorts jobs by user defined

priorities, and schedules as many tasks as possible for the

job with the highest priority before moving to the next job.

Long tail scheduling policy tries to bring more jobs to full

completion via “ranked priority” with jobs sorted by their

remaining task count in increasing order.

Round robin and randomized priority approximate fair

scheduling, while ranked priority and long tail are priori-

tized. The latter two can be risky because one job that fails

repeatedly on a node can block other jobs from running on

that node. All these policies guarantee locally maximal re-

source utilization in the sense that no more tasks can run

on the subtree. Supporting globally maximal resource uti-

lization or globally optimal scheduling polices would re-

quire much more complex computation and incur greater

scheduling overhead. We have not encountered any pro-

duction application that requires optimal scheduling.
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3.4 Config Loader and Node Fetcher

For each Bistro deployment, users specify the resource

and job configuration in a file, a URL, or a Zookeeper

cluster [27]. Most of our production systems use

Zookeeper for reliability. Bistro’s Config Loader re-

freshes the configuration regularly at runtime.

The resource configuration specifies the tree model, re-

source capacity at each level, and the scheduling mode.

It also specifies a Node Fetcher that Bistro will call to re-

trieve nodes of the tree and periodically refresh them. Dif-

ferent storage types have different node fetcher plugins so

Bistro can model their resource hierarchies.

A Bistro deployment can run multiple jobs simultane-

ously. Each job defaults to the same number of tasks, cor-

responding to all bottom nodes in the forest model. The

job configuration specifies for each job the resource con-

sumption and the task binary. Each tree node has a unique

name, and Bistro passes the leaf node name to the com-

mand so it will operate on the corresponding data shard.

Users can include filters in a job configuration to ex-

clude nodes from executing tasks for the job. Filters are

useful for testing, debugging, and non-uniform problems.

3.5 Status Store and Fault Tolerance

A task can be in one of several states, including ready, run-

ning, backoff, failure, and done. The Status Store module

records status updates it receives from Task Runner. It

also provides status snapshots to Scheduler and Monitor.

A task is uniquely identified by a (job name, node name)

pair, and therefore Status Store does not need to track re-

source model changes.

Status Store can log task statuses to external storage

for failure recovery, such as Scuba [7], remote MySQL

databases, and local SQLite databases. Scuba is scalable

and reliable but has limited data size and retention. Repli-

cated MySQL is more reliable than SQLite, while the lat-

ter is more scalable because it is distributed over sched-

uler hosts. Users choose the external storage based on

job requirements. In practice, most failures are temporary.

Therefore, users often choose SQLite for the best perfor-

mance, and write idempotent tasks so Bistro can always

start over for unrecoverable failures.

Users monitor tasks and jobs through a Web UI, which

is an endpoint on Phabricator [3]. The endpoint handles

browser requests and aggregates task status data from one

or multiple Bistro instances, depending on the scheduling

mode. Bistro logs task outputs to local disk, which can

also be queried through Phabricator for debugging.

3.6 Task Runner and Worker Management

After scheduling, the Task Runner module starts sched-

uled tasks, monitors their executions, and updates the Sta-

tus Store. Task Runner supports both running tasks lo-

cally and dispatching it to remote workers. In the latter

case, it considers resource constraints on worker hosts as

well as task placement constraints [23, 32, 35]. Currently,

each Bistro instance manages its own set of workers, but it

is straightforward to incorporate probabilistic algorithms

such as two-choice for better load balancing [30].

4 Evaluation

We implemented Bistro in C++ with less than 14,000

physical source lines of code (SLOC). As explained in

Section 2.1, FIFO-queue-based schedulers lead to almost

serial execution for our scheduling problem. Unfortu-

nately most schedulers in the literature as well as com-

mercial schedulers are queue-based, not very interesting

for comparison. Therefore, we compare our tree-based

scheduling algorithm with the brute-force approach, both

explained in Section 2.2. The brute-force approach was

widely used in our ad-hoc schedulers before Bistro.

4.1 Microbenchmark

We run our experiments in multi/remote mode with 10

scheduler hosts and 100 worker hosts, each scheduler host

has 16 Xeon 2.2 GHz physical cores and 144 GB mem-

ory. The resource setup and workload mimic our database

scraping production application, which is most sensitive

to scheduling overhead because of its short task dura-

tion. There are two levels of nodes (or three if adding a

root node to enforce global resource constraints), host and

database. Each data host has 25 databases; we vary the

number of data hosts to evaluate Bistro’s scalability. The

resource model is partitioned among the 10 schedulers by

hashing the data host name. Each task sleeps for a random

amount of time that is uniformly distributed over [0, 2d],
where d is a job configuration value that we vary.

Figure 4 shows the performance results with differ-

ent resource and job settings. In the legend, “brute-

force” refers to brute-force scheduling, and “tree n thr”

means tree-based scheduling with n threads, where dif-

ferent threads work on different subtrees, explained in

Section 2.2. We show normalized throughput of different

scheduling algorithms where 100% means no scheduling

overhead, calculated as the maximum number of concur-

rent tasks allowed by resource constraints divided by the
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Figure 4: Scheduling throughput using synthetic

workload under different configurations.

average task duration. In all our experiments, the through-

put increases slightly for both scheduling algorithms as

more tasks finish because there are less tasks to examine

in each scheduling iteration. It then drops quickly when

there are not enough tasks to occupy all resources. We

measure the throughput at the midpoint of each run, and

report the average of five runs. The variation is negligible

and therefore we do not include error bars in the figure.

Overall, brute-force scheduling shows relatively stable

performance because of asynchronous scheduling. If a

scheduling iteration takes too long, more tasks finish and

release resources, such that the next iteration can schedule

more tasks. For a model size of 300k nodes at one sched-

uler and 5 jobs, each scheduling iteration takes roughly

5 seconds. Tree-based scheduling achieves almost zero

overhead when there are enough threads to handle the

turnover rate, otherwise the performance drops quickly.

The worst case for the tree-based scheduling is with

global resources, shown in Figure 4d. In this case there

is only one scheduler, and we add a root node to model a

global resource, as explained in Section 2.3. Only one job

uses the global resource. We set the job to a high priority

and use the ranked priority scheduling policy so it runs at

the maximum throughput allowed by the global resource

constraint. The result shows that the tree-based schedul-

ing performs similarly to brute-force scheduling when the

turnover rate of the tasks using global resources is high.

This is because when global resources become available

for scheduling, Bistro needs to lock the entire tree for

scheduling. The overhead of brute-force scheduling is not

affected by global resources since it always takes a snap-

shot of the entire model.

4.2 Production Applications

There are roughly three categories of data store at Face-

book, SQL databases for user data, Haystack [12] and

F4 [31] for Binary Large OBjects (BLOBs), and Hive [37]

and HBase for mostly analytical data. Bistro is currently

the only general-purpose scheduler for batch jobs on SQL

databases and Haystack/F4. It has also replaced Hadoop

for some map-only jobs on HBase, especially on clusters

that serve live traffic.

Table 1 shows some of our production applications.

The mode column indicates the scheduling mode dis-

cussed in Section 3.2. The resource model section shows

the characteristics of the resources at each level. The

concurrency column shows the resource capacity of that

level divided by the default consumption. The change

rate column is the average percentage of nodes added or

removed per time interval, measured over 30 days in pro-
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Application Mode Resource Model Job

resource node concur- change concurrent change task avg. task

level type count rency rate jobs rate data duration

1 root 1 various -

Database single/ 2 host ∼10 k 2 2.1%/ hr

Iterator remote 3 db ∼100 k 1 2.1%/ hr 5 10/ day 300k rows 5 min

Database single/ 1 host ∼10 k 1 2.4%/ hr

Scraping remote 2 db ∼100 k 1 2.3%/ hr 10 5/ hr 1 MB 5 sec

Storage single/ 1 host ∼1k 3 <1%/ day

Migration co-locate 2 dir ∼100 k 1 <1%/ day 1 <1/ day 100 GB 7 hr

1 host ∼1k 1 1.3%/ hr

Video multi/ 2 volume ∼100 k 1 1.2%/ hr

Re-encoding remote 3 video ∼1 b 1 1.3%/ hr 1 <1/ day 5 MB 20 min

1 host ∼100 3 2.6%/ min

HBase multi/ 2 region ∼1 k 3 3.1%/ min

Compression co-locate 3 time ∼10 k 8.3%/ min 10 10/hr 3m rows 1 min

Table 1: Summary of some production applications at Facebook. We show node number in order of magnitude to

preserve confidentiality, prefixed by ∼. Numbers in the Job section are approximate too for the same reason.

duction. Node Fetcher refreshes the model every minute

by polling the publishing source, the actual change rate

can be higher. The job section shows the characteristics

of jobs and tasks. The change rate shows the actual num-

ber of changes rather than a percentage, because often we

just change the configuration of a job instead of adding or

removing jobs. Next we discuss these applications.

4.2.1 Database Iterator

Database Iterator is a tool designed to modify rows di-

rectly in hundreds of thousands of databases distributed

over thousands of hosts. For example, backfilling when

new social graph entities are introduced, and data format

changes for TAO caching [14]. Because of the lack of

batch processing tools for large-scale online databases,

this use case motivated the Bistro project.

We use a single Bistro instance since the resource

model fits in memory, and some jobs need global concur-

rency limits. The scheduler sends tasks to a set of workers,

i.e., single/remote scheduling mode. We measure 2.1%

of hosts and databases change every hour, mostly due

to maintenance and newly added databases. Users write

their own iterator jobs by extending a base class and im-

plementing selectRows(), which picks rows to pro-

cess, and processRows(), which modifies the rows

selected. Each task (one per database instance) modifies

roughly 300 thousand rows on average. The task duration,

while very heterogeneous, averages around five minutes.

The total job span is much longer due to long tails.

Before Bistro, Database Iterator ran on a distributed

system that executes arbitrary PHP functions asyn-

chronously. Bistro replaced the old system two years ago

and it has processed more than 400 iterator jobs and hun-

dreds of trillions of rows. Table 2 compares both systems

from the point of view of the production engineers.

Most Database Iterator jobs read and write data on a

single database, so our forest resource model is suffi-

cient for protection. Some jobs, however, read from one

database and write to many other databases because of

different hash keys. Database Iterator supports general

“reduce” operations by buffering the intermediate results

in RocksDB [5]. One such example was a user data mi-

gration. We used two Bistro setups in this case since

the source and destination databases are different. The

“map” Bistro runs tasks against source databases, writ-

ing to RocksDB “grouped by” the hash keys of destina-

tion. The “reduce” Bistro runs tasks against destination

databases, reading from RocksDB using the correspond-

ing keys. Both sets of databases, totalling hundreds of

thousands, were serving live traffic during the migration.

4.2.2 Database Scraping

Database scraping is a common step in ETL (Extract,

Transform, Load) pipelines. The resource configuration

is similar to database iterator except that we include all

replicas because the jobs are read-only; see Section 2.3 on

how to model replicas. The scheduling mode is also sin-

gle/remote but the worker hosts are dedicated to scraping

jobs, which allows Bistro to manage their resources and

enforce task placement constraints. For example, since

scraping jobs run repeatedly, we monitor their resource

usage and balance workload among workers.

Before Bistro, we ran scraping on a distributed exe-

cution system for time-based jobs, compared in Table 3.
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a proprietary asynchronous execution framework Bistro

resource

throttling

Similar to brute-force scheduling except that tasks

have to lock resources themselves by querying a cen-

tral database, which gets overloaded frequently.

Supports hierarchical resource constraints so tasks

need not check resources themselves. Tree-based

scheduling achieves better throughput.

model/job

updates

Database failovers, new databases, and job changes

are frequent, such that queued tasks become outdated

quickly, and no job finishes 100% in one run.

Resource models and job configurations are always up

to date. All jobs finish completely.

canary

testing

No support. Canary testing is crucial because each job

runs only once. We make adjustments frequently.

Supports whitelist, blacklist, fraction, and etc. Easy to

pause, modify, and resume jobs at runtime.

monitor Shows various performance counters but not the over-

all progress, since it does not know the entire set of

tasks.

Shows a progress bar per job, with all tasks in different

statuses.

Table 2: Feedback from Database Iterator operations team

an execution framework for time-based jobs Bistro

LOC 1,150 for an ad-hoc resource manager (RM) 135 for a new node fetcher

resource

throttling

The framework applies batch scheduling. Tasks query

RM to lock resources. The framework supports only

slot based resource allocation on worker hosts.

Supports hierarchical resource constraints for exter-

nal resources, as well as resource constraints and task

placement constraints on workers.

model/job

updates

RM takes 45 min to save all resources and tasks to

database before scheduling. No update afterwards.

21 sec to get all resources and tasks, and constantly

updated.

SPOF RM, central database, and scheduler all failed multiple

times, halting production.

Only the scheduler, which fails over automatically

Priority No support. Often all jobs get stuck at 99% Ranked Priority gets jobs to 100% one by one

Job filter Choices of databases are hard coded in each job. Automatically tracks database changes.

Table 3: Feedback from Database Scraping operations team

Similar to the asynchronous execution framework used by

Database Iterator previously, the system does not consider

data resources consumed by tasks, and our engineers had

to write an ad-hoc resource manager to lock databases for

tasks, which did not scale well. The scheduling algorithm

of the distributed execution system is similar to brute-

force scheduling, where the scheduler loops through all

unfinished tasks repeatedly. Upon start, the resource man-

ager takes 45 minutes to collect all resource and tasks, and

log them to a central database. Discounting the 45 minute

startup time, we compare the performance of Bistro with

brute-force scheduling by replaying a real scraping work-

load, shown in Figure 5.

There are 20 jobs in the workload, and we are inter-

ested in the makespan of the schedule with different job

settings. For each experiment, we take 10 runs with differ-

ent leaf node ordering to average out the makespan vari-

ation due to the long tail. The figure shows both the av-

erage makespan and the standard deviation. Figure 5a is

the makespan of scheduling only one job. Tree schedul-

ing is only slightly better than brute-force scheduling, be-

cause long tail tasks often dominate the entire schedule.

When there are multiple jobs, on the other hand, tree-

based scheduling can be as much as three times faster than

brute-force scheduling, shown in Figure 5b. Bistro took

over scraping jobs a year ago, which significantly reduced

the scraping time, and eased our daily operation.

4.2.3 Haystack/F4 Applications

Storage Migration in Table 1 refers to a one-time job that

moved sixteen petabytes of videos from a legacy file sys-

tem to Haystack. Bistro scheduled tasks on each server

of the proprietary file system, which sent video files from

local directories to Haystack. The destination Haystack

servers were not serving production traffic until the mi-

gration completed, so we did not throttle tasks for destina-

tion resources. At the time of migration, newly uploaded

videos already went to Haystack and the old file system

was locked. Therefore, the model change rate was low.

The overall job took about three months to finish.

Video re-encoding is a project to recompress old user

videos with more advanced algorithms to save space with-

out detectable quality degradation. We use fast compres-

sion algorithms for live video uploads in order to serve

them quickly. Recompressing “cold” videos saves stor-

age space substantially. Compressing each user video us-

ing the advanced algorithm takes roughly twenty minutes.

Compressing a whole volume can take several days even

with multithreading, during which time many videos may
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Figure 5: Makespan of our Database Scraping jobs

be deleted or updated by users, leading to corrupted meta-

data. Therefore we process tasks at video level rather

than volume level, and let Bistro keeps all videos updated.

Each Bistro instance can store a hundred million nodes in

memory so we only need a dozen or so scheduler hosts.

Compressing a billion videos in a reasonable amount of

time, however, requires hundreds of thousands of workers.

We are working on a project that harnesses underutilized

web servers for the computation.

4.2.4 Hbase Compression

HBase [21] is convenient for long-term data storage with

schema. We often need to compress old data to save

space. Our performance counter data is one such example.

There are three million rows stored every second from all

performance counters. We want to preserve old data at

coarse granularity. This is done by a compression job that

runs every 15 minutes.

We set up Bistro in multi/co-locate mode so each in-

stance processes only local HBase regions. This essen-

tially enforces data locality, which benefits our I/O heavy

job. In addition to the node fetcher that retrieves HBase

hosts and regions, we generate time-based nodes to run

the compression job periodically; see Section 2.3 for de-

tail. During our measurements, a few HBase servers did

not return region information reliably, so we see a signifi-

cant percentage of node changes.

Before Bistro, we ran the compression job on Hadoop,

compared in Table 4. The HBase cluster is heavily used
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(a) HBase table A
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Figure 6: Running time of Bistro tasks vs. Hadoop

jobs for HBase Compression

internally for performance counter queries, and Hadoop

often disturbed the query workload. In addition, the

MapReduce computation model waits for the slowest task

in each phase, which caused 10 % jobs to miss deadlines

due to long tail. In contrast, Bistro runs each task indepen-

dently, and slow data shards may catch up later. Figure 6

shows the empirical CDF of running time for both Hadoop

jobs and individual map tasks, measured over one week in

a production cluster. There are two different tables we run

compression jobs on, with different amounts of data. The

figure shows that the Hadoop job histogram starts roughly

at the tail of the individual task CDF, confirming the bar-

rier problem.

5 Related Work

Early data center schedulers focus on compute-

intensive workload and task parallelism, often asso-

ciated with High Performance Computing (HPC) and

Grid Computing. In these environments, a job can

be one task or a series of tasks organized by a work-

flow, each corresponding to a different binary. The

scheduler assigns tasks to different machines, considering

their resource requirements, placement constraints, and

dependencies. Scheduling objectives include minimiz-
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Hadoop Bistro

duration Depends on the slowest map task Each task runs independently

skipped

jobs

10%, which happens when the previous job did not

finish in its time window.

No missing job since tasks run independently. The per-

centage of skipped tasks are less than 0.1%

Resource

throttling

No support. Starting a new job often slows down the

entire cluster, causing service outage

No detectable query delay with our hierarchical re-

source constraints.

Data

locality

99%. Speculative execution kicks in for long tails,

which makes it worse since our tasks are I/O bound.

100% in multi/co-locate mode.

other

issues

Difficulty of deployment, no counters/ monitoring/

alerting, no flexible retry setting, no slowing down/

pausing/ resuming, no job filtering.

All supported.

Table 4: Feedback from Hbase Compression operations team

ing makespan, minimizing mean completion time, max-

imizing throughput, fairness, or a combination of these;

see [15, 19, 33] for good reviews of the topic. There are

many open source and commercial schedulers for HPC

and Grid workloads [4, 25, 29, 36].

Since MapReduce [18], data-intensive job scheduling

has become the norm in the literature [10,13,22,26,28,32,

34, 38–40, 42, 43]. However, since MapReduce is an of-

fline data processing framework, all schedulers of which

we are aware assume no external resources needed and

focus on interchangeable compute resources of the offline

cluster. Typically the scheduler assigns tasks to workers

from either a global queue or a set of queues correspond-

ing to different jobs.

The data locality problem can be viewed as a special

and simple case of our data resource constraints, where

we want to place a task on the worker that hosts the data

[6, 16, 28, 39, 42]. However, since queue-based schedul-

ing is ill suited to non-interchangeable resources (Sec-

tion 2.1), these schedulers treat data locality as a pref-

erence rather than a hard constraint. For example, De-

lay Schedule skips each job up to k times before launch-

ing its tasks non-locally [42]. A variation of the schedul-

ing problem considers task placement constraints, where

a task can only be assigned to a subset of workers due

to dependencies on hardware architecture or kernel ver-

sion [23, 32, 35]. Task placement constraints are associ-

ated with jobs, so we cannot use them to enforce data-

local tasks. Mitigating stragglers or reducing job latency

is another popular topic [8–10, 17, 20, 43].

Bistro moves one step further by scheduling data-

parallel jobs against online systems directly. It treats re-

sources at data hosts, either local or remote, as first-class

objects, and can strictly enforce data locality and other hi-

erarchical constraints without sacrificing scheduling per-

formance. Many of its data-centric features are not com-

mon in the literature, e.g., tree-based scheduling, updating

resources and jobs at runtime, flexible and elastic setup.

Regarding performance, Bistro is optimized for high

throughput, handling highly concurrent short-duration

tasks. Many schedulers assume long running tasks, and

sacrifice scheduling delays for the optimal schedule. For

example, Quincy takes about one second to schedule

a task in a 2,500-node cluster [28]. In contrast, our

Database Scraping workload has a turnover rate of thou-

sands of tasks per second. Recently, Sparrow aimed at

query tasks of millisecond duration, and reduced schedul-

ing latencies for fast responses [32, 40]. Bistro can incor-

porate Sparrow in its Task Runner module to reduce the

task dispatching latency.

6 Conclusion

Data center scheduling has transitioned from compute-

intensive jobs to data-intensive jobs, and it is progressing

from offline data processing to online data processing. We

present a tree-based scheduler called Bistro that can safely

run large-scale data-parallel jobs against live production

systems. The novel tree-based resource model enables hi-

erarchical resource constraints to protect online clusters,

efficient updates to capture resource and job changes, flex-

ible partitioning for distributed scheduling, and parallel

scheduling for high performance. Bistro has gained popu-

larity at Facebook by replacing Hadoop and custom-built

schedulers in many production systems. We are in the pro-

cess of migrating more jobs to Bistro, and plan to extend

its resource and scheduling models in the next version.
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Abstract
Cloud scale load balancers, such as Ananta and Duet

are critical components of the data center (DC) infras-
tructure, and are vital to the performance of the hosted
online services. In this paper, using traffic traces from
a production DC, we show that prior load balancer de-
signs incur substantial overhead in the DC network band-
width usage, due to the intrinsic nature of traffic redi-
rection. Moreover, in Duet, traffic redirection results in
extra bandwidth consumption in the core network and
breaks the full-bisection bandwidth guarantees offered
by the underlying networks such as Clos and FatTree.

We present RUBIK, a load balancer that significantly
lowers the DC network bandwidth usage while provid-
ing all the performance and availability benefits of Duet.
RUBIK achieves its goals by applying two principles in
the scale-out load balancer design – exploiting locality
and applying end-point flexibility in placing the servers.
We show how to jointly exploit these two principles to
maximally contain the traffic load balanced to be within
individual ToRs while satisfying service-specific failure
domain constraints. Our evaluation using a testbed pro-
totype and DC-scale simulation using real traffic traces
shows that compared to the prior art Duet, RUBIK can re-
duce the bandwidth usage by over 3x and the maximum
link utilization of the DC network by 4x, while providing
all the performance, scalability, and availability benefits.

1 Introduction
Load balancing is a foundational function of modern

data center (DC) infrastructures that host online services.
Typically, each service exposes one or more virtual IPs
(VIPs) outside the service boundary, but internally runs
on hundreds to thousands of servers, each with a unique
direct IP (DIP). The load balancer (LB) stores the VIP-
to-DIP mapping, receives the traffic destined to each VIP,
and splits it across the DIPs assigned for that VIP. Thus,
the LB touches every packet coming from the Internet, as
well as a significant fraction of the intra-DC traffic. For

a 40K-server DC, LB is expected to handle 44 Tbps of
traffic at full network utilization [21].

Such enormous traffic volume significantly strains the
data plane of the LB. The performance and reliabil-
ity of the load balancer directly affects the performance
(throughput and latency) as well as availability of the on-
line services within the DC. Recently proposed scale-out
LB designs such as Ananta [21] and Duet [14] provide
low cost, high scalability and high availability by dis-
tributing the load balancing function among Multiplex-
ers (Muxes), either implemented in commodity servers
called software Muxes (SMuxes) or existing hardware
switches, called hardware Muxes (HMuxes).

However, such LB designs incur high bandwidth us-
age of the DC network because of the intrinsic nature of
traffic redirection. First, even if the traffic source and
the DIPs that handle the traffic are under the same ToR,
the traffic first has to be routed to the Muxes, which may
be faraway and elongate the path traveled by the traf-
fic. Second, in both Ananta and Duet, the Muxes select
DIPs for a VIP by hashing the five-tuple of IP headers,
and hence are oblivious to DIP locations. As a result,
even if the Mux and some DIPs are located nearby the
source, the traffic can be routed to faraway DIPs in the
DC, again traversing longer paths. Lastly, these designs
do not leverage the server location flexibility in placing
the DIPs closer to the sources to shorten the path.

The second problem with the Duet LB design is that
the traffic detouring through core links breaks the full-
bisection bandwidth guarantees originally provided by
full-provisioned networks such as Clos and FatTree.

Our evaluation of traffic paths in a production DC net-
work shows that such traffic detour significantly inflates
the bandwidth usage of the DC network. This high band-
width usage not only requires the DC operator to pro-
vision high network bandwidth which is costly, but also
makes the network prone to transient congestion which
affects latency-sensitive services.

In this paper, we propose RUBIK, a new LB that sig-

1
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nificantly reduces the high bandwidth usage by LB. Like
Duet, RUBIK uses a hybrid LB design consisting of the
HMuxes and SMuxes, and aims to maximize the VIP
traffic handled by HMuxes to reduce the LB costs. While
doing that, RUBIK reduces the bandwidth usage using
two synergistic design principles. First, RUBIK exploits
the locality, i.e., it tries to load balance VIP traffic gener-
ated within individual ToRs across the DIPs residing in
the same ToRs. This reduces the total traffic entering the
core network. Second, RUBIK exploits end-point flexi-
bility, i.e., it tries to place the DIPs for a VIP in the same
ToRs as the sources generating the VIP traffic.

To exploit locality, RUBIK uses a novel architecture
that splits the VIP-to-DIP mapping for a VIP into mul-
tiple “local” and a single “residual” mappings stored in
different HMuxes. The local mapping stored at a ToR
handles the traffic generated in the ToR across the DIPs
in the same ToR. The residual mapping assigned to an
HMux handles the traffic not handled by local mappings
and maximizes the total VIP traffic handled by HMuxes.

To exploit locality and end-point flexibility, RUBIK
faces numerous challenges. First, there are limited
resources – individual switches have limited memory
(where VIP-to-DIP mappings are stored) and individual
ToRs have limited servers (where DIPs can be assigned).
Also, individual DIPs (servers) have limited capacities.
Exploiting end-point flexibility is further compounded as
there are dependencies across services. The dependen-
cies arise because many large services are multi-tiered;
when a subservice at tier i receives a request, it spawns
multiple requests to the subservices at tier (i+ 1). Be-
cause of such dependencies, traffic sources at a lower tier
are not known until DIPs in the higher tier are placed.
Furthermore, RUBIK needs to ensure that it assigns DIPs
that satisfy SLAs.

We develop a practical two-step solution to address all
of the above challenges. In the first step, we design an al-
gorithm to jointly calculate the DIP placement and map-
pings to maximize the traffic contained in ToRs while
satisfying various constraints using an LP solver. In the
second step, we use a heuristic assignment to maximize
the total traffic handled by HMuxes to reduce the costs.

Lastly, to adapt to the cloud dynamics such as changes
in the VIP traffic, failures, etc., RUBIK regularly updates
its local, residual mappings and DIP placement while
limiting the number of servers migrated.

We evaluate RUBIK using a prototype implementation
and DC-scale simulation using real traffic traces. Our
results show that compared to the prior art Duet, RUBIK
can reduce the maximum link utilization (MLU) of the
DC network by over 4x and the bandwidth usage by over
3x, while providing the same benefits as Duet.

In summary, this paper makes the following contribu-
tions. (1) Through careful analysis of the LB workload

from one of our production DCs, we show the high DC
network bandwidth usage by recently proposed LB de-
sign Duet and Ananta. (2) We present the design and
implementation of RUBIK that overcomes these ineffi-
ciencies by exploiting traffic locality and end-point flex-
ibility. To the best of our knowledge, this is the first
LB design that exploits these principles. (3) Through
testbed experiments and extensive simulations, we show
that RUBIK reduces the DC network bandwidth usage by
3x and the MLU by over 4x while providing a high per-
formance and highly available LB.

2 Background
In this section, we briefly explain the LB functionality,

workloads, and the Duet LB.

2.1 Load balancer
VIP indirection: A DC hosts thousands of online ser-

vices, e.g., news, sports [21, 14]. Each service exposes
one or more virtual IPs (VIPs) outside the service bound-
ary to receive the traffic. Internally, each service runs on
hundreds to thousands of servers. Each server in this set
has a unique direct IP (DIP) address. The task of the LB
is to forward the traffic destined to a VIP of a service to
one of the DIPs for that service. Such indirection pro-
vided by VIPs provides location independence: each ser-
vice is addressed with a few persistent VIPs, which sim-
plifies the management of firewall rules and ACLs, while
behind the scene individual servers can be maintained or
migrated without affecting the dependent service.

VIP traffic: In the Azure DC, 18-59% (average 44%)
of the total traffic is VIP traffic which requires load bal-
ancing [21]. This is because services within the same
DC use VIPs to communicate with each other to use the
benefits provided by the VIP indirection. As a result,
all incoming Internet traffic to these services (close to
30% of the total VIP traffic in our DC) as well as a large
amount of inter-service traffic (accounting for 70% of the
total VIP traffic) go through the LB. For a DC with 40k
servers, LB is expected to handle 44 Tbps of traffic at full
network utilization [21]. Such indirection of large traf-
fic volume requires a scalable, high performance (low
latency, high capacity) and highly available LB.

2.2 Workload Characteristics
We make the following observations about the VIP

traffic being load balanced in our production DC, by an-
alyzing a 24-hour traffic trace, for 30K VIPs.

The traffic sources and DIPs for individual VIPs
are scattered over many ToRs. Fig. 1 shows the num-
ber of ToRs where the traffic sources and DIPs for the top
10% VIPs which generate 90% of the total VIP traffic are
located. We see that traffic sources are widely scattered –
the number of ToRs generating traffic for each VIP varies
between 0-44.5% of the total ToRs. Also, the number of

2
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Figure 1: Distribution of the number of ToRs where the
sources and DIPs are located.
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Figure 2: Ratio of 99th percentile to average traffic vol-
ume for each VIP across all sources.

ToRs where the DIPs for a VIP are located varies be-
tween 0-58% of the total ToRs in the DC.

The traffic volume of sources per VIP are highly
skewed. We measure the traffic from all the ToRs for
each VIP. Figure 2 shows the CDF of the ratio of the 99th

percentile to the median per-ToR traffic volume for each
VIP. We see that the source traffic volume for each VIP
is highly skewed – the ratio varies between 1-35 (median
18) for the top VIPs generating 90% of the total traffic.
The large skew happens for multiple reasons, including
different numbers of servers, skew in the popularity of
the objects that are served, and locality [17, 10].

VIP dependencies: Many large-scale web services
are composed of multi-tier services, each with its own set
of VIPs. When the top-level service receives a request,
it spawns multiple requests to the services at the second
tier, which in turn send requests to services at lower tiers.
As a result, the VIP traffic exhibit hierarchical dependen-
cies – the DIPs serving the VIPs at tier i become the traf-
fic sources for the VIPs at tier (i+ 1). We observe that
31.1% VIPs receive traffic from other VIPs. These VIPs
employ 25.1% of the total DIPs and contribute to 27.6%
of the total VIP traffic. The remaining 72.4% VIP traffic
comes from the Internet, other DCs, and other servers in
the same DC that are not assigned to any VIPs.

The dependency among the VIPs can be represented
in a DAG. The depth of the DAG observed is similar to
the depths reported by Facebook and Amazon [20].

2.3 Ananta LB
Ananta distributes the LB functionality among hun-

dreds of commodity servers called software Muxes
(SMuxes). Each SMux in Ananta stores VIP-to-DIP
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Figure 3: Duet architecture. Links marked with solid and
dotted lines carry VIP and DIP traffic, respectively.

mapping for all the VIPs. When the VIP traffic hits one
of the SMuxes, it selects the DIP based on the hash cal-
culated over IP 5-tuple, and uses IP encapsulation to for-
ward the VIP traffic to the selected DIP. Using SMuxes
allows Ananta to be highly scalable, but is also costly,
where supporting 15 Tbps VIP traffic for a 40K-server
DC would require 4K SMuxes, and incurs high latency
of 200 µsec to 1 msec for every packet handled by each
SMux [14].

2.4 Duet LB
Duet [14] LB design consists of hardware switches

and servers. Compared to Ananta, Duet lowers the LB
cost by 12-24x and incurs a small latency of a few mi-
croseconds by using existing switches for load balancing.
Duet runs hardware Mux (HMux) on every switch that
stores the VIP-to-DIP mapping in the switch (ECMP)
memory, splits the traffic for a VIP among its DIPs based
on the hash value calculated over the 5-tuple in the IP
header, and sends the packet to the selected DIP by en-
capsulating the packets using the tunneling table avail-
able in the switch.

However, switches have limited hardware resources,
especially the routing and tunneling table space. The
tunneling table size (typically 512 entries) limits the total
number of DIPs (for multiple VIPs) that can be stored on
a single HMux. Accordingly, Duet partitions the VIP-to-
DIP mappings across HMuxes, where the mappings for
a small set of VIPs are assigned to each HMux. This
way of partitioning enables Duet to support a large num-
ber of DIPs. Second, the routing table size (typically
16K entries) per switch limits the total number of VIPs
that can be supported in HMuxes. Therefore, Duet uses
HMuxes to handle up to 16K elephant VIPs. The remain-
ing mice VIP (that could not be assigned to any of the
HMuxes) traffic is handled by deploying a small number
of SMuxes, which have the same design as in Ananta.
These SMuxes also load balance traffic otherwise han-
dled by HMuxes during HMux failures which enables
Duet to provide high availability.

3 Motivation
We next assess the impact of the VIP traffic character-

istics (§2.2) on the DC network bandwidth usage under
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Figure 4: MLU and total traffic under various LB
schemes. Total traffic is measured across all the DC net-
work links.

Duet Direct Closest
5.47 3.94 1.78

Table 1: Path length for different LB designs.

the Duet LB. We simulate how Duet handles the VIP traf-
fic using a 24-hour traffic trace from our production DC
on a network topology that closely resembles our pro-
duction DC. The topology, workload, and results are de-
tailed in §10. Duet maximizes the total traffic handled by
HMuxes, on average 97% in the 24-hour period.

High link utilization. Figure 4 shows the MLU and total
traffic in the DC network1. While Duet is able to handle
97% of the total VIP traffic by leveraging HMuxes, it
also inflates the MLU to 0.98 (or 98%). This high MLU
can be explained by two design decisions of Duet.

First, Duet assigns a VIP only to a single HMux.
But the traffic sources and DIPs for individual VIPs are
spread in a large number of ToRs (Figure 1). The di-
verse location of traffic sources and DIPs per VIP sug-
gests no matter where the single Mux for a VIP is po-
sitioned in the network, it will be far away from most of
the traffic sources and DIPs for that VIP, and hence most
VIP traffic will traverse through the network to reach the
HMuxes and then the DIPs, which inflates the path length
between the sources and DIPs.

Table 1 shows that the average number of hops be-
tween the sources and the DIPs across all individual VIPs
is 5.47 in Duet. Notice that the traffic between two hosts
that does not go through the LB would have a maximum
of 4 hops (ToR-Agg, Agg-Core, Core-Agg, Agg-ToR).
Thus the average path length of 5.47 in Duet indicates
that most traffic goes through the core links and further
experiences some detour in the DC network. Figure 3
shows an example where the VIP-1 traffic originated at
S1 has to travel 6 hops to reach DIP D1 – 3 hops to reach
the HMux at switch A3, and 3 more hops to reach D1.

To dissect the impact of the redirection, we measure
the MLU and total traffic in the DC network in a hypo-
thetical case where the HMuxes are located on a direct
path between the sources and DIPs, labeled as “Direct”.
Figure 4 shows that in this case the MLU is reduced to
0.46 (from 0.98 in Duet), and the bandwidth used is low-

1Absolute values for “total traffic” are omitted for confidentiality.

ered by 1.36x, compared to Duet. Also, the average path
length in “Direct” is lowered to 3.94 (1.38x improve-
ment). This means the redirection design in Duet inflates
the MLU by 2.13x and bandwidth used by 1.36x.

The second cause for the high link utilization is
location-oblivious DIP selection in Duet. The HMux
splits the VIP’s traffic by hashing on the 5-tuples in the
IP header, and chooses the DIP based on the hash. Thus,
even if there is a DIP located under the same ToR as the
HMux and has the capacity to handle all the local traffic
for the VIP, the HMux will spread the local traffic among
all DIPs, many of which can be far away in the DC.

To measure the impact of location-oblivious DIP se-
lection, we measure the MLU and bandwidth used in a
hypothetical case, where the traffic from the individual
sources is routed to the closest DIP and assuming the
HMuxes lie on the path. This mechanism is labeled as
“Closest”. Figure 4 shows that the MLU is reduced to
just 0.08, and the bandwidth used reduces by 3.19x com-
pared to Duet. Also, the average path length is lowered
to just 1.78 hops.

Effective full bisection bandwidth reduced at core.
Many DC networks have adopted topologies like FatTree
and Clos [15] to achieve full-bisection bandwidth. Such
networks guarantee that there is enough aggregate capac-
ity between Core and Agg switches as between Agg and
ToR switches, and hence the core links will never be-
come a bottleneck for any traffic between the hosts.

However, traffic indirection can break this assumption,
if the HMuxes reside in Agg or ToR switches. This hap-
pens to Duet, as Duet considers all the switches while
assigning VIP-to-DIP mappings. This is illustrated in
Figure 3. When VIP1 is assigned to an Agg switch (A3),
the traffic from source S1 travels the core links twice en-
route to DIP D1 – first to get to HMux A3, and then to
D1. In contrast, direct host-to-host traffic only has to tra-
verse core links at most once. As a result, the effective
bandwidth in the core links is reduced – in Figure 3, the
available bandwidth to container-2 (servers S3-S6) is re-
duced due to the LB traffic among other containers.

Our evaluation in §10.3 shows the traffic overhead in
Duet, i.e., the ratio of the additional traffic due to redirec-
tion to the total traffic without redirection is 44% in core
links and 16% in containers. This means the remain-
ing bisection bandwidth of the Agg-Core links is lower
than the remaining bisection bandwidth in the ToR-Agg
links. This breaks the full-bisection guarantee provided
by the FatTree or Clos, which jeopardizes other applica-
tions that co-exist in the DC and assume full-bisection
bandwidth is available (e.g., [12, 23]).

4 RUBIK Overview
In the previous section, we saw that the traffic indirec-

tion in Duet incurs substantial overhead in the DC net-

4



USENIX Association  2015 USENIX Annual Technical Conference 477

work bandwidth usage. In this paper, we propose a new
LB design, RUBIK, that significantly reduces the band-
width usage in the DC network while providing low cost,
high performance and high availability benefits.

RUBIK is based on two key ideas motivated by the ob-
servations in the last section. First, it exploits locality,
i.e., it tries to load balance traffic generated in individ-
ual ToRs across the DIPs present in the same ToRs. In
this way, a substantial fraction of the load balanced traf-
fic will not enter the links beyond ToRs which reduces
the DC network bandwidth usage and MLU.

The second key idea of RUBIK is to exploit DIP place-
ment flexibility to place DIPs closer to the sources. In
RUBIK online services specify the number of DIPs for
individual VIPs, and RUBIK decides the location of the
servers to be assigned to individual VIPs. This idea is
synergistic with the first idea, as it facilitates exploiting
locality in load balancing within ToRs.

Realizing the two ideas is challenging, because (1)
there are a limited number of servers in each ToR where
DIPs can be assigned, (2) switches have limited memory
for storing VIP-to-DIP mappings, (3) a VIP may have
traffic sources in more ToRs than the total number of
DIPs for that VIP. In such a case, a DIP cannot be as-
signed in every ToR that has traffic sources, (4) depen-
dencies between the VIPs make it even harder, as the
sources to some of the VIPs are not known until DIPs
for other VIPs are placed.

RUBIK addresses the above capacity limitations
(switch memory and DIPs in a ToR) using two compli-
mentary ideas. First, RUBIK uses a new LB architecture
that splits the VIP-to-DIP mapping for a VIP across mul-
tiple HMuxes to enable efficient use of switch memory
while containing local traffic. Second, it employs a novel
algorithm that calculates the most efficient use of switch
memory for containing the most local traffic.

5 RUBIK Architecture
RUBIK uses a new LB design that splits the VIP-to-

DIP mapping for each VIP into multiple local and a sin-
gle residual VIP-to-DIP mappings. This idea is inspired
by the observation that the traffic for individual VIPs is
skewed (§2.2) – some ToRs generate more traffic than
other ToRs for a given VIP. In RUBIK, we assign lo-
cal mappings to the ToRs generating large fractions of
the traffic and also assign enough DIPs to handle those
traffic. The local mapping for a VIP load balances traf-
fic for that VIP across the DIPs present under the same
ToR (called local DIPs). We then assign a single residual
mapping for that VIP to handle the traffic from all the
remaining ToRs, where no local mapping is assigned.

Effectively, the VIP-to-DIP mapping for a VIP is split
across the local and residual mappings such that a single
DIP appears in only one mapping. Assigning a DIP only
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Figure 5: RUBIK Architecture. DIPs for VIP1 are split in
local (HMux-L) and residual mappings (HMux-R).

once makes the most efficient use of the limited tunneling
table space of HMuxes so the total VIP traffic handled by
the HMuxes can be maximized. The assignment module
(§6) then calculates the actual assignment that maximizes
the VIP traffic handled locally.

We now explain the RUBIK architecture in detail.

Local mapping. If some of the sources and DIPs for
a VIP already reside in the same ToR, RUBIK exploits
this locality by load balancing the source traffic across
those local DIPs. To ensure that the traffic does not flow
outside the ToR in detouring through the HMux, RUBIK
stores a subset of the VIP-to-DIP mapping, i.e., contain-
ing only the local DIPs, at the ToR itself (e.g., HMux
T2 in Fig. 5). We denote such a mapping containing the
subset of local DIPs as a local mapping.

Residual mapping. For an individual VIP, we assign a
single residual mapping to handle the remaining traffic
not handled by the local mappings (called residual traf-
fic). We pool all the remaining DIPs for a VIP together
in a single DIP-set, called the residual mapping for that
VIP (e.g., HMux on C1 and A5 in Fig. 5). The residual
mapping for each VIP announces the VIP using BGP so
that other routers (or switches) route the VIP traffic to the
HMux where its residual mapping is assigned.

In principle, we can replicate the residual mapping at
all the ToRs containing any remaining traffic sources.
Such replication can reduce the number of hops between
the sources and HMux, but it can also consume a signifi-
cant amount of the limited tunneling table space. There-
fore, we only assign the residual mapping for a VIP to a
single HMux, and the optimal choice of HMux to store
the residual mapping of a VIP depends on the location of
the remaining traffic sources and residual DIPs.

VIP routing. The above DIP-set splitting design has one
potential problem. If the HMuxes storing either the local
mappings or the residual mapping of a VIP all announce
the VIP via BGP to the network, some of the residual
source traffic may be routed towards the HMuxes storing
local mappings if they are closer than the HMux storing
the residual mapping. This would significantly compli-
cate the DIP placement, and DIP-set splitting and place-
ment problem. We avoid this complication by making the
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HMuxes storing local mappings not announce the VIP
via BGP. In this way, only local source traffic within a
ToR sees the local mapping and is split to the local DIPs.
SMuxes. Because of the limited switch memory, the
numbers of VIPs and DIPs supported by HMuxes re-
main limited. Current HMuxes can support up to 16K
VIPs [14], and our DC has 30K+ VIPs. Also, it remains
challenging to provide high availability during HMux
failures. We address both problems by deploying a small
number of SMuxes as a backstop, to handle the VIP traf-
fic that could not be handled using HMuxes. We also
announce all the VIPs from all SMuxes. We use Longest
prefix matching (LPM) to: (1) preferentially route the
VIP traffic to the HMuxes for the VIPs assigned to both
HMuxes and SMuxes, (2) route the traffic to the remain-
ing VIPs not assigned to HMuxes to the SMuxes.

The use of SMuxes in this way also provides high
availability during residual mapping failure. §7 gives de-
tails on how RUBIK recovers from a variety of failures.
Summary. The benefits of this architecture can only be
realized by carefully calculating the DIP placement, and
local and residual mappings for individual VIPs subject
to a variety of constraints, which we describe next.

6 Joint VIP and DIP Assignment
RUBIK’s objective is to maximize the traffic handled

by the HMuxes, while maximizing the traffic handled lo-
cally within ToRs. The assignment algorithm determines
for each VIP, (1) the location of its DIPs; (2) the number
of DIPs in each ToR in the local VIP-to-DIP mapping;
and (3) the number of DIPs in the residual mapping, and
the HMux assigned to store the mapping.

RUBIK needs to calculate this assignment such that
the capacity of all resources (switch tables, links, and
servers per ToR) is not be exceeded. Also, RUBIK needs
to ensure that it assigns DIPs in the failure domains (i.e.,
ToRs) specified by the online services. The placement
calculated at a given time may lose effectiveness over
time as the VIP traffic changes, and VIPs and DIPs are
added and removed. To adapt to such cloud dynam-
ics, RUBIK reruns the placement algorithm from time to
time. While calculating a new assignment, RUBIK has
to ensure that the number of machines migrated from the
old assignment is under the limit.

The assignment problem is a variant of the bin-
packing problem (NP-hard [11]), where the resources are
the bins, and the VIPs are the objects. It is further com-
pounded because the VIP traffic exhibits hierarchical de-
pendencies (§2.2).

To reduce the complexity, RUBIK decomposes the
joint assignment problem into two independent modules,
(1) DIP and local mapping placement, (2) residual map-
ping placement, as shown in Algorithm 1. The first mod-
ule places the DIPs and local mappings for all the VIPs to

Algorithm 1: RUBIK Assignment Algorithm
1 Input: V,M,Nv, fv,S,L,bt,v,Ct,v

2 Output: xD
t,v,x

M
t,v

3 topological sort(V in DAG)
4 for l = 1, depth of DAG do
5 local mapping and dip placement(VIPs in

DAG level(l))
6 end
7 residual mapping placement()

Notation Explanation
Input

S,L,V Sets of switches, links, and VIPs
Mt # servers under t-th ToR
Ts Table capacity of s-th switch
Le Link traffic capacity of link e

Nv, fv #DIPs and failure-domain for v-th VIP
bt,v Traffic sent to v-th VIP from t-th ToR
Ct,v Traffic capacity of server in t-th ToR when

assigned to v-th VIP
Variables

xD
t,v Number of servers (DIPs) in t-th ToR

assigned to v-th VIP
xM

t,v Number of table entries in t-th ToR
assigned to v-th VIP

Table 2: Notations used in the algorithm.

maximize the total traffic load-balanced locally on indi-
vidual ToRs. We calculate DIP and local mapping simul-
taneously, because the problem of DIP and local map-
ping placement are intertwined, as the traffic for a VIP is
contained within a ToR only if the ToR has (1) enough
DIPs to handle the traffic, and (2) enough memory to
store the corresponding VIP-to-DIP mapping.

Since the VIP traffic exhibits hierarchical dependen-
cies (§2.2), we create a DAG that captures the traffic
flow and hence the dependency between the VIPs, and
then perform a topological sort on the DAG to divide the
VIPs into different levels. We then place the DIPs and
local mappings for the VIPs level-by-level (lines 3:6 in
Algo. 1). As we place DIPs for VIPs in one level, the
sources in the next level become known.

The second module places the residual mappings of
all the VIPs to maximize the total traffic handled by
HMuxes. The residual mapping placement subproblem
remains NP-hard. But, the residual VIP traffic is typi-
cally only a small portion of the total traffic and hence
we can apply heuristics to solve it without significantly
affecting the quality of the overall solution (line 7).

6.1 DIP and Local Mapping Placement
The first module places the DIPs and the local map-

pings of all the VIPs for which the sources are known
such that the total VIP traffic load balanced within the

6
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ToRs is maximized. We formulate the joint DIP and lo-
cal mapping placement problem as ILP using notations
shown in Table 2 as follows.
Input: The input includes (1) the network topology and
resource information (capacity of switch tables, links,
and servers in the ToRs), (2) for every VIP in current
level, the number of DIPs and number of failure domain
and traffic, and (3) max. number of DIPs to migrate (δ ).
Output/Variables: The output includes the local VIP-
to-DIP mappings on individual ToRs, and placement of
all the DIPs (including residual DIPs), for all VIPs.

Let xD
t,v denote the number of machines in the t-th ToR

assigned as the DIPs for the v-th VIP, and xM
t,v denote the

number of machines out of these xD
t,v machines that are

used in the local mapping for the VIP, i.e., they will ap-
pear in the local VIP-to-DIP mapping of the t-th ToR.
Objective:
maximize Locality L = ∑

v∈V
∑
t∈T

yM
t,v ·bt,v

where yD
t,v is set if there are any DIPs in the t-th ToR

assigned to the v-th VIP, and yM
t,v is set if the t-th ToR

switch (HMux) contains local VIP-to-DIP mapping for
the v-th VIP. This way, yM

t,v · bt,v denotes if traffic for v-
th VIP in t-th ToR is handled locally, and we maximize
traffic handled locally across all VIPs and ToRs.

yM
t,v =

{
1 xM

t,v ≥ 1

0 Otherwise
yD

t,v =

{
1 xD

t,v ≥ 1

0 Otherwise

Constraints:
(1,2) Switch table size and number of servers not ex-
ceeded on every ToR

∀t ∈ T, ∑
v∈V

xM
t,v ≤ Tt , ∑

v∈V
xD

t,v ≤ Mt

(3,4) Specified number of DIPs assigned for every
VIP; failure domain constraints

∀v ∈V, ∑
t∈T

xD
t,v = Nv, ∑

t∈T
yD

t,v ≥ fv

(5a, 5b) DIPs are not overloaded (no hot-spots)

∀t ∈ T,∀v ∈V,yM
t,v ·bt,v ≤ xM

t,v ·Ct,v

∀v ∈V, ∑
t∈T

(1− yM
t,v) ·bt,v ≤ ∑

t∈T
(xD

t,v − xM
t,v) ·Ct,v

Constraint (5a) ensures the DIPs mapped in the local
mapping are not overloaded. Constraint (5b) ensures the
DIPs in the residual mapping are not overloaded.

(6) Limiting the number of DIP moves

∑
v∈V,t∈T

|xM
t,v − xM,old

t,v | ≤ δ

where xM,old
t,v denotes the number of DIPs in the ToR in

the previous assignment, and δ is the threshold on the
maximum number of DIPs to be moved. We convert con-
straint (6) into the linear form as:

∑
v∈V,t∈T

zt,v ≤ δ

∀t ∈ T,∀v ∈V,zt,v ≥ xM
t,v − xM,old

t,v ,zt,v ≥ xM,old
t,v − xM

t,v

(7) ToRs have more DIPs than in local mappings
∀v ∈V, t ∈ T,xD

t,v ≥ xM
t,v

(8a,8b) Writing yM
t,v, yD

t,v in linear form

∀t ∈ T,∀v ∈V,0 ≤ yM
t,v,y

D
t,v ≤ 1,yM

t,v ≤ xM
t,v,y

D
t,v ≤ xD

t,v

6.2 Residual Mapping Placement
The second module places the residual mappings for

the VIPs among the switches while maximizing the to-
tal VIP traffic load balanced by the residual mapping
HMuxes (traffic not handled by local mappings), subject
to switch memory and link capacity constraints.

This assignment problem is the same as that in Duet,
and we solve it using the same heuristic algorithm as in
Duet. Briefly, to assign the VIPs, we first sort the VIPs in
decreasing traffic volume, and attempt to assign them one
by one. We define the notion of maximum resource uti-
lization (MRU). MRU represents the maximum utiliza-
tion across all resources – switches and links. To assign
a given VIP, we consider all switches as candidates. We
calculate the MRU for each assignment, and pick the one
that results in the smallest MRU, breaking ties at random.
If the smallest MRU exceeds 100%, i.e., no assignment
can accommodate the traffic of the VIP, the algorithm
terminates. The remaining VIPs are not assigned to any
switch – their traffic will be handled by the SMuxes.

7 Failure Recovery
A key requirement of the LB design is to maintain

high availability during failure: (1) the traffic to any VIP
should not be dropped, (2) existing connections should
not be broken. As in Duet, RUBIK relies on SMuxes to
load balance the traffic during various failures. In addi-
tion to storing VIP-to-DIP mapping for all the VIPs, we
use the ample memory on individual SMuxes to provide
connection affinity by maintaining per-connection state.

Residual mapping HMux failure: Failure of the
HMux storing the residual mapping of a VIP only af-
fects the traffic going to that HMux; the traffic handled
by other local and residual mappings is unaffected. The
routing entries for the VIPs assigned to the failed HMux
are removed from all other switches via BGP withdraw
messages. After routing convergence, traffic to these
VIPs is routed to the SMuxes, which announce all VIPs.
Since each SMux stores the same residual DIPs and uses
the same hash function as the residual mapping HMux to
select a DIP, existing connections are not broken.

Local mapping failure: When a ToR switch fails, all
the sources and DIPs for a VIP under it are also discon-
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Figure 6: RUBIK implementation.

nected. As a result, the traffic the local mapping was han-
dling also disappears. Further, the rest of the traffic for
that VIP continues to be routed to the residual mapping
or other local mappings, and are not affected.

SMux failure: On an SMux failure, traffic going to
that SMux is rerouted to the remaining SMuxes using
ECMP. The connections are not broken as all the SMuxes
use the same hash function.

DIP failure: Existing connections to the failed DIP
would necessarily be terminated. For VIPs whose map-
ping are assigned to SMuxes, connection to the remain-
ing DIPs are maintained as SMuxes use consistent hash-
ing in DIP selection [21]. For VIPs assigned to HMuxes,
the connections are maintained using smart hashing [2].

8 Implementation
We briefly describe the implementation of the three

building blocks of RUBIK, (1) RUBIK controller, (2) net-
work driver, (3) HMux and SMux, as shown in Figure 6.

RUBIK controller: The controller orchestrates all
control activities in RUBIK. It consists of three key mod-
ules: (1) DC monitor, (2) Assignment engine, (3) Net-
work driver. The DC monitor periodically captures the
traffic and DIP health information from the DC network
and sends it to the assignment engine. The assignment
engine calculates the DIP placement, local and resid-
ual VIP-to-DIP mappings for all the VIPs, and pushes
these new assignment to the network driver. We use
CPLEX [7] to solve the LP (§6.1).

Network driver: This module is responsible for
maintaining VIP and DIP traffic routing in the LB.
Specifically, when the VIP-to-DIP assignment changes,
the network driver announces or withdraws routes for the
changed VIPs according to BGP.

HMux and SMux: We implement HMuxes and
SMuxes using Open vSwitches that split the VIP traf-
fic among its DIPs using ECMP based on the source
addresses [5]. We implement smart hashing [2] using
OpenFlow rules. The replies from the DIPs directly go
to the sources using DSR [21].

Lastly, we use POX to push the rules and poll the traf-
fic statistics. We developed a separate module to monitor
the DIP health. The code for all the modules consists of
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Figure 7: Our testbed. FatTree with 4 containers con-
nected to 4 Core switches.
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3.4K LOC in C++ and Python.

9 Testbed
Setup: We evaluate RUBIK prototype using Open

vSwitches and Mininet. Our testbed (Fig. 7) consists
of 20 switches (HMuxes) in 4 containers connected in a
FatTree topology. Each ToR contains an SMux (marked
“M”) and 2 hosts that can be set as DIPs (marked “S”).

Services: We evaluate the performance of RUBIK us-
ing two services that require load balancing: (1) HTTP
web service, (2) Bulk data transfer service. The web ser-
vice serves static web pages of size 1KB and generates
a large number of short-lived TCP flows. The Bulk data
transfer service receives a large amount of data using a
small number of long-lived TCP flows. All the servers
and clients for these services reside in the same DC.

Experiments: Our testbed evaluation shows: (1)
RUBIK lowers congestion in the network; (2) RUBIK
achieves high availability during a variety of failures –
local mapping, residual mapping, and DIP failure.

9.1 Reduction in Congestion
First we show that RUBIK reduces congestion in the

DC network by using local mappings. In this experi-
ment, initially 4 VIPs (each with 1 source and 1 DIP) are
assigned to 4 different HMuxes. Additionally, there is
background traffic between 2 hosts. Figure 8 shows the
per-second throughput measured across 2 flows. “VIP-
1” denotes the throughput for one of the 4 VIPs added
initially. “Background” denotes the throughput for the
background flow (not going through the LB). Initially,
there is no congestion in the network and as a result all
flows experience high throughput. At time 15 sec, we
add a new VIP (VIP-5) that has 2 DIPs and 2 sources
sending equal volume of traffic, and assign it using Duet.

8
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Figure 9: VIP availability when residual mapping fails.

However, assigning the new VIP causes congestion as
the new flows compete with the old flows. As a result,
the throughput for all the flows drop by almost 5-6x.

We repeat the same experiment with RUBIK. At time
15 sec, we assign the VIP-5 using RUBIK. RUBIK as-
signs local mappings to handle the VIP-5 traffic. As
a result, adding VIP-5 does not cause congestion (no
drop in throughput), as shown in Figure 8. This exper-
iment shows that by exploiting locality, RUBIK reduces
the congestion and improves the throughput by 5-6x.

9.2 Failure Mitigation
Next we show how RUBIK maintains high availability

during various failures.
Residual mapping failure: Fig. 9 shows the avail-

ability of the VIP, measured using ping latency, when its
residual mapping fails. In this experiment, we have 3
VIPs (VIP-1, 2, 3) assigned to the data-transfer service.
VIP-1 and VIP-2 have one source and one DIP each in
different ToRs, and their traffic is handled by residual
mappings (no local mapping). VIP-3 has two sources
and two DIPs. One source and one DIP are in the same
ToR – the local mapping on that ToR handles their traffic.
The remaining source and DIP are in two different ToRs,
and their traffic is handled by the residual mapping.

At 400 msec, we fail the HMux storing the residual
mapping for VIP-3. We make four observations: (1) On
HMux failure, VIP-3 traffic handled by it is lost for 114
msec. (2) After 114 msec, VIP-3 is 100% available, i.e.,
all of the pings are successful again. During this time,
the routing converges, and the traffic that used to go to
the HMux is rerouted to the SMuxes. (3) The traffic for
VIP-3 handled by the local mapping (shown as VIP-3-
Local) is not affected – no ping message is dropped. (4)
Other VIPs (only VIP-1 is shown) are not affected – their
ping messages are not dropped.

This shows that RUBIK provides high availability dur-
ing residual mapping failure.

Local mapping failure: Figure 10 shows the impact
of local mapping failure on the availability of the VIPs.
We use the same setup as before, and fail the HMux
where VIP-3’s local mapping was assigned. We measure
the ping message latency from 2 sources for VIP-3 (de-
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noted as Client-1, 2). The traffic from Client-2 is handled
locally, whereas Client-1 traffic is handled by the resid-
ual mapping. When local mapping fails (at 500 msec), all
the sources and DIPs under it disappear. Therefore, ping
messages for Client-2 are lost as Client-2 itself is down.
Figure 10 shows that the traffic from Client-1, which is
handled by the residual mapping, is not affected.

DIP failure: Lastly, we evaluate the impact of DIP
failure on service availability. In this experiment, we
use a single VIP with 2 sources (Client-1, 2) and 2 DIPs
(DIP-1, 2), located in different ToRs. Therefore, both
DIPs are assigned to the residual mapping. Initially,
the traffic from Client-1 is served by DIP-1 and that of
Client-2 is served by DIP-2. We fail DIP-2 at 500 msec.

Figure 11 shows the latency for the ping messages
from Client-1 and Client-2. When DIP-2 fails, the ping
messages for Client-2 are lost for about 120 msec. After
120 msec, Client-2 traffic is served by DIP-1. This is be-
cause when DIP-2 fails, the residual mapping is adjusted
using smart-hashing, i.e., the traffic going to the failed
DIP is split across the remaining DIPs. As a result, the
traffic going to DIP-2 is now served by DIP-1. It can also
be seen that Client-1 traffic is not affected – there is no
drop in the ping messages. This shows that a DIP failure
does not affect the traffic going to other DIPs, and traffic
going to the failed DIP is spread across remaining DIPs.

10 Simulation
In this section, we use large-scale simulations of RU-

BIK and Duet to show: (1) RUBIK handles a large per-
centage of traffic in HMuxes as in Duet but incurs signif-
icantly lower maximum link utilization (MLU); (2) RU-
BIK reduces the traffic in the core by 3.68x and in the
container by 3.47x; (3) RUBIK contains 63% of VIP traf-
fic within ToRs; (4) RUBIK does not create hotspots.

Network: Our simulated network closely resembles

9
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that of a production DC, with a FatTree topology con-
necting 500K VMs under 1600 ToRs in 40 containers.
Each container has 40 ToRs and 4 Agg switches, and the
40 containers are connected with 40 Core switches. The
link and switch memory capacity were set with values
observed in the production DC.

Workload: We run the experiments using traffic trace
collected from the production DC over a 24-hour dura-
tion. The trace consists of the number of bytes sent be-
tween all sources and all VIPs. Figure 12 shows the total
traffic per hour fluctuates over the 24-hour period2.

Comparison: We compare the performance of Duet,
RUBIK-LO and RUBIK. Duet exploits neither locality
nor DIP placement. RUBIK-LO is a version of RU-
BIK that only exploits locality without moving the DIPs;
it assumes DIP placement is fixed and given, and only
calculates the local and residual mappings. RUBIK ex-
ploits both locality and flexibility in moving the DIPs.
RUBIK performs stage-by-stage VIP-to-DIP mapping as-
signment following the VIP dependency.

10.1 MLU Reduction
We first compare the trade-off between the MLU and

fraction of the traffic handled by the HMuxes under the
three schemes. Note that all three schemes try to maxi-
mize the total traffic handled by HMuxes. The traffic not
handled by HMuxes is handled by SMuxes.

Figure 13 shows the fraction of traffic handled by
HMuxes under the three schemes. The MLU shown is
the total MLU which resulted from load balancing all
VIP traffic, handled by HMuxes and by SMuxes. We see
that Duet can handle 97% traffic using HMuxes, but in-
curs a high MLU of 98%. But when MLU is restricted to
47%, Duet can only handle 4% traffic using HMuxes.

In contrast, RUBIK-LO handles 97% VIP traffic using

2Absolute values are omitted for confidentiality.
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HMuxes at MLU of 51%. It handles 52% of VIP traffic
using HMuxes at MLU of 35%. This improvement over
Duet comes purely from exploiting locality.

Lastly, RUBIK significantly outperforms both Duet
and RUBIK-LO. It handles 97% traffic with a low MLU
of 22.9%, a 4.3x reduction from Duet. Also, at a MLU
of 12%, RUBIK handles 94% traffic using HMuxes.

10.2 Traffic Localized
RUBIK significantly reduces the MLU by containing

significant amount of traffic within individual ToRs. Fig-
ure 14 shows the fraction of the total traffic contained
within ToRs in RUBIK and RUBIK-LO over the 24-hour
period, where these mechanisms calculate new assign-
ment every hour. In RUBIK, we limit the machine moves
to 1% based on the trade-off detailed in §10.5.

We see that RUBIK-LO localizes 25.5-43.4% (average
34.8%) of the total traffic within ToRs, and RUBIK local-
izes 46-71.8% (average 63%) of the total traffic within
ToRs. Additionally, for the VIPs generating 90% of the
total VIP traffic, we find that, the local mappings han-
dle traffic from 37.8-48.6% (average 41.8%) sources, and
50.2-57.7% (average 53%) of the total DIPs are assigned
to their local mappings.

10.3 Traffic Reduction
Figure 15 shows the total bandwidth usage across all

the links caused by the VIP traffic under the three mech-
anisms. We separately show the total traffic on the core
links (between Core and Agg switches) and containers
links (between ToR and Agg switches). The total traf-
fic shown is the average over 24 hours. Furthermore, we
break down the total traffic into baseline and overhead
due to redirection. The baseline traffic shows the amount
of traffic generated if the HMuxes were on the direct path
between source and DIPs, which would cause no redirec-
tion. The remaining traffic is the extra traffic due to the

10
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redirection to route traffic to and from HMuxes.
RUBIK and RUBIK-LO significantly reduce the total

traffic in the core network and containers. Compared to
Duet, on average RUBIK-LO reduces the total traffic by
1.94x and 1.88x, respectively. RUBIK reduces the total
traffic by 3.68x and 3.47x, respectively.

Secondly, RUBIK-LO and RUBIK reduce the traffic
overhead due to traffic redirection by 2.1x and 10.9x
compared to Duet. It should be noted that both RUBIK
and RUBIK-LO cannot eliminate the traffic overhead, be-
cause they cannot localize 100% of the VIP traffic. As a
result, the traffic not localized is handled by the HMuxes
storing residual mappings, which causes traffic detour.

10.4 DIP Load Balance
To exploit locality, RUBIK partitions the DIPs for a

VIP into local and residual DIP-sets, which can poten-
tially overload some of the DIPs (hotspots). We cal-
culate the average and peak DIP utilization (DIP traf-
fic/capacity) across all DIPs for every VIP. Figure 16
shows the CDF across all VIPs in RUBIK and RUBIK-
LO. It shows that both schemes ensure that the peak uti-
lization for all the DIPs is well under 80%, which is the
constraint given to the assignment algorithm. Further-
more, for 80% VIPs, the peak utilization is under 40%.
This shows RUBIK does not create hotspots.

10.5 Impact of Limiting Machine Moves
Lastly, we evaluate the impact of limiting machine

moves in RUBIK’s assignment LP formulation (§6.1) on
the fraction of traffic localized and MLU. Figure 17
shows the two metrics as we reduce the percentage ma-
chine moves allowed. Without any restriction, RUBIK
assignment results in moving 13.7% of the DIPs. When
the percentage machine moves is 1%, the fraction of traf-
fic localized decreases by 8.7% whereas the MLU in-

creases by 6.6%, and the execution time to find the solu-
tion increases by 2.3x compared to unrestricted machine
moves. This shows that most of the benefits of RUBIK
are maintained after restricting the machine moves to just
1%. We therefore used this threshold in all the previous
simulations and testbed experiments.

11 Related work
To our best knowledge, RUBIK is the first LB design

that exploits locality and end-point flexibility. Below we
review work related to DC LB design which has received
much attention in recent years.
LB: Traditional hardware load balancers [4, 1] are ex-
pensive and typically only provide 1+1 availability. We
have already discussed Duet [14] and Ananta [21] load
balancers extensively. Other software-based load bal-
ancers [6, 8, 9, 3] have also been proposed, but they lack
the scalability and availability of Ananta [21]. In contrast
to these previous designs, RUBIK substantially reduces
the DC network bandwidth usage due to traffic indirec-
tion while providing low cost, high performance benefits.
OpenFlow based LB: Several recent proposals focus on
using OpenFlow switches for load balancing. In [24],
the authors present a preliminary LB design using Open-
Flow switches. They focus on minimizing the number
of wildcard rules. In [18], the authors propose a hybrid
hardware-software design and propose algorithms to cal-
culate the weights for splitting the VIP traffic. Plug-n-
Serve [16] is another preliminary design that uses Open-
Flow switches to load balance web servers deployed in
unstructured, enterprise networks. In contrast, RUBIK is
designed for DC networks and efficiently load balances
the traffic by exploiting locality and end-point flexibility.
SDN architecture and middleboxes: Researchers have
leveraged the SDN designs in the context of middle-
boxes for policy enforcement and verification [22, 13],
which is a different goal from RUBIK. Researchers have
also proposed using OpenFlow switches for a variety of
other purposes. e.g., DIFANE [25] and vCRIB [19] use
switches to cache rules and act as authoritative switches.
Again their main focus is quite different from RUBIK.

12 Conclusion
RUBIK is a new load balancer design that drasti-

cally reduces the bandwidth usage while providing low
cost, high performance and reliability benefits. RUBIK
achieves this by exploiting two design principles: (1)
locality: it load balances traffic generated in individual
ToRs across DIPs present in the same ToRs, (2) end-
point flexibility: it places the DIPs closer to the traffic
sources. We evaluate RUBIK using a prototype imple-
mentation and extensive simulations using traces from
our production DC. Our evaluation shows together these
two principles reduce the bandwidth usage by the load
balanced traffic by over 3x compared to prior art Duet.

11
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Abstract

Datacenter-scale computing for analytics workloads is
increasingly common. High operational costs force het-
erogeneous applications to share cluster resources for
achieving economy of scale. Scheduling such large and
diverse workloads is inherently hard, and existing ap-
proaches tackle this in two alternative ways: 1) central-
ized solutions offer strict, secure enforcement of schedul-
ing invariants (e.g., fairness, capacity) for heterogeneous
applications, 2) distributed solutions offer scalable, effi-
cient scheduling for homogeneous applications.

We argue that these solutions are complementary, and
advocate a blended approach. Concretely, we propose
Mercury, a hybrid resource management framework that
supports the full spectrum of scheduling, from central-
ized to distributed. Mercury exposes a programmatic
interface that allows applications to trade-off between
scheduling overhead and execution guarantees. Our
framework harnesses this flexibility by opportunistically
utilizing resources to improve task throughput. Exper-
imental results on production-derived workloads show
gains of over 35% in task throughput. These benefits
can be translated by appropriate application and frame-
work policies into job throughput or job latency improve-
ments. We have implemented and contributed Mercury
as an extension of Apache Hadoop / YARN.1

1 Introduction

Over the past decade, applications such as web search
led to the development of datacenter-scale computing, on
clusters with thousands of machines. A broad class of
data analytics is now routinely carried out on such large
clusters over large heterogeneous datasets. This is often
referred to as “Big Data” computing, and the diversity of

1The open-sourcing effort is ongoing at the moment of writing the
paper. Progress can be tracked in Apache JIRA [6].

applications sharing a single cluster is growing dramat-
ically for various reasons: the consolidation of clusters
to increase efficiency, the diversity of data (ranging from
relations to documents, graphs and logs) and the corre-
sponding diversity of processing required, the range of
techniques (from query processing to machine learning)
being increasingly used to understand data, the ease of
use of cloud-based services, and the growing adoption of
Big Data technologies among traditional organizations.

This diversity is addressed by modern frameworks
such as YARN [27], Mesos [16], Omega [24] and
Borg [28], by exposing cluster resources via a well-
defined set of APIs. This facilitates concurrent sharing
between applications with vastly differing characteris-
tics, ranging from batch jobs to long running services.
These frameworks, while differing on the exact solution
(monolithic, two-level or shared-state) are built around
the notion of centralized coordination to schedule cluster
resources. For ease of exposition, we will loosely refer
to all such approaches as centralized scheduler solutions.
In this setting, individual per-job (or per-application
framework) managers petition the centralized scheduler
for resources via the resource management APIs, and
then coordinate application execution by launching tasks
within such resources.

Ostensibly, these centralized designs simplify cluster
management in that there is a single place where schedul-
ing invariants (e.g., fairness, capacity) are specified and
enforced. Furthermore, the central scheduler has cluster-
wide visibility and can optimize task placement along
multiple dimensions (locality [31], packing [15], etc.).

However, the centralized scheduler is, by design, in
the critical path of all allocation decisions. This poses
scalability and latency concerns. Centralized designs
rely on heartbeats which are used for both liveness and
for triggering allocation decisions. As the cluster size
scales, to minimize heartbeat processing overheads, op-
erators are forced to lower the heartbeat rate (i.e., less fre-
quent heartbeats). In turn, this increases the scheduler’s



486 2015 USENIX Annual Technical Conference USENIX Association

Figure 1: Task and job runtime distribution.

allocation latency. This compromise becomes problem-
atic if typical tasks are short [22]. A workload analy-
sis from one of the production clusters at Microsoft also
suggests that shorter tasks are dominant. This is shown
as a CDF of task duration in Figure 1. Note that almost
60% of the tasks complete execution under 10 seconds.
Therefore, the negative effects of centralized heartbeat-
based solutions range from poor latency for interactive
workloads to utilization issues (slow allocation decisions
means resources are fallow for longer periods of time).

To amortize the high scheduling cost of centralized
approaches, the “executor” model has been proposed
[29, 19, 21, 22]. This hierarchical approach consists in
reusing containers assigned by the central scheduler to
an application framework that multiplexes them across
tasks/queries.2 Reusing containers assumes that submit-
ted tasks have similar characteristics (to fit in existing
containers). Moreover, since the same system-level pro-
cess is shared across tasks, the executor model has lim-
ited applicability to within a single application type. It is,
thus, orthogonal to our work.

Fully distributed scheduling is the leading alternative
to obtain high scheduling throughput. A practical sys-
tem leveraging this design is Apollo [9]. Apollo al-
lows each running job to perform independent schedul-
ing choices and to queue its tasks directly at worker
nodes. Unfortunately, this approach relies on a uniform
workload (in terms of application type), as all job man-
agers need to run the same scheduling algorithm. In this
context, allowing arbitrary applications, while prevent-
ing abuses and strictly enforcing capacity/fairness guar-
antees, is non-trivial. Furthermore, due to lack of global
view of the cluster, distributed schedulers make local
scheduling decisions that are often not globally optimal.

In Figure 2, we pictorially depict the ideal operational
point of these three approaches: centralized [16, 27], dis-
tributed [9], and executor-model [29, 22], as well as the
target operational point for our design. A detailed dis-
cussion of related work is deferred to § 8.

2By containers we refer to the allocation units that may comprise
multiple resources, such as memory and CPU.
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Figure 2: Ideal operational point of alternative schedul-
ing approaches.

The key technical challenge we explore in this paper is
the design of a resource management infrastructure that
allows us to simultaneously: (1) support diverse (possi-
bly untrusted) application frameworks, (2) provide high
cluster throughput with low-latency allocation decisions,
and (3) enforce strict scheduling invariants (§ 2).

Below we present the main contributions of this paper.
First: we propose a novel hybrid resource manage-
ment architecture. Our key insight is to offload work
from the centralized scheduler by augmenting the re-
source management framework to include an auxiliary
set of schedulers that make fast/distributed decisions (see
Fig. 3). The resource management framework compris-
ing these schedulers is now collectively responsible for
all scheduling decisions (§ 3).
Second: we expose this flexibility to the applications by
associating semantics with the type of requested contain-
ers (§ 3.2). Applications may now choose to accept high
scheduling costs to obtain strong execution guarantees
from the centralized scheduler, or trade strict guarantees
for sub-second distributed allocations. Intuitively, op-
portunistic jobs or applications with short tasks can ben-
efit from fast allocations the most.
Third: we leverage the newly found scheduling flexibil-
ity to explore the associated policy space. Careful policy
selection allows us to translate the faster scheduling de-
cisions into job throughput or latency gains (§ 4 and § 5).
Fourth: we implement, validate and open-source this
overall design in a YARN-based system called Mercury
(§ 6). We compare Mercury with stock YARN by running
synthetic and production-derived workloads on a 256-
machine cluster. We show 15 to 45% task throughput
improvement, while maintaining strong invariants for the
applications that need them. We also show that by tuning
our policies we can translate these task throughput gains
to improvements of either job latency or throughput (§ 7).

The open-source nature [6] and architectural general-
ity of our effort makes Mercury an ideal substrate for
other researchers to explore centralized, distributed and
hybrid scheduling solutions, along with a rich policy
space. We describe ongoing work in § 9.
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2 Requirements

Given a careful analysis of production workloads at Mi-
crosoft, and conversations with cluster operators and
users, we derive the following set of requirements we set
out to address with Mercury:

R1 Diverse application frameworks: Allow arbitrary
user code (as opposed to a homogeneous, single-app
workload).

R2 Strict enforcement of scheduling invariants: Exam-
ple invariants include fairness and capacity; this in-
cludes policing/security to prevent abuses.

R3 Maximize cluster utilization and throughput:
Higher cluster utilization and throughput lead to
higher return on investment (ROI).

R4 Fine-grained resource sharing: Tasks from different
jobs can concurrently share a single node.

R5 Efficiency and scalability of scheduling: Support
high rate of scheduling decisions.

Note that classical centralized approaches target R1-
R4, while distributed approaches focus on R3-R5. We
acknowledge the tension between conflicting require-
ments (R2 and R5), each emerging from a subset of the
applications we aim to support. In Mercury, we bal-
ance this tension by blending centralized and distributed
decision-making in a request-specific manner.

Non-goals Low latency for sub-second interactive
queries is outside the scope of our investigation. This is
the target of executor-model approaches [29, 19, 21, 22],
which achieve millisecond start times by sharing
processes. This is at odds with requirements R1-R2.

3 Mercury Design

We first provide an overview of the Mercury architecture
(§ 3.1). Next, we describe the programming interface
that Job Managers use for requesting resources (§ 3.2),
and how the framework allocates them (§ 3.3). Then we
provide details about task execution (§ 3.4).

3.1 Overview
Mercury comprises two subsystems, as shown in Fig. 3:
Mercury Runtime This is a daemon running on every

worker node in the cluster. It is responsible for all in-
teractions with applications, and for the enforcement
of execution policies on each node.

Mercury Resource Management Framework This is
a subsystem that includes a central scheduler running
on a dedicated node, and a set of distributed sched-
ulers running on (possibly a subset of) the worker
nodes, which loosely coordinate through a Mercury

Mercury Resource Management Framework

Mercury Runtime
...

Central
Scheduler

Distributed
Scheduler 3

2

Job Manager 1Task 1

4 1
56

Task 0

7

policies

Mercury
Coordinator

Mercury Runtime
policies

Distributed
Scheduler

2a3a

Figure 3: Mercury resource management lifecycle.

Coordinator. This combination of schedulers performs
cluster-wide resource allocation to applications for the
same pool of resources. The allocation unit, referred to
as a container, consists of a combination of CPU and
RAM resources on an individual machine.
Note that we do not dedicate specific part of the cluster

resources to each scheduler. This is done dynamically,
based on the resource requests from the running applica-
tions and the condition of the cluster, as described in § 4
and § 5. Conflicts emerging from schedulers assigning
resources over the same pool of machines are resolved
optimistically by the Mercury Runtime.

Next we present the resource management lifecycle,
following the steps of Fig. 3.
Resource request Consider an application running in
the cluster (Job Manager 1) that wants to obtain re-
sources. To this end, it petitions the local Mercury Run-
time through an API that abstracts the complex schedul-
ing infrastructure (step 1). The API allows applications
to specify whether they need containers with strict execu-
tion guarantees or not (§ 3.2). Based on this information
and on framework policies (§ 4), the runtime delegates
the handling of a request to the central scheduler (step 2)
or to one of the distributed schedulers (step 2a).
Container allocation The schedulers assign resources
to the application according to their scheduling invari-
ants, and signal this by returning to the Mercury Runtime
containers that grant access to such resources (steps 3
and 3a). The Mercury Runtime forwards back to the Job
Manager all the granted containers (step 4).
Task execution The application submits each allocated
container for execution to the Mercury Runtime on the
associated node (step 5).3 Depending on scheduling
priorities among containers and the resource utilization
on the node, the runtime decides whether the container
should be executed immediately or get enqueued for later
execution (more details in § 3.4). To execute a container,
the remote Mercury Runtime spawns a process on that
node and runs the application task (step 6). To ensure

3Containers are bound to a single machine to prevent abuses [27].

3
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that priorities are enforced, the runtime can also decide
to kill or preempt running tasks (step 7), to allow imme-
diate execution of higher priority tasks.

3.2 Resource Request
When requesting containers, a Job Manager uses Mer-
cury’s programming interface to specify the type of con-
tainers it needs. This specification is based on the con-
tainer’s allocation/execution semantics. Our design de-
fines the following two container classes:

GUARANTEED containers incur no queuing delay, i.e., they
are spawned by the Mercury Runtime as soon as they
arrive to a worker node. Moreover, these containers
run to completion bar failures, i.e., they are never pre-
empted or killed by the infrastructure.

QUEUEABLE containers enable the Job Manager to
“queue” a task for execution on a specific node. No
guarantees are provided on the queuing delay, or on
whether the container will run to completion or be
preempted.

3.3 Container Allocation
In our design (see Figure 3), GUARANTEED containers are
allocated by the central scheduler and QUEUEABLE con-
tainers are allocated by one of the distributed schedulers.
Requests for either containers are routed appropriately
by the Mercury Runtime. Furthermore, both schedulers
are free to allocate containers on any node in the cluster.
In what follows, we describe the design rationale.

The central scheduler has knowledge about container
execution as well as resource availability on individual
machines. This information is part of the periodic heart-
beat messages that are exchanged between the frame-
work components. Consequently, the central scheduler
can perform careful placement of GUARANTEED containers
without causing resource contention.

To support fast container allocation, a distributed
scheduler restricts itself to allocating QUEUEABLE contain-
ers, which can be placed on any machine in the cluster.
The distributed scheduler uses lightweight cluster load
information, provided by the Mercury Coordinator, for
making placement decisions.
The path not taken: We considered and discarded two
alternative designs. First the central scheduler could
make all scheduling decisions, including QUEUEABLE.
Such design would overload the central scheduler. This
would be coped with by limiting the rate at which Job
Managers can petition the framework for resources (e.g.,
every few seconds instead of in the millisecond range
as we enable with Mercury). This is akin to forfeit-
ing R5. The second alternative sees the framework-
level distributed scheduler making all decisions, includ-

ing GUARANTEED. This would require costly consensus
building among schedulers to enforce strict invariants, or
relax our guarantees, thus forfeiting R2.

The hybrid approach of Mercury allows us to meet re-
quirements R1- R5 of § 2, as we validate experimentally.

3.4 Task Execution
As described above, Mercury’s centralized and dis-
tributed schedulers independently allocate containers
on a single shared pool of machines. This in turn
means that conflicting allocations can be made by the
schedulers, potentially causing resource contention.
Mercury Runtime resolves such conflicts as follows:
GUARANTEED - GUARANTEED By design the central sched-

uler prevents this type of conflicts by linearizing allo-
cations. This is done by allocating a GUARANTEED con-
tainer only when it is certain that the target node has
sufficient resources.

GUARANTEED - QUEUEABLE This occurs when a central
scheduler and the distributed scheduler(s) allocate
containers on the same node, causing the node’s
capacity to be exceeded. Following the semantics of
§ 3.2, any cross-type conflict is resolved in favor of
GUARANTEED containers. In the presence of contention,
(potentially all) running QUEUEABLE containers are
terminated to make room for any newly arrived
GUARANTEED. If GUARANTEED containers are consuming
all the node resources, the start of QUEUEABLE ones is
delayed until resources become available.

QUEUEABLE - QUEUEABLE This occurs when multiple dis-
tributed schedulers allocate containers on the same tar-
get node in excess of available resources. Mercury
Runtime on the node enqueues the requests (see Fig-
ure 3) and thereby prevents conflicts. To improve job-
level latency, we explore a notion of priority among
QUEUEABLE containers in § 4.
When a QUEUEABLE container is killed there is po-

tentially wasted computation. To avoid this, Mercury
supports promoting a running QUEUEABLE container to a
GUARANTEED one. A Job Manager can submit a promotion
request to the Mercury Runtime, which forwards it to the
central scheduler for validation. The promotion request
will succeed only if the central scheduler determines that
the scheduling invariants would not be violated.

4 Framework Policies
In the previous section we presented our architecture and
the lifecycle of a resource request. We now turn to the
policies that govern all scheduling decisions in our sys-
tem. For ease of exposition we group the policies in three
groups: Invariants enforcement, Placement, and Load
shaping, as described in the following subsections.

4
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4.1 Invariants Enforcement Policies

These policies describe how scheduling invariants are en-
forced throughout the system.

Invariants for GUARANTEED containers Supporting
scheduling invariants for centralized scheduler de-
signs is well studied [1, 2, 14]. Furthermore, widely
deployed Hadoop/YARN frameworks contain robust
implementations of cluster sharing policies based on
capacity [1] and fairness [2]. Hence, Mercury’s central
scheduler leverages this work, and can enforce any of
these policies when allocating GUARANTEED containers.

Enforcing quotas for QUEUEABLE containers The en-
forcement of invariants for distributed schedulers is in-
herently more complex. Recall that applications have
very limited expectations when it comes to QUEUEABLE

containers. However, cluster operators need to enforce
invariants nonetheless to prevent abuses. We focus on
one important class of invariants: application-level quo-
tas. Our Mercury Runtime currently provides operators
with two options: (1) an absolute limit on the number
of concurrently running QUEUEABLE containers for each
application (e.g., a job can have at most 100 outstand-
ing QUEUEABLE containers), and (2) a limit relative to the
number of GUARANTEED containers provided by the cen-
tral scheduler (e.g., a job can have QUEUEABLE containers
up to 2× the number of GUARANTEED containers).

4.2 Placement Policies

These policies determine how requests are mapped to
available resources by our scheduling framework.

Placement of GUARANTEED containers Again, for cen-
tral scheduling we leverage existing solutions [1, 2].
The central scheduler allocates a GUARANTEED container
on a node, if and only if that node has sufficient re-
sources to meet the container’s demands. By tracking
when GUARANTEED containers are allocated/released on a
per-node basis, the scheduler can accurately determine
cluster-wide resource availability. This allows the cen-
tral scheduler to suitably delay allocations until resources
become available. Furthermore, the scheduler may also
delay allocations to enforce capacity/fairness invariants.

Distributed placement of QUEUEABLE containers Our
objective when initially placing QUEUEABLE containers
is to minimize their queuing delay. This is dependent
on two factors. First, the head-of-line blocking at a
node is estimated based on: (1) the cumulative execu-
tion times for QUEUEABLE containers that are currently
enqueued (denoted Tq), (2) the remaining estimated exe-
cution time for running containers (denoted Tr). To en-
able this estimation, individual Job Managers provide
task run-time estimates when submitting containers for

execution.4 Second, we use the elapsed time since a
QUEUEABLE container was last executed successfully on a
node, denoted Tl , as a broad indicator of resource avail-
ability for QUEUEABLE containers on that node. The Mer-
cury Runtime determines at regular intervals the ranking
order R of a node as follows:

R = Tq +Tr +Tl

Then it pushes this information to the Mercury Coordi-
nator that disseminates it to the whole cluster through
the heartbeat mechanism. Subsequently, each distributed
scheduler uses this information for load balancing pur-
poses during container placement. We build around a
pseudo-random approach in which a distributed sched-
uler allocates containers by arbitrarily choosing amongst
the “top-k” nodes that have minimal queuing delays,
while respecting locality constraints.

4.3 Load Shaping Policies
Finally, we discuss key policies related to maximizing
cluster efficiency. We proceed from dynamically (re)-
balancing load across nodes, to imposing an execution
order to QUEUEABLE containers, to node resource policing.

Dynamically (re)-balancing load across nodes To
account for occasionally poor placement choices for
QUEUEABLE containers, we perform load shedding.5

This has the effect of dynamically re-balancing the
queues across machines. We do so in a lightweight
manner using the Mercury Coordinator. In particular,
while aggregating the queuing time estimates published
by the per-node Mercury Runtime, the Coordinator
constructs a distribution to find a targeted maximal
value. It then disseminates this value to the Mercury
Runtime running on individual machines. Subsequently,
using this information, the Mercury Runtime on a node
whose queuing time estimate is above the threshold,
selectively discards QUEUEABLE containers to meet this
maximal value. This forces the associated individual Job
Managers to requeue those containers elsewhere.

Observe that these policies rely on the task execution
estimates provided by the users. Interestingly, even in
case of inaccurate estimates, re-balancing policies will
restore the load balance in the system. Malicious users
that purposely and systematically provide wrong esti-
mates are out of the scope of this paper, although our
system design allows us to detect such users.

Queue reordering Reordering policies are responsible
for imposing an execution order to the queued tasks. Var-
ious such policies can be conceived. In Mercury, we are

4Such estimates are currently provided by the users, but can also be
derived from previous job executions, and/or be dynamically adjusted
as parts of a job get executed.

5Other methods, such as work stealing, can also be applied. We use
load shedding as it naturally fits into a YARN-based implementation.
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currently ordering tasks based on the submission time of
the job they belong to. Thus, tasks belonging to jobs sub-
mitted earlier in the system will be executed first. This
policy improves job tail latency, allowing jobs to finish
faster. This in turn allows more jobs to be admitted in
the system, leading to higher task throughput, as we also
show experimentally in § 7.2.3.

Resource policing: minimizing killing To minimize
preemption/killing of running QUEUEABLE containers, the
Mercury Runtime has to determine when resources can
be used for opportunistic execution. In doing so, it maxi-
mizes the chances of a QUEUEABLE container actually run-
ning to completion. We develop a simple policy that
leverages historical information about aggregate cluster
utilization to identify such opportunities. Based on cur-
rent and expected future workload, the Mercury Coordi-
nator notifies the per-node Mercury Runtimes regarding
the amount of local resources that will be required for
running GUARANTEED containers over a given time win-
dow. Subsequently, the Mercury Runtime can oppor-
tunistically use the remaining resources in that period for
QUEUEABLE containers and thereby minimize preemption.

5 Application-level Policies

As explained in § 3.1, Mercury exposes the API for appli-
cations to request both GUARANTEED and QUEUEABLE con-
tainers. To take advantage of this flexibility, each Job
Manager should implement an application policy that
determines the desired type of container for each task.
These policies allow users to tune their scheduling needs,
going all the way from fully centralized scheduling to
fully distributed (and any combination in between).

In this paper, we introduce the following flexible pol-
icy, while we discuss more sophisticated options in our
technical report [18].
hybrid-GQ is a policy that takes two parameters: a

task duration threshold td , and a percentage of QUEUEABLE
containers pq. QUEUEABLE containers are requested for
tasks with expected duration smaller than td , in pq per-
cent of the cases. All remaining tasks use GUARANTEED

containers. In busy clusters, jobs’ resource starvation
is avoided by setting pq to values below 100%. Note
that fully centralized scheduling corresponds to setting
td = 0, and fully distributed scheduling corresponds to
setting td = ∞ and pq = 100%. We refer to these policies
as only-G and only-Q, respectively.

6 Mercury Implementation

We implemented Mercury by extending Apache Hadoop
YARN [3]. We provide a brief overview of YARN before
detailing the modifications that support our model.

...
YARN Node Manager

Distributed
Scheduler

YARN Application 
Master

allocate(…, container type);

allocate (…)

startContainer(..)

YARN Resource Manager

Mercury 
Coordinator

YARN Node Manager

Distributed
Scheduler

Figure 4: Mercury implementation: dashed boxes show
Mercury modules and APIs as YARN extensions.

6.1 YARN Overview

Hadoop YARN [27] is a cluster resource management
framework that presents a generalized job scheduling in-
terface for running applications on a shared cluster. It is
based on a centralized scheduling architecture, consist-
ing of the following three key components.

ResourceManager (RM): This is a central component
that handles arbitration of cluster resources amongst
jobs. The RM contains a pluggable scheduler module
with a few implementations [1, 2]. Based on the shar-
ing policies, the RM allocates containers to jobs. Each
allocation includes a token that certifies its authenticity.

NodeManager (NM): This is a per-node daemon that
spawns processes locally for executing containers and
periodically heartbeats the RM for liveness and for no-
tifying it of container completions. The NM validates
the token offered with the container.

ApplicationMaster (AM): This is a per-job component
that orchestrates the application workflow. It corre-
sponds to the Job Manager we use throughout the paper.

6.2 Mercury Extensions to YARN

We now turn to the implementation of Mercury in
YARN. Further details can be found in JIRA (the
Apache Hadoop feature and bug tracking system) [6].

Adding container types We introduce our notion of con-
tainer type as a backward-compatible change to the allo-
cation protocol. The semantics of the containers allo-
cated by the YARN RM match GUARANTEED containers.
Hence, as shown in Fig. 4, the YARN RM corresponds to
the central scheduler of our Mercury design. QUEUEABLE
containers are allocated by an ex novo distributed sched-
uler component, which we added to the NM.

Interposing Mercury Runtime We have implemented
Mercury Runtime as a module inside the YARN NM (see
Fig. 4) and thereby simplified its deployment. As part of
our implementation, a key architectural change we made
to YARN is that the Mercury Runtime is introduced as a

6
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layer of indirection with two objectives. First, the Mer-
cury Runtime proxies container allocation requests be-
tween an AM and Mercury’s schedulers, thereby control-
ling how requests are satisfied. This proxying is effected
by rewriting configuration variables and does not require
modifications to AM. Second, for enforcing execution
semantics, the Mercury Runtime intercepts an AM sub-
mitted container request to the NM and handles them ap-
propriately. We elaborate on these next.

The AM annotates each request with the weakest guar-
antee it will accept, then forwards the request using the
allocate() call in Fig. 4. Mercury directs requests for
GUARANTEED resources to the central RM, but it may ser-
vice QUEUEABLE requests using the instance of Mercury’s
distributed scheduler running in the NM. When this hap-
pens, since it is essentially a process context switch, the
QUEUEABLE containers (and tokens) for any node in the
cluster are issued with millisecond latency. The authen-
ticity of the container allocations made by a distributed
scheduler is validated at the target NM using the same
token checking algorithm that YARN uses for verifying
GUARANTEED containers.

To enforce the guarantees provided by the respec-
tive container types, Mercury intercepts container cre-
ation commands at the NM. As illustrated in Fig. 4, a
startContainer() call will be directed to the Mercury
Runtime module running in the NM. This module imple-
ments the policies described in § 4; based on the con-
tainer type, the Mercury Runtime will enqueue, kill and
create containers.

6.3 Distributed Scheduler(s)

The distributed scheduler is implemented as a module
running in each NM. We discuss the changes necessary
for enforcing the framework policies described in § 4.

Placement To direct QUEUEABLE containers to fallow
nodes, Mercury uses estimates of queuing delay as de-
scribed in § 4.2. For computing this delay, the Mercury
Runtime requires computational time estimates for each
enqueued container. We modified the Hadoop MapRe-
duce [3] and Tez [4] AMs to provide estimates based
on static job information. Furthermore, in our imple-
mentation, the AMs continuously refine estimates at run-
time based on completed container durations. The Mer-
cury Coordinator is implemented as a module inside the
YARN RM (Fig. 4). It collects and propagates queuing
delays as well as the “top-k” information by suitably pig-
gybacking on the RM/NM heartbeats.

Dynamic load balancing Our implementation leverages
the Mercury Coordinator for dynamic load balancing.
We modified the YARN RM to aggregate information
about the estimated queuing delays, compute outliers

(i.e., nodes whose queuing delays are significantly higher
than average), and disseminate cluster-wide the targeted
queuing delay that individual nodes should converge to.
We added this information to YARN protocols and ex-
change it as part of the RM/NM heartbeats. Upon re-
ceiving this information, the Mercury Runtime on an out-
lier node discards an appropriate number of queued con-
tainers so as to fit the target. Containers dropped by a
Mercury Runtime instance are marked as KILLED by the
framework. The signal propagates as a YARN event to
the Mercury Runtime, which proxies it to the AM. The
AM will forge a new request, which will be requeued at
a less-loaded node.

Quotas To prevent QUEUEABLE traffic from overwhelming
the cluster, Mercury imposes operator-configured quotas
on a per-AM basis. A distributed scheduler maintains
an accurate count by observing allocations and container
start/stop/kill events.

7 Experimental Evaluation

We deployed our YARN-based Mercury implementation
on a 256-node cluster and used it to drive our experimen-
tal evaluation. § 7.1 provides the details of our setup. In
§ 7.2, we present results from a set of micro-experiments
using short tasks. Then in § 7.3, we describe results for a
synthetic workload involving tasks with a range of exe-
cution times. Finally, in § 7.4, we give results from work-
loads based on Microsoft’s production clusters.

Our key results are:
1. Our policies can translate task throughput gains into

improved job latency for 80% of jobs, and 36.3%
higher job throughput (§ 7.2.1).

2. Careful resource policing reduces the preemption of
QUEUEABLE containers by up to 63% (§ 7.2.3).

3. On production-derived workloads, Mercury achieves
35% task throughput gain over Stock YARN (§ 7.4).

7.1 Experimental Setup
We use a cluster of approximately 256 machines,
grouped in racks of at most 40 machines. Each machine
has two 8-core Intel Xeon E5-2660 processors with
hyper-threading enabled (32 virtual cores), 128 GB of
RAM, and 10 x 3-TB data drives configured as a JBOD.
The connectivity between any two machines within a
rack is 10 Gbps while across racks is 6 Gbps.

We deploy Hadoop/YARN 2.4.1 with our Mercury ex-
tensions for managing the cluster’s computing resources
amongst jobs. We set the heartbeat frequency to 3 sec,
which is also the value used in production clusters at Ya-
hoo!, as reported in [27]. For storing job input/output
we use HDFS [7] with 3x data replication. We use Grid-
mix [8], an open-source benchmark that uses workload

7
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Figure 5: Task throughput, job throughput and job latency for varying number of concurrent jobs.

traces for generating synthetic jobs for Hadoop clusters.
We use Tez 0.4.1 [4] as the execution framework for run-
ning these jobs.

Metrics reported In all experiments we measure task
throughput, job throughput, and job latency for runs of
30 mins. Due to space limitations, we report only task
throughput in some cases, however, the full set of re-
sults can be found in [18]. Note that for the task and
job throughput we are using box plots (e.g., see Fig. 5),
in which the lower part of the main box represents the
25-percentile, the upper part the 75-percentile, and the
red line the median. Moreover, the lower whisker is the
5-percentile, the upper the 95-percentile, and the green
bullet the mean.

7.2 Microbenchmarks
In this section we perform a set of micro-experiments
that show how Mercury can translate task throughput
gains into job throughput/latency gains. For a given
workload, we first study how the maximum number of
jobs allowed to run concurrently in the cluster affects per-
formance (§ 7.2.1). Then, we experimentally assess var-
ious framework policies (as discussed in § 4), including
placement (§ 7.2.2) and load shaping policies (§ 7.2.3).

For all experiments of this section we use Gridmix to
generate jobs with 200 tasks/job, in which each task ex-
ecutes, on average, for a 1.2 sec duration. We use the
only-G and only-Q policies (§ 5).

7.2.1 Varying Number of Concurrent Jobs

In this experiment, we investigate the performance of the
system by altering the number of jobs that the scheduling
framework allows to run concurrently. For distributed
scheduling (only-Q), we set this limit to 100, 150 and
200 jobs. This is compared with the central sched-
uler (only-G) that implements its own admission con-
trol [27], dynamically adjusting the number of running
jobs based on the cluster load. Fig. 5 shows that only-Q
dominates across the board, and that, given our cluster

configuration, 150 concurrent jobs yield the maximum
increase of task throughput, i.e., 38% over only-G. This
task throughput improvement translates to improvement
in both job throughput and latency (higher by 36% and
30%, respectively, when compared to only-G). Low job
limits (100 jobs) fail to fully utilize cluster resources,
while high limits (200 jobs) impact latency negatively.

In the following experiments, we use the 150-job limit,
as this gives the best compromise between job through-
put and latency, and explore other parameters. At each
experiment we adjust the job submission rate, so as to
have sufficient jobs at each moment to reach the job limit.

7.2.2 Placement Policies (Varying Top-k)

As discussed in § 4.2, whenever a distributed scheduler
needs to place a task on a node, it picks among the k
nodes with the smallest estimated queuing delay. Here
we experiment with different values for k. Our results are
shown in Fig. 6. The biggest gains are achieved for k=50,
with 44.5% higher task throughput compared to only-G.
Lower values (k=20) leave nodes under-utilized, while
higher values (k=100) place tasks to already highly-
loaded nodes. In both cases, higher load imbalance is
created, leading to lower task throughput. Therefore, in
the remainder of the experiments we use k=50.

7.2.3 Load Shaping Policies

In this section we study the load shaping policies that
were presented in § 4.3.

Balancing node load and queue reordering We
experiment with different ways of rebalancing node
queues. We synthetically cause imbalance by intro-
ducing few straggler nodes that underestimate queuing
delay. Our results are given in Fig. 7. Among the
presented policies, (1) only-Q is a basic approach
with no rebalancing; (2) only-Q/avg+σ triggers
rebalancing actions for any node with a queuing delay
which is over mean plus one standard deviation (σ );

8



USENIX Association  2015 USENIX Annual Technical Conference 493

Figure 6: Task throughput for vary-
ing top-k.

Figure 7: Task throughput and job latency for various load balancing
policies.

Figure 8: Desired and actual maximum percentage of
memory given to QUEUEABLE containers at each node.

Memory limit per node for
QUEUEABLE containers 20% 30% 40% 100%

Mean containers killed / node 287 428 536 780
Mean slot utilization for QUEUEABLE 11.4% 16.7% 20.9% 28.4%

Table 1: Effectiviness of maximum memory limit for
QUEUEABLE containers.

(3) only-Q/avg+2σ is as above with 2 standard de-
viations; (4) only-Q/avg+2σ/reorder is as above
with reordering of containers in the queue (favoring jobs
submitted earlier). Imbalances limit the task throughput
gains of only-Q to 8.5% over our baseline only-G.
Subsequent refinements improve the resulting gains by
up to 39.8%. Note that reordering reduces average job
latency: as jobs exit the system, new jobs start, and by
imposing fresh demand for resources drive utilization
higher. We measured frequency of task dequeuing to be
at an acceptable 14% of all tasks.

Resource policing: minimizing container killing To
show how resource policing (discussed in § 4.3) can be
used to minimize container killing, we create a Grid-
mix workload that generates a stable load of 70% us-
ing GUARANTEED containers, that is, 30% of the slots can
be used at each moment for QUEUEABLE containers. At
the same time, we are submitting QUEUEABLE containers
and observe the average number of such containers killed
(due to the GUARANTEED ones). We set the allowed mem-

ory limit for QUEUEABLE containers to 20, 30, 40, and
100% (the latter corresponds to no limit). Our results
are shown in Table 1. We also report the average utiliza-
tion due to QUEUEABLE containers. Our implementation is
able to opportunistically use resources leading to utiliza-
tion gains. However, given a steady compute demand,
aggressively utilizing those resources without knowing
future demand does cause an increase in task kills.

To address this issue we develop a novel policy us-
ing historical cluster utilization data to determine the
compute demand for current and future workload due
to GUARANTEED containers. Any remaining resources can
be used for executing QUEUEABLE containers. We input
this information to the Mercury Coordinator, which pe-
riodically propagates it to the Mercury Runtime on in-
dividual machines. This allows the Mercury Runtime
on each node to determine how many of the unallocated
resources can be used opportunistically. Fig. 8 shows
the actual (dashed line) and the observed (solid line) re-
sources used at a node for executing QUEUEABLE contain-
ers. The two lines track closely, demonstrating that our
implementation adapts to changing cluster conditions.
This also shows that there is no need for strict partition-
ing of resources.

7.3 Impact of Task Duration
We now explore the impact of task duration, by using
task run-times of 2, 10, and 20 sec. We compare only-G
and only-Q, parameterized at best, given our § 7.2 exper-
iments. Our results are shown in Fig. 9. As expected, the
longer the task duration, the smaller the benefit from us-
ing distributed scheduling. In particular, when compared
to the centralized scheduling, we get approx. 40% gains
both in task and job throughput for jobs with 2 sec tasks.
This gain drops to about 14% for jobs with 20 sec tasks.
Likewise, average job latency for distributed scheduling
is comparable with centralized for 2 sec tasks, but is 60%
worse for 20 sec tasks.

Note that for short tasks, to fully utilize the cluster re-
sources, more jobs are admitted in the cluster. For dis-

9
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Figure 9: Task throughput, job throughput and job latency for jobs with increasing task duration.

tributed scheduling, this leads to queuing at the same
time tasks belonging to a bigger number of jobs, which
increases the variance of job duration and thus of job
throughput. We are investigating more involved queue
reordering techniques to further mitigate this issue.

7.4 Microsoft-based Hybrid Workload

Finally we assess our system against a complex scenario.
We create a Gridmix workload that follows the task du-
ration characteristics observed in Microsoft production
clusters, as shown in Fig. 1.

We explore several configurations for our hybrid-GQ
policy (§ 5). Besides only-G and only-Q, we have:

50%-Q: all tasks have a 50% chance of being QUEUEABLE

(tD = ∞, pq = 50%);

<5sec-Q: all tasks shorter than 5 seconds are
QUEUEABLE (tD = 5sec, pq = 100%);

<10sec-70%-Q: 70% of tasks shorter than 10 seconds
are QUEUEABLE (tD = 10sec, pq = 70%);

In Fig. 10 we report on the task throughput, as well as
the job latency for jobs with various task durations from
this workload. In this mixed scenario, using only-Q

gives almost no improvement in task throughput and
also leads to worse job latency for jobs of all durations.
50%-Q gives the best task throughput, but that does not
get translated to clear wins in the latency of jobs with
short tasks (e.g., jobs with 3 and 11 sec tasks), espe-
cially for the higher percentiles, due to the unpredictabil-
ity of QUEUEABLE containers. On the other hand, handing
QUEUEABLE containers to the short tasks gives a signif-
icant improvement in task throughput (<10sec-70%-Q
achieves a 26% gain compared to only-G), and has
a performance comparable to the centralized scheduler
for the short tasks. What is more, for the longer tasks
there is significant job latency improvement. For in-
stance, <10sec-70%-Q reduces mean latency by 66%
(82%) when compared to only-G (only-Q) for 11 sec
tasks. The intuition behind these gains is that we “sneak”

the execution of short tasks using QUEUEABLE contain-
ers between the execution of long running tasks that use
GUARANTEED ones.

We also provide results for an additional hybrid work-
load in [18].

8 Related Work

Mercury relates to several proposed resource manage-
ment frameworks, which we discuss in this section.

Centralized Cluster resource management frameworks,
such as YARN [27], Mesos [16], Omega [24] and
Borg [28], are based on a centralized approach. We
implemented Mercury as extension to YARN and
experimentally demonstrated performance gains of a
hybrid approach. Borg is similar to YARN in that it
uses a logically centralized component for both resource
management and scheduling. On the other hand, Mesos
and Omega are geared towards supporting diverse,
independent scheduling frameworks on a single shared
cluster. They use a two-level scheduling model where
each framework (e.g., MPI, MapReduce) pulls resources
from a central resource manager, and coordinates multi-
tenant job execution over these resources in an idiom
isolated to that framework. Omega uses an optimistic
concurrency control model for updating shared cluster
state about resource allocation. This model works well
for clusters that retain their resources for a reasonably
long duration; a scheduling framework will almost
always obtain the set of nodes it needs, retries are rare,
and frameworks reach quick consensus on allocations.
In contrast, our approach of dynamic load balancing
works well even for heterogeneous workloads that share
resources at finer granularity.

A central scheduler can reason globally about soft
constraints such as data locality [17, 31], or hard con-
straints including multi-resource sharing [14], capacity
guarantees [1] or fairness [2]. With knowledge of the
workload, a central scheduler can also reason about al-
locations over time to effect reservation-based schedul-
ing [11] and packing [15]. We leverage this rich body

10
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Figure 10: Task throughput and job latency CDF for Microsoft-based workload.

of work for Mercury’s central scheduler. Quasar [13] ac-
counts for both resource heterogeneity and interference
during task placement, leading to near-optimal schedul-
ing for long jobs but impacting the latency of short jobs.

HPC schedulers (e.g., SLURM [30], TORQUE [26])
are also centralized job scheduling frameworks that sup-
port at most a few hundred concurrent running jobs/sec,
orders of magnitude lower than what Mercury targets.

Distributed Systems such as Apollo [9], are built us-
ing a fully decentralized approach. These schedulers
achieve extreme scalability for low-latency allocations
by allowing and correcting allocation conflicts. Lack-
ing a chokepoint for throttling or coordinated feedback,
fully distributed techniques maintain their invariants on
an eventual manner. Worker nodes in distributed ar-
chitectures maintain a queue of tasks to minimize time
the node spends idle and to throttle polling. Similar to
Mercury, Apollo estimates wait times at each node and
lazily propagates updates to schedulers. In particular,
Apollo uses a principled approach that combines opti-
mizer statistics and observed execution behavior to re-
fine task runtime estimates. These techniques can be in-
corporated by YARN AMs, which can in turn improve
Mercury’s placement and load balancing policies. Note
that, unlike Mercury, the scheduler in Apollo is part of
the SCOPE [34] application runtime, so operator policies
are not enforced, updated, or deployed by the platform.

Executor model Single-framework distributed sched-
ulers focus on a different class of workloads. Spar-
row [22] and Impala [19] schedule tasks in long-running
daemons, targeting sub-second latencies. This pattern is
also used in YARN deployments, as applications will re-
tain resources to amortize allocation costs [4, 29, 33] or
retain data across queries [20, 32]. In contrast, Mercury
not only mixes heterogeneous workloads with fine gran-
ularity, but its API also enables jobs to suitably choose a
combination of guaranteed and opportunistic resources.

Performance enhancement techniques Corrective
mechanisms for distributed placement of tasks are
essentially designed to mitigate tail latency [12]. Spar-
row uses batch sampling and late binding [22], which
are demonstrably effective for sub-second queries.

Apollo [9] elects to rebalance work by cloning tasks
(i.e., duplicate execution), rather than shedding work
from longer queues. Resources spent on duplicate work
adversely affect cluster goodput and contribute to other
tasks’ latency. Instead, Mercury uses dynamic load
shedding as its corrective mechanism.

Several Big Data schedulers have dynamically ad-
justed node allocations to relieve bottlenecks and im-
prove throughput [23, 25], but the monitoring is trained
on single frameworks and coordinated centrally. Princi-
pled oversubscription is another technique often applied
to cluster workloads [10] with mixed SLOs. Our cur-
rent approach with Mercury is intentionally conservative
(i.e., no oversubscription) and already demonstrates sub-
stantial gains. We can further improve on these gains by
enhancing Mercury to judiciously overcommit resources
for opportunistic execution.

9 Conclusion

Resource management for large clusters and diverse ap-
plication workloads is inherently hard. Recent work has
addressed subsets of the problem, such as focusing on
central enforcement of strict invariants, or increased effi-
ciency through distributed scheduling. Analysis of mod-
ern cluster workloads shows that they are not fully served
by either approach. In this paper, we present Mercury, a
hybrid solution that resolves the inherent dichotomy of
centralized-distributed scheduling.

Mercury exposes the trade-off between execution
guarantees and scheduling efficiency to applications
through a rich resource management API. We demon-
strate experimentally how this design allows us to
achieve task throughput improvements, while providing
strong guarantees to applications that need them. The
task throughput gains are then translated to job level
performance wins by well tuned policies.

The key architectural shift we introduce, has far
greater generality than we discussed in this paper.
In particular, the Mercury Runtime provides a level
of indirection that is being leveraged to scale YARN
clusters to over 50K machines by federating multiple
smaller clusters [5].

11
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Abstract

This paper addresses the problem of efficient schedul-

ing of large clusters under high load and heterogeneous

workloads. A heterogeneous workload typically consists

of many short jobs and a small number of large jobs that

consume the bulk of the cluster’s resources.

Recent work advocates distributed scheduling to over-

come the limitations of centralized schedulers for large

clusters with many competing jobs. Such distributed

schedulers are inherently scalable, but may make poor

scheduling decisions because of limited visibility into

the overall resource usage in the cluster. In particular,

we demonstrate that under high load, short jobs can fare

poorly with such a distributed scheduler.

We propose instead a new hybrid central-

ized/distributed scheduler, called Hawk. In Hawk,

long jobs are scheduled using a centralized scheduler,

while short ones are scheduled in a fully distributed

way. Moreover, a small portion of the cluster is reserved

for the use of short jobs. In order to compensate for

the occasional poor decisions made by the distributed

scheduler, we propose a novel and efficient randomized

work-stealing algorithm.

We evaluate Hawk using a trace-driven simulation and

a prototype implementation in Spark. In particular, us-

ing a Google trace, we show that under high load, com-

pared to the purely distributed Sparrow scheduler, Hawk

improves the 50th and 90th percentile runtimes by 80%

and 90% for short jobs and by 35% and 10% for long

jobs, respectively. Measurements of a prototype imple-

mentation using Spark on a 100-node cluster confirm the

results of the simulation.

1 Introduction

Large clusters have to deal with an increasing number

of jobs, which can vary significantly in size and have

very different requirements with respect to latency [4, 5].

Short jobs, due to their nature are latency sensitive, while

longer jobs, such as graph analytics, can tolerate long la-

tencies but suffer more from bad scheduling placement.

Efficiently scheduling such heterogeneous workloads in

a data center is therefore an increasingly important prob-

lem. At the same time, data center operators are seeking

higher utilization of their servers to reduce capital ex-

penditures and operational costs. A number of recent

works [6, 7] have begun to address scheduling under

high load. Obviously, scheduling in high load situations

is harder, especially if the goal is to maintain good re-

sponse times for short jobs.

The first-generation cluster schedulers, such as the

one used in Hadoop [22], were centralized: all schedul-

ing decisions were made in a single place. A centralized

scheduler has near-perfect visibility into the utilization

of each node and the demands in terms of jobs to be

scheduled. In practice, however, the very large number

of scheduling decisions and status reports from a large

number of servers can overwhelm centralized sched-

ulers, and in turn lead to long latencies before scheduling

decisions are made. This latency is especially problem-

atic for short jobs that are typically latency-bound, and

for which any additional latency constitutes a serious

degradation. For many of these reasons, there is a recent

movement towards distributed schedulers [8, 14, 17].

The pros and cons of distributed schedulers are exactly

the opposite of centralized ones: scheduling decisions

can be made quickly, but by construction they rely on

partial information and may therefore lead to inferior

scheduling decisions.

In this paper, we propose Hawk, a hybrid scheduler,

staking a middle ground between centralized and dis-

tributed schedulers. Attempting to achieve the best of

both worlds, Hawk centralizes the scheduling of long

jobs and schedules the short jobs in a distributed fashion.

To compensate for the occasional poor choices made by

distributed job scheduling, Hawk allows task stealing for

short jobs. In addition, to prevent long jobs from mo-

nopolizing the cluster, Hawk reserves a (small) portion

of the servers to run exclusively short jobs.

The rationale for our hybrid approach is as follows.

First, the relatively small number of long jobs does not

overwhelm a centralized scheduler. Hence, scheduling

latencies remain modest, and even a moderate amount

of scheduling latency does not significantly degrade

the performance of long jobs, which are not latency-

bound. Conversely, the large number of short jobs would

overwhelm a centralized scheduler, and the schedul-

ing latency added by a centralized scheduler would add

to what is already a latency-bound job. Second, by

scheduling long jobs centrally, and by the fact that these

long jobs take up a large fraction of the cluster resources,

the centralized scheduler has a good approximation of

the occupancy of nodes in the cluster, even though it
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does not know where the large number of short jobs

are scheduled. This accurate albeit imperfect knowledge

allows the scheduler to make well-informed scheduling

decisions for the long jobs. There is, of course, the ques-

tion of where to draw the line between short and long

jobs, but we found that benefits result for a large range

of cutoff values.

The rationale for using randomized work stealing is

based on the observation that, in a highly loaded cluster,

choosing uniformly at random a loaded node from which

to steal a task is very likely to succeed, while finding at

random an idle node, as distributed schedulers attempt

to do, is increasingly less likely to succeed as the slack

in the cluster decreases.

We evaluate Hawk through trace-driven simulations

with a Google trace [15] and workloads derived from

[4, 5]. We compare our approach to a state-of-the-art

fully distributed scheduler, namely Sparrow [14] and to

a centralized one. Our experiments demonstrate that, in

highly loaded clusters, Hawk significantly improves the

performance of short jobs over Sparrow, while also im-

proving or matching long job performance. Hawk is also

competitive against the centralized scheduler.

Using the Google trace, we show that Hawk performs

up to 80% better than Sparrow for the 50th percentile

runtime for short jobs, and up to 90% for the 90th per-

centile. For long jobs, the improvements are up to 35%

for the 50th percentile and up to 10% for the 90th per-

centile. The differences are most pronounced under high

load but before saturation sets in. Under low load or

overload, the results are similar to Sparrow. The re-

sults are similar for the other traces: Hawk sees the most

improvements under high load, and in some cases the

improvements are even higher than those seen for the

Google trace.

We break down the benefits of the different compo-

nents in Hawk. We show that both reserving a small part

of the cluster and work stealing are essential to good per-

formance for short jobs, with work stealing contributing

the most to the overall improvement, especially for the

90th percentile runtimes. The centralized scheduler is a

key component for obtaining good performance for the

long jobs.

We implement Hawk as a scheduler plug-in for

Spark [23], by augmenting the Sparrow plug-in with a

centralized scheduler and work stealing. We evaluate

the implementation on a cluster of 100 nodes, using a

small sample of the Google trace. We demonstrate that

the general trends seen in the simulation hold for the im-

plementation.

In summary, in this paper we make the following con-

tributions:

1. We propose a novel hybrid scheduler, Hawk, com-

bining centralized and distributed schedulers, in

which the centralized entity is responsible for

scheduling long jobs, and short jobs are scheduled

in a distributed fashion.

2. We introduce the notion of randomized task steal-

ing as part of scheduling data-parallel jobs on large

clusters to “rescue” short tasks queued behind long

ones.

3. Using extensive simulations and implementation

measurements we evaluate Hawk’s benefits on a va-

riety of workloads and parameter settings.

2 Motivation

2.1 Prevalent workload heterogeneity

Workload heterogeneity is the norm in current data cen-

ters [4, 15]. Typical workloads are dominated by short

jobs. Long jobs are considerably fewer, but dominate

in terms of resource usage. In this paper, we precisely

address scheduling for such heterogeneous workloads.

To showcase the degree of heterogeneity in real work-

loads, we analyze the publicly available Google trace [1,

15]. We order the jobs by average task duration. The top

10% jobs account for 83.65% of the task-seconds (i.e.,

the product of the number of tasks and the average task

duration). Moreover, they are responsible for 28% of the

total number of tasks, and their average task duration is

7.34 times larger than the average task duration of the

remaining 90% of jobs.

Workload % Long Jobs % Task-Seconds

Google 2011 10.00% 83.65%

Cloudera-b 2011 7.67% 99.65%

Cloudera-c 2011 5.02% 92.79%

Cloudera-d 2011 4.12% 89.72%

Facebook 2010 2.01% 99.79%

Yahoo 2011 9.41% 98.31%

Table 1: Long jobs in heterogeneous workloads form a

small fraction of the total number of jobs, but use a large

amount of resources.

We also analyzed additional workloads described

in [4, 5]. Table 1 shows the percentage of long jobs

among all jobs, and the percentage of task-seconds con-

tributed by the long jobs. The same pattern emerges in

all cases, even for different providers: the long jobs ac-

count for a disproportionate amount of resource usage.

The numbers we provided also corroborate previous

findings from several other researchers [2, 16, 22].

2.2 High utilization in data centers

Understanding how to run data centers at high utiliza-

tion is becoming increasingly important. Resource-

efficiency reduces provisioning and operational costs as

2
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the same amount of work can be performed with fewer

resources [12]. Moreover, data center operators need to

be ready to maintain acceptable levels of performance

even during peak request rates, which may overwhelm

the data center.

Related work has approached the problem from the

point of view of a single data center server [6, 7]. For

a single server, the challenge is to maximize resource

utilization by collocating workloads without the dan-

ger of decreased performance due to contention. As a

result, several isolation and resource allocation mecha-

nisms have been proposed, ensuring that resources on

servers are well and safely utilized [19, 20].

Running highly utilized data centers presents addi-

tional, orthogonal challenges beyond a single server.

The problem we are targeting consists of scheduling jobs

to servers in a scalable fashion such that all resources in

the cluster are efficiently used.

2.3 Challenges in performing distributed

scheduling at high load

We next highlight by means of simulation why a hetero-

geneous workload in a loaded cluster is a challenge for a

distributed scheduler. The main insight is that with few

idle servers available at high load, distributed schedulers

may not have enough information to match incoming

jobs to the idle servers. As a result, unnecessary queue-

ing will occur. The impact of the unnecessary queueing

increases dramatically for heterogeneous workloads.

We illustrate this insight in more detail using the

Sparrow scheduler, a state-of-the-art distributed cluster

scheduler [14]. In Sparrow, each job has its own sched-

uler. To schedule a job with t tasks, the scheduler sends

probes to 2t servers. When a probe comes to the head of

the queue at a server, the server requests a task from the

scheduler. If the scheduler has not given out the t tasks

to other servers, it responds to the server with a task.

This technique is called “batch probing”. More details

can be found in the Sparrow paper [14], but the above

suffices for our purposes. Sparrow is extremely scalable

and efficient in lightly and moderately loaded clusters,

but under high load, few servers are idle, and 2t probes

are unlikely to find them. More probes could be sent, but

the paper found that this is counterproductive because of

messaging overhead.

We use the same simulator employed by the Sparrow

paper [14] to investigate the following scenario: 1000

jobs need to be scheduled in a cluster of 15000 servers.

95% of the jobs are considered short. Each short job has

100 tasks, and each task takes 100s to complete. 5%

of the jobs are long. Each has 1000 tasks, and each

task takes 20000s. The job submission times are de-

rived from a Poisson distribution with a mean of 50s. We

measure the cluster utilization (i.e., percentage of used
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Figure 1: CDF of runtime for short jobs, in a loaded

cluster, using Sparrow.

servers) every 100s. The median utilization is 86%, and

the maximum is 97.8%. This suggests that at least 300

servers (2%) are free at any time, enough to accommo-

date all tasks of any incoming short job.

Figure 1 presents the cumulative frequency distribu-

tion (CDF) of the runtimes of short jobs. A large fraction

of short jobs exhibit runtimes of more than 15000 sec-

onds, far in excess of their execution time, which clearly

indicates a large amount of queuing, mostly behind long

jobs. Given that enough servers are free, an omniscient

scheduler would yield job runtimes of 100s for the ma-

jority of the short jobs. With Sparrow, if all tasks are

100s long, the impact of queueing is less severe. How-

ever, a heterogeneous workload coupled with high clus-

ter load has a strong negative impact on the performance

of short jobs.

3 The Hawk Scheduler

3.1 System model

We consider a cluster composed of server (worker)

nodes. A job is composed of a set of tasks that can run in

parallel on different servers. Scheduling a job consists of

assigning every task of that job to some server. We use

the terms long task and short tasks to refer to tasks be-

longing to long jobs or short jobs respectively. A job

completes only after all its tasks finish. Each server has

one queue of tasks. When a new task is scheduled on

a server that is already running a task, the task is added

to the end of the queue. The server queue management

policy is FIFO.

3.2 Hawk in a nutshell

The previous section demonstrated that (i) many cluster

workloads consist of a short number of long jobs that

take up the bulk of the resources and a large number of

short jobs that take up only a small amount of the total

resources, and (ii) existing distributed cluster scheduling

systems, exemplified by Sparrow, do not provide good

3



502 2015 USENIX Annual Technical Conference USENIX Association

Figure 2: Overview of job scheduling in Hawk.

performance for short jobs in such an environment, due

to head-of-line blocking.

In this context, Hawk’s goals are:

1. to run the cluster at high utilization,

2. to improve performance for short jobs, which are

the most penalized ones in highly loaded clusters,

3. to sustain or improve the performance for long jobs.

To meet these challenges, Hawk relies on the follow-

ing mechanisms. To improve performance for short jobs,

head-of-line blocking must be avoided. To this end,

Hawk uses a combination of three techniques. First, it

reserves a small part of the cluster for short jobs. In

other words, short jobs can run anywhere in the clus-

ter, but long jobs can only run on a (large) subset of the

cluster. Second, to maintain low latency scheduling de-

cisions, Hawk uses distributed scheduling of short jobs,

similar to Sparrow. Third, Hawk uses randomized work

stealing, allowing idle nodes to steal short tasks that are

queued behind long tasks.

Finally, Hawk uses centralized scheduling for long

jobs to maintain good performance for them, even in the

face of reserving a part of the cluster for short jobs. The

rationale for this choice is to obtain better scheduling de-

cisions for long jobs. Since there are few long jobs, they

do not overwhelm a centralized scheduler, and since they

use a large fraction of the cluster resources, this central-

ized scheduler has an accurate view of the resource uti-

lization at various nodes in the cluster, even if it does

not know the location of the many short jobs. Figure 2

presents an overview of the Hawk scheduler.

3.3 Differentiating long and short jobs

The main idea behind Hawk is to process long jobs and

short jobs differently. Two important questions are 1)

how to compute a per-job runtime estimate, and 2) where

to draw the line between the two categories.

Hawk uses an estimated task runtime for a job and

computes it as the average task runtime for all the tasks

in that job. This allows Hawk to easily classify jobs with

variations in task runtime [13] without having to deal

with per-task estimates. Moreover, the average task run-

time is relatively robust in the face of a few outlier tasks.

Hawk compares the estimated task runtime against

a cutoff (threshold). The value of the cutoff is based

on statistics about past jobs because the relative propor-

tion of short and long jobs in a cluster is expected to

remain stable over time. Jobs for which the estimated

task runtime is smaller than the cutoff are scheduled in

a distributed fashion. This estimation-based approach is

grounded in the fact that many jobs are recurring [9] and

compute on similar input data. Thus, task runtimes from

a previous execution of a job can inform a future run of

the same job [9].

3.4 Splitting the cluster

Hawk reserves a portion of the servers to run exclusively

short tasks. Long tasks are scheduled on the remaining

(large) part. Short tasks may be scheduled on the whole

set of servers. This allows short tasks to take advantage

of any idle servers in the entire cluster. Henceforth we

use the term short partition to refer to the set of servers

reserved for short jobs and the term general partition to

refer to the set of servers that can run both types of tasks.

If long tasks were scheduled on any server in the clus-

ter, this may severely impact short jobs when short tasks

end up queued after long tasks. A particularly detri-

mental case occurs when a long job has more tasks than

servers or when several long jobs are being scheduled in

rapid succession. In this case, every server in the cluster

ends up executing a long task, and short tasks have no

choice but to queue after them.

Hawk sizes the general partition based on the propor-

tion of time that cluster resources are used by long jobs.

For example, from Table 1 Hawk uses the percentage of

task-seconds.

3.5 Scheduling short jobs

Hawk maintains low-latency scheduling for short jobs

by relying on a distributed approach. Typically, each

short job is scheduled by a different scheduler. For

scalability reasons, these distributed schedulers have no

knowledge of the current cluster state and do not interact

with other schedulers or with the centralized component.

Distributed schedulers schedule tasks on the entire

cluster. The first scheduling step is achieved as in Spar-

row. To schedule a job with t tasks, a distributed sched-

uler sends probes to 2t servers. When a probe comes to

the head of a server’s queue, the server requests a task

from the scheduler. If the scheduler has not given out

the t tasks to other servers, it responds to the server with

a task. Otherwise, a cancel is sent.

4
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Figure 3: Task stealing in Hawk. L = Long task, S =

Short task. Stolen tasks are on the dark background.

3.6 Randomized task stealing

Hawk uses task stealing as a run-time mechanism aimed

at mitigating some of the delays caused by the occasion-

ally suboptimal, distributed scheduling decisions. Since

the distributed schedulers are not aware of the content

of the server queues, they may end up scheduling short

tasks behind long tasks. In a highly loaded cluster, the

probability of this event happening is fairly high. Even

if a short job is scheduled using twice as many probes as

tasks, if more than half of the probes experience head-

of-line blocking, then the completion time of the short

job takes a big hit.

Hawk implements a randomized task stealing mecha-

nism, that leverages the fact that the benefit of stealing

arises in highly loaded clusters. In such a cluster a ran-

dom selection very likely returns an overloaded server.

Indeed, if 90% of the servers are overloaded, a uniform

random probe has 90% probability of returning an over-

loaded server from which tasks are stolen.

The cluster might reach a point where many servers

in the general partition are occupied by long tasks and

also have short tasks in their queues, while other servers

lie idle. Hawk allows such idle servers to steal tasks

from the over-subscribed ones. This works as follows:

whenever a server is out of tasks to execute, it randomly

contacts a number of other servers to select one from

which to steal short tasks. Both the servers from the gen-

eral partition and the servers from the short partition can

steal, but they can only steal from servers in the general

partition, because that is where the head-of-line blocking

is caused by long jobs.

Task stealing in Hawk proceeds as follow: The first

consecutive group of short tasks that come after a long

task is stolen. To see this in more detail, consider Fig-

ure 3. In cases a1) and a2) a server currently is executing

a short job. The short tasks that it provides for stealing

come after the first long job in the queue. In cases b1)

and b2) the server is executing a long task. The short

tasks stolen come immediately after that long task. Even

though that long task is being executed already and has

made some progress to completion, it is still likely that

it will delay the short tasks queued behind it.

With our design we want to increase the chance that

stealing actually leads not only to an improvement in

task runtime but also in job runtime. Consider a job

that has completed all but two of its tasks. Stealing just

one of these tasks improves that task’s runtime, but the

job runtime is still determined by the completion time

of the last task (the one not stolen). As shown in Fig-

ure 3, Hawk steals a limited number of tasks and starts

from the head of the queue when deciding what to steal.

Thus, stealing focuses on a few short jobs, increasing

the chance that the runtime of those jobs benefits. If

short tasks were stolen from random positions in server

queues that would likely end up focusing on too many

jobs at the same time while failing to improve most.

3.7 Scheduling long jobs

The final technique used in Hawk is to schedule long

jobs in a centralized manner. Long jobs are only sched-

uled in the general partition, and the centralized com-

ponent has no knowledge of where the short tasks are

scheduled. This centralized approach ensures good per-

formance for long jobs for three reasons. First, the num-

ber of long jobs is small, so the centralized component is

unlikely to become a bottleneck. Second, long jobs are

not latency-bound, so they are largely unaffected even if

a moderate amount of scheduling latency occurs. Third,

by scheduling long jobs centrally and by the fact that

these long jobs take up a large fraction of the cluster

resources, the centralized component has a timely and

fairly accurate view of the per-node queueing times re-

gardless of the presence of short tasks.

The centralized component keeps a priority queue of

tuples of the form < server,waiting time >. The prior-

ity queue is kept sorted according to the waiting time.

The waiting time is the sum of the estimated execution

time for all long tasks in that server’s queue plus the re-

maining estimated execution time of any long task that

currently may be executing. When a new job is sched-

uled, for every task, the centralized allocation algorithm

puts the task on the node that is at the head of the prior-

ity queue (the one with the smallest waiting time). After

every task assignment, the priority queue is updated to

reflect the waiting time increase caused by the job that is

being scheduled. The goal of this algorithm is to mini-

mize the job completion time for long jobs.

3.8 Implementation

We implement Hawk as a scheduler plug-in for

Spark [23], by augmenting the Sparrow scheduler with a

centralized scheduler and work stealing. To realize work

stealing we enable the Sparrow node monitors to com-

5
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Figure 4: Workload properties. CDFs of average task duration and number of tasks per job.

municate and send tasks to each other. The node moni-

tors communicate via the Thrift RPC library.

4 Evaluation

We compare Hawk with Sparrow, a state-of-the-art fully

distributed scheduler. We show that in loaded clusters

Hawk outperforms Sparrow for both long and short jobs.

The benefits hold across all workloads. We also show

that Hawk compares well to a centralized scheduler.

4.1 Methodology

Workloads We use the publicly available Google

trace [1, 15]. After removing invalid or failed jobs and

tasks we are left with 506460 jobs. Task durations vary

within a given job. The estimated task execution time

for a job is the average of its task durations.

We create additional traces using the description of

the Cloudera C and Facebook 2010 workloads from [4]

and Yahoo 2011 workload from [5]. We only con-

sider the mapper tasks from these workloads, since many

jobs do not have reducers. In [4, 5] the workloads are

described as k-means clusters, and the first cluster is

deemed composed of short jobs. We consider the rest

of the clusters to be long jobs. For each cluster we de-

rive the centroid values for the average number of tasks

per job and the duration of the tasks by combining the

information on task-seconds from [4, 5] with the job to

mapper duration ratios in [22]. We then use the derived

centroid values as the scale parameter in an exponential

distribution in order to obtain the number of tasks and

the mean task duration for each job. Given the mean

task duration we derive task runtimes using a Gaussian

distribution with standard deviation twice the mean, ex-

cluding negative values.

Figures 4a, 4b, 4c and 4d show the CDFs of the du-

ration of tasks and the number of tasks per job for both

long and short jobs. Table 2 shows additional trace prop-

erties. The trace properties differ from trace to trace.

This is expected, as workload properties are known to

vary depending on the provider [2, 4, 5].

Simulator We augment the event-based simulator

used to evaluate Sparrow [14]. The input traces contain

Workload % Long Jobs Total number jobs

Google 2011 10.00% 506460

Cloudera-c 2011 5.02% 21030

Facebook 2010 2.01% 1169184

Yahoo 2011 9.41% 24262

Table 2: Number of long jobs and total number of jobs.

tuples of the form: (jobID, job submission time, number

of tasks in the job, duration of each task). Network delay

is assumed to be 0.5ms. The scheduling decisions and

the task stealing do not incur additional costs.

Real cluster run We use a 100-node cluster with 1

centralized and 10 distributed schedulers. We use a sub-

set of 3300 jobs from the Google trace. To obtain task

runtimes proportional to the ones in the Google trace, we

scale down task duration by 1000x (i.e., sec. to msec.)

and use these durations in a sleep task. We also scale

down the number of tasks per job by keeping constant

the ratio between the cluster size and the largest num-

ber of tasks in a job. When we scale down the number

of tasks in a job, we compensate by proportionally in-

creasing the duration of the remaining tasks in order to

keep the same task-seconds ratio as the original trace.

We vary the cluster load by varying the mean job inter-

arrival rate as a multiple of the mean task runtime. We

use this mean to generate job inter-arrival times accord-

ing to a Poisson distribution.

Parameters By default, in Hawk, a node performs

task stealing by randomly contacting 10 other nodes and

stealing from the first node that has short tasks eligi-

ble for stealing. We compare against Sparrow config-

ured to send two probes per task because the authors of

Sparrow [14] have found two to be the best probe ra-

tio. Each simulated cluster node has 1 slot (i.e., can ex-

ecute only one task at a time). This is analogous to hav-

ing multi-slot nodes with each slot served by a different

queue. Following the task-second proportion between

long and short jobs, the short partition comprises 17% of

the nodes for the Google trace and 9%, 2% and 2% for

the Cloudera, Facebook and Yahoo traces, respectively.

Metrics When comparing Hawk to another ap-

proach X , we mostly take the ratio between the 50th (or

6
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(b) Google trace short jobs.
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Figure 5: Google trace. Hawk normalized to Sparrow. Figure (c) shows two additional metrics: (1) percentage of

jobs for which Hawk is equal or better to Sparrow and (2) average job runtime.

90th) percentile job runtime for Hawk and the 50th (or

90th) percentile job runtime time for X . Consequently,

our results are normalized to 1. We do this separately

for short and long jobs. Additional metrics are explained

with the corresponding results. In all figures lower val-

ues are better.

Repeatability of results The results for the 50th

and 90th percentiles are stable across multiple runs, and

for this reason we do not show confidence intervals. We

have seen variations in the maximum job runtime for

short tasks. This is expected, as failing to steal one task

can make a big difference in job runtime.

4.2 Overall results on the Google trace

We take the Google trace and vary the number of server

nodes in order to vary cluster utilization. We find that

Hawk consistently outperforms Sparrow, especially in a

highly loaded cluster. Figures 5a and 5b illustrate the im-

provements in job runtime for long jobs and short jobs,

respectively as a function of the number of machines in

the cluster. The cluster utilization is based on snapshots

taken every 100s.

Hawk shows significant improvements when the clus-

ter is highly loaded but not overloaded (i.e., 15000 -

25000 nodes), since both the centralized scheduler and

the task stealing algorithm make efficient use of any idle

slots. In the best cases, Hawk improves the 50th and

90th percentile runtimes by 80% and 90% for short jobs

and by 35% and 10% for long jobs. Hawk improves

short job runtime at the 90th percentile more than at the

50th percentile, because these jobs are more affected by

queueing. Stealing a few (even one) short tasks experi-

encing head-of-line blocking can greatly improve short

job completion time.

Figure 5c presents additional metrics: the percent-

age of jobs for which Hawk provides performance better

than or equal to Sparrow and the average job runtime for

Hawk vs. Sparrow. The average job runtime for short

jobs is significantly better for Hawk and is as low as a

factor of 7. For 15000 nodes we present additional de-

tails, not all pictured: Hawk improves the runtime of

68% of short jobs, while for 59% of short jobs the im-

provement is more than 50%. Overall, for 86% of short

jobs, Hawk is better or equal to Sparrow. For long jobs,

Hawk improves 51% of jobs and is better or equal to

Sparrow for 72% of jobs.

Small clusters (10000 nodes) tend to be overwhelmed

by the high job submission rate in the trace. As a result,

the node queues become progressively longer and wait-

ing times keep increasing. We do not believe that any

cluster should be run at this overload, but the case is nev-

ertheless interesting to understand. Hawk is just slightly

worse for long jobs, as the long jobs in Hawk are sched-

uled only in the general partition, while in Sparrow they

can be scheduled across the entire cluster. Conversely,

Hawk is better for short jobs because of the randomized

stealing, but the improvement is small. The short parti-

tion is overloaded, and its nodes have few opportunities

to steal short tasks experiencing head-of-line blocking

in the general partition. As the cluster size increases

(40000+ nodes), the benefits of Hawk decrease as the

cluster becomes mostly idle. Any scheduler is likely to

do well in that case.

4.3 Overall results on additional traces

Figures 6a, 6b and 6c show the results for the work-

loads derived from Facebook, Cloudera and Yahoo data.

Hawk’s benefits hold across all traces. At the median

(not pictured), Hawk also improves on Sparrow across

all simulated cluster sizes.

The most important difference compared to the

Google trace is the larger improvement for short jobs.

This can be traced back to the utilization of the short par-

tition. In the Facebook, Cloudera and Yahoo traces the

short partition is less utilized compared to the Google

trace so there are more chances for stealing.
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(a) Cloudera trace.
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(b) Facebook trace.
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Figure 6: Cloudera, Facebook and Yahoo traces. Long and short jobs. Hawk normalized to Sparrow.
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Figure 7: Break-down of Hawk’s benefits normalized to

Hawk. 15000 nodes. Google trace.

4.4 Breaking down Hawk’s benefits

This subsection analyzes the impact of each of the major

components of Hawk: work stealing, reserving cluster

space for short jobs and using centralized scheduling for

the long jobs. We find that the absence of any of the

components reduces the performance of Hawk for either

long or short jobs.

Figure 7 shows the results of the Google trace nor-

malized to Hawk with all components enabled. With-

out centralized scheduling for long jobs the performance

of long jobs takes a significant hit, as tasks of different

long jobs queue one after the other. The performance

of short jobs improves due to the decrease in the perfor-

mance for long jobs. As the placement of long jobs is

not optimized in the general partition, fewer short tasks

encounter queueing there.

Without partitioning the cluster, the short jobs are im-

pacted, because they can be stuck behind long tasks on

any node. For long jobs, the performance slightly in-

creases, because they can be scheduled on more nodes.

Without task stealing both short and long jobs suffer.

The short jobs are greatly penalized, because some of

their tasks are stuck behind long tasks. The long tasks

are penalized, because they share the queues with more

short tasks.
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Figure 8: Hawk normalized to centralized approach,

short jobs. Google trace.
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Figure 9: Hawk normalized to centralized approach,

long jobs. Google trace.

4.5 Hawk vs. a fully centralized approach

We next look at the performance of Hawk compared to

an approach that schedules all jobs (long and short) in

a centralized manner. We find that Hawk is competi-

tive, while not suffering from the scalability concerns

that plague centralized schedulers.

This centralized scheduler does not reserve part of the

cluster for short jobs and does not use work stealing. It

uses the algorithm we presented in subsection 3.7 for all

jobs. Figures 8 and 9 show Hawk normalized to the cen-

tralized scheduler’s performance using the Google trace.

The centralized scheduler penalizes short jobs (Fig-

ure 8), when the cluster is heavily loaded (10000-15000

nodes). This is because in periods of overload the

centralized scheduler does not have many options and
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Figure 10: Hawk normalized to split cluster, short jobs.

Google trace.
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Figure 11: Hawk normalized to split cluster, long jobs.

Google trace.

queues short tasks behind long ones. This is especially

the case when long jobs are present in every node in

the cluster. In Hawk short tasks benefit from stealing

and from running on reserved nodes. As the cluster uti-

lization decreases, the centralized scheduler does an in-

creasingly better job for short jobs. When the cluster be-

comes lightly loaded (50000 nodes), the results for both

approaches begin to converge.

For long jobs the centralized approach performs

slightly better (Figure 9), because they can use the en-

tire cluster. In Hawk they only use the general partition.

4.6 Hawk compared to a split cluster

We now compare Hawk to a split cluster, in which a long

partition only runs long jobs and a short partition only

runs short jobs. In other words, there is no general par-

tition, in which both short and long jobs can execute.

Hawk fares significantly better for short jobs, while be-

ing competitive for long jobs.

We use the Google trace. The split cluster uses 17%

of the cluster for the short partition, and the remaining

83% is reserved for long jobs (long partition). The split

cluster uses centralized scheduling for the long partition

and distributed scheduling for the small one.

Figures 10 and 11 show the results. For long jobs, the

split cluster performs slightly better, because the short

jobs do not take up the space in the general partition.

However, this comes at the cost of greatly increasing

runtime for short jobs. For short jobs, for small clus-
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Figure 13: Effect of varying cutoff, Hawk normalized to

Sparrow, short jobs. 15000 nodes. Google trace.

ter sizes, the relative degradation for the split cluster is

smaller, because both approaches suffer from significant

queueing delays. In the other extreme, for a large clus-

ter, both approaches do well. In between, the split cluster

shows extreme degradation, because short tasks cannot

leverage the general partition nodes.

4.7 Sensitivity to the cutoff threshold

Next we vary the cutoff point between short and long

jobs. Hawk yields benefits for a range of cutoff values,

showing that it does not depend on the precise cutoff

chosen.

The cluster size is 15000 nodes in this experiment,

and we use the Google trace. Figures 12 and 13 show

the results for long and short jobs, respectively. The per-

centage of short jobs increases as the cutoff increases.

Thus, for the smaller cutoffs, Hawk improves the most

on Sparrow because the short partition is underloaded

and can steal more tasks. The percentage of long jobs

increases as the cutoff decreases. For the smaller cutoffs

the 90th percentile long job runtime is affected more for

Hawk compared to Sparrow, because Sparrow is able

to relieve some of the queueing among long jobs by

scheduling them over the entire cluster.

4.8 Sensitivity to task runtime estimation

Hawk’s centralized component schedules long jobs ac-

cording to an estimate of the average task runtime for

that job. We next analyze how inaccuracies in estimat-

9
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Figure 14: Hawk with varying mis-estimation magni-

tude normalized to Sparrow, long jobs. 15000 nodes.

Google trace.
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tempts normalized to Hawk capped at 1 attempt, short

jobs. 15000 nodes. Google trace.

ing the average affect the results. For each job, to obtain

the inaccurate estimate, we multiply the correct estimate

with a random value, chosen uniformly within a range

given as a parameter (e.g., 0.1-1.9). Figure 14 shows the

job runtimes normalized to Sparrow for the set of jobs

classified as long when no mis-estimations are present.

These results are averaged over ten runs.

Hawk is robust to mis-estimations. The mis-

estimation results in some long jobs being classified as

short and vice-versa. This is more likely to happen for

long and short jobs for which the estimation is compa-

rable to the cutoff. Since these jobs are fairly similar

in nature, the two opposing mis-classifications (long as

short and short as long) tend to cancel each other. More-

over, most jobs are not mis-classified, because their es-

timation significantly differs compared to the cutoff. In

Figure 14, long jobs perform better at the 90th percentile

as the mis-estimation magnitude increases because more

long jobs are classified as short. At 15000 nodes the

short partition is less loaded than the general partition so

the long jobs classified as short benefit from the addi-

tional, less-loaded nodes in the short partition.

Short jobs are not directly impacted by mis-

estimations, since their scheduling does not rely on es-

timations. Short jobs can be indirectly impacted by the

changes in the scheduling of the long jobs. In the exper-
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Figure 16: Implementation vs simulation, short jobs.

3300 job sample from the Google trace.
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Figure 17: Implementation vs simulation, long jobs.

3300 job sample from the Google trace.

iments, we only see minute variations for the results for

short jobs (not pictured).

4.9 Sensitivity to stealing attempts

We now vary the maximum number of nodes that an idle

node can contact for stealing. We find that performance

increases with an increase in the cap value, but even a

low value (e.g., 10) gives significant benefit.

Figure 15 shows the results normalized to Hawk using

a cap of 1. As expected, increasing the cap also increases

performance, as it increases the chance for successful

stealing. At high cap values there is also a slight increase

in the performance of long jobs (not pictured), because

they wait behind fewer short tasks. The improvement for

long jobs is small, because of the large relative differ-

ence between the resource usage of long jobs compared

to short jobs.

4.10 Implementation vs. simulation

Figures 16 and 17 show the results for a 3300-job sam-

ple of the Google trace. In the implementation, Hawk

schedules 3000 short jobs in a distributed way (300 per

each of the 10 distributed schedulers) and 300 long jobs

in a centralized fashion. The simulation and implemen-

tation experiments agree and show similar trends. Hawk

is best at high loads, when it significantly improves on

Sparrow for short jobs, while maintaining good perfor-

mance for long jobs. As load decreases, the 50th per-

centiles for Hawk and Sparrow become similar, as fewer

10



USENIX Association  2015 USENIX Annual Technical Conference 509

jobs suffer from queueing. Even at medium load, the

90th percentile is still considerably better for Hawk for

short jobs, since those jobs suffer from queueing in Spar-

row but not in Hawk.

The simulation and implementation results do not per-

fectly match, because the simulation does not model

overheads for scheduling or stealing. Moreover, some

Spark tasks sleep very little (a few msec) and are sensi-

tive to slight inaccuracies in sleeping time and to various

system overheads (message exchanges, network delays).

5 Related Work

The first data center schedulers had a monolithic de-

sign [22], which lead to scalability concerns [20]. Sec-

ond generation schedulers (YARN [20], Mesos [10])

use a two-level architecture, which decouple resource

allocation from application-specific logic such as task

scheduling, speculative execution or failure handling.

However, the two-level architecture relies on a central-

ized resource allocator, which can still become a scal-

ability bottleneck in large clusters. In contrast, Hawk

schedules most jobs in a distributed manner minimizing

the scalability concerns.

We compared against Sparrow [14] in this paper.

Sparrow is a fully distributed scheduler that performs

well for lightly and medium loaded clusters. However,

it is challenged in highly loaded clusters, especially for

heterogeneous workloads, because tasks experience un-

necessary queueing. This is due to Sparrow’s design,

which is geared at extreme scalability and cannot fully

benefit from load information when making scheduling

decisions. Moreover, Sparrow does not have runtime

mechanisms to compensate in case the initial assignment

of tasks to nodes is suboptimal.

In Apollo [3], distributed schedulers utilize global

cluster information via a loosely coordinated mecha-

nism. Apollo does not differentiate between long and

short jobs and uses the same mechanisms to sched-

ule both types of jobs. Apollo has built-in, node-level

correction mechanisms to compensate for inaccurate

scheduling decisions. If a task is queued longer than

estimated at scheduling time, then Apollo starts dupli-

cate copies of the task on other nodes. In contrast, work

stealing in Hawk works at the level of the entire cluster.

Even if the queueing time for a task has been correctly

predicted, the task can be stolen by another server that

becomes idle.

Mercury [11] is parallel work on designing a hy-

brid scheduler. In Mercury, jobs can choose between

guaranteed (non-preemtable, non-queueable, centrally-

allocated) containers and queueable containers (pre-

emptable, allocated in a distributed way). However, it

is not clear whether jobs have the information necessary

to make an informed choice with respect to the appro-

priate container type. In Mercury, distributed schedulers

loosely coordinate with a coordinator to obtain per-node

load information. In Hawk, the distributed schedulers

make completely independent decisions.

Omega [17] supports multiple concurrent schedulers

which have full access to the entire cluster. The sched-

ulers compete in a free-for-all manner, and use opti-

mistic concurrency control to handle conflicts when they

update the cluster state. Omega is designed to support

at most tens of schedulers and this may prove insuf-

ficient to ensure low latency scheduling for very short

jobs. Borg [21] uses a logically centralized controller

but employs replication to improve availability and scal-

ability. Borg’s scheduling design is similar to Omega’s

optimistic concurrency control.

HPC and Grid schedulers [18] use centralized

scheduling and do not have the same latency require-

ments. The jobs they schedule are usually compute-

intensive and often long running. These jobs come with

several constraints as they are tightly coupled in nature,

requiring periodic message passing and barriers.

6 Conclusions and Future Work

In this paper we address the problem of efficient schedul-

ing in the context of highly loaded clusters and hetero-

geneous workloads composed of a majority of short jobs

and a minority of long jobs that use the bulk of the re-

sources. We propose Hawk, a hybrid scheduling archi-

tecture. Hawk schedules only the long jobs in a central-

ized manner, while performing distributed scheduling

for the short jobs. To compensate for the occasional poor

choices made by distributed job scheduling, Hawk uses a

novel randomized task stealing approach. With a Spark-

based implementation and with large scale simulations

using realistic workloads we show that Hawk outper-

forms Sparrow, a state-of-the-art fully distributed sched-

uler, especially in the challenging scenario of highly

loaded clusters.
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Abstract
Dynamic resource scaling enables provisioning extra re-
sources during peak loads and saving energy by reclaim-
ing those resources during off-peak times. Scaling the
number of CPU cores is particularly valuable as it allows
power savings during low-usage periods. Current sys-
tems perform scaling with a slow hotplug mechanism,
which was primarily designed to remove or replace faulty
cores. The high cost of scaling is reflected in power
management policies that perform scaling at coarser time
scales to amortize the high reconfiguration latency.

We describe Bolt, a new mechanism built on existing
hotplug infrastructure to reduce scaling latency. Bolt also
supports a new bulk interface to add or remove multiple
cores at once. We implemented Bolt for x86 and ARM
architectures. Our evaluation shows that Bolt can achieve
over 20x speedup for entering offline state. While turn-
ing on CPUs, Bolt achieve speedups of 1.3x and 21x for
x86 and ARM. The speedup is limited by high latency
hardware intialization. On an ideal processor with zero-
latency initialization, the speedup on x86 rises to 10x.

1 Introduction
Most operating system policies focus on improving per-
formance given a fixed set of resources. For example,
schedulers assume a fixed set of processors to which as-
sign threads, and memory managers assume a fixed pool
of memory. However, this assumption is increasingly
violated in the current computing landscape, where re-
sources can be added or removed dynamically during
runtime for reasons of energy reduction, cost savings,
virtual-machine scaling or hardware heterogeneity [11].

We refer to changing the set of resources as resource
scaling and our work focuses on scaling the set of proces-
sors available to the operating system. This scaling may
be helpful in virtualized settings such as cloud comput-
ing [7] and disaggregated servers [14, 2] where it is pos-
sible to add or remove CPUs at anytime within a system.
Scaling can improve performance during peak loads and
minimize energy during off-peak loads [8]. Dynamically
reconfigurable processors (e.g., [16]), which allow pro-
cessing resources to be reconfigured at runtime to meet

application demands, can also benefit from scaling the
set of available CPUs [21].

Current operating systems assume that the processor
cores available to them are essentially static and almost
never change over runtime of the system. These systems
support scaling through a hotplug mechanism that was
primarily designed to remove faulty cores from the sys-
tem [10]. This mechanism is slow, bulky and halts the
entire machine for a few milliseconds while the OS re-
configures. The current Linux hotplug mechanism takes
tens of milliseconds to reconfigure the OS [21]. In con-
trast, processor vendors are aiming for transitions to and
from sleep states in the order of microseconds [25, 23],
making OS the bottleneck in scaling. In spite of these
drawbacks, hotplug is being widely used by mobile ven-
dors as a means to scale the number of processor cores
to save energy [22] due to the lack of better alternatives.

We propose a new mechanism, Bolt, that builds on the
current Linux hotplug infrastructure with the assumption
that scaling events are frequent and a goal of low latency
scaling mechanism. Bolt classifies every operation car-
ried out during hotplug as critical or non-critical oper-
ations. The critical operations are performed immedi-
ately for proper functioning of the system whereas non-
critical operations are done lazily. Bolt also supports a
new bulk interface to turn on/off multiple cores simulta-
neously, which is not supported by the current hotplug
mechanism.

We implemented Bolt for both x86 and ARM proces-
sors, and find that Bolt can achieve over 20x better la-
tency over native hotplug offline mechanism. For getting
a CPU to online state, speedup is limited to 1.3x for x86
due to hardware overhead whereas the software overhead
is reduced by 10x. The concurrency allowed through the
bulk interface achieves speedup of 4x-67x when adding
or removing 3 cores.

2 Motivation

2.1 Processor Scaling

Many current and future systems will support a dynamic
changing set of cores for three major reasons.
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Energy Proportionality. This property dictates that en-
ergy consumption should be proportional to the amount
of work done and is getting a major focus in all forms
on computing from cloud to mobile devices. Low power
(P-states) and sleep state (C-states) support from proces-
sors help achieve energy proportionality by reducing en-
ergy consumption when the processor is not fully uti-
lized. However, in many processors further power sav-
ings could be achieved by turning off cores to a deeper
sleep state, turning off an entire socket or allowing to
enter package level sleep state. These deeper states re-
quire OS intervention, as the core is logically turned off
and not available for scheduling threads or processing
interrupts. For example, most mobile systems turn off
cores during low system utilization to conserve battery
capacity by reducing static power consumption. Some
processors (e.g. Exynos [18]) provide a package-level
deep sleep state that is enabled when all but one core
is switched off. Operating systems may use core park-
ing [12] to consolidate tasks in a single socket to switch
off other sockets completely. Quick scaling support by
the OS can allow rapid transitions into and out of deep
sleep states.
Heterogeneity. Many processors support heterogeneity
either statically [1] via different core designs or dynam-
ically [16] through reconfiguration. On dark silicon sys-
tems [5], not all processors could be used at full perfor-
mance together, and hence the OS must decide which
processors to enable based on the application character-
istics. Processors like Exynos [3] and Tegra [20] em-
ploy ARM’s big.LITTLE architecture, with a mix of high
performance and high efficiency cores. In systems with
these processors, the OS must choose the type of proces-
sor core based on the performance need. The OS must
change the processor set when switching between differ-
ent CPU types.
VM Scaling. Virtual machines are widely used in cloud
environment, and many hypervisors provide support for
scaling the number of virtual CPUs in a virtual machine
(VM) [19]. IBM supports VM scaling through DLPAR
(dynamic logical partitioning [17]) and VMware sup-
ports them through hot add/remove interfaces. Some ap-
plication like databases benefit from scaling up of vir-
tual machines by provisioning more resources rather than
scaling out where more virtual machines are spawned.
These techniques can be used at finer scale if the guest
OS provides quick processor scaling.

2.2 OS Support

There are several mechanisms an OS can use to scale the
number of CPUs in use.
Virtualization. An extra layer of indirection through vir-
tualization decouples the physical execution layer from
rest of the operating system and exposes only virtual

CPUs to the OS. To scale down, multiple virtual CPUs
(VCPU) can be multiplexed on a single physical CPU
(PCPU). In terms of latency, virtualization could provide
an ideal support where it could switch VCPUs from a
PCPU that is being switched off to a different physical
CPU instantly by saving and restoring context of those
virtual CPUs.

However, the drawbacks of using virtualization-based
techniques are two-fold. First, virtualization adds over-
head in the common case, particularly for memory ac-
cess [6]. Second, multiplexing VCPUs on a physical
CPU can hurt performance due to context switches dur-
ing critical sections [26].

Power Management. OS support for idle sleep states
(C-states) can be used to move unused cores to a sleep
state and wake up when needed. The latency of entering
and exiting such sleep state is very low when compared
to the hotplug mechanism. However, OS power man-
agement support requires that cores can still respond to
interrupts, which is not the case for all deep sleep states
or for non-power uses of scaling. Furthermore, the OS
may accidentally wake up a sleeping core unnecessarily
to involve them in regular activities like scheduling or
TLB shootdowns [24].

Processor Proxies. Chameleon [21] proposed a new al-
ternative to hotplug called processor proxies that is sev-
eral times faster than hotplug. A proxy represents an of-
fline CPU and runs on an active CPU making the sys-
tem believe that the offline CPU is still active. However,
proxies can only be used for a short period because they
handle interrupts and Read-Copy-Update (RCU) opera-
tions only, and do not reschedule threads from a CPU in
offline state.

Scalability-Aware Kernel. Ideally, an OS kernel could
natively support changing the set of CPUs at low la-
tency and with low overhead. Rather than assuming that
scaling events are rare, a scalability-aware kernel would
spend little time freeing resources during a scale-down
event when they are likely to be re-allocated during an
upcoming scale-up event.

2.3 Hotplug

Hotplug is a widely used mechanism available in Linux
to support processor set scaling. It offers interfaces for
any kernel subsystem to subscribe to notifications for
processor set changes. However, handling of notifica-
tions by every subsystem follow the assumption that hot-
plug events are rare. The shortcomings of the mechanism
are discussed below.

Repeat Execution. A direct implication of the above as-
sumption is that most kernel subsystems free or reinitial-
ize the software structures during hotplug event. Out of
the 50 subscriptions to the hotplug from various subsys-
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tems, 8 of them remove or initialize sysfs structures
and 14 of them to free and create software structures
needed for the subsystem. However, all these operations
become redundant if the CPU set changes frequently.
Synchronous. All operations performed in response to
the notifications are synchronous. For example, subsys-
tems like slab allocator frees the slab memory from its
per-CPU queue when the CPU is moved to offline state,
per-CPU statistics values are aggregated into a global
structure, and the hotplug operation is blocked until sys-
tem threads move into sleep state. However, these oper-
ations need not be synchronous for the correct execution
of the system.
Hotplug Prevention. Hotplug events can be prevented
by disabling preemption or interrupts on any CPU, sim-
ilar to grabbing a lock. So, the hotplug mechanism
ensures that preemption and interrupts are enabled on
all CPUs by scheduling a special kernel thread on ev-
ery CPU in the system. This special form of locking
(through preemption) avoids the overhead of acquiring a
lock and releasing during normal execution.

As a result of these properties, Linux’s current hotplug
mechanism is too slow for rapid scaling. As we show in
Section 4, it takes orders of milliseconds to reconfigure,
while current hardware can transition from sleep states
in the order of microseconds [25].

3 Bolt
Bolt is a reconfiguration mechanism that can be used as
a replacement for hotplug. The functionality of Bolt is
similar to that of hotplug in getting the system from one
stable state to another after processor scaling. However,
Bolt aims to offer stability at very low latency and is built
by refactoring the existing hotplug infrastructure.

Bolt achieves low latency by separating hotplug notifi-
cations into critical and non-critical operations. The for-
mer needs to be handled synchronously to ensure correct-
ness of the system whereas the latter could be removed
from the critical path and performed after the CPU goes
online/offline.

3.1 Critical Operations

Every action taken by hotplug, including handling of no-
tifications by kernel subsystems is classified based on its
criticality. Bolt defines critical operations as those that
need to be executed immediately for correct running of
the system.
State Migration. In the event of CPU removal, impor-
tant software state associated with that CPU has to be
migrated to another active CPU. Such software states in-
clude softirq or bottom halves and threads in the CPU’s
runqueue. The softirqs are queued in a per-CPU structure
that are moved to a different active CPU for them to be
processed. Similarly, threads from the runqueue are mi-

grated synchronously to avoid performance degradation
for running programs.

Hardware Management Functions. Certain hardware
dependent features need to be disabled or enabled during
scaling (hotplug) events. For example, machine check
has to be disabled before the CPU is put to offline state
since any fault in the offline CPU should not affect the
remaining system. Similarly when a CPU is started, it’s
microcode need to be updated and MTRR registers need
to be initialized for proper functioning of the system.

Bitmask Updates. Linux maintains a few impor-
tant global bitmasks of CPU state. These include
cpu online mask and cpu active mask, which are
accessed frequently across the system. These masks
should be updated immediately during scaling events for
correct functioning of the system.

We consider subscriptions from a few subsystems like
workqueue and perf as critical since we are still in the
process of adapting those subsystems to Bolt.

3.2 Non-Critical Operations

Bolt defines non-critical operations as those that can ei-
ther be performed lazily or not performed at all. Bolt
makes a best effort to push many of the non-critical op-
erations out of the critical path and thus reduce latency.

Interrupt Migration. Handling of interrupts is a time
critical event and it might be surprising to see interrupt
handling as a non-critical operation. Interrupts affini-
tized to a CPU are moved to a different CPU when the
CPU is removed. However, from our observation on a
Nexus mobile device, all I/O interrupts are always deliv-
ered to the base CPU (CPU 0). This was not the case
on a desktop machine where the network interrupts were
distributed across multiple CPUs.

Bolt currently affinitizes all interrupts to the base CPU
to avoid interrupt migration during processor scaling
event. However, this will result in performance degrada-
tion for servers receiving high number of interrupts. On
such systems, the high-traffic interrupts (e.g., network or
SSD) can by distributed across multiple CPUs through
the irq migration daemon, while lightly loaded in-
terrupts can be handled by the base CPU to avoid migra-
tion during scaling. But Bolt does not support this opti-
mization and implementing it is part of the future work.

Memory. Many kernel subsystems, upon receiving noti-
fications of scaling events, free or allocate memory struc-
tures such as per-CPU structures or buffer queues. Bolt
elides these operations and instead saves memory to be
re-used if and when the CPU comes back online. Most
kernel subsystems support a master thread that is invoked
during memory pressure to release all per-CPU struc-
tures. Bolt uses this master thread to avoid any memory
leak if a CPU stays offline for an extended time period.
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Sysfs. Volatile filesystems like sysfs and procfs ex-
pose kernel settings and metrics through virtual file sys-
tem interface in Linux. Processor-core based file or di-
rectory nodes are removed or created during processor
set scaling. However, Bolt does not perform these oper-
ations but instead it prevents access to CPU dependent
files by verifying if the CPU is online during file open.
Thread Operations. Earlier versions of Linux destroyed
and spawned system threads during hotplug. More re-
cent versions of Linux use thread parking [9], which sus-
pends threads indefinitely. System threads like watch-
dog threads are moved to a parked state during processor
scaling. Parking the thread involves waking the thread,
even if it is in sleep state, invoking a registered function
pointer to perform cleanup, and then moving the thread
to the sleep state synchronously. Bolt instead employs
an asynchronous approach and it does not wait for the
thread to enter sleep state after sending the parking mes-
sage. The benefits are that it improves latency and park-
ing could be avoided if the CPU returns back online be-
fore the thread wakes up and sees the parking message.

3.3 Bulk Interface

Bolt adds a new bulk interface support to allow scaling
multiple CPUs simultaneously; existing APIs only sup-
port adding or removing a single CPU. The API takes
a cpumask argument, indicating which CPUs to add or
remove rather than the index of an individual CPU. To
accomplish a bulk offline with native hotplug, each CPU
is moved to offline state sequentially and with no over-
lap; the online case is similar. Bolt leverages the fact
that certain operations can be done once even if multi-
ple CPUs change state. Bolt makes two optimizations.
First, updates to global structures are made as a single
operation. For example, Bolt reorganizes the schedul-
ing domain related structures once for all CPUs. Second,
Bolt performs some operations in parallel. For example,
during CPU online it clears caches and register sets con-
currently on all CPUs.

4 Evaluation
Our evaluation focuses on the performance of Bolt, but
we speculate on the potential energy benefits as well.
Experimental Platform. We performed our experi-
ments on two different processor architectures. First,
an x86 based machine with an Intel i5-2500K (Sandy
bridge) processor running Linux kernel 3.17.1. Second,
an Odroid development board [13] with Exynos 5410
processor running Android 4.4 with Linux kernel 3.4.
The Exynos is a big.LITTLE architecture provisioned
with A15 and A7 4-core clusters. We disable Turbo
Boost in the x86 machine to avoid any performance vari-
ability. All experiments were performed in an idle sys-
tem without any active workloads. For all the experi-

ments, we ran the processors at highest frequency: x86
at 3.3 GHz and A15 at 1.6 GHz.

End-End Latency. The CPU state (on-
line/offline) is accessed through the sysfs file
/sys/devices/system/cpu/cpu*/online—
writing ’0’ initiates the offline process and ’1’ brings the
cpu to an online state. We measure latency as the time
taken from the write to when it returns, at which point
the CPU becomes invisible to the OS or it is actively
available to the OS.

Figure 1 show the end-to-end latency for an offline
operation. The legend represents the individual com-
ponents of the hotplug operation. (a) Down prepare,
dead and post dead are different notifications sent to
the kernel subsystems. The down prepare is costly due
to a synchronous thread creation by workqueue subsys-
tem in the critical path. Bolt avoids this behavior by
reusing threads. (b) Park refers to the thread parking
operation that is classified by Bolt as non-critical and
handled appropriately. (c) Reduction in the latency of
take cpu down is achieved by avoiding interrupt mi-
gration and thus, saving 0.7ms. The remaining over-
head is caused by stop machine interface, which is not
optimized by Bolt. (d) RCU denotes the protection of
cpu active mask bitmask through RCU synchroniza-
tion and this is costly since read-copy-update (RCU) has
to wait till all CPUs undergo a context switch. Bolt re-
places RCU-based synchronization with regular locks.
The impact of this change is limited to very few inter-
faces as can be seen in this commit log [27].

Figure 2 show the latency breakdown for an online
operation. Interestingly, the major source of latency in
Exynos is software, and in x86, hardware. In the Exynos
system, thread creation causes overhead similar to the
offline case and Bolt avoids this by parking threads and
re-using them during the online operation. However, the
x86 incurs substantial delay when the init IPI (to start the
core) is sent. Intel documentation [15] specifies that OS
should wait for a period of 10ms after the init message is
sent to perform hardware initialization. The speedup of
Bolt over the native system is thus limited to 1.3x.

Software Entry/Exit Latency. The entry latency refers
to the time taken for the CPU core to be switched off
during offline operation. This gives an idea on how
soon the energy savings begin. The native system takes
around 12.5ms (x86) and 6.7ms (Exynos) whereas Bolt
takes 0.45ms (x86) with a speedup of 27.8x and 0.38ms
Exynos) with a speedup over native being 17.6x. The
exit latency is the time taken for the core to schedule the
first thread after it is woken up. This gives an idea of
the interactivity of the system. The native system takes
around 13.8ms (x86) and 12ms (Exynos) whereas Bolt
takes 10.27ms (x86) and 0.22ms (Exynos).
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Figure 1: Native hotplug vs. Bolt during offline.

Energy Savings. Bolt does not offer a new power man-
agement policy but it relies on the processor sleep states
for any energy savings. In the Exynos 5410, the of-
fline state and deep sleep state—C2— consume almost
same power: 97mW when all cores are in sleep state.
However, the processor cluster is allowed to enter C3
(package-level deep sleep state), it consumes 55mW,
which is a 43% reduction in power compared to C2. The
constraint is that all on-chip cores but one should be in
hotplug offline state to enable C3 state.

The default power management policy used for
Exynos employs a conservative approach that ensures a
minimum of two CPU cores is online for better interac-
tivity. We believe that Bolt could help in implementing
a more aggressive policy for more energy savings while
preserving interactivity by retaining only one online core
and entering C3 in the remainder. On the other hand,
hotplug offline on an Intel i5-2500K puts the CPU core to
deep sleep state (C6). In this case, hotplug does not result
in additional power savings than Linux’s cpuidle subsys-
tem [4] but hotplug can still be beneficial by avoiding
interrupt handling and scheduling threads on idle cores
and extending their idle period.
Bulk Interface. The current bulk interface implemen-
tation is available only for x86 architecture and not for
Exynos. We specify an input cpumask marked with three
CPUs. On the native system, we simulate bulk opera-
tions by performing scaling operations sequentially. The
native system took 39.2ms and 43.1ms for offline and
online operations. Bolt using the same simulation tech-
nique took 1.6ms and 31.2ms, while the bulk interface in
Bolt took 0.58ms and 10.84ms. The new interface exe-
cutes the take cpu down concurrently and avoids mul-
tiple time re-organization of schedule domain structures
during offline. Overlapping hardware initialization and
processing notification messages while waiting for the
hardware initialization speed the online operation.
Speculated Hardware. To appreciate the benefits pro-
vided by Bolt during an online operation in x86, we em-
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Figure 2: Native hotplug vs. Bolt during online.
ulated a hardware that can perform instant initialization
without incurring the 10ms hardware delay. We achieve
this by prematurely sending init IPI and removing hard-
ware initialization from critical path. Though this moves
the core out of sleep state to running state at increased
power, this is acceptable since we are trying to model
only the performance without the hardware overhead.
Bolt finishes online operation in 0.38ms compared to
4ms for native providing a speedup of 10.5x, and the on-
line bulk interface takes 0.71ms compared to 13.1ms pro-
viding a speedup of 18x. The native latency values – 4ms
and 13.1ms – are achieved by removing the hardware ini-
tialization delay of 10ms from original latency values.
These numbers show that hotplug latency will be domi-
nated by software overhead in future processors and Bolt
makes significant reduction in the software overhead.

5 Conclusion
Processor set scaling is important for energy efficiency,
throughput improvement, cost savings and VM scal-
ing. However, the current hotplug mechanism is slow
and cannot support frequent changes. We propose Bolt,
which classifies hotplug operations as critical and non-
critical. This separation helps Bolt achieve low latency
by removing non-critical operations from the critical
path. Bolt also supports a bulk interface that allows scal-
ing at granularity of multiple cores. The low latency
mechanism and the new interface support through Bolt
enable future systems to scale at much finer time-scales.
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Abstract

The increasing adoption of Graphic Process Unit (GPU)

to computation-intensive workloads has stimulated a new

computing paradigm called GPU cloud (e.g., Amazon’s

GPU Cloud), which necessitates the sharing of GPU re-

sources to multiple tenants in a cloud. However, state-of-

the-art GPU virtualization techniques such as gVirt still

suffer from non-trivial performance overhead for graph-

ics memory-intensive workloads involving frequent page

table updates.

To understand such overhead, this paper first presents

GMedia, a media benchmark, and uses it to analyze the

causes of such overhead. Our analysis shows that fre-

quent updates to guest VM’s page tables causes excessive

updates to the shadow page table in the hypervisor, due to

the need to guarantee the consistency between guest page

table and shadow page table. To this end, this paper pro-

poses gHyvi1, an optimized GPU virtualization scheme

based on gVirt, which uses adaptive hybrid page table

shadowing that combines strict and relaxed page table

schemes. By significantly reducing trap-and-emulation

due to page table updates, gHyvi significantly improves

gVirt’s performance for memory-intensive GPU work-

loads. Evaluation using GMedia shows that gHyvi can

achieve up to 13x performance improvement compared

to gVirt, and up to 85% native performance for multi-

thread media transcoding.

1 Introduction

The emergence of HPC cloud [30] has shifted many

computation-intensive workloads such as machine learn-

ing [24], molecular dynamics simulations [31] and me-

dia transcoding to cloud environments. This necessi-

tates the use of GPU to boost the performance of such

computation-hungry applications, resulting in a new

1The source code of gHyvi will be available at https://01.org/

igvt-g.

computing paradigm called GPU cloud (such as Ama-

zon’s GPU cloud [2]). Hence, it is now vitally important

to provide efficient GPU virtualization to provision elas-

tic GPU resources to multiple users.

To address this challenge, two recent full GPU virtual-

ization techniques, gVirt [29] and GPUvm [28], are pro-

posed respectively. gVirt is the first open-source product-

level full GPU virtualization approach based on Xen hy-

pervisor [11] for Intel GPUs, while GPUvm provides

a Graphic Process Unit (GPU) virtualization approach

on the NVIDIA card. This paper mainly focuses on

gVirt due to its open-source availability. Specifically,

gVirt presents a vGPU instance to each VM to run na-

tive graphics driver, which achieves high performance

and good scalability for GPU-intensive workloads.

While gVirt has made an important first step to provide

full GPU virtualization, our measurement shows that it

still incurs non-trivial overhead for media transcoding

workloads. Specifically, we build GMedia using Intel’s

MSDK (Media Software Development Kit) to charac-

terize the performance of gVirt. Our analysis uncovers

that gVirt still suffers from non-trivial performance slow-

down due to an issue called Massive Update Issue. This

is caused by frequent updates on guest page tables, which

lead to excessive VM-exits to the hypervisor to synchro-

nize the shadow page table with the guest page table.

To address the Massive Update Issue, this paper intro-

duces gHyvi, which provides a hybrid page table shad-

owing scheme to provide optimized full GPU virtual-

ization based on Xen hypervisor for Intel GPUs. In-

spired by the GPU programming model, we introduce a

new asynchronous mechanism, namely relaxed page ta-

ble shadowing, which removes trap-and-emulation and

thus reduces the overhead of massive page table’s mod-

ifications. To minimize the overhead of making guest

and shadow page tables consistent, we combine the two

mechanisms into a adaptive hybrid page table shadow-

ing scheme, which take advantage of both the traditional

strict and the new relaxed page table shadowing. When

1
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there are infrequent page table accesses, gHyvi works in

strict page table shadowing; once the gHyvi detects the

guest VM is frequently updating the page table, it will

switch to the relaxed page table shadowing.

One critical issue of using the relaxed page table shad-

owing scheme is to reconstruct the shadow pages when

shadow pages are inconsistent with guest pages. To bet-

ter understand the tradeoff of different reconstruction

policies, we implement and evaluate four page table re-

construction policies: full reconstruction, static partial

reconstruction, dynamic partial reconstruction and dy-

namic segmented partial reconstruction. Our analysis

shows that the last one usually has better performance

than the others, which is thus used as the default policy

for gHyvi.

We have implemented gHyvi based on gVirt, which

comprises 600 LoCs. Experiments using GMedia on

an Intel GPU card show that gHyvi can achieve up to

13x performance improvement compared to gVirt, and

up to 85% native performance for multi-thread media

transcoding. Our analysis shows that gHyvi wins due

to the reduction of up to 69% VM-exits.

In summary, this paper makes the following contribu-

tions:

• A GPU-enabled benchmark for media transcoding

performance (GMedia), by invoking functions from

Intel MSDK to evaluate and collect the performance

data on Intel’s GPU platforms.

• A relaxed page table shadowing mechanism as well

as a hybrid shadow page table scheme, which com-

bines the strict page table shadowing with the re-

laxed page table shadowing.

• Four reconstruction policies: the full reconstruc-

tion policy, static partial reconstruction policy, dy-

namic partial reconstruction policy, and the dy-

namic segmented partial reconstruction policy for

relaxed page table shadowing mechanism.

• An evaluation showing that gHyvi achieves up to

85% native performance for multi-thread media

transcoding and a 13x speedup over gVirt.

The rest of the paper is organized as follows: Sec-

tion 2 describes some background information on gVirt

and GPU programming model. Section 3 presents our

benchmark for media transcoding and discusses the Mas-

sive Update Issue in detail, followed by the design and

implementation of gHyvi In section 4. Then, section 5

evaluates the gHyvi and section 6 discusses the related

work. Finally, section 7 concludes with a brief discus-

sion on future work.

2 Background

2.1 GPU for Computing

CPU
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Graphic Memory

System Memory

GPU Page Table

Ring 
Buffer
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Render Engine Frame Buffer

Feed 
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Fetch
Commands

Access

Access

CMDs

Batch Buffer

Figure 1: GPU Programming Model

GPU programming model: Figure 1 illustrates the

GPU programming model. The graphics driver produces

GPU commands into primary buffer and batch buffer,

which is driven by the high level programming APIs like

OpenGL and DirectX. GPU consumes the commands

and fulfills the acceleration work accordingly. The pri-

mary buffer is a ring structure (ring buffer), which is

designed to deliver the primary commands. Due to the

limited space in the ring buffer, the majority (up to 98%)

of commands are in the batch buffer chained to the ring

buffer.

A register tuple, which includes a head register and

a tail register, is implemented in the ring buffer. CPU

fills commands from tail to head, and GPU fetches com-

mands from head to tail, all within the ring buffer. The

driver notifies GPU the submission and completion of the

commands through the tail, while GPU updates the head.

Once the CPU completes the placement of commands in

the ring buffer and batch buffer, it informs GPU to fetch

the commands. In general, GPU will not fetch the com-

mands placed by the CPU in the ring buffer until the CPU

updates the tail register [29].

GPU Cloud: Due to the massive computing power,

GPU has been expanded from the original graphic com-

puting to general purpose computing. The rising of GPU

cloud, which extends today’s elastic resource manage-

ment capability from CPU to GPU, further enables effi-

cient hosting of GPU workload in cloud and datacenter

environments. The strong demand of hosting GPU ap-

plications calls for GPU clouds that offer full GPU virtu-

alization solutions with good performance, full features

and sharing capability.

2
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2.2 GPU Benchmarks

While there are many GPU benchmarks evaluating the

performance of GPU cards, they mainly focus on graph-

ics ability of cards [1, 8] either for OpenGL or DirectX

commands. Though there are a few benchmarks for gen-

eral purpose computing (GPGPU) such as Rodinia [12]

and Parboil [27], they are not available for Intel’s GPU.

Besides, existing benchmarks neglect the media process-

ing workloads, which is a key to boost the performance

of media applications in cloud.

To this end, this paper presents GMedia, a media

transcoding benchmark shown in Figure 4, based on In-

tel’s MSDK (Media Software Development Kit). Intel’s

MSDK grants media application developers access to

hardware acceleration through a unified API. As a result,

developers can take advantage of the media acceleration

capabilities of future graphics-processing solutions with-

out rewriting the code.

GMedia is a wrapper, which directly invokes the me-

dia functions of Intel’s MSDK to generate common me-

dia transcoding workloads. By modifying the configu-

ration files, we can assign source media file and target

media file’s settings like resolution, bitrate, FPS, etc. Be-

sides, test cases can be run with assigned threads, which

is quite helpful in order to evaluate multi-task perfor-

mance. After running the benchmark, a report will be

provided, which shows the average FPS (frame per sec-

ond) for each thread and total average FPS. The FPS re-

sults intuitively reflect the performance.

3 gVirt and Massive Update Issue

3.1 Intel gVirt

gVirt [29], a product-level full GPU virtualization for In-

tel Graphics, achieves both good performance and scala-

bility. In full GPU virtualization, a virtual machine mon-

itor (VMM) traps and emulates the guest access to the

privilege GPU resources for security and multiplexing,

while passing through access to the performance critical

resources, such as the access of CPU to graphic mem-

ory. For GPU commands, once the CPU submits them,

they will be parsed and audited to ensure the safety. Most

of the GPU commands will be executed in GPU without

VMM intervention, resulting in the nearly native perfor-

mance being achieved.

gVirt applies virtualization to the GPU page tables.

The shared shadow global page table is implemented for

all VMs in order to achieve resource partition and ad-

dress space ballooning. Here, ballooning is the technique

gVirt uses to isolate the address spaces of different VMs

in shared shadow global page table. The shared shadow

global page table is accessible for every VM. However,

ballooned
ballooned

Guest

VM1 global page table VM2 global page table

Host

System memory

shadow global page table

Figure 2: Shared shadow global page table

only part of the shared global page table can be accessed

for one VM to guarantee the isolation, and the balloon-

ing technique hides the rest part of shared shadow page

table from this VM. As shown in Figure 2, each VM con-

tains its own guest global page table to translate from

the graphics memory frame number to the guest mem-

ory frame number. The shared shadow global page table

maintains the translations from graphics memory frame

number to the host memory frame number for all VMs.

Page Directory 
Table(PDE) Page Table(PTE)

Shadow Page Directory 
Table (PDE)

Shadow Page Table 
(PDE)

Guest

Host System 
Memory

Figure 3: per-VM shadow local page table

Per-VM shadow local page table is implemented to

achieve pass-through of local graphics memory access.

As shown in Figure 3, the local page tables are with two-

level paging structures, the first level being the Page Di-

rectory Entries (PDEs), which is located in the global

page table. This, in turn, points to the second level Page

Table Entries (PTEs), which is in the system memory.

The generic solution for keeping shadow page table

consistent with guest page table is to write-protect the

shadow page table at all points in time. When a write-

protection page fault happens, VMM can potentially

trap and emulate updates to the guest page table. In

gVirt, shadow page tables are implemented in this strict

page table shadowing, which is a mechanism that syn-

chronously keeps the page table consistent with the cor-

responding guest page table all the time.
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3.2 Massive Update Issue
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Figure 4: GMedia results of Native and gVirt

While gVirt achieves good performance in many

cases, where the guest modifications of page table are in-

frequent, it suffers from poor performance when dealing

with workloads such as media transcoding.

By observing the pattern of guest page table modifi-

cations, we find that the guest VM is frequently swap-

ping graphics memory pages, i.e., dropping the previous

pages or contents and re-construct the contents later on

when needed. Once the guest VM starts to construct

the memory pages, it modifies the entries of page table

contiguously, until the operation is complete. In turn,

this causes a huge amount of page table entry modifica-

tions, and the excessive modifications result in busy trap-

and-emulate, which eventually leads to low FPS media

transcoding with multiple threads. When taking this into

account, it is safe to conclude that the strict shadow page

table shadowing mechanism is the root cause of the per-

formance issue.

To confirm this, we used GMedia to investigate the

media transcoding performance of gVirt under various

workloads. Figure 4 shows the results of media transcod-

ing on our test platform (detailed setting in section 5)

with multiple threads normalized to one thread. We run

30 cases for each resolution to get a full coverage while

selectively presenting the representative cases. For many

cases, the performance discrepancy between gVirt and

native is not obvious. For the 480p media file transcod-

ing, the native machine works fine in each case with

small performance degradation, yet the performance on

DomU (the production VM in Xen) degrades very clearly

with thread multiplies over 20. For high-resolution me-

dia file transcoding, the native machine still works ad-

equately in each case, while DomU’s performance de-

grades with multiple threads, with over 90% in the worst

cases.

Transcoding a media file requires a large amount of

graphic memory in order to read the file in and process

it. Once the memory is limited, Intel’s GPU driver [4] [5]

allocates a new memory page and modifies the page ta-

ble entry to point to the new memory page. In gVirt,

the write-protection page faults of the shadow page ta-

ble happen massively when the thread number becomes

higher or when the video resolution is high, resulting

in the low FPS. Because the guest VM frequently al-

locates new graphic memory from system memory and

massively modifies the page table entries. Therefore, we

define this performance overhead problem caused by fre-

quent page table updates as the Massive Update Issue.

3.3 PTE Update Pattern

To further analyze the Massive Update Issue, we pro-

file 6 media transcoding cases from GMedia: 5-thread

720p, 7-thread 720p, 15-thread 720p, 3-thread 1080p,

4-thread 1080p and 10-thread 1080p, to count the VM-

exits happen during the workload running. We catego-

rize the VM-exit reasons and find that the EPT-violation

dominates in cases with the Massive Update Issue. By

breaking down the EPT-violation we find that the guest

VM frequently modifies the PTE pages when running is-

sued cases. Furthermore, we analyze the PTE updates to

find the pattern of workloads with the Massive Update

Issue, which motivates the design of gHyvi.
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Figure 5: Break-down of VM-exit

Figure 5 shows the break-down of 6 media transcod-

ing cases’ VM-exits in the duration of 10s. Among these

6 cases, 15-thread 720p and 10-thread 1080p transcod-

ing have much higher rates of Extended Page Tables vi-

olation (EPT-violation), which is caused by a page fault

in the extended page table. As shown in Table 1, the

percentages of EPT-violation are usually under 25% in

other cases but dramatically increase to 62.40% in the

case of 15-thread 720p and 79.45% in the case of 10-

thread 1080p.
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EPT-violation

Threads Resolution Percentage

5 720p 24.43%

7 720p 23.06%

15 720p 62.40%

3 1080p 21.43%

4 1080p 23.82%

10 1080p 79.45%

Table 1: EPT-violation percentage in the 6 cases

Interestingly, when a VM guest graphics driver ac-

cesses CPU pages to prepare PTE pages for GPU, it trig-

gers EPT-violation as well. We further provide a break-

down of the EPT-violations. PTE updates trigger 82.97%

and 78.82% of VM-exit caused by EPT-violation for

the cases of 15-thread 720p transcoding and 10-thread

1080p transcoding accordingly. The PTE page updates

excessively expand the percentage of VM-exits caused

by EPT-violation.
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Furthermore, Figure 6 demonstrates the update fre-

quency on 512 pages within 10s for 15-thread 720p

transcoding case. The pages whose index lie between

150 and 320 are massively modified, and the frequency

can be up to 7.5k times. Each PTE updates trigger the

VM-exit, then the VMM traps and emulates the corre-

sponding writes. However, there are some pages that are

never accessed, like the pages whose index is between

320 and 512. This pattern encourages us to implement

the partial reconstruction policies aside from reconstruct-

ing the whole page table, because part of the page table

may stay unchanged.

We also collected the timestamp and page index to

each PTE update to see the overall pattern. Figure 7

demonstrates all 627k PTE updates occurring within the

10s of 15-thread 720p transcoding case. This pattern is
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Figure 7: PTE update pattern (in 10s)

in correspondence with Figure 6. Updates on the same

page repeat throughout the entire progress.
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A small part is split from the 10s to see the detailed

pattern of this case’s PTE updates. Figure 8 demon-

strates the PTE page update pattern in 0.2s, within the

same case. The updates on one PTE page are continuous,

i.e., once a PTE page is modified, there will be following

updates on the same page. This pattern inspires us to re-

move the write-protection of PTE page once the page is

modified for the first time.

4 Design and Implementation

To address the Massive Update Issue for media transcod-

ing workload, this paper describes, gHyvi, a hybrid page

table shadowing scheme for gVirt, as shown in Figure 9.

gHyvi introduces a new page table shadowing mecha-

nism for shadow page tables in gVirt, namely relaxed

page table shadowing, which relaxes the constraints of

write-protection to the guest page table. gHyvi switches

between two different page table shadowing mecha-

nisms, based on the pattern of GPU’s current workload.
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Figure 9: High level architecture of gHyvi

By combining traditional strict page table shadowing and

relaxed page table shadowing mechanism, gHyvi takes

advantage of both. For workloads with the Massive Up-

date Issue like multi-thread media transcoding, gHyvi

could efficiently improve the gVirt’s performance.

4.1 Workflow of gHyvi
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Figure 10: Workflow of gHyvi

Figure 10 illustrates the basic workflow of gHyvi:

(1) gHyvi initiates the shadow page table which is con-

sistent with the guest page table, and it makes all the

page table write-protected.

(2) If a page table entry is modified by the guest, it trig-

gers page fault which will be trapped into gHyvi.

gHyvi takes a snapshot of this page and removes

the write-protection of this page. The correspond-

ing page table entry of the shadow page table will

be switched into the relaxed shadowing mechanism.

Afterwards, the modifications on the guest page will

not be updated to the shadow page table immedi-

ately.

(3) When the guest VM is scheduled in, the shadow

page table has been already inconsistent with the

guest page table. gHyvi will re-construct the

shadow page table according to the previous snap-

shot to promote coherence with the guest page table

again, so that it could guarantee the hardware en-

gines use the correct translations.

(4) After the reconstruction of the shadow page table,

gHyvi sets the page table entries in the relaxed page

table shadowing back to the strict page table shad-

owing. Then, this workflow circle would be re-

peated again.

4.2 Relaxed Page Table Shadowing

From GPU’s programming model, we observe that the

guest VM’s modifications of page table entries will not

take effect until the GPU commands are submitted to

physical engine by VMM. Inspired by this, we imple-

ment a new page table shadowing mechanism for page

table called relaxed page table shadowing. This mech-

anism is applied to the guest VM’s shadow page table

when gHyvi detects that the guest VM modifies the page

table entries massively, i.e., the trap-and-emulation of the

guest page table frequently happens. In contrast to strict

page table shadowing, the relaxed page table shadowing

removes the write-protection of page tables to avoid the

cost from trapping and emulating the modifications of

page table.

For gHyvi, the relaxed page table shadowing will re-

duce the overhead of trapping and emulating due to con-

tinuous and massive modifications on the guest page ta-

ble. After the shadow page table has been switched to

the relaxed page table shadowing mechanism, modifica-

tions within the guest page table will not be updated to

shadow page table temporarily. The latency is acceptable

because of the GPU programming model in which GPU

may fetch the commands and cache the page table trans-

lations internally at the time of command submission. At

the time the commands are submitted to the physical en-

gine, the shadow page table would be consistent with

guest page table again to ensure correct translations by

reconstructing the page table.
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4.3 Hybrid Page Table Shadowing

As we discussed before, for many workloads there are in-

frequent modifications to the guest page table, where the

strict page table shadowing mechanism fits well in this

situation. In such cases, relaxed page table shadowing is

not suitable, because reconstructing a page takes a longer

period than trapping and emulating modifications on that

page. To make gHyvi enjoy good performance for both

cases and minimize the cost of updating shadow page

table, we combine the two mechanisms into one hybrid

page table shadowing, where gHyvi’s shadow page ta-

bles adaptively switch between the strict shadowing and

the relaxed shadowing mechanisms, based on the current

workload’s access pattern.

Since infrequent page table access pattern is ubiqui-

tous, gHyvi will keep guest page table mostly working

with the strict shadowing mechanism. Once the gHyvi

detects the guest VM is frequently modifying the page

table, it will automatically switch the guest page ta-

ble into a relaxed mechanism. When the guest VM no

longer frequently modifies page table, gHyvi may switch

guest page table back to the strict shadowing mechanism.

gHyvi can also selectively apply the relaxed shadowing

mechanism to certain portions of the page table, instead

of the whole page table.
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Figure 11: Page reconstruction with snapshot

4.4 Page Reconstruction

Page reconstruction is necessary when the shadow pages

are not consistent with the guest pages. There are 1024

page entries in one page, and in order to reconstruct the

shadow page, generally we need to re-write all the entries

and make sure each entry is consistent with the corre-

sponding entry of the guest page. However, when part of

a page is modified, we do not necessarily need to rewrite

all its entries when we reconstruct it, because rewriting

the unmodified part of the page is costly. Hence, we in-

troduce snapshot to accelerate the page reconstruction.

As shown in Figure 11, when a shadow page is consis-

tent with the guest page after the reconstruction or initi-

ation, we take a snapshot of the guest page and store it.

When reconstructing a page, we will compare the current

page with the snapshot and get the different entries. The

different section is the modified part of the page. Hence,

we just need to reconstruct this part to make the shadow

page consistent with the guest page table. Although the

cost of reconstructing a page is expensive, it is worth-

while compared to the efforts needed to trap and emulate

the modification multiple times.

4.5 Reconstruction Policies

We implement four reconstruction policies for gHyvi and

evaluate them to choose a final policy which delivers the

best performance. When gHyvi switches a page into

the relaxed shadowing mechanism, the write-protection

of this page is removed. Moreover, relaxed page table

shadowing is an asynchronous mechanism which allows

the shadow page table to be inconsistent when it is not

needed for delivering translations. Hence, the follow-

ing modifications on it will not be updated to the shadow

page immediately. Before the commands are submitted

to the physical engine, gHyvi will reconstruct the page’s

corresponding shadow page to ensure the correct trans-

lation. The profiling of cases with Massive Update Issue

in section 3.3 demonstrates that when the workload is ac-

cessing the page table massively, only certain pages are

being accessed repeatedly, and the majority of the guest

page table still remains untouched. Hence, it is essential

for gHyvi to switch certain pages into relaxed shadowing

mechanism and reconstruct them when necessary.

The full reconstruction policy is to switch all pages

into the relaxed shadowing mechanism, and reconstruct

them all before the commands are submitted to the physi-

cal engine. When a VM is created, it allocates 512 pages

in total, and we will remove the write-protection of all

512 pages. After that, there will no longer be any trap-

ping and emulating to update the shadow pages, and all

the shadow pages will be reconstructed to guarantee that

physical engine gets the correct translations.

The static partial reconstruction policy selects a cer-

tain amount of pages to apply with relaxed shadowing. It

reconstructs the selected pages each time to make them

consistent with their corresponding guest pages while the

unselected pages still remain in the strict shadowing. Ac-
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cording to the profiling of cases with the Massive Up-

date Issue in section 3.3, there are some pages being ac-

cessed much more frequently than other pages, which are

referred to as hot pages. These hot pages are specifi-

cally selected to utilize the relaxed shadowing mecha-

nism based on the observed access pattern.

The dynamic partial reconstruction policy is uti-

lized to apply the relaxed shadowing mechanism to pages

dynamically, based on the access pattern of workload. At

the time VM is created, all the pages are applied with

strict shadowing and gHyvi maintains a list to record

pages that are run with the relaxed shadowing. When

a page is modified for the first time, a page fault occurs.

gHyvi will add this page to the list and switch it into the

relaxed shadowing mechanism. The new pages will then

be continuously added to the list while the workload is

running. Eventually the pages in the list will cover all

the modified pages.

The dynamic segmented partial reconstruction pol-

icy is an optimization for the dynamic partial reconstruc-

tion policy. Like the dynamic partial reconstruction pol-

icy, gHyvi puts modified pages in the dirty list, and every

time when the commands submitted to the physical en-

gine, the shadow page table will be consistent with guest

page table again, by reconstruction. However, in this op-

timized policy, gHyvi will reset the dirty list, and switch

the pages in the list back to the strict shadowing mecha-

nism after the reconstruction.

Currently, gHyvi uses the dynamic segmented partial

reconstruction policy as default, according to the perfor-

mance evaluation in section 5.2.

5 Evaluation

This section presents a set of evaluations to compare

the performance of gHyvi with the original gVirt. We

run media transcoding and 2D/3D workloads in Linux,

along with 2D/3D workloads in Windows. We first com-

pare the four reconstruction policies in gHyvi, which

confirms that dynamic segmented partial reconstruction

policy is with the best performance. Then, we use

this policy to compare gHyvi with the original gVirt

as well as native performance. In summary, our re-

sults show that gHyvi achieves 85% of native perfor-

mance in most media transcoding test cases on Linux.

For Linux 3D workloads, gHyvi has no negative effect

in LightsMark, OpenArena, and UrbanTerror, respec-

tively. For Linux 2D workloads, gHyvi shows no nega-

tive effect in firefox-asteroids, firefox-scrolling, midori-

zoomed, and gnome-system-monitor, respectively. For

windows 2D/3D workloads, gHyvi has no negative ef-

fect on performance in 3Dmark06 [1], Heaven3D [3],

and PassMark2D [8] respectively.

5.1 Configuration

Our test platform deploys a 4th generation Intel Core

processor i5 4570 with 4 CPU cores (3.2Ghz), Intel

Z87 chipset, 8GB system memory and a 250GB Seagate

HDD disk. The Intel Processor Graphics integrated in the

CPU supports a 2GB global graphics memory space and

multiple 2GB local graphics memory spaces. We run 64-

bit Ubuntu 14.04 with a 3.14.1 kernel in both Dom0 and

Linux guest, and 64-bit Windows 7 in Windows guest, on

Xen 4.3. Both Linux and Windows run a native graphics

driver. Each VM is allocated with 2 vCPUs, 2GB system

memory and 672MB global graphics memory.

We evaluate the performance on native, gVirt, and

gHyvi respectively. For evaluations on Linux, our cus-

tomized media performance benchmark was used for

media performance. The Phoronix Test Suite 3D bench-

mark including LighsMark, OpenArena, UrbanTerror

are used for 3D performance. Additionally, Cario-perf-

trace 2D benchmark including firefox-asteriods (firefox-

ast), firefox-scrolling (firefox-scr), midori-zoomed (mi-

dori), and gnome-system-monitor (gnome) is used for

2D performance. For evaluations on Windows, we run

3DMark06, Heaven3D and PassMark2D workloads. All

the benchmarks are run under 1920*1080 resolution. We

will compare the performance of VM under gHyvi, gVirt,

and the native system.

5.2 Reconstruction Policy

In this section, we evaluate four reconstruction policies

designed for gHyvi, full reconstruction, static partial re-

construction with four different settings (50, 100, 200,

300), dynamic partial reconstruction, and dynamic seg-

mented reconstruction. The dynamic segmented recon-

struction achieves the best performance, up to 13x of

gVirt and 85% of native.
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Figure 12: gHyvi with full reconstruction policy

Figure 12 presents the performance of gHyvi with the

full reconstruction policy, and all multiple threads are

8
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normalized into a single thread. Throughout all cases,

the FPS of full reconstruction policy is between 100 and

200. gHyvi shows a worse performance than gVirt in

cases without the Massive Update Issue, while achieving

a better performance when the issue occurs. As we dis-

cussed in section 4.5, all 512 pages are applied with the

relaxed mechanism, so full reconstruction brings more

overhead on reconstructing non-accessed pages, which

is the reason for cases with little page update showing

poor performance.
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Figure 13: gHyvi with static reconstruction policy

We selectively switch 50, 100, 200, and 300 pages

into the relaxed mechanism to evaluate the static par-

tial reconstruction policy. As shown in Figure 13, for

cases without the issue static partial reconstruction pol-

icy achieves a worse performance than gVirt. The more

pages that are switched into the relaxed mechanism, the

worse the performance static partial reconstruction be-

comes. For pages with few page table updates, recon-

struction is meaningless. For cases with the Massive Up-

date Issue, the static partial reconstruction policy works

and achieves a superior performance than gVirt. Policy

with 200 pages setting achieves the best performance for

cases with the Massive Update Issue, because policies

with less pages cannot cover all the frequently accessed

pages, and policies with more pages include some use-

less pages.

Figure 14 confirms that the dynamic segmented partial

reconstruction achieves better performance than dynamic

partial reconstruction comprehensively. gHyvi performs

better than gVirt in issued cases, and has similar perfor-

mance in normal cases. The dynamic partial reconstruc-

tion switches the PTE pages into the relaxed mechanism

progressively. However, some pages switched into the

relaxed mechanism may never be accessed again, and

reconstructing these pages will produce extra overhead.

Dynamic segmented partial reconstruction resets the re-

laxed pages, after setting them to the guest pages. So for

each cycle, dynamic segmented policy only reconstructs
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Figure 14: gHyvi with dynamic partial reconstruction

and dynamic segmented partial reconstruction

pages that need to be reconstructed. Overall, dynamic

segmented partial reconstruction is the most efficient pol-

icy, which is finally adopted by gHyvi.

5.3 2D and 3D performance

In this section, we evaluate the 2D and 3D performance

of gHyvi under Linux and Windows. The results show

that gHyvi has comparable performance with gVirt’s 2D

and 3D performance. Moreover, gHyvi achieves slightly

superior performance than gVirt in some cases.
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Figure 15: Performance running Linux 2D/3D work-

loads

Figure 15 demonstrates that gHyvi achieves up to

94.63% of native performance in 2D workloads and

88.81% in 3D workloads on Linux. Figure 16 demon-

strates that gHyvi achieves up to 88.81% on Windows.

With the exception of the firefox-scrolling, urbanter-

ror, warsow, SM2.0 and Pass2D, gHyvi outperforms

gVirt. However, the performance discrepancy between

gHyvi and gVirt are acceptable.
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Figure 16: Performance running Windows 2D/3D work-

loads

6 Related Work

6.1 GPU Benchmarks

Since GPUs are used for acceleration of general pur-

pose computing, some benchmarks have been imple-

mented for evaluating their performance. Rodinia [12]

is a benchmark suite for heterogeneous computing. It

aids architects in the study of emerging platforms such

as GPUs. Rodinia includes applications and kernels that

target multi-core CPU and GPU platforms. And Par-

boil [27] is a set of throughput computing applications

useful for studying the performance of throughput com-

puting architecture and compilers. It collects benchmarks

from throughput computing application researchers in

many different scientific and commercial fields includ-

ing image processing, bio-molecular simulation, fluid

dynamics, and astronomy.

Unfortunately, the benchmarks above are not available

for Intel’s GPU now. Meanwhile, GPU’s media perfor-

mance has become a big concern for service providers.

However, there is no benchmark specifically for this kind

of workload. So, this paper proposes GMedia, a media

transcoding benchmark based on Intel’s MSDK.

6.2 GPU Virtualization

Though virtualization has been studied extensively in re-

cent years, GPU virtualization is still a nascent area of

research. Typically, there are four ways to use GPU in a

Virtual Machine (VM): I/O pass-through, device emula-

tion, API remoting, and mediated pass-through.

A naive way to use GPU in virtualized environment

would be to directly pass through the device to a specific

VM [20, 14]. However, the GPU resources are dedicated

and cannot be multiplexed.

Device emulation, similar to binary translation in CPU

virtualization, is impractical. GPUs, unlike CPUs, whose

specifications are not well documented, vary between

vendors [15]. Emulating GPUs from different vendors

requires vast engineering work. Notably, following up

the new GPU hardware would make it a nightmare to

maintain the codebase.

API remoting is widely used in commercial softwares

such as VMWare and VirtualBox, and has been stud-

ied throughout many years. By using API remoting,

graphic commands are forwarded from guest OS to host.

VMGL [23] and Oracle VirtualBox [7], both based on

Chromium [21], replace the standard OpenGL library in

Linux Guests with its own implementation to pass the

OpenGL commands to VMM. Nonetheless, forwarding

OpenGL commands is not considered a general solu-

tion, since Microsoft Windows mainly uses their own

DirectX API. Whether forwarding OpenGL or DirectX

commands, it would be difficult to emulate the other API.

gVirtuS [17], VGRIS [25], GViM [19], rCUDA [16] and

vCUDA [26] use the same manner to forward CUDA and

OpenCL commands, solving the problem of virtualizing

GPGPU applications.

VMware’s products consist of a virtual PCI device,

SVGA II card [15], and the corresponding driver for dif-

ferent operating systems. The emulated device acts like

a real video card which has registers, graphics memory

and a FIFO command queue. All accesses to the vir-

tual PCI device inside a VM is handled on the host side,

by a user-level process, where the actual work is per-

formed. Moreover, they have designed another graphic

API called SVGA3D. The SVGA3D protocol is simi-

lar to Direct3D and shares a common abstraction. The

purpose of SVGA3D is to eliminate the commands for a

specific GPU. Meanwhile, a GPU can also emulate the

missing features by SVGA3D protocol, which provides

a practical portability for their products.

Recently, two full GPU virtualization solutions have

been proposed, i.e., gVirt of Intel [29] and GPUvm [28],

respectively. gVirt is the first open source product level

full GPU virtualization solution in Intel platforms. gVirt

presents a vGPU instance to each VM which allows the

native graphics driver to be run in VM. The shadow

page table is updated with a coarse-grained model, which

could lead to a performance pitfall under some video

memory intensive workloads, such as media transcoding.

GPUvm presents a GPU virtualization solution on a

NVIDIA card. Both para- and full-virtualization were

implemented. However, full-virtualization exhibits a

considerable overhead for MMIO handling. The perfor-

mance of optimized para-virtualization is two to three

times slower than native. Since NVIDIA has individ-

ual graphics memory on the PCI card, while the Intel

GPU uses part of main memory as its graphics memory,

the way of handling memory virtualization is different.

GPUvm cannot handle page faults caused by NVIDIA

10
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GPUs [18]. As a result, they must scan the entire page ta-

ble when translation lookaside buffer (TLB) flushes. As

gHyvi allocates graphics memory within the main mem-

ory, VMM can write-protect the page tables to track the

page table modifications. This fine-grained page table

update mechanism mitigates the overhead incurred by

the Massive Update Issue.

NVIDIA GRID [6] is a proprietary virtualization so-

lution from NVIDIA for Kepler architecture. However,

there are no technical details about their products avail-

able to the public.

6.3 Memory Virtualization

One important aspect in GPU virtualization is memory

virtualization, which has been thoroughly researched.

The software method employs a shadow page table to

reduce the overhead of translating a VM’s virtual mem-

ory address. This approach could incur severe overhead

under some circumstances. Agesen et al. [10] listed three

situations where the shadow page table cannot handle

well: the hidden page fault, address space switching,

and the tracing page table entries. They also pointed out

some optimization techniques, such as the trace mecha-

nism and eager validating. Unfortunately, it is hard to

trade off these mutually exclusive techniques. There-

fore, AMD and Intel have added the hardware support for

memory virtualization. All three overheads previously

listed before can be eliminated, but it is not the silver

bullet, a TLB miss punishment is higher in the hardware

solution. In the classical VMM implementations, VMM

employs a trace technique to prevent its shadow PTEs

from becoming inconsistent with guest PTEs, i.e. updat-

ing shadow page table strictly after the guest page table

is modified. Typically, VM trace uses write-protection

mechanism, which can be the source of overhead. This

technique is similar to the current gVirt’s strict page ta-

ble shadowing mechanism, which frequently traps and

emulates the page faults of the shadow page table, and

it causes overhead. gHyvi removes the write-protection

from shadow page table to eliminate the overhead caused

by excessive trap-and-emulation, taking advantage of the

GPU programming model [9].

7 Conclusion and Future Work

gHyvi is an optimized full GPU virtualization solution,

based on the Xen hypervisor, with the adaptive hybrid

page table shadowing scheme, which improves perfor-

mance for workloads with the Massive Update Issue

when compared to gVirt. To address this issue, this pa-

per provides a hybrid page table shadowing scheme, i.e.,

strict and relaxed page table shadowing, to provide an

optimized full GPU virtualization based on Xen hyper-

visor for Intel GPUs. gHyvi combines these two page

table shadowing mechanisms to reduce VM-exits to the

hypervisor. Further, gHyvi automatically switches page

table between them by detecting GPU’s current work-

loads, potentially showing significantly improvement to

gVirt’s performance for workloads with the Massive Up-

date Issue. In order to decide what type of the page need

to be reconstructed, four reconstruction policies are in-

troduced. By running the same testcase through the four

policies, the dynamic segmented partial reconstruction

policy performs the best.

For future work, we will adapt gHyvi to support

KVM [22] when gVirt for KVM is ready. Additionally,

gHyvi will be released in the open source community

soon. We will focus on the areas of portability, scalabil-

ity, and scheduling issues. With previous GPU command

scheduling methods, such as VGRIS and Pegasus [13],

we will investigate the low level access pattern of mas-

sive page table modification with the detailed analysis

of the performance bottleneck of high level applications.

We hope this optimized full GPU virtualization solution

gives insight into designing the support of efficient dis-

tributed systems for GPU acceleration applications.
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Abstract

Modern multicore platforms suffer from inefficiencies
due to contention and communication caused by shar-
ing resources or accessing shared data. In this pa-
per, we demonstrate that information from low-cost hard-
ware performance counters commonly available on mod-
ern processors is sufficient to identify and separate the
causes of communication traffic and performance degra-
dation. We have developed SAM, a Sharing-Aware Map-
per that uses the aggregated coherence and bandwidth
event counts to separate traffic caused by data sharing
from that due to memory accesses. When these counts ex-
ceed pre-determined thresholds, SAM effects task to core
assignments that colocate tasks that share data and dis-
tribute tasks with high demand for cache capacity and
memory bandwidth. Our new mapping policies automat-
ically improve execution speed by up to 72% for individ-
ual parallel applications compared to the default Linux
scheduler, while reducing performance disparities across
applications in multiprogrammed workloads.

1 Introduction

Multicore processors share substantial hardware re-
sources including last-level cache (LLC) space and mem-
ory bandwidth. At the same time, a parallel application
with multiple tasks1 running on different CPU cores may
simultaneously access shared data. Both data and re-
source sharing can result in performance slowdowns and
symptoms including high data traffic (bandwidth con-
sumption) and high LLC miss rates. To maximize effi-
ciency, multicore platforms on server, desktop, as well
as mobile environments must intelligently map tasks to
CPU cores for multiprogrammed and parallel workloads.

Despite similar symptoms, data and resource shar-
ing behaviors require very different task→CPU map-
ping policies—in particular, applications with strong data
sharing benefit from colocating the related tasks on cores
that are in proximity to each other (e.g., cores on one
socket) while applications with high memory demand
or large working sets might best be distributed across

1In this paper, a task refers to an OS-schedulable entity such as a
process or a thread.

sockets with separate cache and memory bandwidth re-
sources. The mapping efficiency is further complicated
by the dynamic nature of many workloads.

A large body of prior work has devised scheduling
techniques to mitigate resource contention [5–7, 14, 15,
17, 18, 21, 22] in the absence of data sharing. Rela-
tively few have investigated data sharing issues [19, 20]
for parallel applications. Tam et al. [19] used direct sam-
pling of data access addresses to infer data sharing be-
havior. While more recent multicore platforms do some-
times provide such sampled tracing capability, trace pro-
cessing in software comes at a significant cost. Tang
et al. [20] demonstrated the behavior of latency-critical
datacenter applications under different task placement
strategies. Their results reinforce the need to provide a
low-cost, online, automated approach to place simultane-
ously executing tasks on CPUs for high efficiency.

This paper presents our operating system strategy for
task placement that manages data sharing and resource
contention in an integrated fashion. In order to separate
the impact of data sharing from resource contention, we
use aggregate information from existing hardware perfor-
mance counters along with a one-time characterization of
event thresholds that impact performance significantly.
Specifically, we use performance counters that identify
on- and off-chip traffic due to coherence activity (when
data for a cache miss is sourced from another core) and
combine this knowledge with LLC miss rates and band-
width consumption to separate sharing-related slowdown
from slowdown due to resource contention.

Our adaptive online Sharing-Aware Mapper (SAM)
uses an iterative, interval-based approach. Based on the
sampled counter values in the previous interval, as well
as measured thresholds in terms of performance impact
using microbenchmarks, we identify tasks that share data
and those that have high memory and/or cache demand.
We then perform a rebalance in order to colocate the
tasks that share data on cores that are in proximity and
with potentially shared caches. This decision is weighed
against the need to distribute tasks with high bandwidth
uses across cores that share fewer resources.

SAM improves the execution speed by up to 72% for
stand-alone parallel applications compared to the default
Linux scheduler, without the need for user input or ma-

1
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nipulation. For concurrent execution of multiple parallel
and sequential applications, our performance improve-
ments are up to 36%, while at the same time reducing
performance disparities across applications. The rest of
this paper presents the design, implementation, and eval-
uation of our sharing-aware mapping of tasks to CPUs on
multicore platforms.

2 Sharing and Contention Tracking

Hardware counters are commonplace on modern pro-
cessors, providing detailed information such as the in-
struction mix, rate of execution, and cache/memory ac-
cess behavior. These counters can also be read at low
latency (on the order of a µSec). We explore the use
of commonly available event counters to efficiently track
data sharing as well as resource contention on multicores.

Our work addresses several challenges. First, pre-
defined event counters may not precisely suit our infor-
mation tracking needs. In particular, no single counter
reports the data sharing activities on multicores. Sec-
ondly, it may be challenging to identify event thresholds
that should trigger important control decisions (such as
saturating uses of a bottleneck resource). Finally, while
many events may be defined in a performance counter ar-
chitecture, usually only a small number can be observed
at one time. For example, the Intel Ivy Bridge archi-
tecture used in our evaluation platform can only monitor
four programmable counters at a time (in addition to three
fixed-event counters).

In this paper, we use these low-cost performance coun-
ters to infer valuable information on various bottlenecks
in the system. Particularly, we focus on intra- and inter-
socket coherence activity, memory bandwidth utiliza-
tion, and access to remote memory (NUMA). We use
the counters and microbenchmarks to analyze the effect
of these factors on performance. We obtain thresholds
for memory bandwidth utilization and coherence activity
that result in significant performance degradation. These
thresholds further enable our system to identify and miti-
gate sharing bottlenecks during execution.

2.1 Coherence Activities

Coherence can be a significant bottleneck in large scale
systems. In multithreaded applications, access to shared
data and synchronization variables trigger coherence ac-
tivities when the threads are distributed across multiple
cores. When data-sharing threads are colocated on the
same multicore socket, coherence is handled within the
socket using a high speed bus or a ring. When threads are
distributed across sockets, the coherence cost increases
significantly due to the higher latency of off-chip access.

Despite the gamut of events monitored by modern day

processors, accounting for coherence activity in a manner
portable across platforms can still be a challenge. Our
goal is to identify performance counters that are available
across a range of architectural performance monitoring
units, and that can help isolate intra- and inter-socket co-
herence. We use the following four counters—last-level
cache (LLC) hits, LLC misses, misses at the last private
level of cache, and remote memory accesses.

In multi-socket machines, there is a clear increase
in overhead when coherence activities cross the socket
boundary. Any coherence request that can be resolved
from within the socket is handled using an intra-socket
protocol. If the request cannot be satisfied locally, it is
treated as a last-level cache (LLC) miss and handed over
to an inter-socket coherence protocol.

We use the cache misses at the last private level, as well
as LLC hits and misses, to indirectly infer the intra-socket
coherence activities. LLC hit counters count the number
of accesses served directly by the LLC and do not include
data accesses satisfied by intra-socket coherence activity.
Thus, by subtracting LLC hits and misses from the last
private level cache misses, we can determine the number
of LLC accesses that were serviced by the intra-socket
coherence protocol.

To measure inter-socket coherence activity, we exploit
the fact that the LLC treats accesses serviced by both off-
socket coherence as well as by memory as misses. The
difference between LLC misses and memory accesses
gives us the inter-socket coherence activity. In our im-
plementation, the Intel Ivy Bridge processor directly sup-
ports counting LLC misses that were not serviced by
memory, separating and categorizing them based on co-
herence state. We sum the counters to determine inter-
socket coherence activities.

We devise a synthetic microbenchmark to help ana-
lyze the performance impact of cross-socket coherence
activities. The microbenchmark creates two threads that
share data. We ensure that the locks and data do not in-
duce any false sharing. Using a dual-socket machine, we
compare the performance of the microbenchmark when
consolidating both threads on a single socket against exe-
cution when distributing them across sockets (a common
result of Linux’s default scheduling strategy). The latter
induces inter-socket coherence traffic while all coherence
traffic uses the on-chip network in the former case.

We vary the rate of coherence activity by changing the
ratio of computation to shared data access within each
loop in order to study its performance impact. Figure 1
shows the performance of consolidating the threads onto
the same socket relative to distributing across sockets.
At low coherence traffic rates, the consolidation and dis-
tribution strategies do not differ significantly in perfor-
mance, but when the traffic increases, the performance
improvement from colocation can be quite substantial.
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Figure 1: Speedup when consolidating two threads that
share data onto the same socket (eliminating inter-socket
coherence) in comparison to distributing them across
sockets as coherence activity is varied.

We use these experiments to identify a per-thread co-
herence activity threshold at which inter-socket coher-
ence causes substantial performance degradation (which
we identify as a degradation of >5%). Specifically on
our experimental platform with 2.2 GHz processors, the
threshold is 2.5×10−4 coherence events per CPU cycle,
or 550,000 coherence events per second.

2.2 Memory Bandwidth Utilization

Our approach requires the identification of a memory
bandwidth utilization threshold that signifies the resource
exhaustion and likely performance degradation. Since all
cores on a socket share the access to memory, we ac-
count for this resource threshold on a per-socket basis—
aggregating the memory bandwidth usage of all tasks
running on each particular socket.

One challenge we face is that the maximum bandwidth
utilization is not a static hardware property but it further
depends on the row buffer hit ratio (RBHR) of the mem-
ory access loads. DRAM rows must be pre-charged and
activated before they can be read or written to. For spatial
locality, DRAMs often activate an entire row of data (on
the order of 4 KB) instead of just the cache line being ac-
cessed. Once this row is opened, subsequent accesses to
the same row incur much lower latency and consume less
device time. Hence, the spatial locality in an application’s
memory access pattern plays a key role in its performance
and resource utilization.

Figure 2 shows the aggregate memory bandwidth used
with increasing numbers of tasks. All tasks in each test
run on one multicore socket in our machine. We show
results for both low- and high-RBHR workloads, using a
memory copy microbenchmark where the number of con-
tiguous words copied is one cache line within a row or an
entire row, respectively. Behaviors of most real-world ap-
plications lie between these two curves. We can clearly
see that the bandwidth available to a task is indeed af-
fected by its RBHR. For example, on our machine, three
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Figure 2: Socket-level memory bandwidth usage (mea-
sured by the LLC MISSES performance counter) for
workloads of high and low row buffer hit ratios (RBHRs)
at increasing number of tasks.

tasks with high RBHR may utilize more memory band-
width than ten low-RBHR tasks do. If we use the max-
imum bandwidth usage of high-RBHR workloads as the
available memory resource, then a low-RBHR workload
would never reach it and therefore be always determined
as having not used the available resource (even when the
opposite is true).

In this paper, we are more concerned with detecting
and mitigating memory bandwidth bottlenecks than uti-
lizing the memory bandwidth at its maximum possible
level. We can infer from Figure 2 that the difference
between the low / high-RBHR bottleneck bandwidths (at
10 tasks) is about 10%. We conservatively use the low
RBHR bandwidth as the maximum available without at-
tempting to track RBHR. Our high-resource-use thresh-
old is set at 20% below the above-defined maximum
available memory bandwidth. Specifically on our experi-
mental platform with 2.2 GHz processors, the threshold is
0.034 LLC misses per cycle, or 75,000,000 LLC misses
per second. A conservative setting might result in detect-
ing bottlenecks prematurely but will avoid missing ones
that will actually result in performance degradation.

2.3 Performance Counters on Ivy Bridge

Our experimental platform contains processors from
Intel’s Ivy Bridge line. On our machine, cores have pri-
vate L1 and L2 caches, and an on-chip shared L3 (LLC).
The Intel Performance Monitoring Unit (PMU) provides
the capability of monitoring certain events (each of which
may have several variants) at the granularity of individual
hardware contexts. Instructions, cycles, and unhalted cy-
cles can be obtained from fixed counters in the PMU. The
remaining events must use the programmable counters.

We encounter two constraints in using the pro-
grammable counters—there are only four programmable
counters and we can monitor only two variants of any par-
ticular event using these counters. Solutions to both con-
straints require multiplexing the programmable counters.
We separate the counters into disjoint groups and then

3
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alternate the groups monitored during successive inter-
vals of application execution, effectively sampling each
counter group from a partial execution.

In order to monitor intra-socket coherence activity,
we use the main event MEM LOAD UOPS RETIRED.
One caveat is that since the event is a load-based event,
only reads are monitored. In our experiments, we found
that since typical long-term data use involves a read fol-
lowed by a write, these counters were a good indica-
tor of coherence activity. We use three variants of this
event, namely L2 MISS (misses at the last private level
of cache), L3 HIT (hits at, or accesses serviced by, the
LLC), and L3 MISS (misses at the LLC), and use these
events to infer the intra-socket coherence activity, as de-
scribed in Section 2.1.

To obtain inter-socket coherence activity, we use the
MEM LOAD UOPS LLC MISS RETIRED event. We
get the inter-socket coherence activity by summing up
two variants of this event—REMOTE FWD and RE-
MOTE HITM.

We read the remote DRAM access event count
from MEM LOAD UOPS LLC MISS RETIRED: RE-
MOTE DRAM.

We use the LLC MISSES event (which includes both
reads and writes) as an estimate of overall bandwidth con-
sumption. Although the LLC MISSES event count in-
cludes inter-socket coherence and remote DRAM access
events, since these latter are prioritized in our algorithm,
further division of bandwidth was deemed unnecessary.

In total, we monitor seven programmable events, with
three variants for each of two particular events, allowing
measurement of one sample for each event across two it-
erations. Since different interval sizes can have statistical
variation, we normalize the counter values with the mea-
sured unhalted cycles for the interval.

3 SAM: Sharing-Aware Mapping

We have designed and implemented SAM, a perfor-
mance monitoring and adaptive mapping system that si-
multaneously reduces costly communication and maxi-
mizes resource utilization efficiency for the currently ex-
ecuting tasks. We identify resource sharing bottlenecks
and their associated costs/performance degradation im-
pact. Our mapping strategy attempts to shift load away
from such bottleneck resources.

3.1 Design

Using thresholds for each bottleneck as described in
Section 2, we categorize each task based on whether its
characteristics exceed these thresholds. The four activity
categories of interest are: inter-socket coherence, intra-
socket coherence, remote DRAM access, and per-socket

memory bandwidth demand.
Figure 3 defines the symbols that are used for SAM’s

task→CPU mapping algorithm illustrated in Figure 4.
Reducing inter-socket coherence activity by colocating
tasks has the highest priority. Once tasks with high inter-
socket coherence traffic are identified, we make an at-
tempt to colocate the tasks by moving them to sockets
with idle cores that already contain tasks with high inter-
socket coherence activity, if there are any. If not, we use
our task categorization to distinguish CPU or memory
bound tasks—SAM swaps out memory intensive tasks
only after swapping CPU bound tasks, and avoids moving
tasks with high intra-socket coherence activity. Moving
memory-intensive tasks is our reluctant last choice since
they might lead to expensive remote memory accesses.

Our second priority is to reduce remote memory ac-
cesses. Remote memory accesses are generally more ex-
pensive than local memory accesses. Since a reluctant
migration might cause remote memory accesses, we reg-
ister the task’s original CPU placement prior to the mi-
gration. We then use this information to relocate the task
back to its original socket whenever we notice that it in-
curs remote memory accesses. To avoid disturbing other
tasks, we attempt to swap tasks causing remote memory
accesses with each other whenever possible. Otherwise,
we search for idle or CPU-bound tasks to swap for the
task that generates remote memory accesses.

After reducing remote memory accesses, we look to
balancing memory bandwidth utilization. SAM identi-
fies memory-intensive tasks on sockets where the band-
width is saturated. The identified tasks are relocated to
other sockets whose bandwidth is not entirely consumed.
We track the increase in bandwidth utilization after every
migration to avoid overloading a socket with too many
memory-intensive tasks. In some situations, such reloca-
tion can cause an increase in remote memory accesses,
but this is normally less damaging than saturating the
memory bandwidth.

3.2 Implementation Notes

Performance counter statistics are collected on a per
task (process or thread) basis with the values accumulated
in the task control block. Performance counter values are
read on every operating system tick and the values are
attributed to the currently executing task.

Our mapping strategy is implemented as a kernel mod-
ule that is invoked by a privileged daemon process. The
collected counter values for currently executing tasks are
examined at regular intervals. Counter values are first
normalized using unhalted cycles and then used to derive
values for memory bandwidth utilization, remote mem-
ory accesses, and intra- and inter-socket coherence activ-
ity for each running task. These values are attributed to

4
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𝒞𝒞T : Per task inter-socket coherence threshold 
MT : Per task memory utilization threshold 
ℛT : Per task remote memory access threshold 
𝒮𝒮   : Set of all sockets 
𝒞𝒞i  : Set of cores in socket i 
𝒞𝒞𝑖𝑖,𝑗𝑗

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠ℎ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝐼𝐼 𝑎𝑎𝑠𝑠𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼𝑎𝑎 𝑔𝑔𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑔𝑔 𝑏𝑏𝑎𝑎 𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑗𝑗 𝑠𝑠𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑎𝑎 
𝒞𝒞𝑖𝑖,𝑗𝑗

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠ℎ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝐼𝐼 𝑎𝑎𝑠𝑠𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼𝑎𝑎 𝑔𝑔𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑔𝑔 𝑏𝑏𝑎𝑎 𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑗𝑗 𝑠𝑠𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑎𝑎 
𝑀𝑀𝑖𝑖,𝑗𝑗    ∶ 𝑀𝑀𝐼𝐼𝑚𝑚𝑠𝑠𝐼𝐼𝑎𝑎 𝑏𝑏𝑎𝑎𝐼𝐼𝑔𝑔𝑏𝑏𝑎𝑎𝑔𝑔𝐼𝐼ℎ 𝑢𝑢𝐼𝐼𝑎𝑎𝑢𝑢𝑎𝑎𝑢𝑢𝑎𝑎𝐼𝐼𝑎𝑎𝑠𝑠𝐼𝐼 𝑏𝑏𝑎𝑎 𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑗𝑗 𝑠𝑠𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑎𝑎 
ℛ𝑖𝑖,𝑗𝑗    ∶ 𝑅𝑅𝐼𝐼𝑚𝑚𝑠𝑠𝐼𝐼𝐼𝐼 𝑚𝑚𝐼𝐼𝑚𝑚𝑠𝑠𝐼𝐼𝑎𝑎 𝑎𝑎𝑠𝑠𝑠𝑠𝐼𝐼𝑠𝑠𝑠𝑠𝐼𝐼𝑠𝑠 𝑏𝑏𝑎𝑎 𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑗𝑗 𝑠𝑠𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑎𝑎 
𝒞𝒞𝑎𝑎𝑠𝑠𝑢𝑢𝐼𝐼𝑠𝑠𝑖𝑖,𝑗𝑗

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝐶𝐶𝑎𝑎𝑠𝑠𝑢𝑢𝐼𝐼𝑠𝑠 𝑠𝑠𝑠𝑠𝑢𝑢𝐼𝐼𝐼𝐼 𝑓𝑓𝑠𝑠𝐼𝐼 𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑗𝑗 𝑠𝑠𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑎𝑎 
𝒫𝒫𝑖𝑖

𝑀𝑀𝑖𝑖𝑀𝑀 : {  𝑗𝑗 | 𝑗𝑗 ∈ 𝒞𝒞𝑖𝑖  ⋀ 𝑀𝑀𝑖𝑖,𝑗𝑗 > 𝑀𝑀𝑇𝑇  }  
𝒫𝒫𝑖𝑖

𝑅𝑅𝑖𝑖𝑀𝑀 ∶ {  𝑗𝑗 | 𝑗𝑗 ∈ 𝒞𝒞𝑖𝑖 ⋀ 𝑅𝑅𝑖𝑖,𝑗𝑗 > 𝑅𝑅𝑇𝑇  } 
𝒫𝒫𝑖𝑖

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖  ∶ {  𝑗𝑗 |  𝑗𝑗 ∈ 𝒞𝒞𝑖𝑖 ⋀ 𝐶𝐶𝑎𝑎𝑠𝑠𝑢𝑢𝐼𝐼𝑠𝑠𝑖𝑖,𝑗𝑗 = 0} 
𝒫𝒫𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:  { 𝑗𝑗 |  𝑗𝑗 ∈ 𝒞𝒞𝑖𝑖  ⋀ 𝐶𝐶𝑖𝑖,𝑗𝑗
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 𝒞𝒞𝑇𝑇 }   

𝒫𝒫𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: {  𝑗𝑗 |  𝑗𝑗 ∈ 𝒞𝒞𝑖𝑖 ⋀ (𝐶𝐶𝑖𝑖,𝑗𝑗

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝒞𝒞𝑇𝑇)  ⋀ (𝐶𝐶𝑖𝑖,𝑗𝑗
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝒞𝒞𝑇𝑇 )} 

𝒫𝒫𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶  ∶ 𝒞𝒞𝑖𝑖 −  𝒫𝒫𝑖𝑖

𝑀𝑀𝑖𝑖𝑀𝑀 −  𝒫𝒫𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 − 𝒫𝒫𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝒫𝒫𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

𝑀𝑀𝑖𝑖 ∶  ∑ ℳ𝑖𝑖,𝑗𝑗𝑗𝑗∈𝒞𝒞𝑖𝑖     
𝑆𝑆𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑖𝑖,𝑗𝑗) ∶ 𝑂𝑂𝐼𝐼𝑎𝑎𝑔𝑔𝑎𝑎𝐼𝐼𝑎𝑎𝑢𝑢 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑓𝑓𝐼𝐼𝑠𝑠𝑚𝑚 𝑏𝑏ℎ𝑎𝑎𝑠𝑠ℎ 𝐼𝐼ℎ𝐼𝐼 𝐼𝐼𝑎𝑎𝑠𝑠𝑠𝑠 𝑠𝑠𝑢𝑢𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢𝑎𝑎 𝐼𝐼𝑢𝑢𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝑔𝑔 
𝑠𝑠𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑎𝑎, 𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼 𝑗𝑗 𝑏𝑏𝑎𝑎𝑠𝑠 𝐼𝐼𝐼𝐼𝑢𝑢𝑢𝑢𝑠𝑠𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑢𝑢𝑎𝑎 𝑚𝑚𝑎𝑎𝑔𝑔𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝑔𝑔.  

Figure 3: SAM algorithm definitions.

the corresponding core and used to update/maintain per-
core and per-socket data structures that store the consol-
idated information. Per-core values are added to deter-
mine per-socket values.

Task relocation is accomplished by manipulating task
affinity (using sched setaffinity on Linux) to restrict
scheduling to specific cores or sockets. This allows seam-
less inter-operation with Linux’s default scheduler and
load balancer.

SAM’s decisions are taken at 100 mSec intervals. We
performed a sensitivity analysis on the impact of the in-
terval length and found that while SAM was robust to
changes in interval size (varied from 10 mSecs to over 1
second), a 100-mSec interval hit the sweet spot in terms
of balancing reaction times. We find that we can detect
and decide on task migrations effectively at this rate. We
were able to obtain good control and response for inter-
vals up to one second. Effecting placement changes at in-
tervals higher than a second can reduce the performance
benefits due to lack of responsiveness.

4 Evaluation

We assess the effectiveness of our hardware counter-
based sharing and contention tracking, and evaluate the
performance of our adaptive task→CPU mapper. Our
performance monitoring infrastructure was implemented
in Linux 3.14.8. Our software environment is Fedora 19
running GCC 4.8.2. We conducted experiments on a
dual-socket machine with each socket containing an In-
tel Xeon E5-2660 v2 “Ivy Bridge” processor (10 physi-
cal cores with 2 hyperthreads each, 2.20 GHz, 25 MB of
L3 cache). The machine has a NUMA configuration in
which each socket has an 8 GB local DRAM partition.

// Inter-socket coherence activity found. Need to colocate appropriate tasks. 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒 𝑖𝑖 ∈ 𝒮𝒮 𝑖𝑖𝑓𝑓 (𝒫𝒫𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖! = ∅) 
  𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒 𝑗𝑗 ∈ 𝒮𝒮 ⋀ (𝑗𝑗 ! = 𝑖𝑖)  
               𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑒𝑒 ((|𝒫𝒫𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +  𝒫𝒫𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖| < |𝐶𝐶𝑖𝑖|) ⋀  (𝒫𝒫𝑗𝑗

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ! = ∅))  
                             𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑒𝑒 (𝒫𝒫𝑖𝑖

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ! = ∅ ⋀  𝒫𝒫𝑗𝑗
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ! = ∅) 

                               𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒 (𝒫𝒫𝑗𝑗
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[0],  𝒫𝒫𝑖𝑖

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖[0]) 
                              𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑒𝑒 (𝒫𝒫𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶! = ∅ ⋀  𝒫𝒫𝑗𝑗
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ! = ∅) 

        𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠 (𝒫𝒫𝑗𝑗
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[0], 𝒫𝒫𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶[0]) 
   𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑒𝑒 (𝒫𝒫𝑖𝑖

𝑀𝑀𝑖𝑖𝑀𝑀! = ∅ ⋀  𝒫𝒫𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ! = ∅) 
        𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠 (𝒫𝒫𝑗𝑗

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[0], 𝒫𝒫𝑖𝑖
𝑀𝑀𝑖𝑖𝑀𝑀[0]}, 𝑖𝑖𝑒𝑒𝑙𝑙 𝑠𝑠 =  𝒫𝒫𝑖𝑖

𝑀𝑀𝑖𝑖𝑀𝑀[0] 
    // This is a reluctant task migration. Store original 

// socket id to restore task when possible. 
𝑖𝑖𝑓𝑓 (𝑆𝑆𝑓𝑓𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑗𝑗,𝑖𝑖) == −1)  

     𝑆𝑆𝑓𝑓𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑗𝑗,𝑖𝑖) = 𝑖𝑖 

// Mitigate any remote memory accesses encountered. 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒 𝑖𝑖 ∈ 𝒮𝒮 𝑖𝑖𝑓𝑓 (𝒫𝒫𝑖𝑖

𝑅𝑅𝑖𝑖𝑀𝑀! = ∅) 
  𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒 𝑗𝑗 ∈ 𝒫𝒫𝑖𝑖

𝑅𝑅𝑖𝑖𝑀𝑀, 𝑖𝑖𝑒𝑒𝑙𝑙 𝑠𝑠 =  𝑆𝑆𝑓𝑓𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑖𝑖,𝑗𝑗) 
                           // Swap with a task migrated reluctantly from the current socket.    
               𝑖𝑖𝑓𝑓 (∃𝑡𝑡∈𝒞𝒞𝑎𝑎(𝑆𝑆𝑓𝑓𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑖𝑖,𝑡𝑡) == 𝑖𝑖))  
               𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠 (𝑗𝑗, 𝑘𝑘)              
               𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒 𝑖𝑖𝑓𝑓 (𝒫𝒫𝑖𝑖

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖! = ∅) 
      𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒 (𝑗𝑗,  𝒫𝒫𝑖𝑖

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖[0]) 
    𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒 𝑖𝑖𝑓𝑓 (𝒫𝒫𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶! = ∅) 
      𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠 (𝑗𝑗,  𝒫𝒫𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶[0]) 
   𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒 𝑖𝑖𝑓𝑓 (𝒫𝒫𝑖𝑖

𝑀𝑀𝑖𝑖𝑀𝑀! = ∅) 
      𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠 (𝑗𝑗,  𝒫𝒫𝑖𝑖

𝑀𝑀𝑖𝑖𝑀𝑀[0]), 𝑖𝑖𝑒𝑒𝑙𝑙 𝑏𝑏 =   𝒫𝒫𝑖𝑖
𝑀𝑀𝑖𝑖𝑀𝑀[0] 

    𝑖𝑖𝑓𝑓 (𝑆𝑆𝑓𝑓𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑖𝑖,𝑏𝑏) == −1) 
    𝑆𝑆𝑓𝑓𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑖𝑖,𝑏𝑏) = 𝑖𝑖 

// Balance the memory intensive load to other sockets.  
𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒 𝑖𝑖 ∈ 𝒮𝒮 𝑖𝑖𝑓𝑓 (𝒫𝒫𝑖𝑖

𝑀𝑀𝑖𝑖𝑀𝑀! = ∅) ⋀  (ℳ𝑖𝑖 >  ℳ𝑇𝑇) 
  𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒 𝑗𝑗 ∈ 𝒮𝒮  𝑖𝑖𝑓𝑓 ((𝑗𝑗 ! = 𝑖𝑖) ⋀  (ℳ𝑗𝑗 < ℳ𝑇𝑇)) 
                          // Balance memory intensive tasks across sockets.  
                          // If cores are unavailable, look for other sockets to balance load.  
  𝑓𝑓𝑒𝑒𝑠𝑠 =  𝑏𝑏𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏𝑆𝑆𝑒𝑒(𝒫𝒫𝑖𝑖

𝑀𝑀𝑖𝑖𝑀𝑀, 𝒫𝒫𝑗𝑗
𝑀𝑀𝑖𝑖𝑀𝑀)    

  𝑖𝑖𝑓𝑓 (𝑓𝑓𝑒𝑒𝑠𝑠 == 𝐵𝐵𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏𝑆𝑆𝑒𝑒_𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑠𝑠𝑠𝑠𝑓𝑓𝑆𝑆𝑖𝑖)  
   𝑏𝑏𝑓𝑓𝑒𝑒𝑠𝑠𝑘𝑘  

Figure 4: SAM task→CPU mapping algorithm.

4.1 Benchmarks

We use a variety of benchmarks from multiple domains
in our evaluation. First, we use the synthetic microbench-
marks described in Sections 2.1 and 2.2 that stress the
inter- and intra-socket coherence and memory bandwidth
respectively. We create two versions of the coherence
activity microbenchmark—one (Hubench) generating a
near-maximum rate of coherence activity (1.3×10−3 co-
herence events per CPU cycle) and another (Lubench)
generating coherence traffic close to the threshold we
identified in Section 2 (2.6×10−4 coherence events per
cycle). We also use the high-RBHR memcpy microbench-
mark (MemBench). MemBench saturates the memory
bandwidth on one socket and needs to be distributed
across sockets to maximize memory bandwidth utiliza-
tion.

PARSEC 3.0 [2] is a parallel benchmark suite con-
taining a range of applications including image process-
ing, chip design, data compression, and content similarity
search. We use a subset of the PARSEC benchmarks that
exhibit non-trivial data sharing. In particular, Canneal
uses cache-aware simulated annealing to minimize the
routing cost of a chip design. Bodytrack is a computer
vision application that tracks a human body through an
image sequence. Both benchmarks depend on data that
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Figure 5: Performance of standalone applications on
Linux with SAM and without (default Linux) SAM. The
performance metric is the execution speed (the higher the
better) normalized to that of the best static task→CPU
mapping determined through offline testing.

is shared among its worker threads. We observe that the
data sharing however is not as high as other workloads
that we discuss below.

The SPEC CPU2006 [1] benchmark suite has a good
blend of memory-intensive and CPU-bound applications.
Many of its applications have significant memory utiliza-
tion with high computation load as well. The memory-
intensive applications we use are libq, soplex, mcf, milc,
and omnetpp. The CPU-bound applications we use are
sjeng, bzip2, h264ref, hmmer, and gobmk.

GraphLab [13] and GraphChi [12] are emerging sys-
tems that support graph-based parallel applications. Un-
like most PARSEC applications, the graph-based appli-
cations tend to have considerable sharing across worker
threads. In addition, the number of worker threads is
not always static and is dependent on the phase of ex-
ecution and amount of parallelism available in the ap-
plication. Such phased behaviors are a good stress
test to ascertain SAM’s stability of control. Our eval-
uation uses a range of machine learning and filtering
applications—TunkRank (Twitter influence ranking), Al-
ternating Least Squares (ALS) [23], Stochastic gradi-
ent descent (SGD) [11], Singular Value Decomposition
(SVD) [10], Restricted Bolzman Machines (RBM) [8],
Probabilistic Matrix Factorization (PMF) [16], Biased
SGD [10], and Lossy SDG [10].

4.2 Standalone Application Evaluation

We first evaluate the impact of SAM’s mapping deci-
sions on standalone parallel application executions. Fig-
ure 5 shows the performance obtained by SAM and the

Application Coherence Remote Workload
memory characteristic

Hubench (8t) 4 0 Data sharing
Lubench (8t) 4 0 Data sharing
MemBench (8t) 0 0 Memory bound
MemBench (6t) 0 0 Memory bound
Canneal (4t) 8 3 CPU bound
Bodytrack (4t) 2 0 CPU bound
TunkRank (4t) 6 1 Data sharing
TunkRank (10t) 13 1 Data sharing
RBM (4t) 12 0 CPU bound
ALS (4t) 1 0 CPU bound
Small Dataset
ALS (4t) 6 3 CPU bound
ALS (10t) 9 1 CPU bound
SGD (4t) 12 2 Data sharing
SGD (10t) 14 3 Data sharing
BSGD (4t) 8 2 Data sharing
BSGD (10t) 20 3 Data sharing
SVD (4t) 12 1 Data sharing
SVD (10t) 24 7 Data sharing
PMF (4t) 20 0 CPU bound
LSGD (4t) 6 3 Data sharing
LSGD (10t) 18 3 Data sharing
SVD (8t) 22 6 Data sharing
SVD (6t) 18 6 Data sharing

Table 1: Actions taken by our scheduler for each stan-
dalone application run. Coherence indicates the num-
ber of task migrations performed to reduce inter-socket
coherence. Remote memory indicates the number of
task migrations performed to reduce remote memory ac-
cesses. Workload characteristic classifies each applica-
tion as either CPU bound, data sharing intensive, or mem-
ory bound.

default Linux scheduler. The performance is normalized
to that of the best static task→CPU mapping obtained of-
fline for each application.

We can see that SAM considerably improves the appli-
cation performance. Our task placement mirrors that of
the best configuration obtained offline, thereby resulting
in almost identical performance. Improvement over the
default Linux scheduler can reach 72% in the best case
and varies in the range of 30–40% for most applications.
This performance improvement does not require any ap-
plication changes, application user/deployer knowledge
of system topology, or need for recompilation.

Parallel applications that have nontrivial data sharing
among its threads benefit from SAM’s remapping strat-
egy. Figure 6(A) shows the average per-thread instruc-
tions per unhalted cycle (IPC). SAM results in increased
IPC for almost all the applications. Figure 6(B) demon-
strates that we have almost eliminated all the per-thread
inter-socket coherence traffic, replacing it with intra-
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Figure 6: Measured hardware metrics for standalone applications. Fig. (A): per-thread instructions per unhalted
cycle (IPC); Fig. (B): per-thread inter-socket coherence activity; Fig. (C): per-thread intra-socket coherence activity;
Fig. (D): per-socket LLC misses per cycle. All values are normalized to unhalted CPU cycles.

socket coherence traffic (Figure 6(C)). Figure 6(D) uses
LLC misses per socket per cycle to represent aggregate
per socket off-chip traffic. We can see that off-chip traffic
for applications with high data sharing is reduced. Ta-
ble 1 summarizes the mapping actions (whether due to
inter-socket coherence or remote memory access) taken
for every workload shown in Figure 5.

Interestingly, although Figure 6(B) shows that
TunkRank (Twitter influence ranking) has fairly low av-
erage inter-socket coherence activity, it shows the most
performance boost with SAM. In this application, there
are phases of high coherence activity between phases of
heavy computation, which SAM is able to capture and
eliminate. The application also scales well with addi-
tional processors (high inherent parallelism). The better
a data-sharing application scales, the higher the speedup
when employing SAM. With SAM, TunkRank scales al-
mostlinearly on our multicore platform.

While most workloads achieve good speedup, in some
cases SAM’s performance is only on par with (or slightly
better than) default Linux. Such limited benefits are due
to two primary reasons. First, applications may be CPU
bound without much coherence or memory traffic. ALS,
RBM, and PMF are examples of such applications. Al-
though inter-socket coherence activity for these applica-
tions is above threshold, resulting in some migrations (see

Table 1) due to SAM’s affinity control, the relative impact
of this colocation is small. Second, some workloads are
memory intensive but contain low inter-socket coherence
activity. Linux uses a static heuristic of distributing tasks
across sockets, which is already the ideal action for these
workloads. In such cases, SAM does not have additional
room to improve performance.

Table1 does not contain a column for migrations to
balance memory bandwidth because for standalone ap-
plications, SAM does not effect such migrations. First,
for purely memory intensive workloads (MemBench),
the default strategy to distribute tasks works ideally and
therefore we do not perform any more migrations. Sec-
ond, for workloads that are both memory intensive and
with high data sharing, SAM prioritizes inter-socket co-
herence activity avoidance over balancing memory band-
width utilization.

Graph-based machine learning applications exhibit
phased execution and dynamic task creation and paral-
lelism (mainly in the graph construction and distribution
stages). The burst of task creation triggers load balancing
in Linux. While Linux respects core affinity, tasks may
be migrated to balance load. Linux task migrations do not
sufficiently consider application characteristics and may
result in increased remote DRAM accesses, inter-socket
communication, resource contention, and bandwidth sat-
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uration. SAM is able to mitigate the negative impact of
these load balancing decisions, as demonstrated by the
non-trivial number of migrations due to coherence activ-
ity and remote memory accesses performed by SAM (Ta-
ble 1). SAM constantly monitors the system and manip-
ulates processor affinity (which the Linux load balancer
respects) to colocate or distribute tasks across sockets and
cores.

4.3 Multiprogrammed Workload Evaluation

Table 2 summarizes the various application mixes we
employed to evaluate SAM’s performance on multipro-
grammed workloads. They are designed to produce dif-
ferent levels of data sharing and memory utilization. Two
factors come into play. First, applications incur perfor-
mance penalties due to resource competition. Second,
bursty and phased activities disturb the system frequently.

In order to compare the performance of different mixes
of applications, we first normalize each application’s run-
time with its offline optimum standalone runtime, as in
Figure 5. We then take the geometric mean of the nor-
malized performance of all the applications in the work-
load mix (counting each application once regardless of
the number of tasks employed) to derive a single met-
ric that represents the speedup of the mix of applications.
We use this metric to compare the performance of SAM
against the default Linux scheduler.

The performance achieved is shown in Figure 7. Nat-
urally, due to competition for resources, most applica-
tions will run slower than their offline best standalone
execution. Even if applications utilize completely differ-
ence resources, they may still suffer performance degra-
dation. For example, when inter-socket coherence miti-
gation conflicts with memory load balancing, no sched-
uler can realize the best standalone performance for each
co-executing application.

SAM outperforms the default Linux scheduler by 2%
to 36% as a result of two main strategies. First, we try
to balance resource utilization whenever possible with-
out affecting coherence traffic. This benefits application
mixes that have both applications that share data and use
memory. Second, we have information on inter-socket
coherence activity and can therefore use it to colocate
tasks that share data. However, we do not have exact in-
formation to indicate which tasks share data with which
other tasks. We receive the validation of a successful mi-
gration if it produces less inter-socket and more intra-
socket activity after the migration. Higher intra-socket
activity helps us identify partial or full task groupings in-
side a socket.

For the mixes of microbenchmarks (#1–#3), SAM ex-
ecutes the job about 25% faster than Linux. SAM’s rel-
ative performance approaches 1—indicating comparable

Multiprog.
workload # Application mixes
1 12 MemBench, 8 HuBench
2 14 MemBench, 6 HuBench
3 10 MemBench, 6 HuBench, 4 CPU
4 2 libq, 2 bzip2, 2 sjeng, 2 omnetpp
5 2 libq, 2 soplex, 2 gobmk, 2 hmmer
6 2 mcf, 2 milc, 2 sjeng, 2 h264ref
7 2 milc, 2 libq, 2 h264ref, 2 sjeng
8 2 mcf, 2 libq, 2 h264ref, 2 sjeng, 4 TunkRank
9 10 SGD, 10 BSGD
10 10 SGD, 10 LSGD
11 10 LSGD, 10 BSGD
12 10 LSGD, 10 ALS
13 10 SVD, 10 SGD
14 10 SVD, 10 BSGD
15 10 SVD, 10 LSGD
16 10 SVD, 10 LSGD
17 20 SGD, 20 BSGD
18 20 SGD, 20 LSGD
19 20 LSGD, 20 BSGD
20 20 LSGD, 20 ALS
21 20 SVD, 20 SGD
22 20 SVD, 20 BSGD
23 20 SVD, 20 LSGD
24 16 BSGD, 10 MemBench, 14 CPU
25 16 LSGD, 10 MemBench, 14 CPU
26 16 SGD, 10 MemBench, 14 CPU

Table 2: Multiprogrammed application mixes. For each
mix, the number preceding the application’s name indi-
cates the number of tasks it spawns. We generate various
combinations of applications to evaluate scenarios with
varying data sharing and memory utilization.

performance to the case that all microbenchmarks reach
respective optimum offline standalone performance si-
multaneously. SAM is able to preferentially colocate
tasks that share data over tasks that are memory inten-
sive. Since the memory benchmark saturates memory
bandwidth at fairly low task counts, colocation does not
impact performance.

The speedups obtained for the SPEC CPU benchmark
mixes relative to Linux are not high. The SPEC CPU mix
of applications tend to be either memory or CPU bound.
Since Linux prefers to split the load among sockets, it can
perform well for memory intensive workloads. We per-
form significantly better than the Linux scheduler when
the workload mix comprises applications that share data
and use memory bandwidth.

A caveat is that Linux’s static task→CPU mapping pol-
icy is very dependent on the order of task creation. For
example, different runs of the same SPECCPU mix of
applications discussed above can result in a very differ-
ent sequence of task creation, forcing CPU-bound tasks
to be colocated on a socket and memory-intensive tasks

8
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Figure 7: Speedup (execution time normalized to the
offline optimum standalone execution: higher is better)
of multiprogrammed workloads with (SAM) and without
(default Linux) SAM. We show the geometric mean of all
application speedups within each workload as well as the
max-min range (whiskers) for the individual applications.

to be colocated on the other. We use the best-case Linux
performance as our comparison base. Since SAM ob-
serves and reacts to the behavior of individual tasks, its
scheduling performance does not depend heavily on the
task creation order.

Figure 7 also plots the minimum and maximum
speedups of applications in each workload mix using
whiskers. The minimum and maximum speedups are im-
portant to understand the fairness of our mapping strat-
egy. The application that has the minimum speedup is
slowed down the most in the workload mix. The ap-
plication that has the maximum speedup is the least af-
fected by the contention in the system. We can see that
SAM improves upon the fairness of the Linux scheduler
in a significant fashion. The geometric mean of the mini-
mum speedup for all the workload mixes for SAM is 0.83.
The same for the default Linux scheduler is 0.69. Simi-
larly, the geometric mean of the maximum speedup for
all workload mixes for SAM and Linux are 0.96 and 0.87
respectively. From this analysis, we can conclude that in
addition to improving overall performance, SAM reduces
the performance disparity (a measure of fairness) among
multiple applications when run together.

Figure 8(A) plots the per-thread instructions per cycle
for the mixed workloads. We can see that largely, the ef-
fect of our actions is to increase the IPC. As with the stan-
dalone applications, Figure 8(B) shows that SAM signif-
icantly reduces inter-socket coherence activity, replacing
it with intra-socket coherence activity (Figure 8(C)). Note
that for workloads 14 and 15, SAM shows reductions in
both intra- and inter-socket coherence. This is likely due

to working sets that exceed the capacity of the private
caches, resulting in hits in the LLC when migrations are
effected to reduce inter-socket coherence.

Figure 8(D) uses LLC misses per cycle to represent
aggregate per socket off-chip traffic. Our decision to pri-
oritize coherence activity can lead to reduced off-chip
traffic, but this may be counteracted by an increase in
the number of remote memory accesses. At the same
time, our policy may also reduce main memory accesses
by sharing the last level cache with tasks that actually
share data (thereby reducing pressure on LLC cache ca-
pacity). We also improve memory bandwidth utilization
when possible without disturbing the colocated tasks that
share data. Workload mixes #24–#26 have a combina-
tion of data-sharing, memory-intensive, and CPU-bound
tasks. In these cases, SAM improves memory bandwidth
utilization by moving the CPU-bound tasks to accommo-
date distribution of the memory-intensive tasks.

In our experiments, both hardware prefetcher and hy-
perthreading are turned on by default. Hyperthreads add
an additional layer of complexity to the mapping process
due to resource contention for logical computational units
as well as the private caches. Since SAM utilizes one
hardware context on each physical core before utilizing
the second, when the number of tasks is less than or equal
to the number of physical cores, SAM’s policy decisions
are not affected by hyperthreading.

In order to determine the interaction of the prefetcher
with the SAM mapper, we compare the relative perfor-
mance of SAM when turning off prefetching. We observe
that on average, prefetching is detrimental to the per-
formance of multiprogrammed workloads with or with-
out the use of SAM. The negative impact of prefetch-
ing when using SAM is slightly lower than with default
Linux.

4.4 Overhead Assessment

SAM’s overhead has three contributors: accessing per-
formance counters, making mapping decisions based on
the counter values, and migrating tasks to reflect the de-
cisions. In our prototype, reading the performance coun-
ters, a cost incurred on every hardware context, takes
takes 8.89µSecs. Counters are read at a 1-mSec inter-
val. Mapping decisions are centralized and are taken at
100 mSecs intervals. Each call to the mapper, including
the subsequent task migrations, takes about 9.97µSecs.
The overall overhead of our implementation is below 1%.
We also check the overall system overhead by running all
our applications with our scheduler but without perform-
ing any actions on the decisions taken. There was no dis-
cernible difference between the two runtimes, meaning
that the overhead is within measurement error.

Currently, SAM’s policy decisions are centralized in
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Figure 8: Measured hardware metrics for multiprogrammed application workloads. Fig. (A): per-thread instructions
per unhalted cycle (IPC); Fig. (B): per-thread inter-socket coherence activity; Fig. (C): per-thread intra-socket coher-
ence activity; Fig. (D): per-socket LLC misses per cycle. All values are normalized to unhalted CPU cycles.

a single daemon process, which works well for our 40-
CPU machine, since most of the overhead is attributed to
periodically reading the performance counters. Data con-
solidation in the daemon process has a linear complexity
on the number of processors and dominates in cost over
the mapping decisions. For all practical purposes, SAM
scales linearly with the number of processors. In the fu-
ture, if the total number of cores is very large, mapping
policies might need to be distributed for scalability.

4.5 Sensitivity Analysis

We study the sensitivity of SAM’s performance gains
to the thresholds identified in Section 2 for determin-
ing high coherence activity and memory bandwidth con-
sumption.

Too low a coherence activity threshold can classify ap-
plications with little benefit from colocation as ones with
high data sharing; it can also result in misclassifying tasks
that have just been migrated as ones with high data shar-
ing due to the coherence activity generated as a result of
migration. For some workloads, this may reduce the abil-
ity to beneficially map tasks with truly high data sharing.
Too high a coherence activity threshold can result in not
identifying a task as high data sharing when it could ben-
efit from colocation.

We found that SAM’s performance for our workloads
was relatively resilient to a wide range of values for the
threshold. The coherence activity threshold could be var-
ied from 10% of the value determined in Section 2 to 2
times this value. Using threshold values below the low
end result in a loss of performance of up to 9% for one
mixed workload. Using threshold values >2 times the
determined threshold for the mixed workloads and >3
times for the standalone applications results in a loss of
up to 18% and 30% performance respectively for a couple
of workloads.

SAM’s resilience with respect to the memory band-
width threshold is also quite good, although the range of
acceptable values is tighter than for coherence activity.
For the memory bandwidth threshold, too low a value
can lead to prematurely assuming that a socket’s mem-
ory bandwidth is saturated, resulting in lost opportuni-
ties for migration. Too high a value can result in perfor-
mance degradation due to bandwidth saturation. In the
case of the SPECCPU benchmarks, lowering our deter-
mined threshold by 30% resulted in both sockets being
considered as bandwidth saturated, and a performance
loss of up to 27% due to lost migrations opportunities.
Similarly, for MemBench, raising the memory threshold
by 25% leads to non-recognition of bandwidth saturation,
which produces up to 85% loss in performance.
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5 Related Work

The performance impact of contention and interfer-
ence on shared multicore resources (particularly the LLC
cache, off-chip bandwidth, and memory) has been well
recognized in previous work. Suh et al. [18] used hard-
ware counter-assisted marginal gain analysis to mini-
mize the overall cache misses. Software page color-
ing [5, 22] can effectively partition the cache space with-
out special hardware features. Mutlu et al. [15] pro-
posed parallelism-aware batch scheduling in DRAM to
reduce inter-task interference at the memory level. Mars
et al. [14] utilized active resource pressures to predict
the performance interference between colocated applica-
tions. These techniques, however, manage multicore re-
source contention without addressing the data sharing is-
sues in parallel applications.

Blagodurov et al. [3] examined data placement in
non-uniform memory partitions but did not address data
sharing-induced coherence traffic both within and across
sockets. Tam et al. [19] utilized address sampling (avail-
able on Power processors) to identify task groups with
strong data sharing. Address sampling is a relatively ex-
pensive mechanism to identify data sharing (compared
to our performance counter-based approach) and is not
available in many processors in production today.

Calandrino and Anderson [4] proposed cache-aware
scheduling for real-time schedulers. The premise of their
work is that working sets that do not fit in the shared
cache will cause thrashing. The working set size of an
application was approximated to the number of misses
incurred at the shared cache. Their scheduling is aided
with job start times and execution time estimates, which
non-real time systems often do not have. Knauerhase et
al. [9] analyze the run queue of all processors of a system
and schedule them so as to minimize cache interference.
Their scheduler is both fair and less cache contentious.
They do not, however, consider parallel workloads and
the effect of data sharing on the last level cache.

Tang et al. [20] demonstrate the impact of task place-
ment on latency-critical datacenter applications. They
show that whether applications share data and/or have
high memory demand can dramatically affect perfor-
mance. They suggest the use of information on the num-
ber of accesses to “shared” cache lines to identify intra-
application data sharing. While this metric is a use-
ful indicator of interference between tasks, it measures
only one aspect of data sharing—the cache footprint, but
misses another important aspect of data sharing—off-
chip traffic in the case of active read-write sharing. Ad-
ditionally, their approach requires input statistics from an
offline stand-alone execution of each application.

Previous work has also pursued fair uses of shared
multicore resources between simultaneously executing

tasks. Ebrahimi et al. [6] proposed a new hardware de-
sign to track contention at different cache/memory levels
and throttle tasks with unfair resource usage or dispro-
portionate progress. At the software level, fair resource
use can be accomplished through scheduling quantum ad-
justment [7] or duty cycle modulation-enabled speed bal-
ancing [21]. These techniques are complementary and
orthogonal to our placement strategies, and can be used
in conjunction with our proposed approach for improved
fairness and quality of service.

6 Conclusions

In this paper, we have designed and implemented a per-
formance monitoring and sharing-aware adaptive map-
ping system. Our system works in conjunction with
Linux’s default scheduler to simultaneously reduce costly
communications and improve resource utilization effi-
ciency. The performance monitor uses commonly avail-
able hardware counter information to identify and sep-
arate data sharing from DRAM memory access. The
adaptive mapper uses a cost-sensitive approach based on
the performance monitor’s behavior identification to relo-
cate tasks in an effort to improve both parallel and mixed
workload application efficiency in a general-purpose ma-
chine. We show that performance counter information al-
lows us to develop effective and low-cost mapping tech-
niques without the need for heavy-weight access traces.
For stand-alone parallel applications, we observe perfor-
mance improvements as high as 72% without requiring
user awareness of machine configuration or load, or per-
forming compiler profiling. For multiprogrammed work-
loads consisting of a mix of parallel and sequential appli-
cations, we achieve up to 36% performance improvement
while reducing performance disparity across applications
in each mix. Our approach is effective even in the pres-
ence of workload variability.
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Abstract 
Understanding the performance of large, complex 

enterprise-class applications is an important, yet non-
trivial task. Methods using hardware performance 
counters, such as profiling through event-based 
sampling, are often favored over instrumentation for 
analyzing such large codes, but rarely provide good 
accuracy at the instruction level. 

This work evaluates the accuracy of multiple event-
based sampling techniques and quantifies the impact of 
a range of improvements suggested in recent years. The 
evaluation is performed on instances of three modern 
CPU architectures, using designated kernels and full 
applications. We conclude that precisely distributed 
events considerably improve accuracy, with further 
improvements possible when using Last Branch 
Records. We also present practical recommendations 
for hardware architects, tool developers and 
performance engineers, aimed at improving the quality 
of results. 

1. Introduction 
Optimizing large codes is difficult. It requires dealing 
with millions of lines of code developed by many 
engineers, processing diverse data sets that run on 
complicated warehouse-scale systems [1]. Furthermore, 
it requires a deep understanding of the specific 
hardware architecture [3] or mandates use of recently 
published cycle-accounting methods suitable for out-of-
order cores [27][36]. Modern processors feature 
counters that aim to assist users in understanding how 
well their application is performing. The hardware 
component in charge of gathering this information is 
usually called the Performance Monitoring Unit 
(PMU). The methodologies based on using these 
counters are well-established, especially in the HPC 
domain [2]. 

Many profilers [4][5][6] provide the means to narrow 
down the information gathered to select locations in the 
code that may cause an inefficiency. Methodologies 
that perform their analysis at basic-block granularity 
provide high source-level resolution, and are therefore 
the focus of this paper. Accurately obtaining basic 
block execution counts is a key problem facing the 
abovementioned profilers when analyzing enterprise-
class, large-scale object-oriented workloads. These 
have challenging long-tail profiles with few hotspots 
where instrumentation is usually unsuitable [39]. 

This paper surveys Event Based Sampling (EBS) 
techniques and the parameters that influence 
measurement accuracy. We conduct our study on 
instances of modern enterprise processors. We develop 
a set of microbenchmarks, use a subset of the CPU2006 
workloads, and use a large production workload from 
the CERN datacenter [7], running in deployments 
exceeding 300’000 cores. The contributions of this 
paper are: 

 A first, to our knowledge, experimental evaluation 
of the accuracy of EBS techniques – serving as a 
necessary base for further work in this field. 

 The conclusion that precise events considerably 
improve accuracy with little or no added cost, with 
further improvements resulting from the collection 
and analysis of Last Branch Records. 

 Recommendations for hardware architects, tool 
developers and performance engineers working with 
EBS, aimed at improving the quality of results. 

2. Motivation and background 

2.1. The need for accurate basic-block profiles 

Accurate and efficient basic block execution counts are 
important for a wide spectrum of use cases. Basic block 
graphs can rely on accurate basic block profiles. These 
can greatly improve the compiler’s capability to make 
better decisions on inlining, while increasing code 
locality. Code level energy-efficiency monitors demand 
accuracy by using metrics such as Watts-per-instruction 
(WPI) [8][9]. Loop tripcounts are widely used for a 
variety of purposes [10][11][12], but are hard to obtain 
with pure EBS methods. In automatic or semi-
automatic optimization of whole complex applications 
consisting of millions of lines of code, performance 
tuning must be driven by rather precise methods – e.g., 
basic block execution counts or precise 
function/method-granularity profiles. 

2.2. Increasing processor complexity 

Common tasks described in section 2.1 are made even 
more difficult by the ever-increasing complexity of 
modern processors. Out-of-order execution, superscalar 
pipelines, speculation and hardware prefetching 
increase performance, but complicate analysis [27]. At 
the same time, the core infrastructure of the PMUs has 
not progressed much, with only incremental updates 
between generations. Consequently, attributing samples 
to the exact program location that triggers a 
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performance event is becoming more and more 
difficult. 

2.3. Growing code size and sophistication 

The sheer number of lines of code (LOC), many of 
which are active, is steadily increasing across the 
application spectrum. An example study [14] focused 
on the SPEC CPU suite indicates the CPU2000 suite’s 
codebase was below 1000 KLOC (thousand LOC) with 
no C++ code included, while CPU2006 reached over 
3000 KLOC with only 25% of the benchmarks written 
in C++. Heavily object-oriented scientific toolkits, such 
as Geant4 [15, p. 4] and ROOT [16], are self-contained 
software packages that reach millions of LOC. Yasin et 
al. [13] demonstrate how abstractions incur significant 
performance overhead in data analytics and lead to code 
fragmentation with very small code-block sizes (typical 
ratios of instructions to branches taken around 6-12 
with three lead JVMs). 

2.4. Applicability of standard PMU methods 

Traditional PMU-based methods as deployed in 
common profilers - such as perf [4], oprofile, VTune 
[5] or Code Analyst [6] - are rather designed for HPC 
and steady-state traditional workloads. They do not 
cope well with large object-oriented codes with highly 
fragmented profiles having thousands of entries and 
very few hotspots. A good tool has to consciously 
adjust the setup of the underlying generic hardware 
mechanisms for the best possible handling of the 
characteristics of a workload. 

Our research indicates that more advanced methods, 
that can be particularly competitive and accurate, are 
infrequently used (e.g.,  PBA profiler [17]). 

2.5. Related work 

In recent years, the topic of PMU trust has been 
touched on by several publications. Works by 
Mytkowicz [18] and Weaver [3][19][20] analyze and 
identify CPU and OS effects that influence accuracy in 
counting-mode – some of which we also observe in our 
study of sampling (i.e. EBS). Chen et al. have discussed 
some key sampling effects such as skid and shadow 
[21]. We go beyond these works and beyond 
Zaparanuks et al. [37] by focusing on the root causes of 
sampling inaccuracy, showing where to look for control 
over multiple events and how to identify optimal 
configurations for enterprise-like workloads. 

3. Comments on sampling 

3.1. Event Based Sampling 

EBS exploits the capability of the PMU to count pre-
defined hardware events and to generate an interrupt 
when the counted event is observed N specified times. 
N is called the sampling period, and the interrupts are 
called Performance Monitoring Interrupts (PMI). 

Instruction pointer locations are sampled on PMIs, and 
their distribution is used to generate profiles. 

According to Chen et al. [21] and Levinthal [23], errors 
in the distribution of samples are the result of three 
major factors: (1) synchronization of monitored code 
with the sampling period, (2) the sampling skid effect, 
when the address reported by the hardware sample does 
not necessarily match the address of the instruction 
causing counter overflow, and (3) the sampling shadow 
effect, when instructions in the shadow of a long latency 
instruction get low sample counts.  

When seeking more accurate profile information about 
basic block execution counts, tools average samples 
across all instructions in the same block. While helpful, 
such mitigation is still insufficient for short blocks, 
such as e.g., jump tables, as samples have higher 
chances of getting attributed to adjacent blocks. 

3.2. Last Branch Records  

Some processors feature a branch recording facility, 
such as Last Branch Record (LBR) in the x86 
architecture, which records the addresses of the most 
recently executed branches. These facilities can be used 
for basic block execution counts, as suggested by 
Levinthal [23] and implemented in the emerging Gooda 
[26][36] and PBA [17] tools. These tools and their 
relevant heuristics are scarcely documented and not yet 
widely adopted in the community. Consequently, we 
implement our own version of LBR analysis, as 
documented below. 

An LBR facility has a number of stacked entries, which 
represent source-target pairs <Si, Ti> of branches 
executed by the processor. When sampling on the 
Taken Branches event, branches between a target Ti and 
the next source Si+1 in the stack are not taken. Thus, all 
basic blocks between Ti and Si+1 are executed exactly 
once.  

3.3. Profiling accuracy 

In order to estimate the accuracy of PMU-based 
sampling, we cross-reference results with 
instrumentation-based basic block counts obtained 
through Pin [25] (“REF”). 

Accuracy	Error	(x) =
∑ |(BB�[i] − BB���[i])|�∈��

net_instruction_count
 

For a given sampling method x, our accuracy error is 
defined as the sum of all deviations between the x 
method and the REF method, of the number of 
instructions executed in each basic block. This error is 
normalized to the total number of instructions executed. 
Ideally, we would like the accuracy error as close as 
possible to zero. 
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3.4. Evaluation of existing methods 

Out of the combinations of profiling approaches 
assessed and discussed in Section 4 (also see 
Appendix), we choose three particular groups of 
methods that exemplify how sampling can be used: 

 Classic Sampling is a representative, widely 
employed method of the first group. It uses an 
imprecise counter, where the sampling period is 
fixed, even and not randomized. No filtering is 
applied. This is the default in mainline tools such as 
perf [4], where an architectural event is typically set 
to capture a sample every ~1 millisecond. 

 Precise Sampling represents the advanced group of 
methods. It uses a general-purpose counter with a 
precise-sampling mechanism featured by the PMU, 
where the period is a prime number, preferably 
randomized. 

 LBR Sampling is performed when using a retired 
Taken Branches event1. The full contents of each 
collected LBR stack serve as the basis for basic 
block execution counts, while the address that 
comes with the PMI is ignored. 

4. Experimental environment 

4.1. Hardware and software setup 

We evaluate out-of-order processors from the x86 
family, as implemented by Intel and AMD. From the 
AMD side, we choose a representative of the “Magny-
Cours” family, the 12-core 6164 HE. Software support 
for this family was the most robust at the time of 
writing. On the Intel side, we choose the Xeon X5650, 
as the representative of the 1st Core i7 family, a.k.a. 
Westmere, and a Xeon E3-1265L, representing the 3rd 
generation Core family, a.k.a. Ivy Bridge. Again, stable 
software support and existing experience played a role 
in our choice. Frequency scaling and “turbo mode” are 
disabled. 

To obtain PMU samples we use a modified version of 
the perf utility in Linux 3.6.6, on RHEL6 compatible 
systems. Perf has a very fluid codebase, which impacts 
measurement overheads much more than hardware does 
[38], and this particular version is used throughout the 
whole study. Non-essential services/daemons are 
disabled. 

Each of our kernels, emphasizing specific difficulties 
leading to reduced accuracy, is measured five times. 

4.2. PMU configurations and events 

The methods described in this section are presented in 
more detail in Table 3 in the Appendix. 

Magny-Cours does not feature LBRs, nor a fixed 
architectural counter. The latter could be an issue with 

                                                           
1
 BR_INST_RETIRED.NEAR_TAKEN on Ivy Bridge 

the version of perf available at time of writing. The 
standard event of choice was 
RETIRED_INSTRUCTIONS. Instruction Based 
Sampling (IBS) is the precise mechanism offered by 
AMD. We program the PMU to sample with prime and 
non-prime periods. Due to perf limitations, software-
based period randomization was unavailable, but the 
hardware randomizes the 4 least significant bits. 

On Westmere, we choose to work with the fixed 
instructions retired counter and with the programmable 
instructions retired event supplemented with Precise 
Event Based Sampling (PEBS). LBRs are sampled with 
the BR_INST_EXEC:TAKEN event, with PEBS 
disabled. 

On Ivy Bridge, we use the instructions retired event on 
the fixed counter (INST_RETIRED:ANY) as well as 
the recently added Precisely Distributed event 
(INST_RETIRED:PREC_DIST,  a.k.a. PDIR, [24]). 
LBRs are sampled using 
BR_INST_RETIRED:NEAR_TAKEN, with PEBS 
disabled. 

4.3. Workloads 

 Latency-biased kernel 4.3.1.

The latency-biased kernel is the simplest form of 
emulation of workloads with basic blocks with non-
uniform execution times. Here, a loop executes a 
relatively costly calculation when a certain condition is 
true: 

while (n--) ((n%2) ? x /= y : x += y); 

Such code occurs in practice, for example, when a pre-
computed value is returned in the standard case, and re-
computed otherwise. Typically, the PMU would bias 
samples towards the long latency instruction, thus 
distorting overall results [21]. 

 Call chain kernel 4.3.2.

This kernel is a simple 10-deep call chain enveloped by 
a loop. Since the functions do equal work, they are 
expected to produce equal numbers of samples. 

This example serves as a vivid illustration of potential 
sampling bias on call chains - such as those commonly 
seen in object-oriented programming with frequently 
called short methods. 

 G4Box test 4.3.3.

The G4Box micro-benchmark, written in C++, executes 
only two functions, with an even work split. It could be 
thought of as a heavier version of our Latency Biased 
kernel. The length of the main function depends on the 
input data. 

This kernel is particularly difficult for hardware 
sampling, since it contains a chain of tests and branches 
that generates short basic blocks – a good case for LBR 
analysis. 
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 Geant4 test40 4.3.4.

Test40 is a kernelized doppelganger of large Geant4 
applications. In this test, an electron travels through a 
detector with a very simple geometry, triggering 
physics processes on its way. The signature workload is 
therefore a collection of small, fragmented methods, 
conditionally executed depending on where the particle 
is and what matter it interacts with. 

 Applications 4.3.5.

First, we select a non-HPC subset of both INT and FP 
benchmarks from the SPEC2006 CPU suite: 429.mcf, 
453.povray, 471.omnetpp and 483.xalancbmk. This 
subset, written in C/C++, has (to some extent) the 
characteristics of enterprise workloads [39], as 
described by Wong in [28] and [29]. Some enterprise 
vendors commonly use these benchmarks as proxies for 
real applications.  

Second, the FullCMS application is based on parts of 
Geant4 and is designed to simulate complex physics 
events taking place in one of CERN’s Large Hadron 
Collider particle detectors. It is similar to the enterprise 
class of workloads in the sense that it executes similar 
fragmented operations, albeit using floating point rather 
than integers. This production-grade workload has 
successfully served as an enterprise “proxy” in the past 
and runs on ~300’000 cores. 

5. Results 

5.1. Kernel results 

The results in Table 1 present accuracy errors as 
defined in Section 3.3 of the various sampling methods 
defined in Section 4.2. Overall results show that: 

 LBR-based methods are highly beneficial, 
significantly reducing errors by up to 18x (3-6x on 
average).  

 Progressive improvements from randomization 

and period adjustment are observed as better 
techniques are applied. 

 The precisely distributed event (PDIR) 
significantly improves results across all kernels 
and especially for Latency Biased. 

 AMD systems are consistently burdened with high 
error rates, worsening when built-in hardware 
randomization was used. 

On Latency Biased, we observe improvements 
introduced by the Ivy Bridge precisely distributed PDIR 
event. These accuracy boosts, on the other hand, are not 
observed on the Westmere microarchitecture, where 
that event is not featured. 

Results for the Callchain kernel show how applying 
prime as well as randomized periods gradually 
improves accuracy as we move to the right with 
improvements. In the Ivy Bridge case, combining the 
LBR-based IP+1 fix with PDIR (see Appendix) gives 
the best results. While there is no definitive indication 
of the reason, it would appear that out-of-order 
clustering of uops, which causes uops to be retired in 
bursts, is responsible for this characteristic. 

On testG4Box, medium error rates are reduced when 
LBR is employed. This is because this test case is 
dominated by very short basic blocks, which challenge 
sampling in general. The LBR-based technique 
addresses this issue by averaging samples across the 
last 15 uninterrupted basic block segments, which 
extends the effective number of instructions that the 
sample corresponds to. 

On test40, we see that Westmere suffers from 
distribution problems linked to the sampling event, 
which disappear on Ivy Bridge. Employing LBRs 
alleviates these issues on both platforms. 

5.2. Application results 

Table 2 shows error averages for applications. The 
general observations are as follows: 

Table 1: Sampling methods used on kernels and their errors according to our accuracy metric (lower is better). 
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 Randomization has little to no impact on full 
applications. Full applications often do not have  
specific loop trip-counts to synchronize with 
sampling periods, as tight kernels can have. 

 Using a counter with precise distribution and 
applying an LBR address fix provides good results. 

 Pure LBR basic block counts further improve 
accuracy (except for FullCMS). Overall 
improvement is 4-5x over the classic case and 1-10x 
over the precise case. 

The classic method registers high overall error rates, 
much improved with the precise event on IVB. Also, 
the LBR method is noticeably better than precise 
sampling, especially so in the case of mcf. 

As a side note, our FullCMS experiments showed that 
already choosing an EBS method on a counter with 
precise distribution and applying an LBR-based IP 
offset correction (but not full LBR sampling) improves 
average per basic block accuracy by 5x over the 
leftmost classic case. Pure LBR-based results, however, 
do not bring improvement over the precise method in 
this case, since the workload has similar characteristics 
to the callchain kernel. 

LBR, while of great benefit to performance monitoring 
activities, is not entirely free of issues. None of the 
methods produces the top 10 functions from the 
FullCMS profile in the right order. 

6. Recommendations 

6.1. Recommendations for tool developers 

First, we recommend that tool developers make 
distinctions between similar performance events. Users 
of perf, PAPI or OProfile are presented with opaque 
tools that obscure events and make adjustments (such as 
those of the sampling period) hard. For example, in the 
case of standard perf, a recompilation and installation 
of an extra library (libpfm4) is required to obtain 
reasonable access to hardware performance events. 

Second, sampling periods need to be chosen with a dose 
of care. Prime number periods reduce the risk of 
synchronizing with the workload, and randomization 
further improves results on artificial kernels, but neither 
produced noticeable improvements on our large 
benchmarks (unlike what is reported in [21]). As of 
today, neither perf nor major commercial tools support 
fixed period randomization. 

Third, the LBR-based methods we evaluated allow for 
enhanced degrees of accuracy, which – with some post-
processing – could serve as input to PGO, code 
coverage or other sensitive optimization techniques. 
Only a couple tools (PBA [17] and GOODA [26][36]) 
use LBRs to obtain basic block execution counts, and 

their documentation only sparsely describes the 
methods employed. 

6.2. Recommendations for PMU hardware designers 

The IP+1 inaccuracy fix in sample addresses based on 
an LBR sourced address (not the full LBR) can lead to 
good improvements, especially for branchy code with a 
high rate of calls or taken branches. Implementing such 
functionality in hardware would not only remove the 
workaround burden in drivers, but also avoid collisions 
on LBRs – a valuable single resource – with other 
filtered collections such as call-stack mode. 

A precise instruction event in AMD’s IBS is missing, 
which led us to use precise uops instead. 

6.3. Recommendations for application optimizers 

We have shown that the methods used to obtain 
performance data matter and influence potential 
conclusions. Overall, we recommend to sample on a 
modern platform with support for precise distributed 
events, while using a prime period. Kernel-like code 
additionally benefits from more frequent sampling 
periods and period randomization. For ultimate 
sampling performance, we recommend liaising with 
tool developers to employ LBR-based methods that 
maximize accuracy. 

7. Conclusions and Summary 
In this short survey of a somewhat underexplored area, 
we quantify the level to which choices related to 
performance monitoring methods influence results. The 
precise events introduced in the Ivy Bridge 
microarchitecture considerably improve accuracy with 
little or no added cost. Period randomization shows 
improvements on kernels, but not on complete 
applications. LBR-based methods improve results even 
more over precise counters, and work especially well 
on Westmere machines. 

Table 2: Errors per machine/app (lower is better). 

 



546 2015 USENIX Annual Technical Conference USENIX Association

6 
 

REFERENCES 
[1] L. A. Barroso and U. Holzle, “The Case for 

Energy-Proportional Computing,” Computer, vol. 
40, no. 12, pp. 33–37, 2007. 

[2] P. J. Mucci, S. Browne, C. Deane, and G. Ho, 
“PAPI: A portable interface to hardware 
performance counters,” in Proc. Dept. of Defense 
HPCMP Users Group Conference, 1999, pp. 7–
10. 

[3] V. M. Weaver and S. A. McKee, “Can hardware 
performance counters be trusted?,” in Workload 
Characterization, 2008. IISWC 2008. IEEE 
International Symposium on, 2008, pp. 141–150. 

[4] A. Carvalho de Melo, “The New Linux ’perf’ 
tools.” Linux Kongress, 2010. 

[5] Intel Corporation, “Intel VTune Amplifier XE 
2013,” 2012. [Online]. Available: 
http://software.intel.com/en-us/intel-vtune-
amplifier-xe. [Accessed: 22-Nov-2012]. 

[6] P. J. Drongowski, A. M. D. C. A. Team, and B. 
D. Center, “An introduction to analysis and 
optimization with AMD CodeAnalyst 
Performance Analyzer,” Advanced Micro 
Devices, Inc, 2008. 

[7] S. Banerjee, “Readiness of CMS simulation 
towards LHC startup,” Journal of Physics: 
Conference Series, vol. 119, no. 3, p. 032006, 
Jul. 2008. 

[8] S. Schubert, D. Kostic, W. Zwaenepoel, and K. 
Shin, “Profiling Software for Energy 
Consumption,” in Proceedings of the IEEE 
International Conference on Green Computing 
and Communications (GreenCom), 2012. 

[9] M. D. DeVuyst, “Efficient Use of Execution 
Resources in Multicore Processor Architectures,” 
University of California, San Diego, 2011. 

[10] P. Saxena, P. Poosankam, S. McCamant, and D. 
Song, “Loop-extended symbolic execution on 
binary programs,” in Proceedings of the 
eighteenth international symposium on Software 
testing and analysis, New York, NY, USA, 2009, 
pp. 225–236. 

[11] T. Sherwood and B. Calder, “Loop Termination 
Prediction,” in High Performance Computing, M. 
Valero, K. Joe, M. Kitsuregawa, and H. Tanaka, 
Eds. Springer Berlin Heidelberg, 2000, pp. 73–
87. 

[12] K. Muthukumar and G. Doshi, “Software 
Pipelining of Nested Loops,” in Compiler 
Construction, R. Wilhelm, Ed. Springer Berlin 
Heidelberg, 2001, pp. 165–181. 

[13] A. Yasin, Y. Ben-Asher, and A. Mendelson, 
“Deep-dive Analysis of the Data Analytics 
Workload in CloudSuite,” presented at the 
IISWC’14, 2014. 

[14] J. L. Henning, “SPEC CPU suite growth: an 
historical perspective,” SIGARCH Comput. 
Archit. News, vol. 35, no. 1, pp. 65–68, Mar. 
2007. 

[15] J. Apostolakis, “Geant4—a simulation toolkit,” 
Nuclear Instruments and Methods in Physics 
Research Section A: Accelerators, Spectrometers, 
Detectors and Associated Equipment, vol. 506, 
no. 3, pp. 250–303, Jul. 2003. 

[16] R. Brun and F. Rademakers, “ROOT — An 
object oriented data analysis framework,” 
Nuclear Instruments and Methods in Physics 
Research Section A: Accelerators, Spectrometers, 
Detectors and Associated Equipment, vol. 389, 
no. 1–2, pp. 81–86, Apr. 1997. 

[17] “Intel Performance Bottleneck Analyzer.” Intel 
Corporation, 2011. 

[18] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. 
F. Sweeney, “Producing wrong data without 
doing anything obviously wrong!,” in ACM 
Sigplan Notices, 2009, vol. 44, pp. 265–276. 

[19] V. Weaver, “Can Hardware Performance 
Counters Produce Expected, Deterministic 
Results?,” presented at the 3rd Workshop on 
Functionality of Hardware Performance 
Monitoring, 2010. 

[20] V. Weaver, D. Terpstra, and S. Moore, “Non-
determinism and overcount on modern hardware 
performance counter implementations,” in Proc. 
IEEE International Symposium on Performance 
Analysis of Systems and Software, 2013. 

[21] D. Chen, N. Vachharajani, R. Hundt, S. Liao, V. 
Ramasamy, P. Yuan, W. Chen, and W. Zheng, 
“Taming hardware event samples for FDO 
compilation,” in Proceedings of the 8th annual 
IEEE/ACM international symposium on Code 
generation and optimization, New York, NY, 
USA, 2010, pp. 42–52. 

[22] A. Shye, M. Iyer, T. Moseley, D. Hodgdon, D. 
Fay, V. J. Reddi, and D. A. Connor, “Analysis of 
path profiling information generated with 
performance monitoring hardware,” in 9th 
Annual Workshop on Interaction between 
Compilers and Computer Architectures, 2005. 
INTERACT-9, 2005, pp. 34 – 43. 

[23] D. Levinthal, “Performance Analysis Guide for 
Intel Core i7 Processor and Intel Xeon 5500 
processors.” Intel Corporation, 2009. 

[24] “Intel® 64 and IA-32 Architectures Software 
Developer Manuals,” Intel. [Online]. Available: 
http://www.intel.com/content/www/us/en/process
ors/architectures-software-developer-
manuals.html. [Accessed: 26-Sep-2014]. 

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. 
Klauser, G. Lowney, S. Wallace, V. J. Reddi, and 
K. Hazelwood, “Pin: building customized 



USENIX Association  2015 USENIX Annual Technical Conference 547

7 
 

program analysis tools with dynamic 
instrumentation,” in Proceedings of the 2005 
ACM SIGPLAN conference on Programming 
language design and implementation, New York, 
NY, USA, 2005, pp. 190–200. 

[26] Google, Gooda - a pmu event analysis package 
(http://code.google.com/p/gooda/). 2012. 

[27] A. Yasin, “A Top-Down Method for 
Performance Analysis and Counters 
Architecture,” presented at the 2014 IEEE 
International Symposium Performance Analysis 
of Systems and Software (ISPASS), 2014. 

[28] M. Wong, “C++ benchmarks in SPEC 
CPU2006,” ACM SIGARCH Computer 
Architecture News, vol. 35, no. 1, p. 77, Mar. 
2007. 

[29] J. L. Henning, “SPEC CPU2006 benchmark 
descriptions,” ACM SIGARCH Computer 
Architecture News, vol. 34, no. 4, pp. 1–17, 2006. 

[30] D. Chen, N. Vachharajani, R. Hundt, X. Li, S. 
Eranian, W. Chen, and W. Zheng, “Taming 
Hardware Event Samples for Precise and 
Versatile Feedback Directed Optimizations,” 
IEEE Transactions on Computers, vol. PP, no. 
99, p. 1, 2011. 

[31] T. Ball and J. R. Larus, “Optimally profiling and 
tracing programs,” ACM Trans. Program. Lang. 
Syst., vol. 16, no. 4, pp. 1319–1360, Jul. 1994. 

[32] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. 
Sweeney, “We have it easy, but do we have it 
right?,” in IEEE International Symposium on 
Parallel and Distributed Processing, 2008. 
IPDPS 2008, 2008, pp. 1 –7. 

[33] K. Walcott-Justice, J. Mars, and M. L. Soffa, 
“THeME: a system for testing by hardware 

monitoring events,” in Proceedings of the 2012 
International Symposium on Software Testing 
and Analysis, New York, NY, USA, 2012, pp. 
12–22. 

[34] M. L. Soffa, K. R. Walcott, and J. Mars, 
“Exploiting hardware advances for software 
testing and debugging: NIER track,” in 2011 
33rd International Conference on Software 
Engineering (ICSE), 2011, pp. 888 –891. 

[35] S. Narayanasamy, T. Sherwood, S. Sair, B. 
Calder, and G. Varghese, “Catching accurate 
profiles in hardware,” in The Ninth International 
Symposium on High-Performance Computer 
Architecture, 2003. HPCA-9 2003. Proceedings, 
2003, pp. 269 – 280. 

[36]  A. Nowak, D. Levinthal and W. Zwaenepoel, 
“Hierarchical Cycle Accounting – a new method 
for application performance tuning” in 2015 
IEEE International Symposium on Performance 
Analysis of Systems and Software, 2015. 

[37] D. Zaparanuks, M. Jovic and M. Hauswirth, 
"Accuracy of performance counter 
measurements" in 2009 IEEE International 
Symposium on Performance Analysis of Systems 
and Software, 2009. 

[38]   G. Bitzes, A. Nowak, “The overhead of profiling 
using PMU hardware counters”, CERN openlab 
report, 2014. 

[39] S. Kanev, J. P. Darago, K. Hazelwood, P. 
Ranganathan, T. Moseley, G. Wei and D. Brooks, 
"Profiling a Warehouse-Scale Computer" in 
International Symposium on Computer 
Architecture (ISCA), Jun 2015.



548 2015 USENIX Annual Technical Conference USENIX Association

8
 

 

A
P

P
E

N
D

IX
: 

 

T
ab

le
 3

: 
A

n
 o

ve
rv

ie
w

 o
f 

re
vi

ew
ed

 s
a

m
p

li
n

g
 m

et
h

o
d

s 

 

 
M

et
h

od
 

P
ar

a
m

et
er

s 
C

o
m

m
en

ts
 

D
ra

w
b

ac
k

s 

 
 

P
er

io
d

 s
iz

e 

(E
xa

m
p

le
 v

al
u

e)
 

P
er

io
d

 
R

an
d

o-
m

iz
at

io
n

 

E
ve

n
t 

(I
n

te
l 

no
m

en
cl

at
u

re
) 

 
 

Classic 
method 

D
ef

au
lt

 
R

o
u

nd
 

(2
’0

00
’0

00
) 

N
o

 
IN

S
T

_
R

E
T

IR
E

D
.A

N
Y

 
 (

n
on

-p
re

ci
se

) 

U
se

d 
b

y 
d

ef
au

lt
 i

n
 m

an
y 

to
o

ls
. 

U
se

s 
a 

fi
xe

d
-f

u
n

ct
io

n
 c

ou
n

te
r 

to
 

fr
ee

 u
p

 g
en

er
al

 c
o

un
te

rs
. 

T
h

e 
p

er
io

d
 

is
 

fi
xe

d
 

an
d

 
ro

u
nd

 
w

h
ic

h
 

in
cr

ea
se

s 
th

e 
ri

sk
 

o
f 

sy
n

ch
ro

n
iz

at
io

n,
 

th
e 

h
ar

dw
ar

e 
ev

en
t 

is
 i

m
p

re
ci

se
 

Precise methods 

P
re

ci
se

 e
ve

nt
 

R
o

u
nd

 

(2
’0

00
’0

00
) 

N
o

 

IN
S

T
_

R
E

T
IR

E
D

.A
L

L
 

(p
re

ci
se

) 

U
se

s 
a 

p
re

ci
se

 
m

ec
h

an
is

m
 

to
 

ca
pt

u
re

 t
h

e 
ev

en
t 

lo
ca

ti
o

n 
(I

P
+

1)
 

T
h

e 
d

is
tr

ib
u

ti
o

n
 o

f 
sa

m
p

le
s 

is
 n

o
t 

gu
ar

an
te

ed
 

P
re

ci
se

 
ev

en
t 

w
it

h
 

ra
nd

o
m

iz
at

io
n 

R
o

u
nd

 

(2
’0

00
’0

00
) 

Y
es

 
A

 r
an

d
o

m
iz

ed
 s

am
p

li
n

g 
p

er
io

d 
to

 
av

o
id

 s
yn

ch
ro

n
iz

at
io

n 
ri

sk
 

A
s 

ab
o

ve
 

P
re

ci
se

 
ev

en
t 

w
it

h
 

p
ri

m
e 

p
er

io
d 

P
ri

m
e 

n
u

m
b

er
 

(2
’0

00
’0

03
) 

N
o

 
T

h
e 

in
tr

o
du

ct
io

n
 

o
f 

p
ri

m
e 

n
u

m
b

er
s 

re
du

ce
s 

re
so

n
an

ce
 w

h
ic

h 
le

ad
s 

to
 i

m
p

ro
ve

d
 a

cc
ur

ac
y 

L
ac

k 
o

f 
ra

nd
o

m
iz

at
io

n
 a

nd
 o

ve
ra

ll
 

lo
w

 a
cc

u
ra

cy
 i

n
 s

o
m

e 
ca

se
s 

al
ik

e 
th

e 
L

at
en

cy
-B

ia
se

d
 k

er
n

el
 

P
re

ci
se

 
ev

en
t 

w
it

h
 

ra
nd

o
m

iz
ed

 
p

ri
m

e 
p

er
io

d 

P
ri

m
e 

n
u

m
b

er
 

(2
’0

00
’0

03
) 

Y
es

 
R

an
d

o
m

iz
at

io
n

 
ap

p
li

ed
 

o
n

 
th

e 
p

ri
m

e 
p

er
io

d
 

fu
rt

h
er

 
im

p
ro

ve
s 

ac
cu

ra
cy

 

S
ti

ll
 o

ve
ra

ll
 l

o
w

 a
cc

u
ra

cy
 i

n
 s

o
m

e 
ca

se
s 

p
re

ci
se

 
ev

en
t 

w
it

h
 

d
is

tr
ib

ut
io

n 
fi

x 
p

lu
s 

IP
+

1
 o

ff
se

t 
fi

x
 

P
ri

m
e 

n
u

m
b

er
 

(2
’0

00
’0

03
) 

Y
es

/N
o

 
IN

S
T

_
R

E
T

IR
E

D
. 

P
R

E
C

_D
IS

T
 

(p
re

ci
se

ly
 d

is
tr

ib
ut

ed
) 

T
o

 r
em

ed
y 

sk
id

, 
th

e 
to

p 
ad

d
re

ss
 

fr
o

m
 t

h
e 

L
B

R
 b

ac
kt

ra
ce

 i
s 

u
se

d 
to

 
d

et
er

m
in

e 
w

h
ic

h
 b

as
ic

 b
lo

ck
 t

h
e 

tr
ig

ge
r 

o
cc

ur
re

d
 

in
; 

th
us

 
fi

xi
n

g 
IP

+
1

 a
n

d 
en

h
an

ci
n

g 
ac

cu
ra

cy
. 

G
o

o
d

 f
o

r 
la

rg
e 

b
as

ic
 b

lo
ck

s.
 S

om
e 

in
ac

cu
ra

ci
es

 f
o

r 
sm

al
l 

o
n

es
 

LBR 
method 

L
as

t 
B

ra
n

ch
 R

ec
or

d
 

N
/A

 
N

/A
 

B
R

_
IN

S
T

_
R

E
T

IR
E

D
. 

N
E

A
R

_
T

A
K

E
N

 

F
u

ll
 

L
B

R
-b

as
ed

 
b

as
ic

 
b

lo
ck

 
ex

ec
ut

io
n

 c
ou

n
t 

ac
co

un
ti

ng
 w

it
h 

m
an

ag
ea

b
le

 e
rr

o
rs

 p
er

 b
as

ic
 b

lo
ck

 

E
rr

o
rs

 
ca

n 
st

il
l 

re
ac

h
 

3
0

-5
0%

 
o

f 
b

as
ic

 
b

lo
ck

 
ex

ec
ut

io
n 

co
u

n
t 

(f
o

r 
so

m
e 

b
as

ic
 b

lo
ck

s)
. 

O
ve

rh
ea

d 
(i

n
 c

ol
le

ct
io

n
 a

nd
 p

o
st

-
p

ro
ce

ss
in

g)
 



USENIX Association  2015 USENIX Annual Technical Conference 549

Utilizing the IOMMU Scalably

Omer Peleg Adam Morrison
Technion

{omer,mad}@cs.technion.ac.il

Benjamin Serebrin
Google

serebrin@google.com

Dan Tsafrir
Technion

dan@cs.technion.ac.il

Abstract
IOMMUs provided by modern hardware allow the OS to
enforce memory protection controls on the DMA opera-
tions of its I/O devices. An IOMMU translation manage-
ment design must scalably handle frequent concurrent
updates of IOMMU translations made by multiple cores,
which occur in high throughput I/O workloads such as
multi-Gb/s networking. Today, however, OSes experi-
ence performance meltdowns when using the IOMMU
in such workloads.

This paper explores scalable IOMMU management
designs and addresses the two main bottlenecks we find
in current OSes: (1) assignment of I/O virtual addresses
(IOVAs), and (2) management of the IOMMU’s TLB.

We propose three approaches for scalable IOVA as-
signment: (1) dynamic identity mappings, which eschew
IOVA allocation altogether, (2) allocating IOVAs using
the kernel’s kmalloc, and (3) per-core caching of IO-
VAs allocated by a globally-locked IOVA allocator. We
further describe a scalable IOMMU TLB management
scheme that is compatible with all these approaches.

Evaluation of our designs under Linux shows that (1)
they achieve 88.5%–100% of the performance obtained
without an IOMMU, (2) they achieve similar latency to
that obtained without an IOMMU, (3) scalable IOVA al-
location and dynamic identity mappings perform compa-
rably, and (4) kmalloc provides a simple solution with
high performance, but can suffer from unbounded page
table blowup.

1 Introduction
Modern hardware provides an I/O memory management
unit (IOMMU) [2, 6, 24, 27] that mediates direct mem-
ory accesses (DMAs) by I/O devices in the same way
that a processor’s MMU mediates memory accesses by
instructions. The IOMMU interprets the target address
of a DMA as an I/O virtual address (IOVA) [32] and at-
tempts to translate it to a physical address, blocking the
DMA if no translation (installed by the OS) exists.

IOMMUs thus enable the OS to restrict a device’s
DMAs to specific physical memory locations, and
thereby protect the system from errant devices [18, 29],
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Figure 1. Parallel netperf throughput (Linux): Performance
meltdown due to dynamic IOMMU mapping updates.

malicious devices [8, 13, 46], and buggy drivers [7, 15,
22, 31, 41, 44], which may misconfigure a device to over-
write system memory. This intra-OS protection [45] is
recommended by hardware vendors [23, 29] and imple-
mented in existing OSes [5, 12, 25, 36]. OSes can employ
intra-OS protection both in non-virtual setups, having di-
rect access to the physical IOMMU, and in virtual setups,
by exposing the IOMMU to the VM through hardware-
supported nested IOMMU translation [2, 27], by paravir-
tualization [9, 31, 40, 45], or by full emulation of the
IOMMU interface [3].

Intra-OS protection requires each DMA operation to
be translated with a transient IOMMU mapping [12] ded-
icated to the DMA, which is destroyed once it com-
pletes so that the device cannot access the memory fur-
ther [29, 37]. For example, a network interface card
(NIC) driver maps the buffers it inserts into the NIC’s
receive (RX) rings to receive packets. Once a packet ar-
rives (via DMA), the driver unmaps the packet’s buffer.

These transient dynamic IOMMU mappings pose a
performance challenge for driving high-throughput I/O
workloads. Such workloads require dynamic mappings
to be created and destroyed millions of times a second
by multiple cores concurrently, since a single core of-
ten cannot sustain high enough throughput [30]. This
paper specifically targets multi-Gb/s networking—NICs
providing 10–40 Gb/s (and soon 100 Gb/s)—as a repre-
sentative demanding case.

Current OSes melt down under load when the
IOMMU is enabled in such a workload. Figure 1 demon-
strates the problem on Linux. It shows the combined
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throughput of 270 netperf instances running a request-
response workload (described in § 6) on a 16-core x86
server with a 10 Gb/s NIC, which we use as a running
example throughout the paper. Mediating DMAs by the
IOMMU imposes only negligible overhead by itself, as
evidenced by the throughput obtained when the IOMMU
is configured with static identity mappings that pass
DMA requests through the IOMMU unchanged. In con-
trast, when IOMMU management is enabled, through-
put drops significantly and ceases to increase with the
number of cores. This occurs with both Linux’s stock
IOMMU subsystem or the recent EiovaR [35] optimiza-
tion, which targets the sequential performance of Linux’s
IOMMU subsystem (see § 3.1). Other OSes suffer from
similar scalability problems (§ 3).

This paper thus considers the IOMMU manage-
ment problem of designing a subsystem supporting high-
throughput concurrent updates of IOMMU mappings.
We analyze the bottlenecks in current IOMMU manage-
ment designs (§ 3) and explore the trade-offs in the de-
sign space of their solutions (§§ 4–5). Our designs ad-
dress the two main bottlenecks we find in current OSes:
IOVA assignment and IOTLB invalidation.

IOVA assignment Creating an IOMMU mapping for a
physical memory location requires the OS to designate
a range of IOVAs that will map to the physical loca-
tion. The driver will later configure the device to DMA
to/from the IOVAs. OSes presently use a dedicated, cen-
tralized (lock-protected) IOVA allocator that becomes a
bottleneck when accessed concurrently.

We propose three designs for scalable IOVA assign-
ment (§ 4), listed in decreasingly radical order: First, dy-
namic identity mapping eliminates IOVA allocation alto-
gether by using a buffer’s physical address for its IOVA.
Consequently, however, maintaining the IOMMU page
tables requires more synchronization than in the other
designs. Second, IOVA-kmalloc eliminates only the spe-
cialized IOVA allocator by allocating IOVAs using the
kernel’s optimized kmalloc subsystem. This simple and
efficient design is based on the observation that we can
treat the addresses that kmalloc returns as IOVA page
numbers. Finally, per-core IOVA caching keeps the IOVA
allocator, but prevents it from becoming a bottleneck by
using magazines [11] to implement per-core caches of
free IOVAs, thereby satisfying allocations without ac-
cessing the IOVA allocator.

IOTLB invalidation Destroying an IOMMU mapping
requires invalidating relevant entries in the IOTLB, a
TLB that caches IOMMU mappings. The Linux IOMMU
subsystem amortizes the invalidation cost by batching
multiple invalidation requests and then performing a sin-
gle global invalidation of the IOTLB instead. The batch-
ing data structure is lock-protected and quickly becomes

a bottleneck. We design a compatible scalable batching
data structure as a replacement (§ 5).

Design space exploration We evaluate the perfor-
mance, page table memory consumption and implemen-
tation complexity of our designs (§ 6). We find that (1)
our designs achieve 88.5%–100% of the throughput ob-
tained without an IOMMU, (2) our designs achieve sim-
ilar latency to that obtained without an IOMMU, (3) the
savings dynamic identity mapping obtains from not allo-
cating IOVAs are negated by its more expensive IOMMU
page table management, making it perform comparably
to scalable IOVA allocation, and (4) IOVA-kmalloc pro-
vides a simple solution with high performance, but it can
suffer from unbounded page table blowup if empty page
tables are not reclaimed (as in Linux).

Contributions This paper makes four contributions:
• Identifying IOVA allocation and IOTLB invalida-

tion as the bottlenecks in the IOMMU management
subsystems of current OSes.

• Three designs for scalable IOVA allocation: (1) dy-
namic identity mappings, (2) IOVA-kmalloc, and
(3) per-core caching of IOVAs, as well as a scalable
IOTLB invalidation scheme.

• Evaluation of the new and existing designs on sev-
eral high throughput I/O workloads.

• Design space exploration: we compare the perfor-
mance, page table memory consumption and imple-
mentation complexity of the proposed designs.

2 Background: IOMMUs
The IOMMU mediates accesses to main memory by I/O
devices, much like the MMU mediates the memory ac-
cesses performed by instructions. IOMMUs impose a
translation process on each device DMA. The IOMMU
interprets the target address of the DMA as an I/O vir-
tual address (IOVA) [32], and attempts to translate it to
a physical address using per-device address translations
(or mappings) previously installed by the OS. If a trans-
lation exists, the DMA is routed to the correct physical
address; otherwise, it is blocked.

In the following, we provide a high-level description
of Intel’s x86 IOMMU operation [27]. Other architec-
tures are conceptually similar [2, 6, 24].

IOMMU translations The OS maintains a page table
hierarchy for each device, implemented as a 4-level radix
tree (as with MMUs). Each radix tree node is a 4 KB
page. An inner node (page directory) contains 512 point-
ers (page directory entries, or PDEs) to child radix-tree
nodes. A leaf node (page table) contains 512 pointers
(page table entries, or PTEs) to physical addresses. PTEs
also encode the type of access rights provided through
this translation, i.e., read, write or both.

The virtual I/O address space is 48-bit addressable.
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The 36 most significant bits of an IOVA are its page
frame number (PFN), which the IOMMU uses (when it
receives a DMA request) to walk the radix tree (9 bits
per level) and look up the physical address and access
rights associated with the IOVA. If no translation exists,
the IOMMU blocks the DMA and interrupts the proces-
sor. Unlike the analogous case in virtual memory, this
is not a page fault that lets the OS install a new map-
ping and transparently resume operation of the faulting
access. Instead, the DMA is simply dropped. The I/O de-
vice observes this and may not be able to recover. 1

IOTLB translation caching The IOMMU maintains
an IOTLB that caches IOVA translations. If the OS mod-
ifies a translation, it must invalidate (or flush) any TLB
entries associated with the translation. The IOMMU sup-
ports individual invalidations as well as global ones,
which flush all cached translations. The OS requests
IOTLB invalidations using the IOMMU’s invalidation
queue, a cyclic buffer in memory into which the OS adds
invalidation requests and the IOMMU processes them
asynchronously. The OS can request to be notified when
an invalidation has been processed.

2.1 IOMMU protection
IOMMUs can be used to provide inter- and intra-OS
protection [3, 43, 45, 47]. IOMMUs are used for inter-
OS protection in virtualized setups, when the host as-
signs a device for the exclusive use of some guest. The
host creates a static IOMMU translation [45] that maps
guest physical pages to the host physical pages backing
them, allowing the guest VM to directly program de-
vice DMAs. This mode of operation does not stress the
IOMMU management code and is not the focus of this
work.

We focus on intra-OS protection, in which the OS uses
the IOMMU to restrict a device’s DMAs to specific phys-
ical memory locations. This protects the system from er-
rant devices [18, 29], malicious devices [8, 13, 46], and
buggy drivers [7, 15, 22, 31, 41, 44].

Intra-OS protection is implemented via the DMA
API [12, 32, 37] that a device driver uses when program-
ming the DMAs. To program a device DMA to a physical
buffer, the driver must pass the buffer to the DMA API’s
map operation. The map operation responds with a DMA
address, and it is the DMA address that the driver must
program the device to access.

Internally, the map operation (1) allocates an IOVA
range the same size as the buffer, (2) maps the IOVA
range to the buffer in the IOMMU, and (3) returns the
IOVA to the driver. Once the DMA completes, the driver

1I/O page fault standardization exists, but since it requires support
from the device, it is not widely implemented or compatible with legacy
devices [2, 38, 39].

must unmap the DMA address, at which point the map-
ping is destroyed and the IOVA range deallocated.

High throughput I/O workloads can create and destroy
such dynamic IOMMU mappings [12] millions of times
a second, on multiple cores concurrently, and thereby put
severe pressure on the IOMMU management subsystem
implementing the DMA API.

3 Performance Analysis of Present Designs
Here we analyze the performance of current IOMMU
management designs under I/O workloads with high
throughput and concurrency. We use Linux/Intel-x86 as
a representative study vehicle; other OSes have similar
designs (§ 3.4). Our test workload is a highly parallel RR
benchmark, in which a netperf [28] server is handling
270 concurrent TCP RR requests arriving on a 10 Gb/s
NIC. § 6 fully details the workload and test setup.

To analyze the overhead created by IOMMU manage-
ment (shown in Figure 1), we break down the execution
time of the parallel RR workload on 16 cores (maximum
concurrency on our system) into the times spent on the
subtasks required to create and destroy IOMMU map-
pings. Figure 2 shows this breakdown. For comparison,
the last 3 bars show the breakdown of our scalable de-
signs (§§ 4–5).

We note that this parallel workload provokes patholog-
ical behavior of the stock Linux IOVA allocator. This be-
havior, which does not exist in other OSes, causes IOVA
allocation to hog ≈ 60% of the execution time. The re-
cent EiovaR optimization [35] addresses this issue, and
we therefore use Linux with EiovaR as our baseline. We
discuss this further in § 3.1.

In the following, we analyze each IOMMU man-
agement subtask and its associated overhead in the
Linux design: IOVA allocation (§ 3.1), IOTLB in-
validations (§ 3.2), and IOMMU page table manage-
ment (§ 3.3).

3.1 Linux IOVA Allocation
In Linux, each device is associated with an IOVA allo-
cator that is protected by a coarse-grained lock. Each
IOVA allocation and deallocation for the device acquires
its allocator’s lock, which thus becomes a sequential bot-
tleneck for frequent concurrent IOVA allocate/deallocate
operations. Figure 2 shows that IOVA allocation lock
acquisition time in the baseline accounts for 31.9% of
the cycles. In fact, this is only because IOVA alloca-
tions are throttled by a different bottleneck, IOTLB inval-
idations (§ 3.2). Once we address the invalidations bot-
tleneck, the IOVA allocation bottleneck becomes much
more severe, accounting for nearly 70% of the cycles.

This kind of design—acquiring a global lock for each
operation—would turn IOVA allocation into a sequential
bottleneck no matter which allocation algorithm is used
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Figure 2. Throughput and cycle breakdown of time spent in IOMMU management on a 16-core parallel netperf RR workload.
Stock Linux is shown for reference. Our baseline is Linux with EiovaR [35], which addresses a performance pathology in the
stock Linux IOVA allocation algorithm (see § 3.1). In this baseline, the IOTLB invalidation bottleneck masks the IOVA allocation
bottleneck, as evidenced by the third bar, which shows the breakdown after applying scalable IOTLB invalidations (§ 5) to the
EiovaR baseline. Our designs are represented by the last three bars, nearly eliminating lock overhead.

once the lock is acquired. We nevertheless discuss the
Linux IOVA allocation algorithm itself, since it has im-
plications for IOMMU page table management.

The IOVA allocator packs allocated IOVAs as tightly
as possible towards the end of the virtual I/O address
space. This minimizes the number of page tables re-
quired to map allocated IOVAs—an important feature,
because Linux rarely reclaims a physical page that gets
used as an IOMMU page table (§ 3.3).

To achieve this, the IOVA allocator uses a red-black
tree that holds pairwise-disjoint ranges of allocated vir-
tual I/O page numbers. This allows a new IOVA range
to be allocated by scanning the virtual I/O address space
from highest range to lowest range (with a right-to-left
traversal of the tree) until finding an unallocated gap that
can hold the desired range. Linux attempts to minimize
such costly linear traversals through a heuristic in which
the scan starts from some previously cached tree node.
This often finds a desired gap in constant time [35]. 2

Unfortunately, the IOVA allocation patterns occurring
with modern NICs can cause the heuristic to fail, result-
ing in frequent long linear traversals during IOVA alloca-
tions [35]. The EiovaR optimization avoids this problem
by adding a cache of recently freed IOVA ranges that can
satisfy most allocations without accessing the tree [35].
IOVA allocation time in Linux/EiovaR is thus compara-
ble, if not superior, to other OSes. However, IOVA al-
location remains a sequential bottleneck with EiovaR as
well (Figure 2), since the EiovaR cache is accessed under

2We refer the reader to [35] for the exact details of the heuristic,
which are irrelevant for our purpose.

the IOVA allocator lock.

3.2 Linux IOTLB Invalidation
Destroying an IOMMU mapping requires invalidating
the IOTLB entry caching the mapping, both for correct-
ness and for security. For correctness, if the unmapped
IOVA gets subsequently remapped to a different physi-
cal address, the IOMMU will keep using the old trans-
lation and misdirect any DMAs to this IOVA. Security-
wise, destroying a mapping indicates the device should
no longer have access to the associated physical mem-
ory. If the translation remains present in the IOTLB, the
device can still access the memory.

Unfortunately, waiting for the invalidation to complete
prior to returning control from IOVA unmapping code is
prohibitively expensive (§ 6). In addition to the added
latency of waiting for the invalidation to complete, is-
suing the invalidation command requires writing to the
IOMMU invalidation queue—an operation that must be
serialized and thus quickly becomes a bottleneck.

As a result, Linux does not implement this strict in-
validation policy by default. Instead, it implements a
deferred invalidation policy that amortizes the cost of
IOTLB invalidation across multiple unmappings. Here,
an unmap operation buffers an invalidation request for its
IOVA in a global flush queue data structure and returns
without waiting for the invalidation to complete. Peri-
odically (every 10 ms) or after batching 250 invalidation
requests, Linux performs a single global IOTLB invali-
dation that empties the entire IOTLB (possibly flushing
valid entries as well). Once the global invalidation com-
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pletes, the IOVA allocator is invoked to deallocate each
IOVA range buffered in the flush queue.

Thus, deferred invalidation maintains correctness, but
trades off some security—creating a window of time in
which a device can access unmapped IOVAs—in ex-
change for performance. In practice, unmapped phys-
ical pages rarely get reused immediately upon return-
ing from the unmap function. For example, a driver
may unmap multiple pages—possibly triggering a global
invalidation—before returning control to the system.
Thus, deferred invalidation appears to be a pragmatic
trade-off, and other OSes use similar mechanisms (§ 3.4).

While deferred invalidation amortizes the latency of
waiting for invalidations to complete, the flush queue is
protected by a single (per IOMMU) invalidation lock. As
with the IOVA allocation lock, this is a non-scalable de-
sign that creates a bottleneck—21.7% of the cycles are
spent waiting for the invalidation lock in our experiment.

Masking the IOVA allocator bottleneck Interest-
ingly, the IOTLB invalidation bottleneck throttles the rate
of IOVA allocation/deallocation operations, and thereby
masks the severity of the IOVA allocator bottleneck.
Deallocations are throttled because they occur while
processing the flush queue—i.e., under the invalidation
lock—and are therefore serialized. Allocations (map-
pings) are throttled because they are interleaved with
unmappings. Since unmapping is slow because of the
IOTLB bottleneck, the interval between mappings in-
creases and their frequency decreases.

Once we eliminate the IOTLB invalidation bottleneck,
however, pressure on the IOVA allocation lock increases
and with it the severity of its performance impact. In-
deed, as Figure 2 shows, adding scalable deferred IOTLB
invalidation (§ 5) to Linux/EiovaR increases IOVA lock
waiting time by 2.1×.

3.3 Linux Page Table Management
IOMMU page table management involves two tasks: up-
dating the page tables when creating/destroying map-
pings, and reclaiming physical pages that are used as
page tables when they become empty.

3.3.1 Updating Page Tables

We distinguish between updates to last-level page ta-
bles (leafs in the page table tree) and page directories (in-
ner nodes).

For last-level page tables, the Linux IOVA alloca-
tor enables synchronization-free updates. Because each
mapping is associated with a unique IOVA page range,
updates of distinct mappings involve distinct page table
entries. Further, the OS does not allow concurrent map-
ping/unmapping of the same IOVA range. Consequently,
it is safe to update entries in last-level page tables without
locking or atomic operations.

Updating page directories is more complex, since each
page directory entry (PDE) may map multiple IOVA
ranges (any range potentially mapped by a child page
table), and multiple cores may be concurrently map-
ping/unmapping these ranges. A new child page table is
allocated by updating an empty PDE to point to a new
page table. To synchronize this action in a parallel sce-
nario, we allocate a physical page P and then attempt to
point the PDE to P using an atomic operation. This at-
tempt may fail if another core has pointed the PDE to its
own page table in the mean time, but in this case we sim-
ply free P and use the page table installed by the other
core. Deallocation of page tables is more complex, and
is discussed in the following section.

The bottom line, however, is that updating page ta-
bles is relatively cheap. Page directories are updated in-
frequently and these updates rarely experience conflicts.
Similarly, last-level page table updates are cheap and
conflict free. As a result, page table updates account for
about 2.8% of the cycles in the system (Figure 2).

3.3.2 Page Table Reclamation

To reclaim a page table, we must first be able to remove
any reference (PDE) to it. This requires some kind of
synchronization to atomically (1) determine that the page
table is empty, (2) remove the pointer from the parent
PDE to it, (3) prevent other cores from creating new en-
tries in the page table in the mean time. In addition, be-
cause the IOTLB could cache PDEs [27], we can only
reclaim the physical page that served as the now-empty
page table after invalidating the IOTLB. Before that, it
is not safe to reclaim this memory or to map any other
IOVA in the range controlled by it.

Due to this complexity, the Linux design sidesteps this
issue and does not reclaim page table memory, unless the
entire region covered by a PDE is freed in one unmap ac-
tion. Thus, once a PDE is set to point to some page P, it is
unlikely to ever change, which in turn reduces the num-
ber of updates that need to be performed for PDEs. This
simple implementation choice is largely enabled by the
IOVA allocation policy of packing IOVA ranges close to
the top of the address space. This policy results in re-
quiring a minimal number of page tables to map the allo-
cated IOVA ranges, which makes memory consumption
by IOMMU page tables tolerable.

3.4 IOMMU Management in Other OSes
This section compares the Linux/Intel-x86 IOMMU
management design to the designs used in the FreeBSD,
Solaris3, and Mac OS X systems. Table 1 summarizes
our findings, which are detailed below. In a nutshell, we
find that (1) all OSes have scalability bottlenecks sim-

3Our source code references are to illumos, a fork of OpenSolaris.
However, the code in question dates back to OpenSolaris.
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IOVA allocation IOTLB invalidation PT management
Allocator Scales? Strict? Scales? Scales? Free mem?

Linux/Intel-
x86 (§§ 3.1–
3.3)

Red-black tree: linear time (made
constant by EiovaR).

� � � � Rarely

FreeBSD [20] Red-black tree: logarithmic time � � � � Yes
Solaris [21] Vmem [11]: constant time � � � � No
Mac OS X [4] Buddy allocator/red-black tree

(size dependent): logarithmic time
� � � � No

Table 1. Comparison of IOMMU management designs in current OSes

ilar to—or worse than—Linux, (2) none of the OSes
other than FreeBSD reclaim IOMMU page tables, (3)
FreeBSD is the only OS to implement strict IOTLB in-
validation. The other OSes loosen their intra-OS protec-
tion guarantees for increased performance. The last ob-
servation supports our choice of optimizing the Linux
deferred invalidation design in this work. Our scal-
able IOMMU management designs (or simple variants
thereof) are thus applicable to these OSes as well.

IOVA allocation All systems use a central globally-
locked allocator, which is invoked by each IOVA alloca-
tion/deallocation operation, and is thus a bottleneck. The
underlying allocator in FreeBSD is a red-black tree of
allocated ranges, similarly to Linux. However, FreeBSD
uses a different traversal policy, which usually finds a
range in logarithmic time [35]. Solaris uses the Vmem
resource allocator [11], which allocates in constant time.
Mac OS X uses two allocators, both logarithmic—a
buddy allocator for small (≤ 512 MB) ranges and a
red/black tree allocator for larger ranges.

IOTLB invalidation FreeBSD is the only OS that im-
plements strict IOTLB invalidations, i.e., waits until the
IOTLB is invalidated before completing an IOVA un-
map operation. The other OSes defer invalidations, al-
though differently than Linux: Solaris does not invalidate
the IOTLB when unmapping. Instead, it invalidates the
IOTLB when mapping an IOVA range, to flush any previ-
ous stale mapping. This creates an unbounded window of
time in which a device can still access unmapped mem-
ory. An unmap on Mac OS X buffers an IOTLB invali-
dation request in the cyclic IOMMU invalidation queue
and returns without waiting for the invalidation to com-
plete. All these designs acquire the lock protecting the
IOMMU invalidation queue for each operation, and thus
do not scale.

Page table management Linux has the most scalable
IOMMU page table management scheme—exploiting
IOVA range disjointness to update last-level PTEs with-
out locks and inner PDEs with atomic operations. In con-
trast, FreeBSD performs page table manipulations under

a global lock. Solaris uses a more fine-grained technique,
protecting each page table with a read/write lock. How-
ever, the root page table lock is acquired by every oper-
ation and thus becomes a bottleneck, since even acquisi-
tions of a read/write lock in read mode create contention
on the lock’s shared cache line [33]. Finally, Mac OS
X updates page tables under a global lock when using
the buddy allocator, but outside of the lock—similarly to
Linux—when allocating from the red-black tree.

Page table reclamation Similarly to Linux, Solaris
does not detect when a page table becomes empty and
thus does not attempt to reclaim physical pages that serve
as page tables. Mac OS X bounds the number of IOMMU
page tables (and therefore the size of I/O virtual memory
supported) and allocates them on first use while hold-
ing the IOVA allocator lock. Mac OS X does not re-
claim page tables as well. Only FreeBSD actively man-
ages IOMMU page table memory; it maintains a count
of used PTEs in each page table, and frees the page table
when it becomes empty.

4 Scalable IOVA Allocation
Here we describe three designs for scalable IOVA assign-
ment, exploring several points in this design space: (1)
dynamic identity mapping (§ 4.1), which does away with
IOVA allocation altogether, (2) IOVA-kmalloc (§ 4.2)
which implements IOVA allocation but does away with
its dedicated allocator, and (3) scalable IOVA alloca-
tion (§ 4.3), which uses magazines [11] to alleviate con-
tention on the IOVA allocator using per-core caching of
freed IOVA ranges.

4.1 Dynamic Identity Mapping
The fastest code is code that never runs. Our dynamic
identity mapping design applies this principle to IOVA
allocation. We observe that ordinarily, the buffers that
a driver wishes to map are already physically contigu-
ous. We thus propose to use such a physically contigu-
ous buffer’s physical address as its IOVA when map-
ping it, resulting in an identity (1-to-1) mapping in the
IOMMU. Due to intra-OS protection reasons, when the
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driver unmaps a buffer we must destroy its identity map-
ping. We therefore refer to this scheme as dynamic iden-
tity mappings—while the same buffer will always use the
same mapping, this mapping is dynamically created and
destroyed to enforce protection of the buffer’s memory.

Dynamic identity mapping eliminates the work and
locking involved in managing a distinct space of IOVAs,
replacing it with the work of translating a buffer’s ker-
nel virtual address to a physical address. In most OSes,
this is an efficient and scalable operation—e.g., adding a
constant to the kernel virtual address. However, while dy-
namic identity mapping completely eliminates the IOVA
allocation bottleneck, it turns out to have broader impli-
cations for other parts of the IOMMU management sub-
system, which we now discuss.

Page table entry reuse Standard IOVA allocation as-
sociates each mapping with a distinct IOVA. As a re-
sult, multiple mappings of the same page (e.g., for dif-
ferent buffers on the same page) involve different page
table entries (§ 3.3). Dynamic identity mapping breaks
this property: a driver—or concurrent cores—mapping a
previously mapped page will need to update exactly the
same page table entries (PTEs).

While repeated mapping operations will always write
the same value (i.e., the physical address of the mapped
page), unmapping operations pose a challenge. We need
to detect when the last unmapping occurs, so we can
clear the PTE. This requires maintaining a reference
count for each PTE. We use 10 of the OS-reserved bits
in the last-level PTE structure [27] to maintain this refer-
ence count. When the reference count hits zero, we clear
the PTE and request an IOTLB invalidation.

Because multiple cores may concurrently update the
same PTE, all PTE updates—including reference count
maintenance—require atomic operations. In other words,
we need to (1) read the PTE, (2) compute the new PTE
value, (3) update it with an atomic operation that verifies
the PTE has not changed in the mean time, and (4) repeat
this process if the atomic operation fails.

Conflicting access permissions A second problem
posed by not having unique PTEs for each mapping is
how to handle mappings of the same physical page with
conflicting access permission (read, write, or both). For
example, two buffers may get allocated by the network
stack on the same page—one for RX use, which the NIC
should write to, and one for TX, which the NIC should
only read. To maintain intra-OS protection, we must sep-
arately track mappings with different permissions, e.g.,
so that once all writable mappings of a page are de-
stroyed, no PTE with write permissions remains. Further-
more, even when a mapping with write permissions ex-
ists, we want to avoid promoting PTEs that should only
be used to read (and vice-versa), as this kind of access

should not happen during the normal course operation
for a properly functioning device and should be detected
and blocked.

To solve this problem, we exploit the fact that current
x86 processors support 48-bit I/O virtual memory ad-
dresses, but only 46-bits of physical memory addresses.
The two most significant bits in each IOVA are thus
“spare” bits, which we can use to differentiate mappings
with conflicting access permissions. Effectively, we par-
tition the identity mapping space into regions: three re-
gions, for read, write and read/write mappings, and a
fourth fallback region that contains addresses that cannot
be mapped with identity mappings—as discussed next.

Non-contiguous buffers Some mapping operations
are for physically non-contiguous buffers. For exam-
ple, Linux’s scatter/gather mapping functions map non-
consecutive physical memory into contiguous virtual I/O
memory. Since identity mappings do not address this use
case, we fall back to using the IOVA allocator in such
cases. To avoid conflicts with the identity mappings, IO-
VAs returned by the IOVA allocator are used in the fourth
fallback region.

PTE reference count overflow We fall back to stan-
dard IOVA allocation for mappings in which the 10-bit
reference count overflows. That is, if we encounter a PTE
whose reference count cannot be incremented while cre-
ating a dynamic identity mapping, we abort (decrement-
ing the references of any PTEs previously incremented
in the mapping process) and create the mapping using an
IOVA obtained from the IOVA allocator.

Page table memory Because physical addresses
mapped by drivers are basically arbitrary, we lose the
property that IOVAs are densely packed. Consequently,
more memory may be required to hold page tables. For
example, if the first 512 map operations are each for a
single page, IOVA allocation will map them all through
the same last-level page table. With physical addresses,
we may need at least a page table per map operation. Un-
fortunately, the physical pages used to hold these page
tables will not get reclaimed (§ 3.3). In the worst case,
page table memory consumption may keep increasing as
the system remains active.

4.2 IOVA-kmalloc
Our IOVA-kmalloc design explores the implications of
treating IOVA allocation as a general allocation prob-
lem. Essentially, to allocate an IOVA range of size R, we
can allocate a block of R bytes in physical memory using
the system’s kmalloc allocator, and use the block’s ad-
dress as an IOVA (our actual design is much less waste-
ful, as discussed below). The addresses kmalloc returns
are unique per allocation, and thus IOVA-kmalloc main-
tains the efficient conflict-free updates of IOMMU page
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tables enabled by the original IOVA allocator.
One crucial difference between kmalloc and IOVA al-

location is that IOVAs are abstract—essentially, opaque
integers—whereas kmalloc allocates physically con-
tiguous memory. It might therefore seem that the IOVA-
kmalloc approach unacceptably wastes memory, since
allocating R bytes to obtain an R-byte IOVA range dou-
bles the system’s memory consumption. Fortunately, we
observe that the IOVA allocator need only allocate vir-
tual I/O page frame numbers (PFNs), and not arbitrary
ranges. That is, given a physical buffer to map, we need
to find a range of pages that contains this buffer. This
makes the problem tractable: we can treat the physi-
cal addresses that kmalloc returns as PFNs. That is,
to map a range of R bytes, we kmalloc �R/4096�
bytes and interpret the address of the returned block B
as a range of PFNs (i.e., covering the IOVA range of
[4096B,4096(B+ �R/4096�)].

While this still wastes physical memory, the overhead
is only 1 byte per virtual I/O page, rounded up to 8 bytes
(the smallest unit kmalloc allocates internally). By com-
parison, the last-level PTE required to map a page is itself
8 bytes, so the memory blowup caused by IOVA-kmalloc
allocating actual physical memory is never greater than
the memory overhead incurred by stock Linux for page
table management.

In fact, being a full-blown memory allocator that man-
ages actual memory (not abstract integers) might actually
turn out to be advantageous for kmalloc, as this prop-
erty enables it to use the many techniques and optimiza-
tions in the memory allocation literature. In particular,
kmalloc implements a version of slab allocation [10],
a fast and space-efficient allocation scheme. One aspect
of this technique is that kmalloc stores the slab that con-
tains metadata associated with an allocated address in the
page structure of the address. This allows kmalloc to
look up metadata in constant time when an address gets
freed. In contrast, the Linux IOVA allocator has to main-
tain metadata externally, in the red-black tree, because
there is no physical memory backing an IOVA. It must
thus access the globally-locked tree on each deallocation.

Page table memory blowup The main downside of
IOVA-kmalloc is that we have no control over the allo-
cated addresses. Since kmalloc makes no effort to pack
allocations densely, the number of page tables required
to hold all the mappings will be larger than with the
Linux IOVA allocator. Moreover, if the same physical
address is mapped, unmapped, and then mapped again,
IOVA-kmalloc may use a different IOVA when remap-
ping. Because Linux does not reclaim page table mem-
ory, the amount of memory dedicated to page tables can
grow without bound. In contrast, dynamic identity map-
ping always allocates the same IOVA to a given physical
buffer. However, in an OS that manages page table mem-

ory, unbounded blowup cannot occur.
To summarize, IOVA-kmalloc represents a classic

time/space trade-off—we relinquish memory in ex-
change for the efficiency and scalability of kmalloc,
which is highly optimized due to its pervasive use
throughout the kernel. Notably, these advantages come
for free, in terms of implementation complexity, debug-
ging and maintenance, since kmalloc is already there,
performs well, and is trivial to use.

Handling IOVA collisions IOVAs are presently 48
bits wide [27]. x86 hardware presently supports 46-bits
of physical address space [26]. Thus, because we treat
kmalloc addresses as virtual I/O PFNs, IOVA-kmalloc
may allocate two addresses that collide when interpreted
as PFNs in the 48-bit I/O virtual address space. That is,
we have 236 possible IOVA PFNs since pages are 4 KB,
but kmalloc allocates from a pool of up to 246 bytes of
physical memory.

Such collisions are mathematically impossible on sys-
tems with at most 64 GB of physical memory (whose
physical addresses are 36-bit). To avoid these collisions
on larger systems, IOVA allocations can invoke kmalloc
with the GFP DMA flag. This flag instructs kmalloc to sat-
isfy the allocation from a low memory zone whose size
we can configure to be at most 64 GB.4

Why allocate addresses? We could simply use a
mapped buffer’s kernel virtual address as its IOVA PFN.
However, we then lose the guarantee that different map-
pings obtain different IOVA PFNs (e.g., as the same
buffer can be mapped twice). This is exactly the problem
dynamic identity mapping tackles, only here we do not
have “spare” bits to distinguish mappings with different
access rights as the virtual address space is 48 bits.

4.3 Scalable IOVA Allocation with Maga-
zines

Our final design addresses the IOVA allocator bottleneck
head-on, turning it into a scalable allocator. The basic
idea is to add a per-core cache of previously deallocated
IOVA ranges. If most allocations can be satisfied from
the per-core cache, the actual allocator—with its lock—
will be invoked rarely.

Per-core caching poses several requirements. First, the
per-core caches should be bounded. Second, they should
efficiently handle producer/consumer scenarios observed
in practice, in which one core continuously allocates IO-
VAs, which are later freed by another core. In a trivial de-
sign, only the core freeing IOVAs will build up a cache,
while the allocating core will always invoke the under-

4In theory, the GFP DMA memory zone must be accessible to legacy
devices for DMA and thus addressable with 24 bits. But as we have
an IOMMU, we only need to ensure that the IOVA ranges mapped to
legacy devices fall into the 24-bit zone.
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lying non-scalable allocator. We require that both cores
avoid interacting with the IOVA allocator.

Magazines [11] provide a suitable solution. A maga-
zine is an M-element per-core cache of objects—IOVA
ranges, in our case—maintained as a stack of objects.
Conceptually, a core trying to allocate from an empty
magazine (or deallocate into a full magazine) can re-
turn its magazine to a globally-locked depot in exchange
for a full (or empty) magazine. Magazines actually em-
ploy a more sophisticated replenishment policy which
guarantees that a core can satisfy at least M allocations
and at least M deallocations from its per-core cache be-
fore it must access the depot. Thus, a core’s miss rate is
bounded by 1/M.

We implement magazines on top of the original Linux
IOVA allocator, maintaining separate magazines and de-
pots for different allocation sizes. Thus, this design still
controls page table blowup, as the underlying allocator
densely packs allocated IOVAs.

5 Scalable IOTLB Invalidation
This section describes a scalable implementation of de-
ferred IOTLB invalidations. Recall that Linux maintains
a flush queue containing a globally ordered list of all
IOVA ranges pending invalidation. We observe, how-
ever, that a global flush queue—with its associated lock
contention—is overkill. There is no real dependency be-
tween the invalidation process of distinct IOVA ranges.
Our only requirements are that until an entire IOVA range
mapping is invalidated in the IOTLB:

1. The IOVA range will not be released back to the
IOVA allocator, to avoid having it allocated again
before the old mapping is invalidated.

2. The page tables that were mapping the IOVA range
will not be reclaimed. Since page directory entries
are also cached in the IOTLB, such a reclaimed page
table might get reused and data that appears as a
valid page table entry be written to it, and this data
might then be used by the IOMMU.

Our approach We satisfy these requirements in a
much more scalable manner by batching invalidation re-
quests locally on each core instead of globally. Imple-
menting this approach simply requires replicating the
current flush queue algorithm on a per-core basis. With
this design, the lock on a core’s flush queue is almost al-
ways acquired by the owning core. The only exception is
when the queue’s global invalidation timeout expires—
the resulting callback, which acquires the lock, may be
scheduled on a different core. However, not only does
such an event occur rarely (at most once every 10 ms),
but it suggests that the IOMMU management subsystem
is not heavily used in the first place.

The remaining source of contention in this design is
the serialization of writes to the cyclic IOMMU invali-
dation queue—which is protected by a lock—in order to
buffer global IOTLB invalidation requests. Fortunately,
accesses to the invalidation queue are infrequent, with at
most one invalidation every 250 invalidations or 10 ms,
and short, as an invalidation request is added to the buffer
and the lock is released; the core waits for the IOMMU to
process its queued invalidation without holding the lock.

Security-wise, while we now might batch 250 invali-
dation requests per core, a destroyed IOVA range map-
ping will usually be invalidated in the IOTLB just as
quickly as before. The reason is that some core per-
forms a global IOTLB invalidation, on average, every
250 global invalidation requests. Thus, we do not sub-
stantially increase the window of time in which a device
can access an unmapped physical page. Unmapped IOVA
ranges may, however, remain in a core’s flush queue and
will not be returned to the IOVA allocator for a longer
time than the baseline design—they will be freed only
when the core itself processes its local flush queue. We
did not observe this to be a problem in practice, espe-
cially when the system experiences high IOMMU man-
agement load.

6 Evaluation
Here we evaluate our designs (§§ 4–5) and explore the
trade-offs they involve. We study two metrics: the per-
formance obtained (§ 6.1), and the complexity of imple-
menting the designs (§ 6.2).

6.1 Performance
Experimental setup We implement the designs in
Linux 3.17.2. Our test setup consists of a client and a
server, both Dell PowerEdge R430 rack machines. Each
machine has dual 2.4 GHz Intel Xeon E5-2630 v3 8-core
processors, for a total of 16 cores per machine (hyper-
threading is disabled). Both machines are equipped with
32 GB 2133 MHz memory. The server is equipped with
a Broadcom NetXtreme II BCM57810 10 Gb/s NIC.
The client is equipped with an Intel 82599 10 Gb/s NIC
and runs an unmodified Ubuntu 3.13.0-45 Linux kernel.
The client’s IOMMU is disabled for all evaluations. The
client and the server NICs are cross-connected to avoid
network interference.

Methodology To obtain the best scalability, we (1)
configure the NIC on the server to use 15 rings, which is
the maximum number supported by the Broadcom NIC,
allowing cores to interact with the NIC with minimal
lock contention (no ring contention with < 16 cores),
and (2) distribute delivery of interrupts associated with
different rings across different cores.5 Benchmarks are

5Default delivery is to core #0, which overloads this core.
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executed in a round-robin fashion, with each benchmark
running once for 10 seconds for each possible number of
cores, followed by all benchmarks repeating. The cycle
is run five times and the reported results are the medians
of the five runs.

Benchmarks In our benchmarks, we aim to use con-
current workloads that stress the IOMMU management
subsystem.

Our first few benchmarks are based on netperf [28],
a prominent network analysis tool. In our highly parallel
RR (request-response) benchmark, we run 270 instances
of the netperf TCP RR test on the client, and limit the
server side of netperf to the number of cores we wish to
test on. Each TCP RR instance sends a TCP packet with
1 byte of payload to the server and waits for a 1 byte
response before sending the next one. In all, our bench-
mark has 270 ongoing requests to the netperf server
at any given time, which bring the server close to 100%
CPU utilization even with IOMMU disabled. We report
the total number of such request-response transactions
the server responds to during the testing period.

The second benchmark we use netperf for is a paral-
lel latency test. To achieve that, we run the netperf TCP
RR test with as many instances as we allow server cores.
This allows each netperf request-response connection
to run on its own dedicated core on both the client and
the server.

Our third benchmark is memcached [19], a key-value
store service used by web applications to speed up
read operations on slow resources such as databases
and remote API calls. To avoid lock contention within
memcached, we run multiple instances, each pinned to
run on a specific core. We measure memcached through-
put using memslap [1], which distributes requests among
the memcached instances. We configure memslap to run
on the client with 16 threads and 256 concurrent requests
(16 per thread). We use memslap’s default configuration
of a 64-byte key, 1024-byte value and a ratio of 10%/90%
SET/GET operations.

We note that network bandwidth benchmarks would
be less relevant here, as a single core can saturate the
network on our machines. As an example, netperf TCP
STREAM, which makes use of the NIC’s offloading fea-
tures, is able to saturate the network using 22% CPU time
on a single core even running under EiovaR-Linux.

Results Figure 3 depicts the throughput achieved by
our highly parallel RR benchmark. Without an IOMMU,
Linux scales nicely and obtains 14.4× TPS with 16 cores
than with a single core. Because of the IOMMU manage-
ment bottlenecks, EiovaR-Linux does not scale as well,
obtaining only a 3.8× speedup. In particular, while Eio-
vaR obtains 86% of the No-IOMMU throughput with 1
core (due to the single-threaded overheads of IOMMU
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Figure 3. Highly parallel RR throughput
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Figure 4. 1 netperf TCP RR instance per core latency test

management), it only achieves 23% of the No-IOMMU
throughput at 16 cores.

Our designs all perform at 93%–95% of No-IOMMU
on a single core and scale far better than EiovaR, with
16-core throughput being 93% (magazines and dynamic
identity mapping) and 94% (IOVA-kmalloc) of the No-
IOMMU results. Because of the overhead dynamic iden-
tity mapping adds to page table updates, it does not out-
perform the IOVA allocating designs—despite not per-
forming IOVA allocation at all.

To summarize, in our designs IOMMU overhead is
essentially constant and does not get worse with more
concurrency. Most of this overhead consists of page ta-
bles updates, which are essential when managing the
IOMMU in a transient manner.

In our parallel latency test, shown in Figure 4, we see
that Linux’s latency increases with multiple cores, even
without IOMMU, from 29µs with one instance to 41µs
with 16 instances, each with its own core. While Eio-
vaR starts within 1.2µs of Linux’s latency on one core,
the contention caused by its locks causes a 10µs gap at
16 cores. For the most part, our designs are on par with
Linux’s performance, actually achieving slightly shorter
latency than No-IOMMU Linux on 16 cores.

The evaluation of memcached in Figure 5 paints a sim-
ilar picture to Figure 3 with up to 12 cores. The IOMMU
subsystem is indifferent to the different packet size in this
workload (1052 bytes here, 1 byte in TCP RR) as the
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Figure 5. memcached throughput
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Figure 6. Page table memory over time

mappings are done per page and no data copying takes
place. Starting at 12 cores, all of our designs achieve
line rate and therefore close the gap with No-IOMMU
performance. Here, too, IOVA-kmalloc demonstrates the
best performance out of our designs by a small mar-
gin (in all but 2 cores and > 12 cores, where they all
achieve line rate), as it is the most highly optimized of
the three. With a single core, all of our designs are be-
tween 89% (dynamic identity) and 91% (IOVA-kmalloc)
of No-IOMMU performance. At 9 cores, after which
No-IOMMU Linux throughput begins to near line rate,
our designs’ relative throughput is between 89.5% (dy-
namic identity) and 91.5% (IOVA-kmalloc). EiovaR also
stops scaling well before 16 cores, but as opposed to our
designs, it does not do that due to achieving line rate,
plateauing at 40% of it, starting with 9 cores.

Page table memory consumption Linux rarely re-
claims a page used as an IOMMU page table (§ 3.3).
Figure 6 illustrates the memory consumption dynamics
this policy creates. We run 100 iterations of our parallel
RR benchmark and plot the number of IOMMU page ta-
bles (in all levels) that exist in the system before the tests
start (but after system and NIC initialization) and after
each iteration.

Both EiovaR and our magazine-based design, which
are based on Linux’s current IOVA allocator, minimize
page table memory consumption by packing allocated
IOVAs at the top of the address space. As Figure 6 shows,
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Figure 7. Highly parallel netperf txns/sec with strict IOTLB
invalidation

both of them, as well as stock Linux, allocate most page
tables at NIC initialization, when all RX rings are allo-
cated and mapped, as well as all TX/RX descriptors and
other metadata.

Our magazine-based design consumes 1.2× more
page table memory than stock Linux, because the cores
cache freed IOVAs in their per-core caches instead of re-
turning them to the global allocator, requiring other cores
to allocate new IOVAs from the allocator and thus in-
creasing page table use.

While dynamic identity mapping does not guarantee
an upper bound on the number of IOVAs it utilizes over
time, it turns out that the APIs used by the driver to
allocate buffers use caching themselves. Consequently,
mapped addresses repeat across the iterations and the
number of page tables does not explode. Still, 3.4× more
page tables than stock Linux are allocated, since the ad-
dresses are not packed.

In contrast to the other schemes, IOVA-kmalloc ex-
hibits a blowup of page table memory use. Since the ad-
dresses IOVA-kmalloc receives from kmalloc are influ-
enced by system-wide allocation activity, IOVA-kmalloc
uses a much wider and constantly changing set of IOVAs.
This causes its page table memory consumption to grow
in an almost linear fashion. We conclude that while
IOVA-kmalloc is the best performing design, by a slight
margin, its use must be accompanied by memory recla-
mation of unused page tables. This underscores the need
for managing the IOMMU page table memory in a scal-
able manner—§ 3.3 describes the challenges involved.

Strict invalidation Figure 7 shows the parallel RR
benchmark throughput with strict IOTLB invalidation,
i.e., full intra-OS protection. As invalidations are not de-
ferred, our scalable IOTLB invalidation optimization is
irrelevant for this case. While we observe very minor
throughput difference between the IOVA allocation de-
signs when using a small number of cores, even this dif-
ference is no longer evident when more than 6 cores
are used, with all designs obtaining about 1/6 the TPS
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Design Lines Files Impl.
add del time

Dynamic identity
mapping (§ 4.1)

+397 -92 1 Weeks

IOVA-kmalloc (§ 4.2) +56 -44 1 Hours
IOVA allocation with
magazines (§ 4.3)

+362 -79 3 Days

Scalable IOTLB in-
validation (§ 5)

+97 -37 1 Hours

Table 2. Implementation complexity of our designs

of No-IOMMU Linux by 16 cores. In all designs, the
contention over the invalidation queue lock becomes the
dominating factor (§ 3.2). Thus, strict IOTLB invalida-
tion appears incompatible with a scalable implementa-
tion.

6.2 Implementation Complexity
Table 2 reports the source code changes required to im-
plement our designs in Linux 3.17.2. The table also es-
timates the time it would take us to re-implement each
approach from scratch. IOVA-kmalloc is the simplest
design to implement, essentially replacing calls to the
IOVA allocator with a kmalloc() call. Most of the line
changes reported for IOVA-kmalloc are due to techni-
cal changes, replacing the struct representing an IOVA
with an integer type. Implementation of the magazines
design is a bit more complex, requiring an implementa-
tion of a magazine-based caching layer on top of the ex-
isting IOVA allocator, as well as optimizing its locking
strategy. Dynamic identity mapping is the most compli-
cated and intrusive of our IOVA assignment designs, as
it calls for a surgical modification of page table manage-
ment itself, maintaining mapping book-keeping within
the table itself and synchronizing updates to the same
mapping from multiple cores in parallel.

7 Related Work
Most work addressing the poor performance associ-
ated with using IOMMUs tackles only sequential per-
formance [3, 9, 14, 34, 42, 45, 47, 35], for example by
reducing the number of mapping operations [45], defer-
ring or offloading IOTLB invalidation work [3], and im-
proving the IOVA allocator algorithm [14, 35, 42]. Cas-
cardo [14] does consider multicore workloads, but his
proposal improves only the sequential part of the IOVA
allocator. In contrast, our work identifies and attacks the
scalability bottlenecks in current IOMMU management
designs. In addition, our scalable IOVA allocation is or-
thogonal to sequential improvements in the IOVA alloca-
tor, since it treats it as a black box.

Clements et al. propose designs for scalable manage-
ment of process virtual address spaces [16, 17]. I/O vir-

tual memory has simpler semantics than standard vir-
tual memory, which allows us to explore simpler de-
signs. In particular, (1) IOVA ranges cannot be partially
unmapped, unlike standard mmap()ed ranges, and (2)
IOVA mappings can exploit the preexisting address of the
mapped buffers (as in dynamic identity mapping), while
creation of a virtual memory region can occur before the
allocation of the physical memory backing it.

Bonwick introduced magazines to improve scalability
in the Vmem resource allocator [11]. Since Vmem is a
general allocator, however, it does not minimize page ta-
ble memory consumption of allocated IOVAs, in contrast
to the specialized Linux allocator. Our IOVA-kmalloc
design additionally shows that a dedicated resource allo-
cator may not be required in the first place. Finally, part
of our contribution is the re-evaluation of magazines on
modern machines and workloads.

8 Conclusion
Today, IOMMU-based intra-OS protection faces a per-
formance challenge in high throughput and highly con-
current I/O workloads. In current OSes, the IOMMU
management subsystem is not scalable and creates a pro-
hibitive bottleneck.

Towards addressing this problem, we have explored
the design space of scalable IOMMU management
approaches. We proposed three designs for scalable
IOVA assignment—dynamic identity mapping, IOVA-
kmalloc, and per-core IOVA caching—as well as a scal-
able IOTLB invalidation scheme. Our designs achieve
88.5%–100% of the performance obtained without an
IOMMU.

Our evaluation demonstrates the trade-offs of the dif-
ferent designs. Namely, (1) the savings dynamic identity
mapping obtains from not allocating IOVAs are negated
by its more expensive IOMMU page table management,
making it perform comparably to scalable IOVA alloca-
tion, and (2) IOVA-kmalloc provides a simple solution
with high performance, but suffers from unbounded page
table blowup. This emphasizes the importance of manag-
ing the IOMMU page table memory in a scalable manner
as well, which is interesting future work.
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Abstract
Background activities on mobile devices can cause signi�-
cant battery drain with little visibility or recourse to the
user. �ey can range from useful but sometimes overly ag-
gressive tasks, such as polling formessages or updates from
sensors and online services, to outright bugs that cause
resources to be held unnecessarily. In this paper we instru-
ment theAndroidOS to characterize background activities
that prevent the device from sleeping. We present Tamer,
an OS mechanism that interposes on events and signals
that cause task wakeups, and allows for their detailed mon-
itoring, �ltering, and rate-limiting. We demonstrate how
Tamer can help reduce battery drain in scenarios involv-
ing popular Android apps with background tasks. We also
show how Tamer can mitigate the e�ects of well-known
energy bugs while maintaining most of the apps’ function-
ality. Finally, we elaborate on how developers and users can
devise their own application-control policies for Tamer
to maximize battery lifetime.

1 Introduction
�e accelerated growth of sensing, computational, stor-
age, and communication capabilities of mobile devices
has enabled a rich application environment that rivals the
performance of desktop computers. Even so, battery tech-
nology has not followed the same advancement pace and
there is little evidence that this situation will dramatically
improve. As a result, battery lifetime has become a major
usability concern, with users willing to enjoy the latest
apps on their smartphones and tablets, but, at the same
time, worrying that their battery will not last long enough.
Since the inception of mobile computing, both indus-

try and academia have developed a slew of techniques to
reduce power at the architecture [8, 24], OS [49, 43] and
application levels [16, 21], and today’s systems draw little
power while idling. Due to its user-centric and interac-
tive nature, the �ow of a mobile application is driven by
events such as user actions, sensor I/O, and message ex-
changes. Such event-driven paradigm lets the system idle
until a new event arrives. Mobile OSes, such as Android,
iOS, and Windows Phone, take advantage of such idling
opportunities to engage in opportunistic suspend. Upon
brief periods of idling, the handheld switches to the default
suspend state. Hardware blocks, including the CPU, GPU,
GPS, and network modem, shi� to low-power mode and
so�ware state is kept in self-refreshing RAM. �e same

blocks return from suspension upon interrupts emitted by
hardware or so�ware indicating that they have pending re-
quests.With the rise ofmultitasking and themultiplication
of background services and complex mobile applications,
we expect this amount of interrupts to increase, forcing
the system to spend more time active to attend requests.
Such active periods take a toll on battery lifetime. A recent
study by Google clearly shows this impact: each second of
active use of a typical phone reduces the standby time by
two minutes [18].

�is paper studies the problem of battery drain mostly
due to app-originated background operations that wake up
the mobile system. We present Tamer, an OS mechanism
we built for Android that interposes on events and signals
responsible for task wakeups – alarms, wakelocks, broad-
cast receivers, and service invocations. Like a number of
pro�ling tools, Tamer allows us to characterize the back-
ground behavior of di�erent apps installed on a device. In
§2, using Tamer’s instrumentation, we show how a set of
installed applications can dramatically a�ect the battery
lifetime of four di�erent devices. Unlike existing pro�ling
tools, however, Tamer can also selectively block or rate-
limit the handling of such events and signals following
�exible policies. In this way, Tamer can, for example, limit
the frequency at which an application schedules alarms or
receives noti�cations of speci�ed events, providing �ne-
grained control over the energy usage of apps that may be
useful, but are irresponsible or ine�cient with respect to
their background activities. In §5.2 we show via a few case
studies how Tamer can reduce the energy consumed by
energy bugs [35] in legitimate apps. We summarize our
contributions as follows:

• We characterize how applications and core compo-
nents of the Android OS use speci�c features to en-
able background computing, and how this computing
signi�cantly a�ects energy use. In special, we note
that Google Mobile Services play a major role on
battery drain while the device is dormant (§2).

• We introduce Tamer, an OS mechanism to control
the frequency at which background tasks are handled,
thereby limiting their impact on energy consumption
(§4). Tamer leverages code-injection technology and
is applicable to any Java-based Android application.

• We demonstrate how Tamer can successfully throt-
tle the background behavior of popular applications,
thus reducing their energy footprint (§5). We show
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howdi�erent policies reduce power draw in exchange
for little to no impact on functionality.

Despite being a powerful mechanism, Tamer is only a
step towards e�ective control of background energy usage.
In particular, there are still challenges in helping users
de�ne policies that are e�ective, yet not disruptive to the
user experience. We discuss such challenges in §7.

2 Motivation
Smartphone and tablet users are used to being always con-
nected, expecting immediate noti�cations of a new e-mail
or application update. Other common background oper-
ations include polling navigational sensors for location
clues and turning on the network radio for incoming mes-
sages. Especially inAndroid, where there is little restriction
on what apps can do in the background and developer’s
discipline is the main factor preventing ine�cient applica-
tions, apps can hog resources and waste energy.

Traditionally there has been little visibility, both to app
developers and to users, on the contribution of individual
apps to energy use, especially while in the background. It is
even harder to know whether an app is actually running or
idling. Recent monitoring and pro�ling tools have helped
bridge this visibility gap [9, 39, 19, 36, 30, 33, 45], as one
cannot optimize what cannot be measured.
Today’s average handheld contains a large amount of

third-party so�ware. A 2013 survey shows a global average
of 26 apps installed on a mobile device [20]. Even with the
best currently available tools, the end user can do little to
cope with ine�cient apps. Most of the tools above target
developers and provide little help for the user. Even the
friendlier ones, such as eStar [30] and Carat [33], when
highlighting energy-ine�cient programs, can only o�er to
kill or uninstall the culprit app, perhaps suggesting replace-
ments. Unfortunately, this is too coarse-grained a solution
and some apps with irreplaceable functionality become an
inconvenience one has to live with.

Tamer o�ers the possibility of much �ner-grained con-
trol once an energy hog or bug is found. It provides infor-
mation on which tasks are expending the most energy and
can rate-limit their execution. Tamer detects most causes
of device wakeup that are visible at the framework level of
Android, and can �lter their continuation in real time.

To demonstrate the signi�cant di�erence that a set of
running tasks can make in a device’s battery life, we mea-
sured the battery drop of four Android devices (two smart-
phones and two tablets, cf. Table 1) running two di�erent
application sets, while idling and with the screen o�. Con-
servatively, we consider three scenarios: the �rst testing
environment (Pure AOSP) consists of a stripped version of
the Android Open Source Project (AOSP) OS containing
a minimum number of services and apps; the second one
adds Google Mobile Services (GMS) on top of Pure AOSP.
GMS consists of proprietary applications and services de-

veloped by Google, such as Calendar, Google+ (social me-
dia), Google Now (personal assistant), Hangouts (instant
messaging), Maps, Photos, Play Service (integrating API),
Play Store, and Search. Due to their popularity and added
value, GMS apps are included in most Android devices
sold today. For the third scenario, which we only ran on
the Galaxy Nexus phone, we also installed the ten most
popular free apps of Google’s Play Store as of January 20151.
We based all environments on the KitKat (4.4) version of
Android. For the experiments, we le� each device unat-
tended running with its con�guration at default settings.
Other relevant settings include connection to a WiFi ac-
cess point, enabled location-reporting, and background
network synchronization. We expect most of the battery
drainage to stem from static-voltage leakage and eventual
background processing.
Figure 1 shows the time taken by each environment-

device combination to deplete the battery. For all devices,
PureAOSP took the longest to completely drain the battery.
In the case of tablets, this di�erence spanned dozens of
hours. To investigate why this happened, we instrumented
the Android so�ware stack to timestamp the occurrence
of background events. Additionally, we connected one of
our devices (Galaxy Nexus) to a Monsoon power moni-
tor [31] and collected power traces from the battery. Finally,
we aligned and synchronized both the event and power
timelines to understand their correlation. Figure 2 depicts
a six-minute slice of this combination. We observe that
GMS triggers more events in the background and that they
are correlated with the surge of power peaks. We used this
tracing knowledge to build a mechanism that counters the
energy e�ect due to excessive wakeups. Because this mech-
anism relies on OS internals, we �rst need to understand
how an Android app functions while in the background.

3 Background
�is section provides a concise description of Android’s
power-management system followed by an overview of
the components constituting a mobile app and how appli-
cations behave while running in the background. Finally,
we highlight the in�uence of background execution on bat-
tery drain using four types of events: wakelocks, services,
broadcast receivers, and alarms. §4 describes Tamer, our
control system that adjusts the frequency at which such
events occur.

3.1 Mobile Power Management
Android employs an aggressive form of power manage-
ment to extend battery life. By default, the entire system
suspends itself, sometimes even when there are processes
running. Opportunistic suspend is e�ective in prevent-
ing programs from keeping the system awake and quickly

1Crossy Road, Candy Crush Soda Saga, Pandora Radio, Trivia Crack,
Snapchat, Facebook Messenger, Facebook, 360 Security Antivirus, Insta-
gram and Super-Bright LED Flashlight.
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Device Name Device Type Processor Features
Google Galaxy Nexus Smartphone Dual-core 1.2GHz ARM Cortex-A9 WiFi, GPS+A-GPS, 3G
Samsung Galaxy S4 Smartphone Quad-core 1.9GHz Qualcomm Krait 300 WiFi, GPS+A-GPS, 3G/LTE
Amazon Kindle Fire 2 Tablet Dual-core 1.2GHz ARM Cortex-A9 WiFi

ASUS MeMO Pad 7 (ME176C) Tablet Quad-core 1.83GHz Intel Atom Z3560 WiFi, GPS+A-GPS

Table 1: List of devices used for battery-drop monitoring.
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Figure 1: Battery drop of four Android devices idling with the screen o�. With Google Mobile Services installed, battery life decreased
to 29.5% (Fire 2) and 77.5% (MeMO Pad 7) of its initial decay (without GMS).
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Figure 2: Six minutes sampled frommeasurements on the Galaxy
Nexus for two scenarios. For each graph, the top stack shows
di�erent event occurrences over time. �e bottom curve depicts
the corresponding system’s power draw during the same period.

draining the battery. To curb system suspension, Android
uses Wakelocks to keep the system awake. Wakelocks are
reference-counted objects, similar to concurrency locks,
that can be acquired/released by kernel and privileged
userspace code. A wakelock acquire expresses a process’s
need for the system to remain awake until run completion.
A wakelock acquire either holds a resource awake until a
release call occurs or sets up a timer to relinquish the lock
at a later time.

Kernel drivers use wakelocks to block the suspension of
di�erent system components (e.g., CPU, network, screen),
whereas the Android application framework leverages
wakelocks for di�erent levels of suspension, represented
by groups of components (e.g., keep the network radio

awake vs. keep the radio, screen, and CPU awake). As
an example of suspend-blocking by the OS, Android au-
tomatically acquires a wakelock as soon as it is noti�ed
of an input event and only releases the wakelock once
some application handles the event or there is a timeout.
Application developers can also directly instantiate and
manipulate wakelocks using the Wakelock API. A proper
e-book reader app must acquire a wakelock to keep the
screen awake so that the user can read her favorite novel
without interruption. Wakelocks play an important role
in guaranteeing proper background task execution in face
of default suspension, as we will see next.

3.2 Android Applications: Dealing with
Lifecycle Changes

Barring a few interface-less system processes, an Android
application consists of a set of Activities that places
the UI widgets on the screen. An application starts with
a single thread of execution attached to the foreground
UI, which is mostly responsible for dispatching interface
events. To avoid appunresponsiveness and user frustration,
a wise programmer would move other computations to
concurrent worker threads while the UI responds to input
events. Support for concurrency comes in the form of a
number of standard Java primitives, such as Threads and
Futures, as well as Android’s own �avors: AsyncTasks
and message Handlers. However, such primitives only
work when the application is in the active state.

As the user navigates through, out of, and back to an
application, its lifecycle transitions between di�erent states
according to activity visibility. An application is active if
one of its activities receives user focus in the foreground. If
the user switches to another app or decides to turn o� the
screen, the application is paused and moved to the back-
ground. Because mobile apps are multitasked, developers
must have a way to run code even when their app is not
occupying the screen.

3
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3.2.1 Dispatching Background Tasks
�e small screen size of a smartphone or tablet prevents
multiple applications from running simultaneously. To
conserve energy, apps are frozen and stop working once
sent to the background, either due to the opening of an-
other application or a screen timeout. Context switching
opens room for opportunistic suspend – by making apps
invisible, the Android OS frees its own set of wakelocks,
opening space for hardware throttling.

Android o�ers application developers a small and well-
de�ned interface for background-task o�oading that takes
care of scheduling latent tasks [2].�is interface comprises
a handful of components including services, broadcast
receivers, and alarms.�e internal implementation of such
components also leverages wakelocks to keep the device
awake while executing tasks.
Services are application components that run asyn-

chronously on background threads or processes and do
not directly interact with the user. Instead, Activities
dispatch services to perform long-duration operations or
to access resources on behalf of users, such as download-
ing remote �les or synchronizing data with a cloud-based
storage. An advantage of running services separately is that
their running persists even a�er closing the owner’s inter-
face. Apps and widgets rely on services being operational
without need of manual restart.
BroadcastReceiver is a reactive mechanism that per-

mits programs to asynchronously respond to speci�ed
events. An application registers a BroadcastReceiver
along with an event-subscription list – the IntentFilter
– that is used to determine if the application is eligible to
respond to a given event. Events can be prede�ned by the
system (e.g., “battery fully charged”) or developer-de�ned
(e.g., “backup �nished”). Receiver threads remain dormant
until a matched event arrives and respond by running a
callback function. A �le-hosting app could, for instance,
register a receiver to display a noti�cation box once it dis-
covers that a scheduled data synchronization has �nished.

Another common programming pattern is the ability to
perform time-based operations outside the lifetime of an
application. For instance, checking for incoming e-mails
every so o�en is a recurrent user operation that could
be automatized. �e Android SDK o�ers developers the
AlarmManagermechanism to ful�ll the scheduling of pe-
riodic tasks at set points. At each alarm trigger, the system
wakes up and executes the scheduled callback function,
whose contents can take various forms: a UI update, a ser-
vice call, an I/O operation, scheduling a new alarm, etc.
Alarms are a good �t for opportunistic suspend: apps are
only activated when there is work to do.
In summary, Android uses at least three types of asyn-

chronous mechanisms to perform background tasking:
services, broadcast receivers, and alarms. Aligned with
wakelocks, we have a powerful collection of events that can

keep the system awake. In the next section, we introduce
Tamer, a system that acts on this small and well-de�ned
interface to throttle the rate at which background events
are handled in exchange for energy savings.

4 Tamer
4.1 Design
Having seen that background events can noteworthily af-
fect the sleeping pattern of mobile devices, we consider
the possibility of regulating their frequency to improve
battery life. We introduce a con�guration mechanism for
declaring thresholds to the frequency of these events. We
model this regulation process using three sequential steps:
(1) observation; (2) comparison; and (3) action.

Event-frequency regulation works based on the speci�-
cation of occurrence limits. We establish a policy mecha-
nism that lets users de�ne how o�en the running system
should permit a given background event to proceed. A pol-
icy is a contract that declares the conditions for an event ex-
ecution. �is contract speci�es the event type as well as its
identi�er; an optional list of a�ected apps, in case we want
to restrict such enforcement to a subset of event dispatch-
ers or receivers; whether the policy enforcement also takes
place when the event owner (app) is in the foreground; and
the rate at which they are allowed to execute. From this
de�nition, an energy-savvy user could program her smart-
phone to permit calls to WeatherUpdateService from a
weather-forecast app atmost once every six hours, whereas
calls to LocationUpdateService from the same app
would remain unlimited.

To enforce user-de�ned policies, we outline a controller
comprising three agents: observer, arbiter and actuator.
�e observer intercepts every event occurrence and book-
keeps its frequency. �e arbiter veri�es whether the mea-
sured event rate is above the policy-de�ned threshold, if it
exists, and noti�es the actuator, which hijacks the event
continuation to arti�cially reduce its occurrence rate. Fig-
ure 3 illustrates our control sequence.

Observer Arbiter ActuatorEvent rate

Policy

DecisionEvent Action

Figure 3: Sketch of our event-control system as a three-stage
pipeline.

�ere are two ways to ful�ll event throttling: canceling
or delaying. An event cancel denies the continuation of its
call, with an early return that prevents the payload or the
event callback from running. An event delay, on the other
hand, postpones the continuation of the event call for a
limited time. In this work, we opt for canceling the event
handling. We discuss the pros and cons of each choice
in §7. It is important to understand that an event cancel

4
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does not result in a crash. Alarms, services and broadcast
receivers all run asynchronously. Wakelock requests, on
the other hand, are synchronous and their denial will result
in a sleeping systemwhen a waiting task is expected to run.
Still, the task is never aborted, but runs in chunks when
the system wakes up. Our method prevents the triggering
of unwanted events. When it is not possible, we abort the
event continuation at the earliest opportunity to reduce the
energy cost of the event payload.

To drive the implementation of our system, we establish
a few requisites and considerations:
Comprehensive support for events.�e control system
should be inclusive. While app-speci�c solutions are e�ec-
tive, they do not scale to other programs.�e stage pipeline
should monitor and, if necessary, actuate on every event
instance. Particulars about a speci�ed event should be con-
�ned to its policy and not a�ect the controller. It is the
responsibility of the policy designer to de�ne a sane event
frequency, considering, perhaps, the context and the im-
pact of an event hijack. To implement an all-encompassing
monitor system, we target an OS-level solution.
Support for power-oblivious applications.Users should
not abstain from using their favorite apps even if they are
power hogs. Uninstalling or suggesting alternative apps
for the same purpose should not be acceptable.�e system
should cope with the existence of ill-behaved apps and act
upon their misbehavior if directed by the policy designer.
Compatibility. Many solutions that rely on deep sys-
tem introspection require extensive rewrites of system
components [11, 14, 6] or even writing systems from
scratch [43]. Although tempting, straying from the main-
line can severely limit the userbase, especially in the case of
consumer-oriented OSes. With that in mind, our solution
should exhibit high compatibility and keep a minimum
amount of changes to the underlying OS.
E�ciency.Mobile apps must cope with limited computa-
tional and energy resources. �e control system should
avoid high computational overhead to prevent high battery
drain and system slowdown.

4.2 Implementation
To avoid reimplementingOS components to regulate event
handling, Tamer uses the Xposed framework [42] to en-
able system modi�cations at runtime.

While requiring the device to be rooted, Xposed enables
deep system modi�cations with no need to decompile ap-
plications nor �ash the device2. Xposed intercepts Java
methods and temporarily diverts the execution �ow to
function-hook callbacks for inspection and modi�cation.
Developers de�ne these callbacks and compile them as sep-
arate modules. Function-call hooking happens by match-
ing the method’s name and signature of the declared call-

2For brevity reasons, we refer readers to [41] for an explanation on how
such thing is possible.

back with the running code. Callbacks run on the context
of the intercepted application. Xposed allows for changing
the parameters of amethod call, modifying its return value
or terminating it early. We leverage the hooking mecha-
nism to intercept function calls originating from or di-
rected at our events of interest. Finally, function hooks can
be distributed as separate programs in self-contained APK
�les.�ey are not bound to a speci�c Android version and
work without changes on the majority of customized An-
droid releases, including those from Samsung, HTC, Sony,
LG, and the CyanogenMod open-source community [10].
Figure 4 shows how Tamer relates to the Android OS.

Tamer sits, along with Xposed, between user applications
and the Java-based application framework, which serves
as the foundation for the Android SDK. Events have direc-
tions, which helps us de�ne how to write the interception
payload. While service and wakelock calls originate from
apps and are forwarded to the framework, alarms and
broadcast receivers work in the opposite direction.

Tamer consists of a series of function hooks that inter-
pose on the background-processing interface and act as
a controller mechanism to enforce user-de�ned policies.
To implement Tamer’s event-canceling mechanism, we
leverage Xposed’s introspection API to explore, monitor,
intercept and modify public and private classes, methods
and members of the framework (Table 2). We used our
knowledge on the Android SDK aligned with the source
code of Android’s framework stack to decide where to
place the instrumentation points that would constitute
our controller. We analyzed the source code stemming
from each event call on the SDK’s public interface. Model-
ing the relationships between subroutines as a call graph,
we considered each interface function as a leaf node. In
some occasions, we had to backtrack the call graph to �nd
a proper instrumentation point. �is was necessary for
three reasons: (1) the public interface did not o�er enough
context to feed our monitoring system (e.g., missing re-
ceiver name, unclear caller-callee relationship, etc.); (2) in
the case of receiving events, it was better to interpose on a
call as early as possible to avoid unnecessary operations
before a cancellation; (3) an event call may have more than
one function signature, therefore we looked for a converg-
ing function node. We found one exception to the last rule
when handling broadcast receivers. Applications can de-
clare receivers in two ways: statically via a Manifest �le
or dynamically using the Android SDK API. Since the An-
droid framework keeps separate data structures for each
case, we had to instrument them separately.
Tamer’s interception can suppress wakeups due to ser-

vice invocations, wakelock acquires, and intent broadcasts.
Because of the way Android handles alarms, our imple-
mentation can only curtail the alarm’s callback payload.
�e system will still periodically wake up according to the
alarm’s schedule, but will immediately return to sleep. Our

5
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Event Class Method Instrumentation Payload

Wakelock com.android.server.PowerManagerService acquireWakeLockInternal

Search for policy. If found, early return
in case call happens before grace
period. Else, let acquire proceed;
bookkeep wakelock and start
grace-period timer.

releaseWakeLockInternal Only called if there was no block;
report how long wakelock was held.

Service com.android.server.am.ActivityManagerService startServiceLocked Search for active policy. Proceed as in
wakelock case.

BroadcastReceiver
android.app.ContextImpl registerReceiverInternal Add reference to API-registered

receiver.

unregisterReceiverInternal Remove reference to API-registered
receiver.

com.android.server.pm.PackageManagerService addActivity Add reference to receiver registered
statically.

removeActivity Remove reference to receiver
unregistered statically.

com.android.server.am.ActivityManagerService broadcastIntentLocked

Search for active policy. Temporarily
remove receiver from framework index
to prevent event broadcasts. Update
stats.

Alarm com.android.server.AlarmManagerService triggerAlarmsLocked Search for active policy. Proceed as in
wakelock case.

GPS (See §5.3) android.location.LocationRequest requestLocationUpdates Enable GPS throttling for calling app.
removeUpdate Disable GPS throttling for calling app.

com.android.server.LocationManagerService reportLocation

Search for active policy. Let callback
report incoming location, but
temporarily switch off GPS sensor for
blocking period.

Table 2: A brief description of Tamer’s instrumentation points.

controller implementation covers all versions of Android
ranging from Ice Cream Sandwich to KitKat3. In a hand-
ful of occasions, we resorted to di�erent instrumentation
points for a given event, mostly due to small di�erences
in the function signatures between OS versions. Because
the framework interface is fairly stable, covering future
versions of Android should not require major changes.
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Android Runtime

Kernel

Tamer

W
akelock

Service

Int
en

t

Al
ar

m

Figure 4: Tamer sits between apps and the framework stack and
interposes on events between these two. Lower system layers are
oblivious to our system.

5 Evaluation
We evaluate Tamer in four ways. First, we revisit our moti-
vating scenario (§2) and use Tamer to extend the battery

3This limitation is due to Xposed’s limited OS support. Support for
Android’s latest release (Lollipop) is not stable enough to cover our needs.

life of the GMS-based installation. We then investigate
how Tamer can e�ectively mitigate energy bugs, a sys-
tem behavior that causes unexpected heavy use of energy
not intrinsic to the desired functionality of an applica-
tion. Next, we show how to use code injection to create
specialized versions of controllers for situations that our
four-event toolset cannot handle. Last, we measure the
overhead caused by Tamer on performance and energy.

5.1 DealingWith Google Mobile Services
In §2, we saw how the inclusion of GMS into the baseline
AOSP signi�cantly reduced the battery life of all tested
devices. Nonetheless, GMS adds a series of services and
applications that truly enhance the user’s mobile experi-
ence. In fact, most users do not even have the option of
uninstalling them, as GMS comes pre-installed as a sys-
tem package in the majority of handhelds. We show how
Tamer can reach a tradeo� between GMS’s functionality
and battery savings. We aim to keep the added value of
GMS without the cost of a silent battery depletion.

Event Name Type Count Duration (s)
NlpWakelock W 5963 1662.71
NlpCollectorWakelock W 2121 3926.63
LocationManagerService W 2030 67.12
NlpLocationReceiverService S 1159 -
NetworkLocationService S 579 -

Table 3: Top event occurrences for the Galaxy Nexus’ battery
drain due to GMS. A handful of events are responsible for thema-
jor impact on the battery. W signi�es a wakelock event, whereas
S stands for service invocation.
With the control mechanism established, our next
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Figure 5: Battery drop for the four devices while idling with the screen o�. A�er applying our policies to GMS, battery life improved
in dozens of hours for all devices.

step is to design a policy that reduces the battery im-
pact of events originating from or destined to GMS. Ta-
ble 3 ranks the top triggered events reported by Tamer’s
monitoring module. For wakelocks, we also report the
time they were held. We use event frequency as an
heuristic to guide policy con�guration. We note that
NlpCollectorWakelock was primarily responsible for
keeping the system awake in the background. Online re-
ports [40, 5] indicate that NlpCollectorWakelock is re-
lated to Location Reporting, an Android feature to
estimate and report the current location based on WiFi
APs and cell-tower signals. Apps that use this feature in-
clude Google Now and Google Maps, among others. �e
other frequently reported events are also related to the
same feature. Disabling location reporting on the device’s
Settings menu would be a logic solution to increase sleep
time, if dependent apps did not stop working.
�e problem with NlpCollectorWakelock and asso-

ciated events is the frequency they wake up the system and
keep it awake, which sums to a substantial period of non-
sleepiness. During a discharge period of 80 hours for the
Galaxy Nexus smartphone, NlpWakelockwas called once
a minute on average, whereas NlpCollectorWakelock
contributed to keeping the system awake for more than
one hour. Such a high battery impact coming from a single
package does not justify the bene�t of having GMS run-
ning as it is in the background. For this reason, we devised
two policies forGMS, targetingNlpCollectorWakelock
and its associated events, to alleviate this wakeup burden.
For each wakelock and service in Table ??, the �rst pol-
icy (Tamer-15) allows a single call every 15 minutes. �e
second policy (Tamer-45) allows one call every 45 min-
utes. Deciding on an appropriate rate is a subjective matter.
Our setup tries to reach a balance between informing sub-
ordinate apps of location updates and increasing battery
lifetime. Figure 5 shows that our policies substantially re-
duced the battery-drain rate of all tested devices.

5.2 Chasing Energy Bugs
An energy bug, or ebug, is a system error either in an
application, OS, �rmware or hardware that causes an un-
expected amount of high energy consumption [35]. Such
errors occur due to a variety of reasons such as program-
ming mistakes, faulty hardware, malicious intent, etc. Be-

cause such errors may not result in a crash, users will only
notice their e�ect when it is too late: an early dead battery.

Di�erently from previous research which identi�ed and
characterized energy bugs [46, 37], in our evaluation we
focus on mitigating them at runtime. Tamer allows users
to run the o�ending applications without the adverse ef-
fects of the bugs. Finding ebugs is not trivial and the lack
of a centralized repository of updated samples prevents
us from testing our controller more extensively. We suc-
cessfully reproduced and circumvented three application
ebugs described in [23]. For the other described cases, we
could not con�rm the existence of bugs. We assume these
defects have been �xed by developer updates.

Next, we present two detailed case studies of new ebugs
that we found. To identify them, we used eStar [30], a tool
that ranks the contribution of apps to battery depletion.We
�rst selected apps that display poor energy e�ciency and
�ltered them based on high popularity at the Google Play
Store (our two selections featured on the top-20 ranking of
their respective categories: Games and Health & Fitness).
Although eStar ranks energy-ine�cient apps, we still had
to manually verify whether such ine�ciency was due to
foreground or background activity. For each application,
we simulated a user interaction consisting of a short-length
active session followed by a long period in the background.
Bejeweled Blitz [13] is an award-winning puzzle game
with over 10 million installs from Google Play Store. A�er
a 15-minute play session on the Galaxy S4 smartphone,
Tamer reported that our game generated a single back-
ground event – the acquire of the AudioIn wakelock. Be-
cause games are resource-hungry apps, this event call ini-
tially did not instigate any suspicion. We discovered a red
�ag, though, a�er switching Bejeweled to the background:
AudioIn was not released a�er the game suspension. To
mitigate this bug, we wrote a simple policy targeting Bejew-
eled Blitz that blocks the renewal of the culprit wakelock
during background time. Figure 6 depicts the battery drop
of a 12-hour session with Bejeweled loaded in the back-
ground before and a�er applying our policy. We see a 4×
improvement on battery drain. Figure 7 con�rms the e�ect
of releasing the ill-behaved wakelock: before being tamed,
the smartphone spent approximately 95% of the time with
an awake CPU. With Tamer’s interposition, most of the
residency ratio was converted to deep sleep.
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Figure 6: Battery drain over 12 hours for Bejeweled Blitz without
Tamer (Normal) andwith aTamer policy blocking the AudioIn
wakelock. In both cases, the game was started and the phone
switched to idle mode with the screen o�.
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Figure 7: CPU residency time for the original and tamed versions
of Bejeweled Blitz on the Galaxy S4. �e tamed version spent
94% of the time in Deep Sleep.

Nike+ Running [32] is a �tness app for tracking runs.
Nike+ relies on the GPS sensor, the accelerometer, and
barometer to estimate distance and speed. According to
Tamer, Nike+ acquired �ve wakelocks while running:
AudioMix, FullPower Acc Sensor, FullPower
Pressure Sensor, FullPower Recording and
NlpWakeLock. Judging from the wakelock names, we
can assume a few hardware components remained awake
to prevent device-sleeping. We found an ebug when
pausing our running session and switching Nike+ to the
background. In this case, we expected the application to
release all wakelocks. Like Bejeweled Blitz, Nike+ forgot
to relinquish the locks upon leaving the foreground. Our
policy was also equivalent: block the culprit wakelocks
during background time. Figure 8 shows the battery drop
a�er an eight-hour session before and a�er applying our
policy. We see a 5× improvement on battery drainage.
Figure 9 displays the CPU residency on both scenarios:
CPU deep-sleep residency jumped from a 0% to 89.8%.
We also acknowledge a major contribution of the GPS
and sensors to battery decay. �eir duty cycle is equivalent
to the time the homonymous wakelocks were held.

5.3 Looking at the Other Side of Events
Tamer can block events at their imminent arrival or dis-
patch, thus saving energy that would be consumed by their
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Figure 8: Battery drain over 8 hours for Nike+ Running without
Tamer (Normal) and with a Tamer policy that blocked all �ve
heldwakelocks. In both curves, the appwas started and the phone
switched to idle mode with the screen o�.
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Figure 9: CPU residency time for the original and tamed versions
of Nike+ Running on the Galaxy Nexus.�e tamed version spent
89.4% of the time in Deep Sleep.

continuation. One can say that Tamer focuses on the ef-
fect of an event. Still, there are situations in which the
energy cost of its cause is signi�cant. A user could write a
policy targeting an instant messenger’s broadcast receiver
to throttle the e�ect of a message arrival – a noti�cation
in the form of sound or vibration. However, she cannot
block the message arrival itself, the major contributor to
energy consumption in this case, as the remote sender is
not covered by Tamer.

Acting on the cause of an event is complicated because
its originator, when known, can take various shapes, like
a disk or network I/O operation. Consequently, �nding
a converging instrument point in the source code that
encompasses all such shapes is complex. In parallel, we
should avoid point solutions that only �t one app. Between
these two extremes, we can reach a balance by instrument-
ing code that abstracts common functionality and gener-
ates events used by a subset of applications. We consider
the case of navigation apps to illustrate such scenario.
�rottling Localization. Android applications that rely
on the GPS sensor follow a basic model: (1) they register a
position listener and (2) they periodically receive location
updates from a provider proxy, the only interface to the
localization system [3]. A provider proxy serves as an
interface to various location sources, including the GPS
sensor, WiFi APs, and cell towers.

8
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Given that the GPS is an energy-hungry resource, we
consider a throttling mechanism for its duty cycle. Paek et
al. [34] successfully demonstrated the potential energy sav-
ings of duty cycling by creating a rate-adaptive positioning
system that switches the GPS sensor on and o� and uses
alternative location sources based on position accuracy.
As a demonstration, we consider a simpler GPS-throttling
implementation sans secondary sources. An advantage of
our approach is the dispensing of OS recompilation, keep-
ing it compatible with the majority of Android devices.
�e GPS sensor provides periodic position �xes (every
second) to the OS. Some of these �xes are not relayed by
the Android framework to the navigation app as they are
not signi�cantly di�erent. We can reach a more energy-
e�cient navigation by directing the GPS duty cycle. We
inject code into internal classes related to the framework’s
GPS provider and open a direct communication channel
between the GPS device and our throttling mechanism.
�is direct channel permits our controller to switch the
GPS on and o�. Table 2 summarizes our instrumentation.
Evaluation.We consider two location-based apps, Google
Maps and Nike+ Running. We ran these two applications
separately on the Galaxy Nexus phone and applied three
di�erent throttling policies to the GPS duty cycle: location
updates every one, �ve and ��een seconds.�e rate choice
depends on the user’s purpose. For pedestrian navigation,
a slower update rate does not a�ect the estimated position
as much as in the case of a highway car trip. Paek et al.’s
work includes a thorough tradeo� analysis between posi-
tion accuracy and energy savings. We, on the other hand,
only report the potential savings. For each scenario, we
programmed a pedestrian route lasting ten minutes. We
turned the screen o� while running the application in the
background. Because of the small timespan, we compare
the energy dispensed instead of battery-level drop. We
used the Monsoon monitor to measure the energy con-
sumption. Figure 10 portrays the savings per application.
We observe an upper bound of 27.7% on savings for the
Nike+ Running application when reducing the location-
update rate to 1:15s. Although a lower update rate increases
the energy savings, position accuracy is penalized.

5.4 Performance Impact
Just like a network �rewall, Tamer intercepts every event-
happening, inspects it, evaluates the corresponding policy
criterion, and �nally actuates to ful�ll the policy’s condi-
tions. Because Tamer diverts the normal �ow of applica-
tions, it should incur as little performance overhead and
energy burden as possible. We instrumented Tamer to
measure the time taken to hijack an event and perform its
blockage. For the longest diverted execution �ow, Tamer
took, on average, 320µs to execute on the Galaxy Nexus
device. With regards to energy consumption, Tamer is
activated only when other applications generate events.

 0

 100

 200

 300

 400

 500

 600

 700

 800

M
aps

N
ike+

T
o
ta

l 
E

n
e
rg

y
 (

J
)

1s-rate Policy
5s-rate Policy

15s-rate Policy

Figure 10: Total energy consumed by Google Maps and Nike+
Running a�er applying three di�erent duty-cycle policies to the
GPS provider. For both apps, the update rate is inversely propor-
tional to energy savings.

Tamer does not acquire any wakelocks, but freeloads the
system’s active state from other wakeup sources.

6 RelatedWork
We are not the �rst to propose control of functionality in
exchange for battery savings.Tamer builds upon a number
of contributions to mobile power management.
Collateral RelatedWork. E�cient power management in
mobile platforms is a challenging research problem due
to the multitude of hardware con�gurations and power
states. To improve energy consumption, we need to under-
stand how hardware components draw power on behalf
of applications. �ere is a myriad of tools that help quan-
tify a device’s energy expenditure. PowerScope [17] is one
of the �rst works in the mobile domain to map energy
to a program’s structure. PowerScope employs linear re-
gression and statistical sampling to apportion energy to
hardware and applications. A series of recent pro�lers for
smartphones complements PowerScope, including Power-
Tutor [50], ARO [38], AppScope [22], WattsOn [29] and
eprof [36]. Sesame [12] and V-edge [47] go a step further
and propose self-calibrating models that dispense the use
of external power monitors, relying instead on internal
battery data to model energy expenditure. Our analysis
mainly adopts battery-drop rate as a proxy for energy con-
sumption, but we expect such advanced contributions to
be integrated by OEMs in future devices.
Saving Energy FromBackgroundTasking.Android task
killers once were the solution for background power
savings, but their e�ectiveness is now a point of con-
tention [27]. Task killers force background applications
to quit, assuming that their removal from memory will
reduce the energy footprint of released resources. Such
assumption is incorrect as there is little correlation be-
tween memory and CPU usage in Android [4]. Excessive
task killing may lead to the opposite e�ect: by discarding
cached data, Android must reload apps from storage. A

9
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killed app may restart itself immediately a�er being killed,
using up CPU time and draining even more battery.

Rather than killing background tasks, popular apps like
JuiceDefender [26] and Easy Battery Saver [1] can con�g-
ure the access to power-greedy components, such as the
radio and GPS, on a schedule basis. Although e�ective in
many cases, some apps do not behave properly when they
cannot, for instance, connect to the Internet. Some apps
may even produce more energy overhead as they insist
on accessing a resource made unavailable. Tamer circum-
vents such problems by mainly throttling asynchronous
actions: the expecting app does not block while waiting
for an event arrival or dispatch. Greenify [15] is an An-
droid tool for hibernating apps, preventing the arrival or
dispatch of events once an app switches to background.
�e original functionality is only restored when the app
returns to the foreground. Greenify is e�ective in block-
ing misbehaving and start-at-boot apps, but its treatment
of background computing is coarse and not applicable
to noti�cation-based apps that mostly run in the back-
ground (e.g., mail readers, instant messengers, calendars,
etc.) Tamer is applicable in such cases as it throttles, but
does not completely eliminate, background functionality.

Android also includes its own controls for background-
task management. �e AutoSync feature controls the au-
tomatic data synchronization between client apps and on-
line accounts. With a mere tap, users can choose between
disabling the synchronization of a speci�c feature of a
selected account (e.g., photo uploads for Google+) or to-
tally prevent any background synchronization for all reg-
istered accounts. AutoSync is mostly applicable to apps
adopting Google Cloud Messaging (GCM), an API piece
fromGoogleMobile Services. GCMprovides a lightweight
mechanism that third-party servers can use to notify mo-
bile applications of available content to be fetched. As long
as the application is subscribed to receive GCMmessages,
the Android device does not need to run continuously.
Instant messengers, for instance, use GCM to receive noti-
�cations of new incoming messages. Tamer complements
this service by o�ering a similar control to applications
that do not adopt the GCM approach. Moreover, Tamer
allows for the management of a variety of background
events, whereas AutoSync focuses mainly on networking.
Partial inspiration for deep event monitoring stems

from applications such as BetterBatteryStats [25] and
Wakelock Detector [45]. Both apps report wakelock-usage
statistics that developers can use to understand the root
cause of battery drainage. Tamer complements such apps
by empowering users to take action a�er they pinpoint the
origin of abnormal energy consumption.
Carat [33] and eStar [30] use data collected from thou-

sands of smartphone and tablet users to model the battery
drainage of applications. By combining rich context infor-
mation of multiple devices with energy awareness, it is

possible to determine whether the energy used by an appli-
cation deviates from its expected consumption.�ese tools
are conservative in controlling energy expenditure, with
both systems suggesting users to kill or uninstall culprit
apps. eStar further recommends energy-e�cient alterna-
tives to power-hog apps, if they exist. Tamer let users keep
their apps while modifying the culprit’s behavior to reduce
energy consumption.

7 Discussion
As any prototype, Tamer has limitations. Tamer’s main
utility comes from policy de�nition, which, at its current
state, will not appeal to the end user. In the following, we
elaborate on how to circumvent this usability issue. We
also suggest improvements that are le� as future work.

7.1 Policy Guidelines
In §5, we demonstrated how a wise policy selection can
partially inhibit the surge of energy-hungry events. Our
experience de�ning policies arose from intuition, reading
source code (when available) and, in some cases, multiple
attempts. At its current state, Tamer would better serve
as a backend for higher-level power management tools
than as an end-user app. With such limitations in mind, a
user willing to run Tamer as it is, would bene�t from the
following guidelines to explore the event space and de�ne
e�ective policies.
Choosing events to control. Handhelds may carry tens
or even hundreds of applications that generate thousands
of events. We should not imply that policy de�nition must
consider all of them equally. First, users prefer some apps
over others. Second, event triggering does not follow a uni-
form distribution. As a rule of thumb, users should start
with policies targeting the most frequent events. Tamer’s
monitoring module periodically outputs an event sum-
mary that can assist in such cases.
Cutting the red wire. Even a�er selecting the most promi-
nent events for policy testing, there are no guarantees that
the policy will work without side e�ects. Side e�ects may
include an increase in the frequency of correlated events,
the rise of unexpected events, and abnormal application be-
havior. Blocking alarm events recklessly could, for instance,
totally defeat the purpose of a calendar app. Because most
apps are only available in binary form, understanding the
purpose of an event is not always clear and neither is un-
covering its dependencies. Techniques used in black-box
testing, such as cause-e�ect graphs can help. Events may
also show a temporal correlation with others. To uncover
temporal dependency, we generated event timelines from
Tamer’s monitoring output.
Use common sense. �e Android OS de�nes two cate-
gories of applications: system and user. �e former in-
cludes programs that are deemed critical, are deeply in-
tegrated into the OS, and cannot be uninstalled. Exam-
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ples include the dialer, browser, and network manager, to
name a few. Users apps are replaceable programs that can
be freely removed and installed from the app store. As
part of Tamer’s design, we adopted the support of generic
events. Consequently, system- and user-app events are
treated equally. Policies that alter the frequency of sys-
tem events may result in unwanted or abnormal behavior.
Users should be mindful when de�ning policies involving
critical events to avoid such situations. Removing support
for system events would prevent such unfortunate occa-
sions, but the de�nition of a system app is blurry. GMS,
for example, comes pre-installed as a system package on
many devices. Carriers also sell devices with bloatware
installed as system apps. As demonstrated, systems apps
present great opportunities for energy savings.

7.2 Potential Improvements
Event batching over cancellation. Our current imple-
mentation dismisses event continuation if there is a need
for throttling. Alternatively, we could reschedule the asyn-
chronous delivery of such events to coalescemultiple wake-
ups into one, saving even more energy. Although promis-
ing, event coalescing may lead to unexpected results that
require deeper investigation. Some apps assume a �xed fre-
quency of events. A pedometermay use the time di�erence
between position �xes to estimate speed. Batching multi-
ple �xes into one delivery may create havoc if the tracker
does not discard outdated values. Nevertheless, coalescing
has found its way in other domains. �e Linux tickless
kernel [44] reduced the precision of so�ware timers to al-
low the synchronization of process wakeups, minimizing
the number of CPU power-state transitions. From its Lol-
lipop release, Android started to batch alarms that occur
at reasonably similar times, turning them inexact. Xu et
al.’s recent work on coalescing events to save energy in the
context of email synchronization [48] is another success-
ful example of careful event-handling for mobile devices.
As long as developers do not assume guarantees on event
delivery and commutativity, we believe coalescing should
supersede cancellation as an energy-saving feature.
Native code support. Tamer controls applications by
wrapping function calls from the Android Java API. Ap-
plications that make heavy use of native code, like games,
multimedia apps and ELF libraries, could acquire wake-
locks, spawn threads and perform background tasks using
C/C++ code, thus bypassing our control system. Extend-
ing support to native code would require a similar e�ort
on analyzing and instrumenting libc function calls.
Support for other mobile OSes. Background processing
is not exclusive to Android, although handled di�erently
by other mobile OSes. Apple’s iOS 7+ regards background
processing as a privilege [7]. Other than network trans-
fers, common background tasks have limited time to com-
pletion and must respect the device’s will to sleep, do-

ing their processing in chunks a�er the device wakes up
to handle phone calls, noti�cations and other interrup-
tions. Windows Phone enforces background tasks to be
lightweight by applying quotas to resources likeCPU,mem-
ory, and network usage while apps are running behind the
scenes [28]. Event-frequency control may not produce
the same gains on Apple’s and Microso�’s mobile devices
given their stricter stance on deploying background tasks
(mainly in the name of battery savings).
Feedback control. Tamer works as an open-loop con-
troller, not using feedback to gauge whether the system
needs more adjustments. During the design stage of this
project, we discarded the closed-loop approach as it would
require knowledge of application semantics as well as user
perception of performance degradation. Modeling these
two elements are hard problems beyond our scope.

8 Conclusion
�is paper presented Tamer, an OS mechanism that in-
terposes on task wakeups in Android and allows event
handling to be monitored, �ltered, and rate-limited. We
demonstrated that Tamer substantially reduces the back-
ground energy use in popular Android applications. With
Tamer, a device spends more time in low-power mode,
which increases the battery lifetime signi�cantly.

While this work shows Tamer’s e�ectiveness as a mech-
anism, future work is needed to understand how to best
construct policies that improve battery life while preserv-
ing application functionality. In future work, we will in-
vestigate techniques for determining if functionality is
negatively impacted when exploring user visible elements
(e.g., UI di�erences) between runs of an application with
di�erent policies. We will also explore which policies are
most likely to have substantial battery savings in practice.
With the combination of such techniques, we will strive
to devise policies that improve battery life while retaining
normal application functionality.
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Abstract

U-root is an embeddable root file system intended to be
placed in a FLASH device as part of the firmware im-
age, along with a Linux kernel. The program source
code is installed in the root file system contained in the
firmware FLASH part and compiled on demand. All the
u-root utilities, roughly corresponding to standard Unix
utilities, are written in Go, a modern, type-safe language
with garbage collection and language-level support for
concurrency and inter-process communication.

Unlike most embedded root file systems, which con-
sist largely of binaries, U-root has only five: an init pro-
gram and 4 Go compiler binaries. When a program is
first run, it and any not-yet-built packages it uses are
compiled to a RAM-based file system. The first invo-
cation of a program takes a fraction of a second, as it is
compiled. Packages are only compiled once, so the slow-
est build is always the first one, on boot, which takes
about 3 seconds. Subsequent invocations are very fast,
usually a millisecond or so.

U-root blurs the line between script-based distros
such as Perl Linux[24] and binary-based distros such as
BusyBox[26]; it has the flexibility of Perl Linux and the
performance of BusyBox. Scripts and builtins are writ-
ten in Go, not a shell scripting language. U-root is a new
way to package and distribute file systems for embedded
systems, and the use of Go promises a dramatic improve-
ment in their security.

Introduction

Embedding kernels and root file systems in BIOS
FLASH is a common technique for gaining boot time
performance and platform customization[25][14][23].
Almost all new firmware includes a multiprocess oper-
ating system with a full complement of file systems, net-
work drivers, and protocol stacks, contained in an em-
bedded file system. In some cases, the kernel is only

booted long enough to boot another kernel; in others, the
kernel that is booted and the file system it contains con-
stitute the operational environment of the device[15].

These so-called “embedded root file systems” also
contain a set of standard Unix-style programs used for
both normal operation and maintenance. Space on the
device is at a premium, so these programs are usually
written in C using, e.g., the BusyBox toolkit[26]; or in an
interpretive languages, such as Perl[24] or Forth. Busy-
Box in particular has found wide usage in embedded ap-
pliance environments, as the entire root file system can
be contained in under one MiB.

Embedded systems, which were once standalone,
are now almost always network connected. Network-
connected systems face a far more challenging security
environment than even a few years ago. In response to
the many successful attacks against shell interpreters[11]
and C programs[8], we have started to look at using a
more secure, modern language in embedded root file sys-
tems, namely, Go[21][16].

Go is a new systems programming language created
by Google. Go has strong typing; language level support
for concurrency; inter-process communication via chan-
nels, a la Occam[13], Limbo[17], and Alef[27]; runtime
type safety and other protective measures; dynamic al-
location and garbage collection; closures; and a package
syntax, similar to Java, that makes it easy to determine
what packages a given program needs.

The modern language constructs make Go a much
safer language than C. This safety is critical for network-
attached embedded systems, which usually have network
utilities written in C, including web servers, network
servers including sshd, and programs that provide ac-
cess to a command interpreter, itself written in C. All are
proving to be vulnerable to the attack-rich environment
that the Internet has become. Buffer overflow attacks
affecting C-based firmware code (among other things)
in 2015 include GHOST and the so-called FSVariable.c
bug in Intel’s UEFI firmware. Buffer overflows in Intel’s
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UEFI and Active Management Technology (AMT)have
also been discovered in several versions in recent years.
Both UEFI[12] and AMT[4] are embedded operating
systems, loaded from FLASH, that run network-facing
software; attacks against UEFI have been extensively
studied[9]. Most printers are network-attached and are
a very popular exploitation target[6].

Firmware is not visible to most users and is up-
dated much less frequently (if at all) than programs.
It is the first software to run, at power on reset. Ex-
ploits in firmware are extremely difficult to detect, be-
cause firmware is designed to be as invisible as possible.
Firmware is extremely complex; UEFI is roughly equiv-
alent in size and capability to a Unix kernel. Firmware
is usually closed and proprietary, with nowhere near
the level of testing of kernels. These properties make
firmware an ideal place for so-called advanced persistent
threats[10][18][5]. Once an exploit is installed, it is al-
most impossible to remove, since the exploit can inhibit
its removal by corrupting the firmware update process.
The only sure way to mitigate a firmware exploit is to
destroy the hardware.

Even the most skilled programmers make simple mis-
takes that in C can be fatal, especially on network-
connected systems; nowadays, even the lowest-level
firmware in our PCs, printers, and thermostats is
network-connected. These mistakes are either impossi-
ble to make in Go or, if made, are detected at runtime and
result in the program exiting. Perhaps surprisingly, the
case for using a high-level, safe language like Go in very
low level embedded firmware might be stronger than for
user programs, because exploits at the firmware level are
nearly impossible to detect and mitigate.

The challenge to using Go in a storage-constrained en-
vironment such as firmware is that advanced language
features lead to big binaries. Even a date program is
about 2 MiB. One Go binary, implementing one func-
tion, is twice as large as a BusyBox binary implement-
ing many functions. As of this writing, a typical BIOS
FLASH part is 16 MiB. Fitting many Go binaries into a
single BIOS flash part is not practical.

The Go compiler is very fast and its sheer speed points
to a solution: to compile programs only when they are
used. We can build a root file system which has almost
no binaries except the Go compiler itself. The compiled
programs and packages can be saved to a RAM-based
file system.

U-root is our proof of concept of this idea. U-root con-
tains only 5 binaries, 4 of them from the Go toolchain,
and the 5th an init binary. The rest of the programs
are contained in BIOS FLASH in source form, includ-
ing packages. The search path is arranged so that when
a command is invoked, if it is not in /bin, an installer is
invoked instead which compiles the program into /bin;

if the build succeeds, the command is executed. This
first invocation takes a fraction of a second, depending
on program complexity; after that, the RAM-based, stat-
ically linked binaries run in about a millisecond.

U-root blurs the boundary between script-based root
file systems such as Perl Linux[24] and binary-based root
file systems such as BusyBox[26]; it has the flexibility of
Perl Linux and the performance of BusyBox. Scripts are
written in Go, not a shell scripting language, with two
benefits: the shell can be simple, with fewer corner cases;
and the scripting environment is substantially improved,
since Go is more powerful than most shell scripting lan-
guages, but also less fragile and less prone to parsing
bugs.

The U-root design

The u-root boot image is a build toolchain and a set of
programs in source form. When first used, a program
and any needed but not-yet-built packages are built and
installed, typically in a fraction of a second. On second
and later uses, the binary is executed. The root file sys-
tem is almost entirely unformed on boot; /init sets up the
key directories and mounts, including common ones such
as /etc and /proc.

Since the init program itself is only 132 lines of code
and is easy to change, the structure is very flexible and
allows for many use cases.

• Additional binaries: if the 3 seconds it takes to get
to a shell is too long (some applications such as au-
tomotive computing require 800 ms startup time),
and there is room in FLASH, some programs can
be precompiled into /bin.

• Build it all on boot: if on-demand compilation is not
desired, a background thread in the init process can
build all the programs on boot.

• Selectively remove binaries after use: if RAM space
is at a premium, once booted, a script can remove
everything in /bin; those things that are used will be
rebuilt on demand.

• Always build on demand: it is possible to run in a
mode in which programs are never written to /bin
and always rebuilt on demand; this mode is surpris-
ingly comfortable to use, given that program com-
pilation is so fast1.

• Lockdown: if desired, the system can be locked
down once booted in one of several ways: the en-
tire /src tree can be removed, for example, or just
the compiler toolchain can be deleted.

2



USENIX Association  2015 USENIX Annual Technical Conference 579

How u-root works

U-root is packaged as an LZMA-compressed initial
RAM file system (initramfs) in cpio format, contained in
a Linux compressed kernel image, a.k.a. bzImage. The
bootloader (e.g. syslinux) or firmware (e.g. coreboot)
loads the bzImage into memory and starts it. The Linux
kernel sets up a RAM-based root file system and unpacks
the u-root file system into it. This initial root file system
contains a Go toolchain (4 binaries), an init binary, the u-
root program source, and the entire Go source tree, which
provides packages needed for u-root programs.

All Unix systems start an init process on boot and u-
root is no exception. The init for u-root sets up some
basic directories, symlinks, and files; builds a command
installer; and invokes the shell. We describe this pro-
cess in more detail below. The boot file system layout is
shown in Table 1.

The src directory is where programs and u-root pack-
ages live. The go/bin directory is for any Go tools built
after boot; the go/pkg/tool directory contains binaries for
various architecture/kernel combinations. The directory
in which a compiler toolchain is placed provides infor-
mation about the target OS and architecture; for exam-
ple, the Go build places binaries for Linux on x86 64 in
in /go/pkg/tool/linux amd64/. Note that there is no /bin
or many of the other directories expected in a root file
system. The init binary builds them. The u-root root file
system has very little state.

For most programs to work, the file system must be
more complete. We save space in the image by having
init create additional file system structure at boot time: it
fills in the missing parts of the root filesystem. It creates
/dev and /proc and mounts them. It creates an empty /bin
which is filled with binaries on demand. We show it in
Table 2.

Note that in addition to /bin, there is a direc-
tory called /buildbin. Buildbin and the correct setup
of $PATH are the keys to making on-demand com-
pilation work. The init process sets $PATH to
/go/bin:/bin:/buildbin:/usr/local/bin. Init
also builds the installcommand, using the go bootstrap
builder; and creates a complete set of symlinks as shown.
As a final step, init execs sh.

There is no /bin/sh at this point; the first sh found in
$PATH is /buildbin/sh. This is a symlink to installcom-
mand. Installcommand, once started, examines argv[0],
which is sh, and takes this as instruction to build /sr-
c/cmds/sh/*.go into /bin and then exec /bin/sh. There
is no difference between starting the first shell and any
other program.

Hence, part of the boot process involves the construc-
tion of an installation tool to build a binary for a shell
which is then run. If a user wants to examine the source

Table 1: The initial layout of a u-root file system. All Go
compiler and runtime source is included under /go/src;
all u-root source under /src; and the compiler toolchain
binaries under /go/pkg.

/src cmds/
builtin/builtin.go
cat/cat.go
cmp/cmp.go
comm/comm.go
cp/cp.go
date/date.go
dmesg/dmesg.go
echo/echo.go
freq/freq.go
grep/grep.go
init/init.go
installcommand/installcommand.go
ip/ip.go
ldd/ldd.go
losetup/losetup.go
ls/ls.go
mkdir/mkdir.go
mount/mount.go
netcat/netcat.go
ping/ping.go
printenv/printenv.go
rm/rm.go
script/script.go
seq/seq.go
sh/{cd.go,parse.go,sh.go,time.go}
srvfiles/srvfiles.go
tcz/tcz.go
tee/tee.go
uniq/uniq.go
wc/wc.go
wget/wget.go
which/which.go

pkg/ dhcp/ (dhcp package source)
netlib/ (netlib package source)
golang.org (import package source)

/go src/ Packages and toolchain
pkg/ tool/linux amd64/{6a,6c,6g,6l}
misc/ ...
tool/ ...
bin/ go

include/ ...
/lib/ libc.so Needed for tinycore linux packages

libm.so

3
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Table 2: Layout after /init has run. /buildbin con-
tains symlinks to enable the on-demand compilation, and
other standard directories and mount points are ready.

/ Root file system from Table 1
/buildbin/ (created by /init)
(built/installed by
/init)

installcommand

builtin->installcommand
(/init creates sym-
links)

cat->installcommand

cmp->installcommand
comm->installcommand
cp->installcommand
date->installcommand
dhcp->installcommand
dmesg->installcommand
echo->installcommand
freq->installcommand
grep->installcommand
init->installcommand
ip->installcommand
ldd->installcommand
losetup->installcommand
ls->installcommand
mkdir->installcommand
mount->installcommand
netcat->installcommand
ping->installcommand
printenv->installcommand
rm->installcommand
script->installcommand
seq->installcommand
sh->installcommand
srvfiles->installcommand
tcz->installcommand
tee->installcommand
uniq->installcommand
wc->installcommand
wget->installcommand
which->installcommand

/bin /init creates
/proc /init mounts /proc
/tcz /init creates for tinycore binaries
/dev init creates minimal needed devices
/etc init writes resolv.conf

to the shell, they can cat /src/cmds/sh/*.go; the cat com-
mand will be built and then show those files.

U-root is intended for network-based devices, and
hence good network initialization code is essential. U-
root includes a Go version of the ip and dhcp pro-
grams, along with the docker netlink package and a
dhcp package. Support for WIFI configuration is under-
way.

The u-root shell

A shell is a key part of any boot system. Shells run com-
mands, where a command is a sequence of one or more
programs, potentially tied together with pipes or other
operators. Shells may run scripts from a file. Scripts are
usually simple sequences of commands, each command
invoking just one program, but the shell language may
allow more complex commands in a script. Shells have
built-in commands, i.e. commands that do not invoke a
program, but are recognized by the shell and executed di-
rectly. Builtins are used when the command must change
the shell state, as in the cd command; when the cost of
starting a program is felt to be too high relative to the op-
eration the command performs; because the shell source
is not available or it is too hard to change the shell; or
for convenience, i.e. users would rather write in the shell
language instead of C. Most shells can be extended via a
builtin facility, which usually looks like a function defini-
tion style syntax. The shell scripting language is usually
the same language used for builtins.

Every boot loader in common use today has some sort
of shell capability. That these shells have many limita-
tions is a given, but at the same time they need to look as
much as possible like a standard shell.

U-root provides a shell that is stripped down to the fun-
damentals: it can read commands in, using the Go scan-
ner package; it can expand (i.e. glob) the command ele-
ments, using the Go filepath package; and it can run the
resulting commands, either programs or shell builtins. It
supports pipelines and IO redirection. At the same time,
the shell defines no language of its own for scripting and
builtins; instead, the u-root shell uses the Go compiler.
In that sense, the u-root shell reflects a break in impor-
tant ways with the last few decades of shell development,
which has seen shells and their language grow ever more
complex and, partially as a result, ever more insecure[19]
and fragile[11].

The shell has several builtin commands, and the user
can extend it with builtin commands of their own. Be-
fore we discuss user-defined builtins, we will describe
the basic source structure of u-root shell builtins.

All shell builtins, including the ones that come with
the shell by default, are written with a standard Go init
pattern which installs one or more builtins. Shown in

4
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Figure 1 and 2 is the shell builtin for time.
Builtins in the shell are defined by a name and a func-

tion. One or more builtins can be described in a source
file. The name is kept in a map and the map is searched
for a command name before looking in the file system.
The function must accept a string as a name and a (possi-
bly zero-length) array of string arguments, and return an
error. In order to connect the builtin to the map, the pro-
grammer must provide an init function which adds the
name and function to the map. The init function is spe-
cial in that it is run by Go when the program starts up.
In this case, the init function just installs a builtin for the
time command.

Scripting and builtins

To support scripting and builtins, u-root provides two
programs: script and builtin. The script program
allows users to specify a Go fragment on the command
line, and runs that fragment as a program. The builtin
program allows a Go fragment to be built into the shell
as a new command. Builtins are persistent; the builtin
command instantiates a new shell with the new com-
mand built in. Scripts run via the script command are
ephemeral.

We show a usage of the script command in Figure 3.
This script implements printenv. Note that it is not a

complete Go program in that it lacks a package state-
ment, imports, a main function declaration, and a return
at the end. All the boilerplate is added by the script com-
mand, which uses the Go imports package to scan the
code and create the import statements required for com-
pilation (in this case, both fmt and os packages are im-
ported). Because our shell is so simple, there is no need
to escape many of these special characters. We have of-
floaded the complex parsing tasks to Go.

Builtins are implemented in almost the same way. The
builtin command takes the Go fragment and creates a
standard shell builtin Go source file which conforms to
the builtin pattern. This structure is easy to generate pro-
grammatically, building on the techniques used for the
script command.

A basic hello builtin can be defined on the command
line:

b u i l t i n h e l l o \
’{ fmt . P r i n t f ( ” H e l l o \n ” ) } ’

The fragment is defined by the {} pair. Given a fragment
that starts with a {, the builtin command generates all
the wrapper boiler plate needed. The builtin command is
slightly different from the script command in that the Go
fragment is bundled into one argument. The command
accepts multiple pairs of command name and Go code

/ / Package main i s t h e ’ r o o t ’ o f t h e
/ / package h i e r a r c h y f o r a program .
/ / T h i s code i s p a r t o f t h e main
/ / program , n o t a n o t h e r package ,
/ / and i s d e c l a r e d as package main .
package main

/ / A Go s o u r c e f i l e l i s t s
/ / a l l t h e packages on which
/ / i t has a d i r e c t dependency .
i m p o r t (

” fmt ”
” os ”
” t ime ”

)

/ / i n i t ( ) i s an o p t i o n a l f u n c t i o n .
/ / I f i n i t ( ) i s p r e s e n t i n a f i l e ,
/ / t h e Go c o m p i l e r and r u n t i m e
/ / a r range f o r i t t o be c a l l e d
/ / a t program s t a r t u p .
/ / I t i s hence l i k e a c o n s t r u c t o r .
f unc i n i t ( ) {

/ / a d d B u i l t I n i s p r o v i d e d by
/ / t h e u−r o o t s h e l l f o r
/ / t h e a d d i t i o n o f b u i l t i n
/ / commands . B u i l t i n s must
/ / have a s t a n d a r d t y p e :
/ / o The f i r s t parame te r i s
/ / a s t r i n g
/ / o The second i s a s t r i n g
/ / a r r a y which may be 0
/ / l e n g t h
/ / o The r e t u r n i s t h e Go
/ / e r r o r t y p e
/ / In t h i s case ,
/ / we are c r e a t i n g a b u i l t i n
/ / c a l l e d t i m e which c a l l s
/ / t h e t imecmd f u n c t i o n .

a d d B u i l t I n ( ” t ime ” , timecmd )
}

Figure 1: The code for time builtin, Part I: setup

5
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/ / The t imecmd f u n c t i o n i s pa s s ed
/ / t h e name o f a command t o run ,
/ / o p t i o n a l arguments ,
/ / and r e t u r n s an e r r o r . I t :
/ / o g e t s t h e s t a r t t i m e u s i n g Now
/ / from t h e t i m e package
/ / o runs t h e command u s i n g t h e
/ / u−r o o t s h e l l r u n i t f u n c t i o n
/ / o computes a d u r a t i o n u s i n g
/ / S i n c e from t h e t i m e package
/ / o i f t h e r e i s an e r r o r ,
/ / p r i n t s t h e e r r o r t o os . S t d e r r
/ / o u s e s f m t . P r i n t f t o p r i n t
/ / t h e d u r a t i o n t o os . S t d e r r
/ / Note t h a t s i n c e r u n t i m e a lways
/ / h a n d l e s t h e e r r o r , by p r i n t i n g
/ / i t , i t a lways r e t u r n s n i l .
/ / Most b u i l t i n s r e t u r n t h e e r r o r .
/ / Here you can s e e t h e usage
/ / o f t h e i m p o r t e d packages
/ / from t h e i m p o r t s s t a t e m e n t above .
f unc timecmd ( name s t r i n g , a r g s [ ]

s t r i n g ) e r r o r {
s t a r t := t ime . Now ( )
e r r := r u n i t ( name , a r g s )

i f e r r != n i l {
fmt . F p r i n t f ( os . S t d e r r , ”%v\n ” ,

e r r )
}
c o s t := t ime . S i n c e ( s t a r t )
fmt . P r i n t f ( os . S t d e r r , ”%v ” , c o s t )

/ / T h i s f u n c t i o n i s s p e c i a l
i n t h a t

/ / i t h a n d l e s t h e e r r o r , and
hence

/ / does n o t r e t u r n an e r r o r .
/ / Most o t h e r b u i l t i n s r e t u r n

t h e
/ / e r r o r .

re turn n i l
}

Figure 2: The code for the shell time builtin, Part II.

s c r i p t \
{ fmt . P r i n t f ( ”%v\n ” , os . Env i ron ( ) ) }

Figure 3: Go fragment for a printenv script. Code struc-
ture is inserted and packages are determined automati-
cally.

fragments, allowing multiple new builtin commands to
be installed in the shell.

Builtin creates a new shell at /bin/sh with the source
at /src/cmds/sh/. Invocations of /bin/sh by this
shell and its children will use the new shell. Processes
spawned by this new shell can access the new shell
source and can run the builtin command again and cre-
ate a shell that further extends the new shell. Processes
outside the new shell’s process hierarchy can not use this
new shell or the builtin source. When the new shell ex-
its, the builtins are no longer visible in any part of the
file system. We use Linux mount name spaces to cre-
ate this effect[22]. Once the builtin command has ver-
ified that the Go fragment is valid, it builds a new, pri-
vate namespace with the shell source, including the new
builtin source. From that point on, the new shell and its
children will only use the new shell. The parent process
and other processes outside the private namespace con-
tinue to use the old shell.

Environment variables
The u-root shell supports environment variables, but
manages them differently than most Unix environments.
The variables are maintained in a directory called /env;
the file name corresponds to the environment variable
name, and the files contents are the value. When it is
starting a new process, the shell populates child process
environment variables from the /env directory. The syn-
tax is the same; $ followed by a name directs the shell
to substitute the value of the variable in the argument by
prepending /env to the path and reading the file.

The shell variables described above are relative paths;
/env is prepended to them. In the u-root shell, the name
can also be an absolute path. For example, the command
script $/home/rminnich/scripts/hello will sub-
stitute the value of the hello script into the command line
and then run the script command. The ability to place
arbitrary text from a file into an argument is proving to
be extremely convenient, especially for script and builtin
commands.

Using external packages and programs
No root file system can provide all the packages all users
want, and u-root is no exception. We must have the abil-
ity to load external packages from popular Linux distros.
As a proof of concept, we created a tool to load exter-
nal packages from the TinyCore Linux distribution, a.k.a.
tinycore. A tinycore package is a mountable file system
image, containing all the package files, including a file
listing any additional package dependencies.

To load these packages, u-root provides the tcz com-
mand which fetches the package and and needed depen-

6
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dencies. Hence, if a user wants emacs, they need merely
type tcz emacs, and emacs will become available in /us-
r/local/bin. The tinycore packages directory can be a per-
sistent directory or it can be empty on each boot.

The tcz command is quite flexible as to what pack-
ages it loads and where they are loaded from. Users may
specify the host name which provides the packages; the
TCP port on which to connect; the version of tinycore to
use; and the architecture. The tcz command must loop-
back mount each package as it is fetched, and hence must
cache them locally. It will not refetch already cached
packages. This cache can be volatile or maintained on
more permanent storage. Performance varies depending
on the network being used and the number of packages
being loaded, but seems to average about 1 second per
package on a WIFI-attached laptop.

U-root also provides a small web server, called srv-
files, that can be used to serve locally cached tinycore
packages for testing. The entire server is 18 lines of Go.

Using u-root: current targets

There are three current targets for u-root. All three are
available in a Docker image we provide.

The first two targets are used to test u-root to make
sure it will work before it is loaded into its real target, a
firmware image.

Chroot test
The first test target is a chroot environment. A chroot is
a file system tree which must have at least one binary. A
standard Unix command, chroot, uses the chroot system
call to set the root for a child process and then execs a
named binary from the tree. Note that the chroot only
applies to the program being run, and does not affect any
other programs.

A script provided with u-root builds an image of the
file system shown in Table 1, including locating and in-
stalling the Go source tree and toolchain. The script also
builds the init binary which the kernel runs as the first
user-mode process.

The chroot environment simulates a full boot environ-
ment. The chroot startup process, running on a linux in-
stance in VmWare Fusion on a Mac laptop takes about
3 seconds, including compiling the two binaries (install-
command and sh) and the packages they need, about 250
files. Once the startup process is done the user sees the
u-root shell prompt and can run tests.

Kernel image
Once the file system tree has been verified via the chroot,
it can be used as the input to the process of creating a

so-called initramfs. An initramfs is a file system image
that is built directly into a bootable Linux kernel image.
When the kernel starts, it locates the initramfs, sets up a
RAM file system, and extracts the intramfs into the RAM
file system. At that point, the kernel can exec /init.

U-root includes the script to create this image. The re-
sult is a file, which can then be used as input to the kernel
build process. The user can then boot the kernel directly
in QEMU (via qemu –kernel) or drop the bzImage into a
boot disk image and test that, either via qemu or booting
on real hardware.

Firmware image

The end goal of u-root is to create an embedded firmware
image. Linux can not run from power on reset directly;
something needs to configure the platform and then load
Linux from FLASH to RAM, and for that we use core-
boot. We build a kernel as shown earlier, containing an
initramfs, which in turn contains u-root; this in turn is
built into a firmware image.

Users can take two steps to test coreboot. The first
(and optional given enough confidence) is to add the ker-
nel bzImage as a payload to a coreboot built to run in
qemu. We provide a working qemu image in a Docker
container to make this easy, as well as a script to add the
bzImage to the coreboot image. Once the image is built,
users start qemu with this image as the bios: qemu –bios
coreboot.rom

Once the Linux image is known good, the user can em-
bed it in a real coreboot image for a real mainboard. A
current known limitation is that the board must contain
a 16 MiB FLASH part. We have tested on the Asrock
E350M1. In that case, we first tested on QEMU, then
took the Linux image unchanged, merged it into the core-
boot for the hardware, and it worked with no changes,
indicating that QEMU provides a very accurate verifica-
tion environment for the hardware target. If a given u-
root build works in QEMU it will almost certainly work
on hardware.

Discussion

Building the image

Building is a straightforward process, which requires a
kernel source tree, Go source tree, the u-root source, and
coreboot source. Build times vary depending on what in-
frastructure is used. In general, the kernel and Go build
steps are measured in minutes, and the u-root and core-
boot build times are measured in seconds. These orders
of magnitude have changed little in the last 5 years.

7
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Usability
We have been using u-root for a few months. The system
provides a very usable firmware command line environ-
ment, comparable to what we have used with U-boot,
UEFI, and Open Firmware. The u-root and its shell pro-
vide familiar tools and capabilities. The ability to start
background tasks, shell pipelines, and redirect output to
files is both useful and unusual in an embedded environ-
ment. In terms of scripting, it is more sophisticated than
any shell we know of, given that our scripting language
is Go.

The script command is more powerful than we first re-
alized. It is possible to run it under any shell, or from
any program. It can use much more powerful Go frag-
ments than we have shown here, including whole Go
programs, since its internal parsing is just the standard
Go ”imports” library. The script command fills in the
blanks as needed, but only as needed.

The builtin command is perhaps the most powerful
tool in u-root. It allows users to build fully customized
shells for a specific purpose and then just as quickly dis-
card them. The new shell is ready and running in less
than a second. We could apply this technique to the
problem of startup scripts for embedded environments.
To support standard functions in init scripts, distributions
provide several hundred files, and for each invocation of
the shell, some set of these files are included over and
over again. The time it takes to read, parse and run these
standard scripts is a large part startup time1.

With the scripting and builtin tools, users do not need
to write full Go programs to get a new capability. We are
finding that the basic set of tools we have is enough, and
we are writing new tools as Go fragments.

Once the network is up, tools like emacs can be loaded
either via a local disk, local network package server, or a
remote server such as tinycorelinux.org.

Having the source always available in any sort of
firmware environment is both unusual and very useful.
At times, we have forgotten how some of our commands
work. Having the source at hand has proven very helpful.

Future development

While we envisioned u-root as a boot time environment,
we have seen increasing interest in wider use. Some
users have requested common features as tab completion.
The shell parser is written in such a way that it should al-
low for easy addition of tab completion.

History is another question, as it adds more state, com-
plexity, and parsing to the shell. These additions in turn
decrease reliability and open up paths for exploits. We

1A good discussion can be found in http://free-
electrons.com/doc/training/boot-time/boot-time-slides.pdf

are experimenting with new models of history mainte-
nance that do not require the complexity of current sys-
tems. We might, for example, maintain history in a
private per-process or per-user directory. Finding com-
mands becomes easy, and with our extension to the shell
variable model, running an old command becomes easy:
$/home/rminnich/history/5 would run the fifth command.
Another attraction of this model is that conversion of an
old command into a shell script is easy. History stops
being special to one shell and instead is common to all
programs that can traverse files. Any program can see
history and use the commands.

Instead of rereading the same scripts over and over,
init could build a special shell at boot time that pulls in
builtins to extend the shell. The scripts themselves would
continue to be human-readable, but the performance of
booting would be much faster, combining the perceived
advantages of upstart-style scripting with systemd-level
performance.

Related work

There are two main components to this work: on-demand
compilaton and embedding a kernel and root file system
in FLASH. Both ideas have been used at different times.
Our work combines the two so that we can use Go. We
review the earlier work below.

On-Demand Compilation

On-Demand compilation is one of the oldest ideas in
computer science.

Slimline Open Firmware (SLOF)[7] is a FORTH-
based implementation of Open Firmware developed by
IBM for some of its Power and Cell processors. SLOF is
capable of storing all of Open Firmware as source in the
FLASH memory and compiling components to indirect
threading on demand[2].

In the last few decades, as our compiler infrastructure
has gotten slower and more complex, true on-demand
compilation has split into two different forms. First is the
on-demand compilation of source into executable byte
codes, as in Python. The byte codes are not native but
are more efficient than source. If the python interpreter
finds the byte code it will interpret that instead of source
to provide improved performance.

Java takes the process one step further with the Just In
Time compilation of byte code to machine code[20] to
boost performance.

8
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Embedding kernel and root file systems in
FLASH

The LinuxBIOS project[14][1], together with
clustermatic[25], used an embedded kernel and simple
root file system to manage supercomputing clusters. Due
to space constraints of 1 MiB or less of FLASH, clusters
embedded only a single-processor Linux kernel with a
daemon. The daemon was a network bootloader that
downloaded a more complex SMP kernel and root file
system and started them. Clusters built this way were
able to boot 1024 nodes in the time it took the standard
PXE network boot firmware to find a working network
interface.

Early versions of One Laptop Per Child used Lin-
uxBIOS, with Linux in flash as a boot loader, to boot
the eventual target. This system was very handy, as they
were able to embed a full WIFI stack in flash with Linux,
and could boot test OLPC images over WIFI. The contin-
uing growth of the Linux kernel, coupled with the small
FLASH size on OLPC, eventually led OLPC to move to
Open Firmware.

AlphaPower shipped their Alpha nodes with a so-
called Direct Boot Linux, or DBLX. This work was
never published, but the code was partially released on
sourceforge.net just as AlphaPower went out of business.
Compaq also worked with a Linux-As-Bootloader for the
iPaq.

Car computers and other embedded ARM systems fre-
quently contain a kernel and an ext2 formatted file sys-
tem in NOR FLASH, i.e. FLASH that can be treated as
memory instead of a block device. Many of these ker-
nels use the so-called eXecute In Place[3] (XIP) patch,
which allows the kernel to page binaries directly from
the memory-addressable FLASH rather than copying it
to RAM, providing a significant savings in system startup
time. A downside of this approach is that the executa-
bles can not be compressed, which puts further pressure
on the need to optimize binary size. NOR FLASH is
very slow, and paging from it comes at a significant per-
formance cost. Finally, an uncompressed binary image
stored in NOR FLASH has a much higher monetary cost
than the same image stored in RAM since the cost per bit
is so much higher.

UEFI[12] contains a non-Linux kernel (the UEFI
firmware binary) and a full set of drivers, file systems,
network protocol stacks, and command binaries in the
firmware image. It is a full operating system environ-
ment realized as firmware.

The ONIE project[23] is a more recent realization of
the Kernel-in-FLASH idea, based on Linux. ONIE packs
a Linux kernel and Busybox binaries into a very small
package. Since the Linux build process allows an ini-
tial RAM file system (initramfs) to be built directly into

the kernel binary, some companies are now embedding
ONIE images into FLASH with coreboot. Sage En-
gineering has shown a bzImage with a small Busybox
packed into a 4M image. ONIE has brought new life to
an old idea: packaging a kernel and small set of binaries
in FLASH to create a fast, capable boot system.

Conclusions and future work

U-root is a root file system targeted to embedded
firmware environments. In response to the increas-
ing security challenges facing embedded systems in the
always-connected Internet of Things, we have chosen to
write all the u-root programs in Go, a modern, type safe
language with garbage collection. The safety of the Go
language and runtime reduce many of the security risks
of writing network-facing services. The performance of
the Go compiler makes on-demand compilation practi-
cal: most commands compile in a fraction of a second
and, once compiled, run in about a millisecond.

The U-root file system, on boot, contains only 5 bi-
naries. The rest of the root file system contains source
to programs which are compiled on demand. We have
found the system to be fast and usable. The images
can be tested in emulation environments, of increasing
fidelity to the firmware target, and have been tested on
hardware running coreboot.

Our initial intent was to use u-root to build firmware
images, but we are finding that we would like to use it
more broadly. The structure of the Go toolchain nam-
ing scheme lends itself to heterogeneous environments:
save for init, the toolchain binaries have a directory path
name that includes the name of the target OS and archi-
tecture, e.g. linux amd64, linux arm, and so on. A sin-
gle u-root image can contain many Go toolchains with
no path conflicts. Were we to install more toolchains in
the root file system, and move /init to the same direc-
tory containing the toolchain, a single u-root file system
image could be used on many different OS and architec-
ture combinations. We could build a u-root image, for
example, that worked on all linux variants for different
architectures. We are exploring this model now.

Availability

U-root is available as a git repo from

github.com/rminnich/u-root

To make trying it out easier, we have created a docker
container,

docker.io/rminnich:18

9
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The container includes all the u-root, linux kernel, and
coreboot source needed to test three environments: the
chroot, kernel and initramfs, and coreboot with qemu.
There are scripts and logs of sessions in / which users
can use to guide and verify their testing of the software.

Because u-root changes frequently, users should pull
an update in /u-root once they have done initial testing.
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Abstract

A plethora of mobile devices such as smartphones, wear-
ables, and tablets have been explosively penetrated into
the market in the last decade. In battery powered mo-
bile devices, energy is a scarce resource that should be
carefully managed. A mobile device consists of many
components and each of them contributes to the overall
power consumption. This paper focuses on the energy
conservation problem in display components, the impor-
tance of which is growing as contemporary mobile de-
vices are equipped with higher display resolutions. Prior
approaches to save energy in display units either criti-
cally deteriorate user perception or depend on additional
hardware. We propose a novel display energy conserva-
tion scheme called LPD (Low Power Display) that pre-
serves display quality without requiring specialized hard-
ware. LPD utilizes the display update information avail-
able at the X Window system and eliminates expensive
memory copies of unvaried parts. LPD can be directly
applicable to devices based on Linux and X Windows
system. Numerous experimental analyses show that LPD
saves up to 7.87% of the total device power consumption.
Several commercial products such as Samsung Gear S
employ LPD whose source code is disclosed to the pub-
lic as open-source software at http://opensource.

samsung.com and http://review.tizen.org.

1 Introduction

The popularity of mobile devices such as smartphones,
tablets, and smart watches is steadily increasing and
their market size has grown explosively in recent years.
Tetherless mobile devices use batteries as the main
energy source and power is one of the scarcest resources
that should be carefully managed; energy consumption
is directly translated to the usability and the value of
mobile products. In addition, imprudent use of energy
may lead to excessive heat dissipation, which in turn,

causes a safety issue of low temperature burns [13].
One easy solution for the power saving problem is to
equip better and/or larger batteries in mobile devices.
However, the advancements in battery technology
failed to match the ever increasing functionalities and
computational demands of mobile devices [17].

A mobile device consists of many components and
functions each of which consumes energy. This paper
deals with energy conservation in display components.
As the display resolutions increase, the energy required
to operate a device grows accordingly. For example,
even though the physical scales of displays have not
grown much bigger, resolution has increased from
800x480 to 2560x1440. The memory bandwidth in-
creases almost ten times and so is the energy consumed.
Energy conservation in memory access for display
components has received less research attentions than
other components such as processors and communica-
tion interfaces although display components consume
significant share of energy [5].

Energy conservation schemes prone to deteriorate the
performance or QoE (Quality of Experience) of devices.
Because human beings are sensitive to the degradation in
visual quality, vigilant attentions to preserve the original
visual quality must be accompanied in designing power
saving techniques for display units. Adjustments of
color depth [8], brightness level [6, 11], or refresh
rate [14] may significantly affect user perception such
that the quality assurance team often rejects careless
schemes. Of course, there are display energy saving
schemes that preserve the original quality. AFBC
(ARM Frame Buffer Compression) [3, 10], Transaction
Elimination [4, 16], and frame buffer compression [20]
are examples of such approaches. However, most of
these schemes depend on specialized hardware and their
applicability is quite limited.
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We aim to develop a display energy conservation
scheme that neither requires the addition of special-
ized hardware nor deteriorate the visual quality. The
proposed scheme, low power display (LPD), does not
require any hardware modifications to the traditional
and popular i80 display architecture, Intel’s 8080 like
command interface for display panels. LPD also does
not deteriorate the user experiences because it conserves
the true quality of every pixel.

The main idea of LPD is rather simple; to reduce
memory accesses and data transfers by identifying the
updated regions. The idea of preserving unchanged
part and encoding only changed part is widely used in
motion picture encoding [22] and display rendering.
The problem is how to identify the updated regions.
Comparing the two consecutive frame buffers directly
requires too much energy or additional hardware.
Instead of direct frame buffer comparison, we exploit
the knowledge that the OS already possesses. In other
words, LPD extends the design domain from HW-kernel
to HW-kernel-middleware. In Linux and Tizen, a
window system (X Server) and a compositing window
manager (Enlightenment in the case of Tizen) know
the changed regions. LPD accesses changed regions
only and transfers the retrieved regions to the display
controller and display panel. Therefore, LPD reduces
the memory bandwidth as well as bus utilization which
in turn reduces power consumption.

LPD also has the potential to enhance the perfor-
mance of other functions because LPD reduces main
memory bandwidth and the saved bandwidth can be
distributed to other memory hungry functions. Unlike
the previous schemes, the computation overhead of LPD
is minimal; it requires a few simple integer arithmetic
instructions without any loops or complex computation.
Finally, LPD is orthogonal to other display power saving
mechanisms [4, 8, 11, 14, 16] such that LPD can be
applied with these methods.

To reconstruct a whole display image from updated
regions only, the display panel should have an internal
RAM that stores the previous frame. Such a feature is
commonly available in mobile devices; i80, one of the
de facto standard display interfaces supports an internal
RAM. We confirmed that many mobile devices such as
Galaxy S4 and Galaxy Note 3 use the i80 interface.

We implemented LPD and LPD has been embedded
in commercial products. An earlier version of LPD
has been shipped with Gear 2. Field tests with real
products under real-world use scenarios showed that
LPD reduce up to 7.87% of the total device power

consumption when 1% of frame is updated. Full
capability of LPD has been implemented and embedded
to Gear S. We disclose the source code of full LPD
implementation to the public at http://tizen.org

and http://opensource.samsung.com. The source
code is under the GPL license as a feature of Direct
Rendering Manager (DRM), which significantly lessens
the maintenance and porting cost for further deployment.

The main contribution of this paper is as follows:

• Improve energy efficiency of display device compo-
nents that were not properly addressed while

– preserving the transparency of applications,
– maintaining traditional hardware architectures,
– minimizing changes to the operating systems,
– limiting the overhead to virtually non-existing,
– not deteriorating the quality of pixels,
– and allowing most of previous display power op-

timizing schemes orthogonally coexisting.

• The proposed scheme is fully developed and re-
leased as open source software in commercial prod-
ucts.

This paper is organized as follows. The next section
presents the related work of display power saving. Sec-
tion 3 explains the hardware architecture and the ratio-
nale of LPD. Section 4 shows the design and implemen-
tation detail of LPD. Section 5 describes the experiments
and their results. Section 6 discusses follow-up research
that may further enhance LPD. Section 7 concludes the
paper.

2 Related Work

Several researchers have attacked the power consump-
tion of display-related device components. In this
section, we introduce their work and we show why we
still need a new mechanism.

Adjust color depth: Choi et al. [8] have suggested a
display power saving mechanism that dynamically alters
color depth according to the color distribution of a frame
buffer. This method scans the whole frame buffer, which
usually is performed by an additional hardware to avoid
excessive CPU overhead and power consumption. The
mechanism is especially effective with high quality high
resolution displays while it inevitably deteriorates the
picture quality.

Dynamic backlight brightness: backlight is the
dominant power consumption source in display systems
and several backlight reduction mechanisms have been
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devised [1, 6, 7, 11, 19]. Backlight reduction should
be accompanied with careful pixel color adjustment to
keep the fidelity of images. For example, if a frame is
filled with dark pixels, we may reduce the backlight
brightness while compensate the gamma values of pixels
to brighter colors. Enhancing such approaches further,
[21] suggested to partition a screen into multiple regions
with separated backlights and adjust the backlights and
colors independently for each block for extra power
saving.

Dynamic backlight reduction schemes have limita-
tions. Chang et al. [6] sacrificed brightest pixels to
reduce the backlight brightness. This optimization
degraded the picture quality significantly such that the
degradation can be detected by naked eyes. Backlight
reduction schemes also require additional full scan of
each frame buffer. Full frame scan inevitably provokes
additional memory transactions and power consumption.
LCD (Liquid Crystal Display) where the responses of
each color to brightness are non-linear spawns another
complicated control problem [1]. Significant latency
increment is another roadblock for the adoption of the
technique [6] to latency critical applications such as
games, screen scrolling, and typing [19]. Most critically,
the brightness control schemes cannot be applied to
AMOLED (Active-Matrix Organic Light-Emitting
Diode). AMOLED displays, dispense with backlights,
are considered to be energy efficient and more suit-
able for mobile devices [12]. A similar approach for
AMOLED displays [18], which tries to adjust pixel
colors, may consume much energy due to the physical
characteristics of AMOLED; if a pixel changes its color
too drastically in a short time, this causes much energy
consumption to drive the pixel.

Dynamic display refresh rate: Kim et al. [14]
have suggested to dynamically scale the refresh rate of
displays. We have applied the technique as a device
driver of DVFS framework (devfreq) in the Linux
kernel [9], but failed to meet the requirement of picture
quality maintained by our quality assurance teams. With
further optimizations, the techniques can be effective
and applied with LPD orthogonally.

Compression: another approach is the frame buffer
compression [3, 10, 20]. Compression reduces data
size and thus decreases bus traffic and memory op-
erations. Compression is usually performed by an
additional non-standard hardware because compressing
the whole frame buffer for every frame incurs heavy
computational overheads [20]. Compression also incurs
power consumption; even with a dedicated FPGA
based hardware [20], compressing and decompressing

Figure 1: i80 Display Hardware Architecture

frame buffers of 640x480 with 18 bit color depth has
consumed additional 30 mW. ARM’s Adaptive Scalable
Texture Compression (ASTC) [2, 15] provides higher
compression rate than other conventional frame buffer
compression mechanisms. However, ASTC is limited to
textures for GPUs and uses lossy compression mecha-
nisms.

Skip duplicated transmissions: the prior methods
that are most similar to LPD are the mechanisms that
skip transmissions of duplicated parts. Whelan et al. [24]
saves the whole frame buffer at the display controller
and allows skipping the transfer of a new frame from
the main memory to the frame buffer if there are no
changes. The benefit of skipping is achievable only
when there is not even a pixel of change in a frame [24].
We implemented a variant of this scheme in Samsung
Gear series products. In this implementation, we can
turn the whole CPU off (suspend-to-RAM) along with
the display controller while the screen kept on.

Another similar approach is Transaction Elimination
developed by ARM [4, 16]. Transaction Elimination al-
lows a GPU to skip transmitting unchanged parts of its
frame buffers to the main memory based on CRC signa-
tures. This approach requires ARM’s Midgard GPU ar-
chitecture. Transaction Elimination reduces data transfer
to the main memory only maintaining the data transfers
from the main memory to the display panel via the dis-
play controller. On the contrary, LPD can reduce the data
transfers from the main memory to the display panel and
does not require using a specific GPU.

3 Background

Figure 1 shows the hardware architecture and LPD
procedure. Arrows with circled numbers represent
image data transmission between hardware components.
LPD requires a display panel with the i80 display
interface and a display controller supporting “partial
mode”. In the partial mode, the display controller
fetches a rectangular subset of the frame buffer from
the DRAM to its buffer (step 2). The rectangular subset
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(a) Current frame (b) Next frame (c) Updated region

Figure 2: Example of a Display Content Change

should contain all updated parts.

Figure 2 shows an example of a rectangular subset of
updated parts. Let us assume that the display content
is updated from the current frame (Figure 2(a)) to the
next frame (Figure 2(b)). In the example, there are two
updated components; the red second hand and the alarm
shown on the upper right corner. These updated parts
are represented by two light gray boxes in Figure 2(c)
and the rectangular subset, outlined by a dotted blue
rectangle, is a larger box that contains the two updated
components.

After user programs draw images with CPU and
GPU (step 1) on the frame buffer in the main memory
(DRAM), graphical middleware, X Window and Com-
posite Manager, process the raw image and send the
processed data to the kernel. Referring the processed
data, the kernel along with related device drivers config-
ures the display controller. Next, the display controller
read the updated part from DRAM to its buffer (step 2).
The display controller transfers the updated part to the
internal RAM of the display panel via a hardware-to-
hardware line called “display bus” (step 3). Finally, the
display panel lays out the contents in the internal RAM
on the screen. LPD enhances step 2 and step 3 proce-
dures. Step 2 involves with main memory read, transfer
on the main bus, and write into the buffer in the display
controller. Step 3 consists of buffer read, transfer on the
display bus, and write into the internal memory. Note
that the final transmission to the screen (step 4) contains
the whole frame buffer and is not reduced by LPD.

3.1 Simple Analysis of Expected Power
Saving

In this section, we describe the rationale that led us to
the design of LPD with a simple analysis of the expected
power saving. Let Pu (0 ≤ Pu ≤ 1) be the proportion of
the updated rectangle to the whole frame. Also, let f be
the frame rate and S be the size of a whole frame, which
is usually the product of width, height, and color depth.

Then, TL, the memory bandwidth that LPD consumes to
transfer the updated rectangle from the main memory to
the internal RAM through the display controller, is

TL = Pu ·S · f (1)

The traffic without LPD, T0, between the same com-
ponents is:

T0 = S · f (2)

Note that the bandwidth of DRAM read and main
bus transmission, display bus transmission and in-
ternal RAM write are the same because we assume
no compression or modifications in the transmission
chain from the DRAM to the internal RAM. LPD is
orthogonal to such operations and any benefits obtained
by compression can be equally applied to LPD as well
as to non-LPD schemes.

The updated contents should be readily available in the
DRAM when the display controller accesses the DRAM
because the controller is not aware of processor caches;
i.e., there is no cache coherency support between CPU
and controller. It also means that caches of processors
cannot be involved and every bit read, moved, or writ-
ten with the display controller or the display panel is a
direct memory-to-device or device-to-device operation.
Therefore, we can assume that the power consumed in
memory read, transfers on the main bus, and transfers
on the display bus are not affected by caching. PL and
P0, the power consumed by LPD and non-LPD schemes,
respectively, are given as

PL =C · (TL)

P0 =C · (T0)
(3)

, where C is a coefficient representing the sum of the en-
ergy consumption rates of all involved operations. The
total power saved by LPD, Psave is:

Psave = P0 −PL

=C ·T0 −C·TL

=C · (1−Pu) ·S · f
(4)

This shows that the power saving is proportional to
Pu, the proportion of updated regions. As we can see in
Eq. (4), LPD enjoys greater savings with devices with
higher resolutions and higher frame rates. Note that
mobile displays have undergone disruptive technology
advances in the last decade and this trend may continue
in near future; recent mobile phones have displays of
1920x1080 resolution or higher at 60 fps.

In Section 5, we show the effectiveness of LPD with
a series of experiments with Samsung Gear 2. We also
show how the model driven in this section fits with the
experimental results.
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(a) Current frame (b) Next frame (c) Torn frame

Figure 3: Screen Tearing Example

3.2 Overhead of Brute Force Mechanisms
In this section, we analyze the potential overhead of LPD
similar mechanisms implemented in a brute force style.
Instead of using the processed information provided by
middleware, these methods identify the updated regions
by frame by frame comparison.

Method 1. Compare each pixel to identify updated re-
gions. This requires reading two frames and the required
memory bandwidth, Mr, is

Mr = S · f ·2 (5)

The maximum benefit due to reduced transfer is
achieved when there are no updated regions. The
maximum benefit is Mr/2 and the overhead overwhelms
the benefit.

Method 2. Compare CRC values of frame buffer
blocks. This is what Transaction Elimination does
[4, 16] with an additional hardware for GPU to main
memory transmissions. If we perform the same opera-
tion with software, we need to read a whole frame once
and should calculate CRC at the speed of memory band-
width. The overhead still overwhelms the benefit as well.

As indicated above, brute force mechanisms that iden-
tify the differences based on frame-by-frame compari-
son are inappropriate. Note also that hardware-based ap-
proaches [4, 16] incur inevitable overheads of gate count,
energy, and licenses.

3.3 Screen Tearing and Tearing Effect
Screen tearing may appear if the image transfer from the
display controller to the internal RAM is not properly
synchronized with the display refresh by the MCU.
Figure 3 shows an example of screen tearing.

One scenario that causes the screen tearing of Figure 3
is as follows. While the MCU is scanning its internal

(a) Without LPD (b) With LPD

Figure 4: The Concept of LPD

RAM containing the current frame for the display
refresh, the display controller transfers the next frame
overwriting on to the internal RAM. If the speed of
display controller transfer is faster than the display
refresh, part of the internal RAM that is not displayed
may be updated with the next frame. As a result,
the screen shows a mix of both frames as depicted in
Figure 3(c).

A display panel generates a tearing effect (TE) signal
to notify the kernel that the panel has completed drawing
the image from its internal RAM. A display controller
should start sending the next frame to the display panel
after receiving the TE signal and should complete the
transmission before the MCU starts to refresh the next
frame. In other words, steps shown in Figure 1 should
be synchronized with the TE signal.

In Section 4.2.3, we discuss the issue of screen tearing
in a greater detail. Screen tearing becomes more seri-
ous with LPD as the transfer latency becomes less deter-
ministic and device drivers are required to add operations
with exact timing. Section 4.2.3 describes the synchro-
nization mechanism that LPD uses to mitigate the issue.

4 Design and Implementation

Figure 4 shows the design concept of LPD. LPD utilizes
the information already known to applications and mid-
dleware to reduce the amount of information handled by
hardware components. Suppose a device with 320x320
resolutions. With 4 bytes per pixel and 30 frames per
second, the amount of information required to transfer
is about 12 MB/s. If we further assume that 8% of a
frame is updated on the average, then the required band-
width for the updated regions is about 1 MB/s. With-
out LPD, the required bandwidth from the software stack
to the display panel is still 12 MB/s because full frames
are transferred regardless of updated regions. With LPD
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Figure 5: Interaction of Middleware and the Linux Ker-
nel for LPD implementation

as shown in Figure 4(b), the bandwidth is reduced to
1 MB/s. A System-on-Chip (SOC) usually has proces-
sors, main memory, and a display controller. Let us ex-
amine the procedure of LPD from the top to the bottom
and the issues we have encountered in the course of LPD
implementation.

4.1 Userspace Middleware Interaction

Figure 5 shows how the window system (X Server) and
the composite manager in userspace interact with appli-
cations and the kernel. The numbers in the interaction
vectors denote the sequence of events. The shaded boxes
and descriptions in italic are the components affected
and interactions modified by LPD, respectively. Such
modifications allow the kernel to have the information
required to identify the updated regions. LPD does not
require additional modifications in applications or other
middleware components.

The sequence of interactions in userspace flows as fol-
lows:

1. An application requests a buffer swap to the X
Server.

2. The X Server notifies a damage event to the com-
posite manager. Each damage event contains the
positional data of an updated region.

3. The composite manager composes the screen im-
age with the damage event information provided in
step 2.

4. The composite manager requests a buffer swap to
the X Server. In LPD, this request includes posi-
tional data of updated regions. In non-LPD, this re-
quest does not include any information.

5. In LPD, the X Server transfers the positional data
to the kernel with the “Dirty FB” kernel interface
described in Section 4.2.1. In non-LPD, this step is
skipped.

Figure 6: Interaction of Linux Kernel and Hardware

6. The X Server requests a page flip to the kernel so
that image data can be sent to the screen with “Page
Flip” interface described in Section 4.2.2.

As shown, the modification in the middleware is min-
imal and the backward compatibility of the modified
userspace components is preserved. Because the com-
posite manager has been already tracking the updated re-
gions (or damaged regions in their notation) in order to
optimize rendering performance, we simply modified the
composite manager to report back what it already com-
prehends as one aggregated updated region. Then, the X
Server just relays the information. With such simple and
straightforward notifications, we can enjoy the benefit of
reduced data bandwidth. It is worth to note that LPD
incurs constant computational and space complexity.

4.2 Kernel Interaction

As mentioned earlier, we use two userspace-to-kernel
interfaces: Dirty FB and Page Flip. The detailed
in-kernel operations of the two interfaces are described
in Figure 6. The Dirty FB triggers sub-steps 5-1 and 5-2
and the Page Flip interface involves with sub-steps 6-1
to 6-6. Note that some interfaces are not software-driven
interactions. For example, 6-1 is an interrupt from hard-
ware and 6-6 is a hardware-to-hardware transmission.

The two kernel interfaces, Dirty FB and Page Flip,
are not new or non-standard interfaces but are stan-
dard Linux kernel interfaces that had been kept in the
mainline. We also do not change the semantics of
the interfaces. Note that being a standard interface is
not coincident with the popular or frequent use of the
interface. Both the Dirty FB interface and Page Flip
interface are seldom used or not fully used.

We obeyed the syntax and semantics of Linux main-
line interfaces. LPD is easily upstream-able and reusable
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by other device drivers in various kernel versions by dif-
ferent vendors. The upstream-ability and the induced
compatibility add yet another benefit to LPD: maintain-
ability, which enables us to let the open source commu-
nity maintain LPD along with later versions of Linux ker-
nel and additional device drivers. We expect that we can
upstream all the required pieces to the mainline Linux
kernel soon.

4.2.1 Dirty FB

Dirty FB, a kernel-userspace interface, allows the X
Server to send multiple sets of updated regions (rectan-
gle forms consist of the left-top and right-bottom coor-
dinates) to the kernel DRM driver before the X Server
issues Page Flip. Without LPD, the X Server does not
need to use the Dirty FB interface because the X Server
assumes that a whole frame is updated. The operation
of Dirty FB consists of the following steps as shown in
Figure 6.

Step 5: The X Server sends one or multiple updated
regions to the kernel DRM driver.

Step 5-1: The DRM driver merges input regions into a
single rectangle that contains all updated regions.
The larger box with a dotted blue outline in Fig-
ure 2(c) represents the aggregated single rectangle.

Step 5-2: The DRM driver remembers the coordinates
of the aggregated update region and uses “partial
mode” for the next frame transmission.

Most embedded display controllers can transfer image
data of a single rectangular region to the display panels
in one single transfer. For each TE interrupt signal, the
display controller can conduct one transfer only and
there is only one TE interrupt signal per display refresh.
Therefore, in order to avoid image quality deterioration
due to frame drops, LPD should combine multiple
updated regions into one.

Let the left-top coordinate and the right-bottom co-
ordinate of each updated region be L = (Lx, Ly) and
R = (Rx, Ry), respectively. Each updated region can be
expressed by a pair of L and R. Then, L′ and R′, the left-
top and the right-bottom coordinates of the aggregated
updated region covering n updated regions are derived
as:

L′ = (min(Lx1, ... , Lxn), min(Ly1, ... , Lyn))

R′ = (max(Rx1, ... , Rxn), max(Ry1, ... , Ryn))
(6)

, where Li = (Lxi, Lyi) and Ri = (Rxi, Ryi) are the left-
top and the right-bottom coordinates of the i-th updated
region.

4.2.2 Page Flip

In non-LPD, the window system requests a frame buffer
change via the Page Flip interface. An invocation of
Page Flip updates the memory address to the requested
frame buffer of the display controller hardware. Then,
the display controller may access the requested frame
buffer by setting a trigger bit after a TE signal is issued.

If the display controller is in a partial mode (LPD
enabled), the Page Flip behavior is slightly different
because we cannot simply switch frame buffers for each
frame. Instead of transferring the whole frame buffer,
the controller transfers the updated region only. In the
partial mode, configured by LPD, a Page Flip request
updates the relevant registers (sub-step 6-4) that include
the memory base and the offset address to the updated
region, start and end positions of the overlay, and the
line size. Note that the partial mode does not require
the display controller to support input/output memory
management unit (IOMMU). The partial mode only
requires the controller to access a rectangular subpart
of a frame buffer. It does not depend on whether the
frame buffer is in a physically contiguous memory
chunk (conventional DMA) or in a virtually contiguous
memory chunk (DMA with IOMMU).

In the partial mode, like the Page Flip request, a TE
interrupt signal (sub-step 6-1) initiates the update of
MCU registers that includes the start and end coordi-
nates of the internal RAM. Note that a Page Flip request
activates LPD if Dirty FB has been called after the
previous Page Flip request. Otherwise, the kernel DRM
subsystem assumes that the user wants to replace the
whole contents.

As shown in Figure 6 with the sub-steps from 6-1 to 6-
4, the TE interrupt (6-1) allows the panel driver to request
a partial update to the kernel DRM driver (sub-step 6-2).
Then, the kernel DRM driver requests position updates
to both display control driver and panel driver (sub-step
6-3) that commonly are sub device drivers of the DRM
driver. Then, these two sub drivers update positional in-
formation of their corresponding hardware (sub-step 6-
4). Lastly, the display controller driver commands the
display controller (sub-step 6-5) to initiate the data trans-
fer (sub-step 6-6).

4.2.3 Prevention of Screen Tearing

While implementing LPD on experimental devices, we
have experienced screen tearing. Without LPD, because
frame data transmission times are long and deterministic,
careful manipulation of the display controller is not
required and the tearing is not an issue. A mechanism to
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Figure 7: Data and TE Signals

Figure 8: Screen Tearing with Faster Image Data Trans-
fer

prevent screen tearing under varying frame data transfer
latency has been implemented and included in LPD.

LPD uses the TE signal and its handler to prevent
screen tearing. Figure 7 shows the timing of data lane
signal of the display bus controller and the TE interrupt
signal of the display panel. The TE signal notifies when
to transfer the next frame.

When the TE signal occurs at point A in Figure 7,
the MCU of the display panel has completed drawing
the contents of its internal RAM to the screen. About
96 µs later, at point B, the display controller initiates the
data transfer to the display panel. Point C denotes the
time when the MCU of the display panel has completed
drawing the contents. Point D denotes the time when the
display controller has completed writing the contents to
the display panel.

LPD classifies the events that cause screen tearing into
two classes.

• Case 1. The display controller speed is slower than
the drawing speed of the MCU.

• Case 2. The display controller speed is faster than
the drawing speed and an image data transfer (at
point B) starts while drawing the previous frame
(point C already occurred). This case is depicted in
Figure 8. The markers (A to D) in both figures de-
note the same types of events. A' denotes the next
A event.

In order to prevent the first case, LPD completes
configuring every related device between A and B and
sets the display controller faster than the drawing speed
of MCU. In order to prevent the second case, LPD
ensures that B starts after A and before C.

Another issue with LPD arises when multiple hard-
ware overlays are applied. Samsung Gear 2 supports up
to five overlays although it mostly uses only one. If we
use multiple hardware overlays simultaneously, the dis-
play controller sends a merged image from multiple vir-
tual frame buffers (hardware overlays) to the panel. The
current implementation of LPD does not support aggre-
gate updated regions across multiple hardware overlays.
Therefore, if multiple hardware overlays are used, the
transfer mode should be fixed to full screen mode before
the display controller starts to transfer image data to the
display panel. LPD configures the transfer mode to par-
tial mode (LPD enabled) if a single hardware overlay is
used and configures to full screen mode if multiple over-
lays are used. LPD checks if the partial mode may be
enabled or the full screen mode should be enabled based
on the Page Flip request. In order to support multiple
hardware overlays, LPD should be updated to track the
origin point of each hardware overlay.

5 Experiments

We have examined the functionality and performance of
LPD by conducting experiments on Samsung Gear 2.
The hardware specifications of Gear 2 are as follows:

• Display type & size: AMOLED, 1.63 inch

• Resolution: 320x320

• Frame rate: 30 FPS

• Application Processor (SoC): Exynos 3250

– CPU: Dual ARM Cortex A7 1.0 GHz
– GPU: Mali-400 MP
– Main Memory: 512 MiB LPDDR3 DRAM

We have conducted two different sets of exper-
iments. The first set of experiments is performed
with a synthetic power consumption benchmark; a
benchmark application runs directly on the Linux
kernel without the X server window system. In the first
set of experiments, we varied the size of updated regions.

The second set of experiments involved with publicly
released Tizen wearable applications: W-launcher, Heart
Rate, Setup-wizard, and Voice Memo. In most cases,
these applications draw objects of sizes: 320x320,
192x169, 96x80, and 64x34, respectively. The purpose
of the second set of experiments is to validate the
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Figure 9: The Power Saving

effectiveness of LPD in the real-world environments
on commercialized products. Note that LPD does not
require any modifications in applications and LPD is
applicable to any Tizen devices or X Window systems
with Linux DRM and the i80 display interface.

For each test case, we have conducted three ex-
perimental runs. Each experimental run consists of
a continuous execution for 30 seconds. In order to
get the average value of a continuous execution, an
in-house power measurement device accumulates the
energy consumed via the battery connection (supplied by
VBAT T ) and shows the average power over the 30 seconds.

The in-house power measurement device samples the
current every 0.2 ms with the range of 0.6 mA to 4 A
in the 0.01 mA granularity and with less than 1% of
error. The measurement device sends the data to a tablet
or a PC via a Bluetooth connection in real-time and
allows the tablet or the PC to visualize or later analysis
of the accumulated data. We have supplied 4.0 V to the
device constantly in order to make the measurement and
analysis simple.

Due to the technical difficulty, we have measured the
whole power consumption of the device, not the power
consumed by the display system only. The power con-
sumed by other non-related devices such as GPU and
network adapters is included. Thus, any visible power
saving in the experiments is significant enough to moti-
vate the adaption to commercial products; engineers in-
vest huge effort and time to get additional minutes of bat-
tery life. If it is an extra hour for a 72-hour device, the
responsible engineer may even be called a hero by his or
her colleagues.

5.1 Synthetic Workload Benchmark Result
Table 1 and Figure 9 show the amount of power that
LPD saves in the first set of experiments with the
synthetic workload benchmark. As shown in the column

Table 1: Power-wise Synthetic Benchmark Result

Updated Control LPD Power saving
regions (mW) (mW) (mW) (%)

320x320 209.03 208.99 0.04 0.02%
288x288 203.08 203.04 0.04 0.02%
256x256 196.84 195.18 1.66 0.84%
224x224 192.01 187.95 4.06 2.11%
192x192 187.83 181.64 6.20 3.30%
160x160 184.27 176.10 8.17 4.43%
128x128 181.43 171.60 9.84 5.42%

96x96 179.06 168.10 10.96 6.12%
64x64 177.35 164.25 13.10 7.39%
32x32 176.47 162.58 13.89 7.87%

of Updated regions of Table 1, we have executed the test
application with various sizes of updated regions while
fix the frame rate to 30 FPS. The results illustrate that
the less data (= less updated region size) the display
controller transfers, the more power saving we can get.
In order to show the power-wise overhead of LPD,
we have experimented with the full screen update that
corresponds to the “320x320” row in Table1. In this
test case, LPD cannot provide any benefit but incurs
overheads only. However, the test results indicate that
the power-wise overhead induced by LPD is ignorable.
Surprisingly, LPD reduces 0.02% of power consump-
tion. Because LPD adds a few CPU cycles per frame,
we suspect that errors in power meters or variances in
the experiments such as the temperature are responsible
for this result.

Figure 9 shows power saving as a function of the
update region size. We fit the observation point with a
linear line in order to see if the amount of power saving
is linearly related to the size of updated region as Eq. (4)
suggests. The linear equation embedded in Figure 9 has
the goodness-of-fit value of 0.98. Such a value implies
that the model fits with the experimental results well.

The power saving of LPD appears to be more than
expected if the proportion of updated regions is very
small: the two left-most points in Figure 9. We speculate
that the difference is due to the DVFS mechanism on the
memory bus and memory interface. A DVFS mechanism
for the memory bus and interface [9] can further save
power by lowering the voltage and the frequency if the
memory transmission is reduced. With the lower voltage
and frequency, the energy consumption is no more linear
to the memory bandwidth.

Based on the experiments, we can conclude that LPD
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Table 2: Power Reduction of Real-World Applications

App LPD power saving Reduced traffic
mW % kiB/s

W-launcher 0.22 0.20 -
Heart rate 0.39 0.58 134.6

Setup-wizard 1.14 1.52 7178.0
Voice memo 2.70 2.98 7165.5

is successful in saving energy when the proportion of up-
dated region is small. Especially, if LPD is applied to
smart phones or tablets equipped with higher resolution
displays, the energy saving will be greater as suggested
by this experiment and the model summarized in Eq. (4).

5.2 Experiments with Real-World Applica-
tions

Table 2 shows how much power LPD saves with actual
applications running on Samsung Gear 2. In Table 2, the
two sub-columns of “LPD power saving” show power
saving in absolute values (mW) and in relative values
(%). The column of “Reduced traffic” shows the memory
bandwidth reduction. Table 2 suggests that LPD reduces
power consumption of commercial applications running
on a commercial product as well.

5.3 Overhead of LPD

LPD requires a few additional lines of codes in the mid-
dleware and kernel device drivers based on DRM. There-
fore, LPD incurs additional overhead. We can infer the
energy overhead of LPD by activating LPD for the cases
where LPD is completely useless; i.e., the whole screen
is updated every frame. For example, in Table 1, the case
that “320x320” is updated represents such a case. As
shown in Table 1, the energy overhead induced by LPD
is −0.0462 mW. This result implies that the overhead of
LPD is too scanty that the overhead is obscured by envi-
ronmental variances. This is consistent with the amount
of instructions added for the implementation of LPD; i.e.,
only several lines of trivial arithmetic instructions with-
out loops or context switches are added to device drivers
and middleware.

6 Future Work and Implications

LPD has been released with the X Window-based Tizen
2.3 commercial device, Samsung Gear S. However, in
later versions, Tizen plans to use Wayland instead of the
X Window System [23]. In order to keep the benefit of

LPD for later Tizen versions, we will need to implement
LPD on top of Wayland.

Further enhancement of LPD may draw out additional
power conservation. That is, LPD may improve further
by utilizing the characteristics of the DVFS-capable
display bus such as MIPI-DSI. MIPI-DSI controller
has various control modes: HSM (High Speed Mode),
LPM (Low Power Mode), and ULPM (Ultra Low
Power Mode). With a lot of display updates such as
video playing, MIPI-DSI needs to operate at HSM,
which supports bandwidth from 80 Mbps to 1 Gbps.
Eliminating the transfer of unchanged regions, LPD
may be able to reduce the bandwidth less than 80 Mbps.
Then, MIPI-DSI can operate in the LPM mode, which
consumes significantly less power than HSM.

LPD is an excellent example of vertical optimization
that involved with several layers of the system. By
allowing the kernel to accept simple yet performance
critical hints that are readily available at middleware,
we are able to use the given hardware more efficiently
with minimal modifications and without any kernel
hacks that deteriorates the maintainability of software.
As an example of vertical optimization, LPD suggests
that operating system architects should be well aware of
the information that its upper layers have–the updated
regions of the window system–and what its lower layers
want–the i80 display panel in LPD. LPD suggests that
well-designed co-operation between multiple layers is
extremely important.

LPD depends on the ability of the window system to
recognize updated regions of the screen. The current
implementation of the X Server depends on the correct
operation of applications. That is, if an application de-
clares that the whole screen is updated even though only
parts of the screen are actually updated, and then LPD
cannot save power. This implies that educating applica-
tion developers for proper implementation or provision
of a proper SDK tool is critical in deploying LPD and
power saving. This indicates further need for vertical
optimization going up through SDK, tools, and applica-
tions. Another aspect is that the UX design is extremely
important in power saving; i.e., the updated region size
of each frame matters significantly. We may conjecture
that vertical power optimization should be extended even
to UI/UX designs, which is already becoming impor-
tant with the adoption of AMOLED displays; AMOLED
consumes power differently depending on the colors and
brightness of pixels.
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7 Conclusion

LPD can lessen power consumption induced by memory
operations and data transfers related with frame buffers.
The first implementation of LPD has been applied to
Samsung Gear 2 for the experimentation purpose. After
confirming the stability and usability of LPD, we have
successfully commercialized it for Gear S and released
the complete source code for the public access. Even
though we confined LPD to wearable Tizen devices
only, contributing LPD to the mainline Tizen might be
a trivial process. We are also ready to upstream LPD
to the Linux kernel community and the infrastructural
patch for LPD has been submitted and merged to the
DRM tree for Linux 3.16. The main body of LPD
is to be upstreamed to the Linux kernel community
afterwards. Because LPD is not a compatibility breaking
kernel hack, but a mainline upstream-able kernel feature,
any Linux-based devices with the popular i80 display
interfaces can use LPD to save power.

The experimental results have shown that LPD saves
significant amount of energy for wearable devices. If we
save 5% of total energy for a device with 72 hours of life
time, we extend additional 3 hours and 36 minutes of the
life time. Besides, as discussed in Section 3, the energy
saved by LPD might be larger for mobile devices with
higher resolutions. More significantly, LPD does not re-
quire any modifications in hardware as long as the device
has the de facto standard, i80. LPD does not incur no-
ticeable overhead in CPU and LPD does not affect the
visual quality of the display at all. Finally, LPD may be
used with other display power saving mechanisms inde-
pendently without any modifications in user applications.
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9 Availability

LPD has been used for Samsung Gear S product running
Tizen. Both userspace and kernel codes for Gear S, in-
cluding LPD, are available for the public. You can access
the kernel code for Gear 2 with LPD in the same site as
well:

http://opensource.samsung.com/

If readers want to look at, understand, and contribute
the LPD-related code, they may want to access the repos-
itories of Tizen after creating an account at http://
tizen.org/, which is opened to the public and operated
by the Linux Foundation:

http://review.tizen.org/
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Abstract
Current data storage on smartphones mostly inherits
from desktop/server systems a flash-centric design: The
memory (DRAM) effectively acts as an I/O cache for the
relatively slow flash. To improve both app responsive-
ness and energy efficiency, this paper proposes MobiFS,
a memory-centric design for smartphone data storage.
This design no longer exercises cache writeback at short
fixed periods or on file synchronization calls. Instead, it
incrementally checkpoints app data into flash at appro-
priate times, as calculated by a set of app/user-adaptive
policies. MobiFS also introduces transactions into the
cache to guarantee data consistency. This design trades
off data staleness for better app responsiveness and
energy efficiency, in a quantitative manner. Evaluations
show that MobiFS achieves 18.8× higher write through-
put and 11.2× more database transactions per second
than the default Ext4 filesystem in Android. Popular real-
world apps show improvements in response time and
energy consumption by 51.6% and 35.8% on average,
respectively.

1 Introduction
App experience drives the success of a mobile ecosys-
tem. Particularly, responsiveness and energy efficiency
have emerged as two new crucial requirements of highly
interactive mobile apps on battery-powered devices.

Recent work has shown the impact of data storage on
app experience. Storage I/Os can slow down the app
responsiveness by up to one order of magnitude [11, 19,
28, 36], and can substantially impact the device’s energy
consumption either directly or indirectly [29, 38, 50].

Modern mobile platforms typically inherit their data
storage designs from desktops and servers. For exam-
ple, Android and Windows Phone 8 currently default to
the Ext4 and NTFS filesystem, respectively. However,
these data storage designs neither reflect the different
requirements nor exploit the unique characteristics of
smartphones. The limited number of foreground apps,

∗Department of Computer Science and Technology, Tsinghua Na-
tional Laboratory for Information Science and Technology (TNLIST),
Beijing; Research Institute of Tsinghua University, Shenzhen.

increasingly adequate DRAM capacity, and the net-
worked nature of most apps open up a new design space
that is not applicable to desktops and servers.

In this paper, we advocate a memory-centric design
of data storage on smartphones. To elevate energy
efficiency and app responsiveness as first-class met-
rics, we switch from the traditional flash-centric design
to a memory-centric design. The flash-centric design,
derived from desktops/servers, assumes the persistent
flash medium as the primary store, and regards the
memory (DRAM) as a temporary cache. Most recent
optimizations [16, 20, 22, 36, 37, 38, 51] still follow this
traditional philosophy. In contrast, we re-examine the
underlying assumption of mobile storage design. Our
memory-centric design views the memory as a long-lived
data store, and the flash as an archival storage layer. Con-
cretely, (1) frequent writebacks of in-memory dirty data
become unnecessary; (2) individual file data synchro-
nization calls (typically, fsync), which are costly, can be
safely aggregated and scheduled out of the critical path
of app I/O. Both changes have significant implications
on app responsiveness and energy efficiency [11, 19, 28,
36]. Instead, we incrementally checkpoint app data at
optimal variable intervals that adapt to app behavior, user
interactions and device states.

Our key idea is to trade off durability for energy
efficiency and app responsiveness. To realize the trade-
offs in a quantitative way, we interpret durability as a
continuous variable, instead of a binary discrete variable
(durable or not). Intuitively, given a specific probabil-
ity of system failure, the less stale the persistent version
is, the more “durable” the data is. Therefore we use data
staleness as the metric of durability. Besides, these trade-
offs rely on the decoupling of durability and consistency
in storage. Recent efforts have explored a similar decou-
pling in different domains [6, 35], but they do not apply
to our memory-centric design, and they do not show how
to optimize the tradeoffs for mobile apps. Overall, there
is a lack of systematic and quantitative studies on these
tradeoffs in mobile systems.

The gains from our design mainly come from its
adaptability to mobile app behavior and usage. The tra-

1
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ditional fsync and fixed flush intervals are not suited for
optimizing energy performance in mobile systems and
often negatively impact user experience. Instead, our
measurements motivate an app/user-adaptive design of
checkpointing for mobile apps. Concretely, we answer
the algorithmic questions regarding what in-memory
data to checkpoint (i.e., save to flash), and when to do so.
Our solution determines the ideal checkpointing times
for each app independently, by considering both device
states and user interactions.

Meanwhile, loosening the timing of checkpoint-
ing is feasible in the mobile context because smart-
phones exhibit favorable properties. First, being self-
contained (e.g., powered by batteries), smartphones are
less exposed to losing data on volatile memory caused
by external factors (e.g., power loss). Second, both hard-
ware and software advances lower the data loss proba-
bility due to system crashes. Only 6% of users experi-
ence system failures more than once per month, accord-
ing to our online survey. Third, most mobile apps are
networked, meaning that their data are recoverable from
remote servers (e.g., Gmail, Facebook, Browser). We
investigate 62 most popular free apps on Google Play,
and only 8 are vulnerable to local data loss (Section 3)1.

To manipulate the checkpointing time, we change the
semantics of POSIX fsync to be asynchronous. For
some apps and databases (e.g., SQLite) that rely on syn-
chronous fsync to guarantee data consistency, we design
Versioned Cache Transactions (VCTs) to enforce atomic
transactions on the filesystem cache. Combining adap-
tive checkpointing and VCT ensures data consistency
while minimizing overhead caused by periodically fre-
quent writebacks.

We implement our filesystem, MobiFS, at the system
call layer for three reasons. First, this position is below
upper-layer apps and databases, so it allows MobiFS
to intercept and manage all storage I/O. At the same
time, we can selectively enable/disable our features for
individual apps1. Second, our solution does not alter
standard filesystem interfaces, so no changes to upper-
layer apps are necessary. Third, our solution is agnos-
tic to underlying flash management implementation. For
example, it can be integrated with Ext4 [33], Btrfs [45]
or the latest F2FS [26].

In summary, we make multiple contributions. (1) We
establish the feasibility and significance of the memory-
centric design for mobile storage. (2) We exploit, in
the mobile context, the tradeoffs between data stale-
ness, energy efficiency and app responsiveness. MobiFS
introduces transactions to the page cache of regular
filesystems, without modifying app storage interfaces.
(3) We propose a new measure to quantify the trade-

1Apps with critical data (e.g., unreproducible photos) can still opt
to use a regular flash partition.

off between data staleness and energy efficiency, and
characterize various I/O patterns of apps. These empir-
ical results drive a policy framework that organizes and
balances multiple factors – data staleness, energy, and
responsiveness. (4) We implement a fully working pro-
totype integrated with both Ext4 [33] and Btrfs [45].
Experiment results suggest up to 35.8% reduction in
energy consumption and 51.6% improvement on app
responsiveness, as compared to the default Android file-
system. It also achieves 18.8× higher write throughput
and 11.2× more database transactions/sec.

2 Background
Filesystem and Page Cache. A typical filesystem con-
sists of three main components: (1) the interface rou-
tines to serve system calls; (2) the in-memory cache of
hot data, typically the page cache; (3) the management
of the persistent media. Our work revisits two of these
parts: the system call routines and the cache.

Traditional filesystems with POSIX [15] interfaces
use two ways to minimize data staleness and guar-
antee consistency while optimizing I/O performance.
(1) Asynchronous write2 moves data into the page
cache. Dirty pages are written to flash after a small fixed
time interval (default is 5 seconds in Android). (2) Syn-
chronous fsync immediately enforces data persistence
of the specified file. Databases rely on fsync to maintain
consistency. Take write-ahead logging for example: the
database first records updates in a separate log, without
affecting the main database file, and then invokes fsync
over the log. This ensures a consistent state of the log file
in persistent media. Finally, logged changes are applied
to the main database file.
Data Consistency and Staleness. A system failure
may lead to data loss in the page cache, with essen-
tially two negative outcomes: inconsistency and stale-
ness. Consistency in this paper refers to point-in-time
consistency [44], meaning that the persistent data always
corresponds to a point of time T in the write history – all
writes before T are stored in flash and all writes after T
are not. Asynchronous write can not guarantee consis-
tency. Specifically, when data is kept in the page cache, it
may be overwritten and results in writes being reordered.
If only partial cache is flushed before a system crash, the
in-flash data could violate point-in-time consistency.

Meanwhile, data staleness is typically less of a con-
cern for most apps in the case of a system crash. Data
staleness is the “distance” between the current volatile
in-memory data and the persistent in-flash data. This dis-
tance can be measured either with respect to versions [4]
or time [43].

2For clarity, write only refers to an asynchronous one without spe-
cial flags such as O SYNC.

2
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3 Insights
The memory-centric approach has become feasible on
smartphones, as advances in both hardware and software
make its underlying assumptions tenable.
Insight 1 Memory capacity on smartphones is ample
enough for app data storage.

The DRAM capacity on modern smartphones has
grown significantly (8× since 2010, from 512 MB to
4 GB), with 2 GB being the standard today. This amount
of memory is already sufficient to run Windows XP on
a desktop. Although app data requirement has also been
increasing, it has been doing so in a slower pace. For ex-
ample, typical web page requests have increased in size
by only 94% during the same time period [1]. Moreover,
smartphone users tend to run a small number of active
apps/services at the same time due to the limited screen
size. Further evaluation can be found in Section 7.2.
Insight 2 Storing app data on smartphone memory is
not as risky as it sounds.

First, smartphones have a battery power supply. Such
battery-backed RAM (BBRAM) is regarded as reliable
in the desktop/server setting [12, 47, 49]. Second, the re-
liability of smartphones has improved to the extent that
memory data loss due to system failures is sufficiently
rare. This observation is based on our online survey
about the frequency of mobile system crashes (not app
crashes) experienced by average users. Among all 117
users responding to the survey, only 6% encounter more
than one failure per month, and the average frequency
is once per 7.2 months. Third, most apps store data on
online services or the cloud anyway.

Our detailed case study of the top 62 free apps in the
Google Play app store (covering all categories, represen-
tative of most popular and frequently used apps) well
supports the observation above. At one extreme, there
are apps that are always in sync with online servers, e.g.,
Facebook, Google Maps, Glide video texting, Fitbit and
most games (so does Apple’s Game Center). At the other
extreme, some apps rely on local data exclusively or ex-
tensively, e.g., WhatsApp (for privacy protection) and
Polaris Office. Data of these apps is vulnerable before
being saved to flash. Meanwhile, there are apps in be-
tween these two extremes. For example, Skype may store
messages on the server for “30 to 90 days” to synchro-
nize states across multiple devices, so the data loss risk
is negligible.

Overall, only 8 apps are counted as vulnerable to lo-
cal data loss, for which a system crash may largely af-
fect user experience. Users/developers have the flexibil-
ity of configuring these apps to use a regular flash parti-
tion with traditional fsync. Note that these exceptions
only raise a slight configuration burden, rather than a
programming burden. In our experience, an app-level

configuration option is more practical and easy-to-use
than enforcing new programming interfaces.

Insight 3 Reducing the amount of data flushed to flash
is one key to save app energy.

First, the write energy dominates the app I/O energy.
Prior measurements [5] have shown that reading con-
sumes about 1/6 energy of writing for the same amount
of data. Meanwhile, our system-call traces of Google
Play top 10 apps suggest that the data amount of reads
is only 41% of writes on average. Therefore, the overall
read energy is only 6.3% of write energy.

Second, the amount of data to flush, rather than the
number of batches, is the dominant factor of write
energy. In our experiment, writing 40 MB data in batches
ranging from 4 to 40 MB results in a net energy con-
sumption difference within 1.5% on a Samsung smart-
phone. In addition, standby is not a good state for data
flushing, because fixed overhead can be amortized if the
device is active. Up to 129% extra energy is used if data
is flushed after the device switches to standby.

In conclusion, considering that the total write data is-
sued from an app is externally determined, we can focus
on how much data is overwritten before flushing, as an
indicator of the app’s energy efficiency.

Insight 4 Relaxing the timing of flushes is a key to app
responsiveness.

Flushing impacts app responsiveness in two ways:
(1) When flushing in a fsync call, the app has to wait
until the data is saved to the slow flash. This situation
is encountered frequently [16, 28] as databases rely on
fsync. (2) When flushing is invoked for background
writeback, it competes for CPU cycles with active app
workloads, as shown in [19, 36] and from our evaluation.

In either case, the timing of flushes plays a key role:
if flushing is out of the fsync path to avoid user interac-
tion/CPU peaks, its negative impacts on the app respon-
siveness would be minimal. Our memory-centric view
leverages this insight.

Insight 5 App/user-specific I/O access patterns suggest
adaptive policies to balance the staleness-energy trade-
off, which can be achieved in a quantitative way.

I/O access patterns can vary widely among apps/users.
We follow three steps to quantify this variability as well
as the key tradeoff. (1) We define a data staleness metric
that is suitable to our context. Traditional definitions are
with respect to either time [43] or versions [4]. However,
the time-based staleness is hardly associated with energy
efficiency, and there is no strict data versioning in a regu-
lar filesystem. Instead, we define the data staleness, s, as
the total amount of data that an app has ever written since
the last checkpoint. If an app writes two pages of data to
the same address, the data staleness is increased by two

3
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Figure 1: Different shapes of e curves suggest app-
specific I/O patterns. The staleness ranges are unified to
0-100, and actual values are noted beside the app names.

pages (similar to the version-based staleness in this case).
(2) Based on INSIGHT 3, we define the energy efficiency
ratio, e = o/s, where o is the total amount of data that
has been overwritten since the last checkpoint. As o < s,
e is within [0, 1). A larger e indicates a larger propor-
tion of pending write data to be merged before flushing
and hence higher energy efficiency. (3) Based on the two
definitions above, we draw the e curve over s to capture
the extent to which increased staleness improves energy
efficiency. The different shapes of e curves in Figure 1
suggest the optimal flushing time is different for differ-
ent apps (and also for different users). Ideally, data in
memory should be flushed when e reaches the maximum.

4 Design

The design of MobiFS is guided by insights in the pre-
vious section. As Figure 2 shows, MobiFS consists of
five major components: (1) the page cache, which stores
file data in memory; (2) the write log, which maintains
a write history; (3) the transactions, which group entries
in the write log and protects them from inconsistency due
to overwriting/reordering; (4) the checkpointer, which is
based on an underlying flash store to persist transactions
atomically; (5) the policy engine, which marks transac-
tion boundaries, detects user interactions, and decides the
timing and target transactions to checkpoint.

MobiFS is designed to work with the existing page
cache shared with the OS. For each write to the page
cache, MobiFS first updates the write log, by appending
a new entry or updating an existing entry with the target
page address. We also maintain a page reverse-mapping
from the dirty page back to the write log. Based on the
write log and page reverse-mapping, MobiFS establishes
atomic transactions. A transaction defines the scope of
overwriting and reordering. Finally, the policy engine
guides the checkpointer to save transactions without in-
terfering with user interactions. It makes app-specific de-
cisions, according to each app’s behavior statistics and

File inode

Page 0 Page 1 Page 2

Page reverse-mapping

Write
Log

Active Section

Closed
Section

Transactions

App 1
App 2

Trans.
Policy

Checkpt..
Policy

Checkpointer

Reference
Data flow
External
component

Figure 2: Architecture of MobiFS

current device states.
In a typical set-up, apps have their own write log and

transactions, and they share the page reverse-mapping,
the policy engine and the checkpointer process(es).

4.1 Write Log
The write log is a chronological record of all writes from
an app. The write log is divided into sections. New en-
tries are inserted to the active section at the end of the
write log, and the closed section contains entries that are
ready for checkpointing.

The scope of a write log covers all directories accessi-
ble by an Android app (/data/data/[PackageName],
etc). Note that SQLite is an embedded database for indi-
vidual apps, whose files are also covered by write logs.

One observation that enables app-specific optimiza-
tion is the relatively static and isolated app data paths,
which avoids the consistency issue of cross-app coor-
dination. However, there might be cases where several
apps have access to the same data file, e.g., a galley app
and a file management app can manipulate the same set
of pictures. In such a case, apps are responsible for han-
dling situations where files are manipulated by a third
party. In fact, this is the expectation of mobile operating
systems such as Android.

4.2 Versioned Cache Transaction
The write log can have different versions of a cached
page. Versioned Cache Transaction (VCT) captures this
information. A VCT goes through three states in its life-
time. When it is open, it accepts new entries in the ac-
tive section. These entries reference the latest version
of a cached page. When closed, all entries in the ac-
tive section are moved into the closed section and pro-
tected from further modifications. A VCT in the closed
section can not be re-opened. When it is committed,
all pages referenced by entries in a closed section are
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flushed atomically. After the commit, the VCT and its
entries are evicted from the write log.

Overwriting and reordering are only allowed within a
single VCT. As the checkpointer will guarantee the dura-
bility and atomicity of a committed VCT, such optimiza-
tions will not leave any inconsistent state in flash.

When a write comes, MobiFS has to handle three sit-
uations: (1) If the reverse-mapping of the target page
does not exist, this means the app writes to a page that
is not in the write log. MobiFS appends a new entry,
and associates it with a new reverse-mapping. (2) If the
reverse-mapping exists and points to the closed section,
this means the app writes on a page within a protected
VCT. MobiFS copy-on-writes over the target page. A
new entry is appended for the modified copy. (3) If the
reverse-mapping exists and points to the active section,
this means the target page is not in a closed VCT and can
be overwritten directly.

4.3 Crash Recovery
VCT boundaries do not necessarily coincide with fsync.
In a crash, MobiFS relies on the underlying flash man-
agement component to recover any partially check-
pointed VCT. Take our Ext4 variant for example. It either
rolls back to the last transaction, or replays the journal to
persist the latest one. In this design, apps and databases
always see the data state corresponding to a point of
time in history. This is true even after recovering from
a system crash. We note that MobiFS guarantees consis-
tency, but not the typical definition of durability.

4.4 Policy Engine
Two categories of policies are running in the policy en-
gine: the transactioning policy and the checkpointing
policy. The former addresses when to close a VCT, while
the latter addresses when to save which VCTs into flash.
Our general rule is to do checkpointing during the idle
time (e.g., when a user is reading the screen content).

The concrete transactioning and checkpointing algo-
rithms we implement in MobiFS are described in Sec-
tions 5.2, 5.3 and 5.4, respectively. However, note that
our policy engine is an extensible framework, so alterna-
tive algorithms may be used.

4.5 Checkpointer
The checkpointer has two responsibilities. First, it in-
vokes an underlying flash component to save data in
flash. Second, as MobiFS is loaded, the checkpointer
checks a target partition and attempts recovery of any
inconsistent data. The flash management component
of many filesystems like Ext4 and Btrfs can be eas-
ily adopted to implement the checkpointer. The check-
pointer exposes four interfaces:
• BEGIN TRANSACTION, invoked at the beginning of

a VCT commission.

• APPEND ENTRY, invoked for each entry in the target
VCT after a successful invocation of the above.

• END TRANSACTION, invoked at the end of a VCT
commission after all its entries are appended.

• WAIT SYNC, used if flushing is asynchronous.
The underlying flash management component

should guarantee the durability and atomicity of
the data written between BEGIN TRANSACTION and
END TRANSACTION.

5 Policy
In this section, we describe our policy design and specific
algorithms employed in MobiFS.

5.1 Overview
The policy design has to balance several contradictory
requirements of mobile systems: data staleness, energy
efficiency, and app responsiveness. We organize their re-
lations into a modular extensible policy framework.

The policy framework assembles three modules.
(1) Individual transactions are made ready for check-
pointing according to the e curve, in favor of energy
efficiency (Section 5.2). This does not rely on any un-
realistic assumption of user operation distribution. In-
stead, we use a second module to predict dynamic user
behaviors, so that (2) Transactions may get delayed and
queued before checkpointing, in favor of app responsive-
ness. (Section 5.3). (3) Coordination of multiple apps is
managed by a scheduling model (Section 5.4).

We make energy- and responsiveness-optimizing deci-
sions independent, avoiding complex multi-objective op-
timization with simplistic assumptions. This keeps the
algorithms concise as well as effective for practical sys-
tems. Many heuristics used in this section are derived
from substantial first-hand experience.

5.2 Transactioning Algorithm
Increasing data staleness improves the chance of data
overwriting (thus, energy saving), but it pays the price
of a higher data loss risk. Hence we face the question:
To what extent should MobiFS trade off data staleness
for energy efficiency? MobiFS decides by evaluating the
energy saving per data staleness unit, namely the e ratio
(Section 3). Intuitively, the peak of the e curve is the best
tradeoff point, as it maximizes the energy saving. Dif-
ferent from related efforts that set a fixed large staleness
threshold [32, 35, 43], our philosophy is to reduce data
loss risk unless there is a reason (improving energy effi-
ciency) to do otherwise.

The goal of the tradeoff point location (TPL) algo-
rithm is to determine the log entry that marks the end of
the current VCT. Each write increments the data stale-
ness value, which corresponds to a point in the e curve.
Whenever a VCT is closed, the new curve starts at e = 0
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Figure 3: The e curves produced by choosing different
transactioning points.

(c.f. Figure 3). Ideally, the best point to close a VCT
is the peak point with highest e, as explained next. Sup-
pose, for contradiction, that an algorithm decides to close
a VCT at P′ with x = s0, rather than at the peak P which
is x = s1. Then, we can improve this algorithm by shift-
ing the closing point to P, while keeping the subsequent
closing point x = s2 the same as with the supposed algo-
rithm. We can show that by doing so, we increase the
probability of data overwriting3. Without loss of gen-
erality, we let s0 < s1. The amount of overwritten data
during [s0,s1] ([s1,s2]) is m0 (m1) for our strategy; it
is m′

0 (m′
1) for the supposed algorithm. Then we have

m0−m′
0 >m′

1−m1 for the following reasons: [s0,s1] still
sees our curve quickly rising, so there should be much
data to overwrite, yet if it is cut by the supposed algo-
rithm, much data loses the chance to overwrite. In con-
trast, as P is the peak, the original curve would go down
in [s1,s2], meaning that little overwritten data is found
in there. A simple transformation of the above formula
leads to m0 +m1 > m′

0 +m′
1. Therefore, by cutting at P

which is necessary to confine data staleness, our strategy
has less a chance to overwrite data.

In practice, we have to deal with additional challenges.
To mitigate fluctuations in the curve that may lead the
algorithm to a locally optimal point, we use linear fitting
within a sliding window. The algorithm remembers the
latest k points, fits a line, and judges the peak via the
gradient of the line. We choose linear fitting, instead of
higher order curve fitting, because the algorithm runs on
every write so that its complexity should not impose high
CPU overhead. Meanwhile, we set a staleness (or time)
limit to prevent the opposite – unbounded waiting for a
peak. Evaluation of this algorithm is in Section 7.5.

5.3 Interval Prediction
The goal of this algorithm is to predict the length of an
interval within which the user is expected not to actively
operate the smartphone. These are idle intervals when
flushing should be scheduled. The algorithm is triggered
when there are pending VCTs. To evaluate the effec-
tiveness of such an algorithm, we call an user operation

3This is not a rigorous mathematical proof. Counterexamples may
exist, but overall it is sufficient for the policy design.

short interval
{As[1..ks], ts}

long interval
{Al[1..kl], tl}

shorter
interval

longer
interval

u |
update As

u |
update As

u | update Al

u   | update As

u >  | 
update Al

 |
do checkpt.

 | do checkpt.
event u - an user operation
event  - when m×ts passes; event  - when tl passes

Figure 4: Finite-state machine for interval prediction

unexpectedly occurring within a predicted idle interval a
responsive conflict (RC). Note that idle interval predic-
tion errors can cause several RCs.

We use a state-machine-based prediction method that
well balances the low conflict number (i.e., low potential
impact on responsiveness) and the long predicted inter-
val (i.e., large potential energy saving as more VCTs can
be merged and flushed once). Our algorithm is based
on the observation that users usually switch back and
forth between short and long intervals, e.g., when read-
ing News Feeds on Facebook, the user may quickly skim
some posts before spending time to read one. It is not
the goal of this paper to compose a full-fledged inter-
action model for app users. Instead, we establish the
policy framework, and show that, for our purpose, a sim-
ple state-machine model is sufficient to learn user pat-
terns and achieve good prediction qualities (evaluated in
Section 7.4).

Figure 4 depicts our finite-state machine model. There
are two central states: the short interval (long
interval) state when the user operates with short (long)
intervals. Each of the two states maintains a recent his-
tory of intervals A[1 . . .k], and uses the minimal value t
as a prediction of the next interval. Each of them also
has a timer, which is set for a corresponding timeout
event whenever necessary. Subscripts “s” and “l” de-
note the two central states, respectively. Meanwhile, the
other two intermediate states, shorter interval and
longer interval, help to decrease or increase interval
predictions.

Intuitively, the state machine works as follows. While
staying in the short interval state, it will loop if the
coming event is a user operation. However, if the user
operation does not come before a timeout event τ (Fig-
ure 4), the machine assumes that the user may begin a
long interval, so it changes to the long interval state.
Afterwards, if the predicted time tl successfully passes
without user operation (event δ ), the state machine enters
the longer interval state which waits until a user op-
eration happens. Otherwise in the long interval state,
if a user operation comes later than τ , we assume the user
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still operates with long intervals but the interval predic-
tion should be decreased, so it goes into the shorter

interval state; if the user operation comes so quickly
(before τ) that we guess the user switches to short inter-
vals, the state is directly set to short interval.

5.4 Transaction Scheduling
The scheduling problem arises when a user interacts
with multiple (background) apps or switches between
apps. A typical scenario can be playing a game while
listening to radio, and a background service repeatedly
checks emails. MobiFS may have multiple write logs
with closed VCTs for commission. The scheduler needs
to prioritize VCTs to checkpoint, balancing the goals
of fairness, high responsiveness and energy efficiency.
Our algorithm considers three factors in the decision:
(1) Transaction length, or the number of pages to check-
point. We judge whether the transaction can fit into the
predicted interval. (2) Transaction affinity. Transactions
from the same app have affinity, because they can be
merged if checkpointed together, thereby often saving
extra energy. (3) Transaction age, the number of intervals
a VCT has previously been skipped by the scheduler.

We use a priority-based scheduling algorithm, with
four rules ordered in descending precedence. The algo-
rithm maintains three queues as a way to batch VCTs of
the same age. These queues have varying priority in get-
ting flushed. Whenever a VCT is selected to be sched-
uled, other VCTs of the same app are prioritized. For
simplicity of discussion, we may directly use apps as the
unit of scheduling thereafter.
Rule 1 (transaction affinity): Whenever the scheduling
algorithm skips an app in a queue, the app is moved to a
higher-priority queue (if there is one).
Rule 2 (transaction age): Apps are first enqueued in the
lowest-priority queue, and promoted to higher-priority
queues as time goes on (as described in Rule 1). When
there is no feasible choice in all queues, we find a short-
est VCT in the highest urgent queue to checkpoint.
Rule 3 (transaction length): An app in the candidate
queue is feasible to checkpoint only when its first VCT’s
length is shorter than the available predicted interval.
Rule 4 (queue replenishment): If an app is unable to
checkpoint all its VCTs within a scheduled time, VCTs
left are moved to the lowest-priority queue.

6 Implementation
We implement a fully-working prototype in Android 4.1
(Linux 3.0.31), and integrate it with both Ext4 [33] and
Btrfs [45]. The code base has 1,996 lines of C code,
excluding the reused components from Ext4 or Btrfs.
MobiFS does not need kernel recompilation for deploy-
ment.

6.1 Main Components
Write Log. We implement the write log with a circular
array, as it well supports the required sorting operation.
To save space, some logical entry fields (e.g., the page in-
dex and version number) are compacted to a single phys-
ical data type. The write log also embeds a kobject

structure, such that MobiFS can export user-space in-
terfaces under the /sys directory for easy configura-
tion. Moreover, the log supports certain parallelism in
operations by distinguishing protection for checkpoint-
ing and appending – the tail of the circular log is pro-
tected by a spinlock, and the head is protected by a mutex
that only postpones writes when the tail grows to reach
the head. Finally, to locate which log covers a certain
file, we record the log index into the i private field
of the inode structure. When a new file is created, its
i private is derived from its parent directory.
Page Reverse-Mapping. One approach to implement
the page reverse-mapping is adding a reference pointer
to the page structure. Since struct page is already
packed (e.g., 24+ flags reside in a 32-bit variable), this
approach requires enlarging the structure size. Instead,
we opt for a customized hash table, which uses a reader-
writer lock for each bucket instead of a table-wide lock.
Pages associated with entries have its count field in-
cremented so that the Linux Page cache will not evict
them. This also means MobiFS must unpin pages before
memory space runs low, to avoid out-of-memory prob-
lems.
Checkpointer. The checkpointer is a kernel thread,
which sleeps if there is no VCT to checkpoint. Upon
being woken up by the policy engine, it first runs the in-
terval prediction over the recorded user interaction his-
tory. Then, it finds the appropriate VCTs to checkpoint,
according to the VCT scheduling policy.
Policy Engine. The implementation of the policy en-
gine needs to consider some of the kernel limitations.
For example, the kernel does not directly support floating
points due to FPU register overheads. Hence we have to
multiply e by 103 in our OPL algorithm to preserve thou-
sandth precision.
User Interaction Logger. We record screen events in
a queue. An issue is that some single logical user op-
erations, such as dragging, incurs multiple events with
small intervals (< 0.01 ms). Therefore, we need a filter
to combine these events to one logic operation.

6.2 Integration with Storage Components
Our prototype bases its flash I/O implementation on
some existing filesystem components. To support
durable and atomic transactions, there are mainly two
methods, the write-ahead logging (WAL) and copy-on-
write (COW). Ext4 and Btrfs are two typical filesystems
that use the methods, respectively.
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Ext4. Ext4 uses WAL to achieve durable and atomic
transactions. All file writes are first performed in a jour-
naling area, and then moved to the main flash data set.
The integration with Ext4 needs to consider the write-
twice nature of Ext4 journal, where all data is written on
flash twice. This may diminish the gain from MobiFS’
overwriting. Fortunately, empirical results suggest that
MobiFS can still achieve significant energy savings.
Btrfs. Btrfs relies on COW to achieve durable and
atomic transactions. Similar to WAL, COW does not di-
rectly update the target area on flash, but makes a new
copy of the data for modification. While Btrfs is highly
anticipated, it is still in an experimental phase. There-
fore, our MobiFS integration with Btrfs (Btr-MobiFS) is
not as mature as with Ext4.

7 Evaluation
We evaluate MobiFS by three main metrics -
app/user adaptability (Section 7.3), app responsiveness
(Section 7.4), and energy consumption (Section 7.5). Be-
fore discussing benefits, we estimate memory footprints
of MobiFS for running individual apps (Section 7.2).

7.1 Methodology
The evaluation results consist of both trace-driven simu-
lations and actual device measurement; both benchmarks
and real apps. We use a Samsung Galaxy Premier I9260
smartphone (with dual-core 1.5 GHz CPU, 1 GB RAM,
Android 4.1), and two Kingston microSD cards (with the
default 128 MB journal and 4 KB block size). A Mon-
soon Power Monitor [3] measures device energy con-
sumption. By default, MobiFS refers to our Ext4-based
implementation, and Ext4 uses the default ordered mode
on Android, journaling only metadata.

Simulation traces are collected from five users operat-
ing each of the following top apps (logged in with their
own accounts) for five minutes: Facebook (FB), Pan-
dora (PA), Angry Birds (AB), Netflix (NF), Twitter (TT),
Google Maps (GM), Citrix Receiver (CR), Flipboard
(FL), Web Browser (WB), and WeChat (WC). Traces in-
clude I/O system calls, page cache accesses and screen
touch timestamps.

Benchmarks consist of the following: (1) AnTuTu’s
I/O and database benchmarks, (2) RL Benchmark for
SQLite (with 13 workloads), and (3) MobiBench for sim-
ulating I/O characteristics of Android system. We also
use an in-house benchmark that issues sequential writes
of 8 MB data to the same region of a file 16 times, and
invokes fsync once every two writes.

For experiments that monkey real apps, we choose
Browser, Facebook and Twitter, because they are rep-
resentative of three typical I/O characteristics: Browser
incurs few fsyncs and is mainly influenced by Ext4
flushing; Twitter is the opposite, triggering more than
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Figure 6: Adaptive checkpoint intervals of MobiFS for
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50 fsyncs per second; Facebook has a moderate num-
ber of fsyncs. We use monkeyrunner [2] to replay pro-
grammed user interaction paths. We test Browser with
an in-lab Apache2 web server via 802.11n Wi-Fi to min-
imize noise introduced by network dynamics.

7.2 Memory Footprint
We estimate the worst-case footprints of MobiFS ac-
cording to our app I/O traces, as shown in Figure 5.
It is assumed that MobiFS does not checkpoint VCTs.
The y axis is the increment rate of the average memory
footprint4 introduced by the filesystem. On average,
Ext4 footprints increase by 25.6 KB/s without restriction,
while MobiFS incurs an increment of 35.8 KB/s. In other
words, having an extra 100 MB memory, MobiFS can
support an app running 17.4 minutes without flushing in
the worst case (with 100.5 KB/s increment rate). Note
that, when the footprint is beyond a threshold, MobiFS
can deliberately execute checkpointing to release RAM
space. Overall, considering that RAM is ample for apps
nowadays, the footprint of MobiFS is acceptable.

7.3 App/User Adaptability
This section evaluates MobiFS’ adaptability to both apps
and users, as implemented by our tradeoff point location
algorithm (Section 5.2).

4To reflect different shapes of memory footprint curves, we use in-
tegration to calculate the average. For the target increment rate α and
the known integral I of the footprint curve over the time interval ∆t, we
suppose 1

2 α∆t2 = I, so α = 2I/∆t2.
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Adaptability to Apps and Users. We run the tradeoff
point location algorithm on the I/O traces and suppose
immediate checkpointing without considering user inter-
actions. Figure 6 shows the average of these calculated
checkpoint intervals for each app. The average MobiFS
checkpoint intervals fluctuate drastically, with a variance
of 21.7×. Meanwhile, the geometric mean of MobiFS’
average intervals is 17.5 times that of Ext4 flushes. We
can see that not only does MobiFS largely extend the
traditional Ext4 flush intervals, but also it is inherently
adaptive to various apps.

Figure 6 also shows the average of checkpoint inter-
vals for Facebook, as grouped by users. There is up to
2.6× variation of intervals among users for the same app.
Such user-oriented adaptability is due to users exploring
different contents, from different sources, and with dif-
ferent reading speeds.
Gains from Adaptability. Assuming no flushing should
happen, the resulting e curve (“ideal”) would present the
highest potential for overwriting data. MobiFS tries to
follow this ideal curve by adapting to individual apps and
users. In contrast, Ext4 is limited by fixed flush intervals
and traditional fsyncs. To illustrate MobiFS’ gains from
adaptability, Figure 7 compares a variant of the e curve
with Ext4. The e ratio here is calculated against the over-
all data staleness s from the beginning, instead of from
the last checkpoint. The observation is that MobiFS fol-
lows the ideal curve quite closely, and this higher over-
write ratio translates to energy efficiency improvement.

7.4 App Responsiveness
There are two factors that MobiFS focuses on to im-
prove app responsiveness: minimizing responsiveness
conflicts, and improving the I/O throughput.
Responsiveness Conflicts. When a user-idle inter-
val is predicted by our interval prediction algorithm
(Section 5.3), MobiFS would try to schedule a check-
pointing operation to take up the full length of the in-
terval. RCs occur when one or more unexpected user
operations happen during such supposedly idle interval.
We use two metrics to evaluate the prediction quality:
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Figure 8: Responsive conflict ratios of three models.
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(1) Average number of RCs per prediction; (2) Aver-
age predicted interval length. Longer intervals offer
more opportunities for transaction merging which saves
time/energy.

Figures 8 and 9 separately illustrate the performance
of MobiFS’ state-machine-based solution on the two
metrics, according to our user operation traces. It
is compared with the commonly used last min model
(LMM)/last average model (LAM), which predicts us-
ing the min/average of the last k measured intervals.
As LMM always takes a conservative prediction, it in-
flicts only 0.26 RCs per prediction, smaller than LAM
which inflicts 1.18. Naturally, our state machine algo-
rithm cannot outperform LMM on this metric, but it
achieves 54.8% less than LAM. On the other hand, LAM
predicts much longer intervals than LMM. On average,
our state machine achieves 75.9% length of LAM, and
is over 2.7× that of LMM. As it can remember the pre-
vious “long” intervals for prediction, our state machine
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even outperforms LAM in 3 out of 9 apps. To sum up,
MobiFS has a low RC numbers close to LMM, and real-
izes long interval length as LAM. It achieves the sweet
spot between LMM and LAM.
I/O Throughput. As I/O largely affects app respon-
siveness, we evaluate typical I/O performance metrics of
MobiFS on the device. Table 1 and Figure 11 show re-
sults from AnTuTu (ATT), RL and MobiBench. Results
suggest that MobiFS can outperform Ext4 by up to 480×
(e.g., random writes), and by one order of magnitude in
typical database operations.
User-Perceived Latency We evaluate app responsive la-
tency by the time required for monkeyrunner to finish
a predefined user interaction path on the device. This
method has advantages in (1) eliminating diversity in real
user operations that are not mutually comparable and (2)
reflecting user-perceived latency that excludes users’ re-
action time. As Figure 12 shows, monkeyrunner operates
the browser to visit 50 websites, and the page loading
time drops by 49.0% (-0.36 s/op) when switching from
Ext4 to MobiFS. For Facebook, MobiFS reduces the time
required to load the news feed five times by 53.6% (-0.85
s/op). Finally, for twitter, the time for loading #Discover
tag ten times is reduced by 51.9% (-0.47 s/op). Overall,
MobiFS significantly reduces the user-perceived latency
of real apps.
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Figure 12: Responsiveness and energy consumption of
apps on Android Ext4 and MobiFS.
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7.5 Energy Consumption
MobiFS reduces energy consumption primarily by re-
ducing the amount of data flushed to flash. This section
first uses trace-driven simulation to quantify this reduc-
tion, and then evaluates the real device energy saving.
Reduction in Flushed Data. Figure 13 compares the
amount of data flushed to the permanent storage media
in the case of Ext4 and MobiFS, according to the traces.
The flush data saving varies among apps, which depends
on the number of overlapping writes that an app issues.
By the geometric mean of all apps, 53.0% less data were
flushed in the case of MobiFS, as compared to Ext4.

Our evaluation shows that MobiFS requires 66.4%
more energy than regular Ext4 for the same flush size
due to write-twice (Section 6.2), so the overall simulated
energy cost of MobiFS is 78.3% of Ext4. Meanwhile, if
we calculate average flush sizes, Ext4 flushes 4.29× the
amount of data that MobiFS flushes, which means that
MobiFS consumes 61.2% less energy than Ext4.
Device Energy Saving. We first consider the baseline
energy figures in Figure 10. MobiFS logically flushes
only half the amount of data compared to Ext4, but due
to write-twice (Section 6.2) it should incur similar energy
consumption with Ext4. In practice, however, both Ext4-
simu. and MobiFS require less energy (over 16.8%), par-
tially because internal data movement incurs less CPU
processing than independent write system calls. On the
other hand, although it does not write twice, Btr-MobiFS
costs similar energy with Ext4, due to COW overheads.
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Item Ext4 MobiFS Improve.

Perf. ATT(score) 689.9±21.5 1817±51.0 +163%
RL(sec.) 38.6±0.4 19.1±0.4 -50.1%

Energy∗

(J)
ATT 24.3±0.8 20.3±0.7 -16.4%
RL 43.8±0.5 37.6±0.6 -14.2%

Table 1: Performance and energy of AnTuTu (ATT)
and RL Benchmark on Android Ext4 and MobiFS. ATT
scores favor the higher; RL time favors the lower.

Moreover, by comparing MobiFS with Ext4-simu., we
can see that the energy cost of the unique components of
MobiFS only counts 4.0%.

Results from benchmark tools on the device also jus-
tify MobiFS’s contribution in reducing energy consump-
tion. Table 1 shows energy savings under the AnTuTu
and RL benchmarks, as compared to Ext4. Note that
these workloads hardly manifest MobiFS’ full potential,
because our design is highly oriented to real app/user be-
haviors, as evaluated in the following experiment.

Figure 12 compares the energy cost of real apps in
the case of MobiFS and regular Ext4. Specifically, the
energy cost of the whole device drops on average by
32.1%, 41.3% and 33.6% with Browser, Facebook and
Twitter, respectively. We can see that MobiFS substan-
tially improves the energy efficiency of mobile apps.

8 Related Work
Latest Mobile Filesystems. F2FS [26] (on Moto X)
observes 128% higher random write throughput than
Ext4 [24]. DFS [17] improves the I/O performance by
delegating storage management to the flash hardware. In
contrast, our memory-centric solution can achieve nearly
two orders of magnitude of improvements on read/write
performance (Figure 11).
Revisiting fsync. MobiFS decouples the consistency
and durability functionalities of fsync. The same
methodology has been exploited to different extents.
xsyncfs [40] stalls any user-visible output until the dura-
bility is accomplished. We have a more aggressive
tradeoff for performance than xsyncfs, considering the
unique features of mobile systems. OptFS [6] intro-
duces osync and dsync. The former ensures only even-
tual durability. In a sense, we also follow this durabil-
ity model. However, OptFS’ mechanism ensures con-
sistency of journaling disk writes by checksums, while
we realize consistency in the page cache. It does not
study policy design for mobile systems. Other similar
work [32, 35, 43] simply uses a static time bound on
staleness, and does not adaptively tradeoff in the same
way as MobiFS does for mobile apps.
Memory Data Management. Main-memory
databases [10, 12, 18, 41], adaptive logging [23], recov-
erable virtual memory [46], flash-oriented [9, 21, 31]
and NVM-based [8, 14, 27, 49] storage systems optimize

the performance of data flushing/writeback. NVM-based
swapping [51] shows less performance improvement
than our design. qNVRAM [30] implements a persistent
page cache but requires new APIs to use. External
journaling [16] requires extra storage devices, and does
not optimize energy efficiency. Fjord [20] distinguishes
apps mainly by cloud-related properties, and changes
software configuration accordingly. Host-side flash
caching [25] preforms a similar tradeoff between per-
formance and staleness. Beyond all the above work, we
advance at identifying minimal modifications to fsync

and the page cache in a constrained mobile system, a
systematic study of key tradeoffs, and a policy design
with app/user-adaptive optimization.
Energy/Responsiveness Optimization. BlueFS [39]
carefully chooses the least costly replica among multiple
nodes. SmartStorage [38] sacrifices 4%-6% performance
for energy efficiency by tuning storage parameters, while
we achieve orders of magnitude of performance promo-
tion along with energy saving. Capsule [34] only consid-
ers random or sequential access patterns. SmartIO [36]
focuses on prioritizing reads over writes. Mobius [7]
takes into account node location, network congestion,
etc. While increasing I/O burstiness for energy effi-
ciency [42, 48] shares a similar logic with us, we also
consider adaptive strategies and asynchronous fsync.
Simba [13] crafts a sync interface for both local and
cloud data. Similar to Simba, we also provide consis-
tency cross filesystem and database for local data. After
all, our observation on the e curves and resulting multi-
objective policy designs distinguish MobiFS from these
above optimization works.

9 Conclusion
MobiFS identifies a fundamentally new sweet spot in
the staleness-performance and staleness-energy trade-
offs that lie at the core of a filesystem for smartphones.
Its new memory-centric rationale, along with app/user-
adaptive incremental checkpointing, and the VCTs to
support asynchronous fsync, provides a good reference
for next-generation data storage design tailored for the
mobile environment. Evaluations via user traces, micro-
benchmarks, and real apps on the real device illustrate
the sound policy design and practical benefits.
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Abstract
Size and weight constraints on wearables limit their bat-
tery capacity and restrict them from providing rich func-
tionality. The need for durable and secure storage for
personal data further compounds this problem as these
features incur energy-intensive operations. This paper
presents WearDrive, a fast storage system for wearables
based on battery-backed RAM and an efficient means to
offload energy intensive tasks to the phone. WearDrive
leverages low-power network connectivity available on
wearables to trade the phone’s battery for the wearable’s
by performing large and energy-intensive tasks on the
phone while performing small and energy-efficient tasks
locally using battery-backed RAM. WearDrive improves
the performance of wearable applications by up to 8.85x
and improves battery life up to 3.69x with negligible im-
pact to the phone’s battery life.

1 Introduction
The utility of a mobile device has long depended upon
the tension between the device’s size, weight and its bat-
tery lifetime. Smaller, lighter devices tend to be easier to
carry. However, battery lifetime is mainly a function of
size. A smaller device must therefore contain a smaller
battery making energy a precious resource. The need for
durable storage further compounds this problem. Slow
flash storage wastes energy by keeping the CPU active
for longer period of time [26, 27, 52], yet the use of a bat-
tery dictates that durable storage is vital to a device’s util-
ity. Likewise, data encryption is energy-intensive [31],
but the sensitive nature of personal information that de-
vices collect dictates using appropriate protection mech-
anism over a durable medium like flash that can be easily
detached from a stolen device to retrieve personal data.

On wearables [43, 13, 5, 35], these trade-offs are mag-
nified. Size matters even more since the device is worn
on the body, therefore these devices have a very precious
energy reserve. A watch that must be charged after a few
hours is not very useful. Likewise, these devices gener-
ate precious sensor data (e.g., body sensor readings and
location) that must be guaranteed against loss and theft.

In this paper, we explore a new approach to storage on
wearable devices that does away with local durable stor-
age while leveraging a nearby phone to protect against
data loss and theft in an energy efficient manner. The

system, called WearDrive, uses only memory on wear-
ables for storage operations to provide performance and
energy improvements. It exploits the battery in mobile
devices to provide durability for the data in memory. It
leverages low-power network connectivity available on
wearables to exploit the capabilities of the phone. New
data is asynchronously transmitted to the phone, which
ultimately performs the energy-intensive operations of
storing data with encryption in its local flash.

WearDrive targets the two most important application
scenarios of wearables. The first scenario is the “ex-
tended display” that uses the wearable as a second dis-
play to allow applications on a nearby phone to run in-
teractive but less-featured companion applications. Ex-
amples include companions that provide notifications for
emails, social networks, etc. Providing fast and durable
storage to such applications helps wearables conserve
battery while remaining interactive.

The second scenario is sensor data analysis. Wear-
ables are packed with sensors that take advantage of their
location on a person’s body. Exposing this data to the ap-
plications on the phone with low-energy data sharing can
open up powerful applications. WearDrive targets these
scenarios and reduces the need for a large battery and
eliminates the need for flash on wearables. This paper
makes the following contributions:

• A distributed battery-backed RAM based storage
system called WearDrive is presented that can help
applications span data and computation across the
wearable and phone quickly and energy efficiently.

• A hybrid Bluetooth and Wi-Fi data transfer scheme
is presented. It helps the wearable exploit the capa-
bilities of the phone at a low-energy cost by ship-
ping data and computation to it.

• Data-intensive wearable workloads are identified. A
benchmarking tool named WearBench with several
data-intensive scenarios is developed to benchmark
applications spanning wearable and phone.

Experimental results show WearDrive helps applica-
tions obtain up to 8.85x better performance and consume
up to 3.69x less energy compared to the state-of-the-art
systems with little impact to the phone.

The rest of this paper is organized as follows: Sec-
tion 2 presents the challenges that we address in this
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(a) Software Storage Stack Vs. Storage Hardware (b) Standby Power Consumption (c) Flash Vs. Wireless Network

Figure 1: Motivating scenarios for WearDrive: (a) Mobile storage stacks are energy-intensive because storage software
consumes 80–110x more energy than flash. (b) To maintain a connection to the phone for the wearable, WiFi-Direct
consumes 10–15mW extra power, while Bluetooth Low-Energy requires only 1–2mW. (c) In terms of energy con-
sumption of the whole system when sequentially writing 32 MB data set with various I/O granularities, it is more
energy efficient to write to remote phone’s memory via WiFi-Direct than to write data locally to flash on the wearable.

work. Design and implementation of WearDrive are de-
scribed in Section 3. The benchmarking suite and the
evaluation results are shown in Section 4. Section 5
presents the related work. Finally, we describe the con-
clusions from this work in Section 6.

2 Wearable Storage Challenges
Wearables present a new challenge for mobile system de-
sign. Constraints on size and weight limit the battery ca-
pacity, but their location on the body and proximity to
the phone create new opportunities.

Small Batteries. Li-ion battery metrics like gravimet-
ric energy density (Watt-Hours/kg) and volumetric en-
ergy density (Watt-Hours/liter) take 10+ years to dou-
ble [9]. Therefore, wearables will still be restricted to
battery capacities of 1–2 Watt-Hours for the next sev-
eral years because of their size and weight constraints;
today’s phones have 7–11 Watt-Hours batteries [19, 44,
33]. Therefore, we propose that the battery on the phone
be traded for the battery on the wearable.

Energy Overhead of Legacy Platforms. To sim-
plify the hardware and software development of wear-
ables, manufacturers have chosen to reuse the system-on-
a-chip (SOC) design and mobile operating systems that
were originally made for phones and tablets. For exam-
ple, most smart-watches and smart-glasses [43, 14, 13, 5]
follow this approach to reduce cost, and accelerate devel-
opment of the platform and the applications. The focus
of this paper is on such wearable devices. This means
that wearables face a larger energy challenge compared
to phones, because of their smaller batteries.

Our prior work [31] identified that mobile storage
software consumes up to 110x more energy compared
to flash hardware for accessing data as shown in Fig-
ure 1(a). The energy overheads are caused by three fac-
tors. First, mobile flash is slow and increases CPU idle
time while waiting for IO completion [26]. Second, stor-
age on mobile devices is accessed via managed runtime
environments like the Darwin engine on Android and the

CLR engine on Windows that add additional CPU over-
head. Finally, encryption of data that happens using spe-
cial CPU instructions is also energy intensive. A fast and
energy-efficient storage system with security and privacy
guarantees is needed for wearables.

New Applications. Nearly all existing applications of
wearables fall into two categories: extended display and
sensor analysis. Using a wearable as an extended dis-
play requires arbitrary mobile application state be shared
across the wearable and phone. And for wearables, the
users focus more on new content from contextual appli-
cations like email, messaging, social networks, calendar
events, music controls, navigation companion and etc.

Wearables are rich sources of sensor data (Table 3) be-
cause of their location on the body. For example, watches
can better monitor heart-rate and glasses can provide bet-
ter video sensing. These sensors pave the way for a
wide variety of useful applications including long term
fitness/wellness tracking, detecting chronic health condi-
tions like sleep-disorder, heart conditions, etc. Existing
wearables unfortunately are severely crippled in terms
of battery size and provide only limited data analytics.
A storage system capable of supporting these wearable
workloads and exploiting their characteristics for per-
formance and energy-savings is needed.

Reaching the phone. Bluetooth Low Energy (BLE)
enables wearables to maintain a constant connection to
phone at a low-energy cost (Figure 1(b)). However,
its low modulation rate imposes a large energy tax on
large data transfers. An alternative is WiFi-Direct (WFD)
which requires higher constant power to maintain a con-
nection, but supports low-energy large data transfers with
high modulation rates. Figure 1(c) shows the average en-
ergy per KB consumed by the whole system of the wear-
able (see Table 3) as it sequentially writes data to local
flash or remotely to the phone via BLE/WFD. The ex-
perimental setup is the same as described in Section 4.2.
Experimental results indicate that the energy overhead of
writing data to remote memory via WFD is comparable
to that of writing data to flash on the wearable.
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The challenge is to build a mechanism to connect the
wearable to the phone with a constant low-power con-
nection overhead with a means to transfer data energy-
efficiently. A hybrid connection and data-transfer mech-
anism can be built using BLE and WFD so that data
sharing between wearable and phone can be enabled at
a low-energy cost.

Slow flash. Mobile flash is slow and energy-
intensive [26]. Faster flash technologies like SSDs re-
quire 25–100% more $/GB and 5x more energy per op-
eration, and have a controller alone that is bigger than
an entire SD card. Moreover, even SSDs are 10,000x
slower than DRAM 1. Furthermore, we demonstrate that
data transfers over WiFi-Direct between two mobile de-
vices consumes less energy than writing the same data to
flash (Figure 1(c)). We propose that wearables actively
use only DRAM (local and remote) to drastically speed
up storage operations.

3 WearDrive Design
We begin by showing how applications minimize using
flash and use mostly DRAM for fast and durable stor-
age operations on wearables. We then present a new
data management system that helps applications span
extended-display and sensor data across the wearable
and the phone. A new hybrid BLE/WFD data trans-
fer mechanism is then described which helps WearDrive
transmit data at a low-energy cost to the phone.

3.1 Storage with Battery-Backed RAM
To speed up storage operations, WearDrive actively uses
DRAM as storage. However, WearDrive guarantees
durability in spite of DRAM’s volatility. DRAM on mo-
bile platforms is continuously refreshed. The only time
when the DRAM refresh stops is when the device is shut-
down, the battery runs out of energy or it is removed.
The first two scenarios provide an early warning sign al-
lowing data in DRAM to be flushed to flash just in time
before the refresh stops. Removing the battery while
the system is running can lead to data loss even in to-
day’s systems. Moreover, most wearables’ batteries are
not removable. Therefore, we assume that DRAM can
be treated as non-volatile on such devices. We call such
DRAM as battery-backed RAM (BB-RAM).

BB-RAM coexists with DRAM to minimize OS
changes. It grows and shrinks dynamically according
to the memory pressure in the rest of the OS. DRAM
is a precious resource on wearable devices. Most of the
wearables we surveyed have less than 0.5GB of DRAM.
While reserving a known and fixed region of physical
memory as BB-RAM simplifies the implementation, it
leads to fragmentation of DRAM and does not allow

1Data surveyed from samsung.com, newegg.com and amazon.com

BB-RAM to dynamically expand and contract in accor-
dance with application/OS requirements. WearDrive’s
BB-RAM design adapts to memory pressure and spans
across non-contiguous physical memory pages.

WearDrive uses BB-RAM both on the wearable and
phone to ensure high-performance of applications span-
ning both the wearable and the phone. Wearable uses
the phone as the secondary storage for its data. All old
data on the wearable’s BB-RAM is retired to the phone’s
BB-RAM. All dirty data in wearable’s BB-RAM is also
sent to the phone when the wearable needs to shutdown.
Likewise, phone uses its flash as the secondary storage
for its data in BB-RAM.

Data in BB-RAM is not lost even after an OS crash.
WearDrive uses a firmware component to ensure that
BB-RAM is backed to flash in case of an OS crash.
Firmware needs additional support to identify the phys-
ical pages that are used as BB-RAM. For this purpose,
WearDrive reserves a small known region of physical
memory to store a bitmap in DRAM to represent whether
that physical page belongs to BB-RAM or not. The
firmware uses these bits to identify BB-RAM pages af-
ter an OS crash (before shutdown) and writes them to a
reserved region on flash. This simple design allows BB-
RAM to coexist with DRAM and also enables a firmware
without any OS state awareness to ensure data durability.
Recovering WearDrive’s state after a crash solely from
the set of BB-RAM pages that it spans across is a harder
problem and we present its design in the next sections.

WearDrive uses BB-RAM only as long as there is
enough battery life left to ensure durability of data in
case of a crash. When battery level reaches a threshold,
WearDrive stops using BB-RAM and treats all of DRAM
as volatile. New and dirty data is first written to local
flash to ensure durability. We set the threshold to 7%
in WearDrive based on the observation that flushing 512
MB data from memory to flash sequentially costs about
5% of wearable’s battery life on our reference wearable
platform. However, this value can be adapted according
to the hardware.

Warm reset. WearDrive is optimized for warm re-
sets of the OS. If the available energy is above 7%, the
firmware continues to refresh DRAM without scrubbing
or cleaning any data. The OS then separates the pages
in BB-RAM from regular DRAM using the bitmap and
continues the boot process.

OS Deadlock. In case of a deadlock there is a chance
that the data in BB-RAM will permanently be lost as the
phone is completely drained out of battery. WearDrive
uses a watchdog timer to detect if the OS is hung. When
the battery life reaches the threshold, firmware sched-
ules a BIOS-context process that wakes up once every
sixty seconds and sets a bit in a known portion of mem-
ory that it expects the OS to reset every sixty seconds.
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Figure 2: (a) WearDrive expands wearable’s memory and storage capacity by leveraging phone’s capabilities. Loc-
DRAM/RemDRAM represents local/remote DRAM, LocFlash/RemFlash are local/remote Flash. (b) BB-RAM pages
are held in a linked list. The pages contain a sequential log of key-value pairs as they arrive. The hashtable stored in
regular DRAM contains the index for the key-value store whose state can be efficiently recovered after failures.

If the OS fails to reset it during an iteration then the
firmware assumes that the OS has hanged and flushes the
data to flash by itself and disables the watchdog timer.
The watchdog timer is also disabled as soon as the OS
starts using DRAM as volatile.

3.2 Storing Data Across Devices
Since extended display and sensor data analysis scenar-
ios need to span data across wearables and phone, we
design WearDrive as a distributed storage system span-
ning across all devices. We find that in most extended-
display scenarios, the wearable is treated as a helper for
the full application on the phone because of the smaller
screen size on watches, lack of touch screen on glasses
and small battery size on both. For this reason, we de-
sign the component of WearDrive on the wearable as
a cache (WearCache) and the component of WearDrive
on the phone (WearKV) as the main storage of data (see
Figure 2(a)). WearKV and WearCache both have a key-
value store interface that mobile application developers
are familiar with. We use the same KV-store system to
implement both WearCache and WearKV.

3.3 KV-store Design
KV-store is optimized for BB-RAM. This ensures fast
and durable operations for WearCache and WearKV
when inserting new data. KV-store prioritizes new data.
The focus of wearable applications is on the latest data
generated by phone applications and also by the sensors.
Examples include the user’s interest in latest notifications
and most recent sensor values that can provide statistics
about a run or a workout session. Therefore, the KV-
store is implemented as a sequential log of key-value
pairs in BB-RAM with FIFO replacement. Figure 2(b) il-
lustrates the design. Keys and values are arbitrary length
data blobs. New values are inserted by appending the
KV-pair to the head of the log and adding a hash table
entry with pointers to the key and the value in the log.

KV-store stores data in BB-RAM and metadata in
DRAM. The log of KV-pairs is stored in BB-RAM and

the hash table is stored in regular DRAM. The rationale
for this is that the hash table can be recovered from BB-
RAM in case of a crash by scanning through the BB-
RAM pages in the right order. In case of a clean shut-
down, the hash table is serialized to secondary storage
(Index Log in Figure 2(b)). This design choice makes
effective use of the precious BB-RAM space.

KV-store can recover BB-RAM and DRAM state af-
ter a crash. Recall that the firmware flushes BB-RAM
pages to local flash in case of a crash. To recover the
hash table and the correct head of the log of KV-pairs,
ordering of the BB-RAM pages is needed. The order-
ing of the BB-RAM pages in the log is determined by
a four byte pointer stored at the tail of every BB-RAM
page to the next BB-RAM page in the log as shown in
Figure 2(b). Each KV-pair in BB-RAM is a sequence of
five fields: four bytes length of the key followed by the
key, followed by eight bytes of application identifier (de-
scribed later) and then four bytes length of the value fol-
lowed by the value. This FIFO of BB-RAM pages allows
the KV-store to arbitrarily increase its size by appending
new pages and decrease the size of the log by purging
the KV-pairs at the tail to secondary storage. Moreover,
the firmware remains simple, precious BB-RAM space
is best utilized and recent data that is of interest for ap-
plications is prioritized during page replacement.

WearCache is the KV-store instance that lives on the
wearable and caches all the latest data from applica-
tions and sensors. New data arrives in WearCache via
two methods: when phone applications push data to
their companion applications and when sensors generate
new values. When WearCache runs out of BB-RAM, it
flushes old data to WearKV on the phone in FIFO order
as the focus of the wearable is always on new data. It
does so by simply moving the tail forward in the log of
KV-pairs on BB-RAM several KV-pairs at a time. This
provides the functionalities of having recent data on the
wearable, adapting to memory pressure, and providing
an efficient replacement policy. An example application
on today’s watches that can leverage this storage model
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Figure 3: WearDrive creates individual logs per applica-
tion and per sensor to isolate on secondary storage.

is a notification center for recent emails. The user’s focus
will be on the most recent emails while the older emails
may be safely flushed to WearKV as the user may not ac-
cess them on the wearable. Complex functionalities are
implemented by the email application on the phone while
a companion email application on the wearable keeps the
design/UI simple with focus on latest data.

WearCache removes flash I/O overhead from the criti-
cal path of applications. The OS, application binaries and
other application metadata continues to reside on local
flash. However, data accessed in critical path resides in
WearDrive. The key-value interface to WearDrive eases
development as wearable applications already use the
key-value interface for sharing data between the phone
and wearable [3]. As future work, we wish to provide
filesystem and database interfaces using BB-RAM.

WearDrive supports simple sensor data analytics on
the wearable and complex data analytics on the phone.
Small battery restricts wearables to analyzing sensor logs
from short activities like the latest run/workout-session
or other short activity. However, applications can per-
form rigorous analytics on the phone (several days worth
of sensor logs at a time). Applications on the phone
can proactively pull the sensor data from WearCache
as and when a certain number of samples are available.
For example, a fitness tracker on the phone can register
with WearCache that the heart-rate logs from the wear-
able be pushed to the phone once every ten minutes.
WearCache implements these requests in the following
manner. For each sensor, WearCache pre-allocates a
KV-pair. A certain amount of space is reserved for the
value upfront. The sensor samples (configurable sam-
pling rate) are gradually added to the pre-allocated value
as they become available. Data is pushed to the phone
and phone-applications are notified accordingly.

WearKV is the KV-store that resides on the phone and
contains all the data of the wearable. It contains old ex-
tended display data and the entire log of sensor values.
Old extended display data is fetched back to WearCache
on demand (this is a rare event as wearables focus on
new data). The phone with its larger battery can use
the full sensor log to perform rigorous sensor data anal-
ysis. When WearKV runs out of BB-RAM, it flushes old
data to flash where it creates a per-application and per-
sensor sequential log as shown in Figure 3. It does so by

leveraging the metadata information stored in the values
where it records the device-ID, application-ID, sensor-ID
and time stamp of creation.

Data in WearDrive crosses the memory/flash bound-
ary only on the phone. Data encryption and other mech-
anisms put in place to ensure security and privacy of
data are needed only for “truly” non-volatile media like
flash that can be detached from the rest of the phone and
have unprotected data stolen in a straightforward man-
ner. Therefore, the heavy software cost [31] of storage
is offloaded to the phone. Note that treating DRAM as
non-volatile by using it as BB-RAM is at least as secure
as the previous model where data was not encrypted in
DRAM as DRAM which is part of the SOC is hard to de-
tach from a device. BB-RAM is a mechanism to ensure
that data in DRAM in never lost as opposed to making
DRAM “truly” non-volatile.

Offline Capabilities. WearCache can function with-
out the phone. WearCache can lock data on the wearable
based on time of arrival such that it is not purged to the
phone until explicitly deleted. Offline capabilities allow
applications to lock data to be available locally so that
functionality can be provided without the phone. An ex-
ample is when the email companion application imposes
a restriction that email from last three days be locked lo-
cally. KV-pairs are written to flash on the wearable only
if WearCache runs out of BB-RAM and the applications
impose an offline availability restriction. Offline require-
ments are specified in WearCache using time cutoffs per
applications and per sensor (see Table 1). We compare
the specified time with the timestamp stored in KV-pair’s
metadata. The qualified offline data is written to its lo-
cal flash’s logs. As time passes, WearCache will move
the tail closer to the head on the flash log and overwrites
older data that the application does not need.

3.4 Communication
Efficient reachability to the phone allows the wearable to
be designed with less DRAM and slower flash thereby
reducing their cost. Moreover, it allows the wearable to
offload storage and computations to the phone. BLE 4.1
and 802.11a/b/g/n/ac are the network connectivity op-
tions for wearables. While a few smart-watches only
have BLE, we envision that Wi-Fi will make it to all
wearables as it enables efficient large data transfer.

Standalone BLE or WFD is not an ideal network con-
nection. BLE consumes low power (1–3mW) for stay-
ing always connected to the phone while using a WFD
to stay connected to the phone consumes 5x extra power
(10–14mW) (Figure 1(b)). On the other hand, BLE con-
sumes 10–20x extra energy for transmitting data when
compared to WFD (Figure 1(c)). A mechanism to min-
imize the total energy of always staying connected and
for transferring data is required.
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API Description

OpenWearDrive (FileName) open a connection to WearDrive and obtains a handle, the data is represented using an opaque FileName.
CloseWearDrive (handle) close the connection to WearDrive and flush any data from BB-RAM in the process to an appropriate location.
InsertKV (handle, key, value) insert the new key/value to the FileName corresponding to the handle.
ReadKV (handle, key) provide the value corresponding to the key in the FileName file.

MakeOffline (handle, date) make all data of this file that arrived after a certain date available on the wearable even when the phone is not
reachable. Date is specified relatively to the current time. This function is available only to WearCache.

DeleteOldData (handle, date) provide a hint to WearDrive that data beyond a certain date can be deleted. Date is an absolute value. This
function is available only to WearKV.

RegisterForSensor (DeviceID, SensorID) register an application for values from the sensor represented by (DeviceID, SensorID).
UnregisterFromSensor (DeviceID, SensorID) unregister the application from a sensor.

RegisterCallBack (TimeGap, CallBackFunction) make WearDrive issue the CallBackFunction in the context of registering application every
TimeGap seconds with the newly available sensor values.

Compute (DeviceID1, SensorID1, ..., Devi-
ceIDN, SensorIDN, TimeGap)

a function that does not access any global variables but accesses data in sensor logs that
are accessible to the application. It can be executed on both wearable and phone.

Table 1: WearDrive API

Figure 4: Energy consumption of data transfer via BLE
and WFD. WFD is efficient if connection establishment,
tail latency and connection-teardown are not included.

Using BLE for staying connected and short data trans-
fers, and turning on WFD solely for large data transfers
is a hybrid solution. This is practical because WearCache
and WearKV know how much data is to be pushed. If it
is beneficial then a control signal over BLE is sent to the
other side to turn on WFD. Data transmission begins on
BLE and switches over to WFD when it is available.

Knowing the right data transfer size for switching on
WFD is crucial. To estimate the transfer size at which it
pays-off to turn on the WFD, we conduct the following
experiment: transferring data of various sizes on BLE
and WFD. We keep BLE always on and send data of var-
ious sizes between two mobile devices whose power con-
sumption is monitored using the Monsoon power moni-
tor [36]. We then estimate the energy required for trans-
ferring the data via WFD. The energy estimates for WFD
contains the energy needed for turning the WiFi chipset
on and off. Figure 4 shows the transfer size at which
using the hybrid protocol pays off.

The pay-off point for switching to WFD depends on
signal quality. We present the results for two extreme
modulation rates in 802.11n: the highest modulation
rate and the lowest modulation rate. A crossover-point
database is built for various modulation rates of BLE and
WFD. We use the BLE signal strength to estimate the

WiFi signal strength as they use the same band and radio
over the same distance.

Picking the right time to turn off WFD is important.
WFD consumes more power than BLE in idle state (i.e.,
standby power gap). However, network discovery, con-
nection and powering-down are expensive, frequently
turning WFD on/off would incur more energy usage than
keeping it in idle state for workloads with small inter-
arrival times. We use two solutions to solve this prob-
lem. The first is to have a running average of inter-arrival
times and predict on the basis of the average-value if it is
worth keeping the WFD on. The second is to explicitly
help applications that can tolerate delay to batch data (ef-
ficacy evaluated in Section 4) for further energy saving.

3.5 Implementation Details
We implement WearDrive on Android 4.4 using Java, C
and JNI [21]. It consists of the KV-store, the data trans-
fer library and the code needed for ensuring durability
of BB-RAM. WearDrive is accessed via the calls on all
devices as shown in Table 1. InsertKV and ReadKV
always append the application ID (stored in handle)
to the key for inserting and reading data. This helps
WearDrive isolate data between applications. Privacy
is protected by not providing user-space access to BB-
RAM. All data is accessed through user space buffers
provided to the system calls.

Sensor values are aggregated by WearDrive on a per-
sensor basis. Applications can register sensor logs for
each sensor. WearDrive directly appends sensor samples
to the pre-allocated KV-pair that is buffering the current
set of sensor samples. When enough samples are avail-
able, WearDrive notifies the corresponding applications.

4 Evaluation
Evaluating wearable applications is hard because of the
lack of a standard benchmarking tool that can generate
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Workload Parameters Application examples

Extended
Display

Size and inter-arrival
time distribution of
data

Email, news, instant mes-
sages, status updates from
social networks, etc.

Sensors sampling rate, moni-
toring period

Physical fitness, sleep qual-
ity, heart health monitoring,
elder care, etc.

Audio/
Video

Encoding rate, qual-
ity, monitoring period

Dash-cam using glasses,
sleep quality monitoring.

Table 2: Workloads included in WearBench.

representative workloads that span across wearables and
phone. We present WearBench, a framework that is in-
tended to test the impact of data generated by such wear-
able workloads on performance and energy.

4.1 WearBench
WearBench is an Android app that runs on the
phone/wearable for generating the extended-display data
and sensor data which represent wearable applications.
WearBench runs on the phone when testing the wearable
and vice versa so that WearBench does not interfere with
the measurements. WearBench defines synthetic data-
analytics that can be executed on sensor logs like cal-
culation of running statistical features including average,
standard-deviation, k-means, and hourly/diurnal/weekly
pattern recognition algorithms – sampling rate and time-
liness are configurable. WearBench can create notifica-
tions of varying sizes and different inter arrival time dis-
tributions. To the best of our knowledge, WearBench is
the first framework for benchmarking wearable systems.

We identify several typical data-intensive workloads
running on smart wearables (see Table 2). In order to
cover a wide variety of users, we abstract the usage pat-
tern as configurable parameters in WearBench.

The aim of our evaluation is to demonstrate the per-
formance and energy benefits to wearable devices from
using WearDrive. We also study the impact on the bat-
tery life of the phone. Table 4 summarizes the major
benefits of WearDrive for wearable applications over the
state-of-the-art methods.

4.2 Experimental Setup
We use a low-end mobile platform as a reference wear-
able device that runs Android 4.4. As shown in Table 3,
our reference wearable device compares to Samsung
Galaxy Gear smart-watches which have similar hardware
and software configurations. While our reference has 1
GB RAM, we use only 512 MB on it for the system to
match the amount of RAM on state-of-the-art wearables.

Monsoon power monitor [36] is used to profile energy
consumption of the device. We instrument the reference
wearable device’s battery-leads such that it draws power
from the Monsoon power meter instead of a battery. We

Type Our Reference Wearable Samsung Gear
Processor 1.2 GHz dual-core 1.2 GHz dual-core
Memory 1 GB RAM 512 MB RAM
Storage 4 GB eMMC flash 4 GB eMMC flash

Network Bluetooth 4.0 LE, WiFi
802.11 b/g/n

Bluetooth 4.0 LE,
WiFi 802.11 b/g/n

Sensors

accelerometer, barometer,
compass, GPS, gyroscope,
heart rate monitor, magne-
tometer, altimeter, barome-
ter, UV light sensor, ambi-
ent light sensor, BLE and
WiFi events, camera, mi-
crophone

accelerometer, gy-
roscope, compass,
heart rate monitor,
ambient light, UV
light, barometer,
GPS, microphone,
BLE and WiFi events

OS Android 4.4 Android 4.3+/Tizen

Table 3: Reference wearable device used for evaluation.

Typical Workloads Battery-Life
Improvements

Passive heart-rate monitoring (Section 4.4.1) 39%
Passive movement monitoring (Section 4.4.1) 54%
Taking pictures (Section 4.4.2) 16%
Taking pictures in burst mode (Section 4.4.2) 27%
Passive video monitoring (Section 4.4.3) 33%
Passive audio monitoring (Section 4.4.4) 50%
Batched Notifications (Section 4.6) 149%
Unbatched Notifications (Section 4.6) 24%

Table 4: WearDrive’s benefits for typical wearable work-
loads compared to Google WearSDK.

perform comparative energy calculations by subtracting
the base power of the system from the power used when
a workload is executed. However, when reporting abso-
lute energy required for a workload we include the base
power of the system. We compare WearDrive with the
following state-of-the-art storage solutions:

WearableOnly: The wearable applications use the ca-
pabilities on the wearable for storage. The phone is used
only for Internet connection via tethering. All the com-
putation is performed locally and all data is durably writ-
ten to local flash. This is the way most fitness/health
trackers are implemented on today’s wearables.

WearSDK: Android Wear SDK released by
Google [3] is one way to span data across wearable and
phone. However, this SDK uses flash synchronously on
either one of the devices to ensure durability. WearSDK
provides a data layer for data synchronization between
paired wearable and phone via BLE (i.e., WearSDK-
BLE). We extend the data layer and make it support
WFD (i.e., WearSDK-WFD) and our hybrid network
protocol (i.e., WearSDK-HYN).

4.3 Local Memory vs. Local Flash
We first examine the advantages of BB-RAM over lo-
cal flash with a set of microbenchmarks. We configure
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Figure 5: Performance and energy comparison of Wear-
ableOnly and WearDrive with varied number (1, 2, 4) of
threads.

Figure 6: Energy used by various storage systems with
varied number (1–16) of sensors sampling values con-
tinuously at 1Hz for 24 hours. A typical smart-watch
battery contains between 3000–6000 Joules of energy.

WearBench to issue 100 K InsertKV and ReadKV op-
erations. The size of the data written or read is varied
uniformly from 128 bytes to 1 KB. Figure 5 compares
the throughput for different data sizes. WearDrive out-
performs WearableOnly by 6.65–8.85x on inserts where
storage I/O from flash becomes the bottleneck, and
1.57–1.69x on reads where the CPU becomes (single
thread) the bottleneck for our system and the flash IOPS
for WearableOnly. Moreover, WearDrive’s throughput
scales linearly till four threads while WearableOnly is
saturated by a single thread. Figure 5 also shows the total
energy usage of these write/read operations. WearDrive
consumes 2.58–3.69x and 1.57–1.70x less power than
WearableOnly on inserts and reads respectively, as slow
I/O operations on flash cause more CPU cycle wastage,
and further increase the energy usage.

4.4 Passive Sensor Data Aggregation
In this section, we demonstrate the benefits of using local
and remote BB-RAM for providing durability for sensor
data recording over flash.

4.4.1 Fitness Tracker

Fitness/health tracking applications collect sensor values
on a periodic basis and update statistics [8]. We use a
fitness tracker application that samples various sensors
at 1Hz and stores them to local flash periodically. We
record the storage calls that this application makes for
storing sensor logs, and incorporate the workload into
WearBench for replaying.

WearDrive aggregates sensor data in BB-RAM and en-
sures their durability. WearableOnly and WearSDK un-
fortunately cannot provide such guarantees unless they
write every sensor sample through to flash, but they suf-
fer severe performance losses in doing so. As a tradeoff
between durability and performance, for these methods,
we write the sensor samples to flash when data fills a sec-
tor (512 bytes). Every five minutes, all the new data is
sent to the phone as sending data to phone at 1Hz leads
to significant energy wastage because the network chip
would never go into low power mode. Figure 6 shows the
total amount of energy in Joules required each day only
recording the sensor values. The overall trend across all
the systems show that the number of sensors sampled
does not severely impact the energy consumption of stor-
age, indicating that the setup costs inside storage stack
are the dominant factors for this workload.

WearDrive outperforms the other systems by up to
3.31x and provides better durability. When sampling 16
sensors every second for the whole day and writing them
to flash, the storage system (hardware and software) re-
quires 1760 Joules. Considering a typical smart-watch
battery that contains 4000 Joules (1.1 Watt-Hour) of en-
ergy, writing sensor data to flash requires 44% of total
battery life each day. WearDrive on the other hand con-
sumes 28.25%, which is 1.54x more efficient. Moreover,
we find that 89.5%, 68.1% and 58.75% of the battery life
is respectively required by WearSDK-BLE, WearSDK-
WFD and WearSDK-HYN. While HYN reduces the cost
of transmitting data over the network to the phone, the
bulk of the cost for these systems is still from using slow
flash which wastes energy by delaying CPU and network
from going to sleep sooner.

4.4.2 Time Lapse Photography

Time lapse photography applications for smart-glasses
allow users to log their outdoors activities without the ef-
fort of carrying a bulky camera or phone in the hands. We
incorporate a time-lapse photography storage workload
in WearBench by recording the storage calls of a time-
lapse application on Android which takes high-quality
pictures at each timer event. Each picture has 2592x1944
dimensions with average size of 900 KB. A few pic-
tures are taken once every few minutes. The results of
the workload are shown in Figure 7(a) where average
energy required on the wearable per round of photog-
raphy are reported. LocalFlash stores the pictures only
on the wearable. RemoteFlash stores the photos on the
phone’s flash with the various WearSDK networking so-
lutions. We also test scenarios where photos are stored
locally in flash but are also transmitted to the phone with
WearSDK. Finally, WearDrive does local BB-RAM to
remote BB-RAM copy with HYN.

Results indicate that storing pictures synchronously on
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Figure 7: Energy usage on wearable of taking pictures, video recording, audio recording.

local flash is 1.78–2.97x more energy efficient than on
remote flash. This implies that eliminating local durable
storage is not enough for energy savings and that the en-
ergy cost of storage is from the CPU that has to be idle
while the flash-IO completes. WearDrive’s ability to pro-
vide durability for data with local BB-RAM to remote
BB-RAM copy reduces the amount of time the CPU
and network have to be active and this significantly im-
proves energy efficiency while enabling applications on
the phone to have access to the photos.

4.4.3 Passive Video Monitoring

Recording video while traveling, riding or commuting al-
lows a person to have evidence in case of an accident. We
add a prototype dash-cam scenario in WearBench that
emulates storage calls due to recording of video. Video is
shot at 30 FPS (frames per second) with 480p resolution.
We buffer video on the wearable for 1, 3 and 5 minutes
and then transmit it to phone. Figure 7(b) demonstrates
that the energy required scales linearly with data size
for large workloads indicating that setup costs in stor-
age show up only for small workloads as in the case of
fitness tracking applications.

4.4.4 Passive Audio Monitoring

Some sleep disorders like snoring, bruxism, etc can be
diagnosed by passive audio recording on a wearable dur-
ing the night [53]. We create a prototype passive audio
monitoring workload in WearBench by recording all the
calls made by an audio recorder application. Audio is
sampled for a few minutes continuously several times
when the wearable detects motion or noises. The sam-
pling rate for audio is set to 16 KHz, the audio format is
PCM 16 bits per sample. As shown in Figure 7(c), com-
pared with the state-of-the-art solutions, WearDrive con-
sumes 1.5x less power than LocalFlash by taking advan-
tages of in-memory store and memory-to-memory data
transfer. Combined with the previous results, this pro-
vides further evidence that WearDrive can provide bene-
fits regardless of the sensor used as the energy overhead
is largely a function of data size.

4.5 Impact on Smart-phone
In this section, we evaluate the energy usage on the
phone side and show how WearDrive can improve the
lifetime of wearables by leveraging only a negligible por-
tion of phone’s larger battery capacity. To understand the
energy impact on the phone accurately in this context, we
use the same reference hardware in Table 3 as a phone.
Note that this is a hardware specification similar to most
low-end phones on the market today. However, we use a
2000mAh battery as the reference battery when evaluat-
ing the energy impact on the phone.

Energy cost of storage: We reuse the fitness moni-
toring application workload from Section 4.4.1. Recall
that for recording 16 sensors at 1Hz for 24 hours re-
quires 28.25% of the battery life on the wearable instead
of 44.0% when writing the data to the flash on the wear-
able. For this experiment, we find that the phone requires
1369 Joules of energy. This energy accounts for 5.1% of
the battery on the phone but this leads to savings of 16%
of the battery on the wearable. Considering the fact that
the batteries on wearables are usually 5–7x smaller than
on low-end phone, this is a valuable tradeoff to make.
Moreover, having the data on the phone enables phone
to perform analytics and provide more energy savings for
the wearable device.

Energy cost of computation: We implement Mean
and three commonly used data mining algorithms in
WearBench: k-NN (k-Nearest Neighbor) for classifica-
tion [24], ID3 (Iterative Dichotomiser 3) for generat-
ing decision tree [20], and k-means for cluster analy-
sis [23] for detecting patterns in streams of sensor data
to find out when user’s heart rate is high [4], when a
user snores during the night [53], the levels of UV ex-
posure [51], etc. WearableOnly refers to the baseline,
in which records are stored in SQLite and data analytics
run on wearables. WearDrive performs computation on
the phone with the data in WearKV. The sensor data are
aggregated over three days.

Table 5 shows that WearableOnly method of storing
and computing on the wearable consumes a significant
portion of wearable’s battery life, ranging from 14.72%
to 27.12%. For smaller data sets the data can be read
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Algorithms Mean k-NN ID3 k-means

Schemes
% of battery life on % of battery life on % of battery life on % of battery life on

wearable phone wearable phone wearable phone wearable phone
WearableOnly 14.72% - 18.85% - 20.24% - 27.12% -

WearableOnly+InMem 0.83% - 4.96% - 6.56% - 13.23% -
WearDrive 0.87% 0.21% 0.87% 0.83% 0.87% 1.08% 0.87% 2.09%

Table 5: WearDrive saves wearable’s battery by trading it with the phone’s battery.The battery capacities of the wear-
able and phone used in the experiments are 300 mAh and 2000 mAh respectively.

Figure 8: Energy usage of receiving 10 notifications
(10KB size) with varied interval between notifications.

into memory all at once and computed over as opposed
to reading data from flash in batches. We refer to this
solution as WearableOnly+InMem. It reduces the energy
usage dramatically, but it works only for small workloads
that fit in memory. However, when sampled at a higher
rate (required usually when the user is running or biking)
of over 10Hz, sensor data beyond a few hours will not fit
in the memory of the wearable. While such workloads
may not fit in the phone’s memory either, the phone’s
larger battery takes much smaller impact.

When the computation is shifted to the phone by
WearDrive, it consumes a trivial portion (0.21%–2.09%)
of phone’s battery life, but reduces the energy usage on
wearables to be only 0.87% of wearable’s battery life
for issuing the arithmetic functions. As future work,
we wish to explore when offloading computation to the
cloud pays-off with respect to energy. Offloading to the
cloud incurs more energy overhead due to data transmis-
sion across a wide area with WiFi or LTE. For instance,
uploading 8 MB data to Google Drive [11] consumes
3.14x more power than writing to local flash in our ex-
periment setup (with perfect WiFi conditions).

4.6 Extended Display Workload
In this experiment, we demonstrate the benefits of
WearDrive to efficiently store extended-display data
durably. We use WearBench to emulate application pat-
terns from representative workloads of Twitter [28], In-
stagram [17], and email [52] applications with various
parameters (size and interarrival time).

Varying inter-arrival times. In order to model more
notification workload patterns, we vary the interval be-
tween tweets from 5 to 60 seconds and measure the
energy-impact from storing them durably on the wear-

(a) Batching Tweets (b) Batching Email

Figure 9: Performance and energy usage of notification
workload with different data size.

able. Figure 8 shows these results.
WearDrive reduces energy usage by 1.2–2.9x com-

pared with the default option of WearSDK-BLE for to-
day’s wearable applications. The benefits are made pos-
sible not only because of the performance benefits of BB-
RAM, but also because of the energy-benefits of HYN.
Faster storage operations help the CPU and network go
back to sleep faster and reduce the energy footprint.

With HYN, WearDrive uses WFD when the average
interval between notifications is small enough to war-
rant keeping WFD active (20 seconds for our hardware).
When the interval is further increased, WearDrive will
intelligently turn off WFD and use BLE to send noti-
fications. The hybrid networking protocol also brings
benefit to WearSDK (see WearSDK-HYN in Figure 8).
For long intervals, WearDrive still performs better than
WearSDK-BLE, because of its faster storage.

Effects of batching notifications. Buffering data on
the phone gives HYN more opportunity to exploit the en-
ergy efficiency of the WFD protocol. We vary the size of
the notifications pushed by the phone to wearable from
128 bytes to 1KB. The batch size that the data is sent
ranges from 10 to 100. This experiment allows us to
study the energy-benefits of delaying notifications from
applications that are less interactive than instant mes-
sages, such as social networking updates and even email
in some cases.

Figure 9(a) shows the results for tweets which are
short social networking messages that can tolerate delay.
Compared to WearSDK-BLE, WearDrive takes 2.93x
less time, while saving energy by 2.23x. The overhead of
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WearSDK is reduced with WFD and HYN for large num-
ber of notifications. For small number of notifications
such as 10 notifications, HYN will use BLE instead of
WFD for data transfer. The execution time of WearSDK-
WFD is less than WearSDK-BLE and WearSDK-HYN,
but its energy usage is larger as the overhead on WiFi
discovery and connection offsets its benefit on data trans-
fer. WearDrive is 1.81x more energy efficient than
WearSDK-HYN because of BB-RAM’s fast durability.

Likewise for email, as shown in Figure 9(b), the ben-
efits of HYN when batching when possible are appar-
ent. However, WearDrive is 2.49x more energy efficient
than WearSDK-HYN because of the fast durability guar-
antee provided by BB-RAM. Overall, WearDrive helps
extended-display applications not only by making the
energy-batching tradeoff straightforward to exploit but
also by providing benefits for applications that are in-
teractive by enabling fast durability.

5 Related Work
WearDrive is built upon existing work on mobile storage
systems, hybrid wireless networks and data management
for Internet of Things (IoT).

Energy-efficient mobile storage: Kim et al. [26] pro-
vided the evidence that slow flash technologies such as
SD and eMMC are the primary performance bottleneck
for several classes of mobile applications. Our previous
work [31] studied the energy overhead of mobile storage
systems and found that the mobile software stack con-
sumes more power than storage hardware. These find-
ings motivate our work, as these overheads become more
prominent on wearables where the battery is more con-
strained than on phones.

Recent optimizations to mobile storage [27, 22] ad-
dress some of the performance problems, but flash is
still 10,000x slower compared to DRAM. Emerging non-
volatile memory (NVM) technologies like PCM [29, 30,
6] are not yet available in the market. Battery-backed
RAM [34, 38, 32] is viable because batteries, DRAM
and flash are pervasive in mobile systems. Luo et al. [34]
proposed QuasiNVRAM that is a dedicated, known, con-
tiguous region of physical memory to provide perfor-
mance benefits for phone applications that use SQLite on
Android. WearDrive’s BB-RAM improves upon Quas-
iNVRAM by dynamically adapting to memory pressure,
not losing data during any class of crashes and by ex-
ploiting application characteristics to provide energy and
performance benefits.

Rio [45], BlueFS [39], EnsemBlue [40] Simba [1],
Segank [47], Bayou [49] and PersonalRAID [46] are
distributed file system techniques to share personal data
efficiently across mobile consumer electronic devices.
WearDrive is an energy-efficient storage system for data
intensive wearable workloads like extended-display and

sensor data analysis where the workload characteristic of
focus on the newest data is exploited to provide a quick
and energy-efficient mechanism to span data and compu-
tation across the wearable and the phone.

Data management for IoT: Time-series
databases [18, 15, 50] enable computations over
logs of sensor values. WearDrive is designed to provide
time-series data from sensors to applications on the
phone at a low-energy cost to enable such computa-
tions [37, 54, 42]. Android Wear SDK [3] provides
a library to share data between wearables and phone
via Bluetooth. WearDrive additionally takes energy-
efficiency as its primary design consideration, exploits
the recency-focused nature of wearable applications and
provides a low-energy durable storage and communi-
cation mechanism. WearDrive can also provide sensor
data to cloud-based fitness APIs [16, 12, 4] on the phone
at a low-energy cost.

Energy-efficient hybrid networks: Blue-
Fi [2], TailEnder [7], Turducken [48], WASP [25],
CoolSpots [41] and Bluetooth high speed wireless [10]
design heterogeneous networks for efficient data
transfer. We draw upon these works and present an
energy-efficient hybrid data transfer mechanism by ex-
ploiting application knowledge. We find that awareness
of data transfer size coupled with the technique where
BLE connection is used to predict WiFi’s quality enables
a mechanism to send data efficiently.

6 Conclusion
WearDrive demonstrates that battery-backed RAM (BB-
RAM) can provide significant performance and energy
benefits for wearable applications. It also shows how
Bluetooth and WiFi can be used in combination to pro-
vide a low-energy communication link (HYN) between
the wearables and the phone. BB-RAM in combina-
tion with HYN provides a quick and energy-efficient way
for wearable applications to span data across all the de-
vices on the body enabling new functionalities for users.
We validate these benefits with various typical wear-
able applications using a new wearable benchmarking
suite that we develop, and show that WearDrive is 1.16-
1.55x more energy-efficient compared to existing solu-
tions. WearDrive can leverage phone’s capabilities to re-
duce energy usage of wearables by up to 15.21x, with
trivial impact on phone for realistic wearable workloads.
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