
USENIX Association 2015 USENIX Annual Technical Conference

Errata Slip (Updated 12/23/15)
In the paper “Spartan: A Distributed Array Framework with Smart Tiling” by Chien-Chin Huang, New York University;
Qi Chen, Peking University; Zhaoguo Wang and Russell Power, New York University; Jorge Ortiz, IBM T.J. Watson
 Research Center; Jinyang Li, New York University; Zhen Xiao, Peking University (Wednesday session “Parallel &
Distributed Systems,” pp. 1–15 of the Proceedings), the authors corrected the following:

Continued on next page v

The read costs of figure 6.b are incorrect in the original version. The read cost of S1 in figure 6(b) should be S1.size if S1
is partitioned by row (originally mistyped as 0); if S1 is partitioned by column, the cost should be 0 (originally mistyped as
S1.size).
The read cost of S2 in figure 6(b) should be S2.size if S2 is partitioned by column (originally mistyped as 0); if S2 is parti-
tioned by row, the cost should be 0 (originally mistyped as S2.size).

In the paper “LAMA: Optimized Locality-aware Memory Allocation for Key-value Cache” by Xiameng Hu, Xiaolin Wang,
Yechen Li, Lan Zhou, and Yingwei Luo, Peking University; Chen Ding, University of Rochester; Song Jiang, Wayne State
University; Zhenlin Wang, Michigan Technological University (Wednesday session “Cloud Storage,” pp. 57–69 of the
proceedings), the following errors occurred:
Page 60, Section 3.2
Replace sentence:
Original Text
Now we can profile the MRC using fp distribution.
The miss ratio for cache size of x is the fraction of reuses
that have an average footprint smaller than x:
Corrected Text
Now we can profile the MRC using fp distribution.
The miss ratio for cache size of x is the fraction of reuses
that have an average footprint larger than x:
Page 68, References
Replace reference:
Original Text
[19] Jacob Brock, Yechen Li, Chencheng Ye, and Chen Ding. Optimal
cache partition-sharing : Dont ever take a fence down until you
know why it was put up. robert frost. In Proceedings of ICPP,
2015.
Corrected Text
[19] Jacob Brock, Chencheng Ye, Chen Ding, Yechen Li, Xiaolin
Wang, and Yingwei Luo. Optimal cache partition-sharing. In
Proceedings of ICPP, 2015

Figure 6(b) original Figure 6(b) corrected

USENIX Association 2015 USENIX Annual Technical Conference

In the paper “Latency-Tolerant Software Distributed Shared Memory,” by Jacob Nelson, Brandon Holt, Brandon Myers,
Preston Brigg, Luis Ceze, Simon Kahan, and Mark Oskin, University of Washington (Thursday session “Memory,” pp.
291–305 of the proceedings), the authors omitted the following:
Additional Text
Acknowledgements
This work was supported by NSF Grant CCF-1335466, Pacific Northwest
National Laboratory, and gifts from NetApp and Oracle.

In the paper “Hawk: Hybrid Datacenter Scheduling,” by Pamela Delgado and Florin Dinu, École Polytechnique Fédérale
de Lausanne (EPFL); Anne-Marie Kermarrec, Inria; Willy Zwaenepoel, École Polytechnique Fédérale de Lausanne
(EPFL) (Friday session, “Scheduling at Large Scale,” pp. 499–510 of the proceedings), the authors corrected the
following:
Page 505, Section 4.2
First column, last paragraph: “the percentage of jobs” was modified to “the fraction of jobs”
Page 509, Acknowledgements Section
“Schwartzkopf” was modified to “Schwarzkopf”

In the paper “Bolt: Faster Reconfiguration in Operating Systems,” by Sankaralingam Panneerselvam and Michael M.
Swift, University of Wisconsin—Madison (Friday session, “OS & Hardware,” pp. 511–516 of the proceedings), changes
have been made to text references regarding speculated hardware in the abstract, introduction and evaluation sections.
Original version:
The operating system is required to wait for 10ms for the purpose of
hardware initialization while starting up a x86 processor core. The
speculated hardware assumed zero initialization delay.
Corrected version:
The speculated hardware is real since the modern x86 multi-core
processors need not incur the initialization delay.

In the paper “Fence: Protecting Device Availability With Uniform Resource Control,” by Tao Li and Albert Rafetseder,
New York University; Rodrigo Fonseca, Brown University; Justin Cappos, New York University (Wednesday session,
“Dependability,” pp. 177–191 of the proceedings), the following changes were made:
In the original paper, the affiliation for Tao Li, Albert Rafetseder, and Justin Cappos was listed as Polytechnic Institute of
New York Univeristy. This was corrected to say New York University.
Table 1 and Table 2 were reformatted to fit within the column margins.

Continued on next page v

USENIX Association 2015 USENIX Annual Technical Conference

In the paper “Data Sharing or Resource Contention: Toward Performance Transparency on Multicore Systems,” by
Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen, University of Rochester, (Friday session, “OS & Hardware,”
pp. 529–540 of the proceedings), the following changes were made:
1. Figures 6(c) and Figure 8(c) contained incorrect Intra-Socket Coherence counts. This error has been corrected. This
errata reflects no change to the technique or the remaining qualitative and quantitative results. The only change to the
text to reflect the figure changes is as follows: “Note that for workloads 14 and 15, SAM shows reductions in” has been
changed to “Note that for some workloads, SAM shows reductions in.”

2. In Table 2, workload 16 characteristics were incorrectly a copy of workload 15. This error has been corrected
to “8 SVD, 8 LSGD”.

0

1

2

3

4

5

6
x 10

−4

Hubench (8t)

Lubench (8t)

MemBench (8t)

MemBench (6t)

Canneal (4t)

Bodytrack (4t)

TunkRank (4t)

TunkRank (10t)

RBM (4t)

ALS Small (4t)

ALS (4t)

ALS (10t)

SGD (4t)

SGD (10t)

BSGD (4t)

BSGD (10t)

SVD (4t)

SVD (10t)

PMF (4t)

LSGD (4t)

LSGD (10t)

SVD (8t)

SVD (6t)

In
tra

−s
oc

ke
t c

oh
er

en
ce

 p
er

 c
yc

le

(C) Intra−socket coherence

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Multiprogrammed workload number

In
tra

−s
oc

ke
t c

oh
er

en
ce

 p
er

 c
yc

le

(C) Intra−socket coherence

Figure 6(c) original

Figure 8(c) original

0

1

2

3

4

x 10
−3

Hubench (8t)

Lubench (8t)

MemBench (8t)

MemBench (6t)

Canneal (4t)

Bodytrack (4t)

TunkRank (4t)

TunkRank (10t)

RBM (4t)

ALS Small (4t)

ALS (4t)

ALS (10t)

SGD (4t)

SGD (10t)

BSGD (4t)

BSGD (10t)

SVD (4t)

SVD (10t)

PMF (4t)

LSGD (4t)

LSGD (10t)

SVD (8t)

SVD (6t)

In
tra

−s
oc

ke
t c

oh
er

en
ce

 p
er

 c
yc

le

(C) Intra−socket coherence

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
0

0.5

1

1.5

2

x 10
−3

Multiprogrammed workload number

In
tra

−s
oc

ke
t c

oh
er

en
ce

 p
er

 c
yc

le

(C) Intra−socket coherence

Figure 6(c) corrected

Figure 8(c) corrected

