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Message from the  
2014 USENIX Annual Technical Conference 

Program Co-Chairs

Welcome to the 2014 USENIX Annual Technical Conference.

This year’s program committee has put together a program of 44 papers, including five short papers. These papers 
span a wide range of topics covering both novel research contributions and practical ideas in storage systems, net-
working, big data, distributed systems, security, virtualization, multi-core systems, and hardware.

We received a record number of submissions this year. Authors submitted a total of 245 papers (after registering 305 
abstracts a few days before the submission deadline). Forty-nine of these were submissions of short papers, which 
had to be at most six pages long, and the other 196 were full-length papers that had to be at most 12 pages long. The 
program co-chairs rejected four of the full-length papers without review for violating format requirements (all were 
judged to give the authors at least a column of additional text).

The program committee reviewed the submissions over two rounds. In the first round, each of the 241 papers 
 received two reviews. Papers receiving an “accept” or “strong accept” review moved on to the second round, as 
well as papers with two “weak accept” reviews, papers without sufficiently confident reviewers, and papers where 
reviewers explicitly said the paper should advance to the second round. This amounted to a total of 110 papers. The 
remaining 131 papers were tentatively rejected. Papers in the second round received three more reviews, as well as 
additional reviews from external experts. Altogether, this produced 834 reviews.

After an online discussion among reviewers, the program committee met in person in April in Seattle, immediately 
after the USENIX NSDI conference; five of the members were unable to attend in person. Over a period of nine 
hours across two days, the committee discussed 66 papers that were highly ranked or merited further consideration 
after online discussion, and they decided to accept 36 papers, including four short papers. Shepherds were assigned 
to specific papers judged to have specific shortcomings.

This year, we introduced a resubmission process: for papers that appeared to contain interesting ideas and techniques 
but that could not be accepted in their submitted form, the program committee could reject the paper but give the 
 authors an option to resubmit a revised version of the paper. The program committee decided to give 11 rejected 
 papers (including one short paper) this option; each such paper was assigned a contact who helped the authors under-
stand reviewers’ concerns. All 11 authors took advantage of this option. The original reviewers read and commented 
on each resubmitted version over a period of a week and decided to accept 8 out of 11 resubmissions. Out of an average 
of five original reviewers per resubmitted paper, an average of four engaged in evaluating the resubmitted version.

The committee was comprised of 30 members, plus the two co-chairs. Twelve of them were affiliated with industrial 
organizations, and 22 were affiliated with academic institutions (two fell in both categories). Program commit-
tee members were allowed to submit papers. We followed conventional rules for handling conflicts of interest: 
con flicted members (or co-chairs) left the room during discussion of conflicted papers. One paper, authored by a 
co-chair, was separately handled by the other co-chair.

In addition to the authors that submitted their work for consideration, the program committee, and the external 
reviewers, we would like to thank the USENIX staff that took care of all organizational details. Their help made  
our jobs a lot easier and allowed us to focus on reviewing papers and putting together the technical program.

We hope that you enjoy the conference, and thank you for participating in the USENIX ATC community.

Garth Gibson, Carnegie Mellon University
Nickolai Zeldovich, Massachusetts Institute of Technology
USENIX ATC ’14 Program Co-Chairs

USENIX Association  2014 USENIX Annual Technical Conference vii





USENIX Association  2014 USENIX Annual Technical Conference 1

ShuffleWatcher: Shuffle-aware Scheduling in Multi-tenant 
MapReduce Clusters*

Faraz Ahmad*,†, Srimat T. Chakradhar‡, Anand Raghunathan†, T. N. Vijaykumar† 
*Teradata Aster, San Carlos, CA, USA, ‡NEC Laboratories America, Princeton, NJ, USA

†School of Electrical and Computer Engineering, Purdue University, IN, USA
faraz.ahmad@teradata.com, chak@nec-labs.com, {raghunathan,vijay}@ecn.purdue.edu 

Abstract
MapReduce clusters are usually multi-tenant (i.e., 

shared among multiple users and jobs) for improving 
cost and utilization. The performance of jobs in a multi-
tenant MapReduce cluster is greatly impacted by the all-
Map-to-all-Reduce communication, or Shuffle, which 
saturates the cluster’s hard-to-scale network bisection 
bandwidth. Previous schedulers optimize Map input 
locality but do not consider the Shuffle, which is often 
the dominant source of traffic in MapReduce clusters.

We propose ShuffleWatcher, a new multi-tenant 
MapReduce scheduler that shapes and reduces Shuffle 
traffic to improve cluster performance (throughput and 
job turn-around times), while operating within specified 
fairness constraints. ShuffleWatcher employs three key 
techniques. First, it curbs intra-job Map-Shuffle concur-
rency to shape Shuffle traffic by delaying or elongating 
a job’s Shuffle based on the network load. Second, it 
exploits the reduced intra-job concurrency and the flexi-
bility engendered by the replication of Map input data 
for fault tolerance to preferentially assign a job’s Map 
tasks to localize the Map output to as few nodes as pos-
sible. Third, it exploits localized Map output and 
delayed Shuffle to reduce the Shuffle traffic by prefer-
entially assigning a job’s Reduce tasks to the nodes con-
taining its Map output. ShuffleWatcher leverages 
opportunities that are unique to multi-tenancy, such 
overlapping Map with Shuffle across jobs rather than 
within a job, and trading-off intra-job concurrency for 
reduced Shuffle traffic. On a 100-node Amazon EC2 
cluster running Hadoop, ShuffleWatcher improves clus-
ter throughput by 39-46% and job turn-around times by 
27-32% over three state-of-the-art schedulers.

1  Introduction
MapReduce frameworks are commonly used to pro-

cess large volumes of data on clusters of commodity 
computers. MapReduce provides easy programmability, 
automatic data parallelization and transparent fault tol-
erance [13]. For cost-effectiveness and better utilization, 
MapReduce clusters are frequently multi-tenant (i.e., 
shared among multiple users and jobs). 

The performance of MapReduce clusters is greatly 
affected by the Shuffle, an all-Map-to-all-Reduce com-
munication, which stresses the network bisection band-

width. Typical MapReduce workloads contain a 
significant fraction of Shuffle-heavy jobs (e.g., 60% and 
20% of the jobs on the Yahoo and Facebook clusters, 
respectively, are reported to be Shuffle-heavy [9,39]). 
Shuffle-heavy MapReduce jobs typically process more 
data in the Shuffle and Reduce phases and hence run 
much longer than Shuffle-light jobs [2,3]. As such, 
Shuffle-heavy jobs significantly impact the cluster 
throughput. The execution of multiple, concurrent Shuf-
fles due to multi-tenancy worsens the pressure on the 
network bisection bandwidth. While network switch 
and link bandwidth scale with hardware technology, 
bisection bandwidth is a global resource that is hard to 
scale up with the cluster’s compute and storage 
resources (CPU, memory, disk). Even with recent 
advances in data center networks [4], large clusters are 
typically provisioned for per-node bisection bandwidth 
that is 5-20 times lower than the within-rack bandwidth 
[13,17,35,37,39]. 

Several previous multi-tenant schedulers address the 
problem of fairness among users or jobs (e.g., FIFO 
[21], Capacity [30], Fair [31] and Dominant Resource 
Fairness [16] schedulers). Other efforts improve cluster 
throughput by optimizing data locality in the Map phase 
[25,39] but do not address Shuffle, which is the domi-
nant source of network traffic in MapReduce. Our goal 
is to improve performance (cluster throughput and job 
turn-around time) within specified fairness constraints 
addressing the Shuffle bottleneck. Recent efforts 
[10,12,32] propose techniques to manage data center 
network traffic without changing network load. In con-
trast, we actively shape and reduce the network load.

We propose ShuffleWatcher, a new multi-tenant 
MapReduce scheduler that improves performance by 
exploiting a key trade-off between intra-job concur-
rency and Shuffle locality. Previous multi-tenant sched-
ulers adopt the approach of maximizing intra-job 
concurrency, while ensuring a fair division of resources 
among users. This approach is a carryover from single-
tenant scheduling; when there is a single job, utilizing 
the entire cluster (highest intra-job concurrency) typi-
cally ensures fastest turn-around times. Hence, concur-
rency is not traded for locality (although locality 
optimizations without sacrificing concurrency are wel-
come). However, adopting this concurrency-centric 
scheduling approach in multi-tenancy is neither neces-

*work was done while Faraz Ahmad was at Purdue University.
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sary (because concurrency may be exploited either 
within or across jobs), nor beneficial (because it often 
results in multiple concurrent, contending Shuffles, 
which saturate the network and degrade throughput). 

ShuffleWatcher employs three key mechanisms that 
leverage the aforementioned trade-off. The first mecha-
nism, called Network-Aware Shuffle Scheduling (NASS), 
curbs intra-job concurrency at high network loads to 
shape the Shuffle traffic. Previous schedulers typically 
overlap a job’s Shuffle with its own Map phase by creat-
ing and scheduling the Reduce tasks early in the Map 
phase. This rigidity in Reduce scheduling often results in 
multiple Shuffle-heavy jobs being concurrently sched-
uled, thereby saturating the network bisection bandwidth 
and hurting performance. We make the key observation 
that multi-tenancy presents a new degree of freedom to 
overlap the Shuffle and Map across jobs, rather than 
within a job. Accordingly, NASS curbs the intra-job 
Map-Shuffle concurrency at high network loads by 
delaying or elongating a job’s Shuffle. This profitably 
shapes the network traffic to alleviate congestion, while 
still achieving Map-Shuffle overlap across jobs. To 
maintain fairness for the user whose Shuffle is delayed, 
ShuffleWatcher schedules tasks (from the same or 
another job) of the same user that do not stress the net-
work. ShuffleWatcher defaults to favoring intra-job con-
currency when the load is low. 

The other two mechanisms of ShuffleWatcher exploit 
the fact that in multi-tenancy, each job inevitably experi-
ences reduced concurrency due to resource sharing with 
other jobs. ShuffleWatcher employs Shuffle-aware Map 
Placement (SAMP) on the Map side to trade this reduced 
concurrency with higher Shuffle locality. SAMP is based 
on the following assertion. Given a favorable Shuffle 
and Reduce schedule, a job’s Map assignment (e.g., to as 
few sub-clusters as possible) that optimizes Map plus 
Shuffle locality results in higher network traffic reduc-
tions compared to one that optimizes Map locality alone 
as done by previous schedulers. SAMP leverages input 
data replication to optimize the sum of Map and Shuffle 
locality. In contrast to previous schedulers, SAMP may 
forgo some Map locality to achieve higher Shuffle local-
ity. The favorable Shuffle and Reduce schedule is 
ensured by the other two mechanisms of ShuffleWatcher.

ShuffleWatcher employs Shuffle-aware Reduce 
placement (SARP) on the Reduce side to achieve higher 
Shuffle locality. Previous schedulers assign Reduce tasks 
to whichever node becomes free, assuming a uniform 
Map placement, and consequently, Map output distribu-
tion throughout the cluster. Such an assumption that may 
generally hold true for single-tenancy is no longer valid 
for multi-tenancy due to reduced concurrency per job. 
As a result, previous multi-tenant schedulers unnecessar-
ily spread out a job’s Shuffle in the cluster. SARP is 
based on the following assertion. Given a favorable Map 

and Shuffle schedule, a job’s Reduce assignment that 
optimizes Shuffle locality results in higher network traf-
fic reductions compared to one that randomly distributes 
Reduce tasks. The favorable Map and Shuffle schedule 
is ensured by the other two mechanisms of Shuffle-
Watcher. In ShuffleWatcher, most of the Map tasks finish 
before the Reduce tasks are scheduled whenever NASS 
delays the Shuffle and, therefore, the distribution of the 
intermediate data is known. SARP preferentially assigns 
each job’s Reduce tasks to sub-clusters based on how 
much of the job’s intermediate data they contain. Thus, 
SARP localizes most of the Shuffle and reduces cross-
bisection Shuffle traffic.

We implement ShuffleWatcher in Hadoop [21] com-
bined with Fair Scheduler [31]. On a 100-node Amazon 
EC2 cluster, ShuffleWatcher achieves 46% higher 
throughput and 48% reduced network traffic compared 
to Delay Scheduling [39] while improving job turn-
around times by 32%. One may think that by trading-off 
intra-job concurrency for Shuffle locality, Shuffle-
Watcher may sacrifice turn-around times to gain 
throughput; on the contrary, by improving Shuffle local-
ity and temporally balancing Shuffle traffic, Shuffle-
Watcher improves turn-around times, not only on 
average but of all 300 jobs in our experiments. 

The rest of the paper is organized as follows. We pro-
vide a brief overview of multi-tenant scheduling in 
Section 2, and describe ShuffleWatcher in Section 3. We 
present our experimental methodology in Section 4, and 
results in Section 5. We discuss related work in Section 6 
and conclude in Section 7.

2  Background, Challenges and 
Opportunities

We provide a brief background on scheduling in 
MapReduce clusters and discuss challenges and opportu-
nities offered by multi-tenant clusters.

2.1 MapReduce Job Execution
We begin with the aspects of a MapReduce job’s exe-

cution that are relevant to multi-tenant scheduling.
When executing a MapReduce job, Map and Reduce 

tasks are scheduled to maximize concurrency (i.e., 
occupy the entire cluster or as much as possible). Conse-
quently, the all-Map-to-all-Reduce Shuffle results in an 
all-nodes-to-all-nodes communication, which stresses 
the network bisection bandwidth [13,17,35,37,39]. 

To improve performance, a job’s Shuffle is over-
lapped with its own Map phase (i.e., the Shuffle of data 
produced by earlier Map tasks occurs while later Map 
tasks execute). To achieve this overlap, the scheduler 
must assign Reduce tasks (which perform the Shuffle) to 
nodes very early in the Map phase, before most of the 
Map tasks have even begun execution. Two key implica-
tions of this approach are: (1) The Shuffle’s schedule is 
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fixed rigidly relative to the Map phase and cannot 
change dynamically in response to network load, and (2) 
the distribution of intermediate data is not known when 
the Reduce tasks are assigned. In single-tenancy, 
because the Map tasks are spread out across the entire 
cluster, a random assignment of Reduce tasks to nodes is 
close to optimal because it not only exploits full concur-
rency. but also achieves the overlap with the Map phase.

To reduce network traffic by exploiting locality, the 
scheduler attempts to assign a Map task to either the 
node or the rack that holds the task’s input data. How-
ever, Shuffle locality is not considered because Reduce 
tasks are scheduled well before the distribution of Map 
output is known to gain the above-mentioned benefits.

2.2 Multi-tenant Scheduling
In a multi-tenant environment, users submit jobs to 

the scheduler, which enqueues and assigns the jobs’ Map 
and Reduce tasks to nodes based on a specified fairness 
policy. Many fairness policies have been proposed. For 
example, Fair Scheduler [31] uses a share-based order 
among users, while Dynamic Resource Fairness (DRF) 
[16] ensures that the critical resource shares are equal-
ized across users. From a scheduling perspective, the 
fairness policy effectively determines to which user’s 
jobs should an available node be allocated. Among the 
chosen user’s tasks, the earliest enqueued task that fits 
resources of the available node is scheduled. Under 
multi-tenancy, a single job does not have access to the 
full resources of the cluster, and therefore sees an inevi-
table reduction in concurrency. 

Previous multi-tenant schedulers preserve Map-input 
locality by scheduling Map tasks on nodes or racks that 
have the corresponding input data. They also retain the 
approach of overlapping Map and Shuffle phases within 
each job, spread out the Map and Reduce tasks of a job 
for maximal concurrency, and assign the tasks to nodes 
irrespective of how much Shuffle data they consume.

In this context, we wish to improve throughput and 
job latency while obeying the specified fairness criteria.

2.3 Challenges and Opportunities in Multi-
tenant Scheduling

The key challenge in multi-tenancy is that the execu-
tion of multiple concurrent shuffle-heavy jobs severely 
stresses the network bisection bandwidth. Previous 
schedulers optimize for Map-input traffic but not for 
Shuffle traffic. Moreover, they do not differentiate 
between Shuffle-heavy and Shuffle-light jobs and may 
concurrently schedule multiple Shuffle-heavy jobs, 
worsening the impact of network saturation. Such satu-
ration affects all running jobs (not just the Shuffle-heavy 
jobs), and severely degrades cluster throughput as well 
as individual job turn-around times.

While network switch and link bandwidth scale with 

hardware technology, bisection bandwidth is a global 
resource that is expensive to scale up with the cluster’s 
computational resources. Previous work [4] has pro-
posed new topologies that achieve high bisection band-
width without requiring custom, high-end switches. 
Nevertheless, provisioning for peak network bisection 
bandwidth requirements is still quite expensive, and 
wasteful because the full bandwidth is not utilized at all 
times [42]. Hence, clusters typically provide lower band-
widths at the aggregation and core layers of the network 
topology than at the cluster edges (i.e., the links to 
nodes). This bandwidth over-subscription results in sig-
nificant cost savings. Large clusters usually have band-
width over-subscription ratios ranging from 5:1 to 20:1 
or even higher. Therefore, when all nodes are concur-
rently communicating (as in Shuffle), the bisection band-
width available per node is still much less than 
bandwidth available within a rack (e.g., 50-200 Mbps 
compared to 1 Gbps within rack [13,17,35,37,39]). 

While multi-tenancy poses the above challenge, it 
also offers new opportunities. 
• Multi-tenant workloads often include a significant 
fraction of shuffle-light jobs [9,39], which may be over-
lapped with shuffle-heavy jobs without exacerbating the 
load on the cluster network. Current schedulers are Shuf-
fle-unaware, resulting in periods of relatively high and 
low Shuffle activity in the cluster. Figure 1 shows the 
measured Shuffle traffic vs. time in a 100-node Amazon 
EC2 cluster running a workload mix representative of 
Yahoo and Facebook clusters [9,39]. From the figure, we 
see that network load is quite bursty and saturates the 
network during some periods, while leaving it under-uti-
lized during other periods. This creates an opportunity to 
create a more temporally balanced network load.
• Unlike single-tenancy, where intra-job Map-Shuffle 
overlap is critical and delaying the Shuffle invariably 
hurts performance, multi-tenancy affords the possibility 
of achieving such overlap across jobs, creating an oppor-
tunity to flexibly schedule a job’s Shuffle.
• In multi-tenancy, each job gets only a fraction of the 
cluster resources for its execution. Such reduced concur-
rency results into a skewed intermediate data distribu-

FIGURE 1: Shuffle profile in 100-node EC2 multi-
tenant cluster
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tion, creating an opportunity to exploit Shuffle locality.
ShuffleWatcher exploits these opportunities to shape 

and to reduce the Shuffle traffic as described in the next 
section. Note that delaying Shuffle, or localizing Map 
and Reduce tasks of a job can be achieved without losing 
fairness by exploiting the choice among a user’s many 
jobs and tasks. For example, a user whose Reduce task is 
delayed to alleviate network load need not lose her turn. 
Instead, ShuffleWatcher schedules a Map or Reduce task 
of the same user whose input or intermediate data is 
present on the node. In effect, ShuffleWatcher operates 
within the confines of a specified fairness policy.

Many of the opportunities described above require 
curbing a single job’s concurrency. We show that such 
curbing can be done without hurting (and on the con-
trary, often improving) both cluster throughput and job 
turn-around times. Multi-tenancy implies that the cluster 
is shared among multiple jobs, so the concurrency avail-
able to each job is anyhow restricted. The aforemen-
tioned choice among a user’s jobs and tasks is typically 
sufficient to fully utilize cluster’s resources, and any loss 
in concurrency for a job is more than offset by the signif-
icant performance improvement due to Shuffle locality. 

3  ShuffleWatcher
Figure 2 shows a high-level overview of Shuffle-

Watcher. Like other multi-tenant schedulers, Shuffle-
Watcher receives job submissions from one or more 
users. The scheduler monitors the status of nodes in the 
cluster, and schedules Map and Reduce tasks to them as 
they become available. ShuffleWatcher consists of three 
components: Network-Aware Shuffle Scheduling (NASS)
(Section 3.1), Shuffle-Aware Map Placement (SAMP 
(Section 3.2), and Shuffle-Aware Reduce Placement 
(SARP) (Section 3.3). 

3.1 Network-aware Shuffle Scheduling (NASS)
Figure 3 shows a high-level overview of steps per-

formed by NASS, which is invoked whenever a worker 
node in the cluster requests a new task. First, NASS 
picks a user to whom the node should be allocated as per 

fairness criteria (line 1) which can be based on any of the 
policies proposed previously [16,21,30,31]. Tasks only 
from the selected user’s jobs are considered in the 
remaining steps (lines 2-19) of NASS to ensure the 
user’s fair share. 

The remaining steps in NASS, which differ signifi-
cantly from previous MapReduce schedulers, are 
responsible for shaping the Shuffle traffic by exploiting 
the concurrency-locality trade-off (Section 2). This 
trade-off is driven by the network load as monitored by a 
daemon, called NetSat, which periodically determines 
each node’s cross-rack traffic of all jobs due to the Shuf-
fle, remote Map input reads, and Reduce output writes. 
NetSat compares the ratio of the traffic and the cross-
rack bandwidth available to the node against a threshold, 
called NWSaturationThreshold, to set a flag, called Net-
workSaturated, when the ratio exceeds the threshold. We 
found that NWSaturationThreshold can be in the broad 
75-100% range and result in less than 1% difference in 
cluster throughput. While our current NetSat implemen-
tation uses only the limited notions of within-rack and 
cross-rack traffic, more precise information about the 
network topology or network congestion monitoring 
mechanisms, when available, can be used. Similarly, 
while NetSat currently monitors network traffic only due 
to MapReduce jobs in the cluster, the daemon can be 
modified to account for traffic from other applications 
running concurrently in the cluster (e.g., interactive 
workloads and MPI jobs). 

If NetworkSaturated is true, NASS orders the Map 
and Reduce tasks so as to reduce the load on the network 
(lines 3-9). In this ordering, NASS curbs intra-job Map-
Shuffle concurrency by preferring Map tasks and delay-

FIGURE 2: Overview of ShuffleWatcher
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FIGURE 3: NASS Algorithm

Invoked when a worker on rack r requests a task
1. Select user based on fairness policy.
2. if (NetworkSaturated) {
3. find a task of selected user in the following order:
4. Map task for which r is in PreferredMapRacks (from SAMP)
5. Local Map task of any job
6. Any available Map task
7. Reduce task of any Shuffle-light job
8. Reduce task of Shuffle-heavy job for which 

PreferredReducesPerRack[r] is not met (from SARP)
9. Any available Reduce task 
10. }
11. else {
12. find a task of selected user in the following order:
13. Reduce task of Shuffle-heavy job for which 

PreferredReducesPerRack[r] is not met (from SARP)
14. Reduce task of any Shuffle-heavy job
15. Any available Reduce task
16. Map task for which r is in PreferredMapRacks (from SAMP)
17. Local Map task of any job
18. Any available Map task
19. }
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ing Reduce tasks and the associated Shuffle. NASS 
looks for a Map task of the selected user in the following 
categories listed in the order of increasing network load 
(lines 4-6): Map tasks for which the rack of the node 
requesting work is in SAMP’s PreferredMapRacks (line 
4) as described in Section 3.2; remaining local Map tasks 
(line 5), and remaining Map tasks (line 6). For local Map 
tasks, NASS obeys the locality-driven Map scheduling 
typically used in previous schedulers where node-local 
and rack-local tasks are explored in that order. In some 
cases, SAMP may explicitly decide that incurring some 
remote Map tasks reduces the total (remote Map + Shuf-
fle) traffic. Such Map tasks are covered in SAMP’s Pre-
ferredMapRacks. Within each category, the tasks are 
ordered by job arrival times. 

If there is no available Map task, NASS looks for a 
Reduce task of the selected user in the order of increas-
ing Shuffle volume (lines 7-9). The jobs are categorized 
into Shuffle-heavy and Shuffle-light based on the Shuf-
fle-to-Map-input volume ratio, called ShuffleInputRatio 
(ratio > 1.0 indicates a Shuffle-heavy job). Our current 
implementation initializes this ratio to be 1.0 and 
dynamically updates the value as the Map phase of a job 
progresses. This ratio could also be provided by the user, 
if known in advance, or tracked from previous runs of 
the job. NASS’s preferred order for Reduce tasks is: 
Shuffle-light (line 7), Shuffle-heavy from a job for 
which fewer than the desired number of Reduces as 
identified by SARP’s PreferredReducesPerRack have been 
executed (line 8) as described in Section 3.3, followed 
by any Reduce task (line 9). 

If NetworkSaturated is false, NASS defaults to favor-
ing high intra-job concurrency by prioritizing Reduce 
tasks (and hence the Shuffle) over Map tasks (lines 12-
18). Accordingly, NASS prioritizes Shuffle-heavy 
Reduce tasks preferred by SARP, followed by Reduce 
tasks of any Shuffle-heavy job to fully utilize the avail-
able bandwidth followed by Reduce tasks of any Shuf-
fle-light job (lines 13-15). In the absence of a Reduce 
task, NASS schedules a Map task following the same 
preference order as in the saturated-network case to 

improve locality (lines 16-18). Because NASS is guaran-
teed to choose either a Map task (line 6 and line 18) or a 
Reduce task (line 9 and line 15) of the selected user irre-
spective of network saturation, NASS maintains fair-
ness. One may think that because NASS maintains per-
user fairness but not per-job fairness, NASS may either 
hurt the turn-around times of some jobs or not perform 
well under per-job fairness. We address both these con-
cerns in our results and show that neither of these con-
cerns is true (Section 5.2 and Section 5.4, respectively). 

3.2 Shuffle-aware Map Placement (SAMP)
Recall from Section 2.3 that in multi-tenancy, each 

job experiences reduced concurrency resulting into a 
skewed intermediate data distribution. The Map-input 
locality driven Map scheduling employed in previous 
MapReduce schedulers [21, 39] does not consider Shuf-
fle locality. SAMP goes beyond previous schedulers in 
two ways: (i) it leverages input data replication to local-
ize intermediate data for a job, by prioritizing the execu-
tion of some replicas over others, and (ii) it allows 
remote execution of Map tasks when the resulting 
remote Map input traffic is outweighed by the Shuffle 
traffic reduction due to localized intermediate data. Such 
restriction of a job’s Map tasks to a subset of nodes or 
racks achieves high Shuffle locality at the expense of full 
intra-job concurrency, which is anyway not available in 
multi-tenancy. SAMP relies on NASS and SARP to 
exploit Shuffle locality in later phases of a job execution. 

The procedure used by SAMP is shown in Figure 4. 
SAMP is triggered once per job, at the time of job sub-
mission. Based on the locations of a job’s input data, 
SAMP prepares a sorted list of racks in decreasing order 
of the amount of the job’s input data that they contain 
(line 1). SAMP initializes a list of racks, TmpMapRacks, 
(line 2) and a variable CrossRackTraffic to measure 
cross-rack traffic (line 3). Next, SAMP keeps adding 
racks to TmpMapRacks in the sorted order, and com-
putes the resulting CrossRackTraffic as the sum of 
remote Map traffic incurred and cross-rack Shuffle vol-

FIGURE 4: SAMP Algorithm

1. Sort racks in decreasing order of input data for j
2. TmpMapRacks = {}
3. CrossRackTraffic = infinity
4. do {
5. remove first rack r in sorted list and add to TmpMapRacks
6. estimate CrossRackTraffic = remote Map traffic + cross-rack 

Shuffle //assumes SARP is used.
7. } while (CrossRackTraffic decreases)
8. PreferredMapRacks = TmpMapRacks
9. compute TentativeReducesPerRack for SARP assuming Map 

tasks are scheduled on PreferredMapRacks

Invoked when a new job j is submitted

FIGURE 5: Cross-rack Shuffle Reduction with SAMP
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ume until this sum is minimized (lines 4-7). Remote 
Map traffic is estimated from the fraction of the job’s 
input data that does not reside on the racks in Tmp-
MapRacks, whereas cross-rack Shuffle volume is esti-
mated based on the job’s ShuffleInputRatio (Section 3.1) 
and assuming SARP’s Reduce placement. The final list 
of racks TmpMapRacks is assigned to Preferred-
MapRacks (line 8) which is then communicated to 
NASS for task scheduling (Section 3.1). SAMP also 
computes an estimated number of Reduce tasks for each 
rack (TentativeReducesPerRack) assuming that the Map 
tasks are scheduled on PreferredMapRacks. TentativeR-
educesPerRack is used by SARP when SARP is invoked 
after only a few Map tasks complete, (i.e., intermediate 
data locations are unavailable) (Figure 6, lines 4-6). 

To highlight the advantages of SAMP, Figure 5 shows 
a simple example with two jobs, job1 and job2, whose 
input data is replicated and available on two racks, rack1
and rack2. Because the nodes of each rack become avail-
able to execute tasks at roughly the same rate, previous 
schedulers would assign equal numbers of Map tasks for 
each job to the nodes within each rack, without incurring 
remote Map traffic. However, such scheduling results in 
uniform intermediate data distribution for both jobs, cre-
ating little opportunity for SARP to reduce cross-rack 
Shuffle traffic. In contrast, SAMP’s PreferredMapRacks
selection (rack1 for job1, rack2 for job2) results in a 
schedule that places all the intermediate data for job1 on 
rack1 and for job2 on rack2, which SARP can exploit to 
reduce cross-rack Shuffle traffic for both jobs. In this 
example, note that SAMP exploits input data replication 
to avoid remote Map traffic. 

3.3 Shuffle-aware Reduce Placement (SARP)
Recall from Section 2.3 that the intermediate data dis-

tribution is likely to be skewed in a multi-tenant cluster. 
The scheduling of Reduce tasks solely based on node 
availability increases the volume of cross-rack Shuffle 
traffic. Shuffle-aware Reduce placement (SARP) 
exploits SAMP’s Map assignment and NASS’s delayed 
Reduce scheduling to localize most of the Shuffle within 
racks. SARP achieves this localization by computing a 
preferred number of Reduce tasks on each rack based on 
the amount of intermediate data the rack holds. 

SARP’s algorithm is shown in Figure 6. SARP is 

invoked when the Reduce tasks of a job are first enabled 
for scheduling. This enabling is done when either the 
Map phase is complete or there are unoccupied slots for 
the user to schedule a task. SARP first checks whether 
sufficient number of Map tasks have been completed for 
the job and significant intermediate data has been accu-
mulated, in order to decrease the chances of poor rack 
preferences. This check is done by comparing the frac-
tion of completed Maps to a threshold, MapCompletion-
Threshold (line 1). Because NASS schedules Reduce 
tasks as late as possible, this criterion is satisfied in the 
common case. SARP then computes (lines 2-3) the pre-
ferred number of Reduce tasks for the job on a rack, Pre-
ferredReducesPerRack, by multiplying the job’s total 
number of Reduce tasks (typically specified by the user 
in current systems) with the fraction of intermediate data 
residing on the rack. We found that MapCompletion-
Threshold can be in the broad 5-25% range for less than 
1% difference in cluster throughput. 

In the (uncommon) case when SARP is invoked for a 
job before sufficient Maps have been executed, SARP 
relies on SAMP’s predictive analysis to decide how 
many Reduce tasks should be executed on each rack 
(TentativeReducePerRack (Section 3.2)) (lines 5-6). 

SARP computes the preferred number of Reduce 
tasks per rack but does not specify which Reduce task is 
scheduled on which rack. Because the intermediate data 
on each rack is likely to contain most or all of the keys 
(of MapReduce key-value pairs), any Reduce task can be 
scheduled on a given rack. Therefore, NASS chooses as 
many available Reduce tasks as specified by SARP. 

One may think that SARP’s localization may unbal-
ance load across nodes or racks. Because a free node is 
always assigned some work (preferred or otherwise -line 
9 or 18 in Figure 3), such imbalance does not occur. 

Figure 7 illustrates a simple example showing 
SARP’s Shuffle traffic reduction in a cluster for two jobs 
whose data resides only on two racks. When the Reduce 

FIGURE 6: SARP Algorithm

1.if (fraction of Maps completed > MapCompletionThreshold)
2. for each rack r
3. PreferredReducesPerRack[r] = NumReduces * Intermediate 

data size on rack r / Current Intermediate data size of j
4.} else
5. for each rack r
6. PreferredReducesPerRack[r] = TentativeReducesPerRack[r]

Invoked when job j schedules its Reduce tasks

FIGURE 7: Cross-rack Shuffle reduction with SARP
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tasks are evenly distributed among the racks, both jobs 
need to transfer half (50GB) of their intermediate data 
from one rack to the other. With SARP, each job needs to 
transfer only 18GB of intermediate data across the racks 
reducing the cross-rack Shuffle traffic by 64%. The 
reductions in Shuffle traffic is even greater for cases 
where previous schedulers’ random placement assigns 
all Reduce tasks of job1 to rack1 and of job2 to rack2.

3.4 Discussion
We end our description of ShuffleWatcher by provid-

ing a few additional insights and clarifications.
One possible alternative to ShuffleWatcher is simply 

to reduce the Shuffle traffic by assigning Reduce tasks to 
machines or racks in proportion to the distribution of the 
intermediate (Map output) data or the input data. While 
ShuffleWatcher achieves the same effect by preferen-
tially assigning Reduce tasks to the nodes containing the 
intermediate data, the alternative approach is simpler. 
However, such an approach does not consider other 
equally-important aspects of multi-tenancy, such as job 
latency, cluster utilization, and fairness. For example, to 
schedule Reduce tasks based solely on the intermediate 
data distribution, the scheduler must delay the Shuffle 
until the Map phase is complete, entirely losing the 
opportunity for intra-job Shuffle-Map concurrency and 
potentially increasing job latency. Alternately, schedul-
ing Reduce tasks based solely on the input data distribu-
tion eliminates exploiting any additional skew in the 
intermediate data. In both cases, fixing the assignment of 
Reduce tasks to machines leaves the scheduler with lim-
ited flexibility. If none of a job’s tasks can be executed 
on a free machine due to the assignment, then resources 
are under-utilized. As such, the scheduler must reduce 
Shuffle volume while considering these other important 
aspects, which preclude a simple or fixed assignment 
and necessitate the more complete approach of Shuffle-
Watcher. Finally, the alternative approach does not tem-
porally shape the Shuffle traffic and therefore does not 
capture a significant part of ShuffleWatcher’s improve-
ments (more than 40% in Figure 12).

The mechanisms for tracking job execution, fault tol-
erance, straggler identification and backup task execu-
tion, are not modified by ShuffleWatcher. 

In rare cases, Shuffle-aware scheduling employed by 
ShuffleWatcher may result in a particular job getting 
starved due to unavailability of preferred racks (caused 

by load or failure), while other jobs from the same user 
are executed to satisfy the fairness constraint. Shuffle-
Watcher addresses this problem by tracking job submis-
sion times at the granularity of a window such that a 
user’s jobs submitted in an earlier window are prioritized 
over those submitted in a later one, overriding the heu-
ristics in NASS, SAMP and SARP. The window width 
acts like a time-out interval and can be set as some multi-
ple of the average job completion time. A window of 10 
minutes was enough to prevent starvation of any jobs in 
our cluster.

By default, ShuffleWatcher improves performance 
while strictly obeying the constraints provided by any 
fairness policy (we evaluate ShuffleWatcher using two 
such policies in Section 5). However, ShuffleWatcher 
can be operated under relaxed fairness constraints (e.g., 
as employed in Delay Scheduling [39]). We evaluate the 
impact of relaxed fairness constraints in Section 5.

Finally, although ShuffleWatcher performs addi-
tional steps (Figure 2) compared to current schedulers, 
these steps do not impact scalability as they are executed 
either periodically at a low frequency (NetSat) or only 
once per job (SAMP and SARP). The computation in 
NASS is quite simple, and adds negligible overheads.

4  Experimental Methodology 
We implement ShuffleWatcher in Hadoop (version 

1.0.0) [21], and evaluate on a 100-node testbed in Ama-
zon’s Elastic Compute Cloud (EC2) [5]. 

4.1 Testbed
In the 100-node cluster, we use “extra-large” 

instances, each with 4 virtual cores and 15 GB of mem-
ory. EC2 does not provide any information about the 
underlying network topology or physical locations of the 
instances. In large clusters, the cross-rack bandwidth is 
usually much lower than the within-rack bandwidth [13, 
21, 25, 39]. To emulate a cluster with realistic band-
widths and to distinguish the nodes from each other 
based on their location (e.g., rack-local versus rack-
remote), we divide our cluster into 10 sub-clusters of 10 
nodes each. We identify the sub-clusters by their elastic 
IP addresses assigned based on their location in EC2. We 
use the network utility tools tc and iptables to limit the 
aggregate bandwidth from one sub-cluster to another to 
500 Mbps (50 Mbps is the typical per-node bisection 
bandwidth [13, 37, 35, 12]), without limiting the band-

Table 1: Benchmarks Characterization

Shuffle-heavy terasort(5%), ranked-inverted-index(10%), self-
join(10%), word-sequence-count(10%), adja-
cency-list(5%)

Shuffle-medium inverted-index(10%), term-vector(10%)

Shuffle-light grep(15%), wordcount(10%), classification(5%), 
histogram-movies(5%), histogram-ratings(5%)

Table 2: Distribution of job sizes

Input job sizes % jobs Input job sizes % jobs

< 100MB 20% 100GB - 200GB 10%

100MB- 1GB 19% 200GB - 500GB 7%

1GB - 20GB 21% 500GB - 1TB 8%

20GB - 100GB 10% > 1TB 5%
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widths within each sub-cluster. Because the aggregate 
bandwidth, and not individual link bandwidths, is lim-
ited, a subset of nodes can fully utilize the entire aggre-
gate bandwidth when the other nodes are not using their 
links. We measure the bandwidth within each sub-cluster 
to be around 250 Mbps, resulting in the ratio of cross-
rack and within-rack per-node bandwidths to be 5:1 at 
peak network utilization. This ratio being at the lower 
end of typical over-subscription ranging from 5:1 to 20:1 
or even higher makes our results conservative; a higher 
ratio would mean lower bisection bandwidth making 
ShuffleWatcher even more important. Similarly, using a 
shared cluster such as EC2 instead of a dedicated cluster 
makes our results conservative and realistic because the 
shared cluster comes with network traffic interference 
from jobs outside ShuffleWatcher’s control which would 
be the case in real deployments. This interference 
impacts the accuracy of NetSat’s estimate of network sat-
uration, despite which ShuffleWatcher achieves signifi-
cant improvements. 

4.2 Multi-tenant Scheduler Implementations
We implement ShuffleWatcher on top of two fairness 

schemes, Fair Scheduler [31] and Dominant Resource 
Fairness (DRF) [16]. We compare ShuffleWatcher to 
these baselines as well as Delay Scheduler [39]. Delay 
Scheduler implementation is open-source and is avail-
able with Hadoop release. Delay Scheduler is imple-
mented on top of Fair Scheduler and exploits relaxed 
fairness among users. For a fair comparison with Delay 
Scheduler, we configure ShuffleWatcher with Delay 
Scheduler’s relaxed fairness constraints. For the Fair 
Scheduler-based implementations, each node concur-
rently runs four Map tasks and two Reduce tasks. DRF is 
another scheduler based on generalized min-max fair-
ness algorithm [16]. Because DRF’s implementation is 
not publicly available, we develop one. To determine a 
job’s CPU and memory requirements for DRF, we run 
each of our benchmark jobs individually and monitor the 
maximum resources needed, as done in [16]. 

For ShuffleWatcher, we set NWSaturationThreshold, 
the per-rack link utilization threshold to measure net-
work saturation (Section 3.1), to 400 Mbps which is 
80% of the admissible bandwidth capacity. We set Map-
CompletionThreshold, the fraction of Map tasks to be 
completed after which SARP computes the preferred 
locations for Reduce tasks based on actual intermediate 
data rather than on SAMP’s prediction (Section 3.3), to 
be 15%. Because NASS considers SAMP’s preferences 
during scheduling, the actual intermediate data and 
SAMP’s predictions are so close that our performance 
improvements are not sensitive to variations in this 
parameter. We choose the default distributed file system 
(HDFS) block size of 64 MB and replication factor of 3.

4.3 Workloads
We use typical workloads consisting of benchmarks 

drawn from the Hadoop release and [2]. Based on Shuf-
fleInputRatio (Section 3.1), we characterize the bench-
marks as Shuffle-heavy, Shuffle-medium or Shuffle-light 
in Table 1. The table also shows the percentage of jobs 
of each type in the workload. The variation in job mixes 
and the variation in job input sizes (Table 2) are based on 
real workloads from Yahoo and Facebook [9]. 

We set the number of users to 30 for our 100-node 
cluster, consistent with the Facebook cluster usage 
reported in [39] (200 users for a 600-node cluster). Job 
submission follows an exponential distribution [39, 9, 
16]. Each user picks a job from our suite in Table 1, 
although with different input datasets. After testing with 
different mean job inter-arrival times, we set the mean to 
be 40 seconds to utilize the cluster maximally for the 
base case (Delay Scheduler). We use the same job arrival 
rates for all schedulers. 

Because we are interested only in the steady-state 
period of the cluster under full load, we ignore the load 
ramp-up and ramp-down periods. We run each experi-
ment for a steady-state duration of 4 hours.

5  Experimental Results
We first show Shuffle’s importance (Section 5.1) and 

then compare ShuffleWatcher against three baselines, 
namely Fair Scheduler, Delay Scheduler, and DRF 
Scheduler (Section 5.2). We then isolate the impact of 
NASS, SARP and SAMP (Section 5.3) Finally, we show 
the impact of varying the number of jobs per user 
(Section 5.4) and the job mix (Section 5.5) on Shuffle-
Watcher’s improvements. 

5.1 Importance of the Shuffle
Table 3 shows the actual volumes of the total Shuffle 

(within-rack and cross-rack), cross-rack Shuffle and 
remote Map traffic for Shuffle-heavy, Shuffle-medium 
and Shuffle-light jobs under Fair Scheduler. We show 
cross-rack traffic as a proxy for the bisection bandwidth 
demand. From the first two columns, we see that most of 
the Shuffle (~ 90%) is across racks. From the last three 
columns, we see that the cross-rack Shuffle volume of 
the Shuffle-heavy jobs has a significant contribution 
(>75%) of the total cross-rack traffic, and the contribu-

Table 3: Traffic Volume (GB) under Fair Scheduler

Job Type Total 
Shuffle

Cross-
Rack 

Shuffle

Remote 
Map 

Traffic

Total 
Cross-Rack 

Traffic

Shuffle-heavy 1261 1108 187 1295

Shuffle-medium 70 63 38 101

Shuffle-light 13 11 48 59
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tion of the remote Map traffic is less than 20% of the 
total cross-rack traffic. These numbers confirm the Shuf-
fle’s dominance and justify our focus on the Shuffle. 

5.2 Performance
Figure 8 shows ShuffleWatcher operating under two 

fairness policies — Fair Scheduler (SW-fair) and DRF 
Scheduler (SW-DRF). To ensure a fair comparison with 
Delay Scheduler (Delay) which relaxes fairness con-
straints, we also show ShuffleWatcher configured with 
similarly relaxed constraints (SW-relaxed). We use 
relaxed fairness interval of five seconds, consistent with 
[39]. In the three graphs in Figure 8(a-c) with two sub-
graphs per graph, the Y-axes represent throughput, turn-
around time and cross-rack traffic, respectively. The first 
sub-graph shows Fair, SW-fair, Delay, and SW-relaxed 
which use Fair Scheduler’s fairness policy and therefore 
are normalized to Fair. The second sub-graph shows 
DRF and SW-DRF which use the DRF policy and there-
fore are normalized to DRF. 

ShuffleWatcher (SW-fair) achieves significant 
improvements over Fair Scheduler, with 39% higher 
throughput (Figure 8(a)), 27% lower turn-around time 
(Figure 8(b)) and 36% lower cross-rack traffic 
(Figure 8(c)). Compared to Delay Scheduler (Delay), 
ShuffleWatcher (SW-relaxed) achieves more improve-
ments. Specifically, SW-relaxed is 46%, 32%, and 48% 
better than Delay in throughput, turn-around time, and 
cross-rack traffic, respectively (computed from the 

graphs). SW-DRF also achieves similar performance 
improvements as SW-fair, showing that our improve-
ments are largely independent of the underlying fairness 
policy. In the rest of the paper, we report results only for 
SW-fair, because results for SW-DRF are similar. 

Figure 9 shows the average intra-job concurrency in 
Fair Scheduler and ShuffleWatcher measured as the frac-
tion of the allocated per-user slots (resources) occupied 
by a job’s Map and Reduce tasks during first, middle and 
last thirds of the job’s work completion. Because typi-
cally Map tasks are numerous and Reduce tasks are 
fewer, Fair Scheduler’s concurrency fraction goes from 
nearly one for Map phase in the first two-thirds of a job’s 
execution (i.e., one job’s Map tasks occupy almost all of 
the user’s slots) to less than half for the Reduce phase in 
the last third of a job’s execution (i.e., one job’s Reduce 
tasks leave vacant slots which are occupied by the user’s 
other jobs). The graph shows that ShuffleWatcher trades 
off intra-job concurrency for Shuffle locality. While the 
lower Map and Reduce concurrencies due to SAMP and 
SARP are obvious, these lower concurrencies also mean 
lower Map-Shuffle concurrency due to NASS. 

Figure 10 shows the measured cross-rack Shuffle 
traffic over time in our testbed for one of our Shuffle-
Watcher runs. Comparing this profile with that for Fair 
Scheduler in Figure 1, we see that the network traffic 
with ShuffleWatcher is relatively balanced. 

To show that ShuffleWatcher does not hurt any job’s 
turn-around time by trading-off intra-job concurrency 

FIGURE 8: Performance comparison
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for throughput, Figure 11 plots the turn-around times of 
individual jobs in Fair Scheduler and ShuffleWatcher. 
The Y-axis shows the turn-around times and the X-axis 
shows the jobs ordered in increasing turn-around times 
under Fair Scheduler (for clarity, jobs 0-90 are shown 
separately in a blow-up). We see that ShuffleWatcher 
improves the turn-around time of every one of our 300 
jobs, irrespective of the job’s size or its Shuffle intensity.
This result confirms that by trading-off intra-job concur-
rency for Shuffle locality in the presence of high conten-
tion in multi-tenancy, ShuffleWatcher improves both 
throughput and turn-around times. 

5.3 Impact of NASS, SARP and SAMP
Figure 12 and Figure 13 isolate the impact of NASS, 

SARP and SAMP by showing a breakdown of Shuffle-
Watcher’s throughput improvements and traffic reduc-
tion. Because SARP cannot work without NASS and 
SAMP cannot work without NASS and SARP, our 
breakdown is additive in the order of NASS, SARP, and 
SAMP. We omit the turn-around times breakdown which 
is similar to the throughput breakdown. In Figure 12 and 
Figure 13, the Y-axes show throughput and cross-rack 
traffic, respectively, for ShuffleWatcher normalized to 
those for Fair Scheduler. We show the breakdown for 
Shuffle-heavy, Shuffle-medium and Shuffle-light jobs 
separately, and all the jobs together, to give better insight 
into ShuffleWatcher’s improvements. 

From Figure 12, we see that the contribution of each 
technique is significant across all the three types of jobs. 
Going from Shuffle-heavy to Shuffle-light, the overall 
improvement and NASS’s contribution increase. With-
out ShuffleWatcher, the Shuffle-light jobs’ short run 
times are greatly degraded by interference from Shuffle-
heavy jobs. ShuffleWatcher, and NASS in particular, 
reduce this interference, resulting in the observed trend. 

The cross-rack traffic breakdown graph in Figure 13 
splits the cross-rack traffic into Shuffle traffic and 
remote Map traffic. From the graph, we see that NASS 
does not reduce the cross-rack traffic (recall that NASS 
only shapes, but does not reduce, the traffic). However, 
SARP, which leverages NASS to improve Reduce-side 
locality, reduces the cross-rack traffic of Shuffle-heavy, 

Shuffle-medium and Shuffle-light jobs by 16%, 13% and 
4%, respectively, with total traffic reduction of 15%. The 
reduction due to SARP in Shuffle-light jobs’ cross-rack 
traffic is insignificant because most of the traffic of these 
jobs is due not to the Shuffle but to remote Map tasks 
(Table 3) which are not impacted by SARP. Similarly, 
SAMP, which leverages NASS and SARP to improve 
Map-side locality, reduces the cross-rack Shuffle traffic 
by 38%, 23% and 4% for the three job types, while 
reducing the total traffic by 36%. From the graph, we see 
that SAMP incurs a small increase in the remote Map 
traffic for Shuffle-heavy jobs (~3%) to localize the Shuf-
fle to fewer racks, but reduces the total cross-rack traffic 
volume. Such small increase shows that SAMP success-
fully exploits data replication to localize the Shuffle 
without incurring significant remote Map traffic over-
head. The graph also shows that the total cross-rack traf-
fic reduction for all the jobs together closely follows that 
for the Shuffle-heavy jobs which contribute a significant 
portion of the traffic (Table 3). 

5.4 Impact of varying jobs per user
Because ShuffleWatcher exploits the choice among a 

given user’s jobs (i.e., per-user fairness) to adapt to the 
network load, ShuffleWatcher may not perform well 
with only one job per user, which is equivalent to per-job 
fairness. To address this concern, Figure 14(a) shows 
ShuffleWatcher’s sensitivity to the number of jobs per 
user. We use the same mean job arrival rate as before, 
but vary the number of jobs per user as 1, 9, 12 (default), 
and 18. We evaluated the case of one job per user in a 
local 16-node cluster and the rest of the cases in EC2 as 
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before (we added the first case later, hence the different 
set up). Therefore, we isolate the one job per user in the 
left sub-graph while the rest are shown in the right. 

The figure shows that even with one job per user 
ShuffleWatcher achieves 16% higher throughput over 
Fair Scheduler by choosing between the job’s Map and 
Reduce tasks based on network loading. This result 
shows that ShuffleWatcher performs well even under 
per-job fairness. From the right sub-graph, we see that 
ShuffleWatcher achieves higher improvements with 
more jobs per user (i.e., under per-user fairness). With 
more jobs per user, ShuffleWatcher has more choices in 
its scheduling decisions and, therefore, achieves better 
network traffic shaping and reduction. 

5.5 Sensitivity to the variation in job mix
We show ShuffleWatcher’s sensitivity to the job mix 

in the workload. Figure 14(b) shows throughput 
improvements over Fair Scheduler for three different 
mixes of Shuffle-light, Shuffle-medium, and Shuffle-
heavy jobs: mix1 with 20%, 20% and 60%, respectively; 
mix2 with 40%, 20%, and 40%, respectively (default); 
and mix3 with 60%, 20% and 20%, respectively.

From the figure, we see that ShuffleWatcher 
improves throughput by 31% and 22% for mix1 and 
mix3, respectively, compared to 39% for mix2. The 
improvements for mix1 and mix3 are significant but 
lower than that for mix2 because of reduced opportunity. 
Compared to mix2, mix1’s larger fraction of Shuffle-
heavy jobs means higher network pressure with fewer 
low-utilization periods; and mix3’s larger fraction of 
Shuffle-light jobs means lower network saturation. Nev-
ertheless, significant improvements over a wide range of 
job mixes demonstrate ShuffleWatcher’s effectiveness. 

5.6 Execution on a dedicated cluster
In addition to 100-node EC2 runs, we also performed 

runs on a dedicated 16 Xeon-nodes cluster to isolate the 
interference from jobs outside ShuffleWatcher’s control. 
We scaled down job arrival rate, job sizes, and number 
of users to match the cluster configuration. We divided 
the cluster into 4 sub-clusters of 4 nodes each and lim-
ited the per-node bisection bandwidth to be the same as 
in the EC2 cluster (50Mbps). Our results exceeded the 

performance achieved in the EC2 cluster. Shuffle-
Watcher achieved 46% higher throughput, 32% lower 
turn-around time and 48% lower cross-rack traffic over 
Fair Scheduler. Compared to Delay Scheduler, Shuffle-
Watcher was 54%, 38%, and 56% better in throughput, 
turn-around time, and cross-rack traffic, respectively.

6  Related work
Several previous efforts have targeted improving 

MapReduce performance, including better straggler 
management [7], improved computation-communication 
overlap [3,11,36], improved aggregation of intermediate 
data [43], optimizations for heterogeneous clusters 
[2,41], and runtime optimizations for iterative MapRe-
ductions [8,14,40]. However, these proposals target sin-
gle-tenancy whereas ShuffleWatcher exploits 
opportunities that are specific to multi-tenancy. 

In the domain of multi-tenancy, Hadoop [21] offers a 
FIFO scheduler to run jobs in a sequential manner. 
Capacity Scheduler [30], Fair Scheduler [31] and Domi-
nant Resource Fairness [16] propose different fairness 
models and schedulers for resource allocation among 
users. In contrast to their target of achieving fairness, our 
goal is to improve performance within the given fairness 
constraints. Delay Scheduling [39] and Quincy [25] tar-
get reducing network traffic by optimizing Map-input 
locality, but not the Shuffle which is by far the most 
dominant source of traffic in MapReduce. Shuffle-
Watcher targets the Shuffle by trading-off intra-job con-
currency for Shuffle locality to perform better than these 
previous techniques. Mesos [23] and Yarn [38] facilitate 
resource provisioning among multiple frameworks that 
share a cluster (e.g., MPI and MapReduce). These sys-
tems decouple resource allocation from job scheduling 
and can benefit from ShuffleWatcher’s scheduling. Pur-
lieus [29] and CAM [26] achieve locality via synergistic 
placement of virtual machines and input data. However, 
such static techniques cannot address dynamic variations 
in the Shuffle traffic. 

In the domain of data center networks, researchers 
have proposed network architectures to improve cluster 
bisection bandwidth (e.g.,[1,4,15,17,18,19,20,28,33]). 
Many of these architectures require specialized hardware 
and/or communication protocols, and thereby incur addi-
tional cost especially because bisection bandwidth is 
inherently hard to scale up. Finally, a few recent papers 
propose better management of network traffic [10,12,32] 
without changing the network load, which is often high 
enough to limit their effectiveness, whereas Shuffle-
Watcher actively shapes and reduces the network load.

7  Conclusion
We proposed ShuffleWatcher, a Shuffle-aware, multi-

tenant scheduler, which counter-intuitively trades-off 
intra-job concurrency for Shuffle locality. Shuffle-

FIGURE 14: Sensitivity to (a) number of jobs per 
user and (b) job mix
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Watcher employs three mechanisms: Network-Aware 
Shuffle Scheduling (NASS), Shuffle-Aware Reduce 
Placement (SARP), and Shuffle-Aware Map Placement 
(SAMP) which exploit this trade-off and improve perfor-
mance by shaping and reducing the Shuffle traffic while 
working within the specified fairness constraints.

On a 100-node Amazon EC2 cluster running Hadoop, 
ShuffleWatcher improves cluster throughput by 39-46% 
and job turn-around time by 27-32% over three state-of-
the-art schedulers. Despite trading-off intra-job concur-
rency for Shuffle locality, ShuffleWatcher does not sacri-
fice turn-around times to gain throughput; on the 
contrary, by improving Shuffle locality in the presence 
of high contention in multi-tenancy, ShuffleWatcher 
improves turn-around times, not only on average but 
also of every one of 300 jobs in our experiments. Shuf-
fleWatcher improves both cluster throughput and job 
latency and, therefore, will be valuable in emerging 
multi-tenant environments.
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Abstract 
In this paper we describe a storage system called Violet 
that efficiently marries fine-grained host side data man-
agement with capacity optimized backend disk systems. 
Currently, for efficiency reasons, real-time analytics 
applications are forced to map their in-memory graph 
like data structures on to columnar databases or other 
intermediate disk friendly data structures when they are 
persisting these data structures to protect them from 
node failures.  Violet provides efficient fine-grained 
end-to-end data management functionality that obviates 
the need to perform this intermediate mapping. Violet 
presents the following two key innovations that allow 
us to efficiently do this mapping between the fine-
grained host side data structures and capacity optimized 
backend disk system: 1) efficient identification of up-
dates on the host that leverages hardware in-memory 
transaction mechanisms and 2) efficient streaming of 
fine-grained updates on to a disk using a new data 
structure called Fibonacci Array.  

1. Introduction 
Increasingly organizations are finding a lot of business 
value in performing analytics on the data that is gener-
ated by both machines and humans.  Not only are more 
types of data being analyzed by analytics frameworks, 
but increasingly people are also expecting real-time 
responses to their analytic queries.  Fraud detection 
systems, enterprise supply chain management systems, 
mobile location based service systems, and multi-player 
gaming systems are some applications that want real-
time analytics capabilities [10].  In these systems both 
transaction management and analytics related query 
processing are performed on the same copy of data.  
These applications have very large working sets, and 
they generate millions of transactions per second. In 
most cases these applications cannot tolerate network 
and disk latencies, and thus, they are employing main 
memory architectures [11, 13, 14, 15] on the host appli-
cation server side to fit the entire working set in 
memory.  

Even though these applications want to store the entire 
working set in main memory, for protection from node 
failures, they still need to persist a copy of their data off 
the application server box. Typically, copies are stored 
on disk/NAND flash based storage systems because 
these technologies are much cheaper than main 
memory. Thus, there is a bifurcation of IOPs optimized 

data management at the host and capacity optimized 
data management at the backend disk based storage 
system.  

The key insight that is prompting the work in this paper 
is that there is a mismatch in the fine-grained data man-
agement model on the host and the block optimized 
data management model in the backend disk/flash 
based systems.  For decades applications and middle-
ware developers have been forced to map their in-
memory fine-grained data structures onto intermediate 
block I/O friendly data structures.  Despite the applica-
tion running entirely in DRAM, the data structures that 
in-memory databases employ are little changed from 
when they lived on disks owing to the difficulty in per-
sisting them to a block oriented device.  This difficulty 
is retarding the development of in-memory systems.  
For ease of implementation the in-memory data struc-
tures are part of memory pages that are, in turn, mapped 
to disk blocks using data structures like B-Trees.   
However, fundamentally, there are the following ineffi-
ciencies in this approach and going forward these have 
to be resolved in order to provide an efficient end-to-
end data management solution for the new emerging 
real-time analytics applications. 

Problem Description 

In the past, data structures have been designed to local-
ize updates to a block in order to minimize random I/Os 
to a disk-based storage system.  For example, the inven-
tors of columnar databases observed that if an entire 
dataset has to be scanned, but only a subset of the col-
umns are important, then a vertical decomposition of a 
database realized the streaming bandwidth of DRAM 
and disk subsystems.  However, going forward, new 
types of main-memory graph data structures are emerg-
ing, such as Voronoi Diagrams [1], that are uncon-
cerned about localizing their updates to a few blocks. 
These data structures can perform important analytic 
operations in O(N) time where as a columnar database 
would require O(N2) time. Voronoi Diagrams are being 
leveraged in biology, chemistry, finance, archaeology, 
and business analytics domains. Similarly, middleware 
software is being designed to support these new emerg-
ing graph data structures [10, 17, 20]. 

When backing up the host side in-memory data struc-
tures on to a block-based storage system, it is desirable 
to be able to efficiently detect and transfer only the up-
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dated bytes of data instead of transferring the entire 
page on which they reside.  As is shown in the experi-
ment section of this paper, there are performance bene-
fits in the end-to-end throughput by handling graph data 
structures natively (the focus of this paper) versus map-
ping them on to a columnar database or other interme-
diate data structures [17].  

Contributions 

In this paper we present a storage system called Violet 
that efficiently marries fine-grained host side data man-
agement with back-end block level storage systems.  
Violet divorces the problem of data structure selection 
and implementation, which should be wholly based on 
asymptotic requirements, from data structure persis-
tence, which should not be the application writer’s 
problem.  The key highlights of this architecture are: 

• End-End Data Management Stack: Violet 
presents a byte-oriented storage system that 
provides an integrated end-to-end storage 
stack that 1) efficiently detects fine-grained 
updates on the host 2) replicates the updates 
remotely on to a back end block based storage 
system and 3) efficiently streams the updates 
to a disk drive.  The violet storage system ar-
chitecture has both a host-side footprint and a 
backend capacity layer footprint. 

• Efficient identification of fine-grained up-
dates: Violet leverages a hardware transac-
tional memory CPU instruction set (e.g. TSX 
instruction set from Intel) to detect the 
read/write changes to data within an in-
memory transaction boundary.  This allows 
Violet to track changes at a very fine-grained 
level in a multi-core CPU environment, and in 
turn, transfer changes (not the entire data 
block) off the node in an efficient manner.  
Violet also allows for both fine-grained data 
structure level snapshots at the host and coars-
er grained file level snapshots at the backend 
capacity optimized storage system. 

• Efficient streaming of sparse random I/Os 
on to disks: Violet proposes a new data struc-
ture called the Fibonacci Array that enhances 
standard log structured merge trees [12] and 
COLA [2] data structure notions by leveraging 
the key insight that in the emerging main 
memory middleware/application architectures, 
the backend disk based systems primarily han-
dle write operations as reads are mostly satis-
fied at the host servers.  

The net result of the above innovations is that we are 
able to efficiently 1) detect 2) transmit and 3) persist 
fine-grained updates at the host to a block based 
backend storage system. Thus, emerging real-time ap-
plications and databases that are providing support for 
graph like data structures can leverage the benefits of 
the techniques being presented in this paper when de-
signing their logging and off-node replication mecha-
nisms. 

2. Architecture 
As shown in Figure 1, Violet is a distributed system 
that works as a cluster of cooperating machines. Violet 
is comprised of 1) a user-level library that gets linked 
with applications, 2) Violet servers that run on ma-
chines with disks attached (called Sponges) and 3) a 
master server that is in charge of the cluster.  Applica-
tions manage memory with the user space library. The 
memory region is called a file; when storage class 
memory (SCM) becomes available Violet can mmap(2) 
a SCM file and the applications remain unchanged.  

The era of SCMs has started with many vendors an-
nouncing the availability of different types of SCMs 
like PCM, ReRAM, and STT-MRAM [5]. 

The primary copy of a file is on the host in DRAM 
where the application runs.  The copy on the host is a 
region of volatile anonymous pages created with mmap; 
so it is not a file on the host per se but this will change 
with the availability of SCM.   

Sponges store the data on their locally attached disks.  
The set of Sponges that store a file on disk is called the 
file’s replication group.  The copies are used to provide 
disaster recovery and data management.  Note that the 
Sponges only contain a redundant copy of a file on 
their disks. Violet is not a distributed memory system.  
The only updates to the file take place in the applica-
tion’s address space on the host machine.  A file can 

Figure 1: The Violet Architecture. 
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only be written by a single application (the single-writer 
model is used by most commercial in-memory DBs). 

Disks are much cheaper than DRAM, and are expected 
to be much cheaper than SCM, so basing node failure 
recovery on disks makes economic sense.  As will be 
seen, a disk based failure recovery strategy does in-
crease restore time (and hence downtime in the event of 
failure).  An alternative approach would be to simply 
mirror in DRAM on a second host.  This would in-
crease the cost of the system accordingly, but it would 
increase availability as there would be a `hot’ host to 
restart an application on in the event that its machine 
fails.  The system presented here can support both the 
model where the second copy is on a peer, with the 
recovery copy on the backend disk, and also the model 
where the second copy is in DRAM. 

3. Host-Side Client Library 
This section describes the details of the host-side user 
space library.  We present a C++ API that applications 
use to describe transactions, and the Violet library that 
must be linked.  The Violet transaction machinery and 
how it replicates the memory updates to remote storage 
controllers is described. 

The User-Land Storage Stack 

The goal of Violet software is to provide disaster re-
covery and transaction support for applications that 
desire byte-oriented data structures.  The most efficient 
place to do this is in user-land inside the application.  
While it is common to persist updates to a mmap’ed file 
with a page daemon running in the kernel, this would 
be too inefficient for the application update behavior 
envisaged.  The updates observable by the kernel are at 
the granularity of a page.  Page granularity is too coarse 
(e.g. the update may be a 4 byte pointer in a linked list 
node).  To efficiently persist these kinds of transactions, 
the granularity should be as fine as a byte.  The desired 
granularity could be obtained by adding system calls 
that support the specification of a transaction, but this 
would impose significant over-head, require POSIX 
approval and defeats the purpose of mapping the file in 
the application’s address space. 

Overview 

Violet applications are written in C++ and specify 
transactions by leveraging an open API.  A modified 
C++ compiler implementing the API compiles the ap-
plication and instruments the code appropriately to exe-
cute the transactions.  Finally, the application is linked 
with the Violet run-time library. 

Violet’s run-time system is implemented in a user-land 
library.  Applications execute transactions and the li-

brary assembles the resulting updates and replicates 
them to a remote machine. 

Transactional Memory 

Applications are growing in size and complexity while 
the number of cores is increasing.  As a result, the most 
common form of thread synchronization, locking, is 
growing increasingly more onerous.  Lock hierarchies 
must be carefully designed and enforced to avoid dead-
lock.  Selecting an appropriate granularity of locking is 
crucial to ensure the right balance is struck between 
parallelism and the cost in both time and space over-
head.  Priority inversion and lock retention across pre-
emption can be serious artifacts when designing a sys-
tem.  Many data structures, such as balanced binary 
trees, are notoriously difficult to implement correctly 
while achieving reasonable performance with locks 
(e.g. the authors are unaware of any thread-safe red-
black tree implementation that did not relax invariants 
to achieve satisfactory performance). 

Herlihy introduced transactional memory [TM] as an 
alternative to locks to address the above concerns [7].  
Transactional memory is a means of safely updating 
memory in the presence of concurrency that greatly 
simplifies code when compared with locks.  In the last 
few years there has been strong of revival of interest in 
transactional memory (e.g. Intel’s software TM compil-
er, GNU libtm).  More recently, research database sys-
tems such as DBX [6] and HTM [23] have examined 
the implementation of databases with Intel’s hardware 
transactional memory.  Intel, HP, Oracle and others are 
proposing an update to the C++ language to incorporate 
TM directly into the language [21].  The proposed sup-
port exposes transactional memory as an integral lan-
guage construct.  Ephemeral DRAM data structures are 
the target use case.  The abstraction proposed is of the 
form: __transaction {}.  __transaction is a new C++ 
reserved word.  The code between the braces would be 
executed transactionally with ACI (atomicity, con-
sistency and isolation) semantics. 

Violet leverages this new C++ reserved word as a 
means for applications to express relevant memory up-
dates to the system; in effect the C++ proposal is Vio-
let’s API.  Leveraging C++ increases the likelihood of 
Violet’s adoption since C++ is not proprietary; it is an 
open standard.  Moreover, applications are already be-
ing written with the proposed standard.  Supporting the 
API makes the adoption of Violet for applications a 
possibility even as an after thought.  Use of a modified 
compiler is a temporary measure that will be obviated 
by the implementation of the standard in clang (it is 
currently only supported in GNU’s g++, which has li-
censing issues). 
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Violet Transactions 

To execute transactions Violet leverages Intel’s restrict-
ed transactional memory [RTM] feature [18].  RTM is 
included in Haswell processors’ TSX facility.  RTM 
transactions offer ACI semantics, but not durability; 
TSX is designed to work with ephemeral DRAM.  Intel 
provides two instructions, xbegin and xend, that demar-
cate a transaction block.  Applications begin a transac-
tion by executing the xbegin instruction and commit by 
executing xend.  The memory updates following xbegin 
are visible only to the executing thread until the execu-
tion of xend.  Once a transaction commits then all of the 
updates to memory become visible simultaneously.  If a 
thread writes to a memory location claimed by a peer 
thread’s transaction then the processor aborts the trans-
action.  The reliance on instructions introduced with 
Haswell TSX means that currently only Haswell TSX 
processors are supported. 

The xbegin and xend instructions are a means of im-
plementing a transaction, but the Violet library requires 
further instrumentation in the application.  However, as 
we hope to support stock compilers in the future, reli-
ance on modifications to clang++ must be kept to a 
minimum.  clang++ was modified such that braces in 
the C++ __transaction construct correspond to xbegin 
and xend instructions; this is all that can reasonably be 
expected from a compiler.  The remaining instrumenta-
tion of the code has to be done externally by a second 
tool that isolates the proprietary requirements.  Violet 
uses a pre-assembler processor [PAP] to instrument 
application code.  The tool operates on the assembly 
language emitted by the compiler.  PAP scans the as-
sembly code, identifies transactional blocks and then 
inserts the instrumentation.  Transactional blocks are 
defined as everything in between xbegin and xend in-
structions. 

The mechanics of a Violet transaction are depicted in 
Figure 2.  The blue boxes are functions inside the Vio-
let library.  The arrows represent invocations inserted 
by the PAP; the application is not aware that they are 
there. 

Opening Brace Execution 

The opening brace results in the compiler emitting an 
xbegin instruction.  Just after the xbegin instruction, a 
call to Violet’s start_tx is inserted by the PAP.  start_tx 
allocates a Violet transaction descriptor that is used to 
track the change-set of the transaction.  A pointer to the 
transaction descriptor is placed on stack. 

While every assignment between the braces is included 
in the transaction, not all are relevant to an application’s 
persistent state.  For instance, assignments to the stack 

are irrelevant.  Only assignments to memory locations 
in the mapped file need to be replicated, and these are 
easily detected as they fall in the address range of the 
mapped region.  The identification of the relevant 
change-set is done dynamically at run-time with in-
strumentation inserted at compile-time by the PAP.  
The PAP inserts an invocation to the add_write_set 
function before the assignments. 

 
Figure 2: A Violet transaction.  The blue boxes are 
instrumentation added by Violet. 
 

Every memory assignment in the transaction block is 
passed through to add_write_set along with the pointer 
to the transaction descriptor.  add_write_set identifies 
relevant addresses with a range check, and then records 
them in the transaction descriptor.  Assignments in the 
x86 instruction set are of the form movX, where X is the 
type/size of the assignment.  The type of the mov in-
struction is used by the PAP to determine the size of the 
assignment.  Standard libc functions, such as memmove 
and strcpy, are not currently supported.  Such functions 
are typically written in hand-tuned assembly and need 
to be made transactional.  Moreover, the maximum size 
of a TSX change-set is finite and varies with many fac-
tors.  Bulk data movement is probably best handled 
with different methods.  If demand dictated then Violet 
versions of the functions could be included in Violet’s 
run-time library. 

Closing Brace Execution 

A closing brace connotes a transaction commit and the 
compiler emits a xend instruction.  The PAP will insert 
a call to Violet’s commit_tx outside of the transaction 
block.  A restriction of Intel RTM is that system calls 
(among other things) automatically abort transactions.  
commit_tx makes network system calls so it has to be 
called outside of the transaction block.  This is a win-
dow of failure.   The window of failure is on the order 
of a network round-trip-time.  The RTM commits the 
transaction before it is replicated and made durable.  
Further, a successful transaction is also visible to other 
threads before it is made durable.  Clearly, Violet is 
currently not suitable for applications that require AC-
ID.  We plan to address this in future work. 
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There are many ways to address the window of failure, 
such as a introducing some form of pre-logging, but we 
wanted to avoid imposing onerous burdens on the pro-
grammer or violating the C++ standard.  To make the 
system as natural as possible to program, it was decided 
to identify the change-set automatically at run-time; the 
window of failure is the trade-off.  Violet’s window of 
failure is much smaller than the typical 30-second peri-
od between cleaning dirty pages in a buffer cache. 

Cleanup of an aborted transaction is trivial.  As no 
memory modifications made inside the transaction 
block are visible on abort, all of Violet’s transaction 
metadata is cleaned up as a side effect of the failed 
transaction.  While this artifact made implementation 
easier, it also made debugging difficult. 

Replication 

Following a successful RTM transaction, Violet repli-
cates the results to a remote storage server.  commit_tx 
is responsible for performing replication.  The muta-
tions to the file are recorded at the physical level, that 
is, the result of a transaction is recorded as the set of 
changed memory locations and their new contents. 

An update to memory is encapsulated as a patch.  A 
patch is a tuple consisting of a memory address, length 
and a string of bytes.  Every memory location modified 
in a transaction is encapsulated in a patch.  There is no 
type information. 

The file is sharded over the replication group.  The ob-
ject of a replication group is to put more disks at the 
disposal of an application to increase disk bandwidth. 
Multiple disks do not increase reliability with multiple 
copies; they are there to increase disk bandwidth. 

While there is a window of failure, Violet does guaran-
tee that the remote copy of the file is always consistent.  
Consistency is enforced by the replication group. 
Memory updates are propagated to the replication 
group with a 2-phase commit protocol along with a 
monotonically increasing per transaction serial number.  
The serial numbers totally order the transactions.  Their 
use is explained in §4. 

The replication facility offers two modes of operation.  
Replication can either optimize network throughput or 
minimize the window of failure.  If the application 
wishes to minimize the window of failure, the commit-
ting thread will wait for the result of the 2-phase com-
mit before proceeding.  It will also learn of any errors 
synchronously. 

Far better use of the network is made if the committing 
thread simply queues its updates for transmission and 
carries on.  The updates are transmitted when sufficient 

data have accumulated to fill an Ethernet frame.  On a 
busy multi-core system, where transactions take on the 
order of 100 nanoseconds to complete, the wait time is 
usually sub-µs.  We demonstrate in the results section 
that the window of failure is virtually the same in both 
modes of operation when commodity Ethernet is used. 

4. Capacity Tier 
In this section we describe the storage nodes (Sponges) 
used to persist the updates to the file on the host.  We 
present a data structure, the Fibonacci Array, that is 
used to represent the file on disk.  Finally, we show 
how the Sponges create distributed snapshots. 

The capacity tier of Violet is comprised of a set of co-
operating machines running a software agent called 
Sponge.  It is a user level process.  A Sponge is as-
sumed to have at least one locally attached disk and 
some NVM (non-volatile memory) at its disposal. The 
Sponge is responsible for providing the capacity tier 
functions of disaster recovery and data management. 

When a Sponge starts it determines what resources are 
available to it, such as the number of disks, and then it 
registers with the master server. The master server is 
discovered with mDNS. The master incorporates the 
Sponge into the cluster.  Once a Sponge is registered 
with the master it is eligible for assignment to a file’s 
replication group. Sponges can be members of any 
number of replication groups. 

Mating the Host Update Behavior and Disks 

A significant challenge for a disk based capacity tier is 
to mate the expected update behavior of the application 
on the host with the mechanical block-based world of 
the disk. Most applications today are conscious that 
they are backed by mechanical media and take great 
pains to interact well with them. DRAM data structures 
make no such concessions and focus on an asymptotic 
goal; DRAM data structures did not have disks in mind 
when they were developed.  The updates to DRAM data 
structures can be `tiny’ and there can be little locality. 
Furthermore, as applications are running at memory-
bus speed, the rate of updates can be much higher. 

In-memory applications only read the data on disk in 
failure scenarios, and then they stream the entire file.  
In the steady-state, the workload is write-only.  There-
fore, an index into the data is not required.  An in-
memory backing store just needs to build an image of 
the file from the incoming memory updates while keep-
ing the cost of getting a memory update into the correct 
position in the file low. 

Partial updates and poor locality are not new problems 
for storage systems.  One technique of reducing the cost 
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of an update is to amortize the cost of the I/O over mul-
tiple updates.  An NVM staging area can be used to 
absorb updates and order them to detect opportunities 
for amortizing writes.  Unfortunately, in the presence of 
very poor locality this strategy is not feasible.  Howev-
er, if the staging area is written out in its entirety and 
contiguously, then excellent amortization is realized; 
we call this staging with serial writing.  In this way the 
random input stream is inflected into an ordered stream 
that leverages the streaming bandwidth of disks.  In-
deed, one can just keep doing this ad infinitum, but at 
some point the many disk resident logs need to be coa-
lesced and reconciled rationally.  A hierarchy must be 
superimposed on the disk resident pieces to regulate log 
resolution. 

Two examples of disk log hierarchies are the LSM-Tree 
[12] and the COLA [2].  Both are excellent at dealing 
with random updates as they employ staging with serial 
writing.  They also continually merge the disk resident 
pieces to incorporate updates yielding larger pieces.  
Both are optimized to keep an index into the data up to 
date.  Because LSM-Trees and COLAs need to support 
lookup operations, the ratio of sizes between successive 
levels in their hierarchies is fixed to preserve properties 
required for search efficiency described below.  In the 
absence of this requirement the ratio between levels can 
be varied permitting the merging of data through the 
hierarchy to its final resting place at lower cost. 

Fibonacci Arrays 

The Fibonacci Array [FA] is a data structure used to 
represent an in-memory file on disk.  Each in-memory 
file has its own FA.  The FA employs staging with seri-
al write.  The structure of an FA is depicted in Figure 3.   
It consists of an array of pointers to disk resident logs 
and a buffer, of size B, in NVM.  The length of the lev-
els in the array grows as a Fibonacci sequence; this is 
not by design but a natural artifact of the merging rule 
that is described below.  The entries in an FA are patch-
es containing memory updates. 

The Fibonacci Array is derived from the COLA owing 
to its low amortized write cost.  The array of levels in a 
COLA is managed like a binary number.  The state of 
the array is a binary string where 1 indicates that a level 
is occupied and 0 denotes empty.  For example, 1101 
indicates that the first, second and fourth levels are oc-
cupied.  A level, k, is either empty or contains 2k en-
tries.  Flushing the NVM buffer to disk binary-adds 1 to 
the string.  Merges occur when a binary carry is needed, 
e.g., flushing the NVM buffer to 1110 will result in a 4-
way merge between levels 1-3 and NVM into the fourth 
level.  The resulting string is 0001; so the 4th level is 
occupied and all beneath it are now empty.  The follow-

ing NVM flush will produce 1001, but no merge.  In 
general, a merge, where k is the highest bit in the carry, 
requires k2k comparisons and a (k + 1)-way merge.  
This can lead to an overwhelming spike of I/O and CPU 
consumption as the height of the COLA grows.  The 
COLA requires its merge rules to maintain invariants 
required to support efficient log2 search.  The FA is free 
to use a different merge rule. 

 
Figure 3: Structure of a Fibonacci Array.  Data start in 
NVM and then percolate down the array. 
 

The following rule is used to push data through a FA: 
when two neighboring levels in the array are occupied 
then they are merged into the next highest level.  The 
source levels of the merge are left unoccupied.  As the 
size of the merged level is the sum of the two source 
levels the array is naturally Fibonacci.  Also, observe 
that the lowest source level skipped a level in the array 
and jumped two levels.  Merging is done in the back-
ground.  As only two levels are merged at any given 
moment the resource consumption of an FA is much 
smoother than a COLA.  The 2-way merge permits the 
disk to seek less frequently and makes better use of the 
CPU. 

Data propagate through a FA as follows.  Updates ar-
rive from the host in the form of patches that contain 
memory updates.  As patches arrive they are placed in 
NVM in order of the memory location that they repre-
sent.  Neighboring and overlapping patches are coa-
lesced into a single patch where possible.  As depicted 
in the diagram, once the NVM buffer is full it is written 
to disk.  The system alternates between writing the 
NVM buffer to levels 1 and 2.  When both are occupied 
they trigger the merging condition.  As the logs are or-
dered, merging is trivially effected by streaming both 
source levels into the target level while maintaining the 
ordering.  Neighboring patches are coalesced into a 
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single entry as they are encountered.  Patches can over-
lap producing a conflict.  In this case the lower level’s 
values are used as they are younger.  Conflicting patch-
es are resolved into a single patch.  Applying the merge 
rule successively to all the levels of the array results in 
the data percolating down the array (driven by data 
flushing from NVM).  At some point the data will ar-
rive at the terminal level. 

The terminal level in the array is the size of the file; a 
log cannot be larger than the file it represents.  The ter-
minal level will converge to a single patch (the length 
of the file).  The height of the array, h, is approximately 
log1.61803(size of file), where 1.61803, the Golden Ratio,  
is the ratio between successive Fibonacci numbers.  
Thus, the per byte amortized cost of getting a byte to 
the terminal level is the number of times it was written 
over the size of the write: 0.75h/B.  The factor of 0.75 
accounts for the fact that a datum skips a level on every 
second merge. 

Fibonacci Array Snapshots 

The FA includes a snapshot mechanism to support rep-
lication group snapshots. A FA snapshot is not exposed 
or created directly.  It is the mechanism upon which 
consistent replication group snapshots are implemented. 

A snapshot is created by copying the array of pointers 
into a new array that will become the active FA.  Arrays 
and logs include a version number.  When the new ac-
tive FA is created its version number is incremented.  
As data percolate through the system and merging takes 
place, the mismatch between log version numbers and 
array version numbers is detected.  A new log for the 
level is created with the active version number, and the 
pointer in the active array is updated. 

FA snapshots are efficient because the active FA di-
verges from a snapshot at the granularity of the byte - 
exactly how the file actually is diverging.  Explicit 
COW at the granularity of a page is supplanted by the 
temporal relationship between levels in the array.  If a 
byte is updated and inserted into the active FA, it will 
enter the FA at the lowest level.  Thus, the fact that it is 
the valid value in the active FA is implicit, and we do 
not need to know anything about what it over-wrote or 
where it is; nothing special has to be done as it is an 
intrinsic property of the data structure.  This is efficient 
in both space and I/O. 

Replication Group Snapshots 

Snapshots can be taken of in-memory files stored in a 
Violet replication group.  They offer a consistent view 
of memory as it appeared to the replication group when 
the snapshot was taken.  An in-memory file stored in a 

replication group is distributed over more than one ma-
chine.  A consistent snapshot therefore requires coordi-
nating all of the Sponges in a replication group. 

To create a snapshot of an in-memory file, the snapshot 
requestor queries the cluster master to discover the 
file’s replication group.  The requestor will then contact 
the Sponge with the highest IP address – this will be the 
leader for the snapshot. The leader contacts all of its 
peers and informs them of the snapshot request. 

The replication group must come to a consensus on 
when the snapshot took place to ensure that the snap-
shot contains a consistent view of memory.  Consisten-
cy is effected with the serial numbers of transactions.  
A serial number is agreed to such that every transaction 
that took place prior to it is in the snapshot and all those 
following are not.  This serial number is the snap-point. 

The host-side library aids in the determination of the 
snap-point.  Whenever it sends a message to a Sponge it 
includes the latest consistency-point.  The consistency-
point is the highest serial number of a transaction such 
that there is an unbroken sequence of committed serial 
numbers back to zero.  The leader solicits the highest 
consistency-point that has been observed by its peers.  
The highest consistency-point observed by any Sponge 
in the replication group is chosen as the snap-point.  
Note that during the course of this algorithm higher 
consistency-points may arrive on a Sponge, but they are 
ignored for the purposes of the current attempt of creat-
ing a snapshot.  This ensures progress. 

Once the snap-point has been published, Sponges pro-
ceed to create the FA snapshot.  All patches in NVM 
that are in the snapshot are sent to disk.  The FA snap-
shot is then created and the leader is informed.  Once 
the leader has been informed of completion by all of its 
peers it informs the requestor. 

5. Master Server 
The master server is the glue that binds all of the pieces 
together.  It is responsible for provisioning a file’s rep-
lication group and file directory services.  There is only 
one instance of a master in the system.  While the mas-
ter is a single point of failure there are many well 
known techniques to address high availability, e.g. a 
committee of machines running Paxos.  As Violet is a 
research system the simplest implementation was 
adopted.  Moreover, the master is not in the data-path 
and received little attention in this paper. 

6. Results 
We have implemented and evaluated Violet. The host-
side library and tool chain were implemented on Ma-
cOS and Linux x86.  The Sponge was implemented on 
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Linux x86.  We used our prototype to evaluate the via-
bility and effectiveness of Violet with commodity net-
works and disks.   

The Violet data-path consists of two pieces: the host-
side library and the Sponge.  The master is not in the 
data-path and purely ancillary so it is not included. 

The evaluation of Violet is decomposed into four parts.  
First, we measure the overhead of Violet instrumenta-
tion in application code to show that it is not onerous.  
Second, we explore how Violet interacts with a com-
modity Ethernet network when replicating.  Third, we 
show that the Sponges efficiently create snapshots and 
restore data in the event of disaster recovery.  Finally, 
we show that Violet can be used to implement DRAM 
data structures that are superior to standard storage data 
structures. 

Instrumentation Overhead 

We evaluated the overhead of Violet instrumentation on 
an Apple iMac configured with 16GB of DRAM.  The 
processor is a 4-core Haswell i7-4771 with a clock 
speed of 3.5GHz.  The i7-4771 supports TSX and hy-
per-threading. 

Violet anticipates a new generation of in-memory DBs.  
As such there are no extant benchmarks or applications 
that are appropriate for the evaluation of Violet (nobody 
persists a C++ std::map today).  As Violet was con-
ceived for DRAM data structures we used two of the 
most common such data structures for Violet’s evalua-
tion: a self-balancing binary tree (a probabilistically 
balanced tree called a Treap) and a linked list. 

To measure the cost of Violet’s instrumentation a Treap 
was implemented with the proposed C++ TM standard.  
We measured its performance and compared it to the 
same code after the PAP was used to instrument it.  
Figure 4 presents the results.  

The curve labeled Violet is a fully instrumented Treap.  
The RTM curve is the same code, but without Violet 
instrumentation. The times reported are the times taken 
to insert a single element in the Treap.  The difference 
between the curves on the ∆t axis is the temporal over-
head introduced by Violet. 

The initial knee in the curve results from going from a 
single thread to multiple threads.  The time to insert an 
element remains roughly constant between 2 and 8 
threads, as does the difference between the curves.  In 
this range there is little pre-emption and CPU affinity is 
high.  As the number of threads grows beyond 8 they 
start to compete for CPU time and pre-emption be-
comes a factor.  Pre-emption causes RTM transactions 
to abort and the number of transaction retries begins to 

climb; this behavior is very different from locking 
where locks are held across pre-emption. 

 
Figure 4: Elapsed time for Treap insertions. Note that 
system call over-head is 200ns so far too slow for 
transactions on this time scale. 
 

The overhead of Violet’s instrumentation appears to be 
constant, and quite low.  Violet’s instrumentation is 
very simple: two integer comparisons that comprise the 
address range check. The two integers that comprise the 
range are in the same cache-line and so popular that 
they are usually in the cache. Most of the expense of a 
transaction is incurred by loading the transaction’s 
read-set from memory.  All memory writes in a transac-
tion are confined to the L1 cache until the transaction is 
committed. 

Replication Performance 

In this section we examine Violet’s replication perfor-
mance over commodity Ethernet.  Applications that 
require replication but wish to run at CPU speeds will 
be highly sensitive to network performance. 

A challenge when evaluating a system with a hardware 
dependency is gaining access to the hardware.  The 
iMac is our sole TSX platform, but its only Ethernet 
option is 1 Gb.  We felt that 1 Gb is too unrealistic for a 
modern server; a single Violet thread can saturate the 
iMac’s NIC. 

To perform experiments with 10 Gb Ethernet we used 
Amazon EC2.  The EC2 `cluster instance’ provides 10 
Gb Ethernet, 2 Xeon processors (for a total of 8 cores), 
1 disk and 60 GB of RAM.  The `cluster instance’ does 
not share processors; the processors are dedicated, but 
they do not support TSX. 

The following experiments did not use TSX.  Solely for 
this experiment the PAP removed the RTM instruc-
tions, but it produced fully instrumented code (that was 
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not thread-safe).  Threads were given exclusive access 
to private Treaps for correctness.  The experimental 
setup consisted of a single host running the Violet 
Treap application replicating to a replication group that 
was configured with eight Sponges. 

Figure 5 presents the aggregate throughput to the repli-
cation group as a function of the number of threads.  
We show two curves.  The EC2 curve is the Treap ap-
plication without RTM.  This was run in EC2 and actu-
ally performed replication.  The TSX curve is data pro-
duced by the iMac running fully instrumented RTM 
code, but not replicating (so just going as fast as it 
could).  We include it to show that when Violet uses 
RTM it is still capable of driving an 8-node replication 
group. 

 
Figure 5: Application insertion throughput. 
 

EC2 throughput increases close to linearly until 490 
MB/s is reached.  This occurs when 6 or more threads 
are used.  Benchmarking revealed that the EC2 10 Gb 
network is only capable of 490 MB/s so this is the satu-
ration point of the network.  If a superior network was 
available we believe that the throughput would have 
continued to grow because the Sponges had not yet 
reached their limit.  The TSX curve intersects the EC2 
curve where the latter hits the network’s saturation 
point.  This suggests that if the EC2 machines had been 
using RTM then the point of network saturation would 
have been postponed, as it would have been slightly 
slower. 

The next experiment measures the performance of rep-
licating synchronously.  To demonstrate the sensitivity 
of replication to the choice of data structure an ordered 
doubly linked list was also used.  Figure 6 presents the 
throughput for list updates being replicated both syn-
chronously and asynchronously.  The difference be-
tween the two is a factor of 2.  Figure 6 also includes 

Treaps replicating synchronously.  Asynchronously a 
single Treap thread produces ≈100 MB/s (Figure 5), but 
synchronously it slows down to 0.3 MB/s.  This is a 
manifestation of the mismatch between the network’s 
round-trip-time [RTT] and the time taken to commit a 
RTM transaction.  The RTT in the EC2 network is 220 
µs, and the time to execute a transaction is 45ns-120ns.  
A single transaction consists of only 40-80 bytes so the 
high latency is exacerbated by sending Ethernet frames 
that are practically empty.  Lists do not produce as 
many updates as Treaps, threads spend more time look-
ing for the insertion point in a list, so lists are not as 
sensitive as Treaps to synchronous replication. 

 
Figure 6: List and Treap replication throughput. 
 

In the time it takes a Treap thread to synchronously 
replicate one transaction it could have committed 
≈5,500 transactions.  Moreover, 5,500 transactions 
would have filled many Ethernet frames in the same 
time frame thus triggering their transmission.  We 
found that asynchronously replicated patches never 
waited longer than 1µs to be sent and on average waited 
200ns.  Thus asynchronously replicating updates offers 
roughly the same window of failure while dramatically 
increasing throughput.  The throughput of synchronous 
replication is not viable over commodity Ethernet.  For 
applications that can tolerate a small window of failure, 
we believe that Violet running with asynchronous repli-
cation is compelling.  It is not uncommon for applica-
tions to tolerate dirty pages sitting in a kernel’s buffer 
cache for 10‘s of seconds suggesting such applications 
exist. 

Snapshot Creation Analysis 

Snapshot performance as a function of the number of 
machines is depicted in Figure 7.  A 25GB file was 
populated and then snapped.  Taking a snapshot is 
quick operation requiring less than a second.  The knee 
in the curve going from 1 to 2 machines results from 
consulting peer machines.  A single machine can trivi-
ally find the snap point.  When more than one machine 
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is involved then the snap point must be found by inter-
machine communication.  Despite the knee in the curve, 
a replication group can create a snapshot in less than a 
second. 

 
Figure 7: Time required to take snapshot as observed 
by requestor. 
 

Restore Analysis 

To be useful for disaster recovery the system has to be 
able to restore a file in a sufficiently `short’ period of 
time.  In an environment such as EC2 the fastest one 
can restore a file is constrained by the network connec-
tion between the machines.  The top throughput of 
EC2’s network is 490 MB/s.  The question then be-
comes how many Sponges does it take to saturate the 
network (this is the time to restore). 

 
Figure 8: Time to restore as a function of Spong-
es/disks. 
 

Restore performance is presented as a function of the 
number of machines in Figure 8.  The size of the file is 
25 GB.  As can be seen from the graph, the Sponges 
saturate the network at 6 machines.  When the network 
is saturated it takes 53 seconds to restore a 25GB file.  
The individual Sponges are always disk bound and 
manage ~80 MB/s each until the network is saturated at 
6 machines.  This is close to the peak read rate observed 

in the cluster instance (90 MB/s).  The contiguous disk 
layout of the FA saves the disk from seeking frequently. 

Asymptotic Driven Data Structures 

In-memory computing has vastly increased the speed of 
analytics.  However, much of the advancement has 
come from the improvement of the inherent characteris-
tics of the media, by using DRAM instead of disks.  
Merely swapping the media type only partially realizes 
the potential speed-up if the same data structures con-
tinue to be used.  For example, SAP HANA is an in-
memory DB, but for the most part it is columnar.  This 
is not very different from deploying a columnar DB on 
a RAM disk. Merely exchanging media ignores many 
of the other advantages of DRAM; e.g., it offers ran-
dom byte-grained access.  The adoption of DRAM sug-
gests that different data structures could be used thus 
also realizing an asymptotic speed improvement. 

The greatest potential for performance improvement of 
in-memory DBs lies in adopting data structures that are 
usually overlooked because they are difficult to persist: 
DRAM data structures.  DRAM is volatile so in-
memory databases must still persist their state to block 
devices.  An obstacle to the adoption of more compli-
cated data structures is the difficulty in persisting them 
correctly and efficiently.  Violet was developed to 
bridge this gap.   

Employing domain specific databases has been sug-
gested in the past [8, 9] and shown to be superior.  To 
motivate this argument we present two queries that are 
important to our customers that they typically run on 
columnar DBs.  For our experiment both queries were 
run on MonetDB [3] provisioned with a RAM disk.  
The queries were also run on a domain specific data 
structures created with Violet.  The point is not to 
demonstrate that the Violet system is faster per se (it is 
not a fair comparison), but to demonstrate how poor 
linear scans are for many problems important to our 
customers.  If databases are produced that can cut hours 
off of computation they will be adopted [8, 9]. 

The first query that we present is the identification of 
clusters of points in a data set.  Cluster identification is 
an important knowledge discovery technique, e.g. mar-
ket researchers interpret the clusters as market seg-
ments.  An important algorithm for this application is 
DBScan [4].  DBScan runs in O(N2) time with a colum-
nar DB, but it runs in O(N) time when the DB supports 
a nearest neighbor query.  The Voronoi diagram sup-
ports the nearest neighbor query so it was implemented 
with Violet.  The results are shown in Figure 9; the pre-
dicted difference in growth of run-times is observed 
(note the log scale). 
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Figure 9: log/log scale asymptotic behaviour of clus-
tering and path queries. 
 

The second query that we examined is a path query in a 
graph.  Graphs arise naturally in a lot of applications 
and they have been attracting a lot of attention in ana-
lytics; e.g., SAP is embracing graph computing by 
grafting a graph query engine on to HANA [17].  A 
columnar DB, however, is not the most natural way to 
represent a graph in memory.  We implemented a graph 
DB that represents the graph as memory nodes and 
pointers.  Queries on a graph take O(N) time in a co-
lumnar DB, but only grow by the diameter of the graph 
when represented naturally.  Figure 9 presents the ob-
served empirical asymptotic superiority of the natural 
representation. 

In both implementations of the domain optimal data 
structures there is a gross asymptotic advantage hence a 
strong motivation to adopt them.  Violet made it easy to 
persist the data structures as no thought had to be given 
to the persistence layer; a non-trivial problem in the 
case of a Voronoi diagram.  Violet just took care of it.  
Implementation effort was directed at a correct imple-
mentation of the data structure. 

7 Related Work 
SNIA non-volatile memory (NVM) working group has 
proposed a standard for accessing new types of non-
volatile memories [16]. Currently, they have proposed 
both a kernel level volume, and a kernel level file inter-
face for accessing NVM at a fine-grained level. They 
are also interested in proposing a user space level inter-
face to allow applications to access NVM at a fine-
grained level using the load and store data access mod-
el.  They also want to introduce the notion of transac-
tions for this user level API. The work that has been 

proposed in this paper can be leveraged by this SNIA 
working group.   

Different data management middleware offerings like 
Redis [15], SAP HANA [11], Microsoft_Grace [19], 
Facebook_TAO [20] are proposing strategies for data 
management at the data structure level (e.g. graphs, KV 
stores). Redis allows for the persistent management of 
key-value storage data structures. Redis provides off-
node data protection by copying the data at a file level. 
SAP Hana allows for in-memory manipulation of graph 
data structures and it maps these data structures on to a 
columnar database that, in turn, moves data off-node at 
page level granularity [17]. Microsoft Grace system 
stores the graph data structures such as vertices and 
edges in respective files on disk, and subsequently it 
reads these structures in parallel when loading in the 
graph. Additionally, Grace also maintains a log of 
committed updates on disk. Facebook TAO is a geo-
graphically distributed eventually consistent graph 
store. TAO shards the dataset into shards and stores 
these shards across multiple database servers. TAO also 
maintains an elaborate leader-follower caching infra-
structure in front of its persistence layer, and it uses an 
eventual consistency model to keep the data consistent 
amongst the caches. 

Recoverable Virtual Memory [22] addresses a similar 
space as Violet, but takes a different approach.  RVM 
employs explicit logging and requires the programmer 
to identify and backup copies of data.  Concurrency is 
consciously left to the programmer to address separate-
ly.  The file is updated with a naïve staging-and-write 
strategy.  Consistency in the file is maintained with the 
log and write-ordering the file’s dirty pages. 

The work being proposed in this paper is independent 
of the type of data structure being supported in 
memory. That is, we detect updates to any type of data 
structure at a fine granularity and then subsequently 
ship these fine-grained updates off node and stream 
them on to a block based back-end storage device. 
Thus, our work can be leveraged by the above men-
tioned middleware systems. 

8 Conclusions 
In this paper we describe a storage system that spans 
across the host and a disk-based backend storage sys-
tem. This architecture helps to map fine-grained host 
side data management with a block level data manage-
ment system at the backend. The techniques presented 
in this paper become important as real-time analytics 
applications begin to employ data structures that have 
been designed with main-memory computing model in 
mind and that want to backup these data structures in an 
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efficient manner on to a cheaper off-box disk based 
storage system. We propose a host side user space cli-
ent library that leverages the CPU’s transactional 
memory instructions to efficiently detect fine-grained 
updates. We also present a new data structure called a 
Fibonacci Array at the backend disk subsystem that 
helps to stream update operations on to a disk in a more 
efficient manner by optimizing the data structure for 
primarily write operations.  The Violet system divorces 
the implementation of a data structure from its persis-
tence.  Finally, we implemented our ideas in a proto-
type and demonstrated the benefits of managing in-
memory data structures natively, rather than mapping 
them to intermediate data stores that are not designed to 
deal with in-memory data structures natively. 
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Abstract
Stream processing has become a key means for gaining
rapid insights from webserver-captured data. Challenges
include how to scale to numerous, concurrently running
streaming jobs, to coordinate across those jobs to share
insights, to make online changes to job functions to adapt
to new requirements or data characteristics, and for each
job, to efficiently operate over different time windows.

The ELF stream processing system addresses these new
challenges. Implemented over a set of agents enriching
the web tier of datacenter systems, ELF obtains scalabil-
ity by using a decentralized “many masters” architecture
where for each job, live data is extracted directly from
webservers, and placed into memory-efficient compressed
buffer trees (CBTs) for local parsing and temporary stor-
age, followed by subsequent aggregation using shared
reducer trees (SRTs) mapped to sets of worker processes.
Job masters at the roots of SRTs can dynamically cus-
tomize worker actions, obtain aggregated results for end
user delivery and/or coordinate with other jobs.

An ELF prototype implemented and evaluated for a
larger scale configuration demonstrates scalability, high
per-node throughput, sub-second job latency, and sub-
second ability to adjust the actions of jobs being run.

1 Introduction
Stream processing of live data is widely used for applica-
tions that include generating business-critical decisions
from marketing streams, identifying spam campaigns for
social networks, performing datacenter intrusion detec-
tion, etc. Such diversity engenders differences in how
streaming jobs must be run, requiring synchronous batch
processing, asynchronous stream processing, or combin-
ing both. Further, jobs may need to dynamically adjust
their behavior to new data content and/or new user needs,
and coordinate with other concurrently running jobs to
share insights. Figure 1 exemplifies these requirements,
where job inputs are user activity logs, e.g., clicks, likes,
and buys, continuously generated from say, the Video
Games directory in an e-commerce company.

In this figure, the micro-promotion application ex-
tracts user clicks per product for the past 300 s, and lists

{"created_at":"Fri Feb 08 
01:10:17 +0000 2013",
"product":"Angry Birds"...}
...

Filter
@buys

Filter
@item

In

Sort
#clicks

Out

Query?
"Angry Birds"

Out

 0 
#

2
3

1

Final Fatency V

Angry Birds 
Star Wars

Angry Birds 
Seasons

Final Fatency X
Top k

 Angry Birds
Seasons 

Product
Angry Birds Star Wars, 
Angry Birds Trilogy

Bundles

Batch per 5 minute

Stream 
per minute

App 1 App 2
App 3

Yes/No

Figure 1: Examples of diverse concurrent applications.

the top-k products that have the most clicks. It can then
dispatch coupons to those “popular” products so as to in-
crease sales. A suitable model for this job is synchronous
batch processing, as all log data for the past 300 s has
to be on hand before grouping clicks per product and
calculating the top-k products being viewed.

For the same set of inputs, a concurrent job performs
product-bundling, by extracting user likes and buys
from logs, and then creating ‘edges’ and ‘vertices’ linking
those video games that are typically bought together. One
purpose is to provide online recommendations for other
users. For this job, since user activity logs are generated in
realtime, we will want to update these connected compo-
nents whenever possible, by fitting them into a graph and
iteratively updating the graph over some sliding time win-
dow. For this usage, an asynchronous stream processing
model is preferred to provide low latency updates.

The third sale-prediction job states a product
name, e.g., Angry Birds, which is joined with the product-
bundling application to find out what products are sim-
ilar to Angry Birds (indicated by the ‘typically bought
together’ set). The result is then joined with the micro-
promotion application to determine whether Angry Birds
and its peers are currently “popular”. This final result can
be used to predict the likely market success of launching
a new product like Angry Birds, and obtaining it requires
interacting with the first and second application.

Finally, all of these applications will run for some con-
siderable amount of time, possibly for days. This makes
it natural for the application creator to wish to update
job functions or parameters during ongoing runs, e.g., to
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change the batching intervals to adjust to high vs. low traf-
fic periods, to flush sliding windows to ‘reset’ job results
after some abnormal period (e.g., a flash mob), etc.

Distributed streaming systems are challenged by the
requirements articulated above. First, concerning flex-
ibility, existing systems typically employ some fixed
execution model, e.g., Spark Streaming [28] and oth-
ers [11, 12, 17, 22] treat streaming computations as a
series of batch computations, whereas Storm [4] and
others [7, 21, 24] structure streaming computations as
a dataflow graph where vertices asynchronously process
incoming records. Further, these systems are not designed
to be naturally composable, so as to simultaneously pro-
vide both of their execution models, and they do not offer
functionality to coordinate their execution. As a result,
applications desiring the combined use of their execution
models must use multiple platforms governed via external
controls, at the expense of simplicity.

A second challenge is scaling with job diversity. Many
existing systems inherit MapReduce’s “single master/-
many workers” infrastructure, where the centralized mas-
ter is responsible for all scheduling activities. How to
scale to hundreds of parallel jobs, particularly for jobs
with diverse execution logics (e.g., pipeline or cyclic
dataflow), different batch sizes, differently sized sliding
windows, etc? A single master governing different per-job
scheduling methods and carrying out cross-job coordina-
tion will be complex, creating a potential bottleneck.

A third challenge is obtaining high performance for
incremental updates. This is difficult for most current
streaming systems, as they use an in-memory hashtable-
like data structure to store and aggressively integrate past
states with new state, incurring substantial memory con-
sumption and limited throughput when operating across
large-sized history windows.

The ELF (Efficient, Lightweight, Flexible) stream pro-
cessing system presented in this paper implements novel
functionality to meet the challenges listed above within
a single framework: to efficiently run hundreds of con-
current and potentially interacting applications, with di-
verse per-application execution models, at levels of per-
formance equal to those of less flexible systems.

As shown in Figure 2, each ELF node resides in each
webserver. Logically, they are structured as a million-
node overlay built with the Pastry DHT [25], where each
ELF application has its own respective set of master and
worker processes mapped to ELF nodes, self-constructed
as a shared reducer tree (SRT) for data aggregation. The
system operates as follows: (1) each line of logs received
from webserver is parsed into a key-value pair and contin-
uously inserted into ELF’s local in-memory compressed
buffer tree (CBT [9]) for pre-reducing; (2) the distributed
key-value pairs from CBTs “roll up” along the SRT, which
progressively reduces them until they reach the root to

Flume/
Chukwa/ 
Kafka

HBase HDFS

MapReduce

Spark/Storm

ELF's DHT

Master 1
for App 1Master 2

for App 2

Master 4
for App 4

Master 3
for App 3

Dataflow of Elf
Dataflow of typical 
log processing 
systems

Webservers

Elf node

Figure 2: Dataflow of ELF vs. a typical realtime web log
analysis system, composed of Flume, HBase, HDFS, Hadoop
MapReduce and Spark/Storm.

output the final result. ELF’s operation, therefore, entirely
bypasses the storage-centric data path, to rapidly process
live data. Intuitively, with a DHT, the masters of differ-
ent applications will be mapped to different nodes, thus
offering scalability by avoiding the potential bottleneck
created by many masters running on the same node.

ELF is evaluated experimentally over 1000 logical
webservers running on 50 server-class machines, using
both batched and continuously streaming workloads. For
batched workload, ELF can process millions of records
per second, outperforming general batch processing sys-
tems. For a realistic social networking application, ELF
can respond to queries with latencies of tens of millisec-
ond, equaling the performance of state-of-the-art, asyn-
chronous streaming systems. New functionality offered
by ELF is its ability to dynamically change job functions
at sub-second latency, while running hundreds of jobs
subject to runtime coordination.

This paper makes the following technical contributions:
1. A decentralized ‘many masters’ architecture assign-

ing each application its own master capable of indi-
vidually controlling its workers. To the best of our
knowledge, ELF is the first to use a decentralized
architecture for scalable stream processing (Sec. 2).

2. A memory-efficient approach for incremental up-
dates, using a B-tree-like in-memory data structure,
to store and manage large stored states (Sec. 2.2).

3. Abstractions permitting cyclic dataflows via feed-
back loops, with additional uses of these abstrac-
tions including the ability to rapidly and dynamically
change job behavior (Sec. 2.3).

4. Support for cross-job coordination, enabling interac-
tive processing that can utilize and combine multiple
jobs’ intermediate results (Sec. 2.3).

5. An open-source implementation of ELF and a com-
prehensive evaluation of its performance and func-
tionality on a large cluster using real-world web-
server logs (Sec. 3, Sec. 4).
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Figure 3: High-level overview of the ELF system.

2 Design
This section describes ELF’s basic workflow, introduces
ELF’s components, shows how applications are imple-
mented with its APIs, and explains the performance, scal-
ability and flexibility benefits of using ELF.

2.1 Overview
As shown in Figure 3, the ELF streaming system
runs across a set of agents structured as an over-
lay built using the Pastry DHT. There are three ba-
sic components. First, on each webserver produc-
ing data required by the application, there is an agent
(see Figure 3 bottom) locally parsing live data logs
into application-specific key-value pairs. For exam-
ple, for the micro-promotion application, batches of
logs are parsed as a map from product name (key) to
the number of clicks (value), and groupby-aggregated
like 〈(a,1),(b,1),(a,1),(b,1),(b,1)〉 → 〈(a,2),(b,3)〉,
labelled with an integer-valued timestamp for each batch.

The second component is the middle-level, application-
specific group (Figure 3 middle), composed of a mas-
ter and a set of agents as workers that jointly imple-
ment (1) the data plane: a scalable aggregation tree
that progressively ‘rolls up’ and reduces those local key-
value pairs from distributed agents within the group,
e.g., 〈(a,2),(b,3)..〉,〈(a,5)..〉,〈(b,2),(c,2)..〉 from tree
leaves are reduced as 〈(a,7),(b,5),(c,2)..〉 to the root;
(2) the control plane: a scalable multicast tree used by the
master to control the application’s execution, e.g., when
necessary, the master can multicast to its workers within
the group, to notify them to empty their sliding windows
and/or synchronously start a new batch. Further, different
applications’ masters can exchange queries and results
using the DHT’s routing substrate, so that given any appli-
cation’s name as a key, queries or results can be efficiently
routed to that application’s master (within O(logN) hops),

without the need for coordination via some global entity.
The resulting model supports the concurrent execution
of diverse applications and flexible coordination between
those applications.

The third component is the high-level ELF program-
ming API (Figure 3 top) exposed to programmers for
implementing a variety of diverse, complex jobs, e.g.,
streaming analysis, batch analysis, and interactive queries.
We next describe these components in more detail.

2.2 CBT-based Agent
Existing streaming systems like Spark [28], Storm [4] typ-
ically consume data from distributed storage like HDFS
or HBase, incurring cross-machine data movement. This
means that data might be somewhat stale when it arrives
at the streaming system. Further, for most realworld jobs,
their ‘map’ tasks could be ‘pre-reduced’ locally on web-
servers with the most parallelism, and only the interme-
diate results need to be transmitted over the network for
data shuffling, thus decreasing the process latency and
most of unnecessary bandwidth overhead.

ELF adopts an ‘in-situ’ approach to data access in
which incoming data is injected into the streaming system
directly from its sources. ELF agents residing in each
webserver consume live web logs to produce succinct
key-value pairs, where a typical log event is a 4-tuple of
〈timestamp,src ip, prority,body〉: the timestamp is used
to divide input event streams into batches of different
epochs, and the body is the log entry body, formatted as
a map from a string attribute name (key) to an arbitrary
array of bytes (value).

Each agent exposes a simple HiveQL-like [26] query
interface with which an application can define how to filter
and parse live web logs. Figure 4 shows how the micro-
promotion application uses ELF QL to define the top-k
function, which calculates the top-10 popular products
that have the most clicks at each epoch (30 s), in the Video
Game directory of the e-commerce site.

Each ELF agent is designed to be capable of holding a
considerable number of ‘past’ key-value pairs, by storing
such data in compressed form, using a space-efficient,
in-memory data structure, termed a compressed buffer
tree (CBT) [9]. Its in-memory design uses an (a,b)-tree
with each internal node augmented by a memory buffer.
Inserts and deletes are not immediately performed, but
buffered in successive levels in the tree allowing better

{"created_at":"23:48:22 +0000 2013",
"id":299665941824950273,
"product":"Angry Birds Season", 
"clicks_count":2,
"buys_count":0,
"user":{"id":343284040,
"name":"@Curry",
"location":"Ohio", ...} ...}

SELECT product,SUM(clicks_count)
FROM *
WHERE store == `video_games'
GROUP BY product
SORT BY SUM(clicks_count) DESC
LIMIT 10
WINDOWING 30 SECONDS;

ELF QL ->
Example log event

Figure 4: Example of ELF QL query.
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I/O performance.
As shown in Figure 5(a), first, each newly parsed key-

value pair is represented as a partial aggregation ob-
ject (PAO). Second, the PAO is serialized and the tuple
〈hash,size,serializedPAO〉 is appended to the root node’s
buffer, where hash is a hash of the key, and size is the
size of the serialized PAO. Unlike a binary search tree in
which inserting a value requires traversing the tree and
then performing the insert to the right place, the CBT
simply defers the insert. Then, when a buffer reaches
some threshold (e.g., half the capacity), it is flushed into
the buffers of nodes in the next level. To flush the buffer,
the system sorts the tuples by hash value, decompresses
the buffers of the nodes in the next level, and partitions
the tuples into those receiving buffers based on the hash
value. Such an insertion behaves like a B-tree: a full leaf
is split into a new leaf and the new leaf is added to the
parent of the leaf. More detail about the CBT and its
properties appears in [9].

Key for ELF is that the CBT makes possible the rapid
incremental updates over considerable time windows, i.e.,
extensive sets of historical records. Toward that end, the
following APIs are exposed for controlling the CBT: (i)
“insert” to fill, (ii) “flush” to fetch the tree’s entire groupby-
aggregate results, and (iii) “empty” to empty the tree’s
buffers, which is necessary when the application wants to
start a new batch. By using a series of “insert”, “flush”,
“empty” operations, ELF can implement many of standard
operations in streaming systems, such as sliding windows,
incremental processing, and synchronous batching.

For example, as shown in Figure 3(b), let the interval
be 5 s, a sale-prediction application tracks the up-to-date

#clicks for the product Angry Birds, by inserting new
key-value pairs, and periodically flushing the CBT. The
application obtains the local agent’s results in intervals
[0,5), [0,10), [0,15), etc. as PAO5, PAO10, PAO15, etc. If
the application needs a windowing value in [5,15), rather
than repeatedly adding the counts in [5,10) with multiple
operations, it can simply perform one single operation
PAO15 �PAO5, where � is an “invertible reduce”. In
another example using synchronous batching, an appli-
cation can start a new batch by erasing past records, e.g.,
tracking the promotion effect when a new advertisement
is launched. In this case, all agents’ CBTs coordinate to
perform a simultaneous “empty” operation via a multicast
protocol from the middle-level’s DHT, as described in
more detail in Sec.2.3.

Why CBTs? Our concern is performance. Consider us-
ing an in-memory binary search tree to maintain key-value
pairs as the application’s states, without buffering and
compression. In this case, inserting an element into the
tree requires traversing the tree and performing the in-
sert — a read and a write operation per update, leading
to poor performance. It is not necessary, however, to ag-
gregate each new element in such an aggressive fashion:
integration can occur lazily. Consider, for instance, an
application that determines the top-10 most popular items,
updated every 30 s, by monitoring streams of data from
some e-commerce site. The incoming rate can be as high
as millions per second, but CBTs need only be flushed
every 30 s to obtain the up-to-date top-10 items. The key
to efficiency lies in that “flush” is performed in relatively
large chunks while amortizing the cost across a series of
small “inserting new data” operations: decompression
of the buffer is deferred until we have batched enough
inserts in the buffer, thus enhancing the throughput.

2.3 DHT-based SRT
ELF’s agents are analogous to stateful vertices in dataflow
systems, constructed into a directed graph in which data
passes along directed edges. Using the terms vertex and
agent interchangeably, this subsection describes how we
leverage DHTs to construct these dataflow graphs, thus
obtaining unique benefits in flexibility and scalability. To
restate our goal, we seek a design that meets the following
criteria:

1. capability to host hundreds of concurrently running
applications’ dataflow graphs;

2. with each dataflow graph including minion vertices,
as our vertices reside in distributed webservers; and

3. where each dataflow graph can flexibly interact with
others for runtime coordination of its execution.

ELF leverages DHTs to create a novel ‘many master’
decentralized infrastructure. As shown in Figure 6, all
agents are structured into a P2P overlay with DHT-based
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Figure 6: Shared Reducer Tree Construction for many jobs.

routings. Each agent has a unique, 128-bit nodeId in a
circular nodeId space ranging from 0 to 2128-1. The set
of nodeIds is uniformly distributed; this is achieved by
basing the nodeId on a secure hash (SHA-1) of the node’s
IP address. Given a message and a key, it is guaranteed
that the message is reliably routed to the node with the
nodeId numerically closest to that key, within �log2bN�
hops, where b is a base with typical value 4. SRTs for
many applications (jobs) are constructed as follows.

The first step is to construct application-based groups
of agents and ensure that these groups are well balanced
over the network. For each job’s group, this is done as
depicted in Figure 6 left: the agent parsing the applica-
tion’s stream will route a JOIN message using appId as
the key. The appId is the hash of the application’s tex-
tual name concatenated with its creator’s name. The hash
is computed using the same collision resistant SHA-1
hash function, ensuring a uniform distribution of appIds.
Since all agents belonging to the same application use the
same key, their JOIN message will eventually arrive at a
rendezvous node, with nodeId numerically close to ap-
pId. The rendezvous node is set as the job’s master. The
unions of all messages’ paths are registered to construct
the group, in which the internal node, as the forwarder,
maintains a children table for the group containing an
entry (IP address and appId) for each child. Note that the
uniformly distributed appId ensures the even distribution
of groups across all agents.

The second step is to “draw” a directed graph within
each group to guide the dataflow computation. Like other
streaming systems, an application specifies its dataflow
graph as a logical graph of stages linked by connectors.
Each connector could simply transfer data to the next
stage, e.g., filter function, or shuffle the data using a
portioning function between stages, e.g., reduce function.
In this fashion, one can construct the pipeline structures
used in most stream processing systems, but by using
feedback, we can also create nested cycles in which a new
epoch’s input is based on the last epoch’s feedback result,
explained in more detail next.

Pipeline structures. We build aggregation trees using
DHTs for pipeline dataflows, in which each level of the

tree progressively ‘aggregates’ the data until the result ar-
rives at the root. For a non-partitioning function, the agent
as a vertex simply processes the data stream locally us-
ing the CBT. For a partitioning function like TopKCount
in which the key-value pairs are shuffled and gradually
truncated, we build a single aggregation tree, e.g., Fig-
ure 6 middle shows how the groupby, aggregate, sort
functions are applied for each level-i subtree’s root for
the micro-promotion job. For partitioning functions like
WordCount, we build m aggregation trees to divide the
keys into m ranges, where each tree is responsible for the
reduce function of one range, thus avoiding the root over-
load when aggregating a large key space. Figure 6 right
shows how the ‘fat-tree’-like aggregation tree is built for
the product-bundling job.

Cycles. Naiad [20] uses timestamp vectors to realize
dataflow cycles, whereas ELF employs multicast services
operating on a job’s aggregation tree to create feedback
loops in which the results obtained for a job’s last epoch
are re-injected into its sources. Each job’s master has com-
plete control over the contents of feedback messages and
how often they are sent. Feedback messages, therefore,
can be used to go beyond supporting cyclic jobs to also
exert application-specific controls, e.g., set a new thresh-
old, synchronize a new batch, install new job functionality
for agents to use, etc.

Why SRTs? The use of DHTs affords the efficient con-
struction of aggregation trees and multicast services, as
their converging properties guarantee aggregation or mul-
ticast to be fulfilled within only O(logN) hops. Further,
a single overlay can support many different independent
groups, so that the overheads of maintaining a proximity-
aware overlay network can be amortized over all those
group spanning trees. Finally, because all of these trees
share the same set of underlying agents, each agent can
be an input leaf, an internal node, the root, or any combi-
nation of the above, causing the computation load well
balanced. This is why we term these structures “shared
reducer trees” (SRTs).

Implementing feedback loops using DHT-based multi-
cast benefits load and bandwidth usage: each message is
replicated in the internal nodes of the tree, at each level,
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so that only m copies are sent to each internal node’s
m children, rather than having the tree root broadcast N
copies to N total nodes. Similarly, coordination across
jobs via the DHT’s routing methods is entirely decen-
tralized, benefiting scalability and flexibility, the latter
because concurrent ELF jobs use event-based methods to
remain responsive to other jobs and/or to user interaction.

2.4 ELF API
Subscribe(Id appid)
Vertex sends JOIN message to construct SRT with the root’s nodeid equals
to appid.
OnTimer()
Callback. Invoked periodically. This handler has no return value. The
master uses it for its periodic activities.
SendTo(Id nodeid, PAO paos)
Vertex sends the key-value pairs to the parent vertex with nodeid, resulting
in a corresponding invocation of OnRecv.
OnRecv(Id nodeid, PAO paos)
Callback. Invoked when vertex receives serialized key-value pairs from the
child vertex with nodeid.
Multicast(Id appid, Message message)
Application’s master publishes control messages to vertices, e.g., synchro-
nizing CBTs to be emptied; application’s master publishes last epoch’s
result, encapsulated into a message, to all vertices for iterative loops; or
application’s master publishes new functions, encapsulated into a message,
to all vertices for updating functions.
OnMulticast(Id appid, Message message)
Callback. Invoked when vertex receives the multicast message from appli-
cation’s master.

Table 1: Data plane API

Route(Id appid, Message message)
Vertex or master sends a message to another application. The appid is the
hash value of the target application’s name concatenated with its creator’s
name.
Deliver(Id appid, Message message)
Callback. Invoked when the application’s master receives an outsider mes-
sage from another application with appid. This outsider message is usually
a query for the application’s status such as results.

Table 2: Control plane API

Table 1 and Table 2 show the ELF’s data and control
plane APIs, respectively. The data plane APIs concern
data processing within a single application. The control
plane APIs are for coordination between different appli-
cations.

ArrayList<String> topk;
void OnTimer () {
if (this.isRoot()) {
this.Multicast(hash("micro-promotion"), new topk(topk));
this.Multicast(hash("micro-promotion"), new update()); }
}

void OnMulticast(Id appid, Message message) {
if (message instanceof topk) {
for(String product: message.topk) {
if(this.hasProduct(product))
//if it is an topk message, appear discount ... }
}

//if it is an update message, start a new batch
else if (message instanceof update) {
//if leaves, flush CBT and update to the parent vertex
if (!this.containsChild(appid)) {
PAO paos = cbt.get(appid).flush();
this.SendTo (this.getParent(appid), paos);
cbt.get(appid).empty(); }
}

}

Figure 7: ELF implementation of micro-promotion application
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Figure 8: Components of ELF.

A sample use shown in Figure 7 contains partial code
for the micro-promotion application. It multicasts up-
date messages periodically to empty agents’ CBTs for
synchronous batch processing. It multicasts top-k results
periodically to agents. Upon receiving the results, each
agent checks if it has the top-k product, and if true, the
extra discount will appear on the web page. To implement
the product-bundling application, the agents subscribe to
multiple SRTs to separately aggregate key-value pairs,
and agents’ associated CBTs are flushed only (without
being synchronously emptied), to send a sliding window
value to the parent vertices for asynchronously processing.
To implement the sale-predication application, the master
encapsulates its query and routes to the other two applica-
tions to get their intermediate results using Route.

3 Implementation
This section describes ELF’s architecture and prototype
implementation, including its methods for dealing with
faults and with stragglers.

3.1 System Architecture
Figure 8 shows ELF’s architecture. We see that unlike
other streaming systems with static assignments of nodes
to act as masters vs. workers, all ELF agents are treated
equally. They are structured into a P2P overlay, in which
each agent has a unique nodeId in the same flat circu-
lar 128-bit node identifier space. After an application
is launched, agents that have target streams required by
the application are automatically assembled into a shared
reducer tree (SRT) via their routing substrates. It is only
at that point that ELF assigns one or more of the following
roles to each participating agent:

Job master is SRT’s root, which tracks its own job’s
execution and coordinates with other jobs’ masters. It has
four components:

• Job builder constructs the SRT to roll up and aggre-
gate the distributed PAOs snapshots processed by
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local CBTs.
• Job tracker detects key-value errors, recovers from

faults, and mitigates stragglers.
• Job feedback is continuously sent to agents for iter-

ative loops, including last epoch’s results to be iter-
ated over, new job functions for agents to be updated
on-the-fly, application-specific control messages like
‘new discount’, etc.

• Job coordinator dynamically interacts with other
jobs to carry out interactive queries.

Job worker uses a local CBT to implement some
application-specific execution model, e.g., asynchronous
stream processing with a sliding window, synchronous
incremental batch processing with historical records, etc.
For consistency, job workers are synchronized by the job
master to ‘roll up’ the intermediate results to the SRT for
global aggregation. Each worker has five components:

• Input receiver observes streams. Its current imple-
mentation assumes logs are collected with Flume [1],
so it employs an interceptor to copy stream events,
then parses each event into a job-specified key-value
pair. A typical Flume event is a tuple with times-
tamp, source IP, and event body that can be split into
columns based on different key-based attributes.

• Job parser converts a job’s SQL description into a
workflow of operator functions f, e.g., aggregations,
grouping, and filters.

• PAOs execution: each key-value pair is represented
as a partial aggregation object (PAO) [9]. New PAOs
are inserted into and accumulated in the CBT. When
the CBT is “flushed”, new and past PAOs are ag-
gregated and returned, e.g., 〈argu,2,f : count()〉
merges with 〈argu,5,f : count()〉 to be a PAO
〈agru,7,f : count()〉.

• CBT resides in local agent’s memory, but can be
externalized to SSD or disk, if desired.

• SRT proxy is analogous to a socket, to join the P2P
overlay and link with other SRT proxies to construct
each job’s SRT.

A key difference to other streaming systems is that ELF
seeks to obtain scalability by changing the system archi-
tecture from 1 : n to m : n, where each job has its own
master and appropriate set of workers, all of which are
mapped to a shared set of agents. With many jobs, there-
fore, an agent act as one job’s master and another job’s
worker, or any combination thereof. Further, using DHTs,
jobs’ reducing paths are constructed with few overlaps,
resulting in ELF’s management being fully decentralized
and load balanced. The outcome is straightforward scal-
ing to large numbers of concurrently running jobs, with
each master controls its own job’s execution, including
to react to failures, mitigate stragglers, alter a job as it is
running, and coordinate with other jobs at runtime.

3.2 Consistency
The consistency of states across nodes is an issue in
streaming systems that eagerly process incoming records.
For instance, in a system counting page views from male
users on one node and females on another, if one of the
nodes is backlogged, the ratio of their counts will be
wrong [28]. Some systems, like Borealis [6], synchronize
nodes to avoid this problem, while others, like Storm [4],
ignore it.

ELF’s consistency semantics are straightforward, lever-
aging the fact that each CBT’s intermediate results (PAOs
snapshots) are uniquely named for different timestamped
intervals. Like a software combining tree barrier, each
leaf uploads the first interval’s snapshot to its parent. If
the parent discovers that it is the last one in its direct list
of children to do so, it continues up the tree by aggregat-
ing the first interval’s snapshots from all branches, else
it blocks. Figure 9 shows an example in which agent1
loses snapshot0, and thus blocks agent5 and agent7. Pro-
ceeding in this fashion, a late-coming snapshot eventually
blocks the entire upstream path to the root. All snapshots
from distributed CBTs are thus sequentially aggregated.

3.3 Fault Recovery
ELF handles transmission faults and agent failures, tran-
sient or permanent. For the former, the current implemen-
tation uses a simple XOR protocol to detect the integrity
of records transferred between each source and destina-
tion agent. Upon an XOR error, records will be resent.
We deal with agent failures by leveraging CBTs and the
robust nature of the P2P overlay. Upon an agent’s failure,
the dataset cached in the agent’s CBT is re-issued, the
SRT is re-constructed, and all PAOs are recomputed using
a new SRT from the last checkpoint.

In an ongoing implementation, we also use hot repli-
cation to support live recovery. Here, each agent in
the overlay maintains a routing table, a neighborhood
set, and a leaf set. The neighborhood set contains the
nodeIds hashed from the webservers’ IP addresses that
are closest to the local agent. The job master periodi-
cally checkpoints each agent’s snapshots in the CBT, by
asynchronously replicating them to the agent’s neighbors.
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Figure 9: Example of the leaping straggler approach. Agent1
notifies all members to discard snapshot0.
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ELF’s approach to failure handling is similar to that
of Spark and other streaming systems, but has potential
advantages in data locality because the neighborhood
set maintains geographically close (i.e., within the rack)
agents, which in turn can reduce synchronization over-
heads and speed up the rebuild process, particularly in
datacenter networks with limited bi-section bandwidths.

3.4 Straggler Mitigation
Straggler mitigation, including to deal with transient slow-
down, is important for maintaining low end-to-end delays
for time-critical streaming jobs. Users can instruct ELF
jobs to exercise two possible mitigation options. First, as
in other stream processing systems, speculative backup
copies of slow tasks could be run in neighboring agents,
termed the “mirroring straggler” option. The second
option in actual current use by ELF is the “leaping strag-
gler” approach, which skips the delayed snapshot and
simply jumps to the next interval to continue the stream
computation.

Straggler mitigation is enabled by the fact that each
agent’s CBT states are periodically checkpointed, with a
timestamp at every interval. When a CBT’s Paos snap-
shots are rolled up from leaves to root, the straggler will
cause all of its all upstream agents to be blocked. In the
example shown in Figure 9, agent1 has a transient failure
and fails to resend the first checkpoint’s data for some
short duration, blocking the computations in agent5 and
agent7. Using a simple threshold to identify it as a strag-
gler – whenever its parent determines it to have fallen
two intervals behind its siblings – agent1 is marked as a
straggler. Agent5, can use the leaping straggler approach:
it invalidates the first interval’s checkpoints on all agents
via multicast, and then jumping to the second interval.

The leaping straggler approach leverages the streaming
nature of ELF, maintaining timeliness at reduced levels of
result accuracy. This is critical for streaming jobs operat-
ing on realtime data, as when reacting quickly to changes
in web user behavior or when dealing with realtime sensor
inputs, e.g., indicating time-critical business decisions or
analyzing weather changes, stock ups and downs, etc.

4 Evaluation
ELF is evaluated with an online social network
(OSN) monitoring application and with the well-known
WordCount benchmark application. Experimental evalu-
ations answer the following questions:

• What performance and functionality benefits does
ELF provide for realistic streaming applications
(Sec.4.1)?

• What is the throughput and processing latency seen
for ELF jobs, and how does ELF scale with number
of nodes and number of concurrent jobs (Sec.4.2)?

• What is the overheads of ELF in terms of CPU, mem-
ory, and network load (Sec.4.3)?

4.1 Testbed and Application Scenarios
Experiments are conducted on a testbed of 1280 agents
hosted by 60 server blades running Linux 2.6.32, all con-
nected via Gigabit Ethernet. Each server has 12 cores
(two 2.66GHz six-core Intel X5650 processors), 48GB of
DDR3 RAM, and one 1TB SATA disk.

ELF’s functionality is evaluated by running an actual
application requiring both batch and stream processing.
The application’s purpose is to identify social spam cam-
paigns, such as compromised or fake OSN accounts used
by malicious entities to execute spam and spread mal-
ware [13]. We use the most straightforward approach to
identify them – by clustering all spam containing the same
label, such as an URL or account, into a campaign. The
application consumes the events, all labeled as “sales”,
from the replay of a previously captured data stream from
Twitter’s public API [3], to determine the top-k most fre-
quently twittering users publishing “sales”. After listing
them as suspects, job functions are changed dynamically,
to investigate further, by setting different filtering condi-
tions and zooming in to different attributes, e.g., locations
or number of followers.

The application is implemented to obtain online results
from live data streams via ELF’s agents, while in addi-
tion, also obtaining offline results via a Hadoop/HBase
backend. Having both live and historical data is crucial
for understanding the accuracy and relevance of online
results, e.g., to debug or improve the online code. ELF
makes it straightforward to mix online with offline pro-
cessing, as it operates in ways that bypass the storage tier
used by Hadoop/HBase.

Specifically, live data streams flow from webservers
to ELF and to HBase. For the web tier, there are 1280
emulated webservers generating Twitter streams at a rate
of 50 events/s each. Those streams are directly intercepted
by ELF’s 1280 agents, that filter tuples for processing, and
concurrently, unchanged streams are gathered by Flume
to be moved to the HBase store. The storage tier has 20
servers, in which the name node and job tracker run on a
master server, and the data node and task trackers run on
the remaining machines. Task trackers are configured to
use two map and two reduce slots per worker node. HBase
coprocessor, which is analogous to Google’s BigTable
coprocessor, is used for offline batch processing.

Comparison with Muppet and Storm. With ad-hoc
queries sent from a shell via ZeroMQ [5], comparative
results are obtained for ELF, Muppet, and Storm, with
varying sizes of sliding windows. Figure 10a shows that
ELF consistently outperforms Muppet. It achieves per-
formance superior to Storm for large window sizes, e.g.,
300 s, because the CBT’s data structure stabilizes ‘flush’
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Figure 10: Processing times, latency of function changes, and recovery results of ELF on the Twitter application.

cost by organizing the compressed historical records in
an (a,b) tree, enabling fast merging with large numbers
of past records.

Job function changes. Novel in ELF is the ability to
change job functions at runtime. As Figure 10b shows,
it takes less than 10 ms for the job master to notify all
agents about some change, e.g., to publish discounts in
the microsale example. To zoom in on different attributes,
the job master can update the filter functions on all agents,
which takes less than 210 ms, and it takes less than 600
ms to update user-specified map/reduce functions.

Fault and Straggler Recovery. Fault and straggler re-
covery are evaluated with methods that use human inter-
vention. To cause permanent failures, we deliberately
remove some working agents from the datacenter to eval-
uate how fast ELF can recover. The time cost includes
recomputing the routing table entries, rebuilding the SRT
links, synchronizing CBTs across the network, and re-
suming the computation. To cause stragglers via tran-
sient failures, we deliberately slow down some working
agents, by collocating them with other CPU-intensive
and bandwidth-aggressive applications. The leap ahead
method for straggler mitigation is fast, as it only requires
the job master to send a multicast message to notify ev-
eryone to drop the intervals in question.

Figure 10c reports recovery times with varying num-
bers of agents. The top curve shows that the delay for
fault recovery is about 7 s, with a very small rate of in-
crease with increasing numbers of agents. This is due to
the DHT overlay’s internally parallel nature of repairing
the SRT and routing table. The bottom curve shows that
the delay for ELF’s leap ahead approach to dealing with
stragglers is less than 100 ms, because multicast and sub-
sequent skipping time costs are trivial compared to the
cost of full recovery.

4.2 Performance
Data streams propagate from ELF’s distributed CBTs as
leaves, to the SRT for aggregation, until the job master at
the SRT’s root has the final results. Generated live streams

are first consumed by CBTs, and the SRT only picks up
truncated key-value pairs from CBTs for subsequent shuf-
fling. Therefore, the CBT, as the starting point for parallel
streaming computations, directly influences ELF’s overall
throughput. The SRT, as the tree structure for shuffling
key-value pairs, directly influences total job processing
latency, which is the time from when records are sent to
the system to when results incorporating them appear at
the root. We first report the per-node throughput of ELF
in Figure 11, then report data shuffling times for different
operators in Figure 12a 12b. The degree to which loads
are balanced, an important ELF property when running a
large number of concurrent streaming jobs, is reported in
Figure 12c.

Throughput. ELF’s high throughput for local aggrega-
tion, even with substantial amounts of local state, is
based in part on the efficiency of the CBT data struc-
ture used for this purpose. Figure 11 compares the
aggregation performance and memory consumption of
the Compressed Buffer Tree (CBT) with a state-of-the-
art concurrent hashtable implementation from Google’s
sparsehash [2]. The experiment uses a microbenchmark
running the WordCount application on a set of input files
containing varying numbers of unique keys. We measure
the per-unique-key memory consumption and throughput
of the two data structures. Results show that the CBT con-
sumes significantly less memory per key, while yielding
similar throughput compared to the hashtable. Tests are
run with equal numbers of CPUs (12 cores), and hashtable
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(b) Running operators simultaneously.
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Figure 12: Performance evaluation of ELF on data-shuffling time and load balance.

SPS CPU Memory I/O C-switch
%used %used wtps cswsh/s

ELF 2.96% 5.73% 3.39 780.44
Flume 0.14% 5.48% 2.84 259.23
S-master 0.06% 9.63% 2.96 652.22
S-worker 1.17% 15.91% 11.47 11198.96
SPS: stream processing system.
wtps: write transactions per second.
cswsh/s: context switches per second.

(a) Runtime overheads of ELF vs. others.
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Figure 13: Overheads evaluation of ELF on runtime cost and network cost.

performance scales linearly with the number of cores.
ELF’s per-node throughput of over 1000,000 keys/s

is in a range similar to Spark Streaming’s reported best
throughput (640,000 records/s) for Grep, WordCount,
and TopKCount when running on 4-core nodes. It is
also comparable to the speeds reported for commercial
single-node streaming systems, e.g., Oracle CEP reports a
throughput of 1 million records/s on a 16-core server and
StreamBase reports 245,000 records/s on a 8-core server.

Operators. Figure 12a 12b reports ELF’s data shuffling
time of ELF when running four operators separately vs.
simultaneously. By data shuffling time, we mean the time
from when the SRT fetches a CBT’s snapshot to the result
incorporating it appears in the root. max sorts key-value
pairs in a descending order of value, and min sorts in an
ascending order. sum is similar to WordCount, and avg
refers to the frequency of words divided by the occurrence
of key-value pairs. As sum does not truncate key-value
pairs like max or min, and avg is based on sum, naturally,
sum and avg take more time than max and min.

Figure 12a 12b demonstrates low performance inter-
ference between concurrent operators, because both data
shuffling times seen for separate operators and concurrent
operators are less than 100 ms. Given the fact that concur-
rent jobs reuse operators if processing logic is duplicated,
the interference between concurrent jobs is also low. Fi-
nally, these results also demonstrate that SRT scales well
with the datacenter size, i.e., number of webservers, as
the reduce times increase only linearly with exponential
increase in the number of agents. This is because reduce

times are strictly governed by an SRT’s depth O(log16N),
where N is the number of agents in the datacenter.

Balanced Load. Figure 12c shows the normal probabil-
ity plot for the expected number of roots per agent. These
results illustrate a good load balance among participating
agents when running a large number of concurrent jobs.
Specifically, assuming the root is the agent with the high-
est load, results show that 99.5% of the agents are the
roots of less than 3 trees when there are 500 SRTs total;
99.5% of the agents are the roots of less than 5 trees when
there are 1000 SRTs total; and 95% of the agents are the
roots of less than 5 trees when there are 2000 SRTs total.
This is because of the independent nature of the trees’ root
IDs that are mapped to specific locations in the overlay.

4.3 Overheads
We evaluate ELF’s basic runtime overheads, particularly
those pertaining to its CBT and SRT abstractions, and
compare them with Flume and Storm. The CBT requires
additional memory for maintaining intermediate results,
and the SRT generates additional network traffic to main-
tain the overlay and its tree structure. Table 13a and
Figure 13b 13c present these costs, explained next.

Runtime overheads. Table 13a shows the per-node run-
time overheads of ELF, Flume, Storm master, and Storm
worker. Experiments are run on 60 nodes, each with 12
cores and 48GB RAM. As Table 13a shows, ELF’s run-
time overheads is small, comparable to Flume, and much
less than that of Storm master and Storm worker. This
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is because both ELF and Flume use a decentralized ar-
chitecture that distributes the management load across
the datacenter, which is not the case for Storm master.
Compared to Flume, which only collects and aggregates
streams, ELF offers the additional functionality of pro-
viding fast, general stream processing along with per-job
managemen mechanisms.

Network overheads. Figure 13b 13c show the additional
network traffic imposed by ELF with varying update in-
tervals, when running the Twitter application. We see that
the number of packets and number of bytes sent per agent
increase only linearly, with an exponential increase in the
number of agents, at a rate less than the increase in up-
date frequency (from 1/30 to 1/5). This is because most
packets are ping-pong messages used for overlay and SRT
maintenance (initialization and keep alive), for which any
agent pings to a limited set of neighboring agents. We
estimate from Figure 13b that when scaling to millions of
agents, the additional #package is still bounded to 10.

5 Related Work
Streaming Databases. Early systems for stream process-
ing developed in the database community include Au-
rora [29], Borealis [6], and STREAM [10]. Here, a query
is composed of fixed operators, and a global scheduler de-
cides which tuples and which operators to prioritize in ex-
ecution based on different policies, e.g., interesting tuple
content, QoS values for tuples, etc. SPADE [14] provides
a toolkit of built-in operators and a set of adapters, target-
ing the System S runtime. Unlike SPADE or STREAM
that use SQL-style declarative query interfaces, Aurora
allows query activity to be interspersed with message
processing. Borealis inherits its core stream processing
functionality from Aurora.

MapReduce-style Systems. Recent work extends the
batch-oriented MapReduce model to support continuous
stream processing, using techniques like pipelined paral-
lelism, incremental processing for map and reduce, etc.

MapReduce Online [12] pipelines data between map
and reduce operators, by calling reduce with partial data
for early results. Nova [22] runs as a workflow manager
on top of an unmodified Pig/Hadoop software stack, with
data passes in a continuous fashion. Nova claims itself as
a tool more suitable for large batched incremental process-
ing than for small data increments. Incoop [11] applies
memorization to the results of partial computations, so
that subsequent computations can reuse previous results
for unchanged inputs. One-Pass Analytics [17] optimizes
MapReduce jobs by avoiding expensive I/O blocking op-
erations such as reloading map output.

iMR [19] offers the MapReduce API for continuous
log processing, and similar to ELF’s agent, mines data
locally first, so as to reduce the volume of data crossing

the network. CBP [18] and Comet [15] run MapReduce
jobs on new data every few minutes for “bulk incremental
processing”, with all states stored in on-disk filesystems,
thus incurring latencies as high as tens of seconds. Spark
Streaming [28] divides input data streams into batches
and stores them in memory as RDDs [27]. By adopt-
ing a batch-computation model, it inherits powerful fault
tolerance via parallel recovery, but any dataflow modifi-
cation, e.g., from pipeline to cyclic, has to be done via
the single master, thus introducing overheads avoided
by ELF’s decentralized approach. For example, it takes
Spark Streaming seconds for iterating and performing
incremental updates, but milliseconds for ELF.

All of the above systems inherit MapReduce’s “single
master” infrastructure, in which parallel jobs consist of
hundreds of tasks, and each single task is a pipeline of
map and reduce operators. The single master node places
those tasks, launches those tasks, maybe synchronizes
them, and keeps track of their status for fault recovery
or straggler mitigation. The approach works well when
the number of parallel jobs is small, but does not scale to
hundreds of concurrent jobs, particularly when these jobs
differ in their execution models and/or require customized
management.

Large-scale Streaming Systems. Streaming systems
like S4 [21], Storm [4], Flume [1], and Muppet [16] use
a message passing model in which a stream computation
is structured as a static dataflow graph, and vertices run
stateful code to asynchronously process records as they
traverse the graph. There are limited optimizations on
how past states are stored and how new states are inte-
grated with past data, thus incurring high overheads in
memory usage and low throughput when operating over
larger time windows. For example, Storm asks users to
write codes to implement sliding windows for trend top-
ics, e.g., using Map<>, Hashmap<> data structure. Muppet
uses an in-memory hashtable-like data structure, termed a
slate, to store past keys and their associated values. Each
key-value entry has an update trigger that is run when
new records arrive and aggressively inserts new values to
the slate. This creates performance issues when the key
space is large or when historical windowsize is large. ELF,
instead, structures sets of key-value pairs as compressed
buffer trees (CBTs) in memory, and uses lazy aggregation,
so as to achieve high memory efficiency and throughput.

Systems using persistent storage to provide full fault-
tolerance. MillWheel [7] writes all states contained in ver-
tices to some distributed storage system like BigTable or
Spanner. Percolator [23] structures a web indexing com-
putation as triggers that run when new values are written
into a distributed key-value store, but does not offer con-
sistency guarantees across nodes. TimeStream [24] runs
the continuous, stateful operators in Microsoft’s StreamIn-
sight [8] on a cluster, scaling with load swings through
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repartitioning or reconfiguring sub-DAGs with more or
less operators. ELF’s CBT resides in a local agent’s mem-
ory, but can be externalized to SSD or disk, if desired, to
also fully support fault-tolerance.

ELF is most akin to Naiad [20], which uses vec-
tor timestamps to implement cyclic dataflows and also
achieves tens of milliseconds for iterations and incremen-
tal updates. We differ from Naiad, which sends only data
feedback, in that ELF’s application-customized master
can send feedback messages that can concern data, job
control, and new job functions.

In contrast to all of the systems reviewed above, ELF
obtains scalability in terms of the number of concurrent
jobs run on incoming data via its fully decentralized
“many masters” infrastructure. ELF’s jobs can differ in
their execution models, yet interact to coordinate their
actions and/or build on each others’ results.

6 Conclusion
ELF implements a novel decentralized model for stream
processing that can simultaneously run hundreds of con-
current jobs, by departing from the common “one master
many workers” architecture to instead, using a “many
masters many workers” approach. ELF’s innovations go
beyond the consequent scalability improvements, to also
providing powerful programming abstraction for iterative,
batch, and streaming processing, and to offer new func-
tionalities that include support for runtime job function
change and for cross-job coordination.

Experimental evaluations demonstrate ELF’s scalabil-
ity to up to a thousand concurrent jobs, high per-node
throughput, sub-second job latency, and sub-second abil-
ity to adjust the actions of jobs being run.

Future work on ELF will go beyond additional imple-
mentation steps, e.g., to enhance SRTs for fast aggrega-
tion of non-truncated key-value pairs, to further optimize
performance and to add robustness by extending and ex-
perimenting with additional methods for fault recovery.
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azinska, and H. Balakrishnan. The aurora and medusa projects.
Data Engineering, 51:3, 2003.

12



USENIX Association  2014 USENIX Annual Technical Conference 37

Exploiting bounded staleness to speed up Big Data analytics
Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu Kumar

Jinliang Wei, Wei Dai, Gregory R. Ganger, Phillip B. Gibbons*, Garth A. Gibson, Eric P. Xing
Carnegie Mellon University, *Intel Labs

Abstract
Many modern machine learning (ML) algorithms are iter-
ative, converging on a final solution via many iterations
over the input data. This paper explores approaches to
exploiting these algorithms’ convergent nature to improve
performance, by allowing parallel and distributed threads
to use loose consistency models for shared algorithm state.
Specifically, we focus on bounded staleness, in which
each thread can see a view of the current intermediate
solution that may be a limited number of iterations out-
of-date. Allowing staleness reduces communication costs
(batched updates and cached reads) and synchronization
(less waiting for locks or straggling threads). One ap-
proach is to increase the number of iterations between
barriers in the oft-used Bulk Synchronous Parallel (BSP)
model of parallelizing, which mitigates these costs when
all threads proceed at the same speed. A more flexible
approach, called Stale Synchronous Parallel (SSP), avoids
barriers and allows threads to be a bounded number of
iterations ahead of the current slowest thread. Extensive
experiments with ML algorithms for topic modeling,
collaborative filtering, and PageRank show that both
approaches significantly increase convergence speeds,
behaving similarly when there are no stragglers, but SSP
outperforms BSP in the presence of stragglers.

1 Introduction
Large-scale machine learning (ML) has become a critical
building block for many applications and services, as
the Big Data concept gains more and more momentum.
Parallel ML implementations executed on clusters of
servers are increasingly common, given the total compu-
tation work often involved. These implementations face
the same challenges as any parallel computing activity,
including performance overheads induced by inter-thread
communication and by synchronization among threads.

Among the many ML approaches being used, many fall
into a category often referred to as iterative convergent
algorithms. These algorithms start with some guess at a
solution and refine this guess over a number of iterations
over the input data, improving a goodness-of-solution ob-
jective function until sufficient convergence or goodness
has been reached. The key property is convergence, which
allows such algorithms to find a good solution given an
initial guess. Likewise, minor errors in the adjustments
made by any given iteration will not prevent success.

Distributed implementations of iterative convergent
algorithms tend to shard the input data and follow the

Bulk Synchronous Parallel (BSP) model. The current
intermediate solution is shared by all threads, and each
worker thread processes its subset of the input data (e.g.,
news documents or per-user movie ratings). Each worker
makes adjustments to the current solution, as it processes
each of its input data items, to make it match that item
better. In a BSP execution, coordination happens when-
ever all threads have completed a certain amount of work,
which we will refer to as a “clock”. All threads work on
clock N with a snapshot of the shared state that includes
all updates from clock N − 1, with exchange of updates
and a barrier synchronization at the end of each clock.

Although not often discussed as such, BSP relies on
the algorithm having a tolerance of staleness. During a
given clock, worker threads do not see the adjustments
made by others; each of them determines adjustments
independently, and those adjustments are aggregated only
at the end of the clock. Indeed, these independent ad-
justments are a source of error that may require extra
iterations. But, by coordinating only once per clock,
BSP reduces communication costs (by batching updates)
and synchronization delays (by reducing their frequency).
While most ML practitioners equate an iteration (one pass
over the input data) with a BSP clock, doing so fails to
recognize staleness as a parameter to be tuned.

This paper describes and analyzes two approaches to
more fully exploiting staleness to improve ML conver-
gence speeds. Allowing more staleness often results in
faster convergence, but only to a point. While it reduces
communication and synchronization, making iterations
faster, it can also increase the error in any given iteration.
So, there is a tradeoff between decreasing iteration times
and increasing iteration counts, determined by the stale-
ness bound. In BSP, the maximum staleness corresponds
to the work per clock. We find that the best value is often
not equal to one iteration, and we use the term Arbitrarily-
sized BSP (A-BSP) to highlight this fact.1

A different approach to exploiting staleness is the Stale
Synchronous Parallel (SSP) model, proposed in our recent
workshop paper [12], which generalizes BSP by relaxing
the requirement that all threads be working on the same
clock at the same time. Instead, threads are allowed to
progress a bounded number (the “slack”) of clocks ahead
of the slowest thread. Like the BSP model, the SSP
model bounds staleness (to the product of the slack and

1A-BSP is not a different model than BSP, but we use the additional
term to distinguish the traditional use of BSP (by ML practitioners) from
explicit tuning of staleness in BSP.
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the work per clock). But, unlike BSP, SSP’s more flexible
executions can better mitigate transient straggler effects.

We describe a system, called LazyTable, that supports
BSP, A-BSP, and SSP. Using three diverse, real ML
applications (topic modeling, collaborative filtering, and
PageRank) running on 500 cores, we study the relative
merits of these models under various conditions. Our
results expose a number of important lessons that must
be considered in designing and configuring such systems,
some of which conflict with prior work. For example,
as expected, we find that tuning the staleness bound
significantly reduces convergence times. But, we also
find that A-BSP and SSP, when using the (same) best
staleness bound, perform quite similarly in the absence of
significant straggler effects. In fact, SSP involves some
extra communication overheads that can make it slightly
slower than A-BSP in such situations. In the presence of
transient straggler effects, however, SSP provides much
better performance.

This paper makes three primary contributions over pre-
vious work, including our workshop paper that proposed
SSP. First, it provides the first detailed description of a
system that implements SSP, as well as BSP and A-BSP,
including techniques used and lessons learned in tuning its
performance. Second, to our knowledge, it is the first to
introduce the concept of tuning the BSP work-per-clock in
the context of parallel ML, allowing A-BSP to be viewed
(and evaluated) in the same bounded staleness model as
SSP. Third, it provides the first comparative evaluations
of A-BSP and SSP, exploring their relative merits when
using the same staleness bound, whereas previous papers
(e.g., [12]) only compared SSP to BSP. Importantly, these
comparisons clarify when SSP does and does not provide
value over a simpler A-BSP implementation.

2 Parallel ML and bounded staleness
This section reviews iterative convergent algorithms for
ML, the traditional BSP model for parallelizing them, why
staleness helps performance but must be bounded, and
the A-BSP and SSP approaches to exploiting staleness.

2.1 Iterative convergent algorithms & BSP
Many ML tasks (e.g., topic modeling, collaborative fil-
tering, and PageRank) are mapped onto problems that
can be solved via iterative convergent algorithms. Such
algorithms typically search a space of potential solutions
(e.g., N-dimensional vectors of real numbers) using an
objective function that evaluates the goodness of a poten-
tial solution. The goal is to find a solution with a large (or
in the case of minimization, small) objective value. For
some algorithms (e.g., eigenvector and shortest path), the
objective function is not explicitly defined or evaluated.
Rather, they iterate until the solution does not change
(significantly) from iteration to iteration.

These algorithms start with an initial state S0 that has
some objective value f(S0). They proceed through a set
of iterations, each one producing a new state Sn+1 with
a potentially improved solution (e.g., greater objective
value f(Sn+1) > f(Sn)). In most ML use-cases, this is
done by considering each input datum, one by one, and
adjusting the current state to more accurately reflect it.
Eventually, the algorithm reaches a stopping condition
and outputs the best known state as the solution. A key
property of these algorithms is that they will converge
to a good state, even if there are minor errors in their
intermediate calculations.

Iterative convergent algorithms are often parallelized
with the Bulk Synchronous Parallel (BSP) model. In BSP,
a sequence of computation work is divided among multi-
ple computation threads that execute in parallel, and each
thread’s work is divided into clock periods by barriers.
The clock period usually corresponds to an amount of
work, rather than a wall clock time, and the predominant
ML practice is to perform one full iteration over the
input data each clock [19]. For an iterative convergent
algorithm, the algorithm state is stored in a shared data
structure (often distributed among the threads) that all
threads update during each iteration. BSP guarantees that
all threads see all updates from the previous clock, but
not that they will see updates from the current clock, so
computation threads can experience staleness errors when
they access the shared data.

2.2 Bounded staleness
Parallel execution always faces performance challenges
due to inter-thread communication overheads and syn-
chronization delays. They can be mitigated by having
threads work independently, but at the expense of threads
not seeing the latest solution improvements by other
threads. This lack of awareness of updates to the shared
state by other threads is what we mean by “staleness”.

In the BSP model, threads work independently within
a clock period, with no guarantee of seeing updates from
other threads until the next barrier. Figure 1(a) illustrates
a BSP execution with 3 threads. In the original sequential
execution, each iteration has 6 work-units, which are finer-
grained divisions of the original sequential execution. We
denote (i, j) as the j-th work-unit of the i-th iteration. In
this example, when thread-3 is doing work (4, 6), which
is circled in the illustration, BSP only guarantees that it
will see the updates from work completed in the previous
clocks (clocks 3 and lower, not shaded). It may or may
not see updates from the five shaded work-units.

Because iterative convergent algorithms can tolerate
some error in the adjustments made to the algorithm
state, independent work by threads can be acceptable
even though the algorithm state is shared. That is, even if
a thread incorrectly assumes that other threads have made

2
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Figure 1: BSP, A-BSP, and SSP models. A block with (i, j)
represents the j-th work-unit of the i-th iteration. Focusing on
thread 3’s execution of the circled work-unit, the shaded blocks
indicate the updates that it may not see, under each model. SSP
is more flexible than A-BSP, allowing the work of later clocks to
start before the work of earlier clocks complete, up to the slack
bound.

no relevant modifications to the shared state, causing it to
produce a somewhat imperfect adjustment, the algorithm
will still converge. Exploiting this fact, such as with a
BSP implementation, allows parallel execution without
synchronizing on every update to the shared state.

Accepting some staleness allows batching of updates,
more reading from local (possibly out-of-date) views
of the shared state, and less frequent synchronization,
all of which helps iterations to complete faster. But,
it may take more iterations to converge, because each
iteration is less effective. In theory, a number of algo-
rithms have been shown to converge given reasonable
bounds on staleness [23]. Empirically, our experiments
show that there is a sweet spot in this staleness tradeoff
that maximizes overall convergence speed for a given
execution, considering both the time-per-iteration and the
effectiveness-per-iteration aspects.

Note that having a bound on staleness is important, at
least in theory. There have been Asynchronous Parallel
systems [1] that allow threads to work completely asyn-
chronously, with best-effort communication of updates
among them, but their robustness is unknown. While they
have worked in some empirical evaluations, the conver-
gence proofs associated with such efforts assume there
are bounds on how out-of-synch threads will get, even
though such systems (in contrast to those we consider)
provide no mechanisms to enforce such bounds.

2.3 Expanding staleness exploitation
This section describes two approaches for more fully
exploiting staleness to improve ML convergence speeds.

Arbitrarily-sized Bulk Synchronous Parallel (A-
BSP). Because the staleness bound represents a tradeoff,
tuning it can be beneficial. Focusing first on the BSP
model, we define the amount of work done in each clock
period as work-per-clock (WPC). While the traditional
ML approach equates iteration and clock, it is not nec-
essary to do so. The WPC could instead be a multiple
of or a fraction of an iteration over the input data. To
distinguish BSP executions where WPC is not equal to
one iteration from the current ML practice, we use the
term “Arbitrarily-sized BSP” (A-BSP) in this paper.

Figure 1(b) illustrates an A-BSP execution in which
the WPC is two full iterations. That is, the barriers occur
every two iterations of work, which approximately halves
the communication work and doubles the amount of data
staleness compared to base BSP. Manipulating the A-
BSP WPC in this manner is a straightforward way of
controlling the staleness bound.

Stale Synchronous Parallel (SSP). While A-BSP
amortizes per-clock communication work over more com-
putation, it continues to suffer from BSP’s primary per-
formance issue: stragglers. All threads must complete a
given clock before the next clock can begin, so a single
slow thread will cause all threads to wait. This problem
grows with the level of parallelism, as random variations
in execution times increase the probability that at least
one thread will run unusually slowly in a given clock.
Even when it is a different straggler in each clock, due
to transient effects, the entire application can be slowed
significantly (see Section 5 for examples).

Stragglers can occur for a number of reasons including
heterogeneity of hardware [21], hardware failures [3],
imbalanced data distribution among tasks, garbage collec-
tion in high-level languages, and even operating system
effects [5, 27]. Additionally, there are sometimes algorith-
mic reasons to introduce a straggler. Many algorithms use
an expensive computation to check a stopping criterion,
which they perform on a different one of the machines
every so many clocks.

Recently, a model called “Stale Synchronous Parallel”
(SSP) [12] was proposed as an approach to mitigate the
straggler effect. SSP uses work-per-clock as defined
above, but eliminates A-BSP’s barriers and instead defines
an explicit slack parameter for coordinating progress
among the threads. The slack specifies how many clocks
out-of-date a thread’s view of the shared state can be,
which implicitly also dictates how far ahead of the slowest
thread that any thread is allowed to progress. For example,
with a slack of s, a thread at clock t is guaranteed to see
all updates from clocks 1 to t− s− 1, and it may see (not
guaranteed) the updates from clocks t− s to t− 1.

3
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Figure 1(c) illustrates an SSP execution with a slack
of 1 clock. When thread-3 is doing work (4, 6), SSP
guarantees that it sees all the updates from clocks 1 and 2,
and it might also see some updates from clocks 3 and 4.

Relationship of A-BSP and SSP. In terms of data
staleness, SSP is a generalization of A-BSP (and hence of
BSP), because SSP’s guarantee with slack set to zero
matches A-BSP’s guarantee when both use the same
WPC. (Hence, SSP’s guarantee with slack set to zero
and WPC set to 1 iteration matches BSP’s guarantee.)
For convenience, we use the tuple {wpc, s} to denote
an SSP or A-BSP configuration with work per clock of
wpc and slack of s. (For A-BSP, s is always 0.) The
data staleness bound for an SSP execution of {wpc, s} is
wpc× (s+ 1)− 1. This SSP configuration provides the
same staleness bound as A-BSP with {wpc× (s+ 1), 0}.

A-BSP requires a barrier at the end of each clock, so it
is very sensitive to stragglers in the system. SSP is more
flexible, in that it allows some slack in the progress of
each thread. The fastest thread is allowed to be ahead
of the slowest by wpc× s. As a result, the execution of
SSP is like a pipelined version of A-BSP, where the work
of later clocks can start before the work of earlier clocks
complete. Intuitively, this makes SSP better at dealing
with stragglers, in particular when threads are transient
stragglers that can readily resume full speed once the
cause of the slowness mitigates (e.g., the stopping crite-
rion calculation or the OS/runtime operation completes).

But, SSP involves additional communication costs. The
SSP execution of {wpc, s} will have s + 1 times more
clocks than its A-BSP counter-part. In other words, SSP
is a finer-grained division of the execution, and updates
will be propagated at a higher frequency. As a result, SSP
requires higher network throughput and incurs extra CPU
usage for communication. When there are no stragglers,
A-BSP can perform slightly better by avoiding the extra
communication. Our evaluation explores this tradeoff.

3 LazyTable design and implementation
This section describes LazyTable, which provides for
shared global values accessed/updated by multiple threads
across multiple machines in a staleness-aware manner. It
can be configured to support BSP, A-BSP, and SSP.

LazyTable holds globally shared data in a cluster of
tablet servers, and application programs access the data
through the client library. (See Figure 2.) Each tablet
server holds a partition (shard) of the data, and the client
library services data access operations from the applica-
tion by communicating with the appropriate tablet server.
The client library also maintains a hierarchy of caches
and operation logs in order to reduce network traffic.

3.1 LazyTable data model and API
Data model. Globally shared data is organized in a
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App. thread 

Client library 

Thread  
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Figure 2: LazyTable running two application processes
with two application threads each.

collection of rows in LazyTable. A row is a user-defined
data type and is usually a container type, such as an STL
vector or map. The row type is required to be serializable
and be defined with an associative aggregation operation,
such as plus, multiply, or union, so that updates from
different threads can be applied in any order. Each row is
uniquely indexed by a (table id, row id) tuple.

Having each data unit be a row simplifies the imple-
mentation of the many ML algorithms that are naturally
expressed as operations on matrices and vectors. Each
vector can naturally be stored as a row in LazyTable.

Operations. LazyTable provides a simple API for
accessing the shared data and for application threads to
synchronize their progress. Listed below are the core
methods of the LazyTable client library, which borrow
from Piccolo [28] and add staleness awareness:
read(table id, row id, slack): Atomi-

cally retrieves a row. Ideally, the row is retrieved from a
local cache. If no available version of the row is within
the given slack bound, the calling thread waits. This is
the only function that blocks the calling thread.
update(table id, row id, delta): Atomi-

cally updates a row by delta using the defined aggrega-
tion operation. The delta should have the same type as
row data, so it is usually a vector instead of a single value.
If the target row does not exist, the row data will be set to
delta.
refresh(table id, row id, slack): Re-

freshes the process cache entry of a row, if it is too old.
This interface can be used for the purpose of prefetching.
clock(): Increases the “clock time” of the call-

ing thread by one. Although this is a synchronization-
purposed function, it does not block the calling thread, so
it is different from a barrier in a BSP or A-BSP system.

Data freshness and consistency guarantees.
LazyTable does not have explicit barriers at the end of
each clock. Instead, it bounds staleness by attaching a
data age field to each row. If a row has a data age of τ , it
is guaranteed to contain all updates from all application
threads for clocks 1, 2, ..., τ . For the case of BSP, where
each thread can only use the output from the previous
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clock, a thread at clock t can only use the data of age
t− 1. For the case of SSP, when a thread at clock t issues
a read request with a slack of s, only row data with data
age τ ≥ t− 1− s can be returned.

LazyTable also enforces the read-my-updates property,
which ensures that the data read by a thread contains all
its own updates. Read-my-updates often makes it much
easier to reason about program correctness. It also enables
applications to store local intermediate data in LazyTable.

3.2 LazyTable system components
The LazyTable prototype is written in C++, using the
ZeroMQ [32] socket library for communication.

3.2.1 Tablet servers

The tablet servers collectively store the current “mas-
ter” view of the row data. Data is distributed among
the tablet servers based on row ID, by default using a
simple, static row-server mapping: tablet id = row id
mod num of tablets. The current implementation does
not replicate row data or support multi-row updates, and
also requires the tablet server data to fit in memory.

Each tablet server uses a vector clock to keep track of
the version of all its row data. Each entry of the vector
clock represents the server’s view of the progress of each
client process, which starts from zero and is increased
when a clock message is received. The minimal clock
value among the vector clock entries is referred to as the
global clock value. A global clock value of t indicates
that all application threads on all client machines have
finished the work up to clock t, and that all updates from
these threads have been merged into the master data. The
update and read requests are serviced by the tablet
servers as follows:

Proposing updates. When the tablet server receives a
row update from a client, it puts it into a pending updates
list. Updates in this list are applied to the master data only
after a clock message is received from that client. This
mechanism guarantees that the vector clock values can
uniquely determine the version of the master data.

Reading values. When the tablet server receives a read
request from a client, it looks at its global clock value. If
the clock value is at least as large as the requested data
age, the request is serviced immediately. Otherwise, the
request will be put in the pending read list, which is sorted
by the requested data age. When the global clock value
of the tablet server advances to a required data age, the
server then replies to those pending requests in the list.
Along with the requested row data, the server also sends
two clock fields: data age and requester clock. The data
age is simply the server’s global clock. The requester
clock is the server’s view of the requesting client’s clock—
this indicates which updates from that client have been
applied to the row data. The client uses this information

to clear its oplogs (discussed below).

3.2.2 Client library

The client library runs in the same process as the applica-
tion code and translates the LazyTable API calls to server
messages. It also maintains different levels of caches
and operation logs. The client library creates several
background worker threads that are responsible for jobs
such as propagating updates and receiving data.

The LazyTable client library has two levels of
caches/oplogs: the process cache/oplog and the thread
cache/oplog, as depicted in Figure 2. The process
cache/oplog is shared by all threads in the client process,
including the application threads and background worker
threads. Each thread cache/oplog, on the other hand,
is exclusively associated with one application thread.
Thread cache entries avoid locking at the process cache,
and they are used only for the few rows that would suffer
contention. The use of these caches/oplogs in servicing
update and read operations is described below.

The client library tracks the progress of its application
threads using a vector clock. Each entry of the vector
clock represents the progress of one application thread,
which starts at zero and will be increased by one each
time the application thread calls the clock() operation.

Proposing updates. Application threads propose up-
dates to the globally shared data using the update()
operation. Suppose a thread at clock t wants to update
the value of a row by delta. If the corresponding thread
cache/oplog entry exists, the update will be logged in
the thread oplog. To guarantee “read-my-updates”, it will
also be applied to the data in the thread cache immediately.
When this thread calls the clock function, all updates
in the thread oplog will be pushed to the process oplog
and also applied to the row data in the process cache. If
there is no thread cache/oplog entry, then the update will
be pushed to the process cache/oplog immediately.

When all application threads in a client process have
finished clock t, the client library will signal a background
thread to send the clock messages, together with the
batched updates of clock t in the process oplog, to the
tablet servers. For robustness, the process oplogs are
retained until the next time the client receives row data
containing that update.

Reading values. When an application thread at clock
t wants to read row r with a slack of s, the client library
will translate the request to “read row r with data age
age ≥ t − s − 1”. To service this request, the client
library will first look in the thread cache, and then the
process cache, for a cached entry that satisfies the data
age requirement. If not, it will send a request to the
tablet server for row r and block the calling thread to
wait for the new data. A per-row tag in the process cache
tracks whether a request is in progress, in order to squash
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redundant requests to the same row.
When the server replies, the row data is received by

a background worker thread. The server also sends a
requester clock value rc, which tells the client which of its
updates have been applied to this row data. The receiver
thread erases from its process oplog any operation for that
tablet server’s shard with clock ≤ rc. Then, to guarantee
“read-my-updates” for the application thread, it applies
to the received data row (r) any operations for row r
remaining in the process oplog (i.e., with clock > rc).
Finally, the receiver thread sets the data age field of the
row and signals the waiting application threads.

3.3 Prefetching and fault-tolerance
Prefetching. Not unexpectedly, we find that prefetching
makes a huge difference in performance, even when
bounded staleness is allowed (e.g., see Section 5.5). But,
the access patterns often do not conform to traditional
application-unaware policies, such as sequential prefetch-
ing. So, LazyTable provides an explicit refresh() in-
terface for prefetching. The parameters for refresh()
are the same as read(), but the calling thread is not
blocked and row data is not returned.

Applications usually prefetch row data at the beginning
of each clock period. The general rule-of-thumb is to
refresh every row that will be used in that clock period
so as to overlap fetch time with computation. While this
requires an application to know beforehand what it will
read in the current clock, many iterative ML applications
have this property. Generally, each application thread
processes the same input data in the same order, accessing
the same rows in the same order as well. To leverage
this property, LazyTable provides an automatic prefetcher
module. The access pattern can be captured after one
iteration, and the prefetcher can automatically refresh the
needed data at the beginning of each clock.

The prefetching described so far addresses read miss la-
tencies. But, for SSP, where multiple versions of the data
can be accepted by a read, prefetching can also be used
to provide fresher data. LazyTable supports two prefetch-
ing strategies. Conservative prefetching only
refreshes when necessary; if cache age < t − s − 1,
the prefetcher will send a request for (row = r, age
≥ t − s − 1). Aggressive prefetching will
always refresh if the row is not from the most recent
clock, seeking the freshest possible value.

The conservative prefetching strategy incurs the mini-
mal amount of traffic in order to avoid freshness misses.
The aggressive prefetching strategy refreshes the data
frequently, even with an infinite slack, at the cost of extra
client-server communication. As a result, we can use
infinite slack plus aggressive prefetching to emulate Asyn-
chronous Parallel systems (as discussed in Section 2.2)
in LazyTable. In our experiments to date, it is usually

worthwhile to pay the cost of aggressive prefetching, so
we use it as the default prefetching strategy.

Fault tolerance. LazyTable provides fault-tolerance
via checkpointing. The tablet servers are told (in advance)
about the clock at which to make a checkpoint, so that
they can do so independently. Suppose the tablet servers
are planned to make a checkpoint at the end of clock t.
One way of checkpointing is to have each tablet server
flush all its master data to the storage (take a snapshot) as
soon as it has received a clock=t message from all of the
clients. But, when slack > 0, the snapshot taken from this
approach is not a pure one that contains exactly the clock
1 through t updates from all clients: some clients may
have run ahead and already applied their clock t+ 1, . . .
updates to the master data. We call this approach an ap-
proximate snapshot. Approximate snapshots can be used
to do off-line data processing after the computation, such
as expensive objective value computation. LazyTable
currently implements only approximate snapshot.

An alternative is to have each tablet server keep a pure
copy of the master data, and have the tablet server flush
it to storage instead of the latest master data. If a tablet
server is going to checkpoint at the end of clock t, we can
keep all updates beyond clock t out of the pure copy, so
that it contains exactly the updates from clock 1 through
t. But, some effects from SSP slack can be present. For
example, client-1 might have generated its updates for
clock t based on client-2’s updates from clock t + 1.
When one restores the execution from clock t using that
snapshot, there will still be a residual influence from the
“future”. Moreover, in the view of client-1, client-2 goes
backwards. Fortunately, iterative convergent algorithms
suitable for SSP can tolerate this kind of error as well [18].

4 Example ML applications
This section describes three ML apps with different algo-
rithms, representing a range of ML approaches.

Topic modeling. Topic modeling is a class of problems
that assign topic vectors to documents. The specific
model on which we focus is known as Latent Dirichlet
Allocation [6] (LDA). LDA learns the parameters of the
document-topic and topic-word distributions that best
explain the input data (a corpus of documents). While
there are a number of ways to do this, our example
application uses the Gibbs sampling [17] algorithm.

Our implementation works as follows. We divide
the set of input documents among threads and use two
tables to store document-topic assignment and word-topic
respectively. In each iteration, each thread passes through
the words in their input documents. For the word word id
in document doc id, the thread reads the doc id-th row
of the document-topic table and the word id-th row plus
a summation row2 of the word-topic table, and updates

2The sum of all word-topic rows, used by the algorithm to calculate
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them based on the calculated topic assignment.
Matrix factorization. Matrix factorization can be

used to predict missing values in a sparse matrix.3 One
example application is to predict user’s preferences based
on the known preferences of similar users, where the
sparse matrix represents users’ preference ranking to
items. Matrix factorization assumes the matrix has low
rank and can be expressed as the product of a tall skinny
matrix (the left-matrix) and a short wide matrix (the right-
matrix). Once this factorization is found, any missing
value can be predicted by computing the product of
these two matrices. This problem can be solved by the
stochastic gradient descent algorithm [14].

Our implementation on LazyTable partitions the known
elements in the sparse matrix among threads and uses two
tables to store the left-matrix and right-matrix, respec-
tively. In each iteration, each thread passes through the
elements, and for the element (i, j) in the sparse matrix,
it reads and adjusts the i-th row of the left-matrix table
and the j-th row of the right-matrix table.

PageRank. The PageRank algorithm assigns a
weighted score (PageRank) to every vertex in a graph [10],
the score of a vertex measures its importance in the graph.

We implement an edge-scheduling version of PageRank
on LazyTable. In each iteration, the algorithm passes
through all the edges in the graph and updates the rank of
the dst node according to the rank of the src node. The
set of edges are partitioned evenly among threads, and the
application stores the ranks of each node in LazyTable.

5 Evaluation
This section evaluates the A-BSP and SSP approaches via
experiments with real ML applications on our LazyTable
prototype; using the same system for all experiments
enables us to focus on these models with all else being
equal. The results support a number of important find-
ings, some of which depart from previous understandings,
including: (1) the staleness bound controls a tradeoff
between iteration speed and iteration goodness, in both
A-BSP and SSP, with the best setting generally being
greater than a single iteration; (2) SSP is a better approach
when transient straggler issues occur; (3) SSP requires
higher communication throughput, including CPU usage
on communication; and (4) iteration-aware prefetching
significantly lowers delays for reads and also has the effect
of reducing the best-choice staleness bound.

5.1 Evaluation setup
Cluster and LazyTable configuration. Except where
otherwise stated, the experiments use 8 nodes of the NSF
PRObE cluster [15]. Each node has four 2.1 GHz 16-
core Opteron 6272s and 128GB of RAM (512 cores in

the probability that a word belongs to a certain topic.
3Here “sparse” means most elements are unknown.

total). The nodes run Ubuntu 12.04 and are connected via
an Infiniband network interface (40Gbps spec; ≈13Gbps
observed).

A small subset of experiments, identified explicitly
when described, use a second cluster (the “VM cluster”).
It consists of 32 8-core blade servers running VMware
ESX and connected by 10 Gbps Ethernet. We create
one VM on each physical machine, configured with 8
cores (either 2.3GHz or 2.5GHz each) and 23GB of RAM,
running Debian Linux 7.0.

Each node executes a client process, with one appli-
cation thread per core, and a tablet server process. The
default aggressive prefetching policy is used, unless oth-
erwise noted. The staleness bound configuration for any
execution is described by the “wpc” and “slack” values.
The units for the WPC value is iterations, so wpc=2
means that two iterations are performed in each clock
period. The units for slack is clocks, which is the same as
iterations if wpc=1. Recall that, generally speaking, BSP
is wpc=1 and slack=0, A-BSP is wpc=N and slack=0, and
SSP is wpc=1 and slack=N.

Application benchmarks. We use the three example
applications described in Section 4: Topic Modeling
(TM), Matrix Factorization (MF), and PageRank (PR).
Table 1 summarizes the problem sizes.

App. # of rows Row size
(bytes)

# of row accesses
per iteration

TM 400k 800 600m
MF 500k 800 400m
PR 685k 24 15m

Table 1: Problem sizes of the ML application benchmarks.

For TM, we use the Nytimes dataset, which contains
300k documents, 100m words, and a vocabulary size of
100k. We configure the application to generate 100 topics
on this dataset. The quality of the result is defined as the
loglikelihood of the model, which is a value that quantifies
how likely the model can generate the observed data. A
higher value indicates a better model.

For MF, we use the Netflix dataset, which is a 480k-
by-18k sparse matrix with 100m known elements. We
configure the application to factor it into the product of
two matrices with rank 100, using an initial step size of 5e-
10. Result quality is defined as the summation of squared
errors, and a lower value indicates a better solution.

For PageRank, we use the web-BerkStan dataset [24],
which is a web graph with 685k nodes and 7.6m edges.
We configure the application to use a damping factor
of 0.85. Because there is no result quality criteria for
PageRank, we define it to be the summation of squared
errors from a “ground truth result”, which we obtain by
running a sequential PageRank algorithm on a single
machine for a relatively large number of iterations (100).
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A low value indicates a better solution.
We extract result quality data 16 times, evenly spaced,

during each execution. To do so, the application creates
a background thread in each client process and rotates
the extraction among them. For TM and PR, the result
quality is computed during the execution by a background
thread in each client. For MF, the computation is very
time-consuming (several minutes), so we instead have
LazyTable take snapshots (see Section 3.3) and compute
the quality off-line.

5.2 Exploiting staleness w/ A-BSP and SSP
A-BSP. Figure 3(a) shows performance effects on TM of
using A-BSP with different WPC settings. The leftmost
graph shows overall convergence speed, which is result
quality as a function of execution time, as the application
converges. WPC settings of 2 or 4 iterations significantly
outperform settings of 1 (BSP) or 8, illustrating the fact
that both too little and too much staleness is undesirable.
One way to look at the data is to draw a horizontal
line and compare the time (X axis) required for each
setting to reach a given loglikelihood value (Y axis). For
example, to reach -9.5e8, WPC=1 takes 236.2 seconds,
while WPC=2 takes only 206.6 seconds.

The middle and rightmost graphs help explain this
behavior, showing the iteration speed and iteration ef-
fectiveness, respectively. The middle graph shows that, as
WPC increases, iterations complete faster. The rightmost
graph shows that, as WPC increases, each iteration is less
effective, contributing less to overall convergence such
that more iterations are needed. The overall convergence
speed can be thought of as the combination of these
two metrics. Because the iteration speed benefit exhibits
diminishing returns, and the iteration effectiveness does
not seem to, there ends up being a sweet spot.

SSP. Figure 3(b) shows the same performance effects
when using SSP with different slack settings. Similar
trends are visible: more staleness increases iteration
speed, with diminishing returns, and decreases iteration
effectiveness. Empirically, the sweet spot is at slack=3.

We show the behavior for infinite slack, for comparison,
which is one form of non-blocking asynchronous execu-
tion. Although it provides no guarantees, it behaves rea-
sonably well in the early portion of the execution, because
there are no major straggler issues and the aggressive
prefetching mechanism refreshes the data even though it
is not required. But, it struggles in the final (fine-tuning)
stages of convergence. Even the BSP baseline (slack=0)
finishes converging faster.

A-BSP vs. SSP. Figure 3(c) uses the same three-graph
approach to compare four configurations: BSP, the best-
performing A-BSP (wpc=4), the best-performing SSP
from above (slack=3), and the best-performing overall
configuration (a hybrid with wpc=2 and slack=1). Other

than BSP, they all use the same staleness bound: wpc ×
(slack + 1). The results show that SSP outperforms both
BSP and A-BSP, and that the best configuration is the
hybrid. For example, to reach -9.5e8, A-BSP takes 237.0
seconds, while the two SSP options take 222.7 seconds
and 193.7 seconds, respectively. Indeed, across many
experiments with all of the applications, we generally find
that the best setting is slack=1 with wpc set to one-half
of the best staleness bound value. The one clock of slack
is enough to mitigate intermittent stragglers, and using
larger WPC amortizes communication costs more.

Looking a bit deeper, Figure 4 shows a breakdown
of iteration speed into two parts: computation time and
“wait time”, which is the time that the client application
is blocked by a LazyTable read due to data freshness
misses. As expected, the iteration speed improvements
from larger staleness bounds (from the first bar to the
second group to the third group) come primarily from
reducing wait times. Generally, the wait time is a combi-
nation of waiting for stragglers and waiting for fetching
fresh-enough data. Because there is minimal straggler
behavior in these experiments, almost all of the benefit
comes from reducing the frequency of client cache fresh-
ness misses. The diminishing returns are also visible,
caused by the smaller remaining opportunity (i.e., the
wait time) for improvement as the staleness bound grows.
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Figure 4: Time consumption distribution of TM.

Matrix factorization and PageRank. Space limits
preclude us from including all results, but Figure 5 shows
the convergence speed comparison. For MF, we ob-
serve less tolerance for staleness, and SSP with slack=1
performs the best, while A-BSP with wpc=2 actually
struggles to converge.4

PageRank behaves more similarly to Topic Modeling,
but we found that A-BSP {4,0} slightly outperforms
SSP {2,1} and significantly outperforms SSP {1,3} in
this case. This counter-intuitive result occurs because of
the increased communication overheads associated with
SSP, which aggressively sends and fetches data every
clock, combined with PageRank’s lower computation
work. When the communication throughput, not syn-

4We found, empirically, that MF does not diverge as shown with
smaller step sizes, which bound the error from staleness to lower values,
but we show this data because it is for the best step size for BSP.
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(a) Tuning WPC on A-BSP
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(b) Tuning slack on SSP
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Figure 3: Different ways of exploiting data staleness in Topic Modeling.

chronization overheads or straggler delays, limit iteration
speeds, SSP’s tendency to use more communication can
hurt performance if it does so too aggressively. Note,
however, that maximizing WPC with slack=1 remains
close to the best case, and is more robust to larger straggler
issues. We will examine this communication overhead of
SSP in more detail in Section 5.4.

5.3 Influence of stragglers
The original motivation for SSP was to tolerate intermit-
tent stragglers [12], but our carefully controlled experi-
mental setup exhibits minimal execution speed variation.
This section examines Topic Modeling performance under
two types of straggler behavior.

Delayed threads. First, we induced stragglers by hav-
ing application threads sleep in a particular schedule, con-
firming that a complete system addresses such stragglers
as predicted in the HotOS paper [12]. Specifically, the
threads on machine-1 sleep d seconds at iteration-1, and
then the threads on machine-2 sleep d seconds at iteration-
2, and so on. Figure 6 shows the average time per iteration,
as a function of d, for Topic Modeling via BSP, A-BSP,
and SSP. Ideally, the average time per iteration would
increase by only d

N seconds, where N is the number

of machines, because each thread is delayed d seconds
every N iterations. For A-BSP, the average iteration time
increases linearly with a slope of 0.5, because the threads
synchronize every two iterations (wpc=2), at which time
one delay of d is experienced. For SSP, the effect depends
on the magnitude of d relative to the un-delayed time
per iteration (≈4.2 seconds). When d is 6 or less, the
performance of SSP is close to ideal, because the delays
are within the slack. Once d exceeds the amount that
can be mitigated by the slack, the slope matches that of
A-BSP, but SSP stays 1.5 seconds-per-iteration faster than
A-BSP.

Background work. Second, we induced stragglers
with competing computation, as might occur with back-
ground activities like garbage collection or short high-
priority jobs. We did these experiments on 32 machines
of the VM cluster, using a background “disrupter” process.
The disrupter process creates one thread per core (8 in
the VM cluster) that each perform CPU-intensive work
when activated; so when the disrupter is active, the CPU
scheduler will give it half of the CPU resources (or more,
if the TM thread is blocked). Using discretized time slots
of size t, each machine’s disrupter is active in a time
slot with a probability of 10%, independently determined.
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Figure 5: Synchronization-staleness tradeoff examples.
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Figure 6: Influence of delayed threads.

Figure 7 shows the increase in iteration time as a function
of t. Ideally, the increase would be just 5%, because the
disrupters would take away half of the CPU 10% of the
time. The results are similar to those from the previous
experiment. SSP is close to ideal, for disruptions near or
below the iteration time, and consistently able to mitigate
the stragglers’ impact better than A-BSP.
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Figure 7: Influence of background disrupting work. With
no disruption, each iteration takes about 4.2 seconds.

5.4 Examining communication overhead
Table 2 lists the network traffic of A-BSP {4, 0}, SSP {2,
1}, and SSP {1, 3} for Topic Modeling. We denote the

traffic from client to server as “sent” and that from server
to client as “received”. The “sent” traffic is mainly caused
by update, and the “received” traffic is mainly caused
by read. For a configuration that halves the WPC, the
sent traffic will be doubled, because the number of clocks
for the same number of iterations is doubled. However,
the received traffic is less than doubled, because for SSP,
if the data received from the server is fresh enough, it can
be used in more than one clock of computation.

As discussed in Section 5.2, this extra communication
can cause SSP to perform worse than A-BSP in some
circumstances. Much of the issue is the CPU overhead
for processing the communication, rather than network
limitations. To illustrate this, we emulate a situation
where there is zero computation overhead for commu-
nication. Specifically, we configure the application to
use just 4 application threads, and then configure the
VMs to use either 4 cores (our normal 1 thread/core)
or 8 cores (leaving 4 cores for doing the communica-
tion processing without competing with the application
threads). Because we have fewer application threads,
using WPC=1 would be a lot of computation work per
clock. As a result, we make WPC smaller so that it
is similar to our previous results: {wpc=0.25, slack=0}
for A-BSP and {wpc=0.125, slack=1} for SSP. Figure 8
shows the time for them to complete the same amount of
work. The primary takeaway is that having the extra cores
makes minimal difference for A-BSP, but significantly
speeds up SSP. This result suggests that SSP’s potential
is much higher if the CPU overhead of communication
were reduced in our current implementation.

Config. Bytes sent Bytes received
wpc=4, slack=0 33.0 M 29.7 M
wpc=2, slack=1 61.9 M 51.0 M
wpc=1, slack=3 119.4 M 81.5 M

Table 2: Bytes sent/rec’d per client per iteration of TM.
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Figure 8: CPU overhead of communication.

5.5 Prefetching and throughput
Figure 9 shows the importance of prefetching, highlight-
ing the value of LazyTable’s iteration-aware prefetching
scheme. The time per iteration, partitioned into com-
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putation time and wait time, is shown for each of the
three applications using SSP. In each case, the prefetching
significantly reduces the wait time. There are two reasons
that the speed up for MF is higher than for TM and PR.
First, the set of rows accessed by different application
threads overlap less in MF than in TM; so, when there is
no prefetching, the rows used by one thread on a machine
are less likely to be already fetched by another thread and
put into the shared process cache. Second, each iteration
is longer in MF, which means the same slack value covers
more work; so, with prefetching, the threads are less likely
to have data misses.

Note that, as expected, prefetching reduces wait time
but not computation time. An interesting lesson we
learned when prefetching was added to LazyTable is that
it tends to reduce the best-choice staleness bound. Be-
cause increased staleness reduces wait time, prefetching’s
tendency to reduce wait time reduces the opportunity to
increase iteration speed. So, the iteration effectiveness
component of convergence speed plays a larger role in
determining the best staleness bound. Before adding
prefetching, we observed that higher staleness bounds
were better than those reported here.
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Figure 9: Time per iteration with/without prefetching for
all three applications with {wpc=1, slack=1}.

6 Related work
In a HotOS workshop paper [12], we proposed SSP,
briefed an early LazyTable prototype that implemented
it, and did a couple of experiments to show that it helps
mitigate delayed thread stragglers. We recently published
follow-on work in an ML conference [18] that provides
evidence of convergence for several ML algorithms under
SSP, including proofs that provide theoretical justification
for SSP’s bounded staleness model. Some experiments
comparing SSP to BSP show performance improvement,
but the focus is on the ML algorithm behavior. This paper
makes several important contributions beyond our previ-
ous papers: we describe a more general view of bounded
staleness covering A-BSP as well as SSP, we describe
in detail a system that supports both, we explain design
details that are important to realizing their performance
potential, and we thoroughly evaluate both and show the
strengths and weaknesses for each. Importantly, whereas
SSP almost always outperforms BSP (as commonly used

in ML work) significantly, this paper makes clear that A-
BSP can be as effective when straggler issues are minor.

The High Performance Computing community – which
frequently runs applications using the BSP model – has
made much progress in eliminating stragglers caused by
hardware or operating system effects [13, 27]. While
these solutions are very effective at reducing “operating
system jitter”, they are not intended to solve the more
general straggler problem. For instance, they are not
applicable to programs written in garbage collected lan-
guages, nor do they handle algorithms that inherently
cause stragglers during some iterations.

In large-scale networked systems, where variable node
performance, unpredictable communication latencies and
failures are the norm, researchers have explored relaxing
traditional barrier synchronization. For example, Albrecht
et al. [2] describe partial barriers, which allow a fraction
of nodes to pass through a barrier by adapting the rate of
entry and release from the barrier. This approach does
not bound how far behind some nodes may get, which is
important for ML algorithm convergence.

Another class of solutions attempts to reduce the need
for synchronization by restricting the structure of the
communication patterns. For example, GraphLab [25, 26]
programs structure computation as a graph, where data
can exist on nodes and edges. All communication occurs
along the edges of this graph. If two nodes on the graph
are sufficiently far apart they may be updated without
synchronization. This model can significantly reduce
synchronization in some cases. However, it requires the
application programmer to specify the communication
pattern explicitly.

Considerable work has been done in describing and
enforcing relaxed consistency in distributed replicated
services. For example, the TACT model [31] describes
consistency along three dimensions: numerical error,
order error and staleness. Other work [30] classifies
existing systems according to a number of consistency
properties, specifically naming the concept of bounded
staleness. Although the context differs, the consistency
models have some similarities.

In the database literature, bounded staleness has been
applied to improve update and query performance. Lazy-
Base [11] allows staleness bounds to be configured on a
per-query basis, and uses this relaxed staleness to improve
both query and update performance. FAS [29] keeps
data replicated in a number of databases, each provid-
ing a different freshness/performance tradeoff. Data
stream warehouses [16] collect data about timestamped
events, and provide different consistency depending on
the freshness of the data. The concept of staleness (or
freshness/timeliness) has also been applied in other fields
such as sensor networks [20], dynamic web content gener-
ation [22], web caching [9], and information systems [7].
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Of course, one can ignore consistency and synchro-
nization altogether, relying on a best-effort model for
updating shared data. Yahoo! LDA [1] as well as most
solutions based around NoSQL databases rely on this
model. While this approach can work well in some
cases, having no staleness bounds makes confidence in
ML algorithm convergence difficult.

7 Conclusion
Bounded staleness reduces communication and synchro-
nization overheads, allowing parallel ML algorithms to
converge more quickly. LazyTable supports parallel ML
execution using any of BSP, A-BSP, or SSP. Experiments
with three ML applications executed on 500 cores show
that both A-BSP and SSP are effective in the absence
of stragglers. SSP mitigates stragglers more effectively,
making it the best option in environments with more vari-
ability, such as clusters with multiple uses and/or many
software layers, or for algorithms with more variability in
the work done per thread within an iteration.
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Abstract
Data scientists often implement machine learning algo-
rithms in imperative languages such as Java, Matlab
and R. Yet such implementations fail to achieve the per-
formance and scalability of specialised data-parallel pro-
cessing frameworks. Our goal is to execute impera-
tive Java programs in a data-parallel fashion with high
throughput and low latency. This raises two challenges:
how to support the arbitrary mutable state of Java pro-
grams without compromising scalability, and how to re-
cover that state after failure with low overhead.

Our idea is to infer the dataflow and the types of state
accesses from a Java program and use this information
to generate a stateful dataflow graph (SDG). By explic-
itly separating data from mutable state, SDGs have spe-
cific features to enable this translation: to ensure scala-
bility, distributed state can be partitioned across nodes if
computation can occur entirely in parallel; if this is not
possible, partial state gives nodes local instances for in-
dependent computation, which are reconciled according
to application semantics. For fault tolerance, large in-
memory state is checkpointed asynchronously without
global coordination. We show that the performance of
SDGs for several imperative online applications matches
that of existing data-parallel processing frameworks.

1 Introduction
Data scientists want to use ever more sophisticated im-
plementations of machine learning algorithms, such as
collaborative filtering [32], k-means clustering and logis-
tic regression [21], and execute them over large datasets
while providing “fresh”, low latency results. With the
dominance of imperative programming, such algorithms
are often implemented in languages such as Java, Matlab
or R. Such implementations though make it challenging
to achieve high performance.

On the other hand, data-parallel processing frame-
works, such as MapReduce [8], Spark [38] and Na-
iad [26], can scale computation to a large number of

nodes. Such frameworks, however, require developers
to adopt particular functional [37], declarative [13] or
dataflow [15] programming models. While early frame-
works such as MapReduce [8] followed a restricted func-
tional model, resulting in wide-spread adoption, recent
more expressive frameworks such as Spark [38] and Na-
iad [26] require developers to learn more complex pro-
gramming models, e.g. based on a richer set of higher-
order functions.

Our goal is therefore to translate imperative Java im-
plementations of machine learning algorithms to a repre-
sentation that can be executed in a data-parallel fashion.
The execution should scale to a large number of nodes,
achieving high throughput and low processing latency.
This is challenging because Java programs support ar-
bitrary mutable state. For example, an implementation
of collaborative filtering [32] uses a mutable matrix to
represent a model that is refined iteratively: as new data
arrives, the matrix is updated at a fine granularity and
accessed to provide up-to-date predictions.

Having stateful computation raises two issues: first,
the state may grow large, e.g. on the order of hundreds
of GBs for a collaborative filtering model with tens of
thousands of users. Therefore the state and its associated
computation must be distributed across nodes; second,
large state must be restored efficiently after node failure.
The failure recovery mechanism should have a low im-
pact on performance.

Current data-parallel frameworks do not handle large
state effectively. In stateless frameworks [8, 37, 38],
computation is defined through side-effect-free func-
tional tasks. Any modification to state, such as updat-
ing a single element in a matrix, must be implemented as
the creation of new immutable data, which is inefficient.
While recent frameworks [26, 10] have recognised the
need for per-task mutable state, they lack abstractions for
distributed state and exhibit high overhead under fault-
tolerant operation with large state (see §6.1).
Imperative programming model. We describe how,
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with the help of a few annotations by developers, Java
programs can be executed automatically in a distributed
data-parallel fashion. Our idea is to infer the dataflow
and the types of state accesses from a Java program and
use this information to translate the program to an ex-
ecutable distributed dataflow representation. Using pro-
gram analysis, our approach extracts the processing tasks
and state fields from the program and infers the variable-
level dataflow.

Stateful dataflow graphs. This translation relies on the
features of a new fault-tolerant data-parallel processing
model called stateful dataflow graphs (SDGs). An SDG
explicitly distinguishes between data and state: it is a
cyclic graph of pipelined data-parallel tasks, which exe-
cute on different nodes and access local in-memory state.

SDGs include abstractions for maintaining large state
efficiently in a distributed fashion: if tasks can process
state entirely in parallel, the state is partitioned across
nodes; if this is not possible, tasks are given local in-
stances of partial state for independent computation.
Computation can include synchronisation points to ac-
cess all partial state instances, and instances can be rec-
onciled according to application semantics.

Data flows between tasks in an SDG, and cycles spec-
ify iterative computation. All tasks are pipelined—this
leads to low latency, less intermediate data during fail-
ure recovery and simplified scheduling by not having to
compute data dependencies. Tasks are replicated at run-
time to overcome processing bottlenecks and stragglers.

Failure recovery. When recovering from failures, nodes
must restore potentially gigabytes of in-memory state.
We describe an asynchronous checkpointing mechanism
with log-based recovery that uses data structures for dirty
state to minimise the interruption to tasks while taking
local checkpoints. Checkpoints are persisted to multiple
disks in parallel, from which they can be restored to mul-
tiple nodes, thus reducing recovery time.

With a prototype system of SDGs, we execute Java
implementations of collaborative filtering, logistic re-
gression and a key/value store on a private cluster and
Amazon EC2. We show that SDGs execute with high
throughput (comparable to batch processing systems)
and low latency (comparable to streaming systems).
Even with large state, their failure recovery mechanism
has a low performance impact, recovering in seconds.

The paper contributions and its structure are as fol-
lows: based on a sample Java program (§2.1) and the
features of existing dataflow models (§2.2), we motivate
the need for stateful dataflow graphs and describe their
properties (§3); §4 explains the translation from Java to
SDGs; §5 describes failure recovery; and §6 presents
evaluation results, followed by related work (§7).

Algorithm 1: Online collaborative filtering
1 @Partitioned Matrix userItem = new Matrix();
2 @Partial Matrix coOcc = new Matrix();
3

4 void addRating(int user, int item, int rating) {
5 userItem.setElement(user, item, rating);
6 Vector userRow = userItem.getRow(user);
7 for (int i = 0; i < userRow.size(); i++)
8 if (userRow.get(i) > 0) {
9 int count = coOcc.getElement(item, i);

10 coOcc.setElement(item, i, count + 1);
11 coOcc.setElement(i, item, count + 1);
12 }
13 }
14 Vector getRec(int user) {
15 Vector userRow = userItem.getRow(user);
16 @Partial Vector userRec = @Global coOcc.multiply(

userRow);
17 Vector rec = merge(@Global userRec);
18 return rec;
19 }
20 Vector merge(@Collection Vector[] allUserRec) {
21 Vector rec = new Vector(allUserRec[0].size());
22 for (Vector cur : allUserRec)
23 for (int i = 0; i < allUserRec.length; i++)
24 rec.set(i, cur.get(i) + rec.get(i));
25 return rec;
26 }

2 State in Data-Parallel Processing
We describe an imperative implementation of a machine
learning algorithm and investigate how it can execute in
a data-parallel fashion on a set of nodes, paying attention
to its use of mutable state (§2.1). Based on this analysis,
we discuss the features of existing data-parallel process-
ing models for supporting such an execution (§2.2).

2.1 Application example
Alg. 1 shows a Java implementation of an on-
line machine learning algorithm, collaborative filter-
ing (CF) [32].1 It outputs up-to-date recommendations of
items to users (function getRec) based on previous item
ratings (function addRating).

The algorithm maintains state in two data structures:
the matrix userItem stores the ratings of items made by
users (line 1); the co-occurrence matrix coOcc records
correlations between items that were rated together by
multiple users (line 2).

For many users and items, useritem and coOcc become
large and must be distributed: userItem can be parti-
tioned across nodes based on the user identifier as an
access key; since the access to coOcc is random, it cannot
be partitioned but only replicated on multiple nodes in
order to parallelise updates. In this case, results from a
single instance of coOcc are partial, and must be merged
with other partial results to obtain a complete result, as
described below.

The function addRating first adds a new rating to
userItem (line 5). It then incrementally updates coOcc by
increasing the co-occurrence counts for the newly-rated

1The annotations (starting with ’@’) will be explained in §4 and
should be ignored for now.
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Computational
model

Systems
Programming
model

State handling Dataflow
Failure recoveryRepresen- Large Fine-grained Execution Low Iter-

tation state size updates latency ation
MapReduce [8] map/reduce as data n/a � scheduled � � recompute
DryadLINQ [37] functional as data n/a � scheduled � � recompute

Stateless dataflow Spark [38] functional as data n/a � hybrid � � recompute
CIEL [25] imperative as data n/a � scheduled � � recompute
HaLoop [5] map/reduce cache � � scheduled � � recompute

Incremental
dataflow

Incoop [4] map/reduce cache � � scheduled � � recompute
Nectar [11] functional cache � � scheduled � � recompute
CBP [19] dataflow loopback � � scheduled � � recompute
Comet [12] functional as data n/a � scheduled � � recompute

Batched dataflow D-Streams [39] functional as data n/a � hybrid � � recompute
Naiad [26] dataflow explicit � � hybrid � � sync. global checkpoints

Continuous
dataflow

Storm, S4 dataflow as data n/a � pipelined � � recompute
SEEP [10] dataflow explicit � � pipelined � � sync. local checkpoints

Parallel in-memory Piccolo [30] imperative explicit � � n/a � � async. global checkpoints
Stateful dataflow SDG imperative explicit � � pipelined � � async. local checkpoints

Table 1: Design space of data-parallel processing frameworks

item and existing items with non-zero ratings (line 7–12).
This requires userItem and coOcc to be mutable, with ef-
ficient fine-grained access. Since userItem is partitioned
based on the key user, and coOcc is replicated, addRating
only accesses a single instance of each.

The function getRec takes the rating vector of a
user, userRow (line 15), and multiplies it by the co-
occurrence matrix to obtain a recommendation vec-
tor userRec (line 16). Since coOcc is replicated, this must
be performed on all instances of coOcc, leading to mul-
tiple partial recommendation vectors. These partial vec-
tors must be merged to obtain the final recommendation
vector rec for the user (line 17). The function merge sim-
ply computes the sum of all partial recommendation vec-
tors (lines 21–24).

Note that addRating and getRec have different per-
formance goals when handling state: addRating must
achieve high throughput when updating coOcc with new
ratings; getRec must serve requests with low latency, e.g.
when recommendations are included in dynamically gen-
erated web pages.

2.2 Design space
The above example highlights a number of required fea-
tures of a dataflow model to enable the translation of
imperative online machine learning algorithms to exe-
cutable dataflows: (i) the model should support large
state sizes (on the order of GBs), which should be rep-
resented explicitly and handled with acceptable perfor-
mance; in particular, (ii) the state should permit efficient
fine-grained updates. In addition, due to the need for up-
to-date results, (iii) the model should process data with
low latency, independently of the amount of input data;
(iv) algorithms such as logistic regression and k-means
clustering also require iteration; and (v) even with large
state, the model should support fast failure recovery.

In Table 1, we classify existing data-parallel process-
ing models according to the above features.

State handling. Stateless dataflows, first made popular
by MapReduce [8], define a functional dataflow graph in
which vertices are stateless data-parallel tasks. They do
not distinguish between state and data: e.g. in a word-
count job in MapReduce, the partial word counts, which
are the state, are output by map tasks as part of the
dataflow [8]. Dataflows in Spark, represented as RDDs,
are immutable, which simplifies failure recovery but re-
quires a new RDD for each state update [38]. This is in-
efficient for online algorithms such as CF in which only
part of a matrix is updated each time.

Stateless models also cannot treat data differently from
state. They cannot use custom index data structures
for state access, or cache only state in memory: e.g.
Shark [36] needs explicit hints which dataflows to cache.

Incremental dataflow avoids rerunning entire jobs af-
ter updates to the input data. Such models are fundamen-
tally stateful because they maintain results from earlier
computation. Incoop [4] and Nectar [11] treat state as a
cache of past results. Since they cannot infer which data
will be reused, they cache all. CBP transforms batch jobs
automatically for incremental computation [19].

Our goals are complementary: SDGs do not infer in-
cremental computation but support stateful computation
efficiently, which can realise incremental algorithms.

Existing models that represent state explicitly, such as
SEEP [10] and Naiad [26], permit tasks to have access to
in-memory data structures but face challenges related to
state sizes: they assume that state is small compared to
the data. When large state requires distributed processing
through partitioning or replication, they do not provide
abstractions to support this.

In contrast, Piccolo [30] supports scalable distributed
state with a key/value abstraction. However, it does not
offer a dataflow model, which means that it cannot ex-
ecute an inferred dataflow from a Java program but re-
quires computation to be specified as multiple kernels.
Latency and iteration. Tasks in a dataflow graph can
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be scheduled for execution or materialised in a pipeline,
each with different performance implications. Some
frameworks follow a hybrid approach in which tasks on
the same node are pipelined but not between nodes.

Since tasks in stateless dataflows are scheduled to pro-
cess coarse-grained batches of data, such systems can
exploit the full parallelism of a cluster but they can-
not achieve low processing latency. For lower latency,
batched dataflows divide data into small batches for pro-
cessing and use efficient, yet complex, task schedulers
to resolve data dependencies. They have a fundamental
trade-off between the lower latency of smaller batches
and the higher throughput of larger ones—typically they
burden developers with making this trade-off [39].

Continuous dataflow adopts a streaming model with
a pipeline of tasks. It does not materialise intermedi-
ate data between nodes and thus has lower latency with-
out a scheduling overhead: as we show in §6, batched
dataflows cannot achieve the same low latencies. Due to
our focus on online processing with low latency, SDGs
are fully pipelined (see §3.1).

To improve the performance of iterative computation
in dataflows, early frameworks such as HaLoop [5] cache
the results of one iteration as input to the next. Recent
frameworks [15, 38, 25, 9] generalise this concept by
permitting iteration over arbitrary parts of the dataflow
graph, executing tasks repeatedly as part of loops. Simi-
larly SDGs support iteration explicitly by permitting cy-
cles in the dataflow graph.
Failure recovery. To recover from failure, frameworks
either recompute state based on previous data or check-
point state to restore it. For recomputation, Spark rep-
resents dataflows as RDDs [38], which can be recom-
puted deterministically based on their lineage. Contin-
uous dataflow frameworks use techniques such as up-
stream backup [14] to reprocess buffered data after fail-
ure. Without checkpointing, recomputation can lead to
long recovery times.

Checkpointing periodically saves state to disk or the
memory of other nodes. With large state, this becomes
resource-intensive. SEEP recovers state from memory,
thus doubling the memory requirement of a cluster [10].

A challenge is how to take consistent checkpoints
while processing data. Synchronous global checkpoin-
ting stops processing on all nodes to obtain consistent
snapshots, thus reducing performance. For example, Na-
iad’s “stop-the-world” approach exhibits low throughput
with large state sizes [26]. Asynchronous global check-
pointing, as used by Piccolo [30], permits nodes to take
consistent checkpoints at different times.

Both techniques include all global state in a check-
point and thus require all nodes to restore state after fail-
ure. Instead, SDGs use an asynchronous checkpointing
mechanism with log-based recovery. As described in §5,
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Figure 1: Stateful dataflow graph for CF algorithm

it does not require global coordination between nodes
during recovery, and it uses dirty state to minimise the
disruption to processing during local checkpointing.

3 Stateful Dataflow Graphs
The goal of stateful dataflow graphs (SDGs) is to make
it easy to translate imperative programs with mutable
state to a dataflow representation that performs paral-
lel, iterative computation with low latency. Next we de-
scribe their model (§3.1), how they support distributed
state (§3.2) and how they are executed (§3.3).

3.1 Model
We explain the main features of SDGs using the CF al-
gorithm from §2.1 as an example. As shown in Fig. 1,
an SDG has two types of vertices: task elements, t ∈ T ,
transform input to output dataflows; and state elements,
s ∈ S, represent the state in the SDG.

Access edges, a = (t,s) ∈ A, connect task elements to
the state elements that they read or update. To facilitate
the allocation of task and state elements to nodes, each
task element can only access a single state element, i.e. A
is a partial function: (ti,s j) ∈ A,(ti,sk) ∈ A⇒s j = sk.
Dataflows are edges between task elements, d = (ti, t j) ∈
D, and contain data items.
Task elements (TEs) are not scheduled for execution but
the entire SDG is materialised, i.e. each TE is assigned to
one or more physical nodes. Since TEs are pipelined, it is
unnecessary to generate the complete output dataflow of
a TE before it is processed by the next TE. Data items are
therefore processed with low latency, even across a se-
quence of TEs, without scheduling overhead, and fewer
data items are handled during failure recovery (see §5).

The SDG in Fig. 1 has five TEs assigned to three
nodes: the updateUserItem, updateCoOcc TEs realise the
addRating function from Alg. 1; and the getUserVec,
getRecVec and merge TEs implement the getRec function.
We explain the translation process in §4.2.
State elements (SEs) encapsulate the state of the compu-
tation. They are implemented using efficient data struc-
tures, such as hash tables or indexed sparse matrices. In
the next section, we describe the abstractions for dis-
tributed SEs, which span multiple nodes.

Fig. 1 shows the two SEs of the CF algorithm: the
userItem and the coOcc matrices. The access edges spec-
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ify that userItem is updated by the updateUserItem TE
and read by the getUserVec TE; coOcc is updated by
updateCoOcc and read by getRecVec.
Parallelism. For data-parallel processing, a TE ti can be
instantiated multiple times to handle parts of a dataflow,
resulting in multiple TE instances, t̂i, j : j ≤ ni. As we
explain in §3.3, the number of instances ni for each TE
is chosen at runtime and adjusted based on workload de-
mands and the occurrence of stragglers.

An appropriate dispatching strategy sends items in
dataflows to TE instances: items can be (i) partitioned
using hash- or range-partitioning on a key; or (ii) dis-
patched to an arbitrary instance, e.g. in a round-robin
fashion for load-balancing.
Iteration. In iterative algorithms, SEs are accessed mul-
tiple times by TEs. There are two cases to be distin-
guished: (i) if the repeated access is from a single TE, the
iteration is entirely local and can be supported efficiently
by a single node; and (ii) if the iteration involves multi-
ple pipelined TEs, a cycle in the dataflow of the SDG can
propagate updates between TEs.

With cycles in the dataflow, SDGs do not provide co-
ordination during iteration by default. This is sufficient
for many iterative machine learning and data mining al-
gorithms because they can converge from different inter-
mediate states [31], even without explicit coordination.
A strong consistency model for SDGs could be realised
with per-loop timestamps, as used by Naiad [26].

3.2 Distributed state
The SDG model provides abstractions for distributed
state. An SE si may be distributed across nodes, leading
to multiple SE instances ŝi, j, because (i) it is too large
to fit into the memory of a single node; or (ii) it is ac-
cessed by a TE that has multiple instances to process the
dataflow in parallel. This requires also multiple SE in-
stances so that the TE instances access state locally.

Fig. 1 illustrates these two cases: (i) the userItem SE
may grow larger than the main memory of a single node;
and (ii) the data-parallel execution of the CPU-intensive
updateCoOcc TE leads to multiple instances, each requir-
ing local access to the coOcc SE.

An SE can be distributed in different ways, which are
depicted in Fig. 2: a partitioned SE splits its internal data
structure into disjoint partitions; if this is not possible, a
partial SE duplicates its data structure, creating multiple
copies that are updated independently. As we describe
in §4, developers selected the required type of distributed
state using source-level annotations according to the se-
mantics of their algorithm.
Partitioned state. For algorithms for which state can be
partitioned, SEs can be split and SE instances placed on
separate nodes (see Fig. 2b). Access to the SE instances
occurs in parallel.

state 

(a) SE (b) Partitioned SE

merge

(c) Partial SE

Figure 2: Types of distributed state in SDGs

Developers can use predefined data structures for SEs
(e.g. Vector, HashMap, Matrix and DenseMatrix) or de-
fine their own by implementing dynamic partitioning and
dirty state support (see §5). Different data structures sup-
port different partitioning strategies: e.g. a map can be
hash- or range-partitioned; a matrix can be partitioned by
row or column. To obtain a unique partitioning, TEs can-
not access partitioned SEs using conflicting strategies,
such as accessing a matrix by row and by column.

In addition, the dataflow partitioning strategy must be
compatible with the data access pattern by the TEs, as
specified in the program (see §4.2). For example, mul-
tiple TE instances with an access edge to a partitioned
SE must use the same partitioning key on the dataflow
so that they access SE instances locally: in the CF al-
gorithm, the userItem SE and the new rating and rec

request dataflows must all be partitioned by row, i.e. the
users for which ratings are maintained.
Partial state. In some cases, the data structure of an SE
cannot be partitioned because the access pattern of TEs
is arbitrary. For example, in the CF algorithm, the coOcc

matrix has an access pattern, in which the updateCoOcc

TE may update any row or column. In this case, an SE
is distributed by creating multiple partial SE instances,
each containing the whole data structure (see Fig. 2c).
Partial SE instances can be updated independently by dif-
ferent TE instances.

When a TE accesses a partial SE, there are two possi-
ble types of accesses based on the semantics of the algo-
rithm: a TE instance may access (i) the local SE instance
on the same node; or (ii) the global state by accessing all
of the partial SE instances, which introduces a synchro-
nisation point. As we describe in §4.2, the type of access
to partial SEs is determined by annotations.

When accessing all partial SE instances, it is possible
to execute computation that merges their values, thus rec-
onciling the differences between them. This is done by a
merge TE that computes a single global value from partial
SE instances. Merge computation is application-specific
and must be defined by the developer. In the CF algo-
rithm, the merge function takes all partial userRec vectors
and computes a single recommendation vector.

3.3 Execution
To execute an SDG, the runtime system allocates TE and
SE instances to nodes, creating instances on-demand.
Allocation to nodes. Since we want to avoid remote
state access, the general strategy is to colocate TEs and
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SEs that are connected by access edges on the same node.
The runtime system uses four steps for mapping TEs and
SEs to nodes: if there is a cycle in the SDG, all SEs ac-
cessed in the cycle are colocated if possible to reduce
communication in iterative algorithms (step 1); the re-
maining SEs are allocated on separate nodes to increase
available memory (step 2); TEs are colocated with the
SEs that they access (step 3); and finally, any unallocated
TEs are assigned to separate nodes (step 4).

Fig. 1 illustrates the above steps for allocating the
SDG to nodes n1 to n3: since there are no cycles (step 1),
the userItem SE is assigned to node n1, and the coOcc

SE is assigned to n2 (step 2); the updateUserItem and
getUserVec TEs are assigned to n1, and the updateCoOcc

and getRecVec TEs are assigned to n2 (step 3); finally, the
merge TE is allocated to a new node n3 (step 4).

Runtime parallelism and stragglers. Processing bot-
tlenecks in the deployed SDG, e.g. caused by the com-
putational cost of TEs, cannot be predicted statically,
and TEs instances may become stragglers [40]. Previ-
ous work [26] tries to reduce stragglers proactively for
low latency processing, which is hard due to the many
non-deterministic causes of stragglers.

Instead, similar to speculative execution in MapRe-
duce [40], SDGs adopt a reactive approach. Using a dy-
namic dataflow graph approach [10], the runtime system
changes the number of TE instances in response to strag-
glers. Each TE is monitored to determine if it constitutes
a processing bottleneck that limits throughput. If so, a
new TE instance is created, which may result in new par-
titioned or partial SE instances.

3.4 Discussion

With an explicit representation of state, a single SDG can
express multiple workflows over that state. In the case of
the CF algorithm from Alg. 1, the SDG processes new
ratings by updating the SEs for the user/item and co-
occurrence matrices, and also serves recommendation re-
quests using the same SEs with low latency.

Without SDGs, these two workflows would require
separate offline and online systems [23, 32]: a batch pro-
cessing framework would incorporate new ratings peri-
odically, and online recommendation requests would be
served by a dedicated system from memory. Since it is
inefficient to rerun the batch job after each new rating,
the recommendations would be computed on stale data.

A drawback of the materialised representation of
SDGs is the start-up cost. For short jobs, the deploy-
ment cost may dominate the running time. Our prototype
implementation deploys an SDG with 50 TE and SE in-
stances on 50 nodes within 7 s, and we assume that jobs
are sufficiently long-running to amortise this delay.

4 Programming SDGs
We describe how to translate stateful Java programs stat-
ically to SDGs for parallel execution. We do not attempt
to be completely transparent for developers or to address
the general problem of automatic code parallelisation.
Instead, we exploit data and pipeline parallelism by re-
lying on source code annotations. We require developers
to provide a single Java class with annotations that indi-
cate how state is distributed and accessed.

4.1 Annotations
When defining a field in a Java class, a developer can
indicate if its content can be partitioned or is partial
by annotating the field declaration with @Partitioned or
@Partial, respectively.
@Partitioned. This annotation specifies that a field can
be split into disjoint partitions (see §3.2). A reference to
a @Partitioned field always refers to a single partition.
This requires that access to the field uses an access key to
infer the partition. In the CF algorithm in Alg. 1, rows of
the userItem matrix are updated with information about
a single user only, and thus userItem can be declared as
a partitioned field.
@Partial. Fields are annotated with @Partial if dis-
tributed instances of the field should be accessed inde-
pendently (see §3.2). Partial fields enable developers
to define distributed state when it cannot be partitioned.
In CF, matrix coOcc is annotated with @Partial, which
means that multiple instances of the matrix may be cre-
ated, and each of them is updated independently for users
in a partition (lines 10–11).
@Global. By default, a reference to a @Partial field refers
to only one of its instances. While most of the time, com-
putation should apply to one instance to make indepen-
dent progress, it may also be necessary to support oper-
ations on all instances. A field reference annotated with
@Global forces a Java expression to apply to all instances,
denoting “global” access to a partial field, which intro-
duces a synchronisation barrier in the SDG (see §4.2).

Java expressions deriving from @Global access be-
come logically multi-valued because they include results
from all instances of a partial field. As a result, any local
variable that is assigned the result of a global field access
becomes partial and must be annotated as such.

In CF, the access to the coOcc field carries the @Global

annotation to compute all partial recommendations: each
instance of coOcc is multiplied with the user rating vec-
tor userRow, and the results are stored in the partial local
variable userRec (line 16).
@Collection. Global access to a partial field applies to
all instances, but it hides the individual instances from
the developer. At some point in the program, how-
ever, it may be necessary to reconcile all instances. The
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Figure 3: Translation of an annotated Java program to an SDG

@Collection annotation therefore exposes all instances of
a partial field or variable as a Java array after @Global ac-
cess. This enables the program to iterate over all values
and, for example, merge them into a single value.

In CF, the partial recommendations are combined by
accessing them using the @Global annotation and then
invoking the merge method (line 17). The parameter of
merge is annotated with @Collection, which specifies that
the method can access all instances of the partial userRec
variable to compute the final recommendation result.
Limitations. Java programs need to obey certain restric-
tions to be translated to SDGs due to their dataflow na-
ture and fault tolerance properties:
Explicit state classes. All state in the program must be
implemented using the set of SE classes (see §3.2). This
gives the runtime system the ability to partition objects
of these classes into multiple instances (for partitioned
state) or distribute them (for partial state), and recover
them after failure (see §5).
Location independence. Each object accessed in the pro-
gram must support transparent serialisation/deserialisa-
tion: as SDGs are distributed, objects are propagated be-
tween nodes. The program also cannot make assump-
tions about its execution environment, e.g. by relying on
local network sockets or files.
Side-effect-free parallelism. To support the parallel
evaluation of multi-valued expressions under @Global

state access, such expressions must not affect single-
valued expressions. For example, the statement, @Global
coOcc.multiply(userRow), in line 16 in Alg. 1 cannot up-
date userRow, which is single-valued.
Deterministic execution. The program must be determin-
istic, i.e. it should not depend on system time or ran-
dom input. This enables the runtime system to re-execute
computation when recovering after failure (see §5).

4.2 Translating programs to SDGs
Annotated Java programs are translated to SDGs by the
java2sdg tool. Fig. 3 shows the steps performed by
java2sdg: it first statically analyses the Java class to iden-
tify SEs, TEs and their access edges (steps 1–5); it then
transforms the Java bytecode of the class to generate TE
code, ready for deployment (steps 6–8).
1. SE generation. The class is compiled to Jimple code,

a typed intermediate representation for static analysis
used by the Soot framework [33] (step 1). The Jimple
code is analysed to identify SEs with partitioned or par-
tial fields and partial local variables (step 2). Based on
the annotations in the code, access to SEs is classified as
local, partitioned or global (step 3).
2. TE and dataflow generation. Next TEs are created
so that each TE only accesses a single SE, i.e. a new
TE is created from a block of code when access to a
different SE or a different instance of the current SE
is detected (step 4). The dispatching semantics of the
dataflows between created TEs (i.e. partitioned, all-to-
one, one-to-all or one-to-any) is chosen based on the type
of state access. More specifically, a new TE is created:
1. for each entry point of the class;
2. when a TE uses partitioned access to a new SE (or

to a previously-accessed SE with a new access key).
The access key is extracted using reaching expression
analysis, and the dataflow edge between the two TEs
is annotated with the access key;

3. when a TE uses global access to a new partial SE. In
this case, the dataflow edge between the two TEs is
annotated with one-to-all dispatching semantics;

4. when a TE uses local access to a new partial SE, the
dataflow edge is annotated with one-to-any dispatch-
ing semantics. In case of local (or partitioned) ac-
cess after global access, all TE instances must be syn-
chronised using a distributed barrier before control is
transferred to the new TE, and the dataflow edge has
all-to-one dispatching semantics; and

5. for @Collection expressions. A synchronisation bar-
rier collects values from multiple TEs instances, and
its dataflow edge has all-to-one semantics.

After generating the TEs, java2sdg identifies the vari-
ables that must propagate across TEs boundaries (step 5).
For each dataflow, live variable analysis identifies the set
of variables that are associated with that dataflow edge.
3. Bytecode generation. Next java2sdg synthesises the
bytecode for each TE that will be executed by the run-
time system. It compiles the code assigned with each
TE in step 4 to bytecode and injects it into a TE tem-
plate (step 6) using Javassist. State accesses to fields and
partial variables are translated to invocations of the run-
time system, which manages the SE instances (step 7).

Finally data dispatching across TEs is added (step 8):
java2sdg injects code, (i) at the exit point of TEs, to seri-
alise live variables and send them to the correct successor
TE instance; and, (ii) at the entry point of a TE, to add
barriers for all-to-one dispatching and to gather partial
results for merge TEs.

5 Failure Recovery
To recover from failures, it is necessary to replace failed
nodes and re-instantiate their TEs and SEs. TEs are state-
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less and thus are restored trivially, but the state of SEs
must be recovered. We face the challenge of designing
a recovery mechanism that: (i) can scale to save and re-
cover the state of a large number of nodes with low over-
head, even with frequent failures; (ii) has low impact on
the processing latency; and (iii) achieves fast recovery
time when recovering large SEs.

We achieve these goals with a mechanism that
(a) combines local checkpoints with message replay, thus
avoiding both global checkpoint coordination and global
rollbacks; (b) divides state of SEs into consistent state,
which is checkpointed, and dirty state, which permits
continued processing while checkpointing; and (c) par-
titions checkpoints and saves them to multiple nodes,
which enables parallel recovery.
Approach. Our failure recovery mechanism combines
local checkpointing and message logging and is inspired
by failure recovery in distributed stream processing sys-
tems [14]. Nodes periodically take checkpoints of their
local SEs and output communication buffers. Dataflows
include increasing TE-generated scalar timestamps, and
a vector timestamp of the last data item from each input
dataflow that modified the SEs is included in the check-
point. Once the checkpoint is saved to stable storage, up-
stream nodes can trim their output buffers of data items
that are older than all downstream checkpoints.

After failure, a node recovers its SEs from the last
checkpoint, replays its output buffers and reprocesses
data items received from the upstream output buffers.
Downstream nodes detect duplicate data items based on
the timestamps and discard them. This approach allows
nodes to recover SEs locally beyond the last checkpoint,
without requiring nodes to coordinate global rollback,
and it avoids the output commit problem.
State checkpointing. We use an asynchronous parallel
checkpointing mechanism that minimises the processing
interruption when checkpointing large SEs with GBs of
memory. The idea is to record updates in a separate data
structure, while taking a checkpoint. For each type of
data structure held by an SE, there must be an imple-
mentation that supports the separation of dirty state and
its subsequent consolidation.

Checkpointing of a node works as follows: (1) to initi-
ate a checkpoint, each SE is flagged as dirty and the out-
put buffers are added to the checkpoint; (2) updates from
TEs to an SE are now handled using a dirty state data
structure: e.g. updates to keys in a dictionary are written
to the dirty state, and reads are first served by the dirty
state and, only on a miss, by the dictionary; (3) asyn-
chronously to the processing, the now consistent state is
added to the checkpoint; (4) the checkpoint is backed up
to multiple nodes (see below); and (5) the SE is locked
and its state is consolidated with the dirty state.
State backup and restore. To be memory-efficient,
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Figure 4: Parallel, m-to-n state backup and restore

checkpoints must be stored on disk. We overcome the
problem of low I/O performance by splitting checkpoints
across m nodes. To reduce recovery time, a failed SE in-
stance can be restored to n new partitioned SE instances
in parallel. This m-to-n pattern prevents a single node
from becoming a disk, network or processing bottleneck.

Fig. 4 shows the distributed protocol for backing up
checkpoints. In step B1, checkpoint chunks, e.g. ob-
tained by hash-partitioning checkpoint data, are created,
and a thread pool serialises them in parallel (step B2).
Checkpoint chunks are streamed to m nodes, selected in
a round-robin fashion (step B3). Nodes write received
checkpoint chunks directly to disk.

After failure, n new nodes are instantiated with the lost
TEs and SEs. Each node with a checkpoint chunk splits
it into n partitions, each of which is streamed to one of
the recovering instances (step R1). The new SE instances
reconcile the chunks, reverting the partitioning (step R2).
Finally, data items from output buffers are reprocessed to
bring the recovered SE state up-to-date (step R3).

6 Evaluation
The goal of our experimental evaluation is to explore if
SDGs can (i) execute stateful online processing applica-
tions with low latency and high throughput while sup-
porting large state sizes with fine-grained updates (§6.1);
(ii) scale in terms of nodes comparable to stateless batch
processing frameworks (§6.2); handle stragglers at run-
time with low impact on throughput (§6.3); and (iii) re-
cover from failures with low overhead (§6.4).

We extend the SEEP streaming platform to implement
SDGs and deploy our prototype on Amazon EC2 and
a private cluster with 7 quad-core 3.4 GHz Intel Xeon
servers with 8 GB of RAM. To support fast recovery, the
checkpointing frequency for all experiments is 10 s un-
less stated otherwise. Candlesticks in plots show the 5th,
25th, 50th, 75th and 95th percentiles, respectively.

6.1 Stateful online processing
Throughput and latency. First we investigate the per-
formance of SDGs using the online collaborative filter-
ing (CF) application (see §2.1). We deploy it on 36 EC2
VM instances (“c1.xlarge”; 8 vCPUs with 7 GB) using
the Netflix dataset, which contains 100 million movie
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ratings for evaluating recommender systems. We add
new ratings continuously (addRating), while requesting
fresh recommendations (getRec). The state size main-
tained by the system grows to 12 GB.

Fig. 5 shows the throughput of getRec and addRating

requests and the latencies of getRec requests when the
ratio between the two is varied. The achieved through-
put is sufficient to serve 10,000–14,000 requests/s, with
the 95th percentile of responses being at most 1.5 s stale.
As the workload ratio includes more state reads (getRec),
the throughput decreases slightly due to the cost of the
synchronisation barrier that aggregates the partial state
in the SDG. The result shows that SDGs can combine
the functionality of a batch and an online processing sys-
tem, while serving fresh results with low latency and
high throughput over large mutable state.
State size. Next we evaluate the performance of SDGs
as the state size increases. As a synthetic benchmark, we
implement a distributed partitioned key/value store (KV)
using SDGs because it exemplifies an algorithm with
pure mutable state. We compare to an equivalent im-
plementation in Naiad (version 0.2) with global check-
pointing, which is the only fault-tolerance mechanism
available in the open-source version. We deploy it in one
VM (“m1.xlarge”) and measure the performance of serv-
ing update requests for keys.

Fig. 6 shows that, for a small state size of 100 MB,
both SDGs and Naiad exhibit similar throughput of
65,000 requests/s with low latency. As the state size in-
creases to 2.5 GB, the SDG throughput is largely un-
affected but Naiad’s throughput decreases due to the
overhead of its disk-based checkpoints (Naiad-Disk).
Even with checkpoints stored on a RAM disk (Naiad-
NoDisk), its throughput with 2.5 GB of state is 63%
lower than that of SDGs. Similarly, the 95th percentile la-
tency in Naiad increases when it stops processing during
checkpointing—SDGs do not suffer from this problem.

To investigate how SDGs can support large distributed
state across multiple nodes, we scale the KV store by
increasing the number of VMs from 10 to 40, keeping
the number of dictionary keys per node constant at 5 GB.

Fig. 7 shows the throughput and the latency for read
requests with a given total state size. The aggregate

throughput scales near linearly from 470,000 requests/s
for 50 GB to 1.5 million requests/s for 200 GB. The me-
dian latency increases from 8–29 ms, while the 95th per-
centile latency varies between 800 ms and 1000 ms.

This result demonstrates that SDGs can support state-
ful applications with large state sizes without compro-
mising throughput or processing latency, while executing
in a fault-tolerant fashion.
Update granularity. We show the performance of SDGs
when performing frequent, fine-grained updates to state.
For this, we deploy a streaming wordcount (WC) appli-
cation on 4 nodes in our private cluster. WC reports the
word frequencies over a wall clock time window while
processing the Wikipedia dataset. We compare to WC
implementations in Streaming Spark [39] and Naiad.

We vary the size of the window, which controls
the granularity at which input data updates the state:
the smaller the window size, the less batching can be
done when updating the state. Since Naiad permits
the configuration of the batch size independently of the
window size, we use a small batch size (1000 mes-
sages) for low-latency (Naiad-LowLatency) and a large
one (20,000 messages) for high-throughput process-
ing (Naiad-HighThroughput).

Fig. 8 shows that only SDG and Naiad-LowLatency
can sustain processing for all window sizes, but SDG
has a higher throughput due to Naiad’s scheduling over-
head. The other deployments suffer from the overhead
of micro-batching: Streaming Spark has a throughput
similar to SDG, but its smallest sustainable window size
is 250 ms, after which its throughput collapses; Naiad-
HighThroughput achieves the highest throughput of all,
but it also cannot support windows smaller than 100 ms.
This shows that SDGs can perform fine-grained state up-
dates without trading off throughput for latency.

6.2 Scalability
We explore if SDGs can scale to higher throughput with
more nodes in a batch processing scenario. We deploy an
implementation of logistic regression (LR) [21] on EC2
(“m1.xlarge”; 4 vCPUs with 15 GB). We compare to LR
from Spark [38], which is designed for iterative process-
ing, using the 100 GB dataset provided in its release.
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Figure 10: Runtime parallelism for han-
dling stragglers (collaborative filtering)

Fig. 9 shows the throughput of our SDG implementa-
tion and Spark for 25–100 nodes. Both systems exhibit
linear scalability. The throughput of SDGs is higher than
Spark, which is likely due to the pipelining in SDGs,
which avoids the re-instantiation of tasks after each it-
eration. With higher throughput, iterations are shorter,
which leads to a faster convergence time. We conclude
that the management of partial state in the LR application
does not limit scalability compared to existing stateless
dataflow systems.

6.3 Stragglers
We explore how SDGs handle straggling nodes by creat-
ing new TE and SE instances at runtime (see §3.3). For
this, we deploy the CF application on our cluster and in-
clude a less powerful machine (2.4 GHz with 4 GB).

Fig. 10 shows how the throughput and the number of
nodes changes over time as bottleneck TEs are identi-
fied by the system. At the start, a single instance of the
getRecVec TE is deployed. It is identified as a bottle-
neck, and a second instance is added at t=10 s, which
also causes a new instance of the partial state in the
coOcc matrix to be created. This increases the through-
put from 3600–6200 requests/s. The throughput spikes
occur when the input queues of new TE instances fill up.

Since the new node is allocated on the less powerful
machine, it becomes a straggler, limiting overall through-
put. At t=30 s, adding a new TE instance without re-
lieving the straggler does not increase the throughput. At
t=50 s, the straggling node is detected by the system,
and a new instance is created to share its work. This in-
creases the throughput from 6200–11,000 requests/s.

This shows how straggling nodes are mitigated by al-
locating new TE instances on-demand, distributing new
partial or partitioned SE instances as required. In more
extreme cases, a straggling node could even be removed
and the job resumed from a checkpoint with new nodes.

6.4 Failure recovery
We evaluate the performance and overhead of our fail-
ure recovery mechanism for SDGs. We (i) explore the
recovery time under different recovery strategies; (ii) as-
sess the advantages of our asynchronous checkpointing
mechanism; and (iii) investigate the overhead with differ-
ent checkpointing frequencies and state sizes. We deploy

the KV store on one node of our cluster, together with
spare nodes to store backups and replace failed nodes.
Recovery time. We fail the node under different recov-
ery strategies: an m-to-n recovery strategy uses m backup
nodes to restore to n recovered nodes (see §5). For each,
we measure the time to restore the lost SE, re-process
unprocessed data and resume processing.

Fig. 11 shows the recovery times for different SE sizes
under different strategies: (i) the simplest strategy, 1-to-
1, has the longest recovery time, especially with large
state sizes, because the state is restored from a sin-
gle node; (ii) the 2-to-1 strategy streams checkpoint
chunks from two nodes in parallel, which improves disk
I/O throughput but also increases the load on the recover-
ing node when it reconstitutes the state; (iii) in the 1-to-2
strategy, checkpoint chunks are streamed to two recov-
ering nodes, thus halving the load of state reconstruc-
tion; and (iv) the 2-to-2 strategy recovers fastest because
it combines the above two strategies—it parallelises both
the disk reads and the state reconstruction.

As the state becomes large, state reconstruction domi-
nates over disk I/O overhead: with 4 GB, streaming from
two disks does not improve recovery time. Adopting a
strategy that recovers a failed node with multiple nodes,
however, has significant benefit, compared to cases with
smaller state sizes.
Synchronous vs. asynchronous checkpointing. We in-
vestigate the benefit of our asynchronous checkpointing
mechanism in comparison with synchronous checkpoin-
ting that stops processing, as used by Naiad [26] and
SEEP [10].

Fig. 12 compares the throughput and 99th percentile
latency with increasing state sizes. As the checkpoint
size grows from 1–4 GB, the average throughput under
synchronous checkpointing reduces by 33%, and the la-
tency increases from 2–8 s because the system stops pro-
cessing while checkpointing. With asynchronous check-
pointing, there is only a small (~5%) impact on through-
put. Latency is an order of magnitude lower and only
moderately affected (from 200–500 ms). This result
shows that a synchronous checkpointing approach can-
not achieve low-latency processing with large state sizes.
Overhead of asynchronous checkpointing. Next we
evaluate the overhead of our checkpointing mechanism
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quency and size on latency

as a function of checkpointing frequency and state size.
Fig. 13 (top) shows the processing latency when vary-

ing the checkpointing frequency. The rightmost data
point (No FT) represents the case where the checkpoin-
ting mechanism is disabled. The bottom figure reports
the impact of the size of the checkpoint on latency.

Checkpointing has a limited impact on latency: with-
out fault tolerance, the 95th percentile latency is 68 ms,
and it increases to 500 ms when checkpointing 1 GB ev-
ery 10 s. This is due to the overhead of merging dirty
state and saving checkpoints to disk. Increasing the
checkpointing frequency or size gradually also increases
latency: the 95th percentile latency with 4 GB is 850 ms,
while checkpointing 2 GB every 4 s results in 1 s.

Beyond that, the checkpointing overhead starts to im-
pact higher percentiles more significantly. Checkpoin-
ting frequency and size behave almost proportionally: as
the state size increases, the frequency can be reduced to
maintain a low processing latency.

Overall this experiment demonstrates the strength of
our checkpointing mechanism, which only locks state
while merging dirty state. The locking overhead thus re-
duces proportionally to the state update rate.

7 Related Work
Programming model. Data-parallel frameworks typi-
cally support a functional/declarative model: MapRe-
duce [8] only has two higher-order functions; more re-
cent frameworks [15, 38, 13] permit user-defined func-
tional operators; and Naiad [26] supports different func-
tional and declarative programming models on top of its
timely dataflow model. CBP [19], Storm and SEEP [10]
expose a low-level dataflow programming model: algo-
rithms are defined as a dataflow pipeline, which is harder
to program and debug. While functional and dataflow
models ease distribution and fault tolerance, SDGs tar-
get an imperative programming model, which remains
widely used by data scientists [17].

Efforts exist to bring imperative programming to data-
parallel processing. CIEL [25] uses imperative con-
structs such as task spawning and futures, but this ex-
poses the low-level execution of the dynamic dataflow
graph to developers. Piccolo [30] and Oolong [24] offer
imperative compute kernels with distributed state, which

requires algorithms to be structured accordingly.
In contrast, SDGs simplify the translation of impera-

tive programs to dataflows using basic program analysis
techniques, which infer state accesses and the dataflow.
By separating different types of state access, it becomes
possible to choose automatically an effective implemen-
tation for distributed state.

GraphLab [20] and Pregel [22] are frameworks for
graph computations based on a shared-memory abstrac-
tion. They expose a vertex-centric programming model
whereas SDGs target generic stateful computation.
Program parallelisation. Matlab has language con-
structs for parallel processing of large datasets on clus-
ters. However, it only supports the parallelisation of se-
quential blocks or iterations and not of general dataflows.

Declarative models such as Pig [28], DyradLINQ [37],
SCOPE [6] and Stratosphere [9] are naturally amenable
to automatic parallelisation—functions are stateless,
which allows data-parallel versions to execute on mul-
tiple nodes. Instead, we focus on an imperative model.

Other approaches offer new programming abstrac-
tions for parallel computation over distributed state.
FlumeJava [7] provides distributed immutable collec-
tions. While immutability simplifies parallel execution,
it limits the expression of imperative algorithms. In Pic-
colo [30], global mutable state is accessed remotely by
parallel distributed functions. In contrast, tasks in SDGs
only access local state with low latency, and state is al-
ways colocated with computation. Presto [35] has dis-
tributed partitioned arrays for the R language. Parti-
tions can be collected but not updated by multiple tasks,
whereas SDGs permit arbitrary dataflows.

Extracting parallel dataflows from imperative pro-
grams is a hard problem [16]. We follow an approach
similar to that of Beck et al. [3], in which a dataflow
graph is generated compositionally from the execution
graph. While early work focused on hardware-based
dataflow models [27], more recent efforts target thread-
based execution [18]. Our problem is simpler because we
do not extract task parallelism but only focus on data and
pipeline parallelism in relation to distributed state access.

Similar to pragma-based techniques [34], we use an-
notations to transform access to distributed state into ac-
cess to local instances. Blazes [2] uses annotations to

11
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generate automatically coordination code for distributed
programs. Our goal is different: SDGs execute imper-
ative code in a distributed fashion, and coordination is
determined by the extracted dataflow.
Failure recovery. In-memory systems are prone to
failures [1], and fast recovery is important for low-
latency and high-throughput processing. With large state
sizes, checkpoints cannot be stored in memory, but stor-
ing them on disk can increase recovery time. RAM-
Cloud [29] replicates data across cluster memory and
eventually backs it up to persistent storage. Similar to
our approach, data is recovered from multiple disks in
parallel. However, rather than replicating each write re-
quest, we checkpoint large state atomically, while per-
mitting new requests to operate on dirty state.

Streaming Spark [39] and Spark [38] use RDDs for
recovery. After a failure, RDDs are recomputed in par-
allel on multiple nodes. Such a recovery mechanism is
effective if recomputation is inexpensive—for state that
depends on the entire history of the data, it would be pro-
hibitive. In contrast, the parallel recovery in SDGs re-
trieves partitioned checkpoints from multiple nodes, and
only reprocesses data from output buffers to bring re-
stored SE instances up-to-date.

8 Conclusions
Data-parallel processing frameworks must offer a famil-
iar programming model with good performance. Sup-
porting imperative online machine learning algorithms
poses challenges to frameworks due to their use of large
distributed state with fine-grained access.

We describe stateful dataflow graphs (SDGs), a data-
parallel model that is designed to offer a dataflow ab-
straction over large mutable state. With the help of anno-
tations, imperative algorithms can be translated to SDGs,
which manage partitioned or partial distributed state. As
we demonstrated in our evaluation, SDGs can support di-
verse stateful applications, thus generalising a number of
existing data-parallel computation models.
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Abstract

Virtual machines in the cloud typically run existing

general-purpose operating systems such as Linux. We

notice that the cloud’s hypervisor already provides some

features, such as isolation and hardware abstraction,

which are duplicated by traditional operating systems,

and that this duplication comes at a cost.

We present the design and implementation of OSv,

a new guest operating system designed specifically for

running a single application on a virtual machine in the

cloud. It addresses the duplication issues by using a low-

overhead library-OS-like design. It runs existing appli-

cations written for Linux, as well as new applications

written for OSv. We demonstrate that OSv is able to effi-

ciently run a variety of existing applications. We demon-

strate its sub-second boot time, small OS image and how

it makes more memory available to the application. For

unmodified network-intensive applications, we demon-

strate up to 25% increase in throughput and 47% de-

crease in latency. By using non-POSIX network APIs,

we can further improve performance and demonstrate a

290% increase in Memcached throughput.

1 Introduction

Cloud computing (Infrastructure-as-a-Service, or IaaS)

was born out of the realization that virtualization makes

it easy and safe for different organizations to share one

pool of physical machines. At any time, each organi-

zation can rent only as many virtual machines as it cur-

rently needs to run its application.

Today, virtual machines on the cloud typically run the

same traditional operating systems that were used on

physical machines, e.g., Linux, Windows, and *BSD.

But as the IaaS cloud becomes ubiquitous, this choice is

starting to make less sense: The features that made these

operating systems desirable on physical machines, such

as familiar single-machine administration interfaces and
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Figure 1: Software layers in a typical cloud VM.

support for a large selection of hardware, are losing their

relevance. At the same time, different features are be-

coming important: The VM’s operating system needs to

be fast, small, and easy to administer at large scale.

Moreover, fundamental features of traditional operat-

ing systems are becoming overhead, as they are now du-

plicated by other layers of the cloud stack (illustrated in

Figure 1).

For example, an important role of traditional operat-

ing systems is to isolate different processes from one an-

other, and all of them from the kernel. This isolation

comes at a cost, in performance of system calls and con-

text switches, and in complexity of the OS. This was

necessary when different users and applications ran on

the same OS, but on the cloud, the hypervisor provides

isolation between different VMs so mutually-untrusting

applications do not need to run on the same VM. In-

deed, the scale-out nature of cloud applications already

resulted in a trend of focused single-application VMs.

A second example of duplication is hardware abstrac-

tion: An OS normally provides an abstraction layer

through which the application accesses the hardware.

But on the cloud, this “hardware” is itself a virtualized

abstraction created by the hypervisor. Again, this dupli-

cation comes at a performance cost.
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This paper explores the question of what an operating

system would look like if we designed it today with the

sole purpose of running on virtual machines on the cloud,

and not on physical machines.

We present OSv, a new OS we designed specifically

for cloud VMs. The main goals of OSv are as follows:

• Run existing cloud applications (Linux executa-

bles).

• Run these applications faster than Linux does.

• Make the image small enough, and the boot quick

enough, that starting a new VM becomes a viable

alternative to reconfiguring a running one.

• Explore new APIs for new applications written for

OSv, that provide even better performance.

• Explore using such new APIs in common runtime

environments, such as the Java Virtual Machine

(JVM). This will boost the performance of unmodi-

fied Java applications running on OSv.

• Be a platform for continued research on VM oper-

ating systems. OSv is actively developed as open

source, it is written in a modern language (C++11),

its codebase is relatively small, and our community

encourages experimentation and innovation.

OSv supports different hypervisors and processors,

with only minimal amount of architecture-specific code.

For 64-bit x86 processors, it currently runs on the KVM,

Xen, VMware and VirtualBox hypervisors, and also on

the Amazon EC2 and Google GCE clouds (which use

a variant of Xen and KVM, respectively). Preliminary

support for 64-bit ARM processors is also available.

In Section 2, we present the design and implementa-

tion of OSv. We will show that OSv runs only on a hyper-

visor, and is well-tuned for this (e.g., by avoiding spin-

locks). OSv runs a single application, with the kernel

and multiple threads all sharing a single address space.

This makes system calls as efficient as function calls,

and context switches quicker. OSv supports SMP VMs,

and has a redesigned network stack (network channels)

to lower socket API overheads. OSv includes other facil-

ities one expects in an operating system, such as standard

libraries, memory management and a thread scheduler,

and we will briefly survey those. OSv’s scheduler incor-

porates several new ideas including lock-free algorithms

and floating-point based fair accounting of run-time.

In Section 3, we begin to explore what kind of new

APIs a single-application OS like OSv might have be-

yond the traditional POSIX APIs to further improve per-

formance. We suggest two techniques to improve JVM

memory utilization and garbage-collection performance,

which boost performance of all JVM languages (Java,

Scala, Jruby, etc.) on OSv. We then demonstrate that a

zero-copy, lock-free API for packet processing can result

in a 4x increase of Memcached throughput.

In Section 4, we evaluate our implementation, and

compare OSv to Linux on several micro- and macro-

benchmarks. We show minor speedups over Linux in

computation- and memory-intensive workloads such as

the SPECjvm2008 benchmark, and up to 25% increase

in throughput and 47% reduction in latency in network-

dominated workloads such as Netperf and Memcached.

2 Design and Implementation of OSv

OSv follows the library OS design, an OS construct pio-

neered by exokernels in the 1990s [5]. In OSv’s case, the

hypervisor takes on the role of the exokernel, and VMs

the role of the applications: Each VM is a single applica-

tion with its own copy of the library OS (OSv). Library

OS design attempts to address performance and function-

ality limitations in applications that are caused by tradi-

tional OS abstractions. It moves resource management

to the application level, exports hardware directly to the

application via safe APIs, and reduces abstraction and

protection layers.

OSv runs a single application in the VM. If several

mutually-untrusting applications are to be run, they can

be run in separate VMs. Our assumption of a single ap-

plication per VM simplifies OSv, but more importantly,

eliminates the redundant and costly isolation inside a

guest, leaving the hypervisor to do isolation. Conse-

quently, OSv uses a single address space — all threads

and the kernel use the same page tables, reducing the

cost of context switches between applications threads or

between an application thread and the kernel.

The OSv kernel includes an ELF dynamic linker which

runs the desired application. This linker accepts stan-

dard ELF dynamically-linked code compiled for Linux.

When this code calls functions from the Linux ABI (i.e.,

functions provided on Linux by the glibc library), these

calls are resolved by the dynamic linker to functions im-

plemented by the OSv kernel. Even functions which

are considered “system calls” on Linux, e.g., read(),

in OSv are ordinary function calls and do not incur spe-

cial call overheads, nor do they incur the cost of user-

to-kernel parameter copying which is unnecessary in our

single-application OS.

Aiming at compatibility with a wide range of exist-

ing applications, OSv emulates a big part of the Linux

programming interface. Some functions like fork()

and exec() are not provided, since they don’t have any

meaning in the one-application model employed by OSv.

The core of OSv is new code, written in C++11. This

includes OSv’s loader and dynamic linker, memory man-

agement, thread scheduler and synchronization mecha-
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nisms such as mutex and RCU, virtual-hardware drivers,

and more. We will discuss below some of these mecha-

nisms in more detail.

Operating systems designed for physical machines

usually devote much of their code to supporting diverse

hardware. The situation is much easier for an operat-

ing system designed for VMs, such as OSv, because hy-

pervisors export a simplified and more stable hardware

view. OSv has drivers for a small set of traditional PC

devices commonly emulated by hypervisors, such as a

keyboard, VGA, serial port, SATA, IDE and HPET. Ad-

ditionally, it supports several paravirtual drivers for im-

proved performance: A paravirtual clock is supported on

KVM and Xen, a paravirtual NIC using virtio [25] and

VMXNET3 [29], and a paravirtual block device (disk)

using virtio and pvscsi.

For its filesystem support, OSv follows a traditional

UNIX-like VFS (virtual filesystem) design [12] and

adopts ZFS as its major filesystem. ZFS is a modern

filesystem emphasizing data integrity and advanced fea-

tures such as snapshots and volume management. It

employs a modified version of the Adaptative Replace-

ment Cache [18] for page cache management and conse-

quently it can achieve a good balance between recency

and frequency hits.

Other filesystems are also present in OSv. There is one

in-memory filesystem for specialized applications that

may want to boot without disk (ramfs), and a very simple

device filesystem for device views (devfs). For compati-

bility with Linux applications, a simplified procfs is also

supported.

Some components of OSv were not designed from

scratch, but rather imported from other open-source

projects. We took the C library headers and some func-

tions (such as stdio and math functions) from the musl

libc project, the VFS layer from Prex project, the ZFS

filesystem from FreeBSD, and and the ACPI drivers from

the ACPICA project. All of these are areas in which

OSv’s core value is not expected to be readily appar-

ent so it would make less sense for these to be written

from scratch, and we were able to save significant time

by reusing existing implementations.

OSv’s network stack was also initially imported from

FreeBSD, because it was easier to start with an imple-

mentation known to be correct, and later optimize it. As

we explain in Section 2.3, after the initial import we

rewrote the network stack extensively to use a more effi-

cient network channels-based design.

It is beyond the scope of this article to cover every

detail of OSv’s implementation. Therefore, the remain-

der of this section will explore a number of particu-

larly interesting or unique features of OSv’s implemen-

tation, including: 1. memory management in OSv, 2.

how and why OSv completely avoids spinlocks, 3. net-

work channels, a non-traditional design for the network-

ing stack, and 4. the OSv thread scheduler, which incor-

porates several new ideas including lock-free algorithms

and floating-point based fair accounting of run-time.

2.1 Memory Management

In theory, a library OS could dictate a flat physical mem-

ory mapping. However, OSv uses virtual memory like

general purpose OSs. There are two main reasons for

this. First, the x86 64 architecture mandates virtual

memory usage for long mode operation. Second, mod-

ern applications following traditional POSIX-like APIs

tend to map and unmap memory and use page protection

themselves.

OSv supports demand paging and memory mapping

via the mmap API. This is important, for example, for

a class of JVM-based applications that bypass the JVM

and use mmap directly through JNI. Such applications

include Apache Cassandra which is a popular NoSQL

database running on the JVM.

For large enough mappings, OSv will fill the map-

ping with huge pages (2MB in size for the x86 64 ar-

chitecture). The use of larger page sizes improve perfor-

mance of applications by reducing the number of TLB

misses. [24].

Since mappings can be partially unmapped, it is pos-

sible that one of these pages needs to be broken into

smaller pages. By employing a mechanism similar to

Linux’s Transparent Huge Pages, OSv handles this case

transparently.

As an OS that aims to support a single application,

page eviction is not supported. Additional specialized

memory management constructs are described in Sec-

tion 3.

2.2 No Spinlocks

One of the primitives used by contemporary OSs on SMP

machines is the spin-lock [2]. On a single-processor sys-

tem, it is easy to protect a data structure from concur-

rent access by several contexts by disabling interrupts

or context switches while performing non-atomic mod-

ifications. That is not enough on multi-processor sys-

tems, where code running on multiple CPUs may touch

the data concurrently. Virtually all modern SMP OSs

today use spin-locks: One CPU acquires the lock with

an atomic test-and-set operation, and the others exe-

cute a busy-loop until they can acquire the lock them-

selves. SMP OSs use this spin-lock primitive to imple-

ment higher-level locking facilities such as sleeping mu-

texes, and also use spin-locks directly in situations where

sleeping is forbidden, such as in the scheduler itself and

in interrupt-handling context.
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Spin-locks are well-suited to a wide range of SMP

physical hardware. However when we consider virtual

machines, spin-locks suffer from a significant drawback

known as the “lock-holder preemption” problem [28]:

while physical CPUs are always running if the OS wants

them to, virtual CPUs may “pause” at unknown times for

unknown durations. This can happen during exits to the

hypervisor or because the hypervisor decides to run other

guests or even hypervisor processes on this CPU.

If a virtual CPU is paused while holding a spin-lock,

other CPUs that want the same lock spin needlessly,

wasting CPU time. When a mutex is implemented using

a spin-lock, this means that a thread waiting on a lock can

find itself spinning and wasting CPU time, instead of im-

mediately going to sleep and letting another thread run.

The consequence of the lock-holder preemption problem

is lower performance — Friebel et al. have shown that

multitasking two guests on the same CPU results in per-

formance drops from 7% up to 99% in extreme cases [7].

Several approaches have been proposed to mitigate the

lock-holder preemption problem [7], usually requiring

changes to the hypervisor or some form of cooperation

between the hypervisor and the guest. However, in a

kernel designed especially to run in a virtual machine,

a better solution is to avoid the problem completely. OSv

does not use spin-locks at all, without giving up on lock-

based algorithms in the kernel or restricting it to single-

processor environments.

One way to eliminate spin-locks is to use lock-free al-

gorithms [19]. These algorithms make clever use of var-

ious atomic instructions provided by the SMP machine

(e.g., compare-exchange, fetch-and-add) to ensure that

a data structure remains in consistent state despite con-

current modifications. We can also avoid locks by using

other techniques such as Read-Copy-Update (RCU) [17].

But lock-free algorithms are very hard to develop, and it

is difficult to completely avoid locking in the kernel [16],

especially considering that we wanted to re-use existing

kernel components such as ZFS and the BSD network

stack. Therefore, our approach is as follows:

1. Ensure that most work in the kernel, including in-

terrupt handling, is done in threads. These can use

lock-based algorithms: They use a mutex (which

can put a thread to sleep), not a spin-lock.

2. Implement the mutex itself without using a spin-

lock, i.e., it is a lock-free algorithm.

3. The scheduler itself cannot be run in a thread, so

to protect its data structures without spin-locks, we

use per-cpu run queues and lock-free algorithms.

OSv executes almost everything in ordinary threads.

Interrupt handlers usually do nothing but wake up a

thread which will service the interrupting device. Ker-

nel code runs in threads just like application code, and

can sleep or be preempted just the same. OSv’s emphasis

on cheap thread context switches ensures that the perfor-

mance of this design does not suffer.

Our mutex implementation is based on a lock-free de-

sign by Gidenstam & Papatriantafilou [8], which protects

the mutex’s internal data structures with atomic opera-

tions in a lock-free fashion. With our lock-free mutex, a

paused CPU cannot cause other CPUs to start spinning.

As a result, kernel and application code which uses this

mutex are free from the lock-holder preemption problem.

Finally, the scheduler itself uses per-CPU run queues,

so that most scheduling decisions are local to the CPU

and need no locking. It uses lock-free algorithms when

scheduling cooperation is needed across CPUs, such as

waking a thread that belongs to a different CPU. OSv’s

scheduler is described in more detail in Section 2.4.

2.3 Network Channels

An operating system designed for the cloud must, al-

most by definition, provide a high quality TCP/IP stack.

OSv does this by applying Van Jacobson’s net channel

ideas [10] to its networking stack.

We begin by observing that a typical network stack is

traversed in two different directions:

• Top-down: the send() and recv() system calls

start at the socket layer, convert user buffers to TCP

packets, attach IP headers to those TCP packets, and

finally egress via the network card driver,

• Bottom-up: incoming packets are received by the

network card driver, parsed by the IP layer, for-

warded to the TCP layer, and are then appended

to socket buffers; blocked send(), recv(), and

poll() system calls are then woken as necessary.

As illustrated in Figure 2a, both the interrupt con-

texts (hard- and soft- interrupt) and the application thread

context perform processing on all layers of the network

stack. The key issue is that code from both contexts ac-

cesses shared data structures, causing lock and cache-

line contention on heavily used connections.

In order to resolve this contention, under OSv al-

most all packet processing is performed in an applica-

tion thread. Upon packet receipt, a simple classifier asso-

ciates it with a channel, which is a single producer/single

consumer queue for transferring packets to the applica-

tion thread. Each channel corresponds to a single flow,

such as a TCP connection or a UDP path from an inter-

face to a socket.

As can be seen in Figure 2b, access to shared data

structures from multiple threads is completely eliminated

(save for the channel itself).
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Figure 2: Control flow and locking in (left to right): (a) a traditional networking stack, (b) OSv’s networking stack

prior to lock merging, and (c) OSv’s complete networking stack

In addition, since there is now just one thread access-

ing the data, locking can be considerably simplified, re-

ducing both run-time and maintenance overhead.

Switching to a net channel approach allows a signifi-

cant reduction in the number of locks required, leading

to the situation in Figure 2c:

• The socket receive buffer lock has been merged with

the socket send buffer lock; since both buffers are

now populated by the same thread (running either

the send() or recv() system calls), splitting that

lock is unnecessary,

• The interleave prevention lock (used to prevent con-

current writes from interleaving) has been elimi-

nated and replaced by a wait queue using the socket

lock for synchronization, and

• The TCP layer lock has been merged with the socket

layer lock; since TCP processing now always hap-

pens within the context of a socket call, it is already

protected by that lock.

We expect further simplifications and improvements

to the stack as it matures.

2.4 The Thread Scheduler

The guiding principles of OSv’s thread scheduler are that

it should be lock-free, preemptive, tick-less, fair, scalable

and efficient.

Lock-free As explained in Section 2.2, OSv’s sched-

uler should not use spin-locks and it obviously cannot

use a sleeping mutex.

The scheduler keeps a separate run queue on each

CPU, listing the runnable threads on the CPU. Sleep-

ing threads are not listed on any run queue. The sched-

uler runs on a CPU when the running thread asks for a

reschedule, or when a timer expiration forces preemp-

tion. At that point, the scheduler chooses the most appro-

priate thread to run next from the threads on this CPU’s

run-queue, according to its fairness criteria. Because

each CPU has its own separate run-queue, this part of

the scheduler needs no locking.

The separate run queues can obviously lead to a situa-

tion where one CPU’s queue has more runnable threads

than another CPU’s, hurting the scheduler’s overall fair-

ness. We solve this by running a load balancer thread

on each CPU. This thread wakes up once in a while (10

times a second), and checks if some other CPU’s run

queue is shorter than this CPU’s. If it is, it picks one

thread from this CPU’s run queue, and wakes it on the

remote CPU.

Waking a thread on a remote CPU requires a more

elaborate lock-free algorithm: For each of the N CPUs,

we keep N lock-free queues of incoming wakeups, for a

total of N2 queues. We also keep a bitmask of nonempty

queues for each CPU. When CPU s wants to wake a

thread on CPU d, it adds this thread to the queue (s,d),

atomically turns on bit s in CPU d’s bitmask and sends

an inter-processor interrupt (IPI) to CPU d. The inter-

rupt leads CPU d to perform a reschedule, which begins

by looking for incoming wakeups. The bitmask tells the

scheduler which of the incoming queues it needs to in-

spect.
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Preemptive OSv fully supports preemptive multi-

tasking: While threads can voluntarily cause a resched-

ule (by waiting, yielding, or waking up another thread),

one can also happen at any time, preempted by an inter-

rupt such as a timer or the wakeup IPI mentioned above.

All threads are preemptable and as with the rest of the

system, there is no difference between application and

kernel threads. A thread can temporarily avoid being

preempted by incrementing a per-thread preempt-disable

counter. This feature can be useful in a number of cases

including, for example, maintaining per-CPU variables

and RCU [17] locks. An interrupt while the running

thread has preemption disabled will not cause a resched-

ule, but when the thread finally re-enables preemption, a

reschedule will take place.

Tick-less Most classic kernels, and even many modern

kernels, employ a periodic timer interrupt, also known as

a tick. The tick causes a reschedule to happen periodi-

cally, for example, 100 times each second. Such kernels

often account the amount of time that each thread has

run in whole ticks, and use these counts to decide which

thread to schedule at each tick.

Ticks are convenient, but also have various disadvan-

tages. Most importantly, excessive timer interrupts waste

CPU time. This is especially true on on virtual machines

where interrupts are significantly slower than on physical

machines, as they involve exits to the hypervisor.

Because of the disadvantages of ticks, OSv imple-

ments a tickless design. Using a high resolution clock,

the scheduler accounts to each thread the exact time it

consumed, instead of approximating it with ticks. Some

timer interrupts are still used: Whenever the fair schedul-

ing algorithm decides to run one thread, it also calculates

when it will want to switch to the next thread, and sets

a timer for that period. The scheduler employs hystere-

sis to avoid switching too frequently between two busy

threads. With the default hysteresis setting of 2ms, two

busy threads with equal priority will alternate 4ms time

slices, and the scheduler will never cause more than 500

timer interrupts each second. This number will be much

lower when there aren’t several threads constantly com-

peting for CPU.

Fair On each reschedule, the scheduler must decide

which of the CPU’s runnable threads should run next,

and for how long. A fair scheduler should account for

the amount of run time that each thread got, and strive to

either equalize it or achieve a desired ratio if the threads

have different priorities. However, using the total run-

time of the threads will quickly lead to imbalances. For

instance, if a thread was out of the CPU for 10 seconds

and becomes runnable, it will monopolize the CPU for 10

whole seconds as the scheduler seeks to achieve fairness.

Instead, we want to equalize the amount of run-time that

runnable threads have gotten in recent history, and forget

about the distant past.

OSv’s scheduler calculates the exponentially-decaying

moving average of each thread’s recent run time. The

scheduler will choose to run next the runnable thread

with the lowest moving-average runtime, and calculate

exactly how much time this thread should be allowed

to run before its runtime surpasses that of the runner-up

thread.

Our moving-average runtime is a floating-point num-

ber. It is interesting to mention that while some kernels

forbid floating-point use inside the kernel, OSv fully al-

lows it. As a matter of fact, it has no choice but to al-

low floating point in the kernel due to the lack of a clear

boundary between the kernel and the application.

The biggest stumbling block to implementing moving-

average runtime as described above is its scalability: It

would be impractical to update the moving-average run-

times of all threads on each scheduler invocation.

But we can show that this is not actually necessary; we

can achieve the same goal with just updating the runtime

of the single running thread. It is beyond the scope of

this article to derive the formulas used in OSv’s scheduler

to maintain the moving-average runtime, or to calculate

how much time we should allow a thread to run until its

moving-average runtime overtakes that of the runner-up

thread.

Scalable OSv’s scheduler has O(lgN) complexity in

the number of runnable threads on each CPU: The run

queue is kept sorted by moving-average runtime, and as

explained, each reschedule updates the runtime of just

one thread. The scheduler is totally unaware of threads

which are not runnable (e.g., waiting for a timer or a

mutex), so there is no performance cost in having many

utility threads lying around and rarely running. OSv in-

deed has many of these utility threads, such as the load-

balancer and interrupt-handling threads.

Efficient Beyond the scheduler’s scalability, OSv em-

ploys additional techniques to make the scheduler and

context switches more efficient.

Some of these techniques include:

• OSv’s single address space means that we do not

need to switch page tables or flush the TLB on con-

text switches. This makes context switches sig-

nificantly cheaper than those on traditional multi-

process operating systems.

• Saving the floating-point unit (FPU) registers on ev-

ery context switch is also costly. We make use of

the fact that most reschedules are voluntary, caused

6



USENIX Association  2014 USENIX Annual Technical Conference 67

by the running thread calling a function such as

mutex wait() or wake(). The x86 64 ABI guar-

antees that the FPU registers are caller-saved. So

for voluntary context switches, we can skip saving

the FPU state.

As explained above, waking a sleeping thread on a

different CPU requires an IPI. These are expensive, and

even more so on virtual machines, where both sending

and receiving interrupts cause exits to the hypervisor. As

an optimization, idle CPUs spend some time before halt-

ing in polling state, where they ask not to be sent these

IPIs, and instead poll the wakeup bitmask. This opti-

mization can almost eliminate the expensive IPIs in the

case where two threads on two CPUs wait for one an-

other in lockstep.

3 Beyond the Linux APIs

In this section, we explore what kind of new APIs a

single-application OS like OSv might have beyond the

standard Linux APIs, and discuss several such extensions

which we have already implemented as well as their ben-

efits.

The biggest obstacle to introducing new APIs is the

need to modify existing applications or write new appli-

cations. One good way around this problem is to focus

on efficiently running a runtime environment, such as the

Java Virtual Machine (JVM), on OSv. If we optimize

the JVM itself, any application run inside this JVM will

benefit from this optimization.

As explained in the previous section, OSv can run un-

modified Linux programs, which use the Linux APIs — a

superset of the POSIX APIs. We have lowered the over-

head of these APIs, as described in the previous section

and quantified in the next section. One of the assump-

tions we have made is that OSv runs a single application,

in a single address space. This allowed us to run “system

calls” as ordinary functions, reducing their overhead.

However, in this section we show that there remain

significant overheads and limitations inherent in the

Linux APIs, which were designed with a multi-process

multi-user operating system in mind. We propose to re-

duce these remaining overheads by designing new APIs

specifically for applications running on a single-process

OS like OSv.

The socket API, in particular, is rife with such over-

heads. For example, a socket read or write necessar-

ily copies the data, because on Linux the kernel cannot

share packet buffers with user space. But on a single-

address-space OS, a new zero-copy API can be devised

where the kernel and user space share the buffers. For

packet-processing applications, we can adopt a netmap-

like API [23]. The OSv kernel may even expose the

host’s virtio rings to the application (which is safe when

we have a single application), completely eliminating

one layer of abstraction. In Section 4 we demonstrate

a Memcached implementation which uses a non-POSIX

packet processing API to achieve a 4-fold increase of

throughput compared to the traditional Memcached us-

ing the POSIX socket APIs.

Another new API benefiting from the single-

application nature of OSv is one giving the application

direct access to the page table. Java’s GC performance,

in particular, could benefit: The Hotspot JVM uses a data

structure called a card table [22] to track write accesses

to references to objects. To update this card table to mark

memory containing that reference as dirty, the code gen-

erated by the JVM has to be followed by a “write bar-

rier”. This additional code causes both extra instructions

and cache line bounces. However, the MMU already

tracks write access to memory. By giving the JVM ac-

cess to the MMU, we can track reference modifications

without a separate card table or write barriers. A simi-

lar strategy is already employed by Azul C4 [27], but it

requires heavy modifications to the Linux memory man-

agement system.

In the rest of this section, we present two new non-

Linux features which we implemented in OSv. The first

feature is a shrinker API, which allows the application

and the kernel to share the entire available memory. The

second feature, the JVM balloon, applies the shrinker

idea to an unmodified Java Virtual Machine, so that in-

stead of manually chosing a heap size for the JVM, the

heap is automatically resized to fill all memory which the

kernel does not need.

3.1 Shrinker

The shrinker API allows the application or an OS com-

ponent to register callback functions that OSv will call

when the system is low on memory. The callback func-

tion is then responsible for freeing some of that appli-

cation or component’s memory. Under most operat-

ing systems, applications or components that maintain

a dynamic cache, such as a Memcached cache or VFS

page cache, must statically limit its size to a pre-defined

amount of memory or number of cache entries. This im-

poses sometimes contradicting challenges: not to con-

sume more memory than available in the system and

not to strangle other parts of the system, while still tak-

ing advantage of the available memory. This gets even

more challenging when there are a few heavy memory

consumers in the system that work in a bursty manner

wherein the memory needs to “flow” from one applica-

tion or component to another depending on demand. The

shrinker API provides an adaptable solution by allowing

applications and components to handle memory pressure
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as it arises, instead of requiring admininstrators to tune

in advance.

We have demonstrated the usefulness of the shrinker

API in two cases — Memcached [6], and the JVM. Or-

dinarily, Memcached requires the in-memory cache size

to be specified (with the “-m” option) and the JVM re-

quires the maximum heap size to be specified (the “-

Xmx” option). Setting these sizes manually usually re-

sults in wasted VM memory, as the user decreases the

cache or heap size to leave “enough” memory to the OS.

Our Memcached re-implementation described in Sec-

tion 4 uses the shrinker API and does not need the “-

m” option: it uses for its cache all the memory which

OSv doesn’t need. We can similarly modify the JVM to

use the shrinker to automatically size its heap, and even

achieve the same on an unmodified JVM, as we will ex-

plain now.

3.2 JVM Balloon

The JVM balloon is a mechanism we developed to auto-

matically determine the JVM heap size made available to

the application. Ballooning is a widely used mechanism

in hypervisors [30, 31] and the JVM balloon draws from

the same core idea: providing efficient dynamic memory

placement and reducing the need to do complex planning

in advance. OSv’s JVM balloon is designed to work with

an unmodified JVM. As a guest-side solution, it will also

work on all supported hypervisors.

It is possible to modify the JVM code to simplify

this process. But the decision to run it from the OS

side allows for enhanced flexibility, since it avoids the

need to modify the various extant versions and vendor-

implementations of the JVM.

The JVM allocates most of its memory from its heap.

This area can grow from its minimum size but is bounded

by a maximum size, both of which can be specified by

initialization parameters. The size of the JVM heap di-

rectly influences performance for applications since hav-

ing more memory available reduces occurrences of GC

cycles.

However, a heap size that is too big can also hurt the

application since the OS will be left without memory to

conduct its tasks — like buffering a large file — when

it needs to. Although any modern OS is capable of pag-

ing through the virtual-memory system, the OS usually

lacks information during this process to make the best

placement decision. A normal OS will see all heap areas

as pages whose contents cannot be semantically inter-

preted. Consequently, it is forced to evict such pages to

disk, which generates considerable disk activity and sub-

optimal cache growth. At this point an OS that is blind

to the semantic content of the pages will usually avoid

evicting too much since it cannot guarantee that those

pages will not be used in the future. This results in less

memory being devoted to the page cache, where it would

potentially bring the most benefit. We quantify this effect

in Section 4, and show that OSv’s JVM balloon allows

pages to be discarded without any disk activity.

OSv’s approach is to allocate almost all available

memory to the JVM when it is started 1, therefore set-

ting that memory as the de facto JVM maximum heap.

The OS allocations can proceed normally until pressure

criteria are met.

Upon pressure, OSv will use JNI [13] to create an ob-

ject in the JVM heap with a size big enough to allevi-

ate that pressure and acquire a reference to it. The ob-

ject chosen is a ByteArray, since these are laid down

contiguously in memory and it is possible to acquire a

pointer to their address from JNI.

This object is referenced from the JNI, so a GC will

not free it and at this point the heap size is effectively re-

duced by the size of the object, forcing the JVM to count

on a smaller heap for future allocations. Because the bal-

loon object still holds the actual pages as backing stor-

age, the last step of the ballooning process is to give the

pages back to the OS by unmapping that area. The JVM

cannot guarantee or force any kind of alignment for the

object, which means that in this process some memory

will be wasted: it will neither be used the Java applica-

tion nor given back to the OS. To mitigate this we use

reasonably large minimum balloon sizes (128MB).

Balloon movement

The reference to the object, held by OSv, guarantees that

the object will not be disposed by the JVM or taken into

account when making collection decisions. However, it

does not guarantee that the object is never touched again.

When the JVM undergoes a GC cycle, it moves the old

objects to new locations to open up space for new objects

to come. At this point, OSv encounters a page fault.

OSv assumes that nothing in the JVM directly uses

that object, and therefore is able to make the following

assumptions about page faults that hit the balloon object:

• all reads from it are part of a copy to a new location,

• the source and destination addresses correspond to

the same offset within the object,

• whenever that region is written to, it no longer holds

the balloon.

With that in mind, OSv’s page fault handler can decode

the copy instruction — usually a rep mov in x86 — and

find its destination operand. It then recreates the balloon

in the destination location and updates all register values

190% in the current implementation
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to make the copier believe the copy was successfully con-

ducted. OSv’s balloon mechanism is expected to work

with any JVM or collector in which these assumptions

hold.

The old location is kept unmapped until it is written to.

This has both the goal of allowing the remap to be lazy,

and to correctly support GCs that may speculatively copy

the object to more than one location. Such is the case,

for instance, for OpenJDK’s Parallel Scavenge Garbage

Collector.

4 Evaluation

We conducted some experiments to measure the perfor-

mance of OSv as a guest operating system, and demon-

strate improvement over a traditional OS: Linux. In all

runs below, for “Linux” we used a default installation

of Fedora 20 with the iptables firewall rules cleared.

We look at both micro-benchmarks measuring the perfor-

mance of one particular feature, and macro-benchmarks

measuring the overall performance of an application.

The host used in the benchmarks was a 4-CPU 3.4GHz

Intel R© Core
TM

i7-4770 CPU, 16GB of RAM, with an

SSD disk. The host was running Fedora 20 Linux and

the KVM hypervisor.

Macro Benchmarks

Memcached is a high-performance in-memory key-

value storage server [6]. It is used by many high-profile

Web sites to cache results of database queries and pre-

pared page sections, to significantly boost these sites’

performance. We used the Memaslap benchmark to load

the server and measure its performance. Memaslap runs

on a remote machine (connected to the tested host with

a direct 40 GbE cable), sends random requests (concur-

rency 120), 90% get and 10% set, to the server and

measures the request completion rate. In this test, we

measured a single-vCPU guest running Memcached with

one service thread. Memcached supports both UDP and

TCP protocols — we tested the UDP protocol which is

considered to have lower latency and overhead [20]. We

set the combination of Memcached’s cache size (5 GB)

and memaslap test length (30 seconds) to ensure that the

cache does not fill up during the test.

Table 1 presents the results of the memaslap bench-

mark, comparing the same unmodified Memcached pro-

gram running on OSv and Linux guests. We can see

that Memcached running on OSv achieves 22% higher

throughput than when running on Linux.

One of the stated goals of OSv was that an OSv guest

boots quickly, and has a small image size. Indeed, we

measured the time to boot OSv and Memcached, until

Guest OS Transactions / sec Score

Linux 104394 1

OSv 127275 1.22

Table 1: Memcached and Memaslap benchmark

Memcached starts serving requests, to be just 0.6 sec-

onds. The guest image size was just 11MB. We believe

that both numbers can be optimized further, e.g., by using

ramfs instead of ZFS (Memcached does not need persis-

tent storage).

In Section 3 we proposed to further improve perfor-

mance by implementing in OSv new networking APIs

with lower overheads than the POSIX socket APIs. To

test this direction, we re-implemented part of the Mem-

cached protocol (the parts that the memaslap benchmark

uses). We used a packet-filtering API to grab incoming

UDP frames, process them, and send responses in-place

from the packet-filter callback. As before, we ran this

application code in a single-vCPU guest running OSv

and measured it with memaslap. The result was 406750

transactions/sec — 3.9 times the throughput of the base-

line Memcached server on Linux.

SPECjvm2008 is a Java benchmark suite containing a

variety of real-life applications and benchmarks. It fo-

cuses on the performance of the JVM executing a single

application, and reflects the performance of CPU- and

memory-intensive workloads, having low dependence on

file I/O and including no network I/O across machines.

SPECjvm2008 is not only a performance benchmark,

it is also a good correctness test for OSv. The bench-

marks in the suite use numerous OS features, and each

benchmark validates the correctness of its computation.

Table 2 shows the scores for both OSv and Linux for

the SPECjvm2008 benchmarks. For both guest OSs, the

guest is given 2GB of memory and two vCPUs, and the

benchmark is configured to use two threads. The JVM’s

heap size is set to 1400MB.

Benchmark OSv Linux Benchmark OSv Linux

Weighted average 1.046 1.041 sor.large 27.3 27.1

compiler.compiler 377 393 sparse.large 27.7 27.2

compiler.sunflow 140 149 fft.small 138 114

compress 111 109 lu.small 216 249

crypto.aes 57 56 sor.small 122 121

crypto.rsa 289 279 sparse.small 159 163

crypto.signverify 280 275 monte-carlo 159 150

derby 176 181 serial 107 107

mpegaudio 100 100 sunflow 56.6 55.4

fft.large 35.5 32.8 xml.transform 251 247

lu.large 12.2 12.2 xml.validation 480 485

Table 2: SPECjvm2008 — higher is better

We did not expect a big improvement, considering

that SPECjvm2008 is computation-dominated with rel-

atively little use of OS services. Indeed, on average, the

SPECjvm2008 benchmarks did only 0.5% better on OSv

9
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than on Linux. This is a small but statistically-significant

improvement (the standard deviation of the weighted av-

erage was only 0.2%). OSv did slightly worse than

Linux on some benchmarks (notably those relying on

the filesystem) and slightly better on others. We believe

that with further optimizations to OSv we can continue

to improve its score, especially on the lagging bench-

marks, but the difference will always remain small in

these computation-dominated benchmarks.

Micro Benchmarks

Network performance: We measured the network

stack’s performance using the Netperf benchmark [11]

running on the host. Tables 3 and 4 shows the results

for TCP and UDP tests respectively. We can see that

OSv consistently outperforms Linux in the tests. RR

(request/response) is significantly better for both TCP

and UDP, translating to 37%-47% reduction in latency.

TCP STREAM (single-stream throughput) is 24%-25%

higher for OSv.

Test STREAM (Mbps) RR (Tps)

Linux UP 44546±941 45976±299

Linux SMP 40149±1044 45092±1101

OSv UP 55466±553 74862±405

OSv SMP 49611±1442 72461±572

Table 3: Netperf TCP benchmarks: higher is better

Test RR (Tps)

Linux UP 44173±345

Linux SMP 47170±2160

OSv UP 82701±799

OSv SMP 74367±1246

Table 4: Netperf UDP benchmarks: higher is better

JVM balloon: To isolate the effects of the JVM balloon

technique described in Section 3.2, we wrote a simple

microbenchmark in Java to be run on both Linux and

OSv. It consists of the following steps:

1. Allocate 3.5 GB of memory in 2MB increments and

store them in a list,

2. Remove from the list and write each 2MB buffer to

a file sequentially until all buffers are exhausted,

3. Finally read that file back to memory.

In both guest OSs, the application ran alone in a VM

with 4GB of RAM. For OSv, the JVM heap size was au-

tomatically calculated by the balloon mechanism to 3.6

GB. For Linux, the same value was manually set.

As shown in Table 5, OSv fared better in this test than

Linux by around 35%. After the first round of alloca-

tions the guest memory is almost depleted. As Linux

needs more memory to back the file it has no option but

to evict JVM heap pages. That generates considerable

disk activity, that not only is detrimental per se, but will

in this particular moment compete with the application

disk writes.

We observe that not only is the execution slower on

Linux, it also has a much higher standard deviation. This

is consistent with our expectation. Aside from deviations

arising from the I/O operations themselves, the Linux

VM lacks information to make the right decision about

which pages is best to evict.

Guest OS Total (sec) File Write (sec) File Read (sec)

Linux 40±6 27±6 10.5±0.2

OSv 26±1 16±1 7.4±0.2

Table 5: JVM balloon micro-benchmark: lower is better

OSv can be more agressive when discarding pages be-

cause it doesn’t have to evict pages to make room for

the page cache, while Linux will be a lot more conserva-

tive in order to avoid swap I/O. That also speeds up step

3 (”File Read”), as can be seen in Table 5. In the ab-

sence of eviction patterns, both Linux and OSv achieve

consistent results with a low deviation. However, Linux

reaches this phase with a smaller page cache to avoid

generating excessive disk activity. OSv does not need to

make such compromise, leading to a 30% performance

improvement in that phase alone.

Context switches: We wrote a context-switch micro-

benchmark to quantify the claims made earlier that

thread switching is significantly cheaper on OSv than it

is on Linux. The benchmark has two threads, which al-

ternate waking each other with a pthreads condition vari-

able. We then measure the average amount of time that

each such wake iteration took.

The benchmark is further subdivided into two cases:

In the “colocated” case, the two alternating threads are

colocated on the same processor, simulating the classic

uniprocessor context switch. In the “apart” case, the two

threads are pinned to different processors.

Guest OS Colocated Apart

Linux 905 ns 13148 ns

OSv 328 ns 1402 ns

Table 6: Context switch benchmark

The results are presented in Table 6. It shows that

thread switching is indeed much faster in OSv than in

Linux — between 3 and 10 times faster. The “apart”

case is especially helped in OSv by the last optimization

described in 2.4, of idle-time polling.

10
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5 Related Work

Containers [26, 3] use a completely different approach

to eliminate the feature duplication of the hypervisor and

guest OS. They abandon the idea of a hypervisor, and

instead provide OS-level virtualization — modifying the

host OS to support isolated execution environments for

applications while sharing the same kernel. This ap-

proach improves resource sharing between guests and

lowers per-guest overhead. Nevertheless, the majority of

IaaS clouds today use hypervisors. These offer tenants

better-understood isolation and security guarantees, and

the freedom to choose their own kernel.

Picoprocesses [4] are another contender to replace the

hypervisor. While a containers’ host exposes to its guests

the entire host kernel’s ABI, picoprocesses offer only

a bare-minimum API providing basic features like allo-

cating memory, creating a thread and sending a packet.

On top of this minimal API, a library OS is used to al-

low running executables written for Linux [9] or Win-

dows [21]. These library OSs are similar to OSv in

that they take a minimal host/guest interface and use it

to implement a full traditional-OS ABI for a single ap-

plication, but the implementation is completely differ-

ent. For example, the picoprocess POSIX layer uses the

host’s threads, while OSv needs to implement threads

and schedule these threads on its own.

If we return our attention to hypervisors, one known

approach to reducing the overheads of the guest OS is to

take an existing operating system, such as a Linux dis-

tribution, and trim it down as much as possible. Two

examples of this approach are CoreOS and Tiny Core

Linux. OSv differs from these OSs in that it is a newly

designed OS, not a derivative of Linux. This allowed

OSv to make different design decisions than Linux made,

e.g., our choice not to use spinlocks, or to have a single

address space despite having an MMU.

While OSv can run applications written in almost any

language (both compiled and high-level), some VM OSs

focus on running only a single high-level language. For

example, Erlang on Xen runs an Erlang VM directly on

the Xen hypervisor. Mirage OS [14] is a library OS writ-

ten in OCaml that runs on the Xen hypervisor. It takes

the idea of a library OS to the extreme where an appli-

cation links against separate OS service libraries and un-

used services are eliminated from the final image by the

compiler. For example, a DNS server VM image can be

as small as 200 KB.

Libra [1] is a library OS for running IBM’s J9 JVM

in a VM. Libra makes the case that as JVM already has

sandboxing, a memory model, and a threading model, a

general purpose OS is redundant. However, Libra does

not replace the whole OS but instead relies on Linux

running in a separate hypervisor partition to provide net-

working and filesystem.

ClickOS [15] is an optimized operating system for

VMs specializing in network processing applications

such as routing, and achieves impressive raw packet-per-

second figures. However, unlike OSv which runs on mul-

tiple hypervisors, ClickOS can only run on Xen, and re-

quires extensive modifications to Xen itself. Addition-

ally, ClickOS is missing important functionality that OSv

has, such as support for SMP guests and a TCP stack.

6 Conclusions and Future Work

We have shown that OSv is, in many respects, a more

suitable operating system for virtual machines in the

cloud than are traditional operating systems such as

Linux. OSv outperforms Linux in many benchmarks, it

makes for small images, and its boot time is barely no-

ticeable. OSv is a young project, and we believe that with

continued work we can further improve its performance.

While OSv improves the performance of existing ap-

plications, some of the most dramatic improvements

we’ve seen came from adding non-POSIX API to OSv.

For example, the shrinker API allows an OSv-aware ap-

plication to make better use of available memory, and a

packet-filtering APIs reduces the overheads of the stan-

dard socket APIs. We plan to continue to explore new

interfaces to add to OSv to further improve application

performance. Areas of exploration will include network

APIs and cooperative scheduling.

Instead of modifying many individual applications, a

promising future direction is to modify a runtime envi-

ronment, such as the JVM, on which many applications

run. This will allow us to run unmodified applications,

while still benefiting from new OSv APIs. The JVM bal-

loon we presented is an example of this direction.

Finally, we hope that the availability of OSv, with its

small modern code and broad usability (not limited to

specific languages, hypervisors or applications) will en-

courage more research on operating systems for VMs.
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Abstract

As the number of cores in a multicore node increases
in accordance with Moore’s law, the question arises as to
what are the costs of virtualized environments when scal-
ing applications to take advantage of larger core counts.
While a widely-known cost due to preempted spinlock
holders has been extensively studied, this paper studies
another cost, which has received little attention. The
cost is caused by the intervention from the VMM during
synchronization-induced idling in the application, guest
OS, or supporting libraries—we call this the blocked-
waiter wakeup (BWW) problem.

The paper systematically analyzes the cause of the
BWW problem and studies its performance issues,
including increased execution times, reduced system
throughput, and performance unpredictability. To
deal with these issues, the paper proposes a solution,
Gleaner, which integrates idling operations and imbal-
anced scheduling as a mitigation to this problem. We
show how Gleaner can be implemented without intru-
sive modification to the guest OS. Extensive experiments
show that Gleaner can effectively reduce the virtualiza-
tion cost incurred by blocking synchronization and im-
prove the performance of individual applications by 16x
and system throughput by 3x.

1 Introduction

Virtualized environments are ubiquitous, and are in-
creasingly run on multicore nodes, particularly in the
cloud. Amazon EC2’s CC2 and CR1 instances, for ex-
ample, offer 32 virtual CPUs (vCPUs) running on two
8-core Intel® Xeon® E5-2670 processors with hyper-
threading [2]. When computational workloads execute
in these virtualized environments, each “guest” operat-
ing system (OS) is presented with a VM instance com-
prised of a set of vCPUs on which it schedules appli-
cation threads. The virtual machine manager (VMM),

or hypervisor, independently schedules the virtual CPUs
onto the physical CPUs (pCPUs) of the host machine.
The VMM is often required to time-share the pCPUs
among co-running VMs, and may deschedule a vCPU
belonging to one VM in favor of a vCPU belonging to
another VM. Unfortunately, the resulting behavior of the
vCPU abstraction does not always match the behavior of
physical CPUs for which the applications and OS are de-
signed. In particular, applications and OS may expect
that busy CPUs can make continuous progress in parallel
and that idle CPUs are ready for use immediately.

The mismatch between the vCPU abstraction and
pCPU behavior introduces great challenges to synchro-
nization and causes serious performance issues, partic-
ularly for multithreaded applications running on multi-
core VMs. One such issue, which has been extensively
studied [6, 24, 26], is known as the Lock-Holder Pre-
emption problem (LHP). LHP surfaces when, for exam-
ple, a vCPU is descheduled from the host platform while
the thread currently executing on that vCPU is holding a
lock. Other threads running in that VM that are waiting
on the lock may be prevented from making progress until
the descheduled vCPU is rescheduled, even though their
vCPU resources are active. Several software [6, 24, 26]
and hardware (such as the pause-loop-exiting (PLE) sup-
port on Intel® processors [21]) solutions have been pro-
posed to mitigate this issue.

As the number of cores per socket continues to in-
crease in accordance with Moore’s law, though, a nat-
ural question arises: Does the mismatch between the
vCPU abstraction and real hardware CPUs impose ad-
ditional “hidden” performance issues associated with
synchronization that may prevent multithreaded applica-
tions from taking full advantage of larger core counts?

The Blocked-Waiter Wakeup Problem. One such is-
sue can be viewed somewhat as the dual of the LHP
problem; we call this issue the Blocked-Waiter Wakeup
(BWW) problem. The BWW problem may arise any-
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time that a multithreaded application using blocking syn-
chronization executes in a virtualized environment, and
it can cause increased execution times, reduced system
throughput, and performance unpredictability.

In non-virtualized systems, when an application’s
thread blocks waiting for a resource to be freed, the
CPU resource occupied by that thread is typically re-
turned to the guest OS; if the OS has no other work to
schedule onto the CPU, it may halt that CPU, allow-
ing it to enter a low-power state. Later, when the re-
source is freed, the OS wakes the halted CPU by a sig-
nal from another CPU, for example, by issuing an Inter-
Processor Interrupt (IPI). Unfortunately, when this oc-
curs in a virtualized environment, the idle vCPU is not
simply in a halt state, waiting to be awoken at a mo-
ment’s notice. Instead, it has often been de-scheduled,
and the wakeup IPI, which is comparatively lightweight
on physical hardware, must now cause a VM trap, invoke
the VMM scheduler, and cause the blocked vCPU to be
rescheduled. Furthermore, unlike an idle physical core,
which is ready for immediate use once awoken, an idle
vCPU can be delayed waiting for a pCPU to free up.

As we show, the increased latency associated with
this wakeup path can significantly increase the execution
time of virtualized multithreaded applications (e.g., by
517% for dedup on 16 pCPUs) relative to their unvirtu-
alized performance, even when the application’s VM has
dedicated use of the underlying physical hardware and
does not use emulated resources. Note that the offending
synchronization may not even be explicit at the applica-
tion level—in our experiments, we found that the prob-
lematic blocking synchronization may arise in the guest
OS code.

Our Solution: Gleaner. To mitigate the detrimental
performance effects of the BWW problem, we propose
an approach, called Gleaner, which consolidates short
idle periods on multiple vCPUs into long idle periods
on fewer cores, thereby lessening the frequency that vC-
PUs enter/exit idle loops. Two key insights motivate
this as a solution. First, applications vulnerable to the
BWW problem are likely to see many such idle-busy
cycles and, hence, may be under-utilizing their CPU re-
sources. Second, activating/switching threads at the OS
level within the VM is much lower overhead than activat-
ing/switching vCPUs at the VMM level outside the VM.
Our experiments with a prototype Gleaner implementa-
tion indicate that this approach significantly mitigates the
BWW problem.

To date, the BWW problem has been under-studied.
It was first discussed briefly as part of a broader tech-
nical report by Song, et al. [22] and then expanded by
our previous short work [4]. This paper represents the
first full work dedicated to the problem and makes the
following contributions: (1) a systematic characteriza-

Table 1: Performance of dedup under Native (unvirtual-
ized), Dedicated (virtualized, no other load), and Shared
(two equal sized VMs) configurations.

Slowdown
run Relative Relative to

cores time (s) to Native Dedicated
1 23.5 – –

Native 4 7.1 – –
16 7.6 – –
1 26.4 1.1 –

Dedicated 4 13.5 1.9 –
16 46.9 6.2 –

Shared w/ 4 52.3 7.4 3.9
streamcluster 16 81.6 10.7 1.7

Shared w/ 4 65.1 9.2 4.8
matmul 16 577.2 75.9 12.3

tion of the BWW problem, an important issue for virtu-
alized multicore systems, (2) the design of an effective
approach, Gleaner, for mitigating the BWW problem,
and (3) an experimental validation of Gleaner’s effec-
tiveness by demonstrating improvements of application
performance by up to 16x and improvements of system
throughput by up to 3x.

2 Motivating Example

Table 1 presents an illustrative example of the above vir-
tualization problems with the dedup benchmark from the
PARSEC-3.0 suite. We measured the performance1 of
dedup under three settings. In the Native setting, dedup
executed alone on physical hardware. In the Dedicated
hardware setting, dedup ran in a VM with a dedicated
pCPU allocated to each vCPU. In the Shared hardware
setting, dedup executed in a VM sharing hardware re-
sources with another VM (in which either streamcluster
or matmul ran2), both sized to occupy the entire host.

The table shows that the virtualization penalty in-
creases as the number of vCPUs scales up– reaching
a factor of 6.2 for 16 cores (Dedicated scenario). We
observe similar trends for other PARSEC benchmarks,
though the penalties are not as dramatic (Section 7.1).

The performance of the Shared setting indicates that
dedup suffers even more due to hardware resource con-
tention than one might expect. In the experiment, each
of the two VMs has the same number of vCPUs as the
number of pCPUs and contend for all the hardware CPU
resources. With two VMs of the same size competing
for the same set of resources, one may expect the slow-
down to be approximately 2X relative to the correspond-

1Full details of the experimental setup used throughout this paper
appear in Section 7.

2streamcluster is another benchmark in PARSEC-3.0. matmul is
a micro-benchmark multiplying two matrices of 8000×8000 integers.



USENIX Association  2014 USENIX Annual Technical Conference 75

ing Dedicated setting by assuming that each VM would
get half of the physical CPU time. However, as shown in
the table, the slowdown factor is typically more than 2X
and can reach as high as 12.3X relative to Dedicated. The
table also shows that the degree to which dedup slows
down can be greatly affected by the application running
in the other VM. Note also that the 16-vCPU execution
times differ for the two co-running applications signif-
icantly more than they do in the 4-vCPU experiments.
We explore these effects more deeply in Section 7.2.

3 Analysis of the BWW Problem

We investigated the possible causes for the performance
degradation and variation, and discovered that the appli-
cations suffering the most were the ones in which vCPUs
were frequently idling due to blocking synchronization
in either the benchmarks or the guest system software
(OS or supporting libraries).

There are two basic types of inter-thread synchroniza-
tion primitives: spinning, where a waiting thread repeat-
edly checks some condition to determine if it can con-
tinue (possibly remaining in user space), and blocking,
where a waiting thread yields its execution resources and
relies on system software to wake it up when it can con-
tinue executing. Often, synchronization libraries com-
bine the two approaches: a thread spins for a brief period
of time, and if the desired condition has not been satis-
fied, the thread blocks.

One effect of blocking synchronization is that the
number of active application threads may change dynam-
ically, and consequently, the number of cores actively
employed by that application may change accordingly.
When the number of active threads drops below the num-
ber of active cores, some cores will become idle. When
the number of active threads increases beyond the num-
ber of active cores, idle cores must be activated. For ex-
ample, when a thread calls pthread mutex lock() to re-
quest a lock that is held by another thread, it will block it-
self through appropriate library/system calls, waiting for
the release of the lock. If there are no other threads ready
to run in the system, the core running the thread becomes
idle. With conventional OS design, an idle core executes
the idle loop, which typically calls a special instruction
(e.g., HLT on Intel® 64 and IA-32 architecture (“x86”)
platforms) that may lead to the core entering a low power
state. When the lock is released, the threads waiting for
it are woken up. To maximize throughput, the OS may
activate idle cores to schedule waking threads onto them.

In a virtualized environment, some of the operations
executed by guest software during blocking synchroniza-
tion routines must be handled by the VMM, even though
they would be carried out directly by hardware in a non-
virtualized environment. When software issues the spe-

Table 2: Time to wake up a thread on a physical ma-
chine (PM) and a virtual machine (VM) under differ-
ent settings. The last column shows in parentheses the
major operations needed to wake up a thread in a VM:
RT=rescheduling thread, IPI=handling reschedule IPI,
RV=rescheduling vCPU, and PV=preempting a vCPU.

Setting PM VM
A: same core 4 µs 6 µs (RT)
B: diff cores, spinning 8 µs 17 µs (IPI, RT)
C: diff cores, blocking 8 µs 37 µs (IPI, RV, RT)
D: diff cores, blocking

17 µs >96 µs (IPI, PV, RV, RT)
(2 apps or 2 VMs)

cial instruction to place a particular core in the idle state,
that processor will raise an exception and trap into the
VMM. The VMM may take this opportunity to resched-
ule other vCPUs—perhaps from other VMs—onto the
idling physical core. Thus, the “low power” mode for a
vCPU is actually the suspension of its execution. When
a thread is again ready to run on that vCPU, the VMM
must activate the vCPU by rescheduling it onto a physi-
cal core. This suffers much higher cost than it does in a
non-virtualized environment, in which switching a core
back from low power mode can be very fast. For exam-
ple, switching from C1 to C0 states takes less than 1 µs
on contemporary Intel® Xeon® CPUs.3

This is the heart of the Blocked-Waiter Wakeup
(BWW) problem: in a virtualized environment, the in-
creased cost of thread wakeup operations may signif-
icantly degrade overall performance. To see this, we
first show the increased cost of wakeup operations (Sec-
tion 3.1) and then the correlation between performance
and the frequency of idleness transitions (Section 3.2).

3.1 Blocking Synchronization Cost in VMs

To understand the cost of blocking synchronization in
VMs and analyze how the cost is increased by switching
and scheduling vCPUs, we report the time to wake up a
thread blocked in pthread mutex lock() on both a phys-
ical machine (PM) and a virtual machine (VM) under
four different settings, as shown in Table 2. In setting A,
the thread calling pthread mutex unlock() and the thread
blocked in pthread mutex lock() are pinned to the same
core on the PM or to the same vCPU in the VM. In the
other three settings, the two threads are pinned to differ-
ent cores on the PM or different vCPUs in the VM. Thus
when the thread is blocked in pthread mutex lock(), the
corresponding core/vCPU will become idle. In setting B,

3Waking up a core from deep sleep modes (e.g., C3 and C4 states)
can take more than 100 µs. But these modes are not used unless the
system ensures that the core will stay idle for a long time. Waking up a
core from C1E state takes about 10 µs, but system administrators often
disable the state for better performance [27].
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Figure 1: Correlation between the performance degradation of the SPLASH-2X and PARSEC-3.0 benchmarks when
virtualized and the frequency at which vCPUs transition to idle (when run alone).

lower power modes are disabled by keeping idle physi-
cal cores polling on the PM and by running low priority
threads repeatedly calling sched yield() on the VM. In
setting C, lower power modes are enabled. Specifically,
when a physical core becomes idle it enters C1 state, and
when a vCPU becomes idle it calls HLT to suspend itself.
In setting D, we measure wake-up times when another
application is contending for CPU resources. In the PM
experiment, we run a matmul thread on every core. In
the VM experiment, we run a second VM with a matmul
thread on every vCPU; the number of vCPUs in each of
the two VMs is same as the number of physical cores.

Table 2 clearly demonstrates that virtualization signif-
icantly increases the cost of blocking synchronization.
Waking up a thread in a VM has different costs un-
der the four settings due to the different operations in-
volved. Under setting A, waking up a thread in the VM
involves only a context switch between the threads in-
side the guest OS. Thus, it incurs similar overhead as
on the physical machine. Under setting B, waking up a
thread on a vCPU is initiated by an IPI (inter-processor
interrupt) made by another vCPU in the same VM (e.g.,
the one observing the pthread mutex unlock()). In a non-
virtualized environment, the IPI is delivered by hard-
ware, but in a virtualized environment, the VMM must
intercept and deliver the IPI. Thus, waking up a thread
on a VM incurs higher overhead than on a PM. Under
setting C, waking up the thread in the VM takes 37 µs,
4.6 times the latency for the same operation on the PM.
Under setting D, waking up the thread in the VM takes
the longest time among these settings, at least 2.6 times
longer than under setting C and 5.6 times longer than
either on the PM or waking up a thread on an active
vCPU (setting B). Waking up a thread in the VM re-
quires a complete switch between vCPUs from different
VMs — suspending a vCPU running matmul, activat-
ing and rescheduling the vCPU to run the thread calling
pthread mutex lock. A complete vCPU switch in set-
ting D incurs a higher cost than resuming a vCPU on
an idle physical core in setting C not only because it is
between different VMs, but also because the working set
of a vCPU may be evicted from the pCPU caches and
TLBs when it is de-scheduled. The time (96µs) is mea-

sured when the vCPU switch takes place immediately af-
ter pthread mutex unlock is called. Depending on vCPU
scheduling policies, the vCPU switch may be delayed,
further increasing the time to wake up a blocked thread.

3.2 Problems Caused by Accumulated
Blocking Synchronization Cost

The runtime overhead incurred by blocking synchro-
nization in a virtualized environment increases with the
frequency of active-idle state transitions of application
threads, and in particular, state transitions of vCPUs.
Such transitions arise frequently for synchronization-
intensive applications. The accumulated overhead can
significantly degrade performance and increase applica-
tion performance variation.

To show the correlation between performance degra-
dation and the overhead incurred by blocking synchro-
nization in a virtualized environment, we run SPLASH-
2X and PARSEC-3.0 benchmarks under settings C and
D, and measured the frequencies at which vCPUs tran-
sition to idle during their executions.4 Under setting D,
we run one SPLASH-2X or PARSEC-3.0 benchmark in
the first VM, and run either matmul or freqsleep in the
second VM. In these experiments, the number of threads
in each application, the number of vCPUs in each VM,
and the number of physical cores are each 16.
Freqsleep creates a thread on each core, which repeat-

edly calls nanosleep(1). We select matmul and freqsleep
because they have consistent behavior during their ex-
ecution. So the impact of their execution to the per-
formance of SPLASH-2X and PARSEC-3.0 benchmarks
does not change with the execution times of the bench-
marks. At the same time, though both matmul and freq-
sleep can saturate the physical cores, they affect the per-
formance of the benchmarks running in the first VM by
different degrees.

As shown in Figure 1, there appears to be a strong cor-
relation between the slowdowns and blocking frequen-
cies. The correlation is more evident when the pCPUs

4One may also want to measure the frequencies at which application
threads block, but unfortunately, such measurements are challenging
because the threads may block inside the OS kernel.
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Figure 2: Correlation between the performance variation
of the SPLASH-2X and PARSEC-3.0 benchmarks when
virtualized and the frequency at which vCPUs transition
to idle (when run alone).

are oversubscribed (setting D) than when they are not
(setting C). There are some applications that experience
trivial slowdowns under setting C, but suffer significant
slowdowns under setting D. For example, streamcluster
is slowed down by 13% under setting C. But, it suffers
1660% and 465% slowdowns under setting D when mat-
mul and freqsleep run in the second VM, respectively.
This can be explained as follows.

To correlate the performance variation of applications
in VMs and the frequency at which the vCPUs in the
VMs transition their status, for each benchmark, we
compare its slowdowns under setting D when different
applications (i.e., matmul and freqsleep) run in the sec-
ond VM. Figure 2 shows the absolute value of the dif-
ference between the two slowdowns for each benchmark
versus the frequency at which the vCPUs become idle
during its execution (when run alone). It is evident that
benchmarks causing more frequent vCPU status tran-
sitions usually experience larger performance variation
than other benchmarks.

4 Reducing Harmful Context Switches

To reduce the impact of the BWW problem, we seek
to reduce the frequency of harmful switches (those that
require the activation of a de-scheduled vCPU). There
are at least two possible approaches, resource retention
and consolidation scheduling, and we propose to employ
both in an intelligent hybrid design (Section 5).

4.1 Resource Retention
A natural approach to reducing harmful context switches
is to avoid releasing resources to lower levels in the soft-
ware stack. For example, a guest application thread
could spin at a problematic synchronization point rather
than yield to the guest OS. If the thread becomes un-
blocked in less time than would be required to transi-
tion into the guest OS and back, overall efficiency may
be improved by spinning rather than yielding. To avoid
application changes, the guest OS may also spin rather
than halting. Besides spinning, the guest OS has the ad-

ditional option of leveraging an operation like the x86
MWAIT instruction, which can place the physical core in a
low-power state directly (if permitted by the VMM) such
that a simple store to memory will reactivate the core.

However, such resource retention approaches must be
employed with some care. Having these operations high
in the software stack may lead to under-utilization. In
particular, it may prevent layers lower in the stack from
improving utilization by reallocating idle resources or
placing those resources in a low-power state.

When a system is not oversubscribed and hardware re-
sources are not contended, such idling operations will
not hurt overall system performance as the resources
were underutilized. However, when a system is oversub-
scribed, resource retention may prevent other VMs from
making better use of those resources and reduce system
throughput significantly (by as much as 8x [19]).

To improve utilization, these idling operations can be
enhanced with a timeout value such that, if the thread or
vCPU cannot change its state back from idling within the
timeout period, the occupied resource will be released to
the control of lower software layers.5 However, the fun-
damental tension between improved individual VM per-
formance and overall system throughput remains, albeit
with the timeout value as a potential tuning knob.

4.2 Consolidation Scheduling

The second type of mechanism for reducing harmful con-
text switches is based on the observation that, while con-
text switches due to blocking synchronization may be
inevitable, the resolution of such switches need not be
the responsibility of lower software layers. If higher lev-
els of software can manage the switches, application per-
formance may be improved without adversely affecting
overall throughput.

Schedulers (user-level schedulers or guest OS sched-
ulers) determine how tasks are scheduled on execution
entities (threads or vCPUs). They have direct influence
on whether and when the execution entities would be-
come idle. Thus, they can be improved to reduce the
frequency at which threads or vCPUs transition between
busy and idle by coalescing tasks onto fewer resources.
When tasks are coalesced, the resource onto which they
would be scheduled is more likely to be active.

One aspect of consolidation scheduling can be illus-
trated with Figures 3(a) and 3(b). In (a), the top schedule
shows the guest OS scheduling each of threads 1, 2, and
3 immediately when it is ready to run. Thread 1 becomes
ready and is scheduled first. It is blocked before thread 2

5In addition to the timeout method, an alternative approach can use
heuristics to predict the length of the coming idle period and select
the action that incurs lower cost: either spinning/MWAIT or yielding
hardware resources to lower layers in the software stack.
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Figure 3: Consolidation scheduling in guest OS (num-
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becomes ready, changing the vCPU’s state to idle. When
thread 2 becomes ready, it is scheduled and the vCPU’s
state is changed back to busy. The vCPU experiences
another round of state changes after thread 2 is blocked
and before thread 3 becomes ready. Thus, to reduce state
transitions, instead of scheduling a thread immediately
when it becomes ready to run, the guest OS scheduler
could choose to delay the scheduling of the thread to ac-
cumulate enough workloads to keep the vCPU busy for
a while, as shown in the bottom schedule. We call this
techique to achieve consolidation delayed scheduling.

In Figure 3(b), the top schedule shows the guest OS
scheduler distributing threads 1 and 2 onto vCPUs A
and B for load balance, and neither of the vCPUs can
be kept always busy or always idle, increasing the num-
ber of state transitions. In contrast, imbalanced schedul-
ing consolidates both threads onto one vCPU and keeps
the other vCPU idle. While delayed scheduling is more
suitable to single-vCPU VMs, imbalanced scheduling is
more suitable to VMs with multiple vCPUs.

While consolidation scheduling tends to improve over-
all system throughput on an oversubscribed system, it
may reduce the resources available to a particular VM
and may delay computation and/or overload a busy
vCPU if not carefully controlled.

5 Gleaner: Basic Idea and Design

Gleaner is a hybrid approach that combines resource re-
tention and consolidation scheduling techniques to lever-
age the advantages of both techniques. Resource reten-
tion is used to mangae short periods of idleness, and con-
solidation scheduling is used to both coalesce tasks and
reduce the number of long idle periods that resource re-
tention cannot handle efficiently.

The combination can be illustrated with Figure 3(c).
Before applying imbalanced scheduling, each vCPU runs
one thread. Thread 3 running on vCPU C has short idle
periods between its tasks that can be efficiently handled
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Figure 4: (a) An effective consolidation. (b) Overly-
aggressive consolidation overloads vCPU B (the second
block of thread 2 remains unscheduled).

through resource retention without delaying the tasks.
Threads 1 and 2 on vCPUs A and B have long idle pe-
riods. Holding the hardware with idling operations will
incur higher cost than halting the vCPUs. With imbal-
anced scheduling, the threads are consolidated to vCPU
B. Though they cannot fully keep vCPU B busy, run-
ning two threads on it reduces the length of idle periods,
making resource retention viable. For brevity, the paper
refers to the vCPUs with workload threads as active vC-
PUs and refers to other vCPUs as deactivated vCPUs.

To prevent active vCPUs from being overloaded as
a result of overly-aggressive consolidation (Figure 4),
Gleaner monitors the workload in a VM and collects
the following time measurements: computation length,
denoted by lcomp, is the length of computation on a
vCPU between two consecutive idle periods; computa-
tion granularity, gcomp, is the length of computation in a
thread between two consecutive synchronization points;
and length of idle periods, lidle, is the length of an idle
period of a vCPU. Note that Gleaner dynamically ad-
justs the number of active vCPUs in a VM, and measure-
ments need not be collected on deactivated vCPUs. To
characterize the workload, Gleaner computes averages
for these values. In the remainder of the paper, lcomp,
gcomp, and lidle refer to the corresponding average val-
ues. For example, for the workload shown on the top of
Figure 4(a), lcomp is 2t; both gcomp and lidle are t.

Gleaner consolidates workload threads cautiously and
gradually. It periodically updates the above measure-
ments, and reduces the active vCPUs one at a time
when the following two conditions are satisfied: (1)
lcomp ≤ ρ × (N − 1)× lidle and (2) gcomp ≤ min(η ×
lidle,min time slice). Here, N is the number of active
vCPUs in the VM, and the load factor, ρ , and granular-
ity factor, η , are tunable values between 0 and 1.

The first condition is to ensure that there is enough idle
time on the N −1 vCPUs to accommodate the computa-
tion on the vCPU to be deactivated. The second con-
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dition is to ensure that the computation periods on the
to-be-deactivated vCPU are small enough, such that they
can be relatively evenly distributed to other active vC-
PUs and fit into the available idle periods. It also ensures
the low overhead of moving threads. Gleaner only con-
solidates workload threads with active computation peri-
ods shorter than the minimum timeslice min time slice,
which is selected by the OS to be long enough (e.g., a
few milliseconds) to tolerate the overhead of reschedul-
ing threads. For workloads with periods of active compu-
tation longer than min time slice, blocking synchroniza-
tion usually cannot significantly degrade performance;
but cache locality may be an important performance fac-
tor. Therefore, instead of consolidating these threads
with the imbalanced scheduling technique, Gleaner ap-
plies resource retention to suppress short idle periods.

Figure 4 uses two examples to explain the necessity to
enforce the above conditions. For simplicity, we assume
η and ρ are 1 in the examples. In 4(a), the workload
running on three vCPUs (as shown on the top) is to be
consolidated onto two vCPUs (as shown at the bottom).
It meets both conditions. The consolidation does not de-
grade performance. In 4(b), the workload meets the first
condition (lcomp = 2t and lidle = t), but not the second.
Thus, were thread 1 to be migrated to vCPU B, vCPU B
would be overloaded, reducing application throughput.

During the consolidation, Gleaner keeps monitoring
the vCPU utilization of the workload. When it observes
a vCPU utilization decrease, which indicates the exe-
cution of the workload has slowed down, it stops the
consolidation and restores the vCPU that was last de-
activated. Then, it adjusts load factor and granular-
ity factor. Specifically, if the consolidation increases
the utilization of a vCPU to 100%, indicating the per-
formance degradation may be caused by the specific
vCPU being overloaded (similar to the situation in Fig-
ure 4(b)), granularity factor is then reduced to 0.9 ×
min(η ,gcomp/lidle); otherwise, load factor is reduced to
0.9×min(ρ, lcomp/((N −1)× lidle)). These adjustments
are to prevent more consolidation in the future that may
degrade performance.

Gleaner maintains the current set of active vCPUs as
long as there is not much variation of vCPU utiliza-
tion and computation granularity. However, a dramatic
change in vCPU utilization or computation granularity
may indicate a workload change. Gleaner must respond
to such changes by adjusting the number of active vCPUs
to better satisify the resource demand of the workload.
Therefore, Gleaner activates all the deactivated vCPU
in the VM, and distributes the workload on all the vC-
PUs. Then, it gradually reduces active vCPUs when the
above two conditions are met, until it finds a good set-
ting. In our current implementation, a change of vCPU
utilization larger than 20%, per-vCPU utilization exceed-

ing 90%, and gcomp increased by more than 2x or de-
creased by more than 50% are each considered as indi-
cators of major change.

6 Gleaner Implementation

A convenient place to implement Gleaner is the guest
OS. Resource retention techniques can be implemented
by modifying the idle driver, and imbalanced scheduling
can be achieved by modifying the guest OS scheduler.
However, these changes involve intensive modifications
to the guest OS. Thus, in this section, we introduce a few
techniques to implement Gleaner at the user level of the
guest OS, to avoid intrusive kernel implementation and
enable the adoption into proprietary operating systems.

At user level, idling operations in support of resource
retention can be implemented by a yielding thread on
each active vCPU. A yielding thread is a user-level
thread that calls the sched yield() system call in a loop.
If there are not other threads ready to run on the vCPU,
the sched yield() call will return immediately. Other-
wise, the sched yield() call relinquishes the vCPU to
other threads. Thus, the yielding thread keeps the
vCPU active and does not impede the execution of ap-
plication threads. On systems where the semantics of
sched yield() is not fully implemented (e.g., some ver-
sions of Linux kernels), the yielding threads should be
assigned with the lowest priority possible in the guest OS
(e.g., SCHED IDLE scheduler class in Linux) to avoid
hindering workload threads.

While a yielding thread can keep the vCPU active, to
support resource retention well, it must also suspend the
vCPU at appropriate times. To determine when the vCPU
should be suspended, Gleaner monitors the time spent
in sched yield() calls to determine whether the calls re-
turn immediately. If a sched yield() call spends much
more time than that needed by returning immediately
without relinquishing the vCPU, the finish of the call
denotes the beginning of an idling operation. For time-
outs, Gleaner accumulates the time spent in consecutive
sched yield() calls that return immediately and compares
the time against the time-out value to determine whether
a time-out should be triggered. Gleaner sets the time-
out value of the idling operation based on the cost in-
curred by context transitions if hardware resources are
released to lower layers in the software stack, and calls
nanosleep(1) to effect the actual vCPU suspension.

At user level, imbalanced scheduling can be achieved
by changing the CPU affinity of application threads, but
an easier yet more scalable way is to leverage the re-
source container support on the guest OS, e.g., cgroup
support on Linux or zone support on Solaris. Gleaner
creates a resource container for workload threads. It dy-
namically adjusts the vCPUs assigned to the container
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based on the policies described in Section 5. The work-
load threads will be accordingly redistributed by the
guest OS scheduler on the assigned vCPUs upon every
adjustment. For the vCPUs that are not assigned to the
container, the yielding threads on them are put into sleep;
thus these vCPUs will be suspended by the VMM to re-
claim the physical resources.

To get the measurements required by imbalanced
scheduling (lcomp, gcomp, and lidle) on active vCPUs,
Gleaner periodically collects vCPU times spent by the
yielding threads and workload threads (denoted by Tyield
and Twork, respectively), as well as their number of con-
text switches (Syield and Swork, respectively). Then,
lcomp is Twork/Syield , gcomp is Twork/Swork, and lidle is
Tidle/Syield .

7 Experiments

We evaluated our prototype implementation of Gleaner
on a Dell™ PowerEdge™ R720 server with 64GB of
DRAM and two 2.40GHz Intel® Xeon® E5-2665 pro-
cessors, each of which has 8 cores. VMs were created
with 16 virtual CPUs and 16GB of memory. The VMM
is KVM [13], with EPT support and PLE support en-
abled. Both the host OS and the guest OS are Ubuntu
version 12.04 with the Linux kernel version updated to
3.9.4. To prevent the performance degradation caused
by CPU power management to latency sensitive applica-
tions, we disabled the C states deeper than C1 (includ-
ing C1E) [28]. Please note that the change of these set-
tings does not favor Gleaner and Gleaner can improve
application performance by larger percentages when the
C states are enabled.

We selected the benchmarks in PARSEC 3.0 and
SPLASH 2X suites, SysBench [18], and matmul. We
compiled the PARSEC and SPLASH2X benchmarks us-
ing gcc with the default settings of the gcc-pthreads con-
figuration in PARSEC 3.0. We used the parsecmgmt tool
in the PARSEC package to run them with native input
and with the minimum number of threads set to 16 in the
“-n” option. We used the OLTP test mode of SysBench
to benchmark a MySQL database’s performance on VMs
with OLTP workloads.

We performed two sets of experiments. In the first
set of experiments, we launch one VM on the system,
and run the benchmarks in the VM. These experiments
test the effectiveness of Gleaner on improving applica-
tion performance in virtualized environment with dedi-
cated physical resources. At the same time, we aim to
confirm that the performance improvement is achieved
without increasing energy consumption. In the second
set of experiments, we launch two or more VMs and run
one benchmark in each of the VMs. The VMs contend
for hardware resources and test the capability of Gleaner
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Figure 5: Virtualization slowdowns of PARSEC and
SPLASH2X benchmarks on 16 cores with and without
Gleaner.

to improve the performance of synchronization-intensive
applications and overall system throughput on an over-
subscribed system.

7.1 Single VM Experiments

We first execute the benchmarks in a single virtual ma-
chine running alone. We execute each benchmark in the
following three scenarios: in the host OS, in the guest
OS without Gleaner enabled, and in the guest OS with
Gleaner enabled. In Figure 5, we report the slowdowns
of the benchmark in the latter scenarios relative to its ex-
ecution in the first scenario.

As shown in the figure, Gleaner is especially effec-
tive for the benchmarks suffering from the high blocking
synchronization overhead. For example, virtualization
slows down PARSEC’s dedup and facesim benchmarks
by 517% and 51%, respectively. With Gleaner, the slow-
downs were reduced to 138% and 27%. The SPLASH2X
benchmarks cholesky and volrend slow down by 155%
and 35% without Gleaner but only by 19% and 21%, re-
spectively, with it enabled.

For benchmarks that are not sensitive to blocking syn-
chronization overhead, such as PARSEC’s ferret and
freqmine and SPLASH2X’s water nsquared and wa-
ter spatial, Gleaner neither improves nor degrades their
performance, indicating that its overhead is very low.

For other benchmarks, Gleaner may slightly reduce or
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Figure 6: Energy consumption increases of PARSEC
and SPLASH2X benchmarks on 16 cores with Gleaner.
Negative bars indicate energy consumption reduction.

increase their execution times. For example, the execu-
tion times of bodytrack and lu ncb reduce by 6% and
5%, respectively, and Gleaner slightly increases the exe-
cution times of canneal (3%) and x264 (5%).

Gleaner may increase the execution times because,
implemented at user level, it may not be able to quickly
detect the increasing concurrency levels at the begin-
ning of some new execution phases, and thus it cannot
promptly adjust the number of active vCPUs to maxi-
mize throughput. The problem could be addressed with
some assistance from the guest OS. For example, when
threads are woken up (i.e., the concurrency level in-
creases), the guest OS could notify Gleaner to increase
the number of vCPUs.

On average, without Gleaner, the execution times of
the PARSEC benchmarks and SPLASH2X benchmarks
slow down by 55% and 30% when virtualized, relative to
native execution, but with the tool enabled, the average
slowdowns were reduced to 20% and 17%, respectively.

Gleaner uses yielding threads to keep some vCPUs
busy even when they do not have any threads to run.
This potentially increases energy consumption; however,
the energy consumed by yielding threads can be justi-
fied if a reduction in execution time results, which in
turn can be translated to reduced energy consumption.
Moreover, Gleaner consolidates application threads and
adjusts the number of active vCPUs to suppress the en-
ergy consumed by yielding threads. This significantly
reduces the energy consumed by yielding threads.

To test whether or not Gleaner increases energy con-

sumption, we used the IPMI OEM utility to measure the
energy consumption of the system during the execution
of each benchmark, and compared the energy consump-
tion in the last two scenarios. The energy consumption
increases are as shown in Figure 6. The data show that,
although Gleaner may slightly increase the energy con-
sumption for some benchmarks, it reduces energy con-
sumption for many, especially for the benchmarks suf-
fering from blocking synchronization overheads. En-
ergy consumption is reduced primarily by reducing exe-
cution times: the benchmarks with larger execution time
reductions usually show larger energy consumption re-
ductions. The reductions in energy consumption are
not proportional to reductions in execution time because
yielding threads increase the power consumption when
Gleaner is enabled. On average, Gleaner reduces the en-
ergy consumption by 5% for PARSEC benchmarks and
by 1% for SPLASH2X benchmarks.

7.2 Experiments with Co-Running VMs

In this subsection, we present the experimental results
when the system is oversubscribed. We launch two vir-
tual machines, one with the PARSEC or SPLASH2X
benchmark under test and one with matmul running re-
peatedly. As shown in Figure 1(b), synchronization-
intensive benchmarks suffer much higher slowdowns
than they do on a VM with dedicated hardware. With the
first part of the experiments, we show that Gleaner can
effectively speed up these applications on oversubscribed
systems. Then, in the second part of the experiments, we
show that Gleaner can improve system throughput by re-
ducing the overhead caused by vCPU switches.

7.2.1 Reducing Application Execution Times

On an oversubscribed system, Gleaner improves the per-
formance of synchronization-intensive applications by
preventing hardware resources from being taken by other
VMs if the resources are to be used soon. In the ex-
periments, we use the application performance in the
VM without Gleaner enabled as a baseline. In Fig-
ure 7(a), we show the speedups of the PARSEC and
SPLASH2X benchmarks when Gleaner is enabled, rel-
ative to the baseline. In addition to the performance of
individual applications, we also want to investigate how
the idling operations affect system throughput. Thus, we
use Weighted-Speedup to measure the system through-
put, which is the average speedups of the benchmark and
matmul, relative to their performance when Gleaner is
disabled. The system throughput when Gleaner is dis-
abled is always 1. Thus, in Figure 7(b), we only show
the throughput of the system when Gleaner is enabled.

For the benchmarks that suffers significantly from
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Figure 7: Speedup and system throughput of PARSEC and SPLASH2X benchmarks on a 16-vCPU VM with Gleaner
on the oversubscribed system.

the overhead of blocking synchronization, e.g., dedup,
streamcluster, bodytrack, cholesky, and volrend,
Gleaner can dramatically improve their performance. It
reduces the execution times by several factors (up to 16x
for dedup). For benchmarks that are not sensitive to the
overhead of blocking synchronization, e.g. blackscholes,
ferret, and freqmine, Gleaner does not reduce their per-
formance. For all the selected benchmarks, the average
speedup is 203% when Gleaner is enabled.

The improvement of application performance does not
come without cost. Idling operations may reduce effi-
ciency because they prevent hardware resources from be-
ing utilized by other vCPUs. But they may also improve
efficiency by reducing excessive costly vCPU switches.
Therefore, we observed that Gleaner improves through-
put for some workloads and reduces throughput for oth-
ers. Generally, the system has similar throughputs when
Gleaner is enabled (the average throughput is 2% higher
than when Gleaner is disabled).

We notice that if the performance degradation of the
benchmark is due to frequent barrier synchronization or
condition variable synchronization, Gleaner usually re-
duces system throughput (e.g., bodytrack, streamclus-
ter, and vips). This is because Gleaner usually cannot
consolidate the threads of the application. The perfor-
mance of such applications is more sensitive to the de-
lay of its computation than other applications. The delay
caused by imbalanced scheduling may degrade the appli-
cation performance. For example, delaying the compu-
tation of one thread and making it the last one reaching a
barrier will effectively delay all the other threads waiting
at the barrier. In contrast, for the threads contending for
a mutex, if the computation of a thread is delayed and it
reaches a synchronization point late, the delay will not
block other threads. When imbalanced scheduling is not
used to reduce the length of idle periods, Gleaner can-
not effectively minimize the cost of the idling operations
handling these idle periods, which in turn reduces system
throughput.

On the other hand, if the performance degradation of
a benchmark is due to frequent mutex synchronization
(e.g., dedup, ferret, and cholesky), Gleaner usually can
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Figure 8: Throughput improvements of MySQL servers
driven by the OLTP workload generated by SysBench.

increase the system throughput, albeit the gains are less
than 15%. The reason for the modest gains is that, when
the VM of these benchmarks run with the VM of mat-
mul, the vCPU switches are not frequent, because the
vCPU scheduling policy of KVM enforces a minimum
time slice for the vCPUs running matmul. Thus, there is
limited potential for Gleaner to improve performance.

We replaced matmul with freqsleep and repeated the
above experiments to compare the performance of the
benchmarks under these two settings. The benchmarks
showed similar performance after replacing matmul with
freqsleep. Even for dedup, which suffered the largest
performance variation when Gleaner was not enabled (its
execution time was 7x longer co-running with matmul
than with freqsleep), after Gleaner was enabled its ex-
ecution co-running with matmul was only 21% longer
than with freqsleep. For the PARSEC and SPLASH2X
benchmarks, with Gleaner enabled, the average execu-
tion time was 15% smaller when freqsleep replaces mat-
mul, while the number is 3X with Gleaner disabled.

7.2.2 Improving System Throughput

With some commercial workloads and scientific work-
loads, frequent vCPU switches can significantly degrade
system throughput. For such workloads, Gleaner can
effectively reduce vCPU switches and improve system
throughput. To demonstrate this capability of Gleaner,
we select dedup and the SysBench OLTP benchmark,
which was designed for MySQL server benchmarking.

First, we use SysBench to generate the OLTP work-
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load to drive the MySQL database servers running in two
VMs. The workload consists of a mixture of back-to-
back transactions on a table with 1 million records as
specified with SysBench OLTP “advanced transactional”
test mode. In the experiment, we change the number of
connections between SysBench and MySQL to vary the
workload. Since each connection is backed by a MySQL
server thread, when we reduce the number of connec-
tions, the number of server threads on each vCPU is also
reduced; thus the chance for a vCPU becoming idle in-
creases. Figure 8 shows that the throughput of MySQL
servers is improved by increasingly larger percentages
(upto 69%) by enabling Gleaner on the VMs running
MySQL, when the number of connections is decreased
from 48 to 16, with a peak at 20.
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Figure 9: Throughput improvements of dedup and
MySQL varying the number of VMs.

Finally, we vary the number of VMs running on the
physical machine and test how the throughput improve-
ments change with dedup and MySQL (the number of
connections to each MySQL instance is 20). When the
the number of VMs is increased to 5, the application per-
formance is significantly degraded relative to that with
one VM. For example, the average response time of the
MySQL servers is increased by about 3X. Thus, we did
not further increase the number of VMs. As shown in
Figure 9, for all the above settings, Gleaner can sub-
stantially improve throughput. On average, it improves
the throughput by 160% for dedup and 45% for MySQL
database server.

We expect that the improvements increase with the
number of VMs, because the contention for hardware
resources increases with more VMs. As shown in Fig-
ure 9, dedup shows this trend before the number of VMs
is smaller than 5. When the number of VMs is increased
to 5, Gleaner cannot improve the throughput as much as
it does with fewer VMs due to memory overcommitment.
For the OLTP workload generated by SysBench, we ob-
serve that the throughput improvement gradually reduces
when the number of VMs increases from 2 to 5. This is
because when more VMs share the same physical cores,
each VM has fewer active vCPUs, which in turn allevi-
ates the mutex contention in MySQL servers, making the
server threads less likely to be blocked.

8 Related Work

While there are a number of studies identifying perfor-
mance overheads of virtualized execution [1, 6, 7, 8, 14,
15, 16, 17, 25, 26], most of them focus on the overhead
incurred by I/O operations and spinlock synchroniza-
tion. To reduce the performance degradation caused by
spinlock synchronization in virtual machines, a few ap-
proaches have been proposed, including vCPU schedul-
ing approaches [5, 6, 12, 20, 23, 24, 26], hardware ap-
proaches [21, 29], and improved spinlock design [19].
Flex also addresses the fairness issue of scheduling mul-
ticore VMs [20]. None of these studies identify and ad-
dress the performance degradations caused by blocking
synchronizations in multicore virtualized environments
(the BWW problem).

The blocked-waiter wakeup problem was also de-
scribed in a technical report [22] and a workaround was
proposed to run a user-level idle daemon to avoid halting
vCPUs, which is similar to yielding threads in our so-
lution. The workaround helps improve performance for
VMs with dedicated hardware (at the cost of increased
energy consumption). But it causes performance degra-
dation when the system is oversubscribed, similar to that
caused by the LHP problem. This paper systematically
analyzes the issues with the BWW problem and provides
an efficient and universal solution.

The BWW problem, as well as the LHP problem, is
caused by the lack of coordination between the vCPU
scheduler in the VMM and the task scheduler in the guest
OS. Thus, one solution is to enforce the collaboration be-
tween the schedulers using techniques similar to sched-
uler activations [3]. However, this approach requires in-
tensive modifications to both the VMM and the guest OS.
Another approach is to minimize vCPU scheduling by
assigning one runnable vCPU to each pCPU and making
other vCPUs offline to computation in guest OSes [23].
This approach avoids vCPU preemption and can effec-
tively address the LHP problem. Making some vCPUs
offline may be able to reduce the idle time on the online
vCPUs and reduce the chance for them to become idle.
But it may not be effective for the BWW problem, be-
cause every vCPU state transition from busy to idle still
incurs a switch between vCPUs and the number of online
vCPUs in each individual VM may not be adjusted in a
way to reduce idle time.

Retaining idle resources for anticipated usages is a
common scheduling technique in system designs [9, 10,
11]. It avoids the high overhead associated with resource
reallocation and state switches. At a high level, the re-
source retention techniques in Gleaner share a similar
idea with these designs.

A preliminary version of this paper appeared in Hot-
Cloud’13 [4].
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9 Conclusion and Future Work

This paper identifies an understudied problem for run-
ning multithreaded applications in virtualized multicore
environments. Namely, the costs incurred by blocking
synchronization in virtualized environments can exact a
significant performance penalty when scaling multicore
applications to take advantage of larger and larger core
counts. This paper proposes and designs Gleaner as a
solution, which combines resource retention approaches
with idling operations and consolidation scheduling. Ex-
tensive experiments show that Gleaner can significantly
improve application performance and system throughput
in virtualized environments. It can also reduce applica-
tion performance variations when multiple VMs share
the same physical resources.

As future work, we want to test and extend our ap-
proach to reduce the overhead due to vCPU state transi-
tions caused by operations other than blocking synchro-
nization. For example, SSD access latencies are typically
tens of microseconds in Amazon EC2 instances. The
state transitions of vCPUs when they are waiting for I/O
can double the I/O latency and reduce I/O throughput at
the same time. It seems that Gleaner could be adapted to
reduce this extra cost incurred by vCPU state transitions.
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Abstract
To direct the operation of a computer, we often use a shell,
a user interface that provides accesses to the OS kernel ser-
vices. Traditionally, shells are designed atop an OS kernel.
In this paper, we show that a shell can also be designed be-
low an OS. More specifically, we present HYPERSHELL,
a practical hypervisor layer guest OS shell that has all
of the functionality of a traditional shell, but offers bet-
ter automation, uniformity and centralized management.
This will be particularly useful for cloud and data center
providers to manage the running VMs in a large scale.
To overcome the semantic gap challenge, we introduce
a reverse system call abstraction, and we show that this
abstraction can significantly relieve the painful process
of developing software below an OS. More importantly,
we also show that this abstraction can be implemented
transparently. As such, many of the legacy guest OS man-
agement utilities can be directly reused in HYPERSHELL
without any modification. Our evaluation with over one
hundred management utilities demonstrates that HYPER-
SHELL has 2.73X slowdown on average compared to their
native in-VM execution, and has less than 5% overhead
to the guest OS kernel.

1 Introduction

With the increasing use of cloud computing and data
centers today, there is a pressing need to manage a guest
operating system (OS) directly from the hypervisor layer.
For instance, when migrating a virtual machine (VM)
from one place to another, we would like to directly
configure its IP address without logging into the system
(if that is possible), similarly for firewall rule update;
when there is a malicious process detected, we would
like to directly kill it at hypervisor layer, similarly for
malicious kernel modules; when there is a need to scan
viruses, we would like to uniformly scan viruses for all
of the running VMs regardless of who owns and manages
the VM, whether the VMs might be using an unknown file
system, or whether the file systems might be encrypted.

However, if we use a traditional OS shell, a user inter-
face that is automatically executed when a user success-
fully logs in a computer, this would first require an admin-
istrator’s password. But, hypervisor providers may not
(always) have the administrator’s password for each VM,
and even when they do have the passwords, it is painful
to maintain them considering today large cloud providers
usually run millions of VMs (e.g., there were over one mil-
lion VMs running in Skytap cloud as of January 2012 [7]).
Second, it would also require the installation of the man-
agement utilities inside each guest OS. Whenever there
are updates for these utilities, it is painstaking to update all
of them in each VM. Therefore, the presence of a hypervi-
sor layer shell (HYPERSHELL for brevity) for all guest OS
would allow cloud providers to have an automated, uni-
formed, and centralized service for in-VM management.

Unfortunately, such a layer below shell is challenging
to implement because of the semantic gap [9]. Specifi-
cally, the semantic gap exists since at the hypervisor layer
we have access only to the zeros and ones of the hard-
ware level state of a VM—namely its CPU registers and
physical memory. But what a hypervisor layer program
wants is the semantic information about the guest OS,
such as the running processes, opened files, live network
connections, host names, and IP addresses. Therefore, a
layer below management program must reconstruct the
guest OS abstractions in order to obtain meaningful in-
formation. A typical approach to do so is to traverse the
kernel data structure, but such an approach often requires
a significant amount of manual effort.

To advance the state-of-the-art, we introduce a new ab-
straction called Reverse System Call (R-syscall in short)
to bridge the semantic gap for hypervisor layer programs
that will be executed in our HYPERSHELL. Unlike tradi-
tional system calls that serve as the interface for applica-
tion programs from a layer below, R-syscall serves as the
interface in a reverse direction from a layer up (with a way
similar to an upcall [11]). While hypervisor programmers
can use our R-syscall abstraction to develop new guest
OS management utilities, to largely reuse the existing
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legacy software (e.g., ps/lsmod/netstat/ls/cp)
we make the system call interface of R-syscall transpar-
ent to the legacy software, resulting in no modification
when using them in HYPERSHELL. In addition, we also
make HYPERSHELL transparent to the guest OS, and we
do not modify any guest OS code. All of our design and
implementation is done at the hypervisor layer.

We have implemented HYPERSHELL. We show that by
using the abstraction of R-syscall, we can quickly have a
large number of hypervisor layer guest OS management
utilities by reusing the existing legacy software (due to its
transparency). In our current evaluation, we have tested
with over 100 common system administrative utilities.
All of them can be correctly executed in HYPERSHELL.
The average performance overhead for these utilities is
2.73X slowdown compared to their native in-VM execu-
tion. Both micro and macro benchmark evaluation shows
that HYPERSHELL has very small overhead (less than
5%) to the guest OS kernel.

In short, this paper makes the following contributions:
• We present HYPERSHELL, a new hypervisor layer

shell for automated guest OS management, without
using any user accounts from a guest OS.

• We introduce an R-syscall abstraction that allows
hypervisor programmers to develop guest OS
management utilities without worrying about the
semantic gap. Its transparency feature also directly
allows many of the legacy utilities to be executed
in HYPERSHELL without any modification.

• We have implemented the whole system. We show
that HYPERSHELL is practical, and can be used
for timely, uniformed, and centralized guest OS
management, especially for private cloud.

2 Background and Overview
Challenges. HYPERSHELL aims at executing guest OS
management utilities at the hypervisor layer with the same
effect as executing them inside an OS. To this end, we are
facing two major challenges:
• How to bridge the semantic gap. In HYPERSHELL,

guest OS management utilities execute below an OS
kernel. However, for OS below software, there are
no OS abstractions. For example, there is no pid,
no FILE, and no socket. Therefore, we have to
reconstruct these abstractions such that the utility
software understands the guest OS states and can
perform the management.

• How to develop the utilities. Suppose we have a
perfect approach to bridging the semantic gap, we
still have to develop the guest OS management soft-
ware. Should we develop the software from scratch,
or can we reuse any legacy (binary or source) code?
Ideally, we would like to reuse the existing binary
code as there are already lots of OS management
utilities, and we show that this approach is feasible.

1. execve("/bin/hostname", ["hostname"], ...) = 0
2. brk(0)                                  = 0x8113000
3. access("/etc/ld.so.nohwcap", F_OK)      = -1 ENOENT
4. mmap2(NULL, 8192, ..., -1, 0) = 0xb7795000 
...

c103c305 <sys uname>:

36. uname({sys="Linux", node="debian", ...}) = 0
...
40. write(1, "debian\n", 7)                 = 7
41. exit_group(0) 

(a) System call trace of command “hostname”

y _
1. 0xc103c420  push   %ebx
2. 0xc103c421  mov $0xc137ad34,%eax
3. 0xc103c426  call   0xc125ee10

...
// get the current task structure

19. 0xc103c430  mov %fs:0xc13f9454,%eax
// point to current->nsproxy

20. 0xc103c436  mov 0x2c4(%eax),%eax( ),
// point to current->nsproxy->uts_ns

21. 0xc103c43c  mov 0x4(%eax),%edx
22. 0xc103c43f  mov 0x8(%esp),%eax

// point to current->nsproxy->uts_ns->name
23. 0xc103c443  add    $0x4,%edx

// copy to user space buffer
24. 0xc103c446  call  copy_to_user

(b) Disassembled instructions for system call sys_uname

Figure 1: System call trace of utility hostname and one
of its sys_uname implementation.

Key Insights. Before describing how we solve these
challenges, we would like to first revisit how an in-
VM management utility executes. Suppose we want
to know the host name of a running OS, we can use
utility software such as hostname to fulfill this task.
In particular, as illustrated in Fig.1(a), it will execute
41 system calls (syscall for short) in Linux kernel
2.6.32.8, our testing guest kernel. Among these syscalls,
sys_uname is the one that really returns the host name.
Also, as shown in Fig.1(b), this syscall will traverse
the current task structure and dereference the field
current->nsproxy->uts_ns->name to eventu-
ally retrieve the machine name.

If we implement the same hostname utility and exe-
cute it in HYPERSHELL, and if we use a manual approach
to bridging the semantic gap, we have to traverse the data
structure again, in the same way as how sys_uname
does. Since the only interface for user level programs
to request OS kernel services is through syscall, and the
execution of a syscall is often trusted, then why not let
hypervisor programs directly use the syscall abstractions
provided by the guest OS? As such, we do not have to
develop any code to reconstruct the guest OS abstractions.
This is one of the key insights of designing HYPERSHELL.

Another key insight is that not all the syscalls should be
executed inside the guest OS. One example is the write
syscall that prints the “host name” to the screen. If we
execute it inside the guest OS, we would not be able to
observe the output from HYPERSHELL. Therefore, we
introduce an R-syscall abstraction that is used by hypervi-
sor programmers to annotate the syscalls that need to be
redirected and executed inside the guest OS.

In addition, while hypervisor programmers can use our
R-syscall abstraction to develop new software to manage
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Figure 2: An Overview of the HYPERSHELL Design.

the guest OS, there are already lots of legacy utilities
running inside a VM for the same purposes. For instance,
there are over hundreds of tools in core-utility, util-linux,
and net-tools for Linux OS. If we can make our R-syscall
transparent to the legacy software, then there is no need
to annotate the R-syscall and we can directly execute
the legacy software in HYPERSHELL. For instance, in
hostname example, only the uname syscall needs this
abstraction. We can thus hook the execution of the syscall
and use a transparent policy to determine whether a given
syscall is an R-syscall.

Scope and Assumptions. As HYPERSHELL is executed
at the hypervisor layer and will also invoke the syscalls
from the guest OS, we assume everything below is trusted.
This includes the guest OS kernel, host OS and the hy-
pervisor code. Ensuring the hypervisor and guest kernel
integrity is an independent problem and out of scope of
this paper. In fact, recently there have been many efforts
aiming at ensuring the guest kernel and hypervisor in-
tegrity (e.g., SecVisor [33] and HyperSafe [37]). Also
note that HYPERSHELL is designed mainly for automated
guest OS management and not for security. While it could
defeat certain attacks such as guest user level viruses, it
cannot defend against any guest kernel level attacks.

To make our discussion more focused, we assume a
guest OS running with a 32-bit Linux kernel atop x86
architecture. For the hypervisor, we focus on the design
and implementation of HYPERSHELL using KVM [4].

Overview. An overview of our HYPERSHELL is pre-
sented in Fig. 2. For a KVM based virtualization system,
there are two kinds of OSes: one is the guest OS that
is executed atop a KVM hypervisor, and the other is the
host OS that hides the underlying hardware resources and

provides the virtualized resources to KVM. The goal of
HYPERSHELL is to execute the guest OS management
utilities from the host OS to manage the guest OS. To this
end, there are five key components: two located inside
the library space of the host OS, and three located at the
hypervisor layer of the GVM.

To use HYPERSHELL, assume hypervisor managers
use ls (or other utilities such as ps or hostname) to
list the guest files in a given directory. To get started,
they will launch ls in our host OS. The real execution of
ls will be divided into a master process that is executed
inside the host OS, and a helper process that is executed in
the GVM. Only when an R-syscall gets executed will we
forward the execution of this syscall to a helper process in
the GVM and map the execution result (e.g., the directory
entries) back such that ls can continue its execution in the
master process. There are five key steps involved during
the execution of an R-syscall:
• Step �: Right after a syscall enters the library space

in the host OS, our Syscall Dispatcher intercepts it.
If it is not an R-syscall, it directly traps to the host
OS kernel for the execution. Otherwise it fetches
the syscall number and arguments, and invokes our
Syscall Data Exchanger at the host OS side which
communicates with its peers at the GVM side with
the detailed syscall execution information. Next,
our master process gets paused and will be resumed
at Step � when the redirected R-syscall finishes
the execution. At the GVM side, according to
each specific syscall specification, the Syscall Data
Exchanger will set up the corresponding memory
state for the to-be-executed R-syscall.

• Step �: Our Reverse Syscall Execution will wait
until the helper process traps to kernel. The helper
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process is created at Step 0 right after the execution
of the management utilities in HYPERSHELL, or can
be executed as a daemon depending on the settings.

• Step �: Our Reverse Syscall Execution directly
injects the execution of the R-syscall with the
corresponding arguments and memory mapping, and
makes the R-syscall be executed under the helper
process kernel context. Note that such an R-syscall
injection and execution mechanism works similar
to function call injection from debuggers but with a
more powerful capability because of the layer below
control from hypervisor.

• Step �: During the execution of the R-syscall, if
there is any kernel state update to the guest OS,
this syscall will directly update the kernel memory
as usual (e.g., sysctl that changes the kernel
configuration). If there is any user space update
(such as the buffer in read syscall), it directly
updates to the shared memory created by the Syscall
Data Exchanger in Step �.

• Step �: Right after the execution of the syscall exit
of the R-syscall, we notify Syscall Dispatcher and
Syscall Data Exchanger at the host OS side. We also
copy the data from the shared memory to the user
space of the master process, if the R-syscall has any
memory update. We also resume the execution of the
master process and directly return to its user space for
continued execution. Regarding the helper process
state in the GVM: if the master process terminates, it
will also be terminated (in non-daemon mode); oth-
erwise, it will keep executing int31 such that our
Reverse Syscall Execution can always take control
of the helper process from the hypervisor layer.

3 Host OS Side Design
3.1 Syscall Dispatcher
The key idea of HYPERSHELL in bridging the semantic
gap is to selectively redirect and execute a syscall in the
guest OS. (The selected one is called an R-syscall). As
shown in Fig.1(a), not all the syscalls belong to R-syscalls.
Therefore, the first step in our Syscall Dispatcher design
is to systematically examine all of the Linux syscalls and
define our reverse execution policy for each syscall.

Syscall Execution Policy. In our testing guest kernel
Linux 2.6.32.8, there are 336 syscalls in total. Among
them, we find that technically, nearly all of them can be
redirected to execute in a guest OS. However, for process
creation (e.g., execve, fork, exit_group), dynamic
loading (e.g., open, stat, read when loading a shared
library), memory allocation (e.g., brk, mmap2), and

1An interrupt that is often used by debuggers to set up break points.

The Syscall Trace of “cp /etc/shadow /outside/shadow” Host OS GVM

execve("/bin/cp",["cp","/etc/shadow","/tmp/shadow"],…= 0

brk(0)                 = 0x8824000

access("/etc/ld.so.nohwcap", F_OK)      = -1 ENOENT 

……

stat64("/etc/shadow",{st_mode=S_IFREG|0640,st_size=713, ...})=0

stat64("/outside/shadow", 0xbf9bad78)       = -1 ENOENT 

open("/etc/shadow", O_RDONLY|O_LARGEFILE) = 0

fstat64(0, {st_mode=S_IFREG|0640, st_size=713, ...}) = 0

open("/outside/shadow", O_WRONLY|O_CREAT|…|O_LARGEFILE, 0640)=3

fstat64(3, {st_mode=S_IFREG|0640, st_size=0, ...}) = 0

read(0, "root::15799:0:99999:7:::\ndaemon:"..., 32768) = 713

write(3 "root::15799:0:99999:7:::\ndaemon:" 713) = 713write(3, root::15799:0:99999:7:::\ndaemon: ..., 713) = 713

read(0, "", 32768)                      = 0

close(0)

close(3)

Table 1: Syscalls in cp with different execution policy.

screen output (e.g., write), we would like them to be ex-
ecuted in the master process created in our HYPERSHELL.

Unfortunately, for the rest syscalls, it is also not always
clear which syscalls need to be executed in the helper
process. For instance, as shown in Table 1, suppose
we want to copy /etc/shadow from the guest OS
to the host OS; in this case, some of the file system
related syscalls (e.g., open/stat64/read/close)
are executed in the GVM, and some (e.g.,
open/stat64/write/close) are executed in
HYPERSHELL. Even though we could leave the solution
to hypervisor programmers, where they would specify
which syscall needs to be executed in the master process
or helper process, we would prefer to make an automated
policy for these syscalls in order to allow for transparent
reuse of the legacy binary code.

In general, syscalls are relatively independent of each
other (e.g., getpid will just return a process ID, and
uname will just return the host name). After having ex-
amined all of the 336 syscalls, we realize that the syscalls
that have connections are often file system and socket
related (e.g.,open/stat64/read/write/close),
and these syscalls have dependences with the file de-
scriptors. For instance, as illustrated in Table 1, if we
can differentiate the file descriptor from the GVM and the
host OS automatically, we can then transparently execute
the existing legacy utility in HYPERSHELL without any
modification.

Intuitively, we would use dynamic taint analysis [29]
to differentiate the file descriptors that are accessed inside
the GVM or the host OS. However, such a design would
require instruction level instrumentation, which is often
very slow. In fact, our earlier design adopted such a taint
analysis approach by running HYPERSHELL in an emula-
tor. Surprisingly, we have a new observation and we can
actually eliminate the expensive dynamic taint analysis.
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In particular, as a file descriptor is just an index (a 32-
bit unsigned integer) to the opened files (and network
socket) inside the OS kernel for each process, it has a
limited maximum value (due to the resource constraints).
In our testing Linux kernel, it is 1023 (which means a
process can only open 1024 files at the same time). Also, it
is extremely rare to perform data arithmetic operations on
a file descriptor. Therefore, we can in fact add a distinctive
value (e.g., 4096 or 8192) to the file descriptor returned
by the GVM. Whenever such a descriptor is used by the
GVM again, we subtract our added value. As such, we
can differentiate whether a file descriptor is from the host
OS or the GVM by simply looking at its value.

Whether a file descriptor should be returned from the
GVM or the host OS depends on the semantics of open.
Specifically, if it is opening the guest OS files (we can
differentiate this based the parameters, and internally we
add a prefix associated with the guest files), it is executed
in the GVM; otherwise it is executed in the host OS. For
instance, we know “/etc/shadow” is in the GVM, and
“/outside/shadow” is in the host OS while executing “cp
/etc/shadow /outside/shadow”. Similarly, we
can also infer the files involved in “cp -R <src>
<dst>” by their names and their opening mode.

Syscalls in Dynamic Loader. To intercept the syscall,
we use dynamic library interposition [13] (a tech-
nique that has been widely used in many applica-
tions such as LibSafe [36]). Interestingly, we notice
that the syscalls executed in dynamic loader cannot
be trapped by our library interposition. Therefore,
syscalls executed while loading a dynamic library (e.g.,
access/open/stat64/read/close) will not be
checked against our policy, and they will be executed di-
rectly on the host OS side, which is exactly what we want.

Summary. By default, the majority of the syscalls will
be treated as redirectable and they will be executed in
the GVM, except process execution and memory manage-
ment related syscalls that will be executed in the host OS.
All file system and network connection related syscalls
will be checked against the file descriptor. Whether a file
descriptor needs to be checked is determined by the se-
mantics of the corresponding file operations.

3.2 Syscall Data Exchanger
Since we need to make an R-syscall executed in the GVM,
we must inform the GVM with the corresponding context
and also update the corresponding memory state at the
host OS side to reflect the R-syscall’s execution. Our
Syscall Data Exchanger is designed for this goal.

Specifically, right after an R-syscall enters the library
space (Step �), we will retrieve the syscall arguments
(e.g., the buffer address and size information) based on
the corresponding syscall’s specification. Then, we will
inform its peer (to be discussed in §4.3) to prepare for the

necessary arguments at the GVM side. Once an R-syscall
finishes the execution (Step �), we will pull the data back
from the GVM to the host OS. All of these operations are
quite straightforward.

4 Guest VM Side Design
4.1 Helper Process Creator
An R-syscall must be executed under a certain process
execution context in the GVM. While we could hijack an
existing process to execute an R-syscall, such an approach
is too intrusive to the hijacked process. Therefore, we
choose to create a helper process dedicated to executing
our R-syscall in the guest OS. Regarding the permission
of this helper process, it should have the highest privilege;
otherwise an R-syscall may fail due to certain permis-
sions. Also, it would terminate when the master process
terminates (to minimize the impacts to the guest OS work-
loads). To have better performance while executing the
management utilities in HYPERSHELL, we can also have
an option of creating a daemon process as the creation
of a helper process takes additional time. There are only
three instructions for this helper process as shown below:

00000001  cd 80        int 0x80
loop:_loop:

00000003  cc           int 3
00000004  eb fd jmp _loop

Basically, it keeps executing int3 (i.e., while(1)
int3) with a prefix of int 0x80. We will explain why
we use such an instruction sequence in §4.2.

Then the challenge lies in how to select a high privi-
lege process to fork the helper process. Since all Linux
kernels have an init process with PID 1, one option is
to traverse the pid field of the task_struct for each
process. But such a design would make HYPERSHELL
too OS-specific. Fortunately, since we are able to inject
an R-syscall (discussed in §4.2), we are certainly able to
inject getpid to inspect the return values. If it is 1, we
can therefore infer that the current execution context is
the init process, and we can then inject a fork syscall
to create our helper process. Meanwhile, we will retrieve
the child PID from the return value of fork, and then use
getpid again to identity the helper process. Once we
have identified it, we will pull its CR3 such that the hyper-
visor knows it is the int3 that occurs in our helper pro-
cess, not others (e.g., gdb) by looking at the CR3 value.

Consequently, we must design a mechanism to inter-
cept the entry point and exit point of the syscall execu-
tion for each process in order to select the init process.
Once we have created our helper process, we will not
need this interception. We call the selection of init pro-
cess redirection initialization phase (i.e., the RI-Phase
that only occurs at Step 0 ) in the GVM. With hardware-
assisted virtualization, we can rely on hardware mecha-
nisms to intercept the execution of the syscall instructions.
Ether [14], built atop the Xen hypervisor, leverages a page
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fault exception to capture syscall entry and syscall exit
points. Nitro [31], based on the KVM hypervisor, lever-
ages invalid segment exceptions to intercept the pair of
sysenter/int0x80 and sysexit syscalls for a sin-
gle process. In our design, we extend Nitro to intercept the
system wide syscall entry and exit pairs (for all processes).

4.2 Reverse Syscall Execution
After we have passed the RI-Phase, we are then ready to
execute an R-syscall if there is any. Yet we have to solve
two additional challenges: when and how to execute an
R-syscall under our helper process context.

When to Inject a Syscall. At a given time, a process ei-
ther executes in user space or kernel space. To trap to
kernel, a process must use a syscall or interrupt (including
exceptions). As an interrupt or exception can occur at
arbitrary time, the OS must be designed in such a way
that it is safe to trap to OS kernel and execute syscall
or interrupt handler services at any time in user space.
However, we cannot inject a syscall execution at arbitrary
time in kernel space. This is because: (1) the injected
syscall might make kernel state inconsistent. For instance,
we might inject a syscall when the kernel is handling an
interrupt, and there might be some synchronization primi-
tives involved (e.g., spin_lock). After we inject a new
syscall, if this syscall execution also happens to lock some
data or release certain locks, it may cause inconsistency
among these locks. (2) Similarly, we might make the non-
interruptible code interruptible. For instance, if the kernel
is executing the cli code block and has not executed
sti yet, and if we inject a new syscall, this may make the
non-interruptible code interruptible. (3) We might also
overflow the kernel stack of a running process if it already
has a large amount of data.

Therefore, to inject the execution of a syscall, we use
the approach that right before entering the kernel space
(e.g., sysenter/int0x80), or right after exiting
to the user space of a running process, we will save
the current execution context (namely all the CPU
registers), and then execute the injected syscall (such as
our getpid case in §4.1).

Regarding our helper process, we have a slightly dif-
ferent strategy to inject the R-syscall. In particular, when
the int3 traps to hypervisor, we change the current user
level EIP (pointing to cc at this moment) to EIP-2, which
points to “int 0x80”; meanwhile, we prepare for the
necessary arguments such as setting up the corresponding
registers. Then when control returns to the user space
of the helper process, it will automatically execute the
syscall we prepared for because we have changed its EIP.
The use of int3 is to make the control flow of the helper
process trap to the hypervisor. There are also alternative
approaches such as using a cpuid instruction.

How to Execute an R-syscall. To execute an R-syscall,
we have to set up the syscall arguments and map the

memory that will be used during the R-syscall execution.
This is done by our Syscall Data Exchanger (§4.3) at Step
�. After that, the syscall will be executed as usual in the
GVM. If there is any memory update to the user space, it
will directly (Step �) update to the shared memory that is
allocated by our Syscall Data Exchanger. For kernel space,
it directly updates the guest kernel. Once an R-syscall
finishes, we inform the Syscall Dispatcher at Step �, and
push the updated memory back to the master process. At
the GVM side, the helper process continues its execution
of int3. When the master process exits, we terminate the
helper process if it is not executed in the daemon mode.

4.3 Syscall Data Exchanger
As discussed in §3.2, we need to pass the corresponding
syscall parameters to the GVM. Also, we need to map the
data back to the host OS if there is any memory update.
The Syscall Data Exchanger at the GVM side is exactly
designed to achieve these goals.

One issue we have to solve is the virtual address relo-
cation. This is because the same virtual addresses used
by the host OS may not be available for the helper pro-
cess in the GVM, and we have to relocate the virtual
addresses used in the syscalls of the master process to
the available addresses of the helper process. To this end,
before the execution of the first R-syscall, we will first
allocate a large buffer (as a cache) with a default size of
64K bytes by injecting a mmap syscall and recording the
mapped virtual address of this buffer, denoted as Vg, and
its size, denoted as Sg. (Certainly, the guest OS will au-
tomatically munmap this allocated space once the helper
process terminates.) Then whenever there is an R-syscall
(e.g., read) that has an argument with virtual address Vh
and size Sh, we will use Vg as the buffer starting address
instead of Vh, and if Sh is greater than Sg, we will inject
mmap to map more caches.

Also, to avoid too many data transmissions between
the host OS and the GVM, we allocate a shared memory
between them. Right after the execution of the mmap
syscall to allocate new pages for the redirected syscall,
in the hypervisor layer we map the pages of the shared
memory to the virtual address of the mmap returned page
by traversing the page tables (rooted by the captured CR3)
of the helper process, such that we do not have to perform
an additional memory copy from the GVM to the shared
memory. To prevent being swapped by the guest OS, we
inject mlock syscall to lock the mmap allocated memory.

5 Evaluation

We have developed a proof-of-concept prototype of HY-
PERSHELL with 3,700 lines of C code. The implementa-
tion is scattered across both the host OS side, which is
atop Linux kernel 3.0.0-31, and the KVM side. While we
have used KVM to build HYPERSHELL, we believe our
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Process S B(ms) D(ms) T (X) date � 0.11 0.12 1.09 mkdir � 0.10 0.19 1.90
ps � 1.33 5.42 4.08 w � 0.95 6.62 6.97 mkfifo � 0.10 0.19 1.90

pidstat � 1.95 7.56 3.88 hostname � 0.04 0.06 1.50 mknod � 0.10 0.19 1.90
nice � 0.07 0.11 1.57 groups � 0.21 0.62 2.95 mv � 0.15 0.31 2.07

getpid � 0.01 0.02 2.00 hostid � 0.16 0.56 3.50 rm � 0.08 0.15 1.88
mpstat � 0.29 0.66 2.28 locale � 0.09 0.17 1.89 od � 0.12 0.35 2.92
pstree � 0.69 6.03 8.74 getconf � 0.09 0.34 3.78 cat � 0.07 0.18 2.57
chrt � 0.11 0.16 1.45 System Utils S B(ms) D(ms) T (X) link � 0.07 0.13 1.86

renice � 0.11 0.18 1.64 uptime � 0.07 0.47 6.71 comm � 0.08 0.22 2.75
top � 504.92 510.85 1.01 sysctl � 8.5 42.72 5.03 shred � 0.72 0.92 1.28

nproc � 0.07 0.26 3.71 arch � 0.07 0.11 1.57 truncate � 0.07 0.26 3.71
sleep � 1.27 1.28 1.01 dmesg � 0.38 0.51 1.34 head � 0.07 0.15 2.14
pgrep � 0.89 4.72 5.30 lscpu � 0.26 1.21 4.65 vdir � 0.63 3.95 6.27
pkill � 0.87 4.33 4.98 mcookie � 0.29 0.49 1.69 nl � 0.08 0.17 2.13
snice � 0.17 0.65 3.82 Disk/Devices S B(ms) D(ms) T (X) tail � 0.08 0.20 2.50
echo � 0.07 0.09 1.29 blkid � 0.14 0.61 4.36 namei � 0.07 0.13 1.86
pwdx � 0.05 0.07 1.40 badblocks � 0.35 0.44 1.26 whereis � 2.05 4.86 2.37
pmap � 0.16 0.36 2.25 lspci � 31.40 36.52 1.16 stat � 0.27 0.78 2.89
kill � 0.01 0.04 4.00 iostat � 0.45 1.04 2.31 readlink � 0.07 0.12 1.71

killall � 0.62 3.03 4.89 du � 0.11 0.53 4.82 unlink � 0.07 0.13 1.86
Memory S B(ms) D(ms) T (X) df � 0.16 0.35 2.19 cut � 0.08 0.17 2.13

free � 0.04 0.08 2.00 Filesystem S B(ms) D(ms) T (X) dir � 0.07 0.20 2.86
vmstat � 0.19 0.33 1.74 sync � 8.07 6.53 0.81 mktemp � 0.09 0.18 2.00
slabtop � 0.22 0.36 1.64 getcap � 0.04 0.08 2.00 rmdir � 0.07 0.13 1.86

Modules S B(ms) D(ms) T (X) lsof � 3.31 6.12 1.85 ptx � 0.12 0.45 3.75
rmmod � 0.51 3.14 6.16 pwd � 0.07 0.11 1.57 chcon � 0.06 0.12 2.00
modinfo � 0.48 1.54 3.21 Files S B(ms) D(ms) T (X) Network S B(ms) D(ms) T (X)
lsmod � 0.10 0.17 1.70 chgrp � 0.19 0.47 2.47 ifconfig � 0.32 1.15 3.59

Environment S B(ms) D(ms) T (X) chmod � 0.07 0.14 2.00 ip � 0.10 0.20 2.00
who � 0.14 0.72 5.14 chown � 0.19 0.47 2.47 route � 138.65 150.32 1.08
env � 0.07 0.11 1.57 cp � 0.11 0.27 2.45 ipmaddr � 0.13 0.34 2.62

printenv � 0.07 0.1 1.43 uniq � 0.09 0.35 3.89 iptunnel � 0.09 0.29 3.22
whoami � 0.19 0.45 2.37 file � 0.87 1.72 1.98 nameif � 0.10 0.21 2.10

stty � 0.11 0.46 4.18 find � 0.20 0.58 2.90 netstat � 0.25 0.37 1.48
users � 0.09 0.53 5.89 grep � 0.35 2.14 6.11 arp � 0.14 0.24 1.71

uname � 0.09 0.11 1.22 ln � 0.08 0.14 1.75 ping � 15.02 18.2 1.21
id � 0.26 0.85 3.27 ls � 0.14 0.27 1.93 Avg. - 7.27 8.45 2.73

Table 2: Evaluation Result of the Tested Utility Software. S stands for whether there is any Syntax-difference, B(ms)
stands for the average time of the base execution, D(ms) stands for the average execution time of the utility in
HYPERSHELL when using the daemon mode in GVM, and T (X) stands for the result of D/B (i.e., the times).

design can be applied to other types of hypervisors such
as Vmware, Xen and VirtualBox.

In this section, we present our evaluation results. All
of our experiments were carried out on a host machine
configured with an Intel Core i7 CPU with 8G memory
and running with Ubuntu 12.04 using Linux kernel 3.0.0-
31; the guest OS is Debian 6.04 with kernel 2.6.32.8.

5.1 Effectiveness

Benchmark Software. Recall the goal of HYPERSHELL
is to enable the execution of native management utilities
at the hypervisor layer to manage a guest OS, and
also enable the fast development of these software by
using the R-syscall abstraction. Since the software
development with HYPERSHELL is very simple (a
hypervisor programmer just needs to annotate the syscall
and inform HYPERSHELL which one is an R-syscall),
we skip this evaluation. In the following, we describe
how we automatically execute the native utilities in
HYPERSHELL to transparently manage a guest OS.

Today, there are a large number of administrative util-
ities to manage an OS. To test HYPERSHELL, we system-
atically examined all of the utilities (in total 198) from six
packages including core-utility, util-linux, procps, module-
init-tools, sysstat, and net-tools, and eventually we se-

lected 101 utilities, as presented in Table 2, though tech-
nically we can execute all of them. The selection criteria
is the following: if a utility is all user level program (e.g.,
hash computation such as md5sum), or not so system
management related (e.g., tr), or can be executed in al-
ternative way (e.g., poweroff, halt), or not supported
by the kernel any more (e.g., rarp), we ignore them.

Experimental Result. Without any surprise, through our
automated system call reverse execution policy, all of
these utilities can be successfully executed in HYPER-
SHELL. To verify the correctness of these utilities, we
use a cross-view comparison approach in a similar way
when we tested our prior systems such as VMST [16, 17]
and EXTERIOR [18]. Basically, to test a given utility such
as ps, we first execute it inside the GVM and save the
output, which is called the in-VM view; then we execute
it inside HYPERSHELL to manage the GVM and also save
the output, which is called the out-of-VM view. Then we
compare the syntax (through diff) and semantics (with
a manual verification) of the in-VM and out-of-VM views,
which leads to the two sets of effectiveness test results:
one is the syntax comparison, and the other is the semantic
(i.e, the meaning) comparison.

We notice that while there are 16 utilities that have
syntax differences (as shown in the S column in Table 2),
all other utilities have the same screen output. A further
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investigation shows that the syntax differences among
them is actually caused due to the different location (host
OS vs. GVM) and timing of performing our in-VM and
out-of-VM experiment. Regarding the semantics, we no-
tice that all of the utilities have the same semantics as the
original in-VM programs through our manual verification.

Testing w/ More Guest Kernels. Working at syscall level
allows HYPERSHELL with less constraint and wider ap-
plicability because of the POSIX compatibility. For in-
stance, we can now use a single host OS to manage a
large number of syscall-compatible OSes. To validate this,
we selected five other recently released Linux kernels of
versions 2.6.32, 2.6.38, 3.0.10, 3.2.0, and 3.4.0, and exe-
cuted them in our GVM. Our benchmark utilities were all
correctly executed with these kernels.

5.2 Performance Overhead
When executing a program in HYPERSHELL, there are
two processes to fulfill the execution: the master process
executed in the host OS, and the helper process executed
in the guest OS. Consequently, we have to measure two
sets of performance. One is how slow an end-user would
feel when executing a utility in HYPERSHELL. The other
is the impact with respect to the guest OS kernel due to
our syscall capturing and helper process execution at the
GVM. Below we report these two types of overhead.

5.2.1 Performance Impact to the Native Utilities

With different settings of the helper process (daemon or
non-daemon), we could also have two sets of performance
overhead for the utility software. However, the perfor-
mance differences for these two settings mainly come
from the creation of the helper process, which is almost a
constant factor (the time interval between the two sched-
uled executions of the init process). Our evaluation
shows that every 5 seconds, the init process will be
scheduled. Therefore, it leads to the creation of a helper
process with maximum 5 seconds, the worst case delay if
we want to use a non-daemon helper process to execute
the R-syscall. All other latency is the same compared to
the daemon mode execution. Therefore, in the following,
we present our result with the daemon mode execution of
the helper process.

Again, we used these 101 utilities in effectiveness
tests to measure this overhead. Specifically, we executed
the utilities each with 100 times and computed their
average. First, we ran all of them in a native-KVM and
got the average execution time for each of them as the
base. This result is presented in the B-column of Table 2.
Then we collected the average run time of these utilities
in HYPERSHELL with a daemon helper process in the
GVM. This result is presented in the D-column. We
computed the overhead of this test with the base one, and
we report them in the T -column. We compare with the
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stat (µs) 0.39 2.28 82.89 0.41 4.88
fork proc (µs) 47.20 147.26 67.95 47.54 0.72
exec proc (µs) 158.20 480.00 67.04 161.30 1.92

sh proc (µs) 384.90 1088.10 64.63 386.30 0.36
ctxsw (µs) 0.59 1.23 52.03 0.73 19.18

10K File Create (µs) 17.80 40.67 56.23 17.96 0.89
10K File Delete (µs) 4.64 7.16 35.20 4.65 0.22

Bcopy (MB/s) 5689.17 5647.71 0.73 5605.40 1.47
Rand mem (ns) 72.20 72.65 0.62 73.24 1.42

Mem read (MB/s) 10150.00 10000.00 1.48 10000.00 1.48
Mem write (MB/s) 8567.70 8543.00 0.29 8540.40 0.32

Table 3: Micro-benchmark Test Result of GVM.

execution running in native-KVM instead of native host
OS because we are comparing our out-of-VM approach
with an in-VM approach. We notice that on average,
with a daemon mode helper process, HYPERSHELL has
2.73X slowdown compared to the executions running
in a native-KVM. This overhead mainly comes from the
data exchange and synchronization between the host OS
and the GVM during the R-syscall execution.

5.2.2 Performance Impact to the GVM

The performance impact to the GVM also falls into two
scenarios: one is the system wide sysenter/sysexit inter-
ception that is used to capture the init process (recall
we name it the RI-Phase), and the other is the R-syscall
execution that occurs in the helper process (we call this
RE-Phase). These two phases inevitably introduce per-
formance penalty to the running workloads/processes at
GVM. Note that if the GVM is neither running in RI nor
RE-Phase, there is no performance overhead. To quantify
the overhead from these two scenarios, we used standard
benchmark programs (e.g., LMBench, and ApacheBench)
that are used in other work (e.g., [37, 39]) to measure the
runtime overhead of the guest OS execution at both micro
and macro level for these two phases.

Also, according to the result from Table 2, the execution
of the RE-phase is very short (on average 8.45 millisec-
onds). In addition, our RI will never be executed if the
helper process has created. Therefore, we have to create an
environment to keep executing RI and RE such that we can
measure the impact to the long running benchmark pro-
grams. That is, we will keep polling the init process to
measure the impact from the RI-Phase, and keep executing
the int3 loop for the helper process to measure the im-
pact from the RE-Phase. These results are the worst case
performance impact to running processes in the GVM.

Micro-benchmarks. To evaluate the primitive level
performance slowdown, we used LMBench suites. In
particular, we focused on the overhead of the stat
syscall, process creation (fork proc), process execution
(exec proc), C library function (sh proc), context switches
(ctxsw), memory-related operations (e.g., bcopy, Mem
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read, Mem Write), and IO-related operations (e.g., 10k
File Create, and 10K File Delete).

The detailed result is presented in Table 3. The RI-
Phase tends to have large overhead on tests which contain
syscalls, as we intercept the system-wide syscall entry and
exit points. While we do not intercept context switches,
our system still has large overhead on the ctxsw test.
The reason is that LMBench tests the time of context
switches on a number of processes. And these process are
connected using pipe. Therefore, the measurement still
contains syscalls. In contrast, during the RE-Phase, our
syscall interception is only within the helper process, and
it has significantly less overhead except the ctxsw case
with similar reasons in the RI-Phase.

Macro Benchmarks. We used four real world workloads
to quantify the performance slowdown at the macro level.
In particular, we decompressed a source tarball of Linux
2.6.32.8 using bzip, and then compiled the kernel us-
ing kbuild. We recorded the process time. In the test of
Apache, we used ApacheBench [1] to issue 100,000 re-
quests for a 4k-byte file from a client machine and got the
throughput (#request/s). For memcached [5], we recorded
the time of processing 1,000 requests.

The performance overhead is presented in Table 4. For
the RI-Phase, the overhead comes from the VMexit of
trapping syscall entry and exit. Hence, the workloads that
have large portions of IO operation will incur large over-
head, e.g., as in Kbuild, Apache, and memcached. The
worst case is memcached which is also sensitive to IO-
latency. In contrast, computation intensive workloads have
small overhead (as in the bzip case). Regarding the RE-
Phase, all the workloads have small overhead because
our system only introduces a user mode int3 loop. The
VMexit only occurs in the helper process execution con-
text. The only side effect is that the helper process takes
some CPU time slices from them.

5.3 Case Studies
Once we have enabled the execution of native utilities in
HYPERSHELL to manage the guest OS, many new use
cases would appear. For instance, we can now kill ma-
licious processes, remove malicious drivers, change the
guest IP address, update the firewall rules, etc., directly
from the hypervisor layer. In the following, we demon-
strate an interesting use case of our system—full disk
encryption (FDE) protected virus scanning from the hy-
pervisor.

Today, because of the privacy and data-breach concerns,
a growing practice for outsourced VMs is to deploy FDE.
Unfortunately, this has brought challenges for disk in-
trospection, forensics, and management. With HYPER-
SHELL, we can actually use off-the-shelf anti-virus soft-
ware from the host OS to transparently scan files in the
guest OS even though the GVM disk might have been
encrypted by FDE.
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bzip (s) 16.83 18.35 8.28 17.04 1.23
kbuild (s) 1799.00 2270.25 20.76 1889.97 4.81

memcached (s) 1.57 3.11 49.52 1.64 4.27
Apache (#request/s) 1104.60 904.12 18.15 1065.28 3.56

Table 4: Macro-benchmark Test Result of GVM.

To validate this, we installed dm-crypt [3], a trans-
parent FDE subsystem in the Linux kernel (since ver-
sion 2.6) in our GVM. Under a test user home di-
rectory, we copied a large volume of files including
the source code of Linux-2.6.32.8, gcc, glibc, QEMU,
Apache, and Lmbench, as well as two viruses from
offensivecomputing.com, resulting in a total
number of 101,415 files adding up to 1336.09 megabytes
in size. In the host OS, we installed ClamAV-0.98 [2]
and used it (in particular its clamscan) to scan the files
in /home/test in the GVM. We tried two different
approaches in this testing:

• The first is to directly allow clamscan running
in HYPERSHELL to scan the files in the GVM by
redirecting the R-syscall, and in this case it took
188.35 seconds to scan the entire 1336.09 megabytes
of files and find the two viruses.

• The second is to copy (i.e., cp) the files in
/home/test to our host OS, and then scan them
natively. In this case, it took 59 seconds to copy these
files, with another 120.91 seconds scanning them, re-
sulting in a total of 179.91 seconds.

It is worth noting that very interestingly if we installed
ClamAV inside the GVM and scanned these files, it would
take 271.58 seconds. Therefore, by moving certain man-
agement software running into HYPERSHELL, it can in
fact speedup certain computation (188.35 vs. 271.58) as
shown in our clamscan case. There are two primary
sources for this speedup: one is that there is no additional
VMexit when processing the disk IO at the host OS side
(i.e., IO in host OS is usually faster than guest OS), and the
other is because there is no need for the decryption of the
signature data base of ClamAV when running at host OS.

6 Limitations and Future Work

While HYPERSHELL offers better automation (e.g., no
need of login), uniformity (e.g., all of the VM can be
checked for anti-virus), and centralized management (e.g.,
using only one copy of the software running at a hypervi-
sor to manage a large number VMs, and there is a need of
only updating the copy at the hypervisor layer), it comes
with price. In particular, it will circumvent all of the ex-
isting user login and system audit for each managed VM.
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For instance, syslog in each individual VM will not be
able to capture all the executed events inside the guest OS.
To fix this, we need to add a new log record at the hyper-
visor layer for each activity executed in HYPERSHELL,
such that the entire cloud can still be audited. One avenue
of our future research will address this.

Second, as normal utility software does, HYPERSHELL
requires the trust of the guest OS kernel as well as the
init process. Consequently, it cannot be used for se-
curity critical applications, especially when the kernel
has been compromised. Also, unlike introspection, which
aims to achieve stealthiness, HYPERSHELL is not de-
signed with this goal in mind, since its primary goal is to
manage the guest OS (which definitely introduces foot-
prints) from out-of-VM in the same way as we manage
in-VM but in a more centralized and automated manner.

Third, our current prototype requires both OSes running
in the host OS and the GVM to have compatible syscall
interface. If a guest OS uses a randomized system call
interface (e.g., RandSys [25]), it could thwart the execu-
tion of the management utilities at HYPERSHELL. In fact,
we can design certain logic in our Syscall Dispatcher and
Reverse Syscall Execution component to perform syscall
translations even though the syscalls are not fully compat-
ible or randomized (e.g., with different syscall number).
We leave this as another future work. Again, we would like
to emphasize that working at syscall boundary makes HY-
PERSHELL with less constraint when compared to other
alternative approaches. For instance, it is possible to di-
rectly inject the shell command to the guest OS to achieve
the same goal (e.g., configure the guest OS), or directly
inject the file system updates. However, command-line
interfaces or configuration file interfaces are less stable
when compared to the syscall interface. That is why even-
tually it leads to our R-syscall based approach.

Finally, our Syscall Dispatcher uses dynamic library
interposition, and it ignores the syscall policy checking
in the dynamic loader. Therefore, static linked native
utilities cannot be executed in HYPERSHELL. Also, if
there is a different loader whose syscall can be captured
by library interposition, we have to design new techniques
to differentiate the syscall policy for these syscalls.
One possible solution is to add the call stack context
in our policy check. In addition, while most of our
design is OS-agnostic, we currently only demonstrate
HYPERSHELL with the Linux kernel and we would like
to test with other OSes such as Microsoft Windows. We
leave these in our other future efforts.

7 Related Work

Our work is related to the virtual machine introspection
(VMI) [19, 26] and VM management in the cloud. In this
section, we review and compare them with HYPERSHELL.

Being a layer below of the OS, virtual machine gives
new opportunities for VMI, which inspects and analyzes

both the user level program and OS kernel states outside
the machine itself. However, the key challenge in VMI
lies in how to bridge the semantic gap. Over the past
decade, many approaches have been proposed to address
this problem, and these approaches can be classified
into: debugger assisted (e.g., [19]), manual kernel data
structure traversal (e.g., [24]), kernel source code analysis
and customization (e.g., [8, 23]), in-VM kernel module
assisted (e.g., [30, 34]), and binary code or execution
context reuse (e.g., [21, 15, 35, 22, 16, 17, 18]). In this
section, we will not go through and compare with each
of these existing techniques, but rather compare with the
most related ones as presented in Table 5.

To narrow the semantic gap, VIRTUOSO [15] made a
first step showing that we can actually reuse the legacy
binary code to automatically create VMI tools with the
assistance from a human expert. The key idea is to first
train each in-VM program (e.g., ps) and then translate
the trained traces (essentially slices) into an independent
introspection program running at the hypervisor layer. In-
spired by VIRTUOSO, VMST [16] shows a dual-VM based,
online kernel data redirection approach that addresses the
limitations from the training (i.e., code coverage issue). Its
key idea is to reuse the execution context of an inspection
process in an SVM; when a kernel instruction accesses
the kernel data of introspection interest, it redirects the
data from the GVM to the SVM. Built atop VMST, EX-
TERIOR [18] demonstrates that it is feasible to build an
external shell to perform the out-of-VM guest OS writable
operations (e.g., for configuration) [28]. Similar to VIR-
TUOSO, both VMST and EXTERIOR do not need to trust
the guest-OS kernel.

While EXTERIOR [18] has made an early attempt of
building a hypervisor layer shell, it has a lot of constraints
and is far from practical. Specifically, it has to first per-
form the guest OS fingerprinting [20], and then use the
exact same version of the guest OS running in an SVM
to introspect the kernel state of a GVM. Second, it can
suffer from various failures and shortfalls when an in-
trospection related syscall uses kernel synchronization
primitives [16, 18]. Third, it is built atop a binary code
translation based VM (e.g., QEMU [6]), which often has
10X-40X performance slowdown compared to the native
execution (though recently HybridBridge [32] has im-
proved the performance with one order of magnitude).
Finally, it is mainly for introspection and has very limited
functionality (e.g., it ignores the disk data including the
swapped memory).

Process Implanting (PI) [21] shows that we can inject
a process running into a GVM by reusing an existing
process context. At a high level, HYPERSHELL does share
some similarity regarding the process injection. However,
PI has only limited functionality. For instance, it cannot
directly copy a file from inside to outside. It also cannot
observe the output from native software, unless rewriting
the utility with hypercall (a para-virtualization approach
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that is not transparent to the guest OS). In addition, it
requires the recompilation of the injected programs with
static linking; in contrast, HYPERSHELL is transparent to
both utility software and the guest OS.

Designed for process monitoring, process out-grafting
(POG) [35] relocates a suspect process from a GVM to an
SVM, and then uses a trusted security tool (e.g., strace)
in the SVM to monitor the behavior of the suspect process.
Unlike HYPERSHELL, which selectively redirects the
syscall based on a transparent policy, all the syscalls of the
suspect process are redirected from the SVM to the GVM.
Therefore, POG does not face the challenges as in HY-
PERSHELL to differentiate the syscall redirection policy.
Meanwhile, all the applications supported by POG can cer-
tainly be supported by HYPERSHELL, but not vice versa.

Designed for high performance computing,
GEARS [22] shows that we can push certain VMM level
virtual services for a guest into the guest itself. Through
such a way, we can reduce the implementation complexity
(since there is no semantic gap for in-VM programs)
and increase the performance. At a high level, while
GEARS and HYPERSHELL shares some similarity of
using syscall interception and code injection techniques,
the substantial difference is that GEARS is not a binary
code reuse based approach, and it is not transparent to the
in-VM programs and requires programmer’s efforts to
(re)develop the new software.

Most recently, concurrent to HYPERSHELL, ShadowEx-
ecution [38] also explores the concept of system call redi-
rection and process injection. With a number of other
security means such as process image protection (e.g.,
code and data integrity) and runtime execution protec-
tion (e.g., control flow integrity) of both guest OS kernel
and the injected process, ShadowExecution shows that
VMI tools can be built as in VMST. The difference com-
pared to ShadowExecution is that HYPERSHELL is mainly
designed for Cloud in-VM management, whereas Shad-
owExecution is mainly for security, though they both are
based on the system call redirection concept.

Our work is also related to VM management in the
cloud, such as VM cloning (e.g., [27]), VM migration
(e.g., [10]), and VM replication (e.g., [12]). However,
these management techniques treat each VM as a whole.
In contrast, we aim to design programs to manage each
guest OS at a fine grained level from our HYPERSHELL,
much like the way we manage an OS in-VM.

8 Conclusion

We have presented the design, implementation, and evalu-
ation of HYPERSHELL, a practical hypervisor layer shell
for automated, uniformed, and centralized guest OS man-
agement. To overcome the semantic gap challenge, we
introduce a reverse system call abstraction, and we show
that this abstraction can be transparently implemented.
Resulting from this, many of the legacy guest OS manage-
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Table 5: Comparison with the most related work.

ment utilities can be directly executed in HYPERSHELL.
Our empirical evaluation with 101 native Linux utilities
shows that we can use HYPERSHELL to manage a guest
OS directly from the hypervisor layer without requiring
any access to administrator’s account. Regarding the
performance, it has on average 2.73X slowdown for the
tested utilities compared to their native in-VM execution,
and less than 5% overhead to the guest OS kernel.
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Abstract
Live virtual machine migration allows the movement of a
running VM from one physical host to another with negli-
gible disruption in service. This enables many compelling
features including zero downtime hardware upgrades, dy-
namic resource management, and test to production ser-
vice migration.

Historically, live migration worked only between ma-
chines that shared a common local subnet and storage sys-
tem. As network speed and flexibility has increased and
virtualization has become more pervasive, wide area mi-
gration is increasingly viable and compelling. Ad-hoc so-
lutions for wide area migration have been built, combin-
ing existing mechanisms for memory migration with tech-
niques for sharing storage including network file systems,
proprietary storage array replication or software repli-
cated block devices. Unfortunately, these solutions are
complex, inflexible, unreliable and perform poorly com-
pared to local migration, thus are rarely deployed.

We have built and deployed a live migration system
called XvMotion that overcomes these limitations. Xv-
Motion integrates support for memory and storage migra-
tion over the local and wide area. It is robust to the vari-
able storage and network performance encountered when
migrating long distances across heterogeneous systems,
while yielding reliability, migration times and downtimes
similar to local migration. Our system has been in active
use by customers for over a year within metro area net-
works.

1 Introduction
Live virtual machine (VM) migration moves a running
VM between two physical hosts with as much trans-
parency as possible: negligible downtime, minimal im-
pact on workload, and no disruption of network connec-
tivity.

Originally, VM migration only moved a VM’s mem-
ory and device state between two closely related physi-
cal hosts within a cluster i.e., hosts that shared a com-
mon storage device, usually a storage array accessed via
a dedicated SAN, and a common Ethernet subnet to en-
able network mobility. Assumptions about host locality
made sense given the limited scale of VM adoption, and
limitations of storage and network devices of the past.

Today, many of these assumptions no longer hold. Data
center networks are much faster with 10 Gbps Ether-
net being common, and 40/100 Gbps adoption on the
way. Tunneling and network virtualization technolo-
gies [14, 20, 22] are alleviating network mobility limita-

tions. Different workloads and high performance SSDs
have made local shared-nothing storage architectures in-
creasingly common. Finally, VM deployments at the scale
of tens of thousands of physical hosts across multiple sites
are being seen. Consequently, the ability to migrate across
clusters and data centers is increasingly viable and com-
pelling.

Some have attempted to build wide area live migration
by combining techniques to migrate storage e.g., copy-
ing across additional storage elements, proprietary storage
array capabilities, or software storage replication in con-
junction with existing technologies for migrating memory
and device state. These ad-hoc solutions are often com-
plex and fragile—incurring substantial penalties in terms
of performance, reliability, and configuration complexity
compared with doing migration locally. Consequently,
these systems are deployed at a very limited scale and only
by the most adventuresome users.

We present XvMotion, an integrated memory and stor-
age migration system that does end-to-end migration be-
tween two physical hosts over the local or wide area. Xv-
Motion is simpler, more resilient to variations in network
and storage performance, and more robust against failures
than current ad-hoc approaches combining different stor-
age replication and memory migration solutions, while
offering performance, i.e., workload impact and service
downtimes, comparable to that of a local migration.

XvMotion has been in use with customers for over a
year, and seen wide spread application at the data cen-
ter and metro-area scale, with link latencies in the tens of
milliseconds. Our results with moving VMs between Palo
Alto, California and Banglore, India demonstrate that mi-
grations on links with latencies in the hundreds of mil-
liseconds are practical.

We begin by examining how current local migration ar-
chitectures developed and survey ad-hoc approaches used
to support wide area migration. Next, we explore our de-
sign and implementation of XvMotion: our bulk transport
layer, our approach to asynchronous storage mirroring,
our integration of memory and storage movement, our
workload throttling mechanism to control page dirtying
rates—allowing migration across lower bandwidth links,
and our disk buffer congestion control mechanism to sup-
port migration across hosts with heterogeneous storage
performance. We then present optimizations to minimize
switch over time between the old (pre-migration) and new
(post-migration) VM instance, cope with high latency and
virtualized networks, and reduce virtual disk copy over-
head. Our evaluation explores our local and long distance
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migration performance, and contrasts it with existing local
live storage migration technologies on shared storage. Af-
ter this, we discuss preventing split-brain situations, net-
work virtualization, and security. We close with related
work and conclusions.

2 The Path to Wide Area Migration
Wide area live migration enables a variety of compelling
new use cases including whole data center upgrades, clus-
ter level failure recovery (e.g. a hardware failure occurs,
VM’s are migrated to a secondary cluster and then mi-
grated back when the failure has been fixed), government
mandated disaster preparedness testing, disaster avoid-
ance, large scale distributed resource management, and
test to production data center migration. It also allows tra-
ditional mainstays of VM migration, like seamless hard-
ware upgrades and load balancing, to be applied in data
centers with shared-nothing storage architectures.

Unfortunately, deploying live migration beyond a sin-
gle cluster today is complex, tedious and fragile. To ap-
preciate why current systems suffer these limitations, we
begin by exploring why live migration has historically
been limited to a single cluster with a common subnet and
shared storage, and how others have tried to generalize
live migration to the wide area. This sets the stage for our
discussion of XvMotion in the next section.

Live memory and device state migration, introduced in
2003, assumed the presence of shared storage to provide a
VM access to its disks independent of what physical host
it ran on and a shared subnet to provide network mobility.
In 2007, live storage migration was introduced, allowing
live migration of virtual disks from one storage volume
to another assuming that both volumes were accessible
on a given host. This provided support for storage up-
grades and storage resource management. However, the
ability to move a VM between two arbitrary hosts without
shared storage has largely been limited to a few research
systems [9,28] or through ad-hoc solutions discussed later
in this section.

Why not migrate an entire VM, including memory and
storage, between two arbitrary hosts over the network?
Historically, hardware limitations and usage patterns ex-
plain why. Data centers of the previous decades used a
mix of 100 Mbps and gigabit Ethernet, with lower cross
sectional bandwidths in switches than today’s data cen-
ters. High performance SAN based storage was already
needed to meet the voracious IO demands induced by
consolidating multiple heavy enterprise workloads on a
single physical host. Network mobility was difficult and
complex, necessitating the use of a single shared subnet
for VM mobility. Finally, common customer installations
were of modest size, and live migration was used primar-
ily for hardware upgrades and load balancing, where lim-
iting mobility to a collection of hosts sharing storage was
an acceptable constraint.

Many of these historical limitations no longer apply.
Data center networks are much faster with 10 Gbps Eth-
ernet being common, and 40/100 Gbps adoption on the
way, with a correspond growth in switch capacity. The
introduction of tunneling and network virtualization tech-
nologies, like Cisco OTV [14], VXLAN [20] and Open-
Flow [22], are alleviating the networking limitations that
previously prevented moving VMs across Ethernet seg-
ments. With changes in workloads and the increased
performance afforded by SSDs, the use of local shared-
nothing storage is increasingly common. Finally, with
users deploying larger scale installations of thousands or
tens of thousands of physical hosts across multiple sites,
the capacity to migrate across clusters and data centers
becomes increasingly compelling.

To operate in both the local and wide area, two pri-
mary challenges must be addressed. First, existing live
migration mechanisms for memory and device state must
be adapted to work in the wide area. To illustrate why,
consider our experience adapting this mechanism in ESX.

In local area networks, throughputs of 10 Gbps are
common, as our migration system evolved to support
heavier and larger workloads we designed optimizations
and tuned the system to fit local area networks. In con-
trast, metro area links are in the range of a few giga-
bits at most, and as distances increase in the wide area
throughputs typically drop below 1 Gbps with substantial
increases in latency. On initial runs on the wide area our
local live migration system didn’t fare well; we often saw
downtimes of 20 seconds or more causing service inter-
rupting failures in many workloads, migrations were fre-
quently unable to complete, and network bandwidth was
underutilized. To understand why, lets briefly recap how
live memory and device state migration work.

Production live migration architectures for memory and
device state all follow a similar iterative copy approach
first described by Nelson et al. [24]. We initially mark
all pages of the VM as dirty, and begin to iterate through
memory, copying pages from source to destination. Af-
ter a page is copied, we install a write trap and mark the
page as clean. If the write trap is triggered, we again
mark the page as dirty. We apply successive “iterative pre-
copy” passes, each pass copying remaining dirty pages.
When the remaining set of pages to be copied is small
enough to be copied without excessive downtime (called
convergence), we suspend VM execution, and the remain-
ing dirty pages are sent to the destination, along with the
device state. Finally, we resume our now fully consistent
VM on the destination and kill our source VM.

Unfortunately, naively applied, this approach does not
behave well over slower and higher latency networks.
Workloads can easily exceed the memory copy through-
put, preventing the migration from every converging and
causing large downtimes. To cope with this, we intro-
duced workload throttling (§ 3.5) to limit the downtime.
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Compounding that issue our initial local migration sys-
tem used a single TCP connection as transport that suf-
fers from head-of-line blocking and underutilizes network
throughput. An improved transport mechanism(§ 3.2)
and TCP tuning(§ 4.3) were required to fully utilize high
bandwidth-delay links.

The other major challenge to long distance migration is
how to move storage. Today, users with the desire to mi-
grate VMs within or across data centers rely on three dif-
ferent classes of ad-hoc approaches: sharing storage using
a network file system as a temporary “scratch” space for
copying the VM, proprietary storage array based replica-
tion, and software based replication (e.g., DRBD) done
outside the virtualization stack. Each approaches exhibits
particular limitations, understanding these helps to moti-
vate our approach.

In the first approach, a user exploits a network file sys-
tem (e.g., NFS or iSCSI) to provide a temporary scratch
space between two hosts, first doing a storage migration to
this scratch space from the source host, then doing a sec-
ond storage migration from the scratch space to the desti-
nation host. A live memory migration is done in between
to move memory. This approach has several unfortunate
caveats.

Moving data twice doubles total migration time—the
performance impact is generally worse than this as the
storage migration is not coordinated with memory and de-
vice state movement. Running the VM temporarily over
the WAN while its disk is located on the scratch volume
further penalizes the workload. Finally, hop-by-hop ap-
proaches are not atomic, if network connectivity fails, the
VMs disk could end up on one side of the partition, and
its memory on the other—this state is unrecoverable and
the VM must be powered off.

Seeing the limitations of this approach, storage vendors
stepped in with proprietary solutions for long distance
storage migrations, such as EMC VPLEX [8]. These
solutions use synchronous and asynchronous replication
applied at a LUN level to replicate virtual disks across
data centers. These solutions typically switch from asyn-
chronous to synchronous replication during migration to
ensure an up to date copy of the VM’s storage is avail-
able in both data centers to eliminate the risk that a net-
work partition will crash the VM, unfortunately, this im-
poses a substantial penalty on workloads during migra-
tion. These approaches are not cross-host migration as
they do not support shared nothing storage configurations,
instead these migrations are between two compatible stor-
age arrays in different data centers.

The last approach relies on software replication, such as
DRBD [2], to create a replicated storage volume. DRBD
is a software replication solution, where typically each
disk is backed by a DRBD virtual volume. To migrate one
would back the VM by a DRBD volume, then replicate it
to the desired destination machine. Next, a live migration

would migrate the VM’s memory/execution to the desti-
nation. Once complete the DRBD master is switched to
the destination and the replication is terminated. A case
study of a DRBD deployment [25] uses asynchronous
replication during the bulk disk copy and synchronous
storage replication for the duration of the migration, as
noted above, this synchronous replication phase imposes
an additional overhead on the VM workload. Another is-
sue encountered with this approach is the lack of atomicity
of the migration, i.e., the storage replication and memory
migration system must simultaneously synchronize and
transfer ownership from source to destination. Otherwise,
this extends the window for a network partition causing
the VM to power-off or be damaged.

3 XvMotion
XvMotion provides live migration between two arbitrary
end hosts over the local or wide area. Many of limitations
of previous approaches are eliminated by being a purely
point-to-point solution, without the need for support from
a storage system or intermediate nodes.

Our primary goals are to provide unified live migra-
tion (memory and storage), with the critical characteristics
of local migration—atomic switch over, negligible down-
time, and minimal impact on the VM workload, that can
operate in the local and wide area.

We present XvMotion as follows. We begin with an
overview of the XvMotion architecture in § 3.1. Next, we
examine our bulk transport layer Streams in § 3.2. In § 3.3
we explore our implementation of asynchronous storage
mirroring and storage deduplication. The coordination
of memory and storage copying is described in § 3.4.
§ 3.5 presents SDPS, a throttling mechanism used to limit
a VM’s page dirtying rate to adapt to available network
bandwidth and ensure that a migration converges. § 3.6
describes disk buffer congestion control, which allows
XvMotion to adapt to performance differences between
disks on the source and destination hosts.

3.1 Architecture Overview
XvMotion builds on the live migration [24] and IO Mir-
roring [21] mechanisms in ESX. Live memory migra-
tion is implemented using an iterative copy approach de-
scribed in the previous section. ESX uses synchronous
mirroring to migrate virtual disks from one volume to an-
other on the same physical host. We augment this with
asynchronous IO mirroring for migrating virtual disks
across hosts while hiding latency.

Figure 1 depicts the XvMotion architecture. The
Streams transport handles bulk data transfers between the
two hosts. The Live Migration module is responsible for
the many well-known tasks of VM live memory migra-
tion, such as locating VM memory pages for transmis-
sion, and appropriate handling of the VM’s virtual device
state. It enqueues its pages and relevant device state for
transmission by Streams.



100 2014 USENIX Annual Technical Conference USENIX Association

Source Destination

Streams Streams

Disk
Buffer

IO
Writer

Live Migration
Module

Live Migration
Module

Disk
Buffer

IO
WriterIO Mirroring

VM IO

TCP

Src
Disk

Dst
Disk

Figure 1: Architecture Overview: shows the main components involved in cross host migration for both the source and
destination. IO Mirroring pushes data synchronously into the disk buffer through the migration IO Writer interface.
The streams transport is responsible for bulk transfer of data between the hosts. Finally, on the destination the data is
written to the disk.

The IO Mirroring module interposes on all virtual disk
writes and mirrors these to the XvMotion IO Writer mod-
ule. The IO Mirroring module is also responsible for
the bulk reading of storage blocks during the initial copy
i.e., synchronizing the mirror. The IO Writer module on
the destination is responsible for dequeuing and writing
blocks to the destination virtual disk.

The IO Writer then enqueues its data for the Disk
Buffer. Disk buffering enables for asynchronous IO mir-
roring by storing a copy in RAM until it reaches the desti-
nation. While buffer space is available disk mirroring will
acknowledge all mirror writes immediately, which elimi-
nates the performance impact of network latency.

3.2 Streams Transport Framework
Streams is a bulk transport protocol we built on top
of TCP for transferring memory pages and disk blocks.
Streams creates multiple TCP connections between the
hosts, including support for multipathing across NICs,
IP addresses, and routes. Additional discussion of how
Streams uses TCP is given in § 4.1 and § 4.3.

Using multiple connections mitigates head of line
blocking issues that occur with TCP, leading to better uti-
lization of lossy connections in the wide area [16, 17]. In
the local area, the multiple independent connections are
used to spread the workload across cores to saturate up to
40 Gbps links.

Streams dynamically load-balances outgoing buffers
over the TCP connections, servicing each connection in
round-robin order as long as the socket has free space.
This allows us to saturate any number of network con-
nections, up to PCI bus limitations. As a consequence of
this approach, data is delivered out-of-order. However,
there are no ordering requirements within an iteration of
a memory copy: we just need to copy all pages once in
any order. Any ordering requirement is expressed using
a write barrier. For example, we require write barriers
between memory pre-copy iterations.

Write barriers are implemented in the following way.
Upon encountering a barrier request, the source host
transmits a barrier message over all communication chan-
nels to the destination host. The destination host will read
data on each channel up to the barrier message, then pause
until all channels have reached the barrier message. Barri-
ers are an abstraction provided to memory migration and
storage migration, but do not necessarily prevent Streams
from saturating the network while waiting for all connec-
tions to reach the barrier.

The general lack of ordering in Streams impacts our
storage migration design. As we see in the next section,
barriers are important as ordering is sometimes necessary
for correctness.

3.3 Asynchronous IO Mirroring
Storage migration works by performing a single pass, bulk
copy of the disk, called the clone process, from the source
host to the destination host. Concurrently, IO mirroring
reflects any additional changes to the source disk that oc-
cur during the clone process to the destination. When
the clone process completes, the source and destination
disks are identical [21]. Both clone and mirroring IOs
are made asynchronously by using the Disk Buffer and
Streams framework. This minimizes the performance im-
pact on our source VM, despite higher and unpredictable
latencies in long distance migrations.

Our clone process is implemented using a kernel thread
that reads from the source disk and issues writes to the
destination. This clone thread proceeds linearly across the
disk, copying one disk region at a time. As usual, the re-
mote write IOs are first enqueued to disk transmit buffer,
then transferred to the destination host by the Streams
framework, and then written to disk on the destination.

The clone process operates independently of the IO
Mirror. This introduces a potential complication. A VM
could issue a write while a read operation in the clone pro-
cess is in progress, thus, the clone process could read an
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outdated version of the disk block. To avoid this, the IO
Mirror module implements a synchronization mechanism
to prevent clone process IOs and VM IOs from conflict-
ing.

Synchronization works by classifying all VM writes
into three types relative to our clone process: (1) writes to
a region that has been copied (2) writes to a region being
copied (3) writes to a region that has not yet been copied.
No such synchronization is required for reads, which are
always passed directly to the source disk.

For case (1), where we are writing to an already-copied
region, any write must be mirrored to the destination to
keep the disks in lock-step. Conversely, in case (3), where
we are writing to a region that is still scheduled to be
copied, the write does not need to be mirrored. The clone
process will eventually copy the updated content when it
reaches the write’s target disk region.

More complex is case (2), where we receive a write to
the region currently being copied by the clone process. In
the case of local storage migration, where writes are syn-
chronously mirrored, we defer the conflicting writes from
the VM and place them into a queue. Once the clone pro-
cess completes for that region, we issue the queued writes
and unlock the region. Finally, we wait for in-flight IOs as
we lock the next region, guaranteeing there are no active
writes to our next locked region [21]. However, for long
distance migration, network latency makes it prohibitively
expensive to defer the conflicting VM IOs until the bulk
copy IOs are complete. Instead, we introduce the concept
of a transmit snapshot, a sequence of disk IOs captured
with a sliding window in the transmit buffer.

As we receive IO, either clone or mirror IO, we fill the
disk’s active transmit snapshot. When the active transmit
snapshot reaches capacity (1 MB by default), the snap-
shot is promoted to a finalized snapshot. This promotion
process pushes the transmit snapshot window forward to
cover the next region of the disk’s transmit buffer, the new
empty transmit snapshot. As soon as all of our clone pro-
cess’s IOs for a given region have been queued in a trans-
mit snapshot, we unlock the copy region and move on to
the next region.

The Streams framework searches for finalized snap-
shots, transmitting them in the order they are finalized.
A write barrier is imposed between the transmission of
each finalized snapshot, ensuring that snapshot content
is not interleaved. Between these write barriers, source-
side snapshot sector deduplication, and destination-side
IO conflict chains, we ensure that all IOs are written to
the destination in the correct order. See § 3.6 for more
discussion of snapshot handling and IO conflict chains.

We perform source-side deduplication by coalescing
repeated writes to the same disk block. This ensures cor-
rectness as blocks within a transmit snapshot may be re-
ordered by Streams, and reduces bandwidth consumption.
Upon receipt of new IO, we search our transmit snapshot

for any IO to the same target disk sector. If there was a
previous write, we coalesce the two into a single write of
the most recent data. This is safe, as we know clone pro-
cess IO and mirror IO will never conflict, as explained in
our discussion of synchronization.

Scanning our transmit snapshot for duplicate disk IO
can be expensive, as each disk’s active snapshot could
contain 1 MB worth of disk IO. We avoid such lookups
with a bloom filter that tracks the disk offsets associated
with each sector present in each disk’s active snapshot.
With 8 KB of memory dedicated to each disk’s bloom
filter, the disk sector as the key, and 8 hashes per key,
we achieve a false positive rate of less than 6 per million
blocks.

Our data showed that the use of the bloom filter and this
optimization halved migration time and cut CPU usage
by a factor of eight in some cases. This result is highly
workload dependent, and the CPU utilization benefits of
the bloom filter offer a large portion of the gains.

3.4 Memory and Disk Copy Coordination
There are several copying tasks for us to coordinate: copy-
ing our disk, IO mirroring, copying of the initial memory
image, and iterative copying of memory data.

When we start and how we interleave these processes
can have a significant impact. If we have insufficient
bandwidth available to keep up with page dirtying, we
may be forced to throttle the workload. If we do not
efficiently use available bandwidth, we increase over-
all migration time. While low intensity workloads with
relatively low dirty rates do not create significant con-
tention for bandwidth, contention can become an issue
with higher intensity workloads.

We begin our disk copy first as this is usually the bulk
of our data, while enabling IO mirroring. For a while this
“fills-the-pipe.” After our clone process completes, we
begin our initial memory copy, then begin our iterative
memory copy process with IO Mirroring still enabled.

Our rationale for this is that storage mirroring generally
requires lower bandwidth than memory copying, so over-
lapping these is less likely to lead to contention than if we
try to perform our disk copy process while memory is be-
ing copied. Also, our disk copy generally takes longer to
complete, thus, we prefer to start it first, to minimize the
overall migration time.

Our intuition around memory tending to show an equal
or higher dirtying rate, i.e., rate at which pages or disk
blocks change, leading to a higher cost for our iterative
copy than for IO mirroring, comes from our observation
of databases workloads and other enterprise applications.
Locks, metadata and other non-persistent structures ap-
pear to be a significant source of dirtying.

During the switchover time, where we switch from
source to destination, we pause the VM for a short pe-
riod to copy any remaining dirty memory pages and drain
the storage buffers to disk. Draining time is a downside
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Figure 2: Shows downtime for two intensities of our DVD
Store 2 workloads with and without SDPS. We show less
downtime variation with SDPS than without.

of asynchronous mirroring as it impacts switchover time,
which is not an issue for local synchronous mirroring.

While our heuristic approach seems to work well it may
not be ideal. In an ideal implementation we would like to
start the memory copy just before the disk copy has com-
pleted and only use unutilized bandwidth. Unfortunately,
without predictable bandwidth it is hard to decide when
we should begin the memory copy as bandwidth may sud-
denly become scarce, we could be forced to throttle our
workload. We imagine using underlying network QoS
mechanisms or better techniques for bandwidth estima-
tion could be helpful.

3.5 Stun During Page Send (SDPS)
Transferring the VM’s memory state is done using iter-
ative pre-copy, as discussed in § 3.1. Iterative pre-copy
converges when a VM’s workload is changing page con-
tent (dirtying pages) more slowly than our transmission
rate. Convergence means that the migration can trade-
off longer migration time for ever smaller downtimes, and
thus the migration can be completed without noticeable
downtime. Unfortunately, this is not always the case, es-
pecially in long distance migrations.

Historically, live migration implementations have
solved the problem of low bandwidth by stopping pre-
copy, halting VM execution, and transmitting all remain-
ing page content during VM downtime. This is not de-
sirable, as the VM could remain halted for a long time if
there are many dirty pages, or if the network is slow.

To solve this problem, we introduce Stun During Page
Send (SDPS). SDPS monitors the VM’s dirty rate, as
well as the network transmit rate. If it detects that the
VM’s dirty rate has exceeded our network transmit rate,
such that pre-copy will not converge, SDPS will inject
microsecond delays into the execution of the VM’s VC-
PUs. We impose delays in response to page writes, di-
rectly throttling the page dirty rate of any VCPU without
disrupting the ability of the VCPU to service critical op-
erations like interrupts. This allows XvMotion to throttle
the page dirtying rate to a desired level, thus guaranteeing
pre-copy convergence.

Figure 2 shows the downtime for our DVD Store 2
workload that is described in Section 5. We see less down-
time variability when SDPS is turned on than without.

This technique is critical to allowing live migration to sup-
port slower networks and handle intense workloads.

3.6 Disk Buffering Congestion Control

XvMotion supports migrating a VM with multiple vir-
tual disks located on different source volumes to different
destination volumes with potentially differing IO perfor-
mance. For example, one virtual disk could be on a fast
Fibre Channel volume destined for a slower NFS volume,
and another on a slower local disk destined for a faster
local SSD.

Disparities in performance introduce several chal-
lenges. For example, if we are moving a virtual disk from
a faster source volume to a slower destination volume, and
we have a single transmit queue shared with other virtual
disks, the outgoing traffic for our slower destination can
tie up our transmit queue, starving other destinations.

We address such cross-disk dependencies with queue
fairness constraints. Each disk is allowed to queue a max-
imum of 16 MB worth of disk IO in the shared transmit
queue. Attempts to queue additional IO are refused, and
the IO is scheduled to be retried once the disk drops be-
low the threshold. In effect, each virtual disk has its own
virtual transmit queue.

Tracking per-disk queue length also allows us to solve
the problem of the sender overrunning the receiver. To
avoid sending too many concurrent IOs to the destination
volume, we have a soft limit of 32 outstanding IOs (OIOs)
per volume. If the number of OIOs on the destination ex-
ceeds this, the destination host can apply back pressure by
requesting that the source host slow a given virtual disk’s
network transmit rate.

There is a final challenge the destination host must at-
tend to. Since the source deduplicates the transmit snap-
shots by block number, we know that IOs within a given
snapshot will never overlap, and can thus be issued in any
order. However, there may be IO conflicts i.e., IOs to
overlapping regions across snapshots. In such cases, it
is important for correctness that IOs issue in the order that
the snapshots are received. However, we don’t want to
limit performance by forcing all snapshots to be written
in lockstep. Instead, we make the destination keep track
of all in-flight IOs, at most 32 IOs for each disk. Any
conflicting new IOs are queued until the in-flight IO is
completed. This is implemented with a queue, called a
conflict chain, that is associated with a given in-flight IO.

Fairness between clone and mirror IOs: We imple-
ment fairness between clone and mirror IOs in a similar
way. Each disk’s virtual queue is split into two, with one
portion for the clone and the other for mirror IOs. These
queues are drained in a weighted round-robin schedule.
Without this, the guest workload and clone can severely
impact one another when one is more intense than the
other, possibly leading to migration failures.



USENIX Association  2014 USENIX Annual Technical Conference 103

4 Optimizations
4.1 Minimizing Switchover Time
The switchover time is the effective downtime experi-
enced by the VM as we pause its execution context to
move it between hosts. It is the phase we use to transfer
the remaining dirty pages and the state of the guest’s vir-
tual devices (i.e., SVGA, keyboard, etc.). Today’s appli-
cations can handle downtimes over 5 seconds, but an in-
creasing number of high availability and media streaming
applications can make sub-second downtimes noticeable.
For these reasons, we implemented some optimizations to
battle the following problems:
Large virtual device states: Some of the virtual devices
can be very large, for example the SVGA (the video card
buffer) can be hundreds of megabytes. The problem is
that this state is not sent iteratively, so it has to be sent
completely during downtime. Because of limited band-
width at high latency, we implemented a solution where
the state of the larger devices is stored as guest memory.
Now, the state is sent iteratively, is subject to guest slow-
down (i.e., SDPS), and, most importantly, is not sent in
full during downtime.
TCP slow start: There are several TCP sockets used dur-
ing downtime: some to transfer the state of the virtual de-
vices, and some for the Streams transmission. The prob-
lem is that each time a TCP connection is used for the first
time or after a delay, TCP is in slow start mode where it
needs time to slowly open the windows before achieving
full throughput (i.e., several hundreds of milliseconds).
We implemented some TCP extensions where we set all
the sockets windows to the last value seen before becom-
ing idle. This change reduces many seconds of downtime
at 100 ms of latency.
Synchronous RPCs: We found that our hot migration
protocol had a total of 11 synchronous RPCs. At 100 ms
round-trip time (RTT), this adds up to 1.1 seconds of
downtime. After careful analysis, we concluded that most
of these RPCs do not need to be synchronous. In fact,
there are only 3 synchronization points needed during
switchover: before and after sending the final set of dirty
pages, and the final handshake that decides if the VM
should run on the destination or the source (e.g., there was
a failure).

We modified the hot migration protocol to only require
these three round-trips. The idea was to make the RPCs
asynchronous with the use of TCP’s ordering and relia-
bility guarantees. Specifically, we used the following 2
guarantees. (1) If the source sends a set of messages and
the destination receives the last one, TCP ensures that it
also received all the previous messages. (2) Moreover,
if the source receives a reply to the last message, TCP
ensures that the destination received all the previous mes-
sages. We added the three required synchronization points
such that the source sends messages, but only waits for the
reply of those three points.

4.2 Network Virtualization Challenges
To saturate a high latency TCP connection we must avoid
inducing packet loss and reordering within the virtualized
network stack. Due to network virtualization, a hypervi-
sor’s networking stack is complex, with multiple layers,
memory heaps, and asynchronous contexts: all of them
with their own queuing mechanisms and behavior when
queues are full. When queue limits are exceeded, packet
loss and reordering can occur, disrupting TCP streams.

We found that Virtual Network Switches on the source
host were the main source of packet loss. Multiple XvMo-
tion sockets with large buffers were constantly overflow-
ing the virtual switches’ queues, resulting in packet loss,
which substantially impacted TCP performance. We tried
adding Random Early Detection (RED [13]) to the Vir-
tual Network Switch, which drops packets from the head
of queues rather than the tail so the sender could detect
packet loss sooner. However, we found that the result-
ing packet losses still significantly reduced throughput.
The solution we settle upon was to allow virtual switches
to generate back pressure when their queues were nearly
full by sending an explicit notification to the sending
socket(s). This allowed our sockets to check for possi-
ble overflows, stop growing the transmit windows, and
ultimately avoid the drops.

A second problem is the reordering of packets. Pack-
ets are moved from a virtual switch queue into a NIC
ring, and whenever the NIC is full, packets are re-queued
into the virtual switch. We found this to be a common
source of packet reordering. We noticed that a single
packet reorder caused a performance hit from 113 Mbps
to 76 Mbps for a 1 GB data transfer over a 100 ms RTT
link. After fixing these problems, we can get full through-
put at 1 Gbps and up to 250 ms of round-trip time. Tests
also showed that we were able to achieve 45% of band-
width utilization at a loss rate of 0.01%.

4.3 Tuning for Higher Latency
High latency networks require provisioning larger TCP
send socket buffers. One restriction on our platform, how-
ever, is the strictness of resource management and the de-
sire to minimize memory usage for any given VM migra-
tion. We satisfy both goals by detecting the round-trip-
time between the source and destination host in the ini-
tial migration handshake, dynamically resizing our socket
buffers to the bandwidth-delay-product.

In the course of experimenting with socket buffer resiz-
ing, we discovered some performance issues surrounding
our congestion control algorithms. We switched to the
CUBIC congestion control algorithm, which is designed
for high bandwidth-delay product networks [15]. Experi-
mentation showed that we should enable congestion con-
trol with Accurate Byte Counting [7]. This improved per-
formance when leveraging various offload and packet co-
alescing algorithms. It helps grow the congestion window
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faster and handles delayed acknowledgments better.

4.4 Virtual Disk Copy Optimizations
XvMotion implements several storage optimizations to re-
main on par with live storage migration between locally
accessible volumes. Local live storage migration makes
heavy use of a kernel storage offload engine called the
Data Mover (DM) [21].

The DM is tightly coupled with the virtual disk format,
file system, and storage array drivers to perform optimiza-
tions on data movement operations. The DM’s primary
value is its ability to offload copy operations directly to
the storage array. However, it also implements a number
of file system specific optimizations that are important for
storage migration. Because the DM only works with local
storage we cannot use the DM, instead, we reimplemented
these optimizations in XvMotion.
Metadata Transaction Batching: In VMFS, metadata
operations are very expensive as they take both in-
memory and on-disk locks. To avoid per-block metadata
transactions, we query the source file system to discover
the state of the next 64 FS blocks, then use that data to
batch requests to the destination file system for all meta-
data operations.
Skipping Zero Block Reads: Each file in VMFS is com-
posed of file system blocks, by default 1MB each. A
file’s metadata tracks the allocation and zero state of those
blocks. Blocks may not be allocated, may be known to
be zero-filled, or allocated but still to-be-zeroed (TBZ)
blocks. By querying the FS metadata, we can skip blocks
that are in one of these zero states.
Skip-Zero Writes: On the destination, if we know we
will write over the entire contents of a file system block,
we can have the file system skip performing its typical
zeroing upon the first IO to any FS block. We bias writing
to entire FS blocks when possible to leverage such skip-
zero opportunities.

5 Evaluation
Downtime: All live migration technologies strive to
achieve minimal downtime i.e., no perceptible service dis-
ruption. Our results show that XvMotion delivers con-
sistent downtimes of ≈ 1 second—what the convergence
logic targets—in the face of variable round trip latency (0-
200 ms) and workload intensity (1-16 OIOs), as depicted
in Figures 3 and 4.
Migration time: Our results show that our migration
times are stable with respect to latency up to 200 ms—
demonstrating that wide area migration need not be any
more expensive than local area migration. XvMotion
shows only a small increase in migration time beyond the
sum of local memory and storage migration time.
Guest Penalty: Guest penalty as a percentage of the re-
duction of guest performance (IOPS or Operations/sec.)
during migration should be minimized. Our results show
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Figure 3: Shows the migration time and downtime for a
VM running the OLTP workload at varying latency.

that guest penalty is nearly constant with respect to la-
tency, and only varies based on workload intensity.

Our XvMotion tests were run on a pair of Dell R610
server running our modified version of ESX. Each had
dual-socket six-core 2.67 GHz Intel Xeon X5650 pro-
cessors, 48 GB of RAM, and 4 Broadcom 1 GbE net-
work adapters. Both servers were connected to two EMC
VNX5500 SAN arrays using an 8 Gb Fibre Channel (FC)
switch. We created a 200 GB VMFS version 5 file system
on a 15-disk RAID-5 volume on each array.

We used the Maxwell Pro network emulator to inject
latency between the hosts. Our long distance XvMotions
were performed on a dedicated link between Palo Alto,
California and Banglore, India with a bottleneck band-
width of 1 Gbps.

We used three workloads, an idle VM, OLTP Simula-
tion using Iometer [5], and the DVD Store version 2 [3]
benchmark. The Idle and Iometer VMs were configured
with two vCPUs, 2 GB memory of RAM, and two virtual
disks. The first disk was a 10 GB system disk running
Linux SUSE 11 x64, the second was a 12 GB data disk.

During the migration both virtual disks were migrated.
Our synthetic workload used Iometer to generate an IO
pattern that simulates an OLTP workload with a 30%
write, 70% read of 8 KB IO commands to the 12 GB data
disk. In addition, we varied outstanding IOs (OIOs) to
simulate workloads of differing intensities.

DVD Store Version 2.1 (DS2) is an open source on-
line e-commerce test application, with a backend database
component, and a web application layer. Our DVD Store
VM running MS Windows Server 2012 (x64) was config-
ured with 4 VCPUs, 8 GB memory, a 40 GB system/db
disk, and a 5 GB log disk. Microsoft SQL Server 2012
was deployed in the VM with a database size of 5 GB and
10,000,000 simulated customers. Load was generated by
three DS2 client threads with no think time.

5.1 Downtime (Switchover Time)
Figure 3 shows the downtimes for our OLTP workload
with network round-trip latencies varying from 0-200 ms.
All XvMotions show a bounded downtime of roughly one
second.
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Figure 4: Migration time and downtime for varying OIO
on the OLTP workload at 200 ms of round-trip latency.

The XvMotion protocol iteratively sends memory
pages: at every iteration it sends the pages written by the
guest in the previous iteration. It converges when the re-
maining data can be sent in half a second, which is the
value used in these experiments. Thanks to our SDPS op-
timization, even if the network bandwidth is low and the
guest is aggressively writing pages, the remaining data is
bounded to be sent in half a second.

When we measured downtime versus storage workload
intensity (varying OIO) we discovered that the switchover
time remained nearly constant. Figure 4 shows an aver-
age downtime of 0.97 seconds, with a standard deviation
of 0.03. This shows we have achieved downtime indepen-
dent of storage workload.

5.2 Migration Time
We compared an XvMotion between two hosts over
10 Gbps Ethernet, to local live storage migration in Fig-
ure 5, to approximate a comparison between XvMotion
and local live migration.

Local live storage migration copies a virtual disk be-
tween two storage devices on the same host. While this is
a bit of an apples to oranges comparison, we choose it for
a few reasons. First, storage migration overhead generally
dominates memory migration overhead. Second, storage
migration is quite heavily optimized, so it provides a good
baseline. Third, initiating a simultaneous local memory
and storage migration would still not provide an apples
to apple comparison as there would be no contention be-
tween memory and storage migration on the network, and
the copy operations are uncoordinated.

As expected, live storage migration is the fastest. The
data shows about 20 to 23 seconds difference between
local live storage migration and XvMotion. Part of that
overhead is from memory and device state migration that
required about 2 seconds to migrate memory state in the
Idle and OLTP scenarios, and 8 seconds in DVD Store
scenario. Additional reasons that these differences exist
are contention between memory migration and IO mir-
roring traffic, and greater efficiencies in the data mover.
However, the encouraging result here is that local migra-
tion between hosts is not appreciably more expensive than
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Figure 5: Shows the migration time for three work-
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Figure 6: Guest workload penalty as workload intensity
(OIO) increases. As workload intensity increases, the
average guest penalty decreases, as our transmit queue
scheduler gives increased priority to Guest IOs over clone
process IOs. workload IOs over clone process IOs.

migrating storage from one volume to another on the same
host.

A last point illustrated by Figure 5 is the importance of
our storage optimizations described in § 4.4. Migration
time nearly doubles in all the scenarios without our disk
copy optimizations.

In Figure 4 we measured migration time as we vary
workload intensity. We see that migration time increases
with guest OIO. This occurs because clone IO throughput
decreases as guest IOs take up a larger fraction of the total
throughput.

Figure 3 presents how the migration time of the OLTP
workload changes as we vary round-trip time. We see that
migration time increases by just 10% when increasing la-
tency from 0 to 200 ms. We observed that most of the
overhead came from the memory copy phase. In this case,
TCP was not able to optimally share the 1 Gbps available
bandwidth to both the memory and the disk mirror copy
sockets. Additionally, TCP slow start at the beginning of
every phase of the migration also add several seconds to
the migration time.
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Figure 7: Illustrates the various phases of the migration
against a plot of DVD Store Orders/sec for XvMotion.

5.3 Guest Penalty
Figure 6 shows average guest penalty decreases as work-
load intensity increases. This ensures that the impact of
migration on guest performance is minimized.

The average guest penalty drops from 32% for 2 OIOs
to 10% for 32 OIOs. This is because both clone process
and mirror IOs compete for transmit queue space on the
source as discussed in § 3.6. The clone process has at
most 16 OIOs on the source to read disk blocks for the
bulk copy. As the guest workload has more OIOs it will
take a larger share of transmit queue.

Our transmit queue schedules bandwidth between clone
process and mirror IOs. Without such a scheduler, we
measured a 90% average guest penalty for the 8 OIO sce-
nario. To further investigate, we measured the effect of
varying latency for a fixed intensity workload. We ob-
served the penalty for the OLTP workload with 16 OIO
is fixed at approximately 10% for RTT latencies of 0 ms,
100 ms and 200 ms.

Figure 7 shows a dissection of DVD Store’s reported
workload throughput during an XvMotion on a 1 GbE
network link with 200 ms round-trip latency. The graph
shows the impact on the SQL server throughput during
disk and memory copy, and shows a quick dip for one
data point as the VM is suspended for switchover. This is
an example of a successful migration onto a slower desti-
nation volume, where the workload is gradually throttled
to the speed of the destination.

5.4 XvMotion on the Wide Area
We explored XvMotion’s behavior on the wide area by
migrating a VM from Palo Alto, CA to Bangalore, India.
These two sites, about halfway across the globe, are sep-
arated by a distance of roughly 8200 miles. The WAN
infrastructure between these two sites was supported by
a Silverpeak WAN accelerator NX 8700 appliance. The
measured ping latency between the sites was 214 ms over
a dedicated 1 Gbps link.

Our source host in Palo Alto was a Dell PowerEdge
R610 with a high performance SAN storage array. Our
destination in Bangalore was a Dell PowerEdge R710
with local storage. To virtualize the network, we stretched

the layer-2 LAN across these two sites using an OpenVPN
bridge. This enabled the VM migrate with no disruption
in network connectivity.

We successfully ran two workloads, Iometer and DS2,
with minimal service disruption.

In the Iometer test, before the migration, the ping la-
tency between the client and the OLTP VM was less than
0.5 ms since both were running on the same local site.
After the migration the ping latency between the client
and the OLTP VM jumped to 214 ms. The ping client
observed just a single ping packet loss during the entire
migration.

The OLTP workload continued to run without any dis-
ruption, although the guest IOPS dropped from about 650
IOPS before migration to about 470 IOPS after migration
as the destination host was using low performance local
storage.

The total duration of the migration was 374.16 sec-
onds with a downtime of 1.395 seconds. We observed
68.224 MB/s network bandwidth usage during disk copy,
and about 89.081 MB/s during memory pre-copy.

In the DS2 test, the DS2 clients ran on two client ma-
chines, one client machine located in Palo Alto and the
other in Bangalore. The DS2 clients generated a substan-
tial CPU and memory load on the VM. The migration was
initiated during the steady-state period of the benchmark,
when the CPU utilization of the virtual machine was little
over 50%.

The DS2 workload continued to run without any dis-
ruption after the migration. However, the throughput
dropped from about 240 ops before migration to about 135
ops after migration as the destination host was using low
performance local storage.

The total duration of the migration was 1009.10 sec-
onds with a downtime of 1.393 seconds. We observed
49.019 MB/s network bandwidth usage during disk copy,
and about 73.578 MB/s during memory pre-copy. Some
variation in network bandwidth was expected between the
tests as the WAN link between sites is a shared link.

5.5 Summary
Our results show that XvMotion exhibits consistent be-
havior i.e., migration time, downtime, and guest penalty,
with varying workload intensity and latency. We saw for
all experiments, maximum downtime is around one sec-
ond, even for latencies as high as 200 ms and data loss
up to 0.5%. One of the nice features of our system is that
for long distance migrations the VM migration was bot-
tlenecked by the network bandwidth, and thus our storage
throttling mechanism slowed the VM down gradually.

6 Discussion
We discuss potential split-brain issues when handing off
execution from the source VM to the destination VM, then
briefly survey networking and security considerations for
wide area migration.
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6.1 Split-Brain Issues

A live migration ends with the exchange of several mes-
sages between the source and destination hosts called the
resume handshake. In the normal case, if the source re-
ceives the resume handshake, it can mark the migration
successful, and power off. Upon sending the resume
handshake, the destination can resume and mark the mi-
gration complete. With migration using shared storage,
file system locking ensures only one VM can start during
a network partition. Each host will race to grab locks on
the virtual disks and metadata file, with only one winner.

With XvMotion there is no good solution and yet
we must prevent both hosts from resuming concurrently.
Both the source and destination wait for the completion
of the resume handshake. The source will power on if it
never sees a resume request. A network partition after the
resume request message causes both hosts to power-off.
If the destination receives approval to resume, it will from
that point on. Finally, when the source receives the re-
sume completed message it will power-off and cleanup.
Anytime the hosts cannot resolve the issue, a human or
the management software must power on the correct VM
and delete the other VM.

6.2 VM Networking

Long distance migration presents a challenge for the
VM’s network connectivity. A VM may be migrated
away from its home subnet and require a form of net-
work tunneling or routing. Several classes of solutions
are available to enable long distance network migrations.
First, there are layer two networking solutions that tun-
nel traffic using hardware or software solutions such as
Cisco Overlay Transport Virtualization (OTV) [14] and
VXLAN [20]. For modern applications that do not depend
on layer two connectivity there are several layer 3 solu-
tions such as Locator/ID Separation Protocol (LISP) [12]
that enable IP mobility across the Internet. Another
emerging standard being deployed at data centers is Open-
Flow [22], which enables generic programming and con-
figuration of switching hardware. Using OpenFlow, sev-
eral prototypes have been constructed that enable long dis-
tance VM migration.

6.3 Security Considerations

Any live migration technology introduces a security risk
as a VM’s memory and disk are transmitted over the net-
work. Typically, customers use physically or logically
isolated networks for live memory migration, but this is
not sufficient for migrations that may be over the WAN.
Today customers address this through the use of hardware
VPN solutions or IPSec. While some customers may de-
sire other forms of over the wire encryption support, we
regarded this as outside the scope of our current work.

7 Related Work
Live Migration: Live VM memory migration has been
implemented in all major hypervisors including Xen [10],
Microsoft Hyper-V [1], and VMware ESX [24]. All three
systems use a pre-copy approach to iteratively copy mem-
ory pages from source host to destination host.

Hines et al. [18] proposed a post-copy approach for live
VM memory migration. Their approach essentially flips
the steps of an iterative copy approach, instead of send-
ing the working set at the end of the migration, it is sent
at the beginning. This allows execution to immediate re-
sume on the destination, while memory pages are still be-
ing pushed, and missing pages are demand paged in over
the network. Memory ballooning is used to reduce the
size of the working set prior to migration. Post-copying
offers lower migration times and downtimes, but often in-
duces a higher guest penalty and gives up atomic switch
over. Luo er al. [19] used a combination of post-copy and
pre-copy approaches to lower downtime downtime and
guest penalty, but also gives up atomicity. Both of these
approaches are unacceptable for wide area migration be-
cause of increased risk to losing the VM. Our SDPS tech-
nique offers a safer approach, reducing downtime without
the loss of atomicity.
Storage Migration: ESX live storage migration has
evolved through three different architectures, i.e., snap-
shotting, dirty-block tracking and IO mirroring [21]. Live
storage migration of VMs using IO mirroring is explored
in Meyer et al. [23]. The latest storage migration imple-
mentation in Microsoft Hyper-V [4], VMware ESX, and
Xen with DRBD [6], are all based on IO mirroring.
WAN Migration: Bradford et al. extends the live mi-
gration in Xen to support the migration of a VM with
memory and storage across the WAN [9]. When a VM
is being migrated, its local disks are transferred to desti-
nation volume using a disk block level iterative pre-copy.
The write IO workload from the guest OS is also throttled
to reduce the dirty block rate. Further optimizations for
pre-copy based storage migration over WAN are explored
by Zheng et al. [28].

While the iterative pre-copy approach is well suited for
memory migration, it suffers from several performance
and reliability limitations for storage migration as shown
in our prior work [21]. In contrast, we propose to seam-
lessly integrate memory pre-copy with storage IO mirror-
ing for long distance live VM migration.

CloudNet addresses many of the shortcomings of Brad-
ford’s work by using DRBD and Xen to implement wide
area migration along with a series of optimizations [27].
The system used synchronous disk replication rather than
asynchronous replication used by XvMotion. Their Smart
Stop and Copy algorithm tuned the number of iterations
for memory copy, thus trading off downtime versus mi-
gration time. ESX used a similar algorithm internally, but
downtimes were still sufficiently high even with this mea-



108 2014 USENIX Annual Technical Conference USENIX Association

sure that we introduced SDPS. SDPS and asynchronous
disk buffering allows XvMotion to target a specific down-
time at the cost of increased guest penalty.

SecondSite is the first solution to use software fault tol-
erance to implement seamless failover of a group of VMs
over a WAN [26]. This solution is built on Remus [11] a
fault tolerance solution built on Xen’s live migration in-
frastructure. SecondSite and Remus provide the destina-
tion periodically with consistent images of the VMs mem-
ory and disk. This is done while the VM is running on the
source and the migration only completes when the source
host dies.

8 Conclusion
We have presented XvMotion, a system for memory and
storage migration over local and wide area networks. By
integrating memory and storage movement we were able
to achieve an atomic switchover with low downtime. Our
use of asynchronous storage replication provides good
storage performance in the presence of high latency links.
We also introduced mechanisms to increase memory mi-
gration tolerance to high latency links, and make storage
migration robust to diverse storage speeds.

Our OLTP tests show that an XvMotion between two
separate hosts over 10 Gbps Ethernet, performed only
10% slower than a storage migration on a single host be-
tween two locally attached disks, demonstrating live mi-
gration on a shared-nothing architecture is comparable to
live migration with shared storage. We also showed that
while increasing the latency of the network to 200 ms we
saw downtimes lower than one second, which are unno-
ticeable to most applications, demonstrating the live mi-
gration is viable over the wide area. We also showed that
our system is well behaved under heavy load, as increases
in guest workload do not effect downtime.

Higher bandwidth networks, network virtualization,
large scale virtualization deployments, geographically
separated data centers and diverse storage architectures
are all increasingly important parts of data centers. Given
these trends, we believe the ability to simply, reliably, and
efficiently move a VM between two hosts afforded by Xv-
Motion will enable new use cases, and help simplify ex-
isting situations where VM mobility is demanded.
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Abstract
Graphics processing units (GPUs) provide orders-of-
magnitude speedup for compute-intensive data-parallel
applications. However, enterprise and cloud computing
domains, where resource isolation of multiple clients is
required, have poor access to GPU technology. This is
due to lack of operating system (OS) support for vir-
tualizing GPUs in a reliable manner. To make GPUs
more mature system citizens, we present an open ar-
chitecture of GPU virtualization with a particular em-
phasis on the Xen hypervisor. We provide design and
implementation of full- and para-virtualization, includ-
ing optimization techniques to reduce overhead of GPU
virtualization. Our detailed experiments using a rele-
vant commodity GPU show that the optimized perfor-
mance of GPU para-virtualization is yet two or three
times slower than that of pass-through and native ap-
proaches, whereas full-virtualization exhibits a different
scale of overhead due to increased memory-mapped I/O
operations. We also demonstrate that coarse-grained fair-
ness on GPU resources among multiple virtual machines
can be achieved by GPU scheduling; finer-grained fair-
ness needs further architectural support by the nature of
non-preemptive GPU workload.

1 Introduction
Graphics processing units (GPUs) integrate thousands of
compute cores on a chip. Following a significant leap in
hardware performance, recent advances in programming
languages and compilers have allowed compute applica-
tions, as well as graphics, to use GPUs. This paradigm
shift is often referred to as general-purpose computing
on GPUs, a.k.a., GPGPU. Examples of GPGPU applica-
tions include scientific simulations [26,38], network sys-
tems [13,17], file systems [39,40], database management
systems [14,18,22,36], complex control systems [19,33],
and autonomous vehicles [15, 27].

While significant performance benefits of GPUs have
attracted a wide range of applications, main governors of

practically deployed GPU-accelerated systems, however,
are limited to non-commercial supercomputers. Most
GPGPU applications are still being developed in the re-
search phase. This is largely due to the fact that GPUs
and their relevant system software are not tailored to
support virtualization, preventing enterprise servers and
cloud computing services from isolating resources on
multiple clients. For example, Amazon Elastic Compute
Cloud (EC2) [1] employs GPUs as computing resources,
but each client is assigned with an individual physical
instance of GPUs.

Current approaches to GPU virtualization are classi-
fied into I/O pass-through [1], API remoting [8,9,11,12,
24, 37, 41], or hybrid [7]. These approaches are also re-
ferred to as back-end, front-end, and para virtualization,
respectively [7]. I/O pass-through, which exposes GPU
hardware to guest device drivers, can minimize overhead
of virtualization, but the owner of GPU hardware is lim-
ited to a specific VM by hardware design.

API remoting is more oriented to multi-tasking and is
relatively easy to implement, since it needs only to ex-
port API calls to outside of guest VMs. Albeit simple,
this approach lacks flexibility in the choice of languages
and libraries. The entire software stack must be rewrit-
ten to incorporate an API remoting mechanism. Imple-
menting API remoting could also result in enlarging the
trusted computing base (TCB) due to accomodation of
additional libraries and drivers in the host.

The para-virtualization allows multiple VMs to access
the GPU by providing an ideal device model through the
hypervisor, but guest device drivers must be modified
to support the device model. According to these three
classes of approaches, it is difficult, if not impossible, to
use vanilla device drivers for guest VMs while providing
resource isolation on multiple VMs. This lack of reliable
virtualization support prevents GPU technology from the
enterprise market. In this work, we explore GPU virtu-
alization that allows multiple VMs to share underlying
GPUs without modification of existing device drivers.
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Figure 1: The GPU resource management model.

Contribution: This paper presents GPUvm, which is
an open architecture of GPU virtualization. We provide
the design and implementation of GPUvm based on the
Xen hypervisor [3], introducing virtual memory-mapped
I/O (MMIO), GPU shadow channels, GPU shadow page
tables, and virtual GPU schedulers. These pieces of
resource management are provided with both full- and
para-virtualization approaches by exposing a native GPU
device model to guest device drivers. We also develop
several optimization techniques to reduce overhead of
GPU virtualization. To the best of our knowledge, this is
the first piece of work that addresses fundamental prob-
lems of GPU virtualization. GPUvm is provided as com-
plete open-source software 1.

Organization: The rest of this paper is organized
as follows. Section 2 describes a system model be-
hind this paper. Section 3 provides a design concept
of GPUvm, and Section 4 presents its prototype imple-
mentation. Section 5 shows experimental results. Sec-
tion 6 discusses related work. This paper concludes in
Section 7.

2 Model
The system is composed of a multi-core CPU and an on-
board GPU connected on the bus. A compute-intensive
function offloaded from the CPU to the GPU is called
a GPU kernel, which could produce a large number of
compute threads running on a massive set of compute
cores integrated in the GPU. The given workload may
also launch multiple kernels within a single process.

Product lines of GPU vendors are closely tied with
programming languages and architectures. For example,
NVIDIA invented the Compute Unified Device Architec-
ture (CUDA) as a GPU programming framework. CUDA
was first introduced in the Tesla architecture [30], fol-
lowed by the Fermi and the Kepler architectures [30,31].
The prototype system of GPUvm presented in this paper
assumes these NVIDIA technologies, yet the design con-
cept of GPUvm is applicable for other architectures and
programming languages.

Figure 1 illustrates the GPU resource management
model, which is well aligned with, but is not limited to,

1https://github.com/CS005/gxen

the NVIDIA architectures. The detailed hardware mech-
anism is not identical among different vendors, though
recent GPUs adopt the same high-level design presented
in Figure 1.

MMIO: The current form of GPU is an independent
compute device. Therefore the CPU communicates with
the GPU via MMIO. MMIO is the only interface that
the CPU can directly access the GPU, while hardware
engines for direct memory access (DMA) are supported
to transfer a large size of data.

GPU Context: Just like the CPU, we must create a
context to run on the GPU. The context represents the
state of GPU computing, a part of which is managed by
the device driver, and owns a virtual address space in
GPU.

GPU Channel: Any operation on the GPU is driven
by commands issued from the CPU. This command
stream is submitted to a hardware unit called a GPU
channel, and isolated from the other streams. A GPU
channel is associated with exactly one GPU context,
while each GPU context can have one or more GPU
channels. Each GPU context has GPU channel descrip-
tors for the associated hardware channels, each of which
is created as a memory object in the GPU memory. Each
GPU channel descriptor stores the settings of the cor-
responding channel, which includes a page table. The
commands submitted to a GPU channel is executed in
the associated GPU context. For each GPU channel, a
dedicated command buffer is allocated in the GPU mem-
ory visible to the CPU through MMIO.

GPU Page Table: Paging is supported by the GPU.
The GPU context is assigned with the GPU page table,
which isolates the virtual address space from the others.
A GPU page table is set to a GPU channel descriptor.
All the commands and programs submitted through the
channel are executed in the corresponding GPU virtual
address space.

GPU page tables can translate a GPU virtual address to
not only a GPU device physical address but also a host
physical address. This means that the GPU virtual ad-
dress space is unified over the GPU memory and the host
main memory. Leveraging GPU page tables, the com-
mands executed in the GPU context can access to the
host physical memory with the GPU virtual address.

PCIe BAR: The following information includes some
details about the real system. The host computer is based
on the x86 chipset and is connected to the GPU upon the
PCI Express (PCIe). The base address registers (BARs)
of PCIe, which work as windows of MMIO, are config-
ured at boot time of the GPU. GPU control registers and
GPU memory apertures are mapped on the BARs, allow-
ing the device driver to configure the GPU and access the
GPU memory.

To operate DMA onto the associated host memory,

2
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Figure 2: The design of GPUvm and system stack.

GPU has a mechanism similar to IOMMU, such as the
graphics address remapping table (GART). However,
since DMA issued from the GPU context goes through
the GPU page table, the safety of DMA can be guaran-
teed without IOMMU.

Documentation: Currently GPU vendors hide the
details of GPU architectures due to a marketing rea-
son. Implementations of device drivers and runtime li-
braries are also protected by binary proprietary software,
whereas the compiler source code has been recently
open-released from NVIDIA to a limited extent. Some
work uncovers the black-boxed interaction between the
GPU and the driver [28]. Recently the Linux kernel com-
munity has developed Nouveau [25], which is an open-
source device driver for NVIDIA GPUs. Throughout
their development, the details of NVIDIA architectures
are well documented in the Envytools project [23]. Inter-
ested readers are encouraged to visit their website.

Scope and Limitation: GPUvm is an open architec-
ture of GPU virtualization with a solid design and im-
plementation using Xen. Its implementation focuses on
NVIDIA Fermi- and Kepler-based GPUs with CUDA.
We also restrict our attention to Nouveau as a guest de-
vice driver. NVIDIA binary drivers should be available
with GPUvm, but they cannot be successfully loaded
with current versions of Xen, even in the pass-through
mode, which has also happened in the prior work [11,
12].

3 Design
The challenge of GPUvm is to show that GPU can be
virtualized at the hypervisor level. GPU is a unique and
complicated device and its resources (such as memory,
channels and GPU time) must be multiplexed like the
host computing system. Although the architectural de-
tails of GPU are not known well, GPUvm virtualizes
GPUs by combining the well-established techniques of
CPU, memory, and I/O virtualization of the traditional
hypervisors.

Figure 2 shows the high-level design of GPUvm and

relevant system stack. GPUvm exposes a native GPU
device model to VMs where guest device drivers are
loaded. VM operations upon this device model are redi-
rected to the hypervisor so that VMs can never access the
GPU directly. The GPU Access Aggregator arbitrates all
accesses to the GPU to partition GPU resources across
VMs. GPUvm adopts a client-server model for commu-
nications between the device model and the aggregator.
While arbitrating accesses to the GPU, the aggregator
modifies them to manage the status of the GPU. This
mechanism allows multiple VMs to access a single GPU
in the isolated way.

3.1 Approaches
GPUvm enables full- and para-virtualization of GPUs at
the hypervisor. To isolate multiple VMs on the GPU
hardware resources, memory areas, PCIe BARs, and
GPU channels must be multiplexed among those VMs.
In addition to this spacial multiplexing, the GPU also
needs to be scheduled in a fair-share manner. The main
components of GPUvm to address this problem include
GPU shadow page tables, GPU shadow channels, and
GPU fair-share schedulers.

To aggregate accesses to a GPU device model from a
guest device driver, GPUvm intercepts MMIO by setting
these ranges as inaccessible.

In order to ensure that one VM can never access the
memory area of another VM, GPUvm creates a GPU
shadow page table for every GPU channel descriptor,
which is protected from guest OSes. All GPU mem-
ory accesses are handled by GPU shadow page tables;
a virtual address for GPU memory is translated by the
shadow page table not by the one set by the guest device
driver. Since GPUvm validates the contents of shadow
page tables, GPU memory can be safely shared by mul-
tiple VMs. And by making use of GPU shadow page
tables, GPUvm guarantees that DMA initiated by GPU
never accesses memory areas outside of those allocated
to the VM.

To create a GPU context, the device driver must es-
tablish the corresponding GPU channel. However, the
number of GPU channels is limited in hardware. To mul-
tiplex VMs on GPU channels, GPUvm creates shadow
channels. GPUvm configures shadow channels, assigns
virtual channels to each VM and maintains the mapping
between a virtual channel and a shadow channel. When
guest device drivers access a virtual channel assigned by
GPUvm, GPUvm intercepts and redirects the operations
to a corresponding shadow channel.

3.2 Resource Partitioning
GPUvm partitions physical memory space and MMIO
space over PCIe BARs into multiple sections of contin-
uous address space, each of which is assigned to an in-

3



112 2014 USENIX Annual Technical Conference USENIX Association

dividual VM. Guest device drivers consider that physical
memory space origins at 0, but actual memory access is
shifted by the corresponding size through shadow page
tables created by GPUvm. Similarly, PCIe BARs and
GPU channels are partitioned by multiple sections of the
same size for individual VMs.

The static partitioning is not a critical limitation of
GPUvm. Dynamic allocation is possible. When a
shadow page table refers to a new page, GPUvm allo-
cates a page, assigns it to a VM and maintains the map-
pings between guest physical GPU pages and host phys-
ical GPU pages. For ease of implementation, the current
GPUvm employs static partitioning. We plan to imple-
ment the dynamic allocation in the future.

3.3 GPU Shadow Page Table
GPUvm creates GPU shadow page tables in the reserved
area of GPU memory, which translates guest GPU vir-
tual addresses to GPU device physical or host physical
addresses. By design, the device driver needs to flush
TLB caches every time a page table entry is updated.
GPUvm can intercept TLB flush requests because those
requests are issued from the host CPU through MMIO.
After the interception, GPUvm updates the correspond-
ing GPU shadow page table entry.

GPU shadow page tables play an important role in pro-
tecting GPUvm itself, shadow page tables, and GPU con-
texts from buggy or malicious VMs. GPUvm excludes
the memory mappings to those sensitive memory pages
from the shadow page tables. Since all the memory ac-
cesses by GPU go through the shadow page tables, any
VMs cannot access those sensitive memory areas.

There is a subtle problem regarding a pointer to a
shadow page table. In case of GPU, a pointer to a shadow
page table is stored in GPU memory as part of the GPU
channel descriptor. In the traditional shadow page tables,
a pointer to a shadow page table is stored in a privileged
register (e.g. CR3 in Intel x86); VMM intercepts the ac-
cess to the privileged register to protect the shadow page
tables. To protect GPU channel descriptors, including
a pointer to a shadow page table, from being accessed
by GPU, GPUvm excludes the memory areas for GPU
channel descriptors from the shadow page tables. The
accesses to the GPU channel descriptors from host CPUs
are all through MMIO and thus, can be easily detected by
GPUvm. As a result, GPUvm protect GPU channel de-
scriptors, including pointers to shadow page tables, from
buggy VMs.
GPUvm guarantees the safety of DMA. If a buggy

driver sets an erroneous physical address when initiat-
ing DMA, the memory regions assigned to other VMs or
the hypervisor can be destroyed. To avoid this situation,
GPUvm makes use of shadow page tables and the uni-
fied memory model of GPU. As explained in Section 2,

GPU page tables can map GPU virtual addresses to phys-
ical addresses in GPU memory and host memory. Unlike
conventional devices, GPU uses GPU virtual addresses
to initiate DMA. If the mapped memory happens to be
in the host memory, DMA is initiated. Since shadow
page tables are controlled by GPUvm, the memory ac-
cess by DMA is confined in the memory region of the
corresponding VM.

The current design of GPU poses an implementation
problem of shadow page tables. In the traditional shadow
page tables, page faults are extensively utilized to reduce
the cost of constructing shadow page tables. However,
GPUvm cannot handle page faults caused by GPU [10].
This makes it impossible to update the shadow page ta-
ble upon page fault handling, and it is also impossible to
trace changes to the page table entry. Therefore, GPUvm
scans the entire page tables upon TLB flush.

3.4 GPU Shadow Channel
The number of GPU channels is limited in hardware and
they are numerically indexed. The device driver assumes
that these indexes start from zero. Since the same index
cannot be assigned to multiple channels, channel isola-
tion must be supported to multiplex VMs.

GPUvm provides GPU shadow channels to isolate
GPU accesses from VMs. Physical indexes of GPU
channels are hidden from VMs but virtual indexes are as-
signed to their virtual channels. Mapping between phys-
ical and virtual indexes is managed by GPUvm.

When a GPU channel is used, it must be activated.
GPUvm manages currently activated channels by VMs.
These activation requests are submitted through MMIO
and they can be intercepted by GPUvm. When GPUvm
receives the requests, GPUvm activates the correspond-
ing channels by using physical indexes.

Each GPU channel has channel registers, through
which the host CPU submits commands to GPU. Chan-
nel registers are placed in GPU virtual address space
which is mapped to a memory aperture. GPUvm man-
ages all physical channel registers and maintains the
mapping between physical and virtual GPU channel reg-
isters. Since the virtual channel registers are mapped to
the memory aperture, GPUvm can intercept the access
to them and redirect it to the physical channel registers.
Since the guest GPU driver can dynamically change the
location of the channel registers, GPUvm monitors it and
changes the mapping if necessary.

3.5 GPU Fair-Share Scheduler
So far we have argued virtualization of memory re-
sources and GPU channels for multiple VMs. We herein
provide virtualization of GPU time. Indeed this is a
scheduling problem. The GPU scheduler of GPUvm is
based on the bandwidth-aware non-preemptive device
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(BAND) scheduling algorithm [21], which was devel-
oped for virtual GPU scheduling. The BAND schedul-
ing algorithm is an extension of the CREDIT scheduling
algorithm [3] in that (i) the prioritization policy uses re-
served bandwidth and (ii) the scheduler intentionally in-
serts a certain amount of waiting time after completion
of GPU kernels, which leads to fairer utilization of GPU
time among VMs. Since the current GPUs are not pre-
emptive, GPUvm waits for GPU kernel completion and
assigns credits based on the GPU usage. More details
can be found in [21].

The BAND scheduling algorithm assumes that the to-
tal utilization of virtual GPUs could reach 100%. This is
a flaw because there must be some interval that the CPU
executes the GPU scheduler during which the GPU re-
mains idle, causing utilization of the GPU to be less than
100%. This means that even though the total bandwidth
is set to 100%, VMs’ credit would be left unused, if the
GPU scheduler consumes some time in the correspond-
ing period. The problem is that the amount of credit to
be replenished and the period of replenishment are fixed.
If the fixed amount of credit is always replenished, after
a while all VMs could have a lot of credit left unused.
As a result, the credit may not influence the decision of
scheduling at all. To overcome this problem, GPUvm
accounts for CPU time consumed by the GPU scheduler,
and considers it as GPU time.

Note that there is a critical problem in guaranteeing
the fairness of GPU time. If a malicious or buggy VM
starts infinite computation on GPU, it can monopolize
GPU time. One possible solution to this problem is to
abort the GPU computation if the GPU time exceeds the
pre-defined limit of the computation time. Another ap-
proach is to cut longer requests into smaller pieces, as
shown in [4]. For the future directions, we are plan-
ning to incorporate the disengaged scheduling [29] at
the VMM level. The disengaged scheduling provides
fair, safe and efficient OS-level management of GPU re-
sources. We believe that GPUvm can incorporate the dis-
engaged scheduling without any technical issues except
for engineering efforts.

3.6 Optimization Techniques
Lazy Shadowing: In principle, GPUvm has to reflect the
contents of guest page tables to shadow page tables every
time it detects TLB flushes. As explained in Section 3.3,
GPUvm has to scan the entire page table to find the mod-
ified entries in the guest page table because GPUvm can-
not use page faults to detect the modifications on the
guest page tables. Since TLB flushes can happen fre-
quently, the cost of scanning page tables introduces sig-
nificant overhead. To reduce this overhead, GPUvm de-
lays the reflection to the shadow page tables until an at-
tempt is made to reference them. The shadow page tables

are used when memory apertures are accessed or after
the GPU kernels starts. Note that GPUvm can intercept
memory apertures access and command submission. So,
GPUvm scans the guest page table at this point of time
and reflects it to the shadow page table. By delaying the
reflection, GPUvm can reduce the number of the page
table scans.

BAR Remap: GPUvm intercepts data accesses
through BARs to virtualize GPU channel descriptors.
By intercepting all data accesses, it keeps the consis-
tency between shadow GPU channel descriptors and
guest GPU channel descriptors. However, this design in-
curs non-trivial overheads because the hypervisor is in-
voked every time the BAR is accessed. The BAR remap
optimization reduces this overhead by limiting the han-
dling of BAR accesses. In the BAR remap optimization,
GPUvm passes through the BAR accesses other than to
GPU channel descriptors because GPUvm does not have
to virtualize the values read from or written to the BAR
areas except for GPU channel descriptors. Even if the
BAR accesses are passed through, they must be isolated
among multiple VMs. This isolation is achieved by mak-
ing use of shadow page tables. The BAR accesses from
the host CPU all go through GPU page tables; the off-
sets in the BAR areas are regarded as virtual addresses in
GPU memory and translated to GPU physical addresses
through the shadow page tables. By setting shadow page
tables appropriately, all the accesses to the BAR areas are
isolated among VMs.

Para-virtualization: Shadowing of GPU page tables
is a major source of overhead in full-virtualization, be-
cause the entire page table needs to be scanned to detect
changes to the guest GPU page tables. To reduce the cost
of detecting the updates, we take a para-virtualization
approach. In this approach, the guest GPU page tables
are placed within the memory areas under the control of
GPUvm and cannot be directly updated by guest GPU
drivers. To update the guest GPU page tables, the guest
GPU driver issues hypercalls to GPUvm. GPUvm vali-
dates the correctness of the page table updates when the
hypercall is issued. This approach is inspired by the di-
rect paging in Xen para-virtualization [3].

Multicall: Hypercalls are expensive because the con-
text is switched to the hypervisor. To reduce the number
of hypercalls, GPUvm provides a multicall interface that
can batch several hypercalls into one. For example, in-
stead of providing a hypercall that updates one page table
entry at once, GPUvm provides a hypercall that allows
multiple page table entries to be updated by one hyper-
call. The multicall is borrowed from Xen.

4 Implementation
Our prototype of GPUvm uses Xen 4.2.0, where both
the domain 0 and the domain U adopt the Linux kernel

5
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Figure 3: The prototype implementation of GPUvm.

v3.6.5. We target the device model of NVIDIA GPUs
based on the Fermi/Kepler architectures [30, 31]. While
full-virtualization does not require any modification to
guest system software, we make a small modification to
the GPU device driver called Nouveau, which is provided
as part of the mainline Linux kernel, to implement our
GPU para-virtualization approach.

Figure 3 shows the overview of implementation of the
GPU Access Aggregator and its interactions with other
components. The GPU device model is exposed in the
domain U, which is created by the QEMU-dm and be-
haves as a virtual GPU. Guest device drivers in the do-
main U consider it as a normal GPU. It also exposes
MMIO PCIe BARs, handling accesses to the BARs in
Xen. All accesses to the GPU arbitrated by the GPU Ac-
cess Aggregator are committed to the GPU through the
sysfs interface.

The GPU device model communicates with the GPU
Access Aggregator in the domain 0, using the POSIX
inter-process communication (IPC). The GPU Access
Aggregator is a user process in the domain 0, which re-
ceives requests from the GPU device model, and issues
the aggregated requests to the physical GPU.

The GPU Access Aggregator has virtual GPU control
blocks and the GPU command scheduler, which repre-
sent the state of virtual GPUs. The GPU device models
update their own virtual GPU control blocks using IPC to
manage the states of corresponding virtual GPUs when
privileged events such as control register changes are is-
sued from domain U.

Each virtual GPU control block maintains a queue
to store command submission requests issued from the
GPU device model. These command submission re-
quests are scheduled to control GPU executions. This
command scheduling mechanism is similar to Time-
Graph [20]. However, the GPU command scheduler of
GPUvm differs from TimeGraph in that it does not use
GPU interrupts. It is very difficult, if not impossible, for
the GPU Access Aggregator to insert the interrupt com-
mand to the original sequence of commands, because

user contexts may also use some interrupt commands,
and the GPU Access Aggregator cannot recognize them
once they are fired. Therefore, our prototype implemen-
tation uses a thread-based scheduler polling on the re-
quest queue. Whenever command submission requests
are stored in the queue, the scheduler dispatches them to
the GPU. To calculate GPU time, our prototype polls a
GPU control register value that is modified by the hard-
ware just after GPU channels become active/inactive.

Another task of the GPU Access Aggregator is to man-
age GPU memory and maintain isolation of multiple
VMs on partitioned memory resources. For this purpose,
GPUvm creates shadow page tables and channel descrip-
tors in the reserved area of GPU memory.

5 Experiments

To demonstrate the effectiveness of GPUvm, we con-
ducted detailed experiments using a relevant commodity
GPU. The objective of this section is to answer the fol-
lowing fundamental questions:

1. How much is the overhead of GPU virtualization
incurred by GPUvm?

2. How does the number of GPU contexts affect per-
formance?

3. Can multiple VMs meet fairness on GPU resources?

The experiments were conducted on a DELL PowerEdge
T320 machine with eight Xeon E5-24700 2.3 GHz pro-
cessors, 16 GB of memory, and two 500 GB SATA
hard disks. We use NVIDIA Quadro 6000 for the tar-
get GPU, which is based on the NVIDIA Fermi archi-
tecture. We ran our modified Xen 4.2.0, assigning 4 GB
and 1 GB of memory to the domain 0 and the domain
U, respectively. In the domain U, Nouveau was run-
ning as the GPU device driver and Gdev [21] was run-
ning as the CUDA runtime. The following eight schemes
were evaluated: Native (non-virtualized Linux 3.6.5),
PT (pass-through provided by Xen’s pass-through fea-
ture), FV Naive (full-virtualization w/o any optimiza-
tion techniques), FV BAR-Remap (full-virtualization w/
BAR Remapping), FV Lazy (full-virtualization w/ Lazy
Shadowing), FV Optimized (full-virtualization w/ BAR
Remapping and Lazy Shadowing), PV Naive (para-
virtualization w/o multicall), and PV Multicall (para-
virtualization w/ multicall).

5.1 Overhead
To identify the overhead of GPU virtualization incurred
by GPUvm, we run the well-known GPU benchmarks
called Rodinia [5] as well as our microbenchmarks, as
listed in Table 1. We measure their execution time on the
eight platforms.
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Table 1: List of the GPU benchmarks.
Benchmark Description
NOP No GPU operation
LOOP Long-loop compute without data
MADD 1024x1024 matrix addition
MMUL 1024x1024 matrix multiplication
FMADD 1024x1024 matrix floating addition
FMMUL 1024x1024 matrix floating multiplication
CPY 64MB of HtoD and DtoH
PINCPY CPY using pinned host I/O memory
BP Back propagation (pattern recognition)
BFS Breadth-first search (graph algorithm)
HS Hotspot (physics simulation)
LUD LU decomposition (linear algebra)
SRAD Speckle reducing anisotropic diffusion (imaging)
SRAD2 SRAD with random pseudo-inputs (imaging)

5.1.1 Results
Figure 4 shows the execution time of the benchmarks
on each platform. The x-axis lists the benchmark names
while the y-axis exhibits the execution time normalized
by one of Native. It is clearly observed that the over-
head of GPU full-virtualization is mostly unacceptable,
but our optimization techniques significantly contribute
to reduction of this overhead. The execution times ob-
tained in FV Naive are more than 100 times slower in
nine benchmarks (nop, loop, madd, fmadd, fmmul, bp,
hfs, hs, lid) than those obtained in Native. This overhead
can be mitigated by using the BAR Remap and the Lazy
Shadowing optimization techniques. Since these opti-
mization techniques are complementary to each other,
putting it together achieves more performance gain. The
execution time is 6 times shorter in madd (the best case)
while being 5 times shorter in mmul (the worst case).
In some benchmarks, PT exhibits slightly faster per-
formance than Native, especially in madd is 1.5 times
shorter than PT. This is a GPU’s mysterious behavior.

From these experimental results, we also find that
GPU para-virtualization is much faster than full virtual-
ization. The execution times obtained in PV Naive are 3 -
10 times slower than those obtained in Native except for
pincpy. We discuss this reason in the next section. This
overhead can also be reduced by our reduced hypercalls
feature. The execution time increased in PV Multicall is
at most 3 times.

5.1.2 Breakdown
The breakdown on the execution time of the GPU bench-
marks is shown in Figure 5. We divide the total ex-
ecution time into five phases; init, htod, launch, dtoh,
and close. Init is time for setting up the GPU to exe-
cute a GPU kernel. Htod is time for host-to-device data
transfers. Launch is time for the calculation on GPUs.
Dtoh is device-to-host data transfer time. Close is time
for destroying the GPU kernel. The figure indicates that
the dominant factor of execution time in GPUvm is init
and close phases. This tendency is significant for four

GPUvm’s full virtualization configurations. In FV Naive,
init and close phases are more than 90 % in the execution
times. By using optimization techniques, the phases’ ra-
tio becomes lowered.

Table 2 and 3 list BAR3 writes and shadow page ta-
ble update counts in each benchmark. BAR3 is used for
a memory aperture. BAR remapping achieves more per-
formance gain in benchmarks that write more bytes in the
BAR3 region. For example, the execution time of pincpy
that writes 64 MB is 2 times shorter in FV BAR-Remap
than FV Naive. Also, lazy shadowing works more effec-
tively to the benchmarks that update shadow page tables
more frequently. Specifically, the execution time of srad,
where the shadow page table is updated in 52 times, is 2
times shorter in FV Lazy than FV Naive.

On the other hand, init and close phases in two
GPUvm’s para-virtualized platforms are much shorter
than the full-virtualization configuration in all cases.
Full-virtualization GPUvm performs many shadowing
operations, including TLB flushes, since memory alloca-
tion are done frequently in the two phases. This cost can
be significantly reduced in para-virtualization GPUvm in
which memory allocations are requested by hypercall.
Time spent in these phases is longer in pincpy since it
issues more hypercalls than the other benchmarks. Ta-
ble 4 lists the number of hypercall issues of each bench-
mark in PV Naive and PV Multicall. Compared to the
other benchmarks, pincpy issues much more hypercalls.
Also, our optimization dramatically reduces hypercall is-
sues, resulting in the reduced overhead in PV Naive. As
a result, the execution times in PV Multicall are close to
those of PT and Native, compared with PV Naive’s re-
sult. For example, the results in 7 benchmarks (mmul,
cpu, pincpy, bp, hfs, srad, srad2) are similar in PV Mul-
ticall, PT, and Native.

5.2 Performance at Scale
To discern the overhead GPUvm incurs in multiple GPU
contexts, we generate GPU workloads and measure their
execution time in two scenarios; in the first scenario, one
VM executes multiple GPU tasks, in the other scenario,
multiple VM executes GPU tasks. We first launch 1, 2,
4, 8 GPU tasks in one VM with full-virtualized, para-
virtualized, pass-throughed, GPU (FV(1VM), PV(1VM),
and PT). These tasks are also run on native Linux (Na-
tive). Next, we prepare 1, 2, 4, 8 VMs and execute one
GPU task on each VM with a full- or para-virtualized
GPU (FV and PV) where all our optimizations are turned
on. In each scenario, we run madd listed in Table 1.
Specifically, we repeat the GPU kernel execution of
madd 10000 times, and measure its execution time.

The results are shown in Fig. 6. The x-axis is the
number of launched GPU contexts and the y-axis rep-
resents execution time. This figure reveals two points.
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Figure 4: Execution time of the GPU benchmarks on the eight platforms.

Table 2: Total size of BAR access (bytes).
nop loop madd mmul fmadd fmmul cpy pincpy bp bfs hs lud srad srad2

READ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WRITE 6688 6696 6648 6672 6680 6688 6168 268344 7280 6232 6736 7240 6352 6248

One is that full-virtualized GPUvm incurs larger over-
head as GPU contexts are more. Time spent in init
and close phases is longer in FV and FV (1VM) since
GPUvm performs exclusive accesses to some GPU re-
sources including the dynamic window. The other is that
para-virtualized GPUvm achieves similar performance to
pass-through GPU. The total execution time in PV and
PV (1VM) is quite similar to those in PT even if GPU
contexts are more. The kernel execution times in both
FV (1VM) and FV are larger than the other GPU con-
figurations, while those in the three GPU configurations
are longer in 4 and 8 GPU contexts. This comes from
GPUvm’s overhead that it polls a GPU register to detect
GPU kernel completion through MMIO.

5.3 Performance Isolation
To demonstrate how GPUvm achieves performance iso-
lation among VMs, we launch a GPU workload on 2, 4,
8 VMs and measure each VM’s GPU usage. For com-
parison, we use three schedulers; FIFO, CREDIT, and
BAND scheduler. FIFO issues GPU requests in a first-
in/first-out manner. CREDIT schedules GPU requests in
a proportional fair share manner. Specifically, CREDIT
reduces credits assigned to a VM in advance when its
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Figure 6: Performance across multiple VMs.

GPU requests are executed, and issues GPU requests of
a VM whose credits are highest. BAND is our scheduler
described in Sec.3.5. We prepare two GPU tasks; the
one is madd, used in the previous experiment, and the
other is an extended madd (long-madd), which performs
5 times more calculations than the regular madd. Each
VM loops one of them. We run each task on a half of the
VMs, respectively. For example, madd runs on 2 VMs
while long-madd runs on 2 VMs in the 4-VM case.

Fig. 7 shows the results. The x-axis represents the
elapsed time and the y-axis is VM’s GPU usage over 500
msec. The figure reveals that BAND is the only sched-
uler that achieves performance isolation in all cases. In
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Figure 5: Breakdown on execution time of the GPU benchmarks.

Table 3: Update count for GPU shadow page tables.
nop loop madd mmul fmadd fmmul cpy pincpy bp bfs hs lud srad srad2

FV Naive 30 30 34 34 34 34 26 28 40 42 34 30 52 40
FV Optimized 7 7 7 7 7 7 6 6 7 7 7 7 7 7

FIFO, GPU usages in long-madd are higher in all cases
since FIFO dispatches more GPU commands from long-
madd than madd. CREDIT fails to achieve the fairness
among VMs in 2-VM case. Since the command sub-
mission request queue contains the requests only from
long-madd just after the madd’s commands completed,
CREDIT dispatches the long-madd’s requests. As a re-
sult, the VM running madd has to wait for the completion
of the long-madd’s commands. BAND waits for request
arrivals for a short period just after a GPU kernel com-
pletes. BAND can handle the requests issued from the
VMs whose GPU usage is less.

CREDIT achieves fair-share GPU scheduling in 4- and
8- VM. In these cases, CREDIT has more opportunities
to dispatch less-credit VMs’ commands for the following
two reasons. First, GPUvm’s queue has GPU command
submission requests from two or more VMs just after a
GPU kernel completes, differently from the 2-VM case.
Second, GPUvm submits GPU operations from three or
more VMs that complete shortly; GPUvm can have more
scheduling points.

Note that BAND cannot achieve fairness among VMs
in a fine-grained manner on the current GPUs. Fig. 8
shows VMs’ GPU usages over 100 msec. Even with
BAND, the GPU usages are fluctuated over time. This is
because the GPU is a non-preemptive device. To achieve
finer-grained GPU fair-share scheduling, we need a novel
mechanism inside the GPU which effectively switches
GPU kernels.

6 Related Work
Table 5 briefly summarizes the characteristics of sev-
eral GPU virtualization schemes, and compares them to
GPUvm. Some vendors invent techniques of GPU virtu-
alization. NVIDIA has announced NVIDIA VGX [32],
which exploits virtualization supports of Kepler gener-
ation GPUs. These are proprietary so their details are
closed. To the best of our knowledge, GPUvm is the first
open architecture of GPU virtualization offered by the
hypervisor. GPUvm carefully selects resources to virtu-
alize, GPU page tables and channels, to keep its applica-
bility to various GPU architectures.

VMware SVGA2 [7] para-virtualizes GPUs to mit-
igate the overhead of virtualizing GPU graphics fea-
tures. The SVGA2 handles graphics-related requests
by using an architecture-independent communication to
efficiently perform 3D rendering and hide GPU hard-
ware. While this approach is specific to graphics accel-
eration, GPUvm coordinates interactions between GPUs
and guest device drivers.

Gottschalk et al. proposes low-overhead GPU virtu-
alization, named LoGV, for GPGPU applications [10].
Their approach is categorized into para-virtualization
where device drivers in VMs send requests for resource
allocation and mapping memory into system RAM to the
hypervisor. Similar to our work, this work exhibits para-
virtualization mechanisms to minimize GPGPU virtual-
ization overhead. Our work reveals which virtualization
technique for GPUs is efficient in a quantitative way.

9
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Table 4: The number of hypercall issues.
nop loop madd mmul fmadd fmmul cpy pincpy bp bfs hs lud srad srad2

PV Naive 1230 1230 1420 1420 1420 1420 2010 34784 1628 1993 1169 1429 1985 2681
PV Multicall 93 93 97 97 97 97 81 218 117 117 97 89 149 107
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Figure 7: VMs’ GPU usages (over 500 ms) on the three GPU schedulers.

API remoting, in which API calls are forwarded from
the guest to the host which has the GPU, have been stud-
ied widely. GViM [11], vCUDA [37], and rCUDA [8]
forward CUDA APIs. VMGL [24] achieves API remot-
ing of OpenGL. gVirtuS [9] supports API remoting of
CUDA, OpenCL, a part of OpenGL. In these approaches,
applications are inherently limited to APIs the wrapper-
libraries offer. Keeping the wrapper-libraries compatible
to the original ones is not trivial task since new func-
tionalities are frequently integrated into GPU libraries
including CUDA and OpenCL. Moreover API remoting
requires that the whole GPU software stacks including
device drivers and runtimes become part of the TCB.

Amazon EC2 [1] provides GPU instances. It makes
use of pass-through technology to expose a GPU to an
instance. Since a pass-throughed GPU is directly man-
aged by the guest OS, we cannot multiplex the GPU on
a physical host.
GPUvm is complementary to GPU command schedul-

ing methods. VGRIS [41] enables us to schedule GPU
commands in SLA-aware, proportional-share or the hy-
brid scheduling. Pegasus [12] coordinates GPU com-
mand queuing and CPU dispatching so that multi-VMs
can effectively share CPU and GPU resources. Disen-

gaged Scheduling [29] applies fair queuing scheduling
with a probabilistic extension to GPU, and provides pro-
tection and fairness without compromising efficiency.

XenGT [16] is GPU virtualization for Intel on-chip
GPUs with the similar design to GPUvm. Our work pro-
vides detailed analysis of the performance bottlenecks of
the current GPU virtualization. It is useful to design the
architecutre of the GPU virtualization, and also useful
for GPU vendors to design the future GPU architecture
which supports virtualization.

Some work aims at the efficient management of GPUs
at the operating system layer such as GPU command
scheduler [20], kernel-level GPU runtime [21], OS ab-
straction of GPUs [34,35] and file system for GPUs [39].
These mechanisms can be incorporated into GPUvm.

7 Conclusion
In this work, we try to answer the question; why not
virtualizing GPU at the hypervisor? This paper have
presented GPUvm, an open architecture of GPU virtu-
alization. GPUvm supports full-virtualization and para-
virtualization with optimization techniques. Experi-
mental results using our prototype showed that full-
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Figure 8: VMs’ GPU usages (over 100 ms) on the three GPU schedulers.
Table 5: A comparison of GPUvm to other GPU virtualization schemes.

Category W/o Library mod. W/o kernel mod. Multiplexing Scheduling
vCUDA [37], rCUDA [8]

API Remoting

×
√ √

×
VMGL [24] ×

√ √
×

VGRIS(gVirtuS) [9, 41] ×
√ √

SLA-aware, Proportional-share

Pegasus(GViM) [11, 12] ×
√ √ SLA-aware, Throughput-based,

Proportional fair-share
SVGA2 [7] Para-Virt.

√
×

√
×

LoGV [10]
√

×
√

×
GPU Instances [1] Pass-through

√
× × ×

GPUvm Full-Virt.& Para-Virt.
√ √ √

Credit-based fair-share

virtualization exhibits non-trivial overhead largely due
to MMIO handling, and para-virtualization provides yet
two or three times slower performance than pass-through
and native approaches. Also the results reveal that para-
virtualization is preferred in performance, though highly
compute-intensive GPU applications may also benefit
from full-virtualization if their execution times are much
larger than the overhead of full-virtualization.

For future directions, it should be investigated that
the optimization techniques proposed in vIOMMU [2]
can be applied to GPUvm. We hope our experience in
GPUvm gives insight into designing the support of de-
vice virtualization such as SR-IOV [6].
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Abstract 
Graphics Processing Unit (GPU) virtualization is an 
enabling technology in emerging virtualization 
scenarios. Unfortunately, existing GPU virtualization 
approaches are still suboptimal in performance and full 
feature support. 

This paper introduces gVirt, a product level GPU 
virtualization implementation with: 1) full GPU 
virtualization running native graphics driver in guest, 
and 2) mediated pass-through that achieves both good 
performance and scalability, and also secure isolation 
among guests. gVirt presents a virtual full-fledged GPU 
to each VM. VMs can directly access 
performance-critical resources, without intervention 
from the hypervisor in most cases, while privileged 
operations from guest are trap-and-emulated at minimal 
cost. Experiments demonstrate that gVirt can achieve 
up to 95% native performance for GPU intensive 
workloads, and scale well up to 7 VMs. 

1. Introduction 
The Graphics Processing Unit (GPU) was originally 
invented to accelerate graphics computing, such as 
gaming and video playback. Later on, GPUs were used 
in high performance computing, as well, such as image 
processing, weather broadcast, and computer aided 
design. Currently, GPUs are also commonly used in 
many general purpose applications, with the evolution 
of modern windowing systems, middleware, and web 
technologies. 

As a result, rich GPU applications present rising 
demand for full GPU virtualization with good 
performance, full features, and sharing capability. 
Modern desktop virtualization, either locally on clients 
such as XenClient [35] or remotely on servers such as 
VMware Horizon [34], requires GPU virtualization to 
support uncompromised native graphical user 
experience in a VM. In the meantime, cloud service 
providers start to build GPU-accelerated virtual 
instances, and sell GPU computing resources as a 
service [2]. Only full GPU virtualization can meet the 
diverse requirements in those usages. 

However, there remains the challenge to implement full 
GPU virtualization, with a good balance among 
performance, features and sharing capability. Figure 1 

shows the spectrum of GPU virtualization solutions 
(with hardware acceleration increasing from left to 
right). Device emulation [7] has great complexity and 
extremely low performance, so it does not meet today’s 
needs. API forwarding [3][9][22][31] employs a 
frontend driver, to forward the high level API calls 
inside a VM, to the host for acceleration. However, API 
forwarding faces the challenge of supporting full 
features, due to the complexity of intrusive 
modification in the guest graphics software stack, and 
incompatibility between the guest and host graphics 
software stacks. Direct pass-through [5][37] dedicates 
the GPU to a single VM, providing full features and the 
best performance, but at the cost of device sharing 
capability among VMs. Mediated pass-through [19], 
passes through performance-critical resources, while 
mediating privileged operations on the device, with 
good performance, full features, and sharing capability. 

 
Figure 1: The spectrum of I/O virtualization 

This paper introduces gVirt, the first product level GPU 
virtualization implementation, to our knowledge, with: 
1) full GPU virtualization running a native graphics 
driver in guest, and 2) mediated pass-through that 
achieves good performance, scalability, and also secure 
isolation among guests. A virtual GPU (vGPU), with 
full GPU features, is presented to each VM. VMs can 
directly access performance-critical resources, without 
intervention from the hypervisor in most cases, while 
privileged operations from guest are trap-and-emulated 
to provide secure isolation among VMs. The vGPU 
context is switched per quantum, to share the physical 
GPU among multiple VMs without user notice. As such, 
gVirt achieves full GPU virtualization, with a great 
balance among performance, features, and sharing 
capability. We implement gVirt in Xen, with integrated 
Intel® Processor Graphics [13] in the 4th generation 
Intel® Core™ processor. The principles and architecture 
of gVirt, however, is also applicable to different GPUs 
and hypervisors. gVirt was initially presented at the 
Xen Summit [10], and all the gVirt source code is now 
available to the open source community [8]. 
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This paper overcomes a variety of technical challenges 
and makes these contributions: 

 Introduces a full GPU virtualization solution with 
mediated pass-through that runs the native 
graphics driver in guest 

 Passes through performance-critical resource 
accesses with graphics memory resource 
partitioning, address space ballooning, and direct 
execution of guest command buffer 

 Isolates guests by auditing and protecting the 
command buffer at the time of command 
submission, with smart shadowing 

 Further improves performance with virtualization 
extension to the hardware specification and the 
graphics driver (less than 100 LOC changes to the 
Linux kernel mode graphics driver) 

 Provides a product level open source code base for 
follow-up research on GPU virtualization, and a 
comprehensive evaluation for both Linux and 
Windows guests 

 Demonstrates that gVirt can achieve up to 95% of 
native performance for GPU-intensive workloads, 
and up to 83% for workloads that stress both the 
CPU and GPU 

The rest of the paper is organized as follows. An 
overview of the GPU is provided in section 2. In 
section 3, we present the design and implementation of 
gVirt. gVirt is evaluated with a combination of graphics 
workloads, in section 4. Related work is discussed in 
section 5, and future work and conclusion are in section 
6.  

2. GPU Programming Model 
In general, Intel Processor Graphics works as shown in 
Figure 2. The render engine fetches GPU commands 
from the command buffer, to accelerate rendering 
graphics in many different features. The display engine 
fetches pixel data from the frame buffer and then sends 
them to external monitors for display.  

This architecture abstraction applies to most modern 
GPUs but may differ in how graphics memory is 
implemented. Intel Processor Graphics uses system 
memory as graphics memory, while other GPUs may 
use on-die memory. System memory can be mapped 
into multiple virtual address spaces by GPU page tables. 
A 2GB global virtual address space, called global 
graphics memory, accessible from both the GPU and 
CPU, is mapped through global page table. Local 
graphics memory spaces are supported in the form of 
multiple 2GB local virtual address spaces, but are only 

limited to access from the render engine, through local 
page tables. Global graphics memory is mostly the 
frame buffer, but also serves as the command buffer. 
Massive data accesses are made to local graphics 
memory when hardware acceleration is in progress. 
Other GPUs have some similar page table mechanism 
accompanying the on-die memory. 

  
Figure 2: The architecture of the Intel Processor Graphics 

The CPU programs the GPU through GPU-specific 
commands, shown in Figure 2, in a producer-consumer 
model. The graphics driver programs GPU commands 
into the command buffer, including primary buffer and 
batch buffer, according to high level programming APIs 
like OpenGL and DirectX. Then the GPU fetches and 
executes the commands. The primary buffer, a ring 
buffer (ring buffer), may chain other batch buffers 
(batch buffer) together. We use the terms: primary 
buffer and ring buffer, interchangeably hereafter. The 
batch buffer is used to convey the majority of the 
commands (up to ~98%) per programming model. A 
register tuple (head, tail) is used to control the ring 
buffer. The CPU submits the commands to the GPU by 
updating tail, while the GPU fetches commands from 
head, and then notifies the CPU by updating head, after 
the commands have finished execution. 

Having introduced the GPU architecture abstraction, it 
is important for us to understand how real-world 
graphics applications use the GPU hardware so that we 
can virtualize it in VMs efficiently. To do so, we 
characterized, for some representative GPU-intensive 
3D workloads (Phoronix Test Suite [28]), the usages of 
the four critical interfaces:  the frame buffer, the 
command buffer, the GPU Page Table Entries (PTEs) 
which carry the GPU page tables, and the I/O registers 
including Memory-Mapped I/O (MMIO) registers, Port 
I/O (PIO) registers, and PCI configuration space 
registers for internal state. Figure 3 shows the average 
access frequency of running Phoronix 3D workloads on 
four interfaces. 
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The frame buffer and command buffer exhibit the most 
performance-critical resources, as shown in Figure 3. 
The detail test configuration is shown in section 4. 
When the applications are being loaded, lots of source 
vertexes and pixels are written by the CPU, so the 
frame buffer accesses dominate, in the 100s of 
thousands per second. Then at run-time, the CPU 
programs the GPU, through the commands, to render 
the frame buffer, so the command buffer accesses 
become the largest group, also in the 100s of thousands 
per second. PTE and I/O accesses are minor, in tens of 
thousands per second, in both load and run-time phases. 

 
Figure 3: Access patterns of running 3D workloads 

3. Design and Implementation 
gVirt is a full GPU virtualization solution with 
mediated pass-through. As such, gVirt presents every 
VM a full-fledged GPU, to run native graphics driver 
inside a VM. The challenge, however, is significant in 
three ways: 1) complexity in virtualizing an entire 
sophisticated modern GPU, 2) performance due to 
multiple VMs sharing the GPU, and 3) secure isolation 
among the VMs without any compromise. gVirt 
reduces the complexity and achieves good performance, 
through the mediated pass-through technique, in 
subsection 3.1, 3.2, 3.3, and 3.4, and enforces the 
secure isolation, with the smart shadowing scheme in 
subsection 3.5.  

3.1. Architecture 
Figure 4 shows the overall architecture of gVirt, based 
on Xen hypervisor, with Dom0 as the privileged VM, 
and multiple user VMs. A gVirt stub module, in Xen 
hypervisor, extends the memory virtualization module 
(vMMU), including EPT for user VMs and PVMMU 
for Dom0, to implement the policies of trap and 
pass-through. Each VM runs the native graphics driver, 
and can directly access the performance-critical 
resources: the frame buffer and command buffer, with 
resource partitioning as presented in subsection 3.3 & 
3.4. To protect privileged resources, that is, the I/O 
registers and PTEs, corresponding accesses, from the 
graphics driver in user VMs and Dom0, are trapped and 

forwarded to the mediator driver in Dom0 for emulation. 
The mediator uses hypercall to access the physical GPU. 
In addition, the mediator implements a GPU scheduler, 
which runs concurrently with the CPU scheduler in Xen, 
to share the physical GPU amongst VMs. 

 
Figure 4: The gVirt Architecture 

gVirt uses the physical GPU to directly execute all the 
commands submitted from a VM, so it avoids the 
complexity of emulating the render engine, which is the 
most complex part within the GPU. In the meantime, 
the resource pass-through, of both the frame buffer and 
command buffer, minimizes the hypervisor’s 
intervention on the CPU accesses, while the GPU 
scheduler guarantees every VM a quantum for direct 
GPU execution. So gVirt achieves good performance 
when sharing the GPU amongst multiple VMs. 

gVirt stub: We extend the Xen vMMU module, to 
selectively trap or pass-through guest access of certain 
GPU resources. Traditional Xen supports only 
pass-through or trap of the entire I/O resource of a 
device, for either device emulation or device 
pass-through. gVirt manipulates the EPT entries to 
selectively present or hide a specific address range to 
user VMs, while uses a reserved bit of PTEs in 
PVMMU for Dom0, to selectively trap or pass-through 
guest accesses to a specific address range. In both cases, 
the PIO accesses are trapped. All the trapped accesses 
are forwarded to the mediator for emulation, and the 
mediator uses hypercalls to access the physical GPU. 

Mediator: gVirt mediator driver emulates virtual GPUs 
(vGPUs) for privileged resource accesses, and conducts 
context switches amongst the vGPUs. In the meantime, 
gVirt relies on the Dom0 graphics driver to initialize 
the physical device and to manage power. gVirt takes a 
flexible release model, by implementing the mediator as 
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a kernel module in Dom0, to ease the binding between 
the mediator and hypervisor. 

A split CPU/GPU scheduling mechanism is 
implemented in gVirt, for two reasons. First, the cost of 
the GPU context switch is over 1000X the cost of the 
CPU context switch (~700us vs. ~300ns, per our 
experiments). Second, the number of the CPU cores 
likely differs from the number of the GPU cores, in a 
computer system. So, gVirt implements a separate GPU 
scheduler from the existing CPU scheduler. The split 
scheduling mechanism leads to the requirement of 
concurrent accesses to the resources from both the CPU 
and the GPU. For example, while the CPU is accessing 
the graphics memory of VM1, the GPU may be 
accessing the graphics memory of VM2, concurrently.  

Native driver: gVirt runs the native graphics driver 
inside a VM, which directly accesses a portion of the 
performance-critical resources, with privileged 
operations emulated by the mediator. The split 
scheduling mechanism leads to the resource partitioning 
design in subsection 3.3. To support resource 
partitioning better, gVirt reserves a Memory-Mapped 
I/O (MMIO) register window, called gVirt_info, to 
convey the resource partitioning information to the VM. 
Note that the location and definition of gVirt_info has 
been pushed to the hardware specification as a 
virtualization extension, so the graphics driver must 
handle the extension natively, and future GPU 
generations must follow the specification for backward 
compatibility. The modification is very limited, with 
less than 100 LOC changes to Linux kernel mode 
graphics driver. 

Qemu: We reuse Qemu [7] to emulate the legacy VGA 
mode, with the virtual BIOS to boot user VMs. This 
design simplifies the mediator logic, because the 
modern graphics driver doesn’t rely on the BIOS boot 
state. It re-initializes the GPU from scratch. The gVirt 
extension module decides whether an emulation request 
should be routed to the mediator or to Qemu.  

3.2. GPU Sharing 
The mediator manages vGPUs of all VMs, by 
trap-and-emulating the privileged operations. The 
mediator handles the physical GPU interrupt, and may 
generate virtual interrupt to the designated VMs. For 
example, a physical completion interrupt of command 
execution may trigger a virtual completion interrupt, 
delivered to the rendering owner. The idea of emulating 
a vGPU instance per semantics is simple; however, the 
implementation involves a large engineering effort and 
a deep understanding of the GPU. For example, ~700 
I/O registers are accessed by the Linux graphics driver. 

Render engine scheduling: gVirt scheduler 
implements a coarse-grain quality of service (QoS) 
policy. A time quantum of 16ms is selected as the 
scheduling time slice, because it is less human 
perceptible to image change. Such a relatively large 
quantum also comes from that, the cost of the GPU 
context switch is over 1000X that of the CPU context 
switch, so it can’t be as small as the time slice in CPU 
scheduler. The commands from a VM are submitted to 
the GPU continuously, until the guest runs out of its 
time-slice. gVirt needs to wait for the guest ring buffer 
to become idle before switching, because most GPUs 
today are non-preemptive, which may impact the 
fairness. To minimize the wait overhead, gVirt 
implements a coarse-grain flow control mechanism, by 
tracking the command submission to guarantee the 
piled commands, at any time, are within a certain limit. 
Therefore, the time drift between the allocated time 
slice and the executed time is relatively small, 
compared to the large quantum, so a coarse-grain QoS 
policy is achieved. 

Render context switch: gVirt saves and restores 
internal pipeline state and I/O register states, plus 
cache/TLB flush, when switching the render engine 
among vGPUs. The internal pipeline state is invisible to 
the CPU, but can be saved and restored through GPU 
commands. Saving/restoring I/O register states can be 
achieved through reads/writes to a list of the registers in 
the render context. Internal cache and Translation 
Lookaside Table (TLB), included in modern GPUs to 
accelerate data accesses and address translations, must 
be flushed using commands at render context switch, to 
guarantee isolation and correctness. The steps used to 
switch a context in gVirt are: 1) save current I/O states, 
2) flush the current context, 3) use the additional 
commands to save the current context, 4) use the 
additional commands to restore the new context, and 5) 
restore I/O state of the new context. 

gVirt uses a dedicated ring buffer to carry the 
additional GPU commands. gVirt may reuse the 
(audited) guest ring buffer for performance, but it is not 
safe to directly insert the commands into the guest ring 
buffer, because the CPU may continue to queue more 
commands as well, leading to overwritten content. To 
avoid the race condition, gVirt switches from the guest 
ring buffer to its own dedicated ring buffer. At the end 
of the context switch, gVirt switches from the dedicated 
ring buffer to the guest ring buffer of the new VM. 

Display management: gVirt reuses the Dom0 graphics 
driver to initialize the display engine, and then manages 
the display engine to show different VM frame buffers. 
When two vGPUs have the same resolution, only the 
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frame buffer locations are switched. For different 
resolutions, gVirt uses the hardware scalar, a common 
feature in modern GPUs, to scale the resolution up and 
down automatically. Both methods take mere 
milliseconds. In many cases, gVirt may not require the 
display management, if the VM is not shown on the 
physical display, for example, when it is hosted on the 
remote servers [34]. 

3.3. Pass-Through 
gVirt passes through the accesses to the frame buffer 
and command buffer to accelerate performance-critical 
operations from a VM. For the global graphics memory 
space, 2GB in size, we propose graphics memory 
resource partitioning and address space ballooning 
mechanism. For the local graphics memory spaces, 
each with a size of 2GB too, we implement per-VM 
local graphics memory, through render context switch, 
due to local graphics memory only accessible by GPU. 

Graphics memory resource partitioning: gVirt 
partitions the global graphics memory among VMs. As 
explained in subsection 3.1, split CPU/GPU scheduling 
mechanism requires that the global graphics memory of 
different VMs can be accessed simultaneously by the 
CPU and the GPU, so gVirt must, at any time, present 
each VM with its own resource, leading to the resource 
partitioning approaching, for global graphics memory, 
as shown in Figure 5. 

 
Figure 5: Graphics memory with resource partitioning 

The performance impact of the reduced global graphics 
memory resource, due to the partitioning, is very limited 
according to our experiments. Results are shown in 
Figure 6, with performance normalized to the score of 
the default 2GB case. We did experiments in the native 
environment, and then scaled the 2GB global graphics 
memory down to 1/2, 1/4, and 1/8, with negligible 
performance impact observed. This is because the 
driver uses the local graphics memory to hold the 
massive rendering data, while the global graphics 
memory mostly serves only for the frame buffer, and 
the ring buffer, which are limited in size. 

The resource partitioning also reveals an interesting 
problem: the guest and host now have an inconsistent 
view of the global graphics memory. The guest 
graphics driver is unaware of the partitioning, assuming 
with exclusive ownership: the global graphics memory 
is contiguous, starting from address zero. gVirt has to 
translate between the host view and the guest view, for 

any graphics address, before being accessed by the 
CPU and GPU. It therefore incurs more complexity and 
additional overhead, such as additional accesses to the 
command buffer (usually mapped as un-cacheable and 
thus slow on access).  

 
Figure 6: The performance with different size of the global 

graphics memory 

Address space ballooning: We introduce the address 
space ballooning technique, to eliminate the address 
translation overhead, illustrated in Figure 7. gVirt 
exposes the partitioning information to the VM 
graphics driver, through the gVirt_info MMIO window. 
The graphics driver marks other VMs’ regions as 
‘ballooned’, and reserves them from its graphics 
memory allocator. With such design, the guest view of 
global graphics memory space is exactly the same as 
the host view, and the driver programmed addresses, 
using guest physical address, can be directly used by 
the hardware. Address space ballooning is different 
from traditional memory ballooning techniques. 
Memory ballooning is for memory usage control, 
concerning the number of ballooned pages, while 
address space ballooning is to balloon special memory 
address ranges.  

 
Figure 7: Graphics memory with address space ballooning 

Another benefit of address space ballooning is to 
directly use the guest command buffer, without any 
address translation overhead, for direct GPU execution. 
It simplifies the implementation a lot, by eliminating 
the need of the shadow command buffer, in addition to 
performance guarantee. However, such scheme may be 
susceptible to security violation. We address this issue 
with smart shadowing, by auditing and protecting the 
command buffer from malicious attack, which is 
discussed in subsection 3.5. 
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Per-VM local graphics memory: gVirt allows each 
VM to use the full local graphics memory spaces, of its 
own, similar to the virtual address spaces on CPU. The 
local graphics memory spaces are only visible to the 
render engine in the GPU. So, any valid local graphics 
memory address programmed by a VM can be used 
directly by the GPU. The mediator switches the local 
graphics memory spaces, between VMs, when 
switching the render ownership. 

3.4. GPU Page Table Virtualization 
gVirt virtualizes the GPU page tables with shared 
shadow global page table and per-VM shadow local 
page table. 

Shared shadow global page table: To achieve resource 
partitioning and address space ballooning, gVirt 
implements shared shadow global page table for all 
VMs. Each VM has its own guest global page table, 
translated from the graphics memory page number to 
the Guest memory Page Number (GPN). Shadow 
global page table is then translated from the graphics 
memory page number to the Host memory Page 
Number (HPN). The shared shadow global page table 
maintains the translations for all VMs, to support 
concurrent accesses from the CPU and GPU 
concurrently. Therefore, gVirt implements a single, 
shared shadow global page table, by trapping guest 
PTE updates, as shown in Figure 8. The global page 
table, in MMIO space, has 512K PTE entries, each 
pointing to a 4KB system memory page, so in overall 
creates a 2GB global graphics memory space. gVirt 
audits the guest PTE values, according to the address 
space ballooning information, before updating the 
shadow PTE entries. 

 
Figure 8: Shared shadow global page table 

Per-VM Shadow local page tables: To support 
pass-through of local graphics memory access, gVirt 
implements per-VM shadow local page tables. The 
local graphics memory is only accessible from the 
render engine. The local page tables are two-level 
paging structures, as shown in Figure 9. The first level 
Page Directory Entries (PDEs), located in the global 
page table, points to the second level Page Table 
Entries (PTEs), in the system memory. So, guest access 

to the PDE is trapped and emulated, through the 
implementation of shared shadow global page table. 
gVirt also write-protects a list of guest PTE pages, for 
each VM, as the traditional shadow page table approach 
does [15][25] . The mediator synchronizes the shadow 
page with the guest page, at the time of write-protection 
page fault, and switches the shadow local page tables at 
render context switches. 

  
Figure 9: Per-VM shadow local page table  

3.5. Security 
Pass-through is great for performance, but it must meet 
the following criteria for secure isolation. First, a VM 
must be prohibited from mapping unauthorized 
graphics memory pages. Second, all the GPU registers 
and commands, programmed by a VM, must be 
validated to only contain authorized graphics memory 
addresses. Last, gVirt needs to address denial-of-service 
attacks, for example, a VM may deliberately trigger lots 
of GPU hangs. 

3.5.1. Inter-VM Isolation 
Isolation of CPU accesses: CPU accesses to privileged 
I/O registers and PTEs are trap-and-emulated, under the 
control of the mediator. Therefore a malicious VM can 
neither directly change the physical GPU context, nor 
map unauthorized graphics memory. CPU access to 
frame buffer and command buffer is also protected, by 
the EPT.  

On the other hand, gVirt reuses the guest command 
buffer, for the GPU to execute directly for performance, 
as mentioned in subsection 3.3, but, it may violate 
isolation, for example, a malicious command may 
contain an unauthorized graphics memory address. 
gVirt solves the problem with smart shadowing as 
detailed in subsection 3.5.2. 

Isolation of GPU accesses: gVirt audits graphics 
memory addresses, in registers and commands, before 
the addresses are used by the GPU. It is implemented at 
the time of trap-and-emulating the register access, and 
at the time of command submission.  

Denial-of-service attack: gVirt uses the device reset 
feature, widely supported in modern GPUs, to mitigate 
the deny-of-service attacks. The GPU is so complex, 
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that an application may cause the GPU to hang for 
many reasons. So, modern GPUs support device reset to 
dynamically recover the GPU, without the need to 
reboot the whole system. gVirt uses this capability to 
recover from a variety of GPU hangs, caused by 
problematic commands from VMs. In the meantime, 
upon the detection of a physical GPU hang, gVirt also 
emulates a GPU hang event, by removing all the VMs 
from the run queue, allowing each VM to detect and 
recover accordingly. A threshold is maintained for 
every VM, and a VM is destroyed if the number of 
GPU hangs exceeds the threshold.  

3.5.2. Command Protection 
Balancing performance and security is challenging for 
full GPU virtualization. To guarantee no unauthorized 
address reference from the GPU, gVirt audits the guest 
command buffer at the time of command submission. 
However there exists a window, between the time when 
the commands are submitted and when they are actually 
executed, so a malicious VM may break the isolation by 
modifying the commands within that window. General 
shadowing mechanism, such as the shadow page table 
[15][25], may be applied. However, it is originally 
designed for the case where the guest content is 
frequently modified. It may bring large performance 
overhead and additional complexity in gVirt. 

The programming models of the command buffers 
actually differ from that of the page tables. First, the 
primary buffer, structured as a ring buffer, is statically 
allocated with limited page number (32 pages in Linux 
and 16 pages in Windows), and modification to 
submitted ring commands (from head to tail) is not 
allowed, per the hardware specification. It may be 
efficient enough to copy only the submitted commands 
to the shadow buffer. Second, the batch buffer pages 
are allocated on demand, and chained into the ring 
buffer. Once the batch buffer page is submitted, it will 
unlikely be accessed until the page is retired. Shadow 
buffer can be avoided for such one-time usage. 

gVirt implements a smart shadowing mechanism, with 
different protecting schemes for different buffers, by 
taking advantage of their specific programming models. 
That is: Write-Protection to the batch buffer, which is 
unlikely modified (so, the write emulation cost is very 
limited), and Lazy-Shadowing for the ring buffer, 
which is small in size and can be copied from the guest 
buffer to the shadow buffer with trivial cost. 

Lazy-shadowing to the ring buffer: gVirt uses a lazy 
shadowing scheme to close the attack window on the 
ring buffer. gVirt creates a separate ring buffer, that is, 
the shadow ring buffer, to convey the actual commands 

submitted to the GPU. Guest submitted commands are 
copied from the guest ring buffer to the shadow ring 
buffer on demand, after the commands are audited. 
Note that only the commands submitted to the GPU, are 
shadowed here. Guest access remains passed through to 
the guest ring buffer, without the hypervisor 
intervention. The shadow buffer lazily synchronizes 
with the guest buffer, when the guest submits new 
commands. The shadow buffer is invisible to a VM, so 
there is no chance for a malicious VM to attack. 

Write-Protection to the batch buffer: The batch buffer 
pages are write-protected, and the commands are 
audited before submitting to the GPU for execution, to 
close the attack window. The write-protection is applied 
per page on demand, and is removed after the execution 
of commands in this page is completed by the GPU, 
which is detected by tracking the advance of ring head. 
Modification to the submitted commands is a violation 
of the graphics programming model per specification, 
so any guest modification to the submitted commands is 
viewed as an attack leading to the termination of the 
VM. In the meantime, the command buffer usage may 
not be page aligned, and the guest may use the free 
sub-page space for new commands. gVirt tracks the 
used and unused space of each batch buffer page, and 
emulates the guest writes to the unused space of the 
protected page for correctness.  

Lazy-shadowing works well for the ring buffer. It incurs 
an average number of 9K command copies per second, 
which is a minor cost to a modern multi-GHz CPU. In 
the meantime, Write-Protection works well for the 
batch buffer, which protects ~1700 pages with only 
~560 trap-and-emulations per second, on average.  

3.6. Optimization 
An additional optimization is introduced to reduce the 
trap frequency, with minor modifications to the native 
graphics driver. According to the hardware 
specification, the graphics driver has to use a special 
programming pattern at the time of accessing certain 
MMIO, with up to 7 additional MMIO register accesses 
[12][13], to prevent the GPU from entering power 
saving mode. It doesn’t incur an obvious cost in the 
native world, but it may become a big performance 
challenge, in gVirt, due to the induced mediation 
overhead. Our GPU power management design gives us 
a chance to optimize: gVirt relies on Dom0 to manage 
the physical GPU power, while the guest power 
management is disabled. Based on this, we optimize the 
native graphics driver, with a few lines (10 LOC change 
in Linux) of changes, to skip the additional MMIO 
register accesses, when it runs in the virtualized 
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environment. This optimization reduces the trap 
frequency by 60%, on average. 

The graphics driver identifies whether it is in a native 
environment or a virtualization environment, by the 
information in gVirt_info MMIO window (refer to 
subsection 3.1). The definition of gVirt_info has been 
pushed into the GPU hardware specification, so 
backward compatibility can be followed by future 
native graphics driver and future GPU generations.  

3.7. Discussion 
Architecture independency: Although gVirt is 
currently implemented on Intel Processor Graphics, the 
principles and architecture can also be applied to 
different GPUs. The notion of frame buffer, command 
buffer, I/O registers, and page tables, are all abstracted 
very well in modern GPUs. Some GPUs may use on-die 
graphics memory, however, the graphics memory 
resource partitioning and address space ballooning 
mechanism, used in gVirt, are also amendable to those 
GPUs. In addition, the shadowing mechanism, for both 
the page table and command buffer, is generalized for 
different GPUs as well. The GPU scheduler is generic, 
too, while the specific context switch sequence may be 
different. 

Hypervisor portability: It is easy to port gVirt to other 
hypervisors. The core component of gVirt is hypervisor 
agnostic. Although the current implementation is on a 
type-1 hypervisor, we can easily extend gVirt to the 
type-2 hypervisor, such as KVM [17], with hooks to 
host MMIO access (Linux graphics driver). For 
example, one can register callbacks on the I/O access 
interfaces, in the host graphics driver, so the mediator 
can intercept and emulate the host driver accesses to the 
privileged GPU resources. 

VM scalability: Although partitioning graphics 
memory resource may limit scalability, we argue it can 
be solved in two orthogonal ways. The first way is to 
make better use of the existing graphics memory, by 
implementing a dynamic resource ballooning 
mechanism, with additional driver cooperation, to share 
the graphics memory among vGPUs. The other way is 
to increase available graphics memory resource, by 
adding more graphics memory in future generation 
GPUs. 

Scheduling dependency: An additional challenge, of 
full GPU virtualization, is the dependency of engines, 
such as 3D, blitter, and media. The graphics driver may 
use semaphore commands, to synchronize shared data 
structures among the engines, while the semaphore 
commands may not be preempted. It then brings the 
issue of inter-engine dependency, and leads to the gang 

scheduling policy in gVirt, to always schedule all 
engines together; however, it impacts the sharing 
efficiency. We argue this limitation can be addressed, 
with a hybrid scheme combining both per-engine 
scheduling and gang scheduling, through constructing 
an inter-engine dependency graph, when the command 
buffers are audited. Then, GPU scheduler can choose 
per-engine scheduling and gang scheduling policies 
dynamically, according to the dependency graph. 

4. Evaluation 
We run 3D and 2D workloads in both Linux and 
Windows VMs. For Linux 3D workloads, gVirt 
achieves 89%, 95%, 91%, and 60% of native 
performance in LightsMark, OpenArena, Nexuiz, and 
UrbanTerror, respectively. For Linux 2D workloads, 
gVirt achieves 81%, 35%, 28%, and 83% of native 
performance, in firefox-asteroids, firefox-scrolling, 
midori-zoomed, and gnome-system-monitor, 
respectively. For Windows workloads, gVirt achieves 
83%, 80%, and 76% of native performance, running 
3DMark06, Heaven3D, and PassMark2D, respectively. 
In the meantime, gVirt scales well without a visible 
performance drop, up to 7 VMs. 

4.1. Configuration 

The hardware platform includes the 4th generation Intel 
Core processor with 4 CPU cores (2.4Ghz), 8GB 
system memory, and a 256GB Intel 520 series SSD disk. 
The Intel Processor Graphics, integrated in the CPU 
socket, supports a 2GB global graphics memory space 
and multiple 2GB local graphics memory spaces. 

We run 64bit Ubuntu 12.04 with a 3.8 kernel in both 
Dom0 and Linux guest, and 64-bit Windows 7 in 
Windows guest, on top of Xen version 4.3. Both Linux 
and Windows runs native graphics driver with 
virtualization extension (refer to subsection 3.1). Each 
VM is allocated with 4 VCPUs and 2GB system 
memory. The global graphics memory resources are 
evenly partitioned among VMs, including Dom0. For 
example, the guest is partitioned with 1GB global 
graphics memory in the 1-VM case, and 512MB in the 
3-VM case, respectively. 

We use the Phoronix Test Suite [28] 3D benchmark 
including LighsMark, OpenArena, UrbanTerror, and 
Nexuiz, and Cairo-perf-trace [4] 2D benchmark 
including firefox-asteroids (firefox-ast), 
firefox-scrolling (firefox-scr), midori-zoomed (midori), 
and gnome-system-monitor (gnome), as the Linux 
benchmarks. In subsection 4.5, we run Windows 
3DMark06 [1], Heaven3D [11] and PassMark2D [26] 
workloads. All benchmarks are run in full screen 
resolution (1920x1080). We compare gVirt to the 
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native, the direct pass-through (based on Intel VT-d), 
and also to an API forwarding solution (VMGL [9]). 
We didn’t collect the software emulation approach, 
since it has already been proved infeasible for modern 
GPU virtualization [9][22].  

Three gVirt configurations are examined to show the 
merits of individual technologies incrementally. 

 gVirt_base: baseline gVirt without smart 
shadowing and trap optimization 

 gVirt_sec: gVirt_base with smart shadowing  
 gVirt_opt: gVirt_sec with trap optimization 

4.2. Performance  
Figure 10 shows the performance of both Linux 3D and 
2D workloads normalized to native. 3D workloads are 
GPU intensive except UrbanTerror. gVirt_base 
achieves 90%, 94%, 89%, and 47% of native 
performance for LightsMark, OpenArena, Nexuiz, and 
UrbanTerror, respectively. UrbanTerror is both CPU 
and GPU intensive, so it suffers from mediation cost 
more than the others.  

For Linux 2D workloads, gVirt_base achieves 63% and 
75% of native performance, for firefox-asteroids 
(firefox-ast) and gnome-system-monitor (gnome), 
respectively. However, it reaches only 12% and 15% of 
native performance, for firefox-scrolling (firefox-scr) 
and midori-zoomed (Midori) workloads, respectively. 
This is because they are both CPU and GPU intensive, 
incurring an up to 61K/s trap frequency, resulting in a 
very high mediation cost, explained in subsection 4.3.  

 
Figure 10: Performance running 3D and 2D workloads 

gVirt_sec incurs an average 2.6% and 4.3% 
performance overhead in 3D and 2D workloads, 
respectively, much more efficient than a traditional 
shadowing approach [15][25]. It demonstrates that the 
smart shadowing scheme can protect the command 
buffer very effectively, taking advantage of the GPU 
programming model. 

gVirt_opt further improves the performance, up to 214% 
and 35%, in 2D and 3D workloads, respectively, by 

optimizing the native graphics driver to reduce the trap 
frequency. Firefox-scrolling and midori-zoomed 
achieves the most obvious increase in 2D workloads, by 
214% and 104%, respectively. This is because they 
trigger very high access frequency of I/O registers 
(54k/s and 40k/s), so they benefit more from trap 
optimization. In 3D workloads, gVirt with optimization 
achieves 89%, 95%, 91%, and 60% of native 
performance, in LightsMark, OpenArena, Nexuiz, and 
UrbanTerror, respectively. The performance of gVirt is 
very close to VT-d with direct GPU pass-through.  
VMGL performs much worse than gVirt, with only  
13% of native performance (vs. 60% in gVirt) in 
UrbanTerror, average 29% of native performance (vs. 
57% in gVirt) in 2D workloads, and it fails to run 
LightsMark. 

  
Figure 11: gVirt handles up to 238% more commands, per 

second, with trap optimization 

Furthermore, Figure 11 shows the number of submitted 
commands per second, with and without trap 
optimization. UrbanTerror submits 31% more 
commands per second, with optimization, matching the 
35% performance improvement in Figure 10. In 
firefox-scrolling and midori-zoomed, gVirt handles 238% 
and 99% more commands per second, with 
optimization, matching the 214% and 104% 
performance increase in Figure 10, as well. 

  
Figure 12: gVirt handles average 8X more commands, per 

submission, in 3D workloads 
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We also compare the number of commands per 
submission, between 3D and 2D workloads, as shown 
in Figure 12. On average, 3D workloads submit 8X more 
commands, in every submission, compared to 2D 
workloads. As a result, 3D workloads induce less 
mediation overhead per command and achieve better 
performance. 

4.3. Overhead Analysis 
We categorize the trap events of gVirt into 4 groups: 
power management registers (PM) accesses, tail 
register accesses of ring buffer (Tail), PTE accesses 
(PTE), and other accesses (Others).  

Figure 13 illustrates the break-down of the trap events in 
gVirt_sec. For 3D workloads, there are around 23K, 
22K, 27K, and 33K trap events per second, when 
running LightsMark, OpenArena, UrbanTerror and 
Nexuiz, respectively. Among them, ‘PM’ register 
access dominates, accounting for up to 67%, 65%, 72%, 
and 61% of the total trap events, because Linux 
graphics driver accesses additional PM registers (up to 
7) to protect the hardware from entering power saving 
mode, per hardware specification, when accessing 
certain registers [12][13]. Tail register access counts for 
13%, 12%, 17%, and 13% of the total trap events, 
respectively. Similarly, ‘PM’ register access in 2D 
workloads dominates the trap events as well, 
accounting for 76% of the total trap rate, on average. 
2D workloads has an average 37K/s trap events, 42% 
higher than that in the 3D workload (26K/s). 

 
Figure 13: Break-down of the trap frequency, before and 

after optimization 

gVirt_opt reduces the trap events dramatically, as 
shown in Figure 13. The trap event reduction comes 
from the removal of all the PM register accesses, which 
is unnecessary to vGPUs (The real power is managed 
by Dom0). After the optimization, gVirt reduces the 
trap rate by an average 65% and 54% for 3D and 2D 
workloads, respectively. Firefox-scrolling and 
midori-zoomed have more tail updates, from 19% and 
18%, respectively, to 92% and 76% of total traps, 

which matches the much improved performance (214% 
and 104% higher), as seen in Figure 10. 

The overhead of the smart shadowing scheme is very 
limited. gVirt_sec copies average 5K and 12.8K ring 
buffer commands (typically 1-5 double-words per 
command), per second, for 3D and 2D workloads, 
respectively. It write-protects an average of 2000 and 
1300 batch buffer pages, along with ~870 and ~150 
write emulations due to unaligned batch buffer usages, 
per second, in 3D and 2D workload, respectively. The 
CPU cycles spent for smart shadowing are trivial for a 
modern multi-GHz processor. gVirt_sec incurs very 
limited virtualization overhead, matching the 
performance shown in subsection 4.2. 

4.4. Scalability 
Figure 14 presents the scalability of gVirt (gVirt_opt), 
with all features and optimizations, from 1 VM to 7 
VMs, running the same workloads in all VMs, with 
performance normalized to 1 VM case. For LightsMark, 
OpenArena and Nexuiz, the performance remains 
almost flat, demonstrating that the GPU computing 
power can be efficiently shared among multiple VMs. 
In UrbanTerror, we see an 8% performance increase, 
from 1vm to 7vm, because CPU parallelism helps 
UrbanTerror, which is both GPU and CPU intensive. 
For 2D workloads, firefox-asteroids and 
gnome-system-monitor doubles performance from 1vm 
to 3vm, because they are more CPU intensive 
(relatively low access rate to GPU resources), so adding 
more VMs improves performance. The physical CPU 
cores saturate eventually, so the performance remains 
flat, from 3vm to 7vm. In all cases, the performance of 
gVirt doesn’t drop obviously with more VMs, 
demonstrating very good scalability. 

 
Figure 14: Scalability of gVirt 

4.5. Windows 

Figure 15 shows the performance of Windows graphics 
workloads, with smart shadowing and trap optimization 
(gVirt_opt). We didn’t run the baseline gVirt 
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performance, because the Windows driver we received 
from the production group has already implemented the 
virtualization extension, without an option to turn off 
the trap optimization. For 3DMark06 and Heaven3D, 
gVirt achieves 83% and 81% of native performance, 
respectively, which are very close to the VT-d 
performance (85% and 87% of native performance). In 
PassMark2D, gVirt achieves 76% of native 
performance, better than that of the Linux 2D 
workloads (average 57% of native performance), 
because Windows 2D workload incurs only an average 
6k traps per second, 57% less than that of Linux 2D 
workloads, and therefore less mediation cost. VMGL 
doesn’t support Windows guest. 

 
Figure 15: Performance running Windows 3D/2D workloads 

Further experiments show that smart shadowing brings 
only 1.1% and 4.8% performance overhead for 
Windows 3D and 2D workloads, respectively. It 
write-protects an average 3600 batch buffer pages, and 
copies about 10k ring buffer commands, per second, 
demonstrating that the smart shadowing scheme can 
protect the command buffer very efficiently, taking 
advantage of the GPU programming model, in 
Windows as well. 

5. Related Work 
Emulating a full-fledged GPU, purely through software, 
is impractical due to complexity and extremely low 
performance. Qemu [7] emulates only the legacy VGA 
cards, with a para-virtualized frame buffer [20] to 
accelerate 2D specific frame buffer accesses. 

API forwarding is the most widely studied technique 
for GPU virtualization, so far. VMGL [9], Xen3D [3] 
and Blink [14] install a new OpenGL library in Linux 
VM, forwarding OpenGL API calls to the host graphics 
stack for acceleration.. GViM [31], vCUDA [18] and 
LoGV [23] implement similar API forwarding 
techniques, focusing on GPGPU computing. VMware’s 
Virtual GPU [22] emulates a virtual SVGA device, 
implementing a private SVGA3D protocol to forward 
the DirectX API calls. However, API forwarding faces 
the challenge of supporting full features, due to the 
complexity of intrusive modification in the guest 

graphics stack, and incompatibility between the guest 
and host graphics stack.  

Device Pass-through achieves high performance in I/O 
virtualization. VT-d [5][37] translates memory 
addresses of DMA requests, allowing the GPU to be 
assigned to a single VM. SR-IOV [27] extends the 
VT-d technology with a device hardware extension. It 
has been widely used in the network device [36], by 
creating multiple virtual functions, which can be 
individually assigned to VMs. VPIO [19] introduces a 
“virtual pass-through I/O” concept, where the guest can 
access the hardware resource directly, mostly of the 
time, for legacy network cards (NE2000 and RTL8139). 
They either sacrifice the sharing capability, or are not 
yet available to modern GPUs. 

GPU scheduler is well explored. Kato [29] et al. 
implements a priority-based scheduling policy for 
multi-tasking environment, based on monitoring GPU 
commands issued from user space. Kato [30] et al. 
further extends that policy with a context-queuing 
scheme and virtual GPU support. Gupta [32] et al. 
proposes CPU and GPU coordinated scheduling, with a 
uniform resource usage model to describe the 
heterogeneous computing cores. Ravi [33] et al. 
implements a scheduling policy, based on affinity score 
between kernels, when consolidating kernels among 
multiple VMs. Becchi [21] et al. proposes a virtual 
memory based runtime, supporting flexible scheduling 
policies, to dynamically bind applications to a cluster of 
GPUs. Menychtas [16] et al. proposes a disengaged 
scheduling policy, having the kernel grant application 
access to the GPU, based on infrequent monitoring of 
the application’s GPU cycle use. They were not applied 
to full GPU virtualization, yet. 

NVIDIA GRID [24] allows each VM’s GPU 
commands to be passed directly to the GPU for 
acceleration. A vGPU manager shares the GPU based 
on time slices. It looks similar to gVirt in some ways; 
however there is no public information on technical 
details, or open access to the project. 

6. Conclusion and Future Work 
gVirt is a full GPU virtualization solution with 
mediated pass-through, running a native graphics driver 
in the VM, with a good balance among performance, 
features, and secure sharing capability. We introduce 
the overall architecture, with the policies of mediation 
and pass-through base on the access patterns to the 
GPU interfaces. To ensure efficient and secure graphics 
memory virtualization, we propose graphics memory 
resource partitioning, address space ballooning, shared 
shadow global page table, per-VM shadow local page 
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table, smart shadowing mechanism, and additional 
optimization to remove the unnecessary trap events. 
gVirt presents a vGPU instance to each VM, with full 
features, based on trap-and-emulating privileged 
operations. Such full GPU virtualization solution allows 
the native graphics driver to be run inside a VM. We 
also reveal that different programming model of 
applications might introduce different trap frequency 
and therefore different virtualization overhead. Lastly, 
gVirt is an open source implementation, so it provides a 
solid base for follow-up GPU virtualization research. 

As for future work, we will focus on the areas of 
portability, scalability, and scheduling areas, as 
discussed in subsection 3.7, in addition to fined-grained 
QoS scheduling policy. In the meantime, we will 
evaluate hardware assistance to further reduce the 
mediation cost. Hypervisor interposition features are 
also interesting to us, for example, supporting VM 
suspend/resume and live migration [6]. With gVirt as 
the vehicle, we will extend full GPU virtualization to 
more usages, in desktop, server, and mobile devices, to 
exploit specific challenges in different use cases. 
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Abstract

Server Flash Cache (SFC) is increasingly adopted in vir-

tualization environments for IO acceleration. Deciding

the optimal SFC allocation among VMs or VM disks is

a major pain-point, dominantly handled manually by ad-

ministrators. In this paper, we present vCacheShare, a

dynamic, workload-aware, policy-driven framework for

continuous and automated optimization of SFC space

partitioning. Its decision-making is based on multiple IO

access characteristics. In particular, vCacheShare adopts

a cache utility model that captures both longer-term lo-

cality behavior and transient locality spikes.

This paper validates the growing applicability of an-

alytical programming techniques to solve real-time re-

source management problems, traditionally addressed

using heuristics. We designed vCacheShare to coordi-

nate with typical VM mobility events and implemented it

within the widely used ESXi hypervisor. We performed

extensive evaluation using 13 representative enterprise

IO workloads, one IO benchmark, and two end-to-end

deployment test cases targeting Virtual Desktop Infras-

tructure (VDI) and data warehousing scenarios respec-

tively. Our results verified the advantage of vCacheShare

over implicit management schemes such as global LRU,

and confirmed its self-adaptive capability.

1 Introduction

Solid State Disks (SSDs) are being increasingly used

in virtualized environments as an SFC (Server Flash

Cache) to accelerate I/O operations of guest Virtual Ma-

chines (VMs). However, growing CPU bandwidth and

memory capacities are enabling higher VM-to-server

consolidation ratios, making SFC management a night-

mare. The onus of proportional allocation of SFC space

among VMs is handled manually by administrators to-

day, based on heuristics and oftentimes simply guess-

work. Besides, allocations should not be one-time ac-

tivities, but continuously optimized for changing charac-

teristics of workloads, device service times, and config-

∗With VMware during this work

uration events related to VM mobility. In order to ef-

fectively leverage flash for its $/IOPS advantages and to

address existing performance bottlenecks within the in-

frastructure, it is critical to extend the hypervisor to au-

tomate and continuously optimize the space management

of SFC, similar to other hardware resources.

The primary use-case of SFC is to speed up applica-

tions running inside VMs. Scenarios with performance

bottleneck of the backend storage arrays benefit the most,

delaying capital investments in provisioning of new hard-

ware. At the hypervisor level, SFC space optimization

translates to reducing the I/O latency of VMs, which are

prioritized based on administrator input. The optimiza-

tion needs to take into account multiple dimensions:

• VM priority: VMs have different importance de-

pending on applications running inside.

• Locality of reference: A VM running low-locality

workload(s) does not benefit as much from caching

and should therefore receive smaller allocation.

• I/O access characteristics: A VM running write-

heavy workload(s) may receive smaller benefit and

incur higher cost with flash caching, due to SSD

devices’ asymmetric read-write performance and

write durability concerns.

• Backend storage device service times: A VM Disk

on faster (or less busy) backend storage benefits less

from SFC allocation.

• Configuration events: Hypervisors are optimized to

continuously monitor and optimize the placement

of resources from a virtualized pool of hardware.

Guest VMs can be migrated to other servers with-

out application down time, with ready functionality

available such as VMware vMotion.

Current commercial solutions [1, 2, 3, 4, 5, 6] re-

quire administrators to carve static space allocations at

the time of enabling SFC for VMs. Meanwhile, mem-

ory virtualization techniques within hypervisors are not

directly applicable to SFC space management. The rea-

sons are two-fold. First, memory resources are explic-

itly requested by users and the hypervisor has to satisfy

1
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such requests with reasonable latency, while cache re-

sources are transparent to applications and allocated by

the hypervisor for performance enhancement. Second,

typical VMs expect their data to be memory-resident in

most cases, and heavy swap activities are seen as an in-

dication of intensive memory contention and may subse-

quently trigger VM migration. In contrast, flash cache

is designed as an intermediate level of storage, in order

to accelerate IO rather than to accommodate all VMs’

combined working set. At the same time, existing CPU

cache partitioning techniques [7, 8, 9] will not be able to

exploit options available to managing flash-based SSD

cache spaces. The latter problem is significantly differ-

ent in aspects such as response time, space availability

for optimization, access patterns, and performance con-

straints. In general, affordable in-memory book keep-

ing and the much slower storage access enable a much

larger solution space and more sophisticated algorithms.

Unique flash storage issues such as write endurance also

bring additional complexities.

Another alternative is to retrofit IO QoS management

techniques [10, 11] for SFC management. IO QoS

aims at providing fairness and prioritization among re-

quests serviced under bandwidth contention. This prob-

lem is different from SFC management, as the defini-

tion of resource contention is much less straight-forward

for caching — the criteria here is not “actively used

cache space” by the VM, but rather the performance gain

through caching based on its IO access locality behavior.

In this paper, we present vCacheShare, a dynamic,

workload-aware, policy-driven framework for automated

allocation of flash cache space on a per-VM or per-VM-

Disk basis. vCacheShare combines the dimensions of

data locality, IO operation characteristics, and device

service time into a self-evolving cache utility model.

It approaches flash cache allocation/partitioning as a

constrained optimization problem with the objective of

maximizing the cumulative cache utility, weighted by

administrator-specified VM priorities.

Contributions This paper addresses the pain-point of

optimal space partitioning of SFC in a virtualization

environment. Our goal is to develop a mathematical

optimization solution for SFC management. With the

trend of CPU threads per socket doubling every 12-18

months [12], we think the time has come for resource

management techniques to adopt such strategies for dy-

namic multi-dimensional optimization.

We consider the major contributions of this work as

follows: (1) We addressed a unique challenge in man-

aging time-varying IO behavior common to many VM

workloads, namely, the conflict in long-term behavior

analysis required for accurate cache hit ratio estima-

tion and fast response required for handling transient lo-

cality bursts. In response, we propose a novel cache

utility modeling approach that takes into consideration

both long-term reuse patterns and short-term reuse in-

tensity levels. (2) We designed vCacheShare, a cost-

effective, adaptive framework that scales in today’s high-

VM-density environments, based on the proposed tech-

niques. (3) We implemented our prototype within a

widely used commercial hypervisor, VMware ESXi 5.0,

and performed extensive evaluation using a combination

of 10+ real-world traces, one IO benchmark, and two

workload deployment tests with up to 100 VM instances.

2 A Bird’s Eye-view of vCacheShare

2.1 Target Environment

Typically in a datacenter using virtualization, multiple

hosts share the same SAN/NAS storage to utilize the rich

set of functionality provided by the hypervisor. The hosts

sharing storage form a cluster within the datacenter. In

such an environment, a file or block storage is visible

to the Virtual Machine (VM) as a Virtual Machine Disk

(VMDK). One VM could have multiple VMDKs just as

a physical machine may have several physical disks. The

hypervisor (sometimes referred to as server) internally

tracks VMs and VMDKs using Universally Unique Iden-

tifiers (UUIDs). The UUIDs for VMs and VMDKs are

unique cluster-wide. In our target environment, both

VMs and VMDKs can be moved non-disruptively across

physical resources — commonly referred to as vMotion

and Storage vMotion respectively.

vCacheShare adopts the write around cache policy,

i.e., writes bypass the SFC and directly go to the back-

end disks. There are several reasons to focus on read

intensive workloads. First, there are multiple layers of

memory cache above SFC, which are shown to have re-

duced the read-after-write percentage [13] and conse-

quently weakened the benefit of write caching. Sec-

ond, write around prolongs the SFC lifetime by reduc-

ing writes and prioritizing data to be re-read. Finally, it

simplifies design and implementation by relaxing consis-

tency requirement. In fact, several commercial SFC so-

lutions [2, 4] started from write around or write through,

including VMware’s recent vFRC (Flash Read Cache).

2.2 vCacheShare Overview

vCacheShare decides the SFC space allocation sizes on

per-VM or per-VMDK basis, based on runtime analy-

sis of the VMs/VMDKs’ IO access characteristics, along

with hardware/administrative settings.

Figure 1 depicts vCacheShare’s location in our target

environment, as well as its internal architecture. The

vCacheShare decision making workflow requires the co-

ordination among its major components: (1) monitor,

which intercepts IO requests and logs information about

them, (2) analyzer, which periodically processes trace

2
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Figure 1: vCacheShare architecture

data logged by the monitor and extracts per-VMDK ac-

cess characteristics, (3) optimizer, which, based on the

analyzer-extracted workload characteristics and a cache

utility model, dynamically optimizes the cache partition-

ing plan, and (4) actuator, which executes the optimized

plan. The analyzer and optimizer are implemented as

user-level agents, while monitor and actuator are imple-

mented within the VMkernel.

In addition to runtime workload monitoring input,

vCacheShare also takes from administrators two key

configuration parameters: (1) a per-VMDK IO priority

level and (2) per-VMDK cache allocation lower and up-

per bounds. The lower bound is also referred to as re-

served cache space. Not all VMs/VMDKs need flash

cache enabled: for example, some VMDKs may be pro-

visioned out of an all-flash array.

In the rest of the paper, we base our discussion on per-

VMDK cache space allocation, though the techniques

and observations also apply to per-VM allocation.

2.3 Event-Driven Analysis and Re-Optimization

The vCacheShare design is well integrated with the hy-

pervisor’s VM management. In particular, its workflow

has to be coordinated with common VM state transi-

tions and migration operations (for both VMs and storage

devices). Table 1 lists vCacheShare’s actions triggered

by such common VM management activities. Though

the events are hypervisor specific, we believe that the

vCacheShare workflow and event-handling methodology

can be applied to other hypervisors as well.

3 Monitoring

The vCacheShare monitoring module sits within the hy-

pervisor kernel, on the IO path between the VMs and the

SFC. It intercepts, records, and analyzes all IO accesses

from the VMs on each physical host. For each VMDK, it

performs periodic online trace processing to extract the

reuse pattern needed by the vCacheShare cache utility

model (Section 4).

vCacheShare’s trace data collection is performed on

a per-VMDK basis. For each cache-enabled VMDK,

vCacheShare sets up a circular log buffer in kernel mem-

ory for storing trace entries. Their content can be com-

mitted to SSD storage regularly and asynchronously to

reduce memory usage. The in-memory and on-SSD cir-

cular buffer sizes, as per-VMDK configurable parame-

ters, limit the maximum memory/SSD space consumed

by vCacheShare IO trace collection. In our experiments,

each VMDK has a 4MB on-SSD trace buffer, plus two

64KB in-memory ones for double buffering.

Each trace entry is 15 bytes long, containing 8 fields.

Among them, the VM UUID and the VMDK UUID fields

identifies the IO request issuer (VM) and the destination

device (VMDK), respectively. The timestamp field

logs the request time. isRead records the IO opera-

tion type, while LBA and len define the initial logical

block address and IO request size (in terms of blocks).

latency records the total service time to complete the

IO. For each entry, most of the data collection happens

before the IO request hits the flash caching module, ex-

cept for latency, which is logged upon IO comple-

tion. Finally, isCached tags IOs serviced from the

flash cache rather than from the backend storage. As

measured with our implementation, such trace collec-

tion activities add only 4-5 nanoseconds to the overall

microsecond- or millisecond-level IO service time.

Note that the above vCacheShare monitoring and trace

collection is in addition to the hypervisor’s built-in IO

profiling. Such profiling gather high-level statistics

through approaches such as moving window averages,

regarding IOPS, latency, read-write ratio, request sizes,

etc., on a per VM or VMDK basis. The IO statistics are

averaged over a user configurable monitoring window

(default at 20 seconds). Some of these data items, e.g.,

read percentage and average latency, are used in vCache-

Share’s cache utility model calculation.

4 Dynamic Cache Utility Analysis

vCacheShare performs its cache space allocation opti-

mization based on cache utility (CU) [7] on a per-VMDK

basis. CU reflects the effectiveness of allocating SFC

space, i.e., the relative performance gain brought by ad-

ditional SFC space allocation.

Cache utility depends on several factors. Intuitively,

a VMDK generates better cache utility if it displays

good reference locality or is built on backend storage de-

vices with higher read latency (either due to slower de-

vice speed or saturation). In addition, vCacheShare fa-

vors read-heavy workloads, both due to the current write

around caching design and well-known performance plus

endurance problems with flash writes. Such limitations

3
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VM Events Actions by vCacheShare Framework

VM Power-Off, Suspend, vMotion

Source

Trigger optimization to re-allocate; free IO trace buffers for all associated VMDKs

VM Bootstrap, Power-On, Resume Make initial allocation based on reserved cache space and priority settings; start trace collection

vMotion Destination Trigger optimization to re-allocate based on IO characteristics migrated with the VMDKs involved

in vMotion

Storage vMotion (runtime backend de-

vice change)

Suspend analysis/optimization till completion; evict device service latency history; trigger re-

optimization upon vMotion completion

VM Fast Suspend, vMotion Stun Reserve cached data; lock cache space allocation to involved VMs by subtracting allocated size from

total available cache size

Table 1: Actions by vCacheShare upon VM Events

make read-intensive access patterns more flash-cache-

friendly even with write caching turned on in the fu-

ture. Finally, vCacheShare takes into account an attribute

much less often factored in for cache partitioning: the in-

tensity of re-accesses. This metric considers both locality

and access speed, allowing our model to favor workloads

that generate more reuse of cached data in unit time.

Device access speed and read-write ratio can be mea-

sured rather easily. Hence our discussion focuses on es-

timating access locality and reuse intensity.

4.1 Measuring Locality

Many prior studies have examined cache hit ratio pre-

diction/estimation based on workload access characteris-

tics [14, 15]. vCacheShare adopts a low-overhead online

estimation approach that examines access reuse distance,

similar to that used in CPU cache partitioning [14]. How-

ever, vCacheShare explores reuse distance for storage

cache partitioning, where more sophisticated follow-up

algorithms could be explored due to both more resource

availability and slower data access rates.

For each identified re-access, where the same block is

revisited, the reuse distance is measured as the number

of distinct blocks accessed between the two consecutive

uses of that block [14]. vCacheShare constantly mon-

itors the distribution of reuse distances, to measure the

temporal locality in accesses to each VMDK. Consider-

ing that our current read-only cache design, only read ac-

cesses are counted in vCacheShare’s reuse distance cal-

culation. Such per-VMDK overall temporal locality for

reads is expressed in a CDF (cumulative distance func-

tion) of reuse distances.

To dynamically build and update the reuse distance

distribution, vCacheShare first extracts relevant data

from its IO traces using a two-phase O(n) process, where

n is the number of trace entries. This Map-Reduce like

process can easily be parallelized to use multiple cores

available, if necessary.

vCacheShare maintains one hash table per VMDK. In

the “Map” phase, IO traces are scanned into the appro-

priate hash table. We pre-process IO logs here to address

large block IOs and un-aligned 4K accesses. A log en-

try request for greater than 4KB is divided into multiple

4KB entries, with LBA adjusted for each. This is inline

with our target flash cache implementation, where cache

book-keeping is done at the 4KB granularity. Based

on our analysis of real-world workloads from the SNIA

MSR traces [16], only 5-10% of accesses are unaligned,

which are discarded in our processing. For each read

log entry, a pointer to the entry is inserted into the per-

VMDK hash table, using its LBA as the key.

In the “Reduce” phase, vCacheShare scans the val-

ues of the per-VMDK hash tables, generating for each

a Reuse Distance Array (RD Array). This is an array of

lists that for each LBA, stores its reuse distances between

each pair of adjacent accesses. The reuse distance CDF

can then be easily constructed using histograms.

As mentioned in Section 3, vCacheShare maintains

per-VMDK cyclic trace buffers. The per-VMDK hash

tables are updated according to a time stamp marking the

oldest valid log entry in the trace buffer. Older entries are

discarded from the hash tables, during either insertion or

periodic garbage collection sessions. This way, vCache-

Share automatically assesses access patterns in a sliding-

window manner, with a sampling window size equal to

the size of the cyclic trace buffer.

4.2 Locality-based Hit Ratio Estimation

With the reuse distance CDF calculated as described

above, we can produce a rough cache hit ratio estima-

tion for each VMDK at a given cache size. Assuming an

LRU or LRU-like cache replacement algorithm, the hit

ratio can be computed by dividing the total number of

cache hits (re-accesses whose reuse distance falls under

the cache size) by the total number of accesses.

The effectiveness of such estimation, however, de-

pends heavily on the aforementioned sampling window

size. Intuitively, if the sampling window is too small,

vCacheShare will not be able to fully capture a work-

load’s temporal locality. On the other hand, large sam-

pling windows will produce slower response to workload

behavior changes, as new access patterns will be “damp-

ened” by a large amount of older entries. In addition,

larger sampling windows require more space and time

overhead for trace collection and analysis.

Figure 2 demonstrates the impact of sampling win-

4
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tion

dow size on hit ratio estimation, through a representative

workload, “web”, member of the SNIA MSR traces [16].

It shows that in general, larger sampling window sizes

produce higher cache hit ratio estimates, and reach hit

ratio saturation points later (with exceptions likely due

to well known caching anomalies). On the other hand,

a reasonably large sampling window size (e.g., 1MB)

seems to produce very similar trend in hit ratio growth

to a window size a few times larger (4MB). Other read-

intensive traces in the MSR collection show similar re-

sults. We choose to leave the sampling window size as

a tunable parameter. Note that a larger flash device of-

fers more cache space and can benefit from larger sam-

pling windows. This goes well with our design of having

SSD-resident cyclic trace buffers, as the same device can

accommodate higher space overhead as well.
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Figure 3: Hit ratio as a function of cache size

To further verify the need of cache partitioning, Fig-

ure 3 shows the cache hit ratios of a selected set of rep-

resentative MSR traces under different cache sizes. Each

trace is replayed for the first one million IO accesses. We

can clearly see that (1) different workloads from the same

enterprise environment have diverse locality properties,

and (2) among workloads that possess certain locality,

there are large variances in their working set sizes.

4.3 Measuring Reuse Intensity

Trace based temporal locality analysis has been shown to

provide quite accurate hit ratio estimation [14, 15]. How-

ever, for cache partitioning between concurrent accesses

to multiple VMDKs, such analysis fails to consider the

relative speed of cache accesses. In particular, it does

not capture bursts in data reuse. vCacheShare needs to

identify and absorb locality spikes, caused by common

activities such as boot storms in VDI environments [17].

Fast response is especially challenging with a larger sam-

pling window, due to its dampening effect.

For this, we introduce another factor in modeling CU:

reuse intensity, which measures the burstiness of cache

hits. This metric captures the fast changing aspect of

CU, to bias cache allocation toward VMDKs undergoing

locality spikes. More accurately, for VMDKi, its reuse

intensity RIi is defined as

RIi =
Stotal

tw ×Sunique
(1)

Here, for a given monitoring time window size tw, Stotal

and Sunique describe the total read access volume and the

total size of unique blocks read (i.e., access footprint).

E.g., with tw at 5 minutes, within which 1G blocks are

read from VMDKi accessing 1000 unique blocks, the re-

sulting RIi will be 1G
1000×300s

. This metric effectively cap-

tures the locality-adjusted per-VMDK read throughput:

an influx of accesses to new blocks brings similar growth

to total access volume and footprint, therefore lowering

RI; an influx of re-accesses, on the other hand, increases

the former but not the latter, inflating RI.

tw is another tunable vCacheShare parameter, prefer-

ably with relatively small values for better responsive-

ness. It asserts little computation overhead, and can be

maintained as a per-VMDK moving average. In situa-

tions where detailed trace collection/analysis is impracti-

cal or overly expensive, RI can contribute independently

to the vCacheShare CU model as a cheap and less ac-

curate alternative, since it does reflect temporal locality.

However, tw should ideally be decided adaptively based

on the rate of locality change measured in real time.

We are currently performing follow-up study on devis-

ing such a dynamic algorithm. In this paper, we empir-

ically observed that tw values between 2 and 60 seconds

are suitable for the workloads tested. Our experiments

used 60 seconds unless otherwise noted.
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To verify the existence of locality spikes, we exam-

ine the temporal locality shifts in the MSR workloads.
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Figure 4 plots the hit rate changes for six sample traces

along the execution timeline. The hit ratio in y axis is

calculated with a 60-second moving window. The results

illustrate the time-varying nature of reference locality, as

well as the existence of transient locality spikes in multi-

ple traces (such as mds, usr, and pro j).

4.4 Summary: Cache Utility Model

Putting everything together, vCacheShare’s CU Model

for VMDKi is generated as a function of its estimated

cache hit rate Hi(c) (where c is the target cache partition

size), reuse intensity RIi, average target device latency

li, and read ratio RRi (fraction of total accesses that are

reads): If we expand the variables to show the input of

the model, we end up with the following equation:

CUi = li ×RRi× (Hi(c)+αR̂Ii) (2)

Here Hi(c) generates the estimated hit ratio for VMDKi

at cache partition size c, based on its locality observed

in the previous sampling window. R̂Ii gives the reuse in-

tensity observed for the same VMDK, normalized to the

highest RI across all VMDKs in the previous intensity

monitoring window. Therefore, both Hi(c) and RIi have

values between 0 and 1. α is included as an additional

tuning knob to adjust the relative weight between longer-

term, more accurate temporal locality, and short-term lo-

cality spikes. Though set to 1 in our evaluation, system

administrators can change α to favor persistently cache-

friendly workloads or fast-changing, bursty accesses.

5 Optimization

vCacheShare approaches SFC space allocation as a con-

strained optimization problem. Its optimizer explores

different permutations of per-VMDK space allocation

values, calculates cache utility as the objective function,

and returns the permutation with the global maximum in

the search space. More specifically, vCacheShare adopts

the following objective function:
n

∑
i=1

priorityi ×CUi,

where n is the number of VMDKs, prioritei is the user-

or administrator-defined priority level (e.g., based on

QoS requirement) of VMDKi, and CUi is the cache utility

of VMDKi defined earlier.

The vCacheShare optimizer will search for the global

optimum in the form of a recommended cache alloca-

tion plan: < c1,c2, . . . ,cn >, which satisfies the follow-

ing constraints:

c1 + c2 + . . .+ cn =C

cmin ≤ ci ≤ cmax

where C is the total available server-side flash cache size,

and cmin/cmax is the administrator-specified per-VMDK

cache space lower/upper bound.

This optimization problem is NP-Hard, with much ex-

isting research on heuristics such as simulated anneal-

ing [18] and hill-climbing [19]. These techniques ap-

proximate the optimal solutions via linear, non-linear, or

piecewise linear algorithms, among others. We consider

such constrained optimization a mature field and beyond

the scope of this work. Our prototype implementation

uses an open-source simulated annealing tool [18], while

vCacheShare is designed to be able to utilize alternative

optimization algorithm plug-ins.

6 Execution

The execution module actuates changes in per-VMDK

SFC allocation. It also controls the bootstrapping pro-

cess when vCacheShare is enabled for the first time on a

server or when new VMs are added.

For bootstrapping, vCacheShare allocates the

administrator-specific per-VMDK cache space lower

bound (also referred as reserved size) for each enabled

VMDK. The rest of the available cache size is then

divided among the VMDKs, proportional to their

priorities. When a VMDK is first added to a running

vCacheShare instance, as its CU estimate is not yet

available, it again receives the reserved allocation, by re-

claiming space proportionally from existing allocations

according to VMDK priorities.

Once bootstrapped, vCacheShare manages SFC

as per-VMDK linked lists of blocks, each with a

current size and a target size. Upon invocation, the ac-

tuator only changes the target size for each list, based

on input from the optimization module. The actual sizes

then automatically adapt gradually, with VMDKs gain-

ing allocation grabbing SFC blocks from those losing.

With this approach, the speed of cache allocation

change automatically reflects the activity level of the

VMDKs gaining allocation, again favoring workloads

with locality spikes. Such incremental and gradual ad-

justment also avoids thrashing, where the system oscil-

lates rapidly between two states. Lastly, such lazy evic-

tion maximizes the use of cached data for those VMDKs

losing cache allocation.

7 Experimental Evaluation

7.1 Prototype Implementation

We implemented a vCacheShare prototype in the widely

used VMware ESXi 5.0 hypervisor.

The trace analysis, CU computation, and optimization

modules are implemented as agents in the user world,

with ˜2800 lines of C++ code. The modeling and op-

timization results are persisted via service APIs for the

monitoring database currently available on a cluster wide

management node.

6
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The rest of vCacheShare is implemented in the ker-

nel, with ˜2500 lines of C code. First, to enable run-

time cache allocation optimization, an SFC framework

was implemented within the hypervisor. All the read

IOs below 64KB are intercepted to check if the requested

data is cached. The cache itself is managed with LRU,

with 4KB blocks. The flash device is used exclusively

for caching (including vCacheShare management usage)

and cannot be directly accessed by the guest VMs or the

hypervisor filesystem layer.

7.2 Test Setup

Unless otherwise noted, our experiments used an HP

Proliant DL385 G7 Server, with two AMD Opteron 6128

processors, 16GiB memory, and Intel 400GB PCI-E SSD

910. Local SATA disk drives and an EMC Clariion Stor-

age Array are used to stored VMDKs. The tests used

2-100 VMs, running Windows Server 2008 or Ubuntu

Linux 11.04, each assigned a single vCPU, 1GB mem-

ory, and a 8GB VMDK.

We used the MSR Cambridge traces from SNIA [16].

The traces represent a variety of workloads: user home

directories (usr), project directories (pro j), print server

(prn), hardware monitoring(hm), research projects

(rsrch), web proxy (prxy), source control (src), web

staging(stg), terminal server (ts), web SQL server (web),

media server (mds), and test web server (wdev). They

represent IO accesses at the storage disk tier and have ac-

counted for buffer cache as well as application caching

effects. This aligns well with vCacheShare’s target

placement within the hypervisor kernel.

7.3 Result 1: Proof-of-concept Verification

Justifying Cache Partitioning First of all, we demon-

strate that explicit, workload-aware cache partitioning is

necessary by showing the inadequacy of implicit strate-

gies such as global LRU [7, 20, 21]. In this experiment,

we replay two MSR workload traces with a VMware in-

house cache simulator with both LRU and vCacheShare

replacement algorithms. VM1 runs src1 0, which per-

forms a simple data scan, while VM2 plays prxy1, with

much higher temporal locality. This simulation worked

as a proof-of-concept assessment before we set out to im-

plement our vCacheShare prototype, due to the complex-

ity of coding in a real hypervisor.

Figure 5 shows the comparison between using a glob-

ally shared LRU cache (GLRU) and vCacheShare (vCS)

from a representative segment of the VMs’ execution. It

plots the VM1, VM2, as well as the overall cache allo-

cation (shown as percentage of the overall cache space

occupied) and hit ratio (cumulative from time 0).

This test clearly illustrates the advantage of vCache-

Share. With global LRU, the zero-locality VM1 actu-

ally grabs more cache space than VM2 does, with a hit
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Figure 5: Cache partitioning effectiveness: vCacheShare vs.

global LRU

ratio of near zero all the time. Though LRU automati-

cally favors blocks revisited, the fast scanning behavior

of VM1 still prevents VM2 from getting enough cache

space. With vCacheShare, instead, VM2 gets sufficient

cache space to store its entire working set, allowing the

cumulative cache hit ratio to gradually increase as the im-

pact of initial cold misses weakens. VM1, on the other

hand, is correctly recognized as of little locality and con-

sequently has hardly any cache space allocation. This

avoids the space cost of keeping VM1’s blocks in the

cache brought in by cold misses, only to be evicted later

as in the case of using global LRU. Note that vCache-

Share is able to reduce the total cache space usage (50%

vs. 100% with global LRU), thereby leaving more space

for other VMs, while delivering 21% higher overall hit

ratio at the end of the execution segment.

Hit Ratio Estimation Accuracy We then assess

vCacheShare’s capability of predicting a workload’s

cache hit ratio based on its online temporal locality mon-

itoring. Figure 6 depicts the results in terms of hit ratio

estimation error, which measures the absolute difference

between the predicted and actual cache hit ratios, which

evolves for each sampling window along the execution

timeline (x axis). We replayed week-long SNIA real

workload traces in our evaluation. As shown, vCache-

Share is able to yield accurate hit ratio estimation in the

vast majority of cases, with most data points aggregat-

7
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Figure 6: vCacheShare hit ratio estimation accuracy

ing within the [-0.1, 0.1] error range. Meanwhile, there

are evident spikes in estimation error, due to fast work-

load behavior changes. With each spike, vCacheShare

is able to correct its large error, though the converging

speed depends on the sampling window size as discussed

previously. In our analysis of traces collected from a pro-

duction data center environment, the mean value for the

deviation was 0.22 with a standard deviation of 0.4. For-

tunately, our reuse intensity metric helps offset the lack

of responsiveness to locality changes caused by larger

sampling windows.

Necessity of Reuse Intensity (RI) Now we demon-

strate that only hit ratio prediction is not enough when

the workloads exhibit bursty or intensive accesses within

a short time period.
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Figure 7: Reuse intensity of MSR trace web

Figure 7 shows the RI change (normalized to the

largest RI value throughout the execution) of the afore-

mentioned MSR web trace. Note the hit ratio predic-

tion is performed on a longer time interval, e.g. several

minutes or longer. In contrast, RI is generated more fre-

quently. Figure 7 highlights this by two representative

segments of execution concatenated, with small and large

hit ratio estimate error respectively. Similar contrast ex-

ists for all the traces though. Clearly from the figure,

when the hit ratio estimation is close to zero, the RI is

close to zero too. However, if there is bursty access be-

tween two sampling windows, RI will capture it much

more promptly and adapt the cache utility accordingly.

7.4 Result 2: Adaptivity Evaluation

Next, we evaluate vCacheShare’s capability of adapting

to different policy settings as well as storage backend

performance settings. In these experiments, we have 4

VMs running Iometer [22] as a workload generator. In

the baseline run, Iometer is set to have 100% random

read operations. All the VMs are assigned the same IO

priority of 1000 and run the same IO workload, access-

ing per-VM VMDKs with identical configurations. The

expected vCacheShare decision is therefore uniform par-

titioning across all VMs/VMDKs. The total server flash

cache size controlled by vCacheShare is 8GB.
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Figure 8: Adaptivity

Varied IO Priorities & Varied Read-Write Ratio: Fig-

ure 8(a) shows the effect of varying the IO priority setting

on vCacheShare’s cache partitioning and resulted IO la-

tency. We change the IO priority of one of the VMDKs

along the time line (x axis) to a series of settings:

P1=1000, P2=2000, P4=4000, and P0.4=400. Follow-

ing every priority value change, vCacheShare promptly

adjusts this VMDK’s cache allocation, while the cache

partitioning among the other VMDKs remains uniform.

The corresponding latency change follows suite, though

it takes longer to stabilize as this VMDK’s actual cache

footprint expands/shrinks. In the second experiment, the

read-write ratio for one of the VMDKs was varied using

Iometer. With vCacheShare’s bias toward read accesses

and read locality, this VMDK sees steady reduction in its

cache allocation shares, as shown in Figure 8(b).
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Figure 9: Cache allocation during migration events

Varied Backend Device Latency & Event Handling:

In the backend device latency sensitivity test, one

VMDK is migrated offline to an flash-backed device.

Figure 9 shows the cache allocation for this backend

migration scenario. vCacheShare detects a significantly

8



USENIX Association  2014 USENIX Annual Technical Conference 141

lower service latency from the “victim” VMDK (elimi-

nating the benefit of flash caching) and consequently re-

distributes nearly all of its cache allocation shares to the

other VMDKs.

Figure 9 also shows the behavior of vCacheShare dur-

ing an online storage vMotion event that moves one

VMDK non-disruptively between storage devices. Dur-

ing this transfer, a transient phase where data is sequen-

tially read from the source disk could skew the locality

analysis. vCacheShare’s event handling design allows it

to suspend its analysis till the completion of the vMotion

operation. Since vMotion is from disk-backed device to

the flash-backed device, the lower IO service time causes

a reduction in the cache allocation, which is reversed

when the same VMDK is later moved back to HDD.

7.5 Result 3: End-to-end Evaluation

We then evaluate the overall performance of vCache-

Share using different workloads.

Iometer Test Case: Here we deploy dynamic Iometer

benchmark workloads in two VMs (with the same IO pri-

ority) sharing SFC. RI is calcuated here with tw set to 30

seconds. Iometer profiles are initially identical for both

VMs but adjusted at run time, producing varied IO work-

ing set and intensity. More specifically, we manipulated

access locality by (1) shrinking VM1’s footprint around

time point 480s to increase data reuse level and (2) at

1140s letting VM2 replay its past 300 seconds’ access

traces, to create an artificial reuse burst.

Figure 10(a) shows the cache allocation changes (ex-

cept for static allocation, which produces fixed 50%−

50% split). It can be seen that vCacheShare made con-

siderable adjustment to space allocation in the two afore-

mentioned phase of locality change, while global LRU

made only minor adaptation during VM2’s replay and

basically ignored VM1’s footprint change.

As a result, vCacheShare brings better overall perfor-

mance, with Figure 10(b) showing the average access

latency averaged over 30s time windows. Compared to

GLRU and static allocation strategies, vCacheShare de-

creased the overall average access latency during the ex-

ecution segment by 58.1% and 67.4%, respectively.

Virtual Desktop Infrastructure Test Case: VDI has

become an important trend in the enterprise. It represents

a challenging storage workload, with low average IOPS

but transient 10-20X load spikes caused by boot storms

or app load storms [23], when all the virtual instances are

performing the same task, accessing the base OS image

from the Master VMDK.

In this experiment, we provision 100 VDI instances

based on 4 master images (WinXP, Win2k8 64bit,

Win2k8 32bit and Ubuntu 11.04 64bit). Each master

VMDK is 8GB, running an in-house VDI workload gen-

erator. The total SFC is 80GB and the static cache size

 0

 100

 200

 300

 400

 500

 0  50  100  150  200  250  300  350

L
a

te
n

c
y
 (

m
s
)

Time (s)

GLRU vCS Static No cache

(a) VDI master VMDK I/O latency during boot storm

 0
 20
 40
 60
 80

 100

 20  40  60  80  100  120  140

C
a

c
h

e
 a

llo
c
a

ti
o

n
 (

%
)

Time (s)

vCS master VMDK
vCS other combined

Static master VMDK
Static other combined

(b) Cache allocation with VDI boot storm

 0

 1

 2

 3

 4

 5

 20  40  60  80  100  120  140  160

L
a

te
n

c
y
 (

m
s
)

Time (s)

vCS VDI Static VDI

(c) Iometer VM latency

Figure 11: VDI cache allocation and latency

applied for each master VMDK is the entire virtual disk

size. SFC is managed with vCacheShare, static and

global LRU (GLRU) allocation policies. Along with

VDI VMs, one additional read intensive Iometer VM

(IO access footprint as 80GB) is sharing the same SFC.

The RI calculation uses a tw of 2 seconds. Figure 11

shows the average (among all master VMDKs) latency

improvement for master VMDK, the cache allocation as

well as Iometer VM’s latency during the boot storm pro-

cess. The performance of a no-SFC configuration (“No

cache”) is also shown. The boot storm starts at 2 seconds

for all experiments and finishes at 300 seconds without

caching, 116 seconds for vCacheShare, 74 seconds for

static allocation, and 244 seconds for GLRU. The mas-

ter VMDK has to be brought in from disk-based back-

end, creating severe queuing delay before the cache is

warmed up. This process takes around 38 seconds (till

the 40s time point).

The boot storm lasts over 240 seconds for no cache

and GLRU. However, in the vCacheShare setup the load

spike is captured quickly by its reuse intensity (RI) moni-

toring. After the master VMDK is cached, the boot storm

completes using only 114 seconds, 37.5% and 46.2% of

time consumed by no cache and GLRU respectively.

Static allocation starts caching once the boot storm

9
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Figure 10: Iometer test results

starts, so it serves boot storm out of SFC the fastest, thus

beat vCacheShare during this process. However, it can

not reclaim the cache space allocated to master VMDK

after the boot storm is over. When there are multiple ver-

sions of master images, more and more SFC space needs

to be allocated for such one-time use. Worse, static man-

agement itself is not able to adaptively adjust cache size

for different workloads. From Figure 11(c), although

static SFC management shortens the boot storm, it sig-

nificantly degrades the performance of other VMs before

and after boot storm. In our test case, Iometer performs

81% better with vCacheShare compared to static alloca-

tion in terms of average latency.
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Figure 12: Cache allocation for TPC-H queries

Data Warehousing Test Case: In this test, we setup

our test case using TPC-H [24] (using a scale factor of

3), with Postgres DB configured with default values on

an Ubuntu 11.04 VM. A scale factor of 3 is used for the

TPC-H database, with Postgres configured with default

values. RI here is calculated with tw set to 10 seconds.

TPC-H contains a collection of 22 queries, demonstrat-

ing varied data locality patterns. In our experiments we

set up three identical VMs, each running the same three

OLAP queries (similar to standard TPC-VMS [25] set-

tings), but in different order: VM1 runs queries 20, 2,

21, VM2 runs 2, 21, 20, and VM3 runs query 21, 20, 2.

Among them, query 20 has highest locality, 2 has little,

and 21 sits in between. Here we omit static partitioning

results as its performance is inferior to GLRU.

Results in Figure 12 reveal three major observations.

First, vCacheShare makes very different partitioning de-

cisions compared to GLRU, assisted by cache utility

modeling to bias toward workloads that can benefit more

from caching. E.g., the VM running query 2 (with the

lowest locality) actually receives more allocation than

other VMs when using GLRU, due to its higher IO ac-

cess rate. vCacheShare correctly detects its lack of data

reuse and reduces its allocation to the default reserve

level. Second, when there is a workload change (switch

between queries), vCacheShare is able to converge to a

new relative allocation level faster than GLRU, with its

active RI modeling plus hit ratio prediction. Finally, as

a result, vCacheShare is able to improve the overall per-

formance by 15.6%, finishing all queries in 430 seconds

compared to 510 seconds with GLRU.

8 Related Work

SFC solutions are rapidly gaining adoption, with sys-

tems such as EMC VFCache [1], NetApp Mercury [2],

as well as schemes developed at Fusion-io [4] and Face-

book [26]. To our best knowledge, existing commercial

solutions support only static, administrator-defined SFC

partitioning or global sharing policies.

Related academic studies have demonstrated that

global LRU is not efficient compared to partitioned

shared cache for both CPU [7, 20] and disk [21]. Ar-

gon [27] partitions the memory cache between differ-

ent services, providing isolation between the hit rate of

10
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each service. The difference with our work is that Ar-

gon optimizes the cache hit rate for individual services,

while vCacheShare optimizes the overall cache utiliza-

tion (for aggregate I/O performance). Additionally, un-

like vCacheShare, Argon requires administrator involve-

ment each time there are changes in the workload pat-

tern. Janus [28] performs flash allocation optimization

for tiered flash-disk storage. The major difference here

is that vCacheShare targets SFC systems in block granu-

larity while Janus optimizes file based tiered storage.

The most closely related recent work on flash cache

partitioning is S-CAVE [29]. Its optimization is based on

runtime working set identification, while vCacheShare

explores a different dimension by monitoring changes in

locality, especially transient bursts in data reuse.

Memory virtualization [30] facilitates transparent

sharing of memory among multiple VMs. Recent inter-

est in using flash as extended memory [31, 32] has fo-

cused on resolving the access semantics and extending

the interfaces beyond block IO, rather than the dynamic

space management issues addressed in this paper. Sim-

ilarly, techniques proposed for CPU cache partitioning

[7, 8, 9, 20, 33] target problem settings significantly dif-

ferent from IO caching, which is much more resource

(both compute and storage) constrained.

vCacheShare leverages several well-studied concepts

in analytical modeling, optimization, and execution.

E.g., reuse distance analysis has been used in memory ac-

cess patterns for decades [14, 34], including cache man-

agement policies such as LRU-K [35] and LRFU [36].

Recently, Xiang et al. theoretically proves that hit ra-

tio can be constructed from reuse distance [37], while

vCacheShare demonstrates it in practice. Distance-based

analysis of temporal and spatial localities has been char-

acterized for file system caching [35, 36]. Low level

disk access patterns have been analyzed for uses such

as file system or disk layout optimizations [38, 39].

vCacheShare complements existing work by contribut-

ing a new approach in locality monitoring based system

self-configuration, which may potentially be applied be-

yond SFC partitioning.

9 Conclusion

In this paper, we presented the motivation, design, and

evaluation of vCacheShare, a dynamic, self-adaptive

framework for automated server flash cache space alloca-

tion in virtualization environments. Through our imple-

mentation and experimentation, we confirmed that long

observation windows are desirable for accurate cache hit

ratio estimation, but may cause slow response to locality

spikes and bring higher trace collection/processing over-

head. This can be compensated by employing simultane-

ously short-term locality metrics. Meanwhile, the rela-

tionship between observation window size and cache hit

ratio estimation accuracy requires further study.

We have also demonstrated that continuous IO access

monitoring and analysis is affordable for the purpose of

cache space management, even with today’s high-VM-

density environments.
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Missive: Fast Application Launch From an Untrusted Buffer Cache

Jon Howell, Jeremy Elson, Bryan Parno, John R. Douceur
Microsoft Research, Redmond, WA

Abstract
The Embassies system [18] turns the web browser

model inside out: the client is ultra-minimal, and hence
strongly isolates pages and apps; every app carries its
own libraries and provides itself OS-like services. A typ-
ical Embassies app is 100 MiB of binary code. We have
found that the first reaction most people have upon learn-
ing of this design is: how can big apps start quickly in
such a harsh, mutually-untrusting environment?

The key is the observation that, with appropriate sys-
tem organization, the performance enhancements of a
shared buffer cache can be supplied by an untrusted com-
ponent. The benefits of sharing depend on availability
of commonality; this paper measures a hundred diverse
applications to show that applications indeed exhibit suf-
ficient commonality to enable fast start, reducing startup
data from 64MiB to 1MiB. Exploiting that commonal-
ity requires careful packaging and appropriate applica-
tion of conventional deduplication and incremental start
techniques. These enable an untrusted client-side cache
to rapidly assemble an app image and transfer it—via
IP—to the bootstrapping process. The result is proof that
big apps really can start in a few hundred milliseconds
from a shared but untrusted buffer cache.

1 Introduction
When a user installs a new desktop application, he

accepts the risk that the new app may compromise any
other app he uses. In contrast, web sites he visits are re-
sponsible for managing their own servers; a visit to a new
site doesn’t present a threat to the servers that run other
sites he uses. A site manager is better equipped than her
users to make security decisions about her server, and the
server’s isolation gives her the autonomy to effect those
decisions.

This benefit should accrue to the web as a whole, ex-
cept that the client side is bloated and vulnerable; thus
clicking a web link can be as risky as installing a desk-
top app. The Embassies project [18] proposed refactor-
ing the web client interface to isolate client-side apps as
effectively as servers are isolated in multitenant data cen-
ters, so that the site manager becomes autonomously re-
sponsible for her client code, too. We call this model the
“pico-datacenter” – the client becomes a hosting site for
mutually distrustful applications, providing no semantics

other than a VM-like container, IP and the thinnest UI in-
terface (each app paints raw pixels on its part of screen).

The Embassies design aims to mimic the relationships
among software components found in a shared data cen-
ter: each vendor enjoys strong isolation, retaining auton-
omy even as it communicates with other vendors. This
isolation promises to protect Embassies from the bloat
that afflicts prior client models; but it demands a truly
minimal host.

Unlike Embassies’ pure shared-nothing model,
though, existing web clients extract substantial per-
formance benefits from sharing. The host operating
system’s buffer cache and the browser’s HTTP object
cache share content across sites. The lumbering 100 MiB
browser process itself is shared, since it need not restart
for each new site the user visits. Many people’s first
reaction to the Embassies proposal is alarm at the idea
of shipping such big apps around; surely it must lead to
unbearably slow app launch times?

Surprisingly, such big apps can be started nearly as
quickly as a conventional web page. It is one thing to
make an abstract argument that it should be possible; the
aim of this paper is to decisively demonstrate so. This
paper shows that ideal isolation does not funamentally
conflict with good application-launch performance.

We construct a content cache that is untrusted (as un-
trusted as a random neighboring tenant in a shared data-
center), and yet enables mutually distrustful sites to share
content and reap the benefit of fast app launch, while us-
ing end-to-end cryptographic checks to protect their own
integrity. Essentially, we show that the OS buffer cache
and browser object cache can be evicted from the trusted
computing base (TCB) and replaced with an untrusted
cache that delivers similar performance benefits.

For the untrusted cache to be effective, there must be
commonality to exploit; we must demonstrate the perfor-
mance equivalent of many applications sharing a com-
mon browser infrastructure. This paper

• demonstrates that a hundred diverse applications ex-
hibit great commonality, enabling efficient transfers
and fast launches

• shows an integrated pipeline that packages, trans-
fers, caches, and launches large application images
in a secure manner.

• characterizes the sensitivity of performance to
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pipeline parameters, and
• demonstrates hot- and warm- app launch times

comparable to that of a conventional OS buffer
cache and shared library mechanisms (in which
apps are mutually trusting).

Missive is best motivated by the extreme minimality of
Embassies [18], but it applies more broadly. Other client
app delivery systems such as Tahoma [10], Xax [17],
Native Client [43], and Drawbridge [33] ship VMs or
large binary programs, and an untrusted cache would re-
duce their TCBs. VM images in any context are big, and
launch times can be slow [4, 24]. Fast launch is particu-
larly relevant for security applications that spawn a VM
per user [32] or per connection attempt [41].

2 Context
We focus on Missive’s applicability to the Embassies

client application environment [18], since it takes host
minimality to the extreme, making a shared cache partic-
ularly challenging.

2.1 Embassies Overview
With Embassies, apps are strongly isolated, communi-

cating with other apps and with the outside world only
via IP. The intent is to create an environment analo-
gous to the server app environment, where each vendor
is completely isolated from other vendors and exercises
full control over its own software stack: If a server app
is compromised, it is because the vendor chose a poor
library, misconfigured a firewall, or failed to patch its
software. No careless or ignorant user decision can be
blamed. By analogy, on an Embassies client, the user’s
decision to open a new app cannot compromise any other
app on the client, since the apps are as isolated as two
tenants on a hosting server. The simple communication
semantics of IP make it clear how a vendor protects it-
self: if a vendor’s software selection and administration
can protect its server-side software from attacks arriving
over the Internet, then the same follows for its Embassies
client software.

The Embassies model deviates from the server-side
model in a few respects. For example, it offers apps raw,
pixel-level access to the display for interactivity. How-
ever, the most important distinction is the workload; typ-
ical server software multiplexes many users over one in-
stallation of long-lived code and database. In contrast, at
the client, we expect the user to frequently switch context
between apps and to often launch altogether new apps
(analogous to clicking on links in a conventional web
browser). Worse, these apps are likely to be large: Rather
than a skinny JavaScript atop a big shared browser or a
small executable atop a dozen shared libraries, each app
is more like a standalone Virtual Machine (VM) image.
However, in pursuit of strong isolation, the Embassies

client platform aims for minimality, which obstructs con-
ventional performance optimizations that tightly couple
sharing of libraries and caches.

Indeed, the Embassies client omits facilities for a
buffer cache or wide area transfer (MIME, HTTP, or
even TCP). Missive fills that gap, showing how mutually-
untrusting applications can cooperate to exploit the shar-
ing opportunities that lead to good performance.

2.2 Embassies App Start
Figure 1 shows how an app starts on an Embassies

client. First, some invoking app A, perhaps one in which
the user has clicked a link, identifies a public key that
represents the target app B; it also fetches B’s signed boot
block. It is app A’s responsibility (not the client kernel’s)
to verify that it has found the correct principal (here it
uses DNSSEC).

Second, in steps 2 through 5, the kernel receives the
signed boot block, checks the signature, associates a
fresh process with the signature’s public key (B), and be-
gins executing the boot block in the new process. This is
the only phase whose shape is imposed by the Embassies
TCB.

Third, in steps 7 through 10, the untrusted cache gath-
ers the metadata and data required to assemble the image
for App B. None of these interactions require integrity
other than to avoid wasting the cache’s time.

Finally, the cache sends the entire image in a single
IPv6 jumbo packet into App B’s process. App B then
verifies the image’s integrity, for example, by checking
the image’s hash against a hash value included in the boot
block. Finally, App B transfers control to the code in the
image.

For communication between apps and to the greater
Internet, the client kernel provides only an untrusted IP
channel. The mapping of name to app key, fetching of
boot block, and fetching of image content are all built
from the IP primitive, making it easy to reason about iso-
lation.

The client kernel provides no storage; instead, it is as-
sumed that some anonymous vendor (e.g., Seagate) pro-
vides an untrusted, insecure storage app. The client ker-
nel does provide each application with a single secret
specific to the host and the app’s identity:

Kapp = PRFKhost
(IDapp).

That secret is only available to processes started from a
suitably-signed boot block. The secret enables the app to
convert untrusted storage into secure storage via encryp-
tion and cryptographic integrity checks, while requiring
the client kernel to store no per-app state.

These are all of the primitives Embassies offers for the
app-start process. Missive’s mission is to provide high
performance app starts from only these primitives. One
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Figure 1: App start process. To launch a new process for App B, App A fetches a signed boot block for B, the kernel verifies
the signature, the cache assembles the required full application image, and sends it to App B to execute. Dashed lines show control
flow. Heavy grey arrows show data flow. All data flows, other than the boot block passing through the kernel, are via IP.

package transmit launch

at client cache in app process

complete
zarfile

startup
zarfile

developer's
file system

startup
zarfile

at origin server

commonality

Figure 2: System diagram. The developer’s files that comprise the app image are packaged into a “zarfile”. The client cache
fetches the part of the zarfile required for app start, and the zarfile is delivered into an isolated process to launch the app.

naı̈ve approach would appoint a distinguished app ven-
dor to supply the trusted cache, but then to enjoy the per-
formance benefit of a shared cache, apps must trust the
cache vendor; it becomes an implicit part of the TCB.
Instead, Missive’s architecture lets every app exploit a
single shared cache, without trusting that cache.1

3 System Design
Missive comprises three steps (Figure 2): The pack-

aging step collects binary libraries and data files from a
developer’s machine into an image, called a zarfile. Files
are placed in the zarfile to expose sharing opportunities.
The transmission protocol transmits zarfiles across the
network; it is designed to minimize round trips, exploit
commonality to minimize bandwidth, and enable incre-
mental access. The launch procedure transfers a zarfile
from an untrusted cache into the booting app’s process,
with a focus on minimizing the startup latency.

3.1 Packaging
An Embassies app is completely specified by its ven-

dor. Thus, the vendor can configure the app on a devel-
opment machine using any available framework or tool.

1Missive does not prevent side channels: by probing the cache’s
response time, one app can learn about content accessed by others.

She might install required framework components, such
as a Python math library; she might carefully select a spe-
cific version of a subpackage (such as an audio rendering
library); and she might even hand-patch a component or
configuration file to fix a security vulnerability.

Once all of the components are in place, the vendor
runs the packaging tool, which enumerates the set of files
that comprise the app, including the app executable, data
files, libraries, and library OS components [17, 20, 33].
This is the complete application image. The tool also
captures a dynamic run of the application, identifying the
subset of the complete image necessary to bring the app
to a usable interactive state; this is the startup set. The
startup set is captured at sub-file granularity so that it
skips chaff such as symbols.

By identifying the startup set, Missive enables the de-
veloper to reduce the size (and increase the speed) of the
initial app transfer. After app launch, the remaining com-
ponents may be fetched from the complete image on de-
mand, or preemptively in the background, so that they
will be available when the client is disconnected.

Missive’s zarfile is a simple tar-like format. It specifies
a master index, string and data-chunk lookup tables, file
stat metadata, and file contents.

Below, we elaborate on the challenges involved in im-
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age capture and ensuring zarfile stability. The capture
process also honors memory layout constraints designed
for fast app start as described in §3.3.3.
3.1.1 Image Capture

Some tuning is required to extract a minimally-sized
image from a conventional POSIX development system.
For example, we found that the Gnome system-wide icon
cache may be 50 MB, but a single app may access only a
few kilobytes of icons from it; our packaging tool strips
the icon cache apart to avoid the waste. Similar tech-
niques could be applied (although we have not yet done
so) to strip unneeded code from shared libraries. (On the
other hand, leaving libraries untuned may enhance com-
monality; see §4.)
3.1.2 Image Stability

As §4 discusses in detail, a critical component of Mis-
sive’s good performance is detecting common content
shared between indifferent apps. To facilitate this detec-
tion, Missive’s packaging tool is aware of the block size
used during transmission (§3.2), and it strives to ensure
that small changes in file selection, file content, or file
length will produce zarfiles in which most blocks have
the same content and location.
Block Content Stability. In typical file-size distribu-
tions almost all files are small files, but a few large files
comprise almost all the bytes [2, 12, 36], and our file set
is no exception (Figure 3). The tail of tiny files makes
it impractical to give every small file its own block;
padding would expand the image by 2 − 10× (§5.2),
wasting too much physical memory.

Instead, Missive’s packager aligns large files—those
bigger than a block—on block boundaries to maximize
commonality detection, and it uses small files to fill in
the gaps left at the end of large files. While some extra
space still remains, in practice, the overhead of padding
in a zarfile is generally below 2% (§5.2). In wide-area
transit, the wasted bytes are compressed away, while the
effect on disk is negligible. In memory, the bytes are
moved cheaply by reference, so overall, the layout has
little performance penalty.

The benefit of this layout is that it makes it likely that,
if two zarfiles share many large input files, then they con-
tain proportionally many identical blocks. Furthermore,
a change in a small file affects only the block whose tail
it occupies. Thus, for each file different between two im-
ages, the zarfiles differ by � file len

block size� blocks.
In summary, the packaging tool ensures that two sim-

ilar zarfiles share almost all of their aligned blocks.
Therefore, launching an app similar to one already
cached requires transmitting bytes proportional only to
the amount the images differ.
Block Position Stability. The block-aligned layout pol-
icy described above is close to what we want, but it leaves
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Figure 3: File size distribution. All of our experimental data
sets (details in §4.1) obey the typical distribution: almost all
files are small, and almost all bytes belong to the few big files.

three problems. First, a change in the size of a big file or
the set of small files may cascade, changing all of the
tail-gap assignments for the small files. Second, per-
turbing the file order perturbs all of the Merkle hashes
in the transmission phase (§3.2), foiling opportunities to
share Merkle subtrees.

Third, and most importantly, since we strive so enthu-
siastically for minimality, we cannot assume the kernel
supports a gather-send operation. Yet we still wish
to extract maximum performance. Absent gather, if two
zarfiles share most of their blocks, but those blocks are
reordered, construction will require the cache to copy
all of the blocks into the correct offset in the outgoing
message. For our parameters, the copying alone can add
100–150 ms to startup latency. When we provide posi-
tion stability, the cache exploits it in the warm case by
assembling the first zarfile in a buffer with some slack
memory at the end. Then, when a request for the second
zarfile arrives, the cache need only patch the blocks that
differ from the first zarfile.

To foster position stability, we refine Missive’s place-
ment algorithm to produce zarfiles that not only share
blocks with common content, but whose common blocks
will appear at common offsets. Let t be the total size of
the input files, i.e., the minimum size of the output. Let
u be the nearest power of two greater than t, and l be the
nearest power of two less than t. Pick a random seed,
and hash each input file f along with seed, producing
hf = hash(f ||seed). If hf mod u < t, then the file’s
preferred placement is hf mod u; otherwise, the pre-
ferred placement is hf mod l. We truncate all preferred
placements to block boundaries to produce, for each file,
a preferred block-aligned location in the range [0, t). For
each file, we evaluate the placement expression with ten
seeds to produce a prioritized list of preferred locations.
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Figure 4: Image file protocol representation. Each arrow
represents an input to a hash operation. The Missive transmis-
sion protocol represents a zarfile with a conventional Merkle
tree, plus the metadata required to define the tree’s dimensions.
After learning the metadata, the receiver can query hashes and
data blocks in any order, and verify them incrementally.

The input files are placed into the zarfile greedily, by
descending file size. If a file collides with a prior place-
ment, we try its lower-priority placements. If no pre-
ferred placements work, the file is dumped into a left-
over bucket. After every file’s preferred placements have
been attempted, the leftover files are placed into gaps or
concatenated to the end of the file.

Intuitively, the algorithm ensures that: (a) A change to
a small file will, due to the greedy placement order, make
small changes to the overall zarfile, since most bytes have
already been placed by the time the change impacts the
algorithm. (b) A change to a large file perturbs the al-
gorithm early, but only affects that file and those later
files whose placement depend on a collision created or
eliminated by the change. This contrasts with the basic
greedy algorithm where any change affects every later
placement decision. Conversely, a change to a large file
that preserves its length will not perturb the basic algo-
rithm, but will perturb the position-stable algorithm.

3.2 Transmission
Once the zarfile is defined, it must be fetched to the

client; this occurs using well-understood techniques: To
preserve the integrity of the vendor’s app image spec-
ification, zarfiles are specified by content. To exploit
commonality, the content is specified by hashing blocks;
blocks already cached at the receiver because they’re
common with other apps do not require transmission.
Finally, to enable the app to fetch subsets of the zarfile
(such as fetching the startup set from inside the com-
plete zarfile), the block hashes are arranged into a Merkle
tree [27]. The file is self-certified [16] by the file hash,
i.e., a hash of the Merkle tree root and the file metadata
(Figure 4). The metadata consists of the file length and a
flag indicating whether the file contents should be inter-
preted as a directory.

The Missive transmission protocol is packet-based and
incrementally self-verifying (Figure 5). In the first round,
the receiver asks for a file by its file hash, and receives
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Figure 5: Transmission protocol. The meaning of each reply
packet is independent of the query that spawned it, and each
reply contains enough information to verify its contents.

the file metadata; because of the structure of the file hash,
it can immediately verify the reply. The receiver deter-
mines the data flow, so in each later round, the receiver
may request any subset of the Merkle node hashes by
their tree indices, and may request any byte range of the
file contents.

A bandwidth-constrained receiver may learn the tree
one level at a time to avoid fetching even the Merkle
hashes of subtrees it already knows; each layer can be
incrementally verified. A receiver desiring to minimize
round trips will instead ask for all the required leaf
hashes in one step, plus any Merkle siblings required to
compute all the required interior nodes. Section 5.1 an-
alyzes the trade-off. Our implementation uses the latter
algorithm.

Once the leaf hashes are known, the receiver can fetch
actual file data, verifying that the data is sane at block
granularity. We use a 4 KiB block size, which has rea-
sonable overheads (§5.2).

Because the protocol is receiver-directed, it adapts to
diverse scenarios. The receiver chooses which and how
much hash and file data arrive in each reply, and hence
adapts to networks with varying MTU. It detects integrity
failures immediately for metadata and Merkle hashes,
and after receiving each block’s worth of file data, so it
can quickly reject faulty senders. The receiver selects
whether to compress file data, based on whether network
bandwidth or receiver CPU is scarcer. When an app re-
ceives transmissions from a cache on the same host, we
use UDP to keep the boot block tiny; in a cache receiving
transmissions across the network we use TCP to tolerate
latency and congestion.

3.3 Launch
When a new application starts, it consists of a tiny bi-

nary boot block running in an isolated process (§2.2).
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The boot block contacts a cache on the local machine
and asks for its application image by file hash, request-
ing the required range of bytes. Since the cache is not
trusted, the boot block can locate the cache by broadcast.
Thus the boot block is quite simple and only understands
a subset of the Missive protocol; it leaves the work of
fetching the image to the cache, though it may provide a
URL or other hint as to where the image may be found.

Launch is optimized to minimize latency, which
comes from data transfer, verification time, and appli-
cation start overheads.
3.3.1 Data Transfer Latency

In a conventional buffer cache, data transfer is very
fast: the application names a few dozen files to map, and
the OS page-remaps those files from the buffer cache to
the process’ address space. In the context of Embassies,
Missive’s untrusted cache achieves a similar effect by
transmitting the entire image in a single IPv6 jumbo
frame. The Embassies client kernel implements large lo-
cal transmissions with page remapping, while preserving
IP’s predictable by-value semantics.

The untrusted cache can only exploit this performance
boost if it can prepare the image for transmission effi-
ciently (§3.1.2).
3.3.2 Verification Latency

Since the buffer cache is untrusted, the boot block
must verify the image the cache provides before it starts
executing the image. This verification is on the critical
path. The boot block’s contents are public, so it initially
has no secret key with which to perform verification.
Thus, the boot block includes a hash value, e.g., from
SHA-256, to verify the integrity of the image it receives
from the cache.

Unfortunately, secure hashes are costly. To reduce
the cost of verification in the common case, the boot
block substitutes the computation of a hash with a Mes-
sage Authentication Code (MAC), a faster message sum-
mary that requires the sender and receiver share a se-
cret. Initially, the boot block does not have such a se-
cret, so on its first execution, it verifies the image based
on its hash. Once the hash verifies, the boot block com-
putes a MAC over the same data, using Kapp, the app-
specific secret key provided by the client kernel (§2.2).
The boot block stores the MAC in untrusted storage (e.g.,
with the cache), since the use of a secret key makes the
MAC neither private nor subject to integrity attack by the
untrusted store. Standard techniques (not implemented
here) can prevent attacks on data freshness [25, 31].

On subsequent starts, the boot block queries the cache
for the MAC it previously computed. If the MAC is
present, the boot block verifies the image’s integrity with
the MAC, skipping the hash altogether, resulting in a
faster startup. We use VMAC [23], a MAC ten times

faster than SHA-1. On our experimental hardware (§5),
SHA-1 costs 3.9 ms/MiB (σ = 0.1%), whereas VMAC
is 0.29 ms/MiB (σ = 1.0%).

We aim to reduce user-perceived startup latency, and
both hash and MAC computations are embarrassingly
parallelizable. Thus our boot block exploits all available
cores to trade a wide burst of computation for reduced
latency.

Another way to reduce the verification latency is to
overlap it with later steps: the host could provide ad-
ditional primitives to allow speculative execution [29]
while the verification process continues (not imple-
mented here). Embassies discards this option because
it adds additional host complexity.
3.3.3 App Start Latency

Once the image has been transferred and verified, the
app begins executing. Several factors affect how quickly
the app is ready for user interaction.
Page Alignment. In our implementation, the bulk of the
image consists of shared libraries. Libraries expect to
load at 4 KiB memory-page boundaries. Missive’s block
alignment policy ensures page alignment for large files.
When a boot block requests the zarfile from the cache,
it specifies a padding header that compensates for the IP
header and host packet buffer offsets, making the first
byte of the zarfile fall on a page boundary. Correcting
these alignment issues forestalls runtime memcpy opera-
tions that otherwise impair startup latency.
ELF Section Layout. The ELF standard adds additional
complications: ELF-format files have a non-trivial map-
ping between on-disk structure and in-memory structure.
Typically, an ELF file has a large text segment, then a
smaller initialized data segment that is expected to ap-
pear at an offset in memory different than its offset from
the text segment in the file. The ELF file also specifies
an uninitialized data (bss) memory region with no corre-
sponding data in the file, as well as file regions (such as
debugging symbols) that are not mapped into memory.

Missive addresses this complexity as follows: at image
capture time, it records how regions of the library file are
mapped into memory. The text segment is recorded in
the zarfile in an oversized region adequate to hold the fi-
nal in-memory layout. The data segment is recorded in a
separate region. At runtime, the data segment is copied
into place at the appropriate offset, and the bss segment
is zeroed. This arrangement lets the library run directly
from the launched image, eliminating the bulk of mem-
ory copy operations. The cost of the empty space in the
image is tolerable, as zero-filled regions compress nicely
for wide-area transfer.
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4 Image Commonality
To deliver on the promise of fast launch of big, inde-

pendent applications, Missive assumes that most applica-
tions actually share a fair amount of common infrastruc-
ture. Broadly, we conjecture that most apps will exhibit
commonality with at least some other apps, because there
will be only a few popular app-building frameworks.
Over time, some will fork and others will ebb. This
evolution will look less like today’s Web client, where
standards make it difficult to fork away from HTML and
JavaScript, and more like frameworks on servers, where
Django and Rails evolve competitively. This intuition
does suggest increased variability, but not unbounded
schisms.

4.1 Characteristics of Our Data Sets
We evaluate this conjectured application commonal-

ity by examining the commonality within three data sets
drawn from two application populations.

First, we study a population of 100 interactive desk-
top applications from Ubuntu Linux 12.04. We selected
them using Linux “best-of” application lists [15, 42] rep-
resenting a wide variety of domains (e.g., web browsing,
vector illustration, word processing, video editing, mu-
sic composition, software development, chemical analy-
sis) built using various languages (C, C++, Java, Mono,
Python, Perl, Tcl) and GUI frameworks (Gnome, KDE,
Qt, Tk, Swing).

From this population, we first constructed the POSIX-
complete data set: for each application, we constructed
a zarfile containing every file the application might touch
while running. We used Ubuntu’s package management
system to find this list: we queried the package man-
ager for all packages that are dependencies of the appli-
cation’s base package. (Such dependencies are declared
manually by Ubuntu’s package maintainers.) We then re-
cursively found sub-dependencies, eventually enumerat-
ing the entire dependency tree for each application. Each
application’s zarfile contained the union of all files in all
packages in its dependency tree.

The second data set, POSIX-startup, is drawn from
the same population. However, instead of the complete
zarfiles, we measured only the portion that is accessed
while the app launches to the point of interactivity, as
captured by strace. This provides a more accurate pic-
ture of the time a user might be expected to wait to use
an app after launching it.

The third data set, Embassies-startup, consists of
eight apps we adapted from the POSIX world to run in
Embassies to validate that the minimal client kernel re-
ally can support rich apps. These include Midori/Webkit
(an HTML renderer), Abiword (a word processor), Gnu-
meric (a spreadsheet), Gimp (a raster image editor, like
Photoshop), Inkscape (a vector image editor, like Illus-

Figure 6: Zarfile size distribution. The distribution of image
sizes used to test commonality across images. The -startup sets
have medians of 54 and 66 MiB. The complete set images range
68 MiB–1.0 GiB.

trator), Marble (an interactive globe, like Google Earth),
Gnucash (an accounting app, like Quicken), and Hyper-
oid (a video game). These are the types of real rich appli-
cations we would like to see deployed in the Embassies
model. These apps use some common and some dis-
tinct components: most use X windows as a rasterizer,
for example, but some use the Qt graphical toolkit, while
others use Gtk. Porting the apps to Embassies entails
packaging them into images that encompass executable
libraries and runtime data.

While the Embassies-startup population loses fidelity
because it is much smaller than the POSIX apps, it more
accurately represents the anticipated ecosystem in that
each app image is a real binary that launches in Em-
bassies. The POSIX data sets are less accurate; for exam-
ple, they omit about 10 MiB of functionality associated
with the Embassies POSIX emulation, TCP stack, and X
rasterizer.

The agreement between measurements of the POSIX-
startup and the Embassies-startup sets suggests that the
POSIX-startup set is a reasonable approximation of what
the apps would look like if ported to Embassies, and
hence we can use this larger set of apps to evaluate such a
world. The introduction of the POSIX-complete set lets
us reason about the cost of transmitting complete app im-
ages for offline use.

Figure 6 shows the distribution of image sizes in each
data set.

4.2 Commonality Measurements
To measure commonality, we simulated the transmis-

sion of each data set to a client machine assuming that
some apps are already cached there. Our hypothesis
is that applications share enough common infrastructure
(and, thus, common zarfile blocks) that installation of a
new application will require significantly less data trans-
fer when other applications are already cached. The
block size was 4 KiB.

The results for POSIX-complete are shown in the
CDFs in Figure 7a. The bottom curve shows the worst
case: transfer of a single zarfile to an empty cache. It is
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Figure 7: Content commonality across zarfiles generated
for Posix applications. Cumulative distribution function of
the required transfer size to install the n+1st zarfile on a Mis-
sive system where n zarfiles are already cached. The block size
is 4 KiB. 7a (top) shows complete applications with all depen-
dencies. With 100 apps, the cache reduces the median transfer
size from 181.6 MiB to 12.2 MiB. Little incremental benefit is
gained beyond 50 cached zarfiles. 7b (bottom) shows results
for the portions of the zarfiles required for application start.
The cache reduces median transfer size by nearly 98%; typi-
cal apps in the startup set exhibit more commonality than the
complete zarfiles.

nearly equivalent to the zarfile size distribution (modulo
duplicated blocks), ranging from 64.8 MiB to 1.3 GiB
(median 181.6 MiB). The top curve shows the best case:
transfer of a single zarfile when all other 99 zarfiles are
cached. The number of unique bytes requiring transfer
was reduced to an average of only 6.7% of the original,
to a median of 12.2 MiB.

The middle curves in Figure 7a show intermediate
cases when some (n = 6, 12, 25, and 50) of the 100
zarfiles are cached before the transfer of one additional
zarfile. In each simulated transfer, we first populated the
cache with n zarfiles selected uniformly at random from
the

(
100
n

)
possibilities, then selected one to transfer ran-

domly from among the 100− n that remained. The sim-
ulation suggests virtually all of the cache’s benefit is re-
alized with 50 zarfiles cached.

Figure 7b shows the same experiment performed on
the POSIX-startup data set. These zarfile subsets were
about 36% the size of the full zarfiles, ranging in size
from 3.2 MiB to 543.1 MiB (median 65.6 MiB). But
the reduced set isn’t just smaller: it also exhibits far

Figure 8: Content commonality across zarfiles generated
for Embassies applications. Cumulative distribution function
of the required transfer size to install the n + 1st zarfile on a
Missive system where n zarfiles are already cached.

more commonality between applications. When all but
one were cached, retrieval of the final zarfile required a
transfer of between 8.0 KiB and 121.3 MiB (median 1.3
MiB)—a reduction to just 2% of the median transfer with
a cold cache. To give these numbers context, a typical
app that had not been previously installed could start in
less than two seconds on a 6 Mbps cable connection.

Figure 8 shows the same analysis for the 8 apps in
the Embassies-startup data set. With seven apps cached,
transfer time for installation of the eighth was reduced
to about 34% of its size. This is roughly comparable to
the efficacy of caching for Posix apps with a cache that
size. This suggests that in a larger Embassies ecosystem,
efficacy of caching will approach the 98% seen in our
Posix study.

This simulation does have inaccuracies. It overes-
timates the available commonality in a real Missive
ecosystem because all the applications we tested are from
the Posix world, none from Windows or Mac. In ad-
dition, where two of our apps share a framework, they
use the same version. However, it also underestimates
the opportunity for efficient transfer: in an ecosystem
that exploits Missive, libraries and frameworks may be
repackaged to make their components easier to share;
here, no such optimization has been performed. The ex-
periment also understates the benefits of apps that share
nearly identical stacks, such as multiple apps built on an
HTML renderer.

4.3 Block Size Selection
Block size is an important parameter in Missive.

Larger blocks produce less metadata, while smaller
blocks might expose more commonality across zarfiles,
depending on the distribution of the variations. Figure 9
shows our analysis of Missive’s sensitivity to block size
for the Posix-complete dataset. We filled the cache with
99 of the zarfiles and simulated the transfer time required

8
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Figure 9: Sensitivity of commonality-discovery to block
size. Cumulative distribution function of the required trans-
fer size to install the 100th zarfile on a Missive system where
the other 99 are already cached. The size of the blocks hashed
is varied. Computing hashes for smaller blocks results in sig-
nificantly more discovery of commonality across zarfiles and
much smaller transfers. Simulation uses the POSIX-complete
dataset.

to install the 100th. With a block size of 1 MiB, that fi-
nal zarfile required a transfer of between 34.0 MiB and
1.1 GiB (median 102.5 MiB). 64 KiB blocks reduced the
median transfer size to 45.3 MiB and 4 KiB blocks re-
duced it further to 12.2 MiB. The increase in metadata is
clearly worth reducing the block size to 4 KiB.

4.4 App Patching
One important special case of commonality is patch-

ing: replacing an image already present at the client with
a similar one. Note that patching is a domain-specific
application of compression, and hence is amenable to
specialized optimization. Chrome’s Courgette tool pro-
duces binary patches ten times smaller than a structure-
oblivious binary diff [1].

Missive is designed to extract commonality implicitly
across apps, without the receiver identifying a source
version, but such specialized tools layer nicely on top
of Missive: If an app wants to patch itself, it can iden-
tify a previous version against which the patch should be
applied, and which is available locally. In that case, a
specialized tool like Courgette can be executed either by
the app or by the untrusted cache to generate new content
from an efficient patch and supply it to the shared cache,
ready for future app launches.

5 Evaluation
We analyze the choice of Merkle degree, evaluate the

overheads due to Missive’s packaging strategy, and mea-
sure the overall performance on app startup time. All
measurements were collected on an HP z420 worksta-
tion with a four core 3.6GHz Intel Xeon E5-1620 CPU
and 4GB of RAM.

Figure 10: Ideal Merkle tree degree is a function of
bandwidth-delay product. On networks with high
bandwidth-delay, the receiver might as well request many in-
termediate hashes rather than spend an RTT hoping to reuse
the hashes of an existing subtree.

5.1 Selection of Merkle Tree Degree
Merkle trees enable a receiver to verify and begin us-

ing a partial image before the entire image is transferred
and verified [3]. A smaller benefit is that the receiver can
skip gathering a subtree of Merkle hashes if the root of
that subtree is already cached.

A small-degree tree exposes more such opportunities,
but those bandwidth savings come at the cost of round
trips. Thus the ideal tree degree is determined by the
bandwidth-delay product [21] of the network transport
(Figure 10). For example, on a 1.92 Mbps, 10 ms con-
nection (star), receiving 100 192-bit hash records is as
cheap as an RTT, thus the optimal tree degree is 100.

We configured our Merkle tree with degree two be-
cause it was easy. This value only makes sense for slow
networks, but receivers on faster networks can emulate
higher degree by requesting multiple layers in each RTT.

5.2 Overheads
The image file format is structured to create oppor-

tunities for commonality exploitation, but that structure
can introduce overheads. The most important overhead
is the alignment-inducing padding, but in practice, our
measurements show that it remains below a few percent
(Figure 11).

The padding overhead is affected by the choice of
block size (Figure 12): larger blocks incur more padding,
but increasing the block size also marks more files as
“small”, packing them into the tail of partially-used
blocks. It turns out padding is worst at 64 KiB: smaller
blocks generate less padding per “large” file, and larger
blocks reduce the number of “large” files that generate
padding. Regardless of block size, the padding never be-
comes a significant overhead.

Packing small files into block tails hides opportunities

9
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Figure 11: Image file format overheads run 1-2%. The im-
age file format incurs about a percent overhead for metadata
such as file stat metadata and a name index. Padding varies
depending on the distribution of file lengths, but it remains be-
low a few percent. Note the y axis begins at 97%. Images
constructed with 4 KiB blocks.
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Figure 12: Padding overhead is insensitive to block size.

for sharing; is it necessary? Yes: although there are few
bytes in small files (Figure 3), giving each file its own
block introduces considerable overhead that grows with
block size (Figure 13).

5.3 The Bottom Line: Startup Latency
Ultimately, we aim to demonstrate that, by judiciously

coupling image transmission and buffer cache, Missive
achieves interactive performance without a trusted file
system or buffer cache infrastructure. To that end, we
measure end-to-end network transmission and applica-
tion launch times.
5.3.1 Launch Time

Besides fast transmission, Missive should add mini-
mal additional time moving an app from the trusted cache
into an executable condition in a new process; this is its
buffer-cache-like function.

Figure 14 shows time to launch Gimp and several
Midori-based apps, for which we have good internal
probe points and can measure startup time all the way
to the point of user interactivity. It contrasts launch-
ing inside Embassies with starting the same content on
Linux. The “hot” start represents the primary function
of a buffer cache: bringing a machine-resident app into
memory for prompt execution. Missive’s hot start is
about 100 ms or less overhead.
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Figure 13: Small-file packing is necessary. Giving small
files their own blocks maximizes sharing opportunity, but the
file distribution includes so many small files that doing so gen-
erates significantly more padding than the actual file content.
The smallest block sizes have median bloat of 2–28%.

Figure 14: Missive’s launch is comparable to POSIX buffer
cache. In the hot case, the app’s blocks are in the untrusted
cache; the primary overhead is the MAC verification (§3.3.2).
In the warm case, missing app blocks are fetched from a fast
server; the primary overheads are the slower hash and the
memcpys required to assemble the image (§3.1.2).

A 100 ms delay may seem expensive [26], but three
factors mitigate it. First, it only affects the launch of a
new binary; navigation among pages or activities within
a site’s application are unaffected. Second, once a site’s
binary is running, the vendor controls both ends; it is
free to deploy SPDY [30] or the next innovation anytime.
Third, we have only performed black-box optimizations;
application-specific tuning could dramatically reduce the
amount of data needed for startup to the first point of
interactivity.

In the “warm” start case, the cache contains a copy of
the Midori browser with a vulnerable version of libpng.
We measure the time to start an app using a similar
stack (exploiting that local commonality) with a patched
libpng. Since the network overhead is a function of con-
tent size (studied in Figures 7 and 8), this experiment
uses a local network connection to focus attention on the

10
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Figure 15: Contrasting just launch time across the broader
Posix-initial data set, the median Missive app takes about 50 ms
longer, most of which is verification time. (Verification times
are sorted with the corresponding app, not cumulatively.)

system’s inherent sources of latency. In the warm start
case, Missive’s cache requires about 150 ms to assemble
the outgoing zarfile from cached blocks, and the receiver
pays as much again to verify the zarfile with a hash.

Figure 15 measures the broader Posix-startup data set,
but more shallowly, in that it only captures the cost of
mapping the executables into memory. For this hot start
experiment, we had a Linux process mmap every file in
the data set and read the rest; we contrasted that to Mis-
sive’s launch step, which pulls one zarfile into its mem-
ory. In both cases, the test apparatus touched every mem-
ory page. The median Linux time is 17 ms. Most of Mis-
sive’s 66 ms is the cost of integrity verification. Although
the cost is 4× higher in relative terms, the overall burden
is not overwhelming compared to the overall start time
of typical applications, which this experiment excludes.

While Missive is not completely without cost, in the
hot case where it can use VMAC (§3.3.2), it hovers
very close to the performance of a native, trusted buffer
cache.

6 Related Work
Numerous systems have proposed content-addressable

techniques for identifying and routing content, as well as
reducing bandwidth [5, 7, 11, 14, 28, 39]. We briefly
touch on some of the most related efforts below.

Tolia et al. proposed a content-oriented data trans-
fer service with the aim of decoupling application-level
content negotiation from data transfer, hence enabling
greater innovation in transfer protocols [38]. Like Mis-
sive, they divide objects into chunks identified by hash,
allowing caches to identify shared content across appli-
cations. The receiver drives the data transfers by specify-
ing chunks of interest. Since Tolia et al. focus on issues
related to data transfer, they do not consider, as Missive
does, how to identify and package app-related files, they
assume the local content cache is trusted, and they do
not address the final step of rapidly transferring the app

image into a booting process and verifying it.
Van Jacobson et al. and Trossen et al. have proposed

building efficient commonality-exploiting data transfer
by addressing content at the network layer [19, 40]. Rhea
et al. use content hashes to reduce the bandwidth needed
for Web traffic [34]. Spring and Wetherall also use hash-
based matching to perform data deduplication at the IP
layer [35].

Tangwongsan et al. propose a multi-resolution hand-
print for selecting a content chunk size that optimally ex-
ploits data redundancy in files [37].

Multiple projects (e.g., the Collective [6] and Inter-
net Suspend/Resume [22]) proposed distributing appli-
cations as full VMs, both to simplify management and to
minimize cross-application conflicts. On the server side,
SnowFlock [24] proposed a data-center-wide VM fork
operation for instantiating a single VM on hundreds of
machines. To minimize launch latency, they developed
several techniques for lazily replicating only the active
working set of the VM being forked. Unlike Missive,
these projects assume a trusted local cache.

The deduplicating transport of Missive is constructed
of fairly conventional techniques. We considered using
BitTorrent [8] or other deduplicating transports [13, 28].
Using a custom transport protocol, however, admits three
advantages: its use of Merkle trees enables immediate
use of partially-loaded images, it is optimized around
the untrusted cache’s extreme latency constraints, and its
simplicity enables the same protocol to function well in
the wide-area and be implemented in a tiny boot block.

The most crucial abstract idea in Missive is the separa-
tion of sharing content for performance from sharing by
reference; this distinction was significantly inspired by
the Slinky system [9].

7 Conclusion
By virtue of the protocol that boot blocks use to share

it, Missive’s untrusted cache supplants functions nor-
mally supplied by a host’s (very trusted) buffer cache.
It coordinates memory as a cache for disk, and disk as
a cache for the network. It rapidly assembles an ap-
plication’s image from parts both unique and common
with other apps. It exposes sharing in a way that the
underlying memory page manager can exploit for per-
formance, while preserving for apps the abstraction of
private copies; but because naming is by content, the iso-
lation is much stronger than in the conventional use of a
buffer cache.
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Abstract
Applications often need to analyze past states to predict
trends and support audits. Adding efficient and non-
disruptive support for consistent past-state analysis re-
quires after-the-fact modification of the data store, a sig-
nificant challenge for today’s systems. This paper de-
scribes Retro, a new system for supporting consistent
past state analysis in Berkeley DB. The key novelty of
Retro is an efficient yet simple and robust implementa-
tion method, imposing 4% worst-case overhead. Unlike
prior approaches, Retro protocols, backed by a formal
specification, extend standard transaction protocols in a
modular way, requiring minimal data store modification
(about 250 lines of BDB code).

1 Introduction

Applications need retrospection, the ability to analyze
past states, to provide audits and predict trends. Without
adequate support in the data store, it is hard for devel-
opers to reconstruct consistent past states corresponding
to events of interest. Yet, many data stores lack support
for retrospection because adding a low-impact consistent
past state system to a data store has been challenging us-
ing current approaches.

This paper describes Retro, a system that adds retro-
spection to Berkeley DB (BDB), a popular transactional
key-value database. Our system automatically stores past
states of interest to the application, and allows the ap-
plications to query automatically restored consistent past
states. The queries can take advantage of the application
code base; any read-only application or library program
that runs in BDB can also run retrospectively.

The novel contribution of Retro is an efficient yet sim-
ple and robust implementation method. Retro is very ef-

1This work was partially supported by the National Science Foun-
dation under grants NSF IIS-1251037, NSF CNS-1318798. The work
was accomplished when Ross Shaull was at Brandeis University.

ficient; it does not disrupt BDB performance even when
applications retain the past states at high frequency, im-
posing a minimal 4% performance penalty in the worst
case. Furthermore, Retro extends standard database pro-
tocols in a modular and robust way, based on a simple
past state system specification that serves as a basis for
a formal proof of Retro protocol correctness (presented
in [13]); this is in contrast to prior past state systems
(e.g., [5, 15, 17]), which used more complex and frag-
ile ad-hoc modifications to data store internals to avoid
disrupting database performance. The code implement-
ing Retro protocols composes with standard interfaces in
the database software stack. Because the composition is
modular, the modifications to the database code are min-
imal: our prototype modifies only 250 lines of Berkeley
DB source code.

To preserve transaction performance when saving con-
sistent past states, Retro captures the needed past states
incrementally, using split copy-on-write [15]. It then cre-
ates the past state lookup structures [14] and accumu-
lates the past states and lookup structures in additional
memory that is dedicated to storing past state informa-
tion. Retro writes the past states and lookup structures to
a separate log-structured store, in the background with-
out interfering with database queries. Retro recovery en-
sures the past states and lookup structures remain con-
sistent and durable in the presence of crashes. To query
past states, Retro redirects code to snapshot pages using
dynamic translation structures, without interfering with
database transactions.

Retro accomplishes its tasks by extending BDB update
commit, update recovery, and update writing and reading
protocols in a simple and intuitive way. An extension to
the commit protocol retains the needed past states when
an update transaction commits. Similarly, an extension to
the BDB recovery protocol retains the needed past states
when BDB recovers updates from the transaction log af-
ter a crash, thus relegating past state recovery to database
recovery, an important simplification since recovery pro-
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tocols can be complex.
Retro recovery faces two complications. Care must be

taken to ensure that BDB does not discard the transaction
log before past states become durable, and to ensure that
recovery attempts that fail and restart do not corrupt past
states. These dangers are avoided by enforcing a simple
invariant ensuring that past states become durable before
database updates.

Retro is implemented as a system of concurrent call-
backs running as part of BDB commit, recovery, and
writing and reading protocols. The concurrent callbacks
access shared state, e.g., to track which past states have
been already saved. The callbacks must therefore run in
a thread safe manner, and moreover must be serialized in
a consistent order to ensure consistent past states can be
identified correctly. If Retro callbacks were to block un-
necessarily, this could increase BDB transaction latency.
To avoid this bottleneck, Retro stores its shared state in
specialized data structures that eliminate blocking.

In summary, the contributions of this paper include 1)
a new efficient system for retrospection in Berkeley DB,
implemented using a simple and robust method, avoiding
invasive database modifications. 2) modular past state
protocols justified by a formal specification that extend
standard transaction protocols, 3) design of the modu-
lar snapshot layer that implements the past state pro-
tocols, using specialized data structures that minimize
overheads to BDB, 4) experimental evaluation support-
ing our efficiency claims, and analysis of retrospection
performance for in-memory and on-disk past states.

Retro was designed for BDB but we believe our
method is general and can be applied to other transac-
tional data stores, contributing a step towards making
past state support more widely available to applications.

2 Related Work

Past states can be supported at the level of logical records
or files (e.g., [5, 12]), or low-level pages (e.g. [17]), like
Retro. Without close integration with the data store, past
state systems can impose a high performance penalty to
provide transactionally consistent records, or crash con-
sistent files. Systems that operate below the data store
( e.g., page-level Windows VSS), block update transac-
tions, disrupting performance if snapshots are frequent.
Temporal databases that operate above a database, re-
strict scalability [9].

Integrated past state systems can exploit data store
mechanisms to write consistent past states at low cost.
Postgres [3] and versioning file systems (e.g., [4]) inte-
grate with a no-overwrite system that keeps past records
in place, and copies new records to a new place, reducing
the number of writes. Since past and current state are not
separated, large past state can negatively impact the cost

of current state reads [3]. Read impact can be avoided
by keeping the past state separate. Ganymed [10], a
Postgres based system, copies past records to a sepa-
rate Postgres replica node, using replication middleware.
The replica provide access to historical snapshots using
modified concurrency control and query protocols. Read
impact can also be avoided by exploiting recovery (e.g.
fuzzy checkpoints [3]), but recovery based methods are
too slow for on-line programs.

ImmortalDB [5] supports consistent past records, in-
tegrating with SQL Server. The database data layout is
modified to keep recent versions of past records on the
current state pages, eventually migrating old versions to
separate pages; indexes are modified to support temporal
access. Oracle Total Recall supports integrated histori-
cal record tables, indexed like regular tables. SNAP [15]
supports consistent indexed split page-level snapshots,
integrating with an object store. SFS [17], supports split
page-level snapshots, integrating with a file system. All
above systems integrate past state support using invasive
modifications to the data store internals. VersionFS [7]
adds versioning in a stackable file system. The stackable
architecture supports modular extension, a goal shared
by Retro .

Retro adopts the split snapshot representation in
SNAP [15] and Skippy index [14], extending the prior
work in important ways. The Skippy work provides ef-
ficient multi-level index for split snapshots, without con-
sidering index recovery, concurrency, or implementation
of a complete snapshot system. Retro implements a com-
plete snapshot system, including efficient recovery and
non-blocking concurrency control protocols for Skippy
index and snapshot data. Unlike SNAP, and other imple-
mentations using invasive ad-hoc modifications, Retro
provides an efficient implementation method based on
modular extension of standard transaction protocols. The
modular snapshot protocols, based on a formal snapshot
system model, and their low-cost implementation struc-
tures in BDB are the new contributions of Retro.

3 Programming Model

From the application developer’s perspective, program-
ming with Retro is a straightforward extension to pro-
gramming with BDB using a simple named snapshot ab-
straction (Figure 1).

Retro supports C and SQL (SQLite) BDB APIs. Ap-
plications run transactions that issue update and query
requests to records organized in tables. An applications
may declare a persistent snapshot at transaction bound-
ary at any time by issuing the snapshot now command.
The declaration command commits a transaction, whose
serialization point defines the contents of the snapshot. A
snapshot represents the state of the entire database (e.g.,
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Current-state queries are unchanged by Retro
results ← select * from ...

Applications may declare snapshots at any time and get back
a snapshot identifier

S ← snapshot now
As of queries are delimited with snapshot identifier

results ← as of snapshot S { select * from ... }

Figure 1: Programming with snapshots

tables, indexes, system catalogs).
After declaration commits, the application is returned

a snapshot identifier which permanently identifies the de-
clared snapshot. A snapshot identifier may be used to
access a snapshot immediately; no delay is required be-
tween declaring and accessing a snapshot. Retro does
not mandate how snapshot identifiers are remembered for
later use, e.g. they can be stored in a table along with a
timestamp. Internally, Retro assigns to snapshot iden-
tifiers consecutive integer names in declaration commit
order.

To make use of the snapshots they declare, applica-
tions run queries as of those snapshots. The application
delimits any read-only query code with as of to instruct
Retro to run the delimited query retrospectively. A query
delimited by as of snapshot S reflects the effects of all the
transactions committed prior to the serialization point of
S, and none of the effects of transactions committed af-
ter S. Inside the as of delimiter, the query itself is writ-
ten just like a normal, current-state query. This makes
it easy to leverage existing programmer knowledge and
codebases when programming with Retro.

Existing current-state BDB code runs unmodified.
Code that declares snapshots and runs retrospection can
be executed alongside the current-state code in the same
database, making it easy to use retrospection from cur-
rent state BDB code on-line where needed.

4 Retro architecture

The relevant components of BDB software stack are de-
picted in Figure 2. The shaded areas show Retro exten-
sions (explained later). A BDB application runs trans-
actions that manipulate logical data records and tables,
issuing update and query requests against the BDB API,
which processes the requests and translates them into re-
quests to the transactional storage manager. The stor-
age manager manages logical data records organized in
pages, stored on durable storage. The pages are the unit
of transfer between durable storage (on disk) and the
page cache (in memory).

When an application requests a data record as part of
some query (e.g., “get record k”), that request is pro-

as of snap now

MVCC

Application

Storage manager

Access method

Database

DB interface

WAL Page cache

DB Disk Retro Disk

Snapshot Layer

Figure 2: Retro modularized in database architecture

cessed by an access method (a binary tree or a hash ta-
ble), a storage manger component that encapsulates the
representation of records in a table. The access method
translates requests to read and write data records into re-
quests to the page cache to read and write data in units
of pages. Pages are cached in the page cache in memory,
and data records are read from and written to the cached
pages.

A request for a page issued to the page cache by an
access method refers to the page by its logical name. A
logical name is a pair ( f ile,number), where file is the
identifier of a database file open in the page cache, and
number is some offset within that file. The logical page
name gets translated to its physical disk address when
page cache performs disk I/O.

The storage manager includes two additional compo-
nent relevant to Retro, concurrency control and recovery,
responsible for transaction serialization and crash consis-
tency, respectively. These components will be described
later when we explain how Retro extends them.

4.1 BDB components extended by Retro

The mechanisms that implement Retro functionality are
modularized within the snapshot layer (SL) (figure 2).
The SL wraps components in the transactional storage
manager, extending BDB behavior to add efficient snap-
shot creation and querying. Snapshots are created and
accessed by extending the page cache and concurrency
control (section 4.4 and section 5). Snapshot recovery
supporting efficient snapshot creation is achieved by ex-
tending recovery (section 6).

Retro does not affect access methods, the logical-to-
physical translation of page names into their disk ad-
dresses, or how the database is organized on disk. These
storage manger components are transparent to Retro.
Retro is concerned with logical page names, and expand-
ing that namespace to support snapshots.

Retro assumes that page cache memory and extra
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storage is allocated for holding snapshots. The extra
page cache memory allows the system to accumulate
snapshots before writing them to disk without contend-
ing with current state transactions. For best perfor-
mance, the extra storage is on separate disks from the
database, to avoid interference. Snapshots have the po-
tential to consume much more storage that the current
state, since (generally speaking) history grows with any
insert, update, or delete, while the current state only
grows when data is inserted. Retro helps use an invest-
ment in additional storage efficiently by being selective
(Retro keeps only declared snapshots) and incremental
(snapshots may share snapshot pages). Currently, Retro
does not allow snapshot deletion. Adopting low-cost
snapshot deletion [16] is a straightforward extension.

4.2 Low-level snapshots
At the level of the storage manager, a snapshot S is a com-
plete and transactionally consistent collection of snap-
shot pages. The collection is complete because it con-
tains all the data and metadata pages in BDB, including
index and catalog pages. The collection is transactionally
consistent because the snapshot pages reflect the serial-
ization point of the snapshot declaration command, mak-
ing snapshot pages consistent with one another. These
properties allow any new or existing read-only code that
could run in the database when snapshot S was declared,
to run as of a snapshot S.

The page-level Retro snapshot abstraction makes it
possible to run retrospective queries without changing
access methods, indices, and other storage system code
that relies on page layout and naming. The same name
used to denote a page in the current state is used during
retrospection to denote a snapshot version of that page.
This means that snapshot pages that refer to each other by
name (e.g., index pages) can be used normally by storage
system code.

For convenience, we denote the version of a page P
as of a snapshot S using P@S. This is purely notational;
when BDB requests a page P while querying restrospec-
tively as of S, it requests P using the same page name as
it would if it were requesting P as part of a current-state
query. Section 4.4 describes this mechanism in detail.

4.3 Snapshot overwrite sequence
Retro creates snapshots using split copy-on-write [15]
and Skippy index [14]. When a snapshot is declared,
all snapshot pages are shared with the current database
pages. When a BDB transaction updates a page that is
shared with a snapshot, Retro saves the snapshot page
in memory, updates the snapshot indexing metadata, and
eventually writes pages and metadata to the Retro disk.

We use the notion of Snapshot Overwrite Sequence
(OWS) to reason about what Retro protocols need to do,
i.e. as a correctness specification.

Definition: Let H be a serial committed trans-
action execution history. The snapshot over-
write sequence of H (OWS(H)) is a mark up
of H that tags every snapshot declaration and
every commit that updates a page shared with
a snapshot.

OWS(H) captures the points in the execution sequence
where snapshot pages and index metadata must be cre-
ated. There is a straightforward formal proof of correct-
ness of Retro protocols based on OWS [13], omitted for
lack of space. OWS answers the following questions:
1) which page versions to save: the page pre-state of
the first update to a page following a snapshot declara-
tion (Sec 5), 2) what state to recover after a crash: a
recovery after a crash immediately following execution
H must recover all pages and metadata created by oper-
ations tagged in OWS(H) (Sec 6), 3) where to get the
page P@S requested by a retrospective query running
after H: from Retro, if there is a tagged commit updating
P following the declaration of S in H, or otherwise from
the database (Sec 7).

For example, consider the following OWS(H):

T 1(S1)T 2(wR)T 3(S2)T 4(wRwQ)
T 5(wRwQ)T 6(S3)T 7(wRwP)

Retro saves pre-states in T 2 (R), T 4 (R,Q), and T 7 (R,P)
but not T 5 since its updates to R and Q are not the
first modifications to a page following the declaration of
snapshot S2. For a crash following H, Retro recovers all
the pre-states and indexing state created in T 1 to T 4, T 6
and T 7. A retrospective query as off snapshot 3, when
issued after H, gets P@3 from Retro, but when issued
before T 7, gets P@3 from the database.

4.4 Logical page virtualization
Retro allows retrospective queries to execute concur-
rently with current state queries and updates in the same
page cache, allowing current state programs to directly
query past states. The key idea behind the execution ar-
chitecture for retrospection is to translate the BDB log-
ical page names to the names of snapshot pages when a
query runs retrospectively, using logical page virtualiza-
tion in the snapshot layer (SL). The name translation is
transparent to BDB, enabling storage system code using
logical page names to run on both the current state and
snapshots.

Figure 3 depicts the retrospective query execution
path. Retro stores the snapshot pages in a file called



USENIX Association  2014 USENIX Annual Technical Conference 161

(Table, P) @ S

(Pagelog, P’)

P

Access method

Query interface

Application

As of

Cache

Retro Disk

P’Q

S

DB Disk

P Q R R’’’... P’

Pagelog FileTable File

Snapshot

Page Name

Translation

Get (Pagelog, P’)

Get (Table, P)

Get k

S
L

Figure 3: Retrospective query execution

Pagelog located on the Retro disk. This file is opened
in the page cache like any other database file. A snap-
shot page P@S that has been overwritten since S was
declared will be copied to Pagelog. For brevity, we refer
to the offset in Pagelog where P@S is stored as P′; the
actual offset P′ has no relationship to the logical name of
P in the current state.

The logical page virtualization is implemented by a
translation component. The translation component inter-
cepts page requests from access methods and translates
logical database page names into logical snapshot page
names if the code issuing the request is running retro-
spectively. The as of primitive provided by the Retro
interface extension identifies the snapshot from which a
requested page should be read.

The translation component keeps track of translations
from logical names (e.g., page P in a database file Table)
to pre-states in Pagelog (e.g., P′ in Pagelog) for any
declared snapshot. After translating (Table,P)@S to
(Pagelog,P′), the translated name is passed to the page
cache, which reads and caches it like any other page. The
contents of the snapshot page (Pagelog,P′) are returned
to the access method as though it were the current-state
contents of the page named (Table,P), with the access
method and application none the wiser that the requested
page was transparently switched with a snapshot page.
If the retrospectively accessed page named (Table,P) is
still shared with the database, the name translation in SL
will be identity function, and the logical name (Table,P)
will be requested from the cache.
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Figure 4: Snapshot representation

BDB programs that read and write the current state
are unaffected by Retro. When the application performs
a query without specifying as of, Retro does not en-
gage page name translation, and the logical page name is
passed unchanged to the page cache. Because different
versions of the same page have distinct logical names,
they can coexist in the cache.

4.5 Retro snapshot representation
Retro adapts the split snapshot representation [15, 16] to
organize snapshot data (pre-states) and metadata (indices
for page name translation) . Split snapshots are created
at the page level, and stored separately (“split”) from the
database (e.g., on a separate disk). By splitting snapshots
from the database, the approach does not affect how the
database organizes data, and partially isolates database
I/O performance from snapshot-related I/O.

Figure 4 depicts the organization of Retro data and
metadata. When an update U tagged in the OWS com-
mits a modification to a page P, Retro saves in memory
the the pre-state of P created by U . For every saved pre-
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state, Retro also updates snapshot metadata in memory
to note the snapshots to which the pre-state of P belongs.
Snapshot metadata includes Maplog, which maps from
logical page names as of a declared snapshot to the lo-
cation of pre-states in Pagelog; SavedAfter, which tells if
a snapshot shares a particular page with the current state
by tracking for every database page the latest snapshot
for which a pre-state of that page was saved; and Start,
which associates every declared snapshot with the first
Maplog entry created for that snapshot.

Snapshot data and metadata are stored on disk. The
on-disk representation in Figure 4 corresponds to the ex-
ample transaction history in Sec 4.3. Section 6 explains
how Retro writes snapshot data and metadata to disk in
efficient and recoverable manner.

Snapshot Page Tables Snapshot page tables (SPTs)
are in-memory tables used to implement snapshot page
translation during retrospection (section 4.4). SPT en-
tries map the logical page names in the database to the
logical names of snapshot pages that can be either pre-
states in Pagelog, or pages shared with the database. Re-
solving the snapshot page name P@S to the logical name
of a page in Pagelog requires looking up P in SPT(S). In
Figure 4, SPT(S1) and SPT(S2) share Q′ since there was
no update to Q between S1 and S2. In SPT(S3), Q points
to the database because Q has yet been modified since S3
was declared.

Maplog, Start, and SavedAfter Keeping SPTs in
memory for every declared snapshot would be costly, so
instead Retro reconstructs SPTs from the saved meta-
data. When a retrospective query is run as of S, Retro
builds SPT(S) by scanning Maplog for the first occur-
rence of a mapping for each page; these first-encountered
mappings correspond to the pre-states saved from update
tagged in the OWS. Retro scans Maplog from Start (S)
since earlier mappings correspond to pre-states saved be-
fore S was declared. A scan will not encounter mappings
for snapshot pages that are still shared with the database.
Retro can determine this, without scanning to the end of
Maplog, from the data structure SavedAfter.

E.g., in figure 4, SavedAfter shows pages P and R were
last saved after S3 was declared, but the snapshot after
which Q was last saved is S2.

Naively scanning Maplog can be expensive, because
mappings for pages for which pre-states are frequently
saved (due to update skew) increase the length of a
Maplog scan. An efficient indexing technique to com-
bat the impact of update skew called Skippy, is described
in [14].

An SPT built for a retrospective query Q running as
of snapshot S needs to be kept up to date as Retro saves

snapshot pages. The techniques used to accomplish this
are discussed in [13].

5 Extending MVCC

BDB serializes transactions using a popular multi-
version page-level concurrency control protocol
(MVCC) that enables concurrent transaction reads
and updates by keeping multiple versions of pages in
memory. Every transaction T “sees” a consistent view
of the database, called an isolation snapshot, consisting
of the versions of pages which were most-recently
committed before T began. If T updates a page, the new
page version becomes visible to other transaction after T
commits. MVCC versions pages in the page cache [1, 8]
in the storage manager.
Retro extends MVCC, creating persistent snapshots out
of isolation snapshots. To avoid confusion, we refer to
the persistent snapshots created by Retro as Psnaps and
the volatile isolation snapshots created by MVCC as Vs-
naps.

MVCC mechanisms When an application requests a
page P for update (via an access method) as part of trans-
action T , a private copy of P is created in the cache and
associated with T . When T commits, P is marked with a
number called the commit LSN of T (Sec 6), identifying
the last transaction that updated P. The versions of P are
linked together in a list called the version chain.
When an application requests to read a page P (via an
access method) as part of transaction T , the page cache
searches the version chain for the latest version commit-
ted before T began. If the page cache has no versions
of a page P, P is read from the disk. To avoid overflow-
ing the cache, MVCC garbage collects page versions on
each version chain that are no longer visible to any run-
ning transactions. Every transaction has an associated
Vsnap, and Vsnaps of multiple transactions may coexist
in the same cache.

5.1 Persisting snapshots

To persist a Psnap S, Retro needs to save the latest ver-
sion of every page committed before S was declared, and
eventually write it to Pagelog on the Retro disk.

Retro saves pages from S using page-level copy-on-
write in the page cache. It relies on MVCC to create, in
memory, the needed page copies in Vsnaps of transac-
tions that update pages following a snapshot declaration,
and uses SavedAfter data structure to identify the needed
versions among these copies. SavedAfter relates every
logical page name to the latest snapshot after which a
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version of it was last saved. When a transaction T com-
mits, Retro checks SavedAfter to see if any page P up-
dated by T is the first update to be committed since the
latest-declared snapshot S, and if so, saves the pre-state
of P created by T and updates SavedAfter.

Retro writes the saved pre-states efficiently using
asynchronous I/O. However, pre-states which are no
longer visible in any Vsnap are candidates for MVCC
garbage collection. So, Retro must maintain the follow-
ing invariant to ensure that pre-states needed for a de-
clared Psnap can be written to Pagelog:

Before-GC invariant: any pre-state from an
update in the OWS is saved for Pagelog before
MVCC garbage collects it.

Retro maintains this invariant by writing the pre-states
in the Vsnap of a transaction T lazily after T commits,
postponing garbage collection of the pre-states for a short
time if necessary. Since MVCC garbage collection also
happens lazily when page replacement is needed, the de-
lay has minimal impact.

6 Extending Recovery

Snapshot recovery is greatly simplified by leveraging the
native BDB recovery mechanism. When BDB recovery
replays the updates of transactions that committed before
the crash, Retro saves the intermittent page versions that
correspond to the pre-states of updates tagged in OWS,
mimicking snapshot creation during normal execution.
This way, if BDB creates intermittent page versions iden-
tical to the ones created during normal execution, when
recovering a history H, Retro will create snapshot pages
and metadata defined by OWS(H).

During recovery, BDB produces the same intermedi-
ate versions that were produced by the earlier execu-
tion as long as the page versions read from disk after
the crash are the same versions used by original updates.
Care must be taken to ensure that snapshots are correctly
recovered. BDB may discard the update records from
the log after updates are written to the database. Shap-
shots could be lost if updates records are discarded pre-
maturely. Moreover, if BDB recovery crashes while up-
dating the database pages on disk, then when recovery
restarts, it may encounter disk page versions different
from those needed by OWS, causing snapshot pages to
be lost.

Retro avoids the complications by enforcing the fol-
lowing simple write-ordering invariant, called the write-
ahead snapshot invariant, during normal operation and
during recovery:

Write-ahead snapshot (WAS) invariant: The pre-
state of P (and associated snapshot metadata) from
an update in OWS(H) must be written to the Retro
disk before the version of P created by that or any
later update in H is written to the database disk.

WAS invariant guarantees snapshot pages and metadata
become durable before database pages needed to recover
them become overwritten.

During replay (like in normal execution), Retro con-
sults snapshot metadata e.g., SavedAfter, to check if the
pre-state needs to be saved. Snapshot metadata therefore,
must be recovered the database. Retro simplifies meta-
data recovery by storing all metadata (Start, Maplog, and
SavedAfter) in BDB transactional data structures, and
updating metadata using regular transactions, Retro re-
lies on BDB to recover metadata.

It would be costly to write snapshot data using a
database transaction, since it is large compared to snap-
shot metadata. Instead snapshot data is written using
regular writes. So, the Retro recovery protocol enforces
a second write-ordering invariant to make it possible to
clean up partially-written snapshot data after a crash and
correctly detect whether a particular pre-state was writ-
ten to the Retro disk before the crash:

Snapshot-data-before-metadata invariant: Be-
fore Retro commits the mapping for pre-state P′, it
writes P′ to Pagelog.

The Retro write invariants, enforced during normal oper-
ation and recovery, and the two stages of Retro recovery
(metadata and replay), guarantee that for every BDB re-
covery of transaction history H, Retro will correctly re-
cover snapshot data and metadata defined by OWS(H),
even in the presence of repeated BDB recoveries.

6.1 BDB recovery
BDB follows the write-ahead logging (WAL) protocol
to ensure recoverability after a crash. The WAL pro-
tocol requires that the database write a record of up-
dates made by a transaction T in a durable log before
T commits. Each update is represented by a log record
which contains (at least) the information required to re-
peat the update; this is called a REDO record. We assume
that log records are not coalesced across transactions;
i.e., every (committed) page update has a corresponding
REDO record. Log records are ordered and identified by
a monotonically-increasing log sequence number (LSN).
Transaction commit is recorded in the log using a commit
record. The transaction commit record LSN determines
the transaction serialization order.

Periodically, the database performs checkpoints. A
checkpoint C writes page versions committed prior to
some chosen checkpoint LSN (LSNC) to the database
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disk, and then records the checkpoint LSN in the log. To
simplify the description, we assume the database only
performs writes during a checkpoint. Retro, however,
supports general database write policies (i.e. writes due
to cache pressure) not described here, for lack of space.

We assume the database follows a no-STEAL writing
policy [6]. This means that the database never writes
uncommitted updates to disk. The recovery, therefore,
only needs to REDO updates that were committed but
not yet written since the last checkpoint; a database with
a STEAL writing policy must also undo changes to pages
which were not yet committed before the crash. Large
memories render STEAL policy less important.

Checkpoints bound recovery time; the database does
not need to recover updates that have been written to the
database disk. The database is free to garbage collect the
log entries prior to LSNC, and begins recovery from LSNC
(to be more precise, the database starts recovery at, and
can garbage collect log entries older than, the LSN of the
oldest transaction that began before LSNC and committed
after LSNC).

After a crash, BDB enters recovery upon being
restarted. The database cannot re-enter normal opera-
tion until recovery has completed. During recovery, the
database replays committed updates by applying REDO
records from the WAL in LSN order since the last check-
point. A successful recovery ends with a checkpoint; af-
ter recovery, the on-disk state of the database reflects the
history of transactions that committed prior to the crash.

6.2 Snapshot recovery details

Retro expects to be invoked when BDB recovery ap-
plies REDO records. To identify updates tagged in OWS
Retro must order updates relative to snapshot declara-
tions. Retro records snapshot declarations in the log
during normal execution, using a special log record (a
snaprec). Retro expects to be invoked when recovery
encounters snaprecs so that Retro can handle them (i.e.
re-declaring the snapshot if needed).

Because BDB uses page-level concurrency control
(i.e., two overlapping transactions may not both commit
an update to the same page), we know that REDO records
for a page P will be applied in transaction commit order.
Retro invocations from update replay and snapshot dec-
larations therefore run in transaction commit order, mak-
ing it easy to identify updates tagged in OWS.

Algorithm 1 shows how the write-ordering invariants
are enforced during a checkpoint. Whenever the database
initiates a checkpoint, Retro takes control and finishes
writing any snapshot data that had not yet been trickled
to disk, and then updates snapshot metadata atomically
using a database transaction. Finally, Retro returns con-
trol to the database, allowing the checkpoint to proceed

Algorithm 1 Retro extension to database checkpoint
1: Pause database checkpoint
2: Write unwritten snapshot data to disk
3: Transactionally update snapshot metadata created

since the last database checkpoint
4: Allow database checkpoint to proceed normally

normally.
Retro allows snapshot data to be trickled during nor-

mal operating periods (snapshot data is large and grows
in proportion to the number of updates, so it is imprac-
tical to buffer all snapshot data created between check-
points). After a crash, some pre-states may be on the
Retro disk that have no corresponding snapshot metadata
but the reverse can never be true due to snapshot-data-
before-metadata write invariant. This means that when
Retro recovery begins, any snapshot data written since
the last checkpoint can be deleted by deleting any pre-
states that are not referenced from snapshot metadata.

Algorithm 2 shows the two stages of Retro recov-
ery. Stage 1 of Retro recovery resets snapshot data and
metadata to a consistent state; then, Stage 2 runs along-
side BDB recovery, saving a needed pre-state (if it has
not been saved already). Database recovery ends with a
checkpoint, the completion of which marks the comple-
tion of a successful recovery. Retro enforces the write
invariants WAS and snapshot-metadata-before-data dur-
ing this checkpoint, just like during normal operation.
So, the checkpoint that terminates a successful database
recovery for history H also marks the end of Retro recov-
ery, at which point the on-disk state of Retro will reflect
OWS(H).

Retro needs to suppress duplicate re-creation of snap-
shots in repeated recovery. Retro will know to correctly
suppress re-creation of snapshots because after Stage 1,
snapshot metadata and data will consistently reflect the
latest snapshot that Retro has declared and the last pre-
state it has saved before the crash. In Stage 2 therefore,
Line 10 will suppress a duplicate snapshot declaration
(A later snapshot is already present in Start). Line 17
will suppress duplicate saving of a pre-state (SavedAfter
indicates the pre-state has been already saved).

We have considered a simplified writing policy that
only writes database pages and Retro metadata at check-
point time. Retro also supports more flexible writing
policies. In particular, if the database is forced to write
database pages between checkpoints due to cache pres-
sure, Retro can still enforce its writing invariants by writ-
ing the pre-states of the pages forced from the cache
(and making durable the associated snapshot metadata),
and recover correctly if there is a crash before the next
checkpoint. Suppression will still work correctly in this
case because it is applied per-page based on a lookup in
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Algorithm 2 Retro recovery
1: Recover snapshot metadata � begin Stage 1
2: Delete unreferenced pre-states from Pagelog
3: Slatest := latest snapshot id in Start � begin Stage 2
4: Normal database recovery begins replay
5: repeat
6: if Recovery requests page P for updating from

the cache then
7: Make a copy of the pre-state of P in the cache
8: end if
9: if Recovery encounters a snaprec for snapshot S

then
10: if S > Slatest then
11: Declare S
12: Slatest := S
13: end if
14: end if
15: if Recovery encounters a commit record for

transaction T then
16: for all Pre-states P created by T do
17: if SavedA f ter(P) < Slatest then
18: Save P for Slatest
19: end if
20: end for
21: end if
22: until REDO recovery is complete
23: Checkpoint database � Retro will enforce the WAS

invariant

SavedAfter, just like during normal operation.

7 Implementation Issues

Retro protocol extensions are implemented as a set of
callbacks invoked from BDB transaction commit, recov-
ery, and buffer cache protocols. There are two concerns
in the way of an efficient implementation of the protocol
extensions. Extensions that run concurrently, accessing
shared mutable state, must be thread safe, and must be
serialized in transaction order to correctly save and ac-
cess snapshots. However, the implementation needs to
avoid blocking transactions to synchronize extensions.
Second, although storing Retro metadata in transactional
structures simplifies snapshot recovery, frequent updates
to metadata are costly. So, the implementation needs to
reduce the cost of metadata updates.

7.1 Latest Snapshot
Extensions that declare snapshots, and save pre-states
and metadata, invoked at commit, need to read and up-
date the latest snapshot id. These extensions need to be
serialized in commit order to correctly assign snapshot

ids (numbered sequentially in declaration commit order),
and to correctly identify updates tagged in OWS (is this
the first update to P following the latest snapshot decla-
ration?).

Extensions that create persistent data (e.g. save pre-
states) must run after the invoking transaction commits
(i.e. records its commit record in the log). The problem
arises because concurrent transaction threads that block
to write their commit records, get unblocked by BDB in
arbitrary order (possibly after BDB runs a group com-
mit), thus reordering the execution of extensions.

An extension must therefore determine the latest snap-
shot declaration preceding its transaction regardless of
extension execution order. Instead of tracking the latest
snapshot in a shared counter, Retro solves the problem
by tracking recent snapshot declarations in a data struc-
ture called the SnapshotList. Entries for transactions that
have completed the log write and therefore were assigned
a commit LSN are sorted by their commit LSN. Retro
uses the SnapshotList to assign snapshot ids sequentially
in transaction commit LSN order regardless of extension
execution order. An extension can determine the last-
declared snapshot Slast for its invoking transaction T us-
ing the SnapshotList. It simply searches for the snapshot
declaration with the highest LSN preceding the commit
LSN of T.

7.2 SavedAfter cache

After saving a pre-state, Retro needs to update
SavedAfter, to note it has been saved. Updating
SavedAfter is expensive because it is a transactional
data structure, so we describe a specialized write cache
called the SavedAfter cache (SAC) that allows defer-
ring updates to SavedAfter and consistent checking of
SavedAfer.

In the Retro recovery protocol, Retro metadata is re-
covered first, before the application database, which
means that the log into which SavedAfter updates are
recorded must be separate from the BDB transaction log.
As a consequence, when the commit extension needs to
update SavedAfter(P), updating the durable SavedAfter
metadata structure would require a second commit and
log write, in addition to the commit of the application’s
transaction. We have measured the impact of commit-
ting an update to SavedAfter after saving a pre-state in
commit extension and unsurprisingly, it has a significant
impact on transaction throughput and latency.

To reduce the impact, we introduce an in-memory
cache, called the SavedAfter cache (SAC), to store up-
dates to SavedAfter on cache pages. Updates are prop-
agated from SAC to SavedAfter when Retro data and
metadata are flushed to the Retro disk. SAC therefore
eliminates the SaveAfter update cost from the transac-
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tion commit path, allowing multiple SavedAfter updates
to be combined into a into a single transaction, and mul-
tiple updates to the same entry (e.g., SavedAfter?) to be
absorbed.

Because the entries in SAC may be newer than those
in SavedAfter, Retro must check SAC when looking up
SavedAfter(P). Just as with SavedAfter, the SAC is a
frequently-accessed data structure. However, SAC is not
a source of extra contention in the system, because it
leverages MVCC page-level locking and low-level con-
currency mechanisms in the page cache.

SAC is implemented by extending the BDB page
cache structures. A page P cached in the BDB page
cache is preceded by a page header that contains meta
information about the page such as its name, the commit
LSN of the last transaction to update the page, the linked
list of pages that form the version chain (VC) for this
page, maintained by MVCC, and other internal metadata.
SAC(P) is stored on the header for cached page P (re-
quiring that every page header be enlarged by the size of
a snapshot id).

SAC(P) is initialized from SavedAfterCache(P) when
there is a cache miss and P is read from disk. When
MVCC creates a new version of page P in the cache for
an update to P, SAC of the new version is initialized by
the commit extension of the transaction that commits the
update. When checking whether to save the pre-state, the
commit extension uses the SAC value on the pre-state. If
the pre-state of P needs to be saved for snapshot S, the
SAC on the new version of P will be set to S. Otherwise,
the SAC on the new version of P will be copied from the
pre-state of P.

7.3 SAC and Retrospection
Retro runs a retrospective query as MVCC transaction
T. An extension invoked from T observes the Vsnap of
T. Consider a retrospective query T as off snapshot S,
serialized after transaction execution H. A page transla-
tion extension, invoked when T accesses a page P, will
observe a consistent SAC(P) value as of the begin LSN
of T, reflecting all tagged update commits and effects of
their associated extensions that precede T in OWS(H). If
the SAC value indicates P@S is shared with the database,
(i.e. it was shared when T began) the translation will cor-
rectly direct the access to the version of P from Vsnap of
T. Otherwise the translation will redirect the access to
P@S saved by Retro, as required by OWS specification.

8 Performance Evaluation

Our simple study evaluates the performance of retrospec-
tion, the new feature, and Retro overheads to BDB trans-
actions. The results confirm the low overhead of Retro

to BDB. The results also show a slowdown for running
Retro transactions (i.e., transactions that use snapshots);
reducing these overheads is an area for future research.

The Retro prototype extends BDB version 5.3.21. The
prototype has just over 5000 lines of C code. The modifi-
cations to BDB to integrate Retro are minimal: under 250
LOC were modified or added to BDB source code. The
implementation includes the complete design for the C
API used in the evaluation. We are in the process of com-
pleting the SQLite API. Preliminary results using SQLite
API confirm the results from the C API.

The hardware platform is a quad-core Intel Xeon CPU
at 2.66ghz with 4 gb of physical RAM and 2 Seagate
Cheetah 15,500 RPM SAS hard drives, running DE-
BIAN GNU/Linux version 2.6.32. BDB stores database
files in the file system, formatted with ext3. BDB uses
default page size of 4K. Disk level prefetching is dis-
abled, to emphasize the cost of random disk I/O for
Pagelog. Our platform only supports two disks, so we
use one for the database, Pagelog, and metadata, and
one for the (separate) database and metadata logs (BDB
database and log must be on separate disks since other-
wise BDB (without Retro) transaction throughput drops
to zero during a checkpoint). This is sub-optimal con-
figuration for Retro, since Pagelog could impact BDB
reads and writes. Our experiments use in-memory work-
ing sets for the database, insulating database reads from
Pagelog I/O. Moreover, since Retro trickles snapshots to
disk between checkpoints (unless noted otherwise), this
is not a problem for database writes in our experiments.

All measurements are reported as the average of 10
runs (non-negligible standard deviations are depicted).

8.1 Retrospection

Page name translation. We evaluate the performance
of Retro transactions using a simple read query Q that
fetches 2048 random records (each 108 bytes in size)
from a table cached in memory. We report slow-down,
the measured time-to-completion relative to running Q
in-memory in unmodified BDB. The workload maxi-
mizes the CPU overhead of Retro transactions since Q
performs no computation.

The CPU overhead of page name translation comes
from looking up the page in SavedAfter (the current state
page is not cached, no SAC) or SAC and, if the snapshot
page has been already saved as a pre-state, looking up
the location of that pre-state in SPT.

Figure 5 shows that a slow-down when accessing
pages shared with the current state is 1.6x (“Retro(Q)
cur”) using SAC. This overhead is similar in magnitude
and origin to the one that was found due to the buffer pool
indirection and latching for tree lookups in Shore [2].
The slow-down when accessing snapshot pages saved in
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Figure 5: CPU costs

Component Cost
SPT(S) get 0.55us
SavedAfter get 47us
SAC get 0.06 us
SPT(S) put 11us
Pagelog get 3.62 ms

Figure 6: Translation costs

Pagelog (“Retro(Q) old”) is about a 2.7x, due to addi-
tional access to SPT, including lookup and insertion of
mappings into the SPT by scanning Maplog. The slow-
down when accessing Pagelog is higher when the pages
accessed by retrospection do not have a current state ver-
sion cached in memory (no SAC), and therefore a costlier
lookup in SavedAfter is needed. The dominant cost how-
ever is accessing Pagelog.

The absolute costs of translation components are
shown in Table 6. Insert into the SPT is costly, more
so than lookup. The SPT is implemented using a simple
hash table that is not optimized for resizing, and resizing
is frequent during Maplog scan. Maplog in-memory scan
is costly. Maplog is composed of many small mappings
that must be individually searched. Maplog is not shown
in the table because it does not have a clear per request
cost. The total contribution of costs from Maplog resem-
bles total contribution of SPT insert. Optimizing access
to SPT and Pagelog is an area of future work.

Snapshot page I/O. I/O from the Pagelog has differ-
ent performance characteristics than I/O from the cur-
rent state database. Copy-on-write declusters snapshot
pages, resulting in a different spatial layout from the
current state. A sequential query incurring sequential
disk I/O costs in the current state can perform poorly
when running retrospectively, incurring random disk I/O
costs, similar to I/O in a log structured file system [11]).
Large memories and SSDs can eliminate the decluster-
ing penalty, and we plan to use SSD for Retro in future
work. Nevertheless, for large volumes of snapshots, the
SSD solution may not be practical. Since declustering
effect for sequential queries is well understood, here we

build page table
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Figure 7: I/O-bound retro query costs

focus on random queries to expose an additional source
of Pagelog performance difference not directly related to
declustering. When the update workload is non-uniform
(skewed), pages from the same snapshot may be very
far apart. By modeling the skew in the update work-
load, we can characterize the I/O overhead of random
queries run retrospectively. We use a standard model of
skewed workload: “80/20” means 80% of the updates go
to 20% of the database, “50/50” means the workloads
is not skewed. The portion of Pagelog corresponding to
any snapshot fits on a single disk; the seek impact may
actually be mitigated if Pagelog is spread over multiple
disks.

Figure 7 compares the cost of I/O for Retro(Q) for
different update skews to the cost of I/O for Q in BDB.
The experiment runs with cold caches. The query for
this experiment is identical to the “Retro(Q) old” query
depicted in figure 5, except that the cache starts cold (we
report “slow-down” due to Retro as a ratio; the absolute
latencies for I/O-bound queries were 3 to 4 orders higher
than in the CPU-bound experiments). We include break-
down for snapshot data and metadata. The full analysis
of Skippy index appears in [14].

The skew impact persists independently of table size.
We run the experiment with 100MB table and a 1GB
table (figure 7). We scaled up the number of random
records read in the query for the larger table so that in
both cases the query reads 1% of the table. For both the
small and large tables, there is a similar trend of increas-
ing cost of Retro(Q) relative to Q as skew increases. The
impact of skew appears higher in the larger database, but
this is due to the decreased hit ratio in the larger query.
In the large table Q had a 7% hit ratio in the leaf pages
of the table, as opposed to 14% in the small table (the
cache starts cold, a single page read pre-fetches multiple
records, and given a constant page size, the likelihood of
a subsequent hit on the pre-fetched page decreases as the
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table size increases because a smaller fraction of table
records are clustered on each page).

8.2 Overhead to BDB

Retro adds no direct overhead to BDB queries. To up-
dates, Retro adds commit time CPU overhead (SAC must
be checked and possibly updated for each update), and
possibly synchronous I/O (to log a snapshot declaration
record). Enforcing the Before-GC invariant (section 5)
requires writing pre-states in the background but does not
delay commits. Enforcing the WAS invariant (Sec 6) can
increase checkpoint latency due to snapshot I/O. Trick-
ling snapshots between checkpoints avoids the check-
point delay. Writing snapshots to a different disk avoids
contention between Retro and the current state during
checkpoints altogether. Our system has two disks: one
is used for the transaction log, so Pagelog and current
state share a disk.

We run a simple micro benchmark to test the over-
head to update transactions running in memory incurred
by saving snapshot pre-states in-memory and writing all
snapshot data and metadata to disk during checkpoints.
We ran the random update transaction described in sec-
tion 8.1 in Retro, and unmodified BDB. With Retro, the
system declares a snapshot after each update transaction,
saving pre-states for the pages modified by 1000 random
updates on each transaction commit, thus maximizing
the number of snapshot pages that must be saved. We cal-
culate throughput from the time-to-completion and the
number of completed update transactions. We observe
an overhead of about 4% to update throughput in our
workload from Retro, confirming previous results [15]
concerning the low impact of the split snapshot writes.

9 Conclusion

We described Retro, a new efficient system for retrospec-
tion in Berkeley DB, implemented using a new simple
and robust method that avoids invasive database modi-
fications. Our approach is adapted to BDB. However,
because WAL, MVCC and buffer cache are standard pro-
tocols, we believe the approach is more general and we
are investigating other extensions in on-going work. The
key challenges going forward are optimizing the perfor-
mance of retrospective queries and supporting SSDs.
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Abstract
Despite of their rising popularity, current cloud stor-

age services and cloud-backed storage systems still have
some limitations related to reliability, durability assur-
ances and inefficient file sharing. We present SCFS, a
cloud-backed file system that addresses these issues and
provides strong consistency and near-POSIX semantics
on top of eventually-consistent cloud storage services.
SCFS provides a pluggable backplane that allows it to
work with various storage clouds or a cloud-of-clouds (for
added dependability). It also exploits some design oppor-
tunities inherent in the current cloud services through a set
of novel ideas for cloud-backed file systems: always write
and avoid reading, modular coordination, private name
spaces and consistency anchors.

1 Introduction
File backup, data archival and collaboration are among

the top usages of the cloud in companies [1], and they are
normally based on cloud storage services like the Ama-
zon S3, Dropbox, Google Drive and Microsoft SkyDrive.
These services are popular because of their ubiquitous
accessibility, pay-as-you-go model, high scalability, and
ease of use. A cloud storage service can be accessed in
a convenient way with a client application that interfaces
the local file system and the cloud. Such services can be
broadly grouped in two classes: (1) personal file synchro-
nization services (e.g., DropBox) and (2) cloud-backed
file systems (e.g., S3FS [6]).

Services of the first class – personal file synchroniza-
tion – are usually composed of a back-end storage cloud
and a client application that interacts with the local file
system through a monitoring interface like inotify (in
Linux). Recent works show that this interaction model
can lead to reliability and consistency problems on the
stored data [41], as well as CPU and bandwidth over usage
under certain workloads [35]. In particular, given the fact
that these monitoring components lack an understanding
of when data or metadata is made persistent in the local
storage, this can lead to corrupted data being saved in the
cloud. A possible solution to these difficulties would be to
modify the file system to increase the integration between
client application and local storage.

Figure 1: Cloud-backed file systems and their limitations.

The second class of services – cloud-backed file sys-
tems – solves the problem in a more generic way. This
approach is typically implemented at user-level, following
one of the two architectural models represented in Fig-
ure 1. The first model is shown at the top of the figure
and is followed by BlueSky [39] and several commercial
storage gateways. In this model, a proxy component is
placed in the network infrastructure of the organization,
acting as a file server to multiple clients and supporting
access protocols such as NFS and CIFS. The proxy im-
plements the core file system functionality and calls the
cloud to store and retrieve files. The main limitations are
that the proxy can become a performance bottleneck and
a single point of failure. Moreover, in BlueSky (and some
other systems) there is no coordination between different
proxies accessing the same files. The second model is
implemented by open-source solutions like S3FS [6] and
S3QL [7] (bottom of Figure 1). In this model, clients
access the cloud directly, without the interposition of a
proxy. Consequently, there is no longer a single point of
failure, but the model misses the convenient rendezvous
point for synchronization, making it harder to support
controlled file sharing among clients.

A common limitation of the two classes of services
is the need to trust the cloud provider with respect to
the stored data confidentiality, integrity and availability.
Although confidentiality can be guaranteed by making
clients (or the proxy) encrypt files before sending them
to the cloud, sharing encrypted files requires a key dis-
tribution mechanism, which is not easy to implement in
this environment. Integrity is provided by systems like
SUNDR [34], which requires the execution of specific
code on the cloud provider, currently not possible when
using unmodified storage services. Availability against
cloud failures to the best of our knowledge is not provided
by any of the current cloud-backed file systems.
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This paper presents the Shared Cloud-backed File Sys-
tem (SCFS),1 a storage solution that addresses the afore-
mentioned limitations. SCFS allows entities to share files
in a secure and fault-tolerant way, improving the durabil-
ity guarantees. It also ensures strong consistency on file
accesses, and provides a backplane that can plug on mul-
tiple different cloud storage services.

SCFS leverages almost 30 years of distributed file sys-
tems research, integrating classical ideas like consistency-
on-close semantics [28] and separation of data and meta-
data [21], with recent trends such as using cloud services
as (unmodified) storage backends [20, 39] and increasing
dependability by resorting to multiple clouds [9, 12, 15].
These ideas were augmented with the following novel
techniques for cloud-backed storage design:

• Always write / avoid reading: SCFS always pushes
updates of file contents to the cloud (besides stor-
ing them locally), but resolves reads locally when-
ever possible. This mechanism has a positive impact
in the reading latency. Moreover, it reduces costs be-
cause writing to the cloud is typically cheap, on the
contrary of reading that tends to be expensive.2

• Modular coordination: SCFS uses a fault-tolerant
coordination service, instead of an embedded lock
and metadata manager, as most distributed file sys-
tems [10, 32, 40]. This service has the benefit of as-
sisting the management of consistency and sharing.
Moreover, the associated modularity is important to
support different fault tolerance tradeoffs.

• Private Name Spaces: SCFS uses a new data struc-
ture to store metadata information about files that are
not shared between users (which is expected to be the
majority [33]) as a single object in the storage cloud.
This relieves the coordination service from maintain-
ing information about such private files and improves
the performance of the system.

• Consistency anchors: SCFS employs this novel
mechanism to achieve strong consistency, instead of
the eventual consistency [38] offered by most cloud
storage services, a model typically considered unnat-
ural by a majority of programmers. This mechanism
provides a familiar abstraction – a file system – with-
out requiring modifications to cloud services.

• Multiple redundant cloud backends: SCFS may
employ a cloud-of-clouds backplane [15], making
the system tolerant to data corruption and unavail-
ability of cloud providers. All data stored in the
clouds is encrypted for confidentiality and encoded
for storage-efficiency.

1SCFS is available at http://code.google.com/p/depsky/wiki/SCFS.
2For example, in Amazon S3, writing is free, but reading a GB is

more expensive ($0.12 after the first GB/month) than storing data during
a month ($0.09 per GB). Google Cloud Storage’s prices are similar.

The use case scenarios of SCFS include both individu-
als and large organizations, which are willing to explore
the benefits of cloud-backed storage (optionally, with a
cloud-of-clouds backend). For example: a secure per-
sonal file system – similar to Dropbox, iClouds or Sky-
Drive, but without requiring complete trust on any single
provider; a shared file system for organizations – cost-
effective storage, but maintaining control and confiden-
tiality of the organizations’ data; an automatic disaster
recovery system – the files are stored by SCFS in a cloud-
of-clouds backend to survive disasters not only in the lo-
cal IT systems but also of individual cloud providers; a
collaboration infrastructure – dependable data-based col-
laborative applications without running code in the cloud,
made easy by the POSIX-like API for sharing files.

Despite the fact that distributed file systems are a well-
studied subject, our work relates to an area where further
investigation is required – cloud-backed file systems – and
where the practice is still somewhat immature. In this
sense, besides presenting a system that explores a novel
region of the cloud storage design space, the paper con-
tributes with a set of generic principles for cloud-backed
file system design, reusable in further systems with differ-
ent purposes than ours.

2 SCFS Design
2.1 Design Principles

This section presents a set of design principles that are
followed in SCFS:
Pay-per-ownership. Ideally, a shared cloud-backed file
system should charge each owner of an account for the
files it creates in the service. This principle is important
because it leads to a flexible usage model, e.g., allowing
different organizations to share directories paying only for
the files they create. SCFS implements this principle by
reusing the protection and isolation between different ac-
counts granted by the cloud providers (see §2.6).
Strong consistency. A file system is a more familiar stor-
age abstraction to programmers than the typical basic in-
terfaces (e.g., REST-based) given by cloud storage ser-
vices. However, to emulate the semantics of a POSIX file
system, strong consistency has to be provided. SCFS fol-
lows this principle by applying the concept of consistency
anchors (see §2.4). Nevertheless, SCFS optionally sup-
ports weaker consistency.
Service-agnosticism. A cloud-backed file system should
rule out from its design any feature that is not supported
by the backend cloud(s). The importance of this principle
derives from the difficulty (or impossibility) in obtaining
modifications of the service of the best-of-breed commer-
cial clouds. Accordingly, SCFS does not assume any spe-
cial feature of storage clouds besides on-demand access
to storage and basic access control lists.
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Multi-versioning. A shared cloud-backed file system
should be able to store several versions of the files for
error recovery [23]. An important advantage of having a
cloud as backend is its potentially unlimited capacity and
scalability. SCFS keeps old versions of files and deleted
files until they are definitively removed by a configurable
garbage collector.

2.2 Goals
A primary goal of SCFS is to allow clients to share files

in a controlled way, providing the necessary mechanisms
to guarantee security (integrity and confidentiality; avail-
ability despite cloud failures is optional). An equally im-
portant goal is to increase data durability by exploiting the
resources granted by storage clouds and keeping several
versions of files.

SCFS also aims to offer a natural file system API
with strong consistency. More specifically, SCFS sup-
ports consistency-on-close semantics [28], guaranteeing
that when a file is closed by a user, all updates it saw or did
are observable by the rest of the users. Since most storage
clouds provide only eventual consistency, we resort to a
coordination service [13, 29] for maintaining file system
metadata and synchronization.

A last goal is to leverage the clouds’ services scalabil-
ity, supporting large numbers of users and files as well as
large data volumes. However, SCFS is not intended to be
a big-data file system, since file data is uploaded to and
downloaded from one or more clouds. On the contrary, a
common principle for big-data processing is to take com-
putation to the data (e.g., MapReduce systems).

2.3 Architecture Overview
Figure 2 represents the SCFS architecture with its three

main components: the backend cloud storage for main-
taining the file data (shown as a cloud-of-clouds, but a
single cloud can be used); the coordination service for
managing the metadata and to support synchronization;
and the SCFS Agent that implements most of the SCFS
functionality, and corresponds to the file system client
mounted at the user machine.

The separation of file data and metadata has been often
used to allow parallel access to files in parallel file sys-
tems (e.g., [21, 40]). In SCFS we take this concept further
and apply it to a cloud-backed file system. The fact that
a distinct service is used for storing metadata gives flex-
ibility, as it can be deployed in different ways depending
on the users needs. For instance, our general architecture
assumes that metadata is kept in the cloud, but a large or-
ganization could distribute the metadata service over its
own sites for disaster tolerance.

Metadata in SCFS is stored in a coordination service.
Three important reasons led us to select this approach in-
stead of, for example, a NoSQL database or some cus-
tom service (as in other file systems). First, coordination

Storage 
clouds 

Computing 
clouds 

Figure 2: SCFS architecture.

services offer consistent storage with enough capacity for
this kind of data, and thus can be used as consistency an-
chors for cloud storage services (see next section). Sec-
ond, coordination services implement complex replication
protocols to ensure fault tolerance for metadata storage.
Finally, these systems support operations with synchro-
nization power [26] that can be used to implement funda-
mental file system functionalities, such as locking.

File data is maintained both in the storage cloud and
locally in a cache at the client machine. This strategy is
interesting in terms of performance, costs and availability.
As cloud accesses usually entail large latencies, SCFS at-
tempts to keep a copy of the accessed files in the user’s
machine. Therefore, if the file is not modified by another
client, subsequent reads do not need to fetch the data from
the clouds. As a side effect, there are cost savings as there
is no need to pay to download the file. On the other hand,
we follow the approach of writing everything to the cloud,
as most providers let clients upload files for free as an in-
centive to use their services. Consequently, no completed
update is lost in case of a local failure.

According to our design, the storage cloud(s) and the
coordination service are external services. SCFS can use
any implementation of such services as long as they are
compatible (provide compliant interfaces, access control
and the required consistency). We will focus the rest of
this section on the description of the SCFS Agent and its
operation principles, starting with how it implements con-
sistent storage using weakly consistent storage clouds.

2.4 Strengthening Cloud Consistency
A key innovation of SCFS is the ability to provide

strongly consistent storage over the eventually-consistent
services offered by clouds [38]. Given the recent interest
in strengthening eventual consistency in other areas, we
describe the general technique here, decoupled from the
file system design. A complete formalization and correct-
ness proof of this technique is presented in a companion
technical report [14].

The approach uses two storage systems, one with lim-
ited capacity for maintaining metadata and another to save
the data itself. We call the metadata store a consistency
anchor (CA) and require it to enforce some desired con-
sistency guarantee S (e.g., linearizability [27]), while the
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WRITE(id, v):

w1: h ← Hash(v)

w2: SS.write(id|h, v)

w3: CA.write(id, h)

READ(id):

r1: h ← CA.read(id)

r2: do v ← SS.read(id|h) while v = null

r3: return (Hash(v) = h)?v : null

Figure 3: Algorithm for increasing the consistency of the stor-
age service (SS) using a consistency anchor (CA).

storage service (SS) may only offer eventual consistency.
The objective is to provide a composite storage system
that satisfies S, even if the data is kept in SS.

The algorithm for improving consistency is presented
in Figure 3, and the insight is to anchor the consistency
of the resulting storage service on the consistency offered
by the CA. For writing, the client starts by calculating a
collision-resistant hash of the data object (step w1), and
then saves the data in the SS together with its identifier
id concatenated with the hash (step w2). Finally, data’s
identifier and hash are stored in the CA (step w3). Every
write operation creates a new version of the data object
and garbage collection is required to reclaim the storage
space of no longer needed versions.

For reading, the client has to obtain the current hash
of the data from CA (step r1), and then needs to keep on
fetching the data object from the SS until a copy is avail-
able (step r2). The loop is necessary due to the eventual
consistency of the SS – after a write completes, the new
hash can be immediately acquired from the CA, but the
data is only eventually available in the SS.

2.5 SCFS Agent
2.5.1 Local Services

The design of the SCFS Agent is based on the use of
three local services that abstract the access to the coordi-
nation service and the storage cloud backend.
Storage service. The storage service provides an inter-
face to save and retrieve variable-sized objects from the
cloud storage. SCFS overall performance is heavily af-
fected by the latency of remote (Internet) cloud accesses.
To address this problem, we read and write whole files as
objects in the cloud, instead of splitting them in blocks
and accessing block by block. This allows most of the
client files (if not all) to be stored locally, and makes the
design of SCFS simpler and more efficient for small-to-
medium sized files.

To achieve adequate performance, we rely on two lev-
els of cache, whose organization has to be managed with
care in order to avoid impairing consistency. First, all files
read and written are copied locally, making the local disk
a large and long-term cache. More specifically, the disk is
seen as an LRU file cache with GBs of space, whose con-
tent is validated in the coordination service before being
returned, to ensure that the most recent version of the file
is used. Second, a main memory LRU cache (hundreds of
MBs) is employed for holding open files. This is aligned

with our consistency-on-close semantics, since, when the
file is closed, all updated metadata and data kept in mem-
ory are flushed to the local disk and the clouds.

Actual data transfers between the various storage loca-
tions (memory, disk, clouds) are defined by the durability
levels required by each type of system call. Table 1 shows
examples of POSIX calls that cause data to be stored at
different levels, together with their location, storage la-
tency and fault tolerance. For instance, a write in an open
file is stored in the memory cache, which gives no dura-
bility guarantees (Level 0). Calling fsync flushes the
file (if modified) to the local disk, achieving the standard
durability of local file systems, i.e., against process or sys-
tem crashes (Level 1). When a file is closed, it is eventu-
ally written to the cloud. A system backed by a single
cloud provider can survive a local disk failure but not a
cloud provider failure (Level 2). However, in SCFS with
a cloud-of-clouds backend, files are written to a set of
clouds, such that failure of up to f providers is tolerated
(Level 3), being f a system parameter (see §3.2).

Level Location Latency Fault tol. Sys. call
0 main memory microsec none write
1 local disk millisec crash fsync
2 cloud seconds local disk close
3 cloud-of-clouds1 seconds f clouds close

Table 1: SCFS durability levels and the corresponding data lo-
cation, write latency, fault tolerance and example system calls.
1Supported by SCFS with the cloud-of-clouds backend.

Metadata service. The metadata service resorts to the
coordination service to store file and directory metadata,
together with information required for enforcing access
control. Each file system object is represented in the coor-
dination service by a metadata tuple containing: the object
name, the type (file, directory or link), its parent object (in
the hierarchical file namespace), the object metadata (size,
date of creation, owner, ACLs, etc.), an opaque identi-
fier referencing the file in the storage service (and, con-
sequently, in the storage cloud) and the collision-resistant
hash (SHA-1) of the contents of the current version of the
file. These two last fields represent the id and the hash
stored in the consistency anchor (see §2.4). Metadata tu-
ples are accessed through a set of operations offered by
the local metadata service, which are then translated into
different calls to the coordination service.

Most application actions and system call invocations
are translated to several metadata accesses at the file sys-
tem level (e.g., opening a file with the vim editor can
cause more than five stat calls for the file). To deal with
these access bursts, a small short-term metadata cache is
kept in main memory (up to few MBs for tens of mil-
liseconds). The objective of this cache is to reuse the
data fetched from the coordination service for at least the
amount of time spent to obtain it from the network.
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Figure 4: Common file system operations in SCFS. The following conventions are used: 1) at each call forking (the dots between
arrows), the numbers indicate the order of execution of the operations; 2) operations between brackets are optional; 3) each file
system operation (e.g., open/close) has a different line pattern.

Notice that accessing cached metadata can lead to vio-
lations of strong consistency. For this reason, we maintain
such cached information for very short time periods, only
to serve the file system calls originated from the same
high-level action over a file (e.g., opening or saving a
document). In §4.4 we show that this cache significantly
boosts the performance of the system.
Locking service. As in most consistent file systems, we
use locks to avoid write-write conflicts. The lock ser-
vice is basically a wrapper for implementing coordina-
tion recipes for locking using the coordination service of
choice [13, 29]. The only strict requirement is that the
lock entries inserted are ephemeral. In practice, locks
can be represented by ephemeral znodes in Zookeeper or
timed tuples in DepSpace, ensuring they will disappear
(automatically unlocking the file) in case a SCFS client
that locked a file crashes before uploading its updates and
releasing the lock (see next section).

Opening a file for reading does not require locking
it. Read-write conflicts are automatically addressed when
uploading and downloading whole files and using con-
sistency anchors (see §2.4) which ensure the most recent
version of file (according to consistency-on-close) will be
read upon its opening.
2.5.2 File Operations

Figure 4 illustrates the execution of the four main file
system calls (open, write, read and close) in SCFS.
Opening a file. The tension between provisioning strong
consistency and suffering high latency in cloud access
led us to provide consistency-on-close semantics [28] and
synchronize files only in the open and close operations.
Moreover, given our aim of having most client files (if not
all) locally stored, we opted for reading and writing whole
files from the cloud. With this in mind, the open operation

comprises three main steps: (i) read the file metadata, (ii)
optionally create a lock if the file is opened for writing,
and (iii) read the file data to the local cache. Notice that
these steps correspond to an implementation of the read
algorithm of Figure 3, with an extra step to ensure exclu-
sive access to the file for writing.

Reading the metadata entails fetching the file metadata
from the coordination service, if it is not available in the
metadata cache, and then make an update to this cache.
Locking the file is necessary to avoid write-write conflicts,
and if it fails, an error is returned. File reads are either
done in the local cache (memory or disk) or in the cloud.
The local file version (if available) is compared with the
version stored in the metadata service. If a newer version
exists, it is read from the cloud and cached in the local
disk and in main memory. If there is no space for the file
in main memory (e.g., there are too many open files), the
data of the least recently used file is first pushed to disk
(as a cache extension) to release space.
Write and read. These two operations only need to inter-
act with the local storage. Writing to a file requires updat-
ing the memory-cached file and the associated metadata
cache entry (e.g., the size and the last-modified times-
tamp). Reading just causes the data to be fetched from
the main memory cache (as it was copied there when the
file was opened).
Closing a file. Closing a file involves the synchroniza-
tion of cached data and metadata with the coordination
service and the cloud storage. First, the updated file data
is copied to the local disk and to the storage cloud. Then,
if the cached metadata was modified, it is pushed to the
coordination service. Lastly, the file is unlocked if it was
originally opened for writing. Notice that these steps cor-
respond to the write algorithm of Figure 3.
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As expected, if the file was not modified since opened
or was opened in read-only mode, no synchronization is
required. From the point of view of consistency and dura-
bility, a write to the file is complete only when the file is
closed, respecting the consistency-on-close semantics.

2.5.3 Garbage Collection
During normal operation, SCFS saves new file versions

without deleting the previous ones, and files removed by
the user are just marked as deleted in the associated meta-
data. These two features support the recovery of old ver-
sions of the files, which is useful for some applications.
Keeping old versions of files increases storage costs, and
therefore, SCFS includes a flexible garbage collector to
enable various policies for reclaiming space.

Garbage collection runs in isolation at each SCFS
Agent, and the decision about reclaiming space is based
on the preferences (and budgets) of individual users. By
default, its activation is guided by two parameters defined
upon the mounting of the file system: number of written
bytes W and number of versions to keep V . Every time
an SCFS Agent writes more than W bytes, it starts the
garbage collector as a separated thread that runs in par-
allel with the rest of the system (other policies are possi-
ble). This thread fetches the list of files owned by this user
and reads the associated metadata from the coordination
service. Next, it issues commands to delete old file data
versions from the cloud storage, such that only the last V
versions are kept (refined policies that keep one version
per day or week are also possible). Additionally, it also
eliminates the versions removed by the user. Later on, the
corresponding metadata entries are also erased from the
coordination service.

2.6 Security Model
The security of a shared cloud storage system is a tricky

issue, as the system is constrained by the access control
capabilities of the backend clouds. A straw-man imple-
mentation would allow all clients to use the same ac-
count and privileges on the cloud services, but this has
two drawbacks. First, any client would be able to modify
or delete all files, making the system vulnerable to mali-
cious users. Second, a single account would be charged
for all clients, preventing the pay-per-ownership model.

Instead of classical Unix modes (owner, group, others;
read, write, execute), SCFS implements ACLs [22]. The
owner O of a file can give access permissions to another
user U through the setfacl call, passing as parameters
file name, identifier of user U , and permissions. Similarly,
getfacl retrieves the permissions of a file.

As a user has separate accounts in the various cloud
providers, and since each probably has a different iden-
tifier, SCFS needs to associate with every client a list of
cloud canonical identifiers. This association is kept in a
tuple in the coordination service, and is loaded when the

client mounts the file system for the first time. When the
SCFS Agent intercepts a setfacl request from a client
O to set permissions on a file for a user U , the following
steps are executed: (i) the agent uses the two lists of cloud
canonical identifiers (of O and U ) to update the ACLs of
the objects that store the file data in the clouds with the
new permissions; and then, (ii) it also updates the ACL
associated with the metadata tuple of the file in the coor-
dination service to reflect the new permissions.

Notice that we do not trust the SCFS Agent to imple-
ment the access control verification, since it can be com-
promised by a malicious user. Instead, we rely on the ac-
cess control enforcement of the coordination service and
the cloud storage.

2.7 Private Name Spaces
One of the goals of SCFS is to scale in terms of users

and files. However, the use of a coordination service (or
any centralized service) could potentially create a scala-
bility bottleneck, as this kind of service normally main-
tains all data in main memory [13, 29] and requires a
distributed agreement to update the state of the replicas
in a consistent way. To address this problem, we take
advantage of the observation that, although file sharing
is an important feature of cloud-backed storage systems,
the majority of the files are not shared between different
users [20, 33]. Looking at the SCFS design, all files and
directories that are not shared (and thus not visible to other
users) do not require a specific entry in the coordination
service, and instead can have their metadata grouped in
a single object saved in the cloud storage. This object is
represented by a Private Name Space (PNS).

A PNS is a local data structure kept by the SCFS
Agent’s metadata service, containing the metadata of all
private files of a user. Each PNS has an associated PNS
tuple in the coordination service, which contains the user
name and a reference to an object in the cloud storage.
This object keeps a copy of the serialized metadata of all
private files of the user.

Working with non-shared files is slightly different from
what was shown in Figure 4. When mounting the file sys-
tem, the agent fetches the user’s PNS entry from the coor-
dination service and the metadata from the cloud storage,
locking the PNS to avoid inconsistencies caused by two
clients logged in as the same user. When opening a file,
the user gets the metadata locally as if it was in cache
(since the file is not shared), and if needed fetches data
from the cloud storage (as in the normal case). On close,
if the file was modified, both data and metadata are up-
dated in the cloud storage. The close operation completes
when both updates finish.

When permissions change in a file, its metadata can be
removed (resp. added) from a PNS, causing the creation
(resp. removal) of the corresponding metadata tuple in the
coordination service.
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With PNSs, the amount of storage used in the coordi-
nation service is proportional to the percentage of shared
files in the system. Previous work show traces with 1 mil-
lion files where only 5% of them are shared [33]. Without
PNSs, the metadata for these files would require 1 million
tuples of around 1KB, for a total size of 1GB of storage
(the approximate size of a metadata tuple is 1KB, assum-
ing 100B file names). With PNSs, only 50 thousand tuples
plus one PNS tuple per user would be needed, requiring a
little more than 50MB of storage. Even more importantly,
by resorting to PNSs, it is possible to reduce substantially
the number of accesses to the coordination service, allow-
ing more users and files to be served.

3 SCFS Implementation
SCFS is implemented in Linux as a user-space file sys-

tem based on FUSE-J, which is a wrapper to connect the
SCFS Agent to the FUSE library. Overall, the SCFS
implementation comprises 6K lines of commented Java
code, excluding any coordination service or storage back-
end code. We opted to develop SCFS in Java mainly
because most of the backend code (the coordination and
storage services) were written in Java and the high latency
of cloud accesses make the overhead of using a Java-based
file system comparatively negligible.

3.1 Modes of Operation
Our implementation of SCFS supports three modes of

operation, based on the consistency and sharing require-
ments of the stored data.

The first mode, blocking, is the one described up to this
point. The second mode, non-blocking, is a weaker ver-
sion of SCFS in which closing a file does not block until
the file data is on the clouds, but only until it is written
locally and enqueued to be sent to the clouds in back-
ground. In this model, the file metadata is updated and
the associated lock released only after the file contents are
updated to the clouds, and not when the close call returns
(so mutual exclusion is preserved). Naturally, this model
leads to a significant performance improvement at cost of
a reduction of the durability and consistency guarantees.
Finally, the non-sharing mode is interesting for users that
do not need to share files, and represents a design similar
to S3QL [7], but with the possibility of using a cloud-of-
clouds instead of a single storage service. This version
does not require the use of the coordination service, and
all metadata is saved on a PNS.

3.2 Backends
SCFS can be plugged to several backends, including

different coordination and cloud storage services. This pa-
per focuses on the two backends of Figure 5. The first one
is based on Amazon Web Services (AWS), with an EC2
VM running the coordination service and file data being
stored in S3. The second backend makes use of the cloud-

of-clouds (CoC) technology, recently shown to be prac-
tical [9, 12, 15]. A distinct advantage of the CoC back-
end is that it removes any dependence of a single cloud
provider, relying instead on a quorum of providers. It
means that data security is ensured even if f out-of 3f+1
of the cloud providers suffer arbitrary faults, which en-
compasses unavailability and data deletion, corruption or
creation [15]. Although cloud providers have their means
to ensure the dependability of their services, the recurring
occurrence of outages, security incidents (with internal or
external origins) and data corruptions [19, 24] justifies the
need for this sort of backend in several scenarios.

Figure 5: SCFS with Amazon Web Services (AWS) and Cloud-
of-Clouds (CoC) backends.

Coordination services. The current SCFS prototype sup-
ports two coordination services: Zookeeper [29] and
DepSpace [13] (in particular, its durable version [16]).
These services are integrated at the SCFS Agent with sim-
ple wrappers, as both support storage of small data entries
and can be used for locking. Moreover, these coordina-
tion services can be deployed in a replicated way for fault
tolerance. Zookeeper requires 2f + 1 replicas to tolerate
f crashes through the use of a Paxos-like protocol [30]
while DepSpace uses either 3f + 1 replicas to tolerate
f arbitrary/Byzantine faults or 2f + 1 to tolerate crashes
(like Zookeeper), using the BFT-SMaRt replication en-
gine [17]. Due to the lack of hierarchical data structures in
DepSpace, we had to extend it with support for triggers to
efficiently implement file system operations like rename.

Cloud storage services. SCFS currently supports Ama-
zon S3, Windows Azure Blob, Google Cloud Storage,
Rackspace Cloud Files and all of them forming a cloud-
of-clouds backend. The implementation of single-cloud
backends is simple: we employ the Java library made
available by the providers, which accesses the cloud stor-
age service using a REST API over SSL. To implement
the cloud-of-clouds backend, we resort to an extended
version of DepSky [15] that supports a new operation,
which instead of reading the last version of a data unit,
reads the version with a given hash, if available (to imple-
ment the consistency anchor algorithm - see §2.4). The
hashes of all versions of the data are stored in DepSky’s
internal metadata object, stored in the clouds.
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Figure 6 shows how a file is securely stored in the
cloud-of-clouds backend of SCFS using DepSky (see [15]
for details). The procedure works as follows: (1) a ran-
dom key K is generated, (2) this key is used to encrypt the
file and (3) the encrypted file is encoded and each block
is stored in different clouds together with (4) a share of
K, obtained through secret sharing. Stored data security
(confidentiality, integrity and availability) is ensured by
the fact that no single cloud alone has access to the data
since K can only be recovered with two or more shares
and that quorum reasoning is applied to discover the last
version written. In the example of the figure, where a sin-
gle faulty cloud is tolerated, two clouds need to be ac-
cessed to recover the file data.
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File 
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Figure 6: A write in SCFS using the DepSky protocols.

4 Evaluation
This section evaluates SCFS using AWS and CoC back-

ends, operating in different modes, and comparing them
with other cloud-backed file systems. The main objective
is to understand how SCFS behaves with some representa-
tive workloads and to shed light on the costs of our design.

4.1 Setup & Methodology
Our setup considers a set of clients running on a cluster

of Linux 2.6 machines with two quad-core 2.27 GHz Intel
Xeon E5520, 32 GB of RAM and a 15K RPM SCSI HD.
This cluster is located in Portugal.

For SCFS-AWS (Figure 5, left), we use Amazon S3
(US) as a cloud storage service and a single EC2 instance
hosted in Ireland to run DepSpace. For SCFS-CoC, we
use DepSky with four storage providers and run replicas
of DepSpace in four computing cloud providers, tolerat-
ing a single fault both in the storage service and in the
coordination service. The storage clouds were Amazon
S3 (US), Google Cloud Storage (US), Rackspace Cloud
Files (UK) and Windows Azure (UK). The computing
clouds were EC2 (Ireland), Rackspace (UK), Windows
Azure (Europe) and Elastichosts (UK). In all cases, the
VM instances used were EC2 M1 Large [2] (or similar).

The evaluation is based on a set of benchmarks fol-
lowing recent recommendations [37], all of them from
Filebench [3]. Moreover, we created two new benchmarks
to simulate some behaviors of interest for cloud-backed
file systems.

We compare six SCFS variants considering different
modes of operation and backends (see Table 2) with two

popular open source S3-backed files systems: S3QL [7]
and S3FS [6]. Moreover, we use a FUSE-J-based local file
system (LocalFS) implemented in Java as a baseline to en-
sure a fair comparison, since a native file system presents
much better performance than a FUSE-J file system. In
all SCFS variants, the metadata cache expiration time was
set to 500 ms and no private name spaces were used. Al-
ternative configurations are evaluated in §4.4.

Blocking Non-blocking Non-sharing
AWS SCFS-AWS-B SCFS-AWS-NB SCFS-AWS-NS
CoC SCFS-CoC-B SCFS-CoC-NB SCFS-CoC-NS

Table 2: SCFS variants with different modes and backends.

4.2 Micro-benchmarks
We start with six Filebench micro-benchmarks [3]: se-

quential reads, sequential writes, random reads, random
writes, create files and copy files. The first four bench-
marks are IO-intensive and do not consider open, sync
or close operations, while the last two are metadata-
intensive. Table 3 shows the results for all considered file
systems.

The results for sequential and random reads and writes
show that the behavior of the evaluated file systems is sim-
ilar, with the exception of S3FS and S3QL. The low per-
formance of S3FS comes from its lack of main memory
cache for opened files [6], while S3QL’s low random write
performance is the result of a known issue with FUSE
that makes small chunk writes very slow [8]. This bench-
mark performs 4KB-writes, much smaller than the recom-
mended chunk size for S3QL, 128KB.

The results for create and copy files show a difference
of three to four orders of magnitude between the local or
single-user cloud-backed file system (SCFS-*-NS, S3QL
and LocalFS) and a shared or blocking cloud-backed file
system (SCFS-*-NB, SCFS-*-B and S3FS). This is not
surprising, given that SCFS-*-{NB,B} access the coor-
dination service in each create, open or close operation.
Similarly, S3FS accesses S3 in each of these operations,
being even slower. Furthermore, the latencies of SCFS-*-
NB variants are dominated by the coordination service ac-
cess (between 60-100 ms per access), while in the SCFS-
*-B variants such latency is dominated by read and write
operations in the cloud storage.

4.3 Application-based Benchmarks
In this section we present two application-based bench-

marks for potential uses of cloud-backed file systems.
File Synchronization Service. A representative work-
load for SCFS corresponds to its use as a personal file
synchronization service [20] in which desktop application
files (spreadsheets, documents, presentations, etc.) are
stored and shared. A new benchmark was designed to
simulate opening, saving and closing a text document with
OpenOffice Writer.
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Micro-benchmark #Operations File size
SCFS-AWS SCFS-CoC

S3FS S3QL LocalFS
NS NB B NS NB B

sequential read 1 4MB 1 1 1 1 1 1 6 1 1
sequential write 1 4MB 1 1 1 1 1 1 2 1 1
random 4KB-read 256k 4MB 11 11 15 11 11 11 15 11 11
random 4KB-write 256k 4MB 35 39 39 35 35 36 52 152 37
create files 200 16KB 1 102 229 1 95 321 596 1 1
copy files 100 16KB 1 137 196 1 94 478 444 1 1

Table 3: Latency of several Filebench micro-benchmarks for SCFS (six variants), S3QL, S3FS and LocalFS (in seconds).

The benchmark follows the behavior observed in traces
of a real system, which are similar to other modern desk-
top applications [25]. Typically, the files managed by the
cloud-backed file system are just copied to a temporary
directory on the local file system where they are manipu-
lated as described in [25]. Nonetheless, as can be seen in
the benchmark definition (Figure 7), these actions (espe-
cially save) still impose a lot of work on the file system.

Open Action: 1 open(f,rw), 2 read(f), 3-5 open-write-close(lf1), 6-8
open-read-close(f), 9-11 open-read-close(lf1)

Save Action: 1-3 open-read-close(f), 4 close(f), 5-7 open-read-
close(lf1), 8 delete(lf1), 9-11 open-write-close(lf2), 12-14 open-
read-close(lf2), 15 truncate(f,0), 16-18 open-write-close(f), 19-
21 open-fsync-close(f), 22-24 open-read-close(f), 25 open(f,rw)

Close Action: 1 close(f), 2-4 open-read-close(lf2), 5 delete(lf2)

Figure 7: File system operations invoked in the file synchro-
nization benchmark, simulating an OpenOffice document open,
save and close actions (f is the odt file and lf is a lock file).

Figure 8 shows the average latency of each of the three
actions of our benchmark for SCFS, S3QL and S3FS, con-
sidering a file of 1.2MB, which corresponds to the aver-
age file size observed in 2004 (189KB) scaled-up 15% per
year to reach the expected value for 2013 [11].
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Figure 8: Latency of file synchronization benchmark actions
(see Figure 7) with a file of 1.2MB. The (L) variants maintain
lock files in the local file system. All labels starting with CoC or
AWS represent SCFS variants.

Figure 8(a) shows that SCFS-CoC-NS and S3QL ex-
hibit the best performance among the evaluated file sys-
tems, having latencies similar to a local file system (where
a save takes around 100 ms). This shows that the added
dependability of a cloud-of-clouds storage backend does
not prevent a cloud-backed file system to behave similarly
to a local file system, if the correct design is employed.

Our results show that SCFS-*-NB requires substan-
tially more time for each phase due to the number of ac-

cesses to the coordination service, especially to deal with
the lock files used in this workload. Nonetheless, saving a
file in this system takes around 1.2 s, which is acceptable
from the usability point of view. A much slower behavior
is observed in the SCFS-*-B variants, where the creation
of a lock file makes the system block waiting for this small
file to be pushed to the clouds.

We observed that most of the latency comes from the
manipulation of lock files. However, the files accessed did
not need to be stored in the SCFS partition, since the lock-
ing service already prevents write-write conflicts between
concurrent clients. We modified the benchmark to repre-
sent an application that writes lock files locally (in /tmp),
just to avoid conflicts between applications in the same
machine. The (L) variants in Figure 8 represent results
with such local lock files. These results show that remov-
ing the lock files makes the cloud-backed system much
more responsive. The takeaway here is that the usability
of blocking cloud-backed file systems could be substan-
tially improved if applications take into consideration the
limitations of accessing remote services.
Sharing files. Personal cloud storage services are of-
ten used for sharing files in a controlled and convenient
way [20]. We designed an experiment for comparing
the time it takes for a shared file written by a client to
be available for reading by another client, using SCFS-
*-{NB,B}. We did the same experiment considering a
Dropbox shared folder (creating random files to avoid
deduplication). We acknowledge that the Dropbox de-
sign [20] is quite different from SCFS, but we think it is
illustrative to show how a cloud-backed file system com-
pares with a popular file synchronization service.

The experiment considers two clients A and B deployed
in our cluster. We measured the elapsed time between the
instant client A closes a variable-size file that it wrote to a
shared folder and the instant it receives an UDP ACK from
client B informing the file was available. Clients A and B
are Java programs running in the same LAN, with a ping
latency of around 0.2 ms, which is negligible considering
the latencies of reading and writing. Figure 9 shows the
results of this experiment for different file sizes.

The results show that the latency of sharing in SCFS-*-
B is much smaller than what people experience in current
personal storage services. These results do not consider
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Figure 9: Sharing file 50th and 90th latency for SCFS (CoC B
and NB, AWS B and NB) and Dropbox for different file sizes.

the benefits of deduplication, which SCFS currently does
not support. However, if a user encrypts its critical files
locally before storing them in Dropbox, the effectiveness
of deduplication will be decreased significantly.

Figure 9 also shows that the latency of the blocking
SCFS is much smaller than the non-blocking version with
both AWS and CoC backends. This is explained by the
fact that the SCFS-*-B waits for the file write to complete
before returning to the application, making the benchmark
measure only the delay of reading the file. This illustrates
the benefits of SCFS-*-B: when A completes its file clos-
ing, it knows the data is available to any other client the
file is shared with. We think this design can open interest-
ing options for collaborative applications based on SCFS.

4.4 Varying SCFS Parameters
Figure 10 shows some results for two metadata-

intensive micro-benchmarks (copy and create files) for
SCFS-CoC-NB with different metadata cache expiration
times and percentages of files in private name spaces.
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Figure 10: Effect of metadata cache expiration time and PNSs
with different file sharing percentages in two metadata intensive
micro-benchmarks.

As described in §2.5.1, we implemented a short-lived
metadata cache to deal with bursts of metadata access op-
erations (e.g., stat). All previous experiments used an
expiration time of 500 ms for this cache. Figure 10(a)
shows how changing this value affects the performance of
the system. The results clearly indicate that not using such
metadata cache (expiration time equals zero) severely de-
grades the system performance. However, beyond some
point, increasing it does not bring much benefit either.

Figure 10(b) displays the latency of the same bench-
marks considering the use of PNS (see §2.7) with dif-
ferent percentages of files shared between more than one
user. Recall that all previous results consider full-sharing
(100%), without using PNS, which is a worst case sce-
nario. As expected, the results show that as the number
of private files increases, the performance of the system
improves. For instance, when only 25% of the files are
shared – more than what was observed in the most recent
study we are aware of [33] – the latency of the bench-
marks decreases by a factor of roughly 2.5 (create files)
and 3.5 (copy files).

4.5 SCFS Operation Costs
Figure 11 shows the costs associated with operating and

using SCFS. The fixed operation costs of SCFS comprise
mainly the maintenance of the coordination service run-
ning in one or more VMs deployed in cloud providers.
Figure 11(a) considers two instance sizes (as defined in
Amazon EC2) and the price of renting one or four of them
in AWS or in the CoC (one VM of similar size for each
provider), together with the expected memory capacity (in
number of 1KB metadata tuples) of such DepSpace setup.
As can be seen in the figure, a setup with four Large in-
stances would cost less than $1200 in the CoC per month
while a similar setup in EC2 would cost $749. This differ-
ence of $451 can be seen as the operation cost of tolerating
provider failures in our SCFS setup, and comes mainly
from the fact that Rackspace and Elastichosts charge al-
most 100% more than EC2 and Azure for similar VM in-
stances. Moreover, such costs can be factored among the
users of the system, e.g., for one dollar per month, 2300
users can have a SCFS-CoC setup with Extra Large repli-
cas for the coordination service. Finally, it is worth to
mention that this fixed cost can be eliminated if the orga-
nization using SCFS hosts the coordination service in its
own infrastructure.

Besides the fixed operation costs, each SCFS user has
to pay for its usage (executed operations and storage
space) of the file system. Figure 11(b) presents the cost
of reading a file (open for read, read whole file and close)
and writing a file (open for write, write the whole file,
close) in SCFS-CoC and SCFS-AWS (S3FS and S3QL
will have similar costs). The cost of reading a file is the
only one that depends on the size of data, since providers
charge around $0.12 per GB of outbound traffic, while in-
bound traffic is free. Besides that, there is also the cost
of the getMetadata operation, used for cache valida-
tion, which is 11.32 microdollars (μ$). This corresponds
to the total cost of reading a cached file. The cost of writ-
ing is composed by metadata and lock service operations
(see Figure 4), since inbound traffic is free. Notice that
the design of SCFS exploits these two points: unmodified
data is read locally and always written to the cloud for
maximum durability.



USENIX Association  2014 USENIX Annual Technical Conference 179

VM Instance EC2 EC2×4 CoC Capacity
Large $6.24 $24.96 $39.60 7M files
Extra Large $12.96 $51.84 $77.04 15M files

(a) Operation costs/day and expected coordination service capacity.
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Figure 11: The (fixed) operation and (variable) usage costs of
SCFS. The costs include outbound traffic generated by the coor-
dination service protocol for metadata tuples of 1KB.

Storage costs in SCFS are charged per number of files
and versions stored in the system. Figure 11(c) shows
the cost/version/day in SCFS-AWS and SCFS-CoC (con-
sidering the use of erasure codes and preferred quo-
rums [15]). The storage costs of SCFS-CoC are roughly
50% more than of SCFS-AWS: two clouds store half of
the file each while a third receives an extra block gener-
ated with the erasure code (the fourth cloud is not used).

It is also worth to mention that the cost of running the
garbage collector corresponds to the cost of a list opera-
tion in each cloud (≤ μ$1/cloud), independently of the
number of deleted files/versions. This happens because
all used clouds do not charge delete operations.

5 Related Work
In this section we discuss some distributed file systems

and cloud storage works that are most relevant to SCFS.
Cloud-backed file systems. S3FS [6] and S3QL [7]
are two examples of cloud-backed file systems. Both
these systems use unmodified cloud storage services (e.g.,
Amazon S3) as their backend storage. S3FS employs a
blocking strategy in which every update on a file only re-
turns when the file is written to the cloud, while S3QL
writes the data locally and later pushes it to the cloud.
An interesting design is implemented by BlueSky [39],
another cloud-backed file system that can use cloud stor-
age services as a storage backend. BlueSky provides a
CIFS/NFS proxy (just as several commercially available
cloud storage gateways) to aggregate writings in log seg-
ments that are pushed to the cloud in background, im-
plementing thus a kind of log-structured cloud-backed
file system. These systems differ from SCFS in many
ways (see Figure 1), but mostly regarding their lack of
controlled sharing support for geographically dispersed
clients and dependency of a single cloud provider.

Some commercial cloud-enabled storage gateways [4,
5] also supports data sharing among proxies. These sys-
tems replicate file system metadata among the proxies, en-
abling one proxy to access files created by other proxies.

Complex distributed locking protocols (executed by the
proxies) are used to avoid write-write conflicts. In SCFS,
a coordination service is used for metadata storage and
lock management. Moreover, these systems neither sup-
port strongly consistent data sharing nor are capable to use
a cloud-of-clouds backend.
Cloud-of-clouds storage. The use of multiple (unmod-
ified) cloud storage services for data archival was first
described in RACS [9]. The idea is to use RAID-like
techniques to store encoded data in several providers to
avoid vendor lock-in problems, something already done
in the past, but requiring server code in the providers [31].
DepSky [15] integrates such techniques with secret shar-
ing and Byzantine quorum protocols to implement single-
writer registers tolerating arbitrary faults of storage
providers. ICStore [12] showed it is also possible to
build multi-writer registers with additional communica-
tion steps and tolerating only unavailability of providers.
The main difference between these works and SCFS(-
CoC) is the fact they provide a basic storage abstraction (a
register), not a complete file system. Moreover, they pro-
vide strong consistency only if the underlying clouds pro-
vide it, while SCFS uses a consistency anchor (a coordi-
nation service) for providing strong consistency indepen-
dently of the guarantees provided by the storage clouds.
Wide-area file systems. Starting with AFS [28], many
file systems were designed for geographically dispersed
locations. AFS introduced the idea of copying whole files
from the servers to the local cache and making file updates
visible only after the file is closed. SCFS adapts both these
features for a cloud-backed scenario.

File systems like Oceanstore [32], Farsite [10] and
WheelFS [36] use a small and fixed set of nodes as lock-
ing and metadata/index service (usually made consistent
using Paxos-like protocols). Similarly, SCFS requires
a small amount of computing nodes to run a coordina-
tion service and simple extensions would allow SCFS
to use multiple coordination services, each one dealing
with a subtree of the namespace (improving its scala-
bility) [10]. Moreover, both Oceanstore [32] and Far-
site [10] use PBFT [18] for implementing their metadata
service, which makes SCFS-CoC superficially similar to
their design: a limited number of nodes running a BFT
state machine replication algorithm to support a meta-
data/coordination service and a large pool of untrusted
storage nodes that archive data. However, on the contrary
of these systems, SCFS requires few “explicit” servers,
and only for coordination, since the storage nodes are re-
placed by cloud services like Amazon S3. Furthermore,
these systems do not target controlled sharing of files and
strong consistency, using thus long-term leases and weak
cache coherence protocols. Finally, a distinctive feature
of SCFS is that its design explicitly exploits the charging
model of cloud providers.
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6 Conclusions
SCFS is a cloud-backed file system that can be used

for backup, disaster recovery and controlled file sharing,
even without requiring trust on any single cloud provider.
We built a prototype and evaluated it against other cloud-
backed file systems and a file synchronization service,
showing that, despite the costs of strong consistency, the
design is practical and offers control of a set of tradeoffs
related to security, consistency and cost-efficiency.
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Abstract
In deduplication-based backup systems, the chunks of
each backup are physically scattered after deduplication,
which causes a challenging fragmentation problem. The
fragmentation decreases restore performance, and results
in invalid chunks becoming physically scattered in dif-
ferent containers after users delete backups. Existing
solutions attempt to rewrite duplicate but fragmented
chunks to improve the restore performance, and reclaim
invalid chunks by identifying and merging valid but frag-
mented chunks into new containers. However, they can-
not accurately identify fragmented chunks due to their
limited rewrite buffer. Moreover, the identification of
valid chunks is cumbersome and the merging operation
is the most time-consuming phase in garbage collection.

Our key observation that fragmented chunks remain
fragmented in subsequent backups motivates us to pro-
pose a History-Aware Rewriting algorithm (HAR). HAR
exploits historical information of backup systems to
more accurately identify and rewrite fragmented chunks.
Since the valid chunks are aggregated in compact con-
tainers by HAR, the merging operation is no longer re-
quired. To reduce the metadata overhead of the garbage
collection, we further propose a Container-Marker Al-
gorithm (CMA) to identify valid containers instead of
valid chunks. Our extensive experimental results from
real-world datasets show HAR significantly improves
the restore performance by 2.6X–17X at a cost of only
rewriting 0.45–1.99% data. CMA reduces the metadata
overhead for the garbage collection by about 90X .
1 Introduction
Deduplication has become a key component in modern
backup systems due to its demonstrated ability of im-
proving storage efficiency [26, 6]. A deduplication-based
backup system divides a backup stream into variable-
sized chunks [13], and identifies each chunk by its SHA-
1 digest [19], i.e., fingerprint. A fingerprint index is used
to map fingerprints of stored chunks to their physical

addresses. In general, small and variable-sized chunks
(e.g., 8KB on average [26]) are managed at a larger unit
called container [26, 7, 9] that is a fixed-sized (e.g.,
4MB [26]) structure. The containers are the basic unit of
read and write operations. During a backup, the chunks
that need to be written are aggregated into containers to
preserve the locality of the backup stream. During a re-
store, a recipe (i.e., the fingerprint sequence of a backup)
is read, and the containers serve as the prefetching unit.
A restore cache holds the prefeteched containers and evi-
cts an entire container via an LRU algorithm [9].

Since duplicate chunks are eliminated between multi-
ple backups, the chunks of a backup unfortunately be-
come physically scattered in different containers, which
is known as fragmentation [18, 14]. First, the fragmen-
tation severely decreases restore performance [15, 9].
The infrequent restore is important and the main con-
cern from users [17]. Moreover, data replication, which
is important for disaster recovery [20], requires recon-
structions of original backup streams from deduplication
systems [16], and thus suffers from a performance prob-
lem similar to the restore operation.

Second, the fragmentation results in invalid chunks
(not referenced by any backups) becoming physically
scattered in different containers when users delete ex-
pired backups. Existing solutions (i.e., reference mana-
gement [7, 24, 4]) identify valid chunks and the contain-
ers holding only a few valid chunks. A merging opera-
tion is required to copy the valid chunks in the identified
containers to new containers [10, 11], and then the iden-
tified containers are reclaimed. The merging is the most
time-consuming phase in garbage collection [4].

A comprehensive category is helpful to understand the
fragmentation. We observe that the fragmentation comes
in two categories of containers: sparse containers and
out-of-order containers. During a restore, a majority of
chunks in a sparse container are never accessed, and the
chunks in an out-of-order container are accessed inter-
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mittently. Both of them hurt the restore performance. In-
creasing the restore cache size alleviates the negative im-
pacts of out-of-order containers, but it is ineffective for
sparse containers because they directly amplify read op-
erations (read many never accessed chunks). Addition-
ally, the merging operation is required to reclaim spar-
se containers in the garbage collection after users delete
backups.

Reducing sparse containers is important to address the
fragmentation problem. Existing solutions [15, 8, 9] pro-
pose to rewrite duplicate but fragmented chunks during
the backup via rewriting algorithms, which is a trade-
off between deduplication ratio (the size of the non-
deduplicated data divided by that of the deduplicated
data) and restore performance. These approaches buffer
a small part of the backup stream, and identify the frag-
mented chunks within the buffer. They fail to iden-
tify sparse containers because an out-of-order container
seems sparse in the limited-sized buffer. Hence, most
of their rewritten chunks belong to out-of-order contain-
ers, which limit their gains in restore performance and
garbage collection efficiency.

Our key observation is that two consecutive backups
are very similar, and thus historical information collect-
ed during the backup is very useful to improve the next
backup. For example, sparse containers for the current
backup possibly remain sparse for the next backup. This
observation motivates our work to propose a History-
Aware Rewriting algorithm (HAR). During a backup,
HAR rewrites the duplicate chunks in the sparse contain-
ers identified by the last backup, and records the emer-
ging sparse containers to rewrite them in the next backup.
HAR outperforms existing rewriting algorithms in terms
of both restore performance and deduplication ratio. We
also develop two optimization approaches for HAR to
reduce the negative impacts of out-of-order containers
on the restore performance, including an efficient restore
caching scheme and a hybrid rewriting algorithm.

During the garbage collection, we need to identify
valid chunks for identifying and merging sparse contain-
ers, which is cumbersome and error-prone due to the
existence of large amounts of chunks. Since HAR ef-
ficiently reduces sparse containers, the identification of
valid chunks is no longer necessary. We further propose
a new reference management approach called Container-
Marker Algorithm (CMA) that identifies valid contain-
ers (holding some valid chunks) instead of valid chunks.
Comparing with existing reference management approa-
ches, CMA significantly reduces the metadata overhead.

The paper makes the following contributions.

• We observe that the fragmentation is classified in-
to two categories: out-of-order and sparse contain-
ers. The former reduces restore performance, which

can be addressed by increasing the restore cache
size. The latter reduces both restore performance
and garbage collection efficiency, and we require
a rewriting algorithm that is capable of accurately
identifying sparse containers.

• In order to accurately identify and reduce sparse
containers, we observe that sparse containers re-
main sparse in next backup, and hence propose
HAR. HAR significantly improves restore perfor-
mance with a slight decrease of deduplication ratio.

• In order to reduce the metadata overhead of the
garbage collection, we propose CMA that iden-
tifies valid containers instead of valid chunks in the
garbage collection.

The rest of the paper is organized as follow. Section 2
describes related work. Section 3 illustrates how the
fragmentation arises. Section 4 discusses the fragmen-
tation category and our observations. Section 5 presents
our design and optimizations. Section 6 evaluates our
approaches. Finally we conclude our work in Section 7.

2 Related Work
A deduplication system employs a large key-value sub-
system, namely fingerprint index, to identify duplicates.
The fingerprint index is too large to be completely stor-
ed in memory. However, a disk-based index that offers
large-sized storage capacity suffers from severe perfor-
mance bottleneck of accessing the fingerprints [19]. In
order to address the performance problem of the finger-
print index, Zhu et al. [26] propose to leverage the local-
ity of backup streams to accelerate fingerprint lookups.
Extreme Binning [3], Sparse Index [10], and SiLo [25]
mainly eliminate duplicate chunks among similar super-
chunks (consists of many chunks). ChunkStash [5] stores
the index in SSDs instead of disks.

The fragmentation problem in deduplication systems
has received many attentions. iDedup [21] eliminates se-
quential and duplicate chunks in the context of primary
storage systems. Nam et al. propose a quantitative metric
to measure the fragmentation level of deduplication sys-
tems [14], and a selective deduplication scheme [15] for
backup workloads. The Context-Based Rewriting algori-
thm (CBR) [8] and the capping algorithm (CAP) [9] are
recently proposed to address the fragmentation problem.

CBR uses a fixed-sized buffer, called stream context,
to maintain the following chunks of the pending dupli-
cate chunk that is being determined whether fragmented.
CBR defines the rewrite utility of a pending chunk as the
size of the chunks that are in the disk context (physically
adjacent chunks) but not in the stream context, divided
by the size of the disk context. If the rewrite utility of
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Table 1: Existing reference management approaches.
Offline Perfect Hash Vector [4]
Inline Reference Counter [24], Grouped

Mark-and-Sweep [7]

the pending chunk is higher than the predefined mini-
mal rewrite utility, the chunk is fragmented. CBR uses a
rewrite limit to avoid too many rewrites.

CAP divides the backup stream into fixed-sized seg-
ments, and conjectures the fragmentation within each
segment. CAP limits the maximum number (say T ) of
containers a segment can refer to. Suppose a new seg-
ment refers to N containers and N > T , the chunks in the
N − T containers that hold the least chunks in the seg-
ment are rewritten.

Both of CBR and CAP buffer a small part of the on-
going backup stream during a backup, and identify frag-
mented chunks within the buffer (generally 10-20MB).
They fail to accurately identify fragmented chunks, sin-
ce physically adjacent chunks of a duplicate chunk can
be accessed beyond the buffer. Increasing the buffer size
alleviates this problem but is not scalable. Our approach
is based on a new observation that fragmented chunks
remain fragmented in the next backup, hence accurately
identifying fragmented chunks.

Reference management for the garbage collection
is complicated in deduplication systems, because each
chunk can be referenced by multiple backups. Exist-
ing reference management approaches are summarized
in Table 1. The offline approaches traverse all finger-
prints (including the fingerprint index and recipes) when
the system is idle. For example, Botelho et al. [4]
build a perfect hash vector as a compact representa-
tion of all chunks. Since recipes need to occupy sig-
nificantly large storage space [12], the traversing oper-
ation is time-consuming. The inline approaches main-
tain additional metadata during backup to facilitate the
garbage collection. Maintaining a reference counter
for each chunk [24] is expensive and error-prone [7].
Grouped Mark-and-Sweep (GMS) [7] uses a bitmap to
mark which chunks in a container are used by a backup.

3 The Fragmentation Problem
Deduplication improves storage efficiency but causes
fragmentation [18, 14], which exacerbates restore per-
formance and garbage collection efficiency. Figure 1 il-
lustrates an example of two consecutive backups to show
how the fragmentation arises. There are 13 chunks in
the first backup. Each chunk is identified by a character,
and duplicate chunks share an identical character. Two
duplicate chunks, say A and D, are identified by dedupli-
cating the stream, which is called self-reference. A and
D are called self-referred chunks. All unique chunks are
stored in the first 4 containers, and a blank is appended
to the 4th half-full container to make it be aligned. With

Figure 1: An example of two consecutive backups. The
shaded areas in each container represent the chunks re-
quired by the second backup.

a 3-container-sized LRU cache, restoring the first back-
up needs to read 5 containers. The self-referred chunk A
requires extra reading container I.

We observe that the second backup contains 13
chunks, 9 of which are duplicates in the first backup. The
four new chunks are stored in two new containers. With a
3-container-sized LRU cache, restoring the second back-
up needs to read 9 containers.

Although both of the backups consist of 13 chunks,
restoring the second backup needs to read 4 more con-
tainers than restoring the first backup. Hence, the restore
performance of the second backup is much worse than
that of the first backup. Recent work [15, 8, 9] also re-
ported the severe decrease of restore performance in de-
duplication systems. We observe a 21X decrease in our
Linux dataset (detailed in Section 6.2).

If we delete the first backup, several chunks including
chunk K in container IV become invalid. Because chunk
J is still referenced by the second backup, we can’t re-
claim container IV. Existing work [10, 11] uses the of-
fline container merging operation. The merging reads the
containers that have only a few valid chunks and copies
them to new containers. Therefore, it suffers from a per-
formance problem similar to the restore operation, thus
becoming the most time-consuming phase in the garbage
collection [4].

4 Fragmentation Classification and Our
Observations

We observe that the fragmentation comes in two cate-
gories: sparse containers and out-of-order containers. In
this section, we describe these two types of containers
and their impacts, and then present our key observations
that motivate our work.
4.1 Sparse Container
As shown in Figure 1, only one chunk in container IV is
referenced by the second backup. Prefetching contain-
er IV for chunk J is inefficient when restoring the sec-
ond backup. After deleting the first backup, we require a
merging operation to reclaim the invalid chunks in con-
tainer IV. This kind of containers exacerbates system per-
formance on both restore and garbage collection. We de-
fine a container’s utilization for a backup as the fraction
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of its chunks referenced by the backup. If the utiliza-
tion of a container is smaller than a predefined utiliza-
tion threshold, such as 50%, the container is considered
as a sparse container for the backup. We use the average
utilization of all the containers related with a backup to
measure the overall sparse level of the backup.

Sparse containers directly amplify read operations.
Prefetching a container of 50% utilization at most
achieves 50% of the maximum storage bandwidth, be-
cause 50% of the chunks in the container are never ac-
cessed. Hence, the average utilization determines the
maximum restore performance with an unlimited restore
cache. The chunks that have never been accessed in spar-
se containers require the slots in the restore cache, thus
decreasing the available cache size. Therefore, reducing
sparse containers can improve the restore performance.

After backup deletions, invalid chunks in a sparse con-
tainer fail to be reclaimed until all other chunks in the
container become invalid. Symantec [22] reports the
probability that all chunks in a container become invalid
is low. We also observe that garbage collection reclaims
little space without additional mechanisms, such as of-
fline merging sparse containers. Since the merging oper-
ation suffers from a performance problem similar to the
restore operation, we require a more efficient solution to
migrate valid chunks in sparse containers.

4.2 Out-of-order Container
If a container is accessed many times intermittently dur-
ing a restore, we consider it as an out-of-order contain-
er for the restore. As shown in Figure 1, container V
will be accessed 3 times intermittently while restoring
the second backup. With a 3-container-sized LRU re-
store cache, restoring each chunk in container V incurs a
cache miss that decreases restore performance.

The problem caused by out-of-order containers is
complicated by self-references. The self-referred chunk
D improves the restore performance, since the two ac-
cesses to D occur close in time. However, the self-
referred chunk A decreases the restore performance.

The impacts of out-of-order containers on restore per-
formance are related to the restore cache. For exam-
ple, with a 4-container-sized LRU cache, restoring the
three chunks in container V incurs only one cache miss.
For each restore, there is a minimum cache size, called
cache threshold, which is required to achieve the max-
imum restore performance (defined by the average uti-
lization). Out-of-order containers reduce restore perfor-
mance if the cache size is smaller than the cache thresh-
old. They have no negative impact on garbage collection.

A sufficiently large cache can address the problem
caused by out-of-order containers. However, since the
memory is expensive, a restore cache of larger than the
cache threshold can be unaffordable in practice. Hence,

it is necessary to either decrease the cache threshold or
assure the demanded restore performance if the cache is
relatively small. If restoring a chunk in a container incurs
an extra cache miss, it indicates that other chunks in the
container are far from the chunk in the backup stream.
Moving the chunk to a new container offers an opportu-
nity to improve restore performance. Another more cost-
effective solution to out-of-order containers is to develop
a more intelligent caching scheme than LRU.

4.3 Our Observations
Because out-of-order containers can be alleviated by the
restore cache, how to reduce sparse containers becomes
the key problem. Existing rewriting algorithms cannot
accurately identify sparse containers due to the limit-
ed buffer. Accurately identifying sparse containers re-
quires the complete knowledge of the on-going backup.
However, the complete knowledge of a backup cannot be
known until the backup has concluded, making the iden-
tification of sparse containers a challenge.

Due to the incremental nature of backup, two consecu-
tive backups are very similar, which is the major assump-
tion behind DDFS [26]. Hence, they share similar chara-
cteristics, including the fragmentation. We analyze three
datasets, including virtual machines, Linux kernels, and
a synthetic dataset (detailed in Section 6.2), to explore
and exploit potential characteristics of sparse containers
(the utilization threshold is 50%). After each backup,
we record the accumulative amount of the stored data, as
well as the total and emerging sparse containers for the
backup. An emerging sparse container is not sparse in
the last backup but becomes sparse in the current back-
up. An inherited sparse container is already sparse in
the last backup and remains sparse in the current backup.
The total sparse containers are the sum of emerging and
inherited sparse containers.

The characteristics of sparse containers are shown in
Figure 2. First, the number of total sparse containers
continuously grows. It indicates sparse containers be-
come more common over time. Second, the number of
total sparse containers increases smoothly most of time.
A few exceptions in the Kernel datasets are major revi-
sion updates, which have more new data and increase the
amount of stored data sharply. It indicates that a large
update results in more emerging sparse containers. How-
ever, due to the similarity between consecutive backups,
the number of emerging sparse containers of each backup
is relatively small most of time. Third, the number of in-
herited sparse containers of each backup is equivalent to
or slightly less than the number of total sparse containers
of the previous backup. A few sparse containers of the
previous backup become not sparse to the current back-
up since their utilizations drop to 0. It seldom occurs that
the utilization of an inherited sparse container increases

4



USENIX Association  2014 USENIX Annual Technical Conference 185

 0

 1000

 2000

 3000

 4000

 5000

 6000

 50  60  70  80  90  100
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000
# 

of
 sp

ar
se

 c
on

ta
in

er
s

th
e 

am
ou

nt
 o

f s
to

re
d 

da
ta

 (M
B

)

version number

inherited sparse containers
emerging sparse containers

the amount of stored data

(a) VMDK

 0

 100

 200

 300

 400

 500

 600

 50  60  70  80  90  100
 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800

# 
of

 sp
ar

se
 c

on
ta

in
er

s

th
e 

am
ou

nt
 o

f s
to

re
d 

da
ta

 (M
B

)

version number

inherited sparse containers
emerging sparse containers

the amount of stored data

(b) Linux

 0

 500

 1000

 1500

 2000

 50  60  70  80  90  100
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

# 
of

 sp
ar

se
 c

on
ta

in
er

s

th
e 

am
ou

nt
 o

f s
to

re
d 

da
ta

 (M
B

)

version number

inherited sparse containers
emerging sparse containers

the amount of stored data

(c) Synthetic

Figure 2: Characteristics of sparse containers in three datasets. 50 backups are shown for clarity.

in the current backup, unless a rare rollback occurs. The
observation indicates that sparse containers of the back-
up remain sparse in the next backup.

The above observations motivate our work to exploit
the historical information to identify sparse containers.
After completing a backup, we can determine which
containers are sparse within the backup. Because these
sparse containers remain sparse for the next backup, we
record these sparse containers and allow chunks in them
to be rewritten in the next backup. In such a scheme,
the emerging sparse containers of a backup become the
inherited sparse containers of the next backup. Due to
the second observation, each backup needs to rewrite the
chunks in a small number of inherited sparse contain-
ers, which would not degrade the backup performance.
Moreover a small number of emerging sparse contain-
ers left to the next backup would not degrade the restore
performance of the current backup. From the third ob-
servation, the scheme identifies sparse containers accu-
rately. This scheme is called History-Aware Rewriting
algorithm (HAR).

5 Design and Implementation
5.1 Architecture Overview

Figure 3: The HAR architecture.

Figure 3 illustrates the overall architecture of our HAR
system. On disks, we have a container pool to provide
container storage service. Any kinds of fingerprint in-
dexes can be used. Typically we keep the complete fin-
gerprint index on disks, as well as the hot part in memory.
An in-memory container buffer is allocated for chunks to
be written.

The system assigns each dataset a globally unique ID,

such as DS1 in Figure 3. The collected historical in-
formation of each dataset is stored on disks with the
dataset’s ID, such as the DS1 in f o file. The collected his-
torical information consists of three parts: IDs of inher-
ited sparse containers for HAR, the container-access se-
quence for the Belady’s optimal replacement cache, and
the container manifest for Container-Marker Algorithm.
5.2 History-Aware Rewriting Algorithm
At the beginning of a backup, HAR loads IDs of all
inherited sparse containers to construct the in-memory
Sinherited structure, and rewrites all duplicate chunks in
the inherited sparse containers. In practice, HAR main-
tains two in-memory structures, Ssparse and Sdense (in-
cluded in collected info in Figure 3), to collect IDs of
emerging sparse containers. The Ssparse traces the con-
tainers whose utilizations are smaller than the utilization
threshold. The Sdense records the containers whose utili-
zations exceed the utilization threshold. The two struc-
tures consist of utilization records, and each record con-
tains a container ID and the current utilization of the con-
tainer. After the backup is completed, HAR replaces the
IDs of the old inherited sparse containers with the IDs of
emerging sparse containers in Ssparse. Hence, the Ssparse
becomes the Sinherited of the next backup. The complete
workflow of HAR is described in Algorithm 1.

Figure 4: The lifespan of a rewritten sparse container.

Figure 4 illustrates the lifespan of a rewritten sparse
container. The rectangle is a container, and the blank area
is the chunks not referenced by the backup. We assume
4 backups are retained. (1) The container becomes spar-
se in backup n. (2) The container is rewritten in backup
n+1. The chunks referenced by backup n+1 are rewrit-
ten to a new container that holds unique chunks and other

5
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Algorithm 1 History-Aware Rewriting Algorithm
Input: IDs of inherited sparse containers, Sinherited ;
Output: IDs of emerging sparse containers, Ssparse;

1: Initialize two sets, Ssparse and Sdense.
2: while the backup is not completed do
3: Receive a chunk and look up its fingerprint in the

fingerprint index.
4: if the chunk is duplicate then
5: if the chunk’s container ID exists in Sinherited

then
6: Rewrite the chunk, and obtain a new contain-

er ID.
7: else
8: Eliminate the chunk.
9: end if

10: else
11: Write the chunk, and obtain a new container ID.
12: end if
13: if the chunk’s container ID doesn’t exist in Sdense

then
14: Update the associated utilization record (add it

if doesn’t exist) in Ssparse with the chunk size.
15: if the utilization exceeds the utilization thresh-

old then
16: Move the utilization record to Sdense.
17: end if
18: end if
19: end while
20: return Ssparse

rewritten chunks (blue area). However the old container
cannot be reclaimed after backup n+1, because backup
n−2, n−1, and n still refer to the old container. (3) Af-
ter backup n+ 4 is finished, all backups referring to the
old container have been deleted, and thus the old con-
tainer can be reclaimed. Each sparse container decreases
the restore performance of the backup recognizing it, and
will be reclaimed when the backup is deleted.

Due to the limited number of inherited sparse contain-
ers, the memory consumed by the Sinherited is negligible.
Ssparse and Sdense consume more memory because they
need to monitor all containers related with the backup.
If the default container size is 4MB and the average uti-
lization is 50% which can be easily achieved by HAR,
the two sets of a 1TB stream consume 8MB memory
(each record contains a 4-byte ID, a 4-byte current uti-
lization, and an 8-byte pointer). This analysis shows that
the memory footprint of HAR is low in most scenarios.

There is a tradeoff in HAR. A higher utilization thresh-
old results in more containers being considered sparse,
and thus backups are of better average utilization and re-
store performance but worse deduplication ratio. If the
utilization threshold is set to 50%, HAR promises an av-
erage utilization of no less than 50%, and the maximum

restore performance is no less than 50% of the maximum
storage bandwidth.
5.2.1 The Impacts of HAR on Garbage Collection
We define Ci as the set of containers related with backup
i, |Ci| as the size of Ci, ni as the number of inherited
sparse containers, ri as the size of rewritten chunks, and
di as the size of new chunks. T backups are retained
at any moment. The container size is S. The storage
cost can be measured by the number of valid containers.
A container is valid if it has chunks referenced by non-
deleted backups. After backup k is finished, the number
of valid containers is Nk.

Nk = |
k∪

i=k−T+1

Ci|= |Ck−T+1|+
k

∑
i=k−T+2

(
ri +di

S
)

For those deleted backups (before backup k−T + 1),
we have

|Ci+1|= |Ci|−ni+1 +
ri+1 +di+1

S
,0 ≤ i < k−T +1

⇒ Nk = |C0|−
k−T+1

∑
i=1

(ni −
ri +di

S
)+

k

∑
i=k−T+2

(
ri +di

S
)

C0 is the initial backup. Since the |C0|, di, and S are con-
stants, we concentrate on the part δ related with HAR,

δ =−
k−T+1

∑
i=1

(ni −
ri

S
)+

k

∑
i=k−T+2

(
ri

S
) (1)

The value of δ demonstrates the additional storage
cost of HAR. If HAR is disabled (the utilization thresh-
old is 0), δ is 0. A negative value of δ indicates that HAR
decreases the storage cost. If k is small (the system is in
the warn-up stage), the latter part is dominant thus HAR
introduces additional storage cost than no rewriting. If k
is large (the system is aged), the former part is dominant
thus HAR decreases the storage cost.

A higher utilization threshold indicates that both ni
and ri are larger. If k is small, a lower utilization thresh-
old is helpful to decrease the storage cost since the latter
part is dominant. Otherwise, the best utilization thresh-
old is related with the backup retention time and chara-
cteristics of datasets. For example, if backups never ex-
pire, a higher utilization threshold always results in high-
er storage cost. Only retaining 1 backup would yield the
opposite effect. However we find a value of 50% works
well according to our experimental results in Section 6.7.

5.3 Optimal Restore Cache
To reduce the negative impacts of out-of-order containers
on restore performance, we implement Belady’s optimal
replacement cache [2]. Implementing the optimal cache
(OPT) needs to know the future access pattern. We can
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collect such information during the backup, since the se-
quence of reading chunks during the restore is just the
same as the sequence of writing them during a backup.

After a chunk is processed through either elimina-
tion or over-writing its container ID, its container ID is
known. We add an access record into the collected info
in Figure 3. Each access record can only hold a container
ID. Sequential accesses to the identical container can be
merged into a record. This part of historical information
can be updated to disks periodically, and thus would not
consume much memory.

At the beginning of a restore, we load the container-
access sequence into memory. If the cache is full, we
evict the cached container that will not be accessed for
the longest time in the future. Belady has proven the
optimality [2].

The complete sequence of access records can consume
considerable memory when out-of-order containers are
dominant. Assuming each container is accessed 50 times
intermittently and the average utilization is 50%, the
complete sequence of access records of a 1TB stream
consumes over 100MB of memory. Instead of check-
ing the complete sequence of access records, we can use
a slide window to check a fixed-sized part of the future
sequence, as a near-optimal scheme. The memory foot-
print of this near-optimal scheme is hence bounded. Be-
cause the recent backups are most likely restored [8], we
only maintain the sequences of a few recent backups for
storage savings, and restore earlier backups via an LRU
replacement caching scheme.

5.4 A Hybrid Scheme
As discussed in Section 4.2, rewriting chunks in out-
of-order containers offers opportunities to reduce their
negative impacts. Since most of the chunks rewritten
by existing rewriting algorithms belong to out-of-order
containers, we propose a hybrid scheme that takes ad-
vantages of both HAR and existing rewriting algorithms
(e.g., CBR [8] and CAP [9]) as optional optimizations.
The hybrid scheme is straightforward. Each duplicate
chunk not rewritten by HAR is further examined by CBR
or CAP. If CBR or CAP considers the chunk fragmented,
the chunk is rewritten.

To avoid a significant decrease of deduplication ratio,
we configure CBR or CAP to rewrite less data than the
exclusive uses of themselves. For example, CBR uses
a rewrite limit to control the rewrite ratio (the size of the
rewritten chunks divided by that of the total chunks). The
default rewrite limit in CBR is 5%, and thus CBR at-
tempts to rewrite top-5% fragmented chunks. Generally
a higher rewrite limit indicates CBR rewrites more data
for higher restore performance. We set rewrite limit to
0.5% in the hybrid of HAR and CBR. The hybrid of HAR
and CAP is similar. Based on our observations, only

rewriting a small number of additional chunks further
improves restore performance when the restore cache is
small. However, the hybrid scheme always rewrites more
data than HAR. Hence, we propose disabling the hybrid
scheme if a large restore cache is affordable (Since re-
store is rare and critical, a large cache is reasonable).

5.5 Container-Marker Algorithm
Existing garbage collection schemes rely on merging
sparse containers to reclaim invalid chunks in the con-
tainers. Before merging, they have to identify invalid
chunks to determine utilizations of containers, i.e., ref-
erence management. Existing reference management
approaches [24, 7, 4] are inevitably cumbersome due to
the existence of large amounts of chunks.

HAR naturally accelerates expirations of sparse con-
tainers and thus the merging is no longer necessary.
Hence, we need not to calculate the exact utilization of
each container. We design the Container-Marker Algori-
thm (CMA) to efficiently determine which containers are
invalid. CMA is fault-tolerant and recoverable.

CMA maintains a container manifest for each dataset.
The container manifest records IDs of all containers re-
lated to the dataset. Each ID is paired with a backup
time, and the backup time indicates the dataset’s most
recent backup that refers to the container. Each backup
time can be represented by one byte, and let the backup
time of the earliest non-deleted backup be 0. One byte
suffices differentiating 256 backups, and more bytes can
be allocated for longer backup retention time. Each con-
tainer can be used by many different datasets. For each
container, CMA maintains a dataset list that records IDs
of the datasets referring to the container. A possible ap-
proach is to store the lists in the blank areas of contain-
ers, which on average is half of the chunk size. After a
backup is completed, the backup time of the containers
whose IDs are in the Ssparse and Sdense are updated to the
largest time in the old manifest plus one. CMA adds the
dataset’s ID to the lists of the containers that are in the
new manifest but not in the old one. If the lists (or man-
ifests) are corrupted, we can recover them by traversing
manifests of all datasets (or all related recipes).

If we need to delete the oldest t backups of a dataset,
CMA loads the container manifest into memory. The
container IDs with a backup time smaller than t are re-
moved from the manifest, and the backup time of the re-
maining IDs decreases by t. CMA removes the dataset’s
ID from the lists of the removed containers. If a con-
tainer’s list is empty, the container can be reclaimed. We
further examine the fingerprints in reclaimed containers.
If a fingerprint is mapped to a reclaimed container in the
fingerprint index, its entry is removed.

Because HAR effectively maintains high utilizations
of containers, the container manifest is small. We as-
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Table 2: Characteristics of datasets.
dataset name VMDK Linux Synthetic

total size 1.44TB 104GB 4.5TB
# of versions 102 258 400

deduplication 25.44 45.24 37.26ratio
avg. chunk size 10.33KB 5.29KB 12.44KB

sparse medium severe severe
out-of-order severe medium medium

sume that each backup is 1TB and 90% identical to ad-
jacent backups. Recent 20 backups are retained. With
a 50% average utilization, the backups at most refer to
1.5 million containers. Hence the manifest and lists con-
sume at most 13.5MB storage space (each container has
a 4-byte container ID paired with a 1-byte backup time
in the manifest, and a 4-byte dataset ID in its list).

6 Performance Evaluation

6.1 Experimental Configurations
We implemented an experimental platform to evaluate
our design, including HAR, OPT, and CMA. We also im-
plement CBR [8] (The original CBR is designed for Hy-
draStor [6], and we implement the idea in the container
storage), CAP [9], and their hybrid schemes (HAR+CBR
and HAR+CAP) for comparisons. Since the design of
fingerprint index is out of scope for the paper, we simply
accommodate the complete fingerprint index in memory.
The baseline has no rewriting, and the default caching
scheme is OPT. The container size is 4MB. The default
utilization threshold in HAR is 50%. We retain 20 back-
ups thus backup n− 20 is deleted after backup n is fin-
ished. We don’t apply the offline container merging as
in previous work [15, 9], because it requires a long idle
time.

We use Speed Factor [9] as the metric of the restore
performance. The speed factor is defined as 1 divided by
mean containers read per MB of restored data. Higher
speed factor indicates better restore performance. Given
the container size is 4MB, 4 units of speed factor corre-
spond to the maximum storage bandwidth.

6.2 Datasets
Two real-world datasets, including VMDK and Linux,
and a synthetic dataset, i.e., Synthetic, are used for eval-
uation. Their characteristics are listed in Table 2. Each
dataset is divided into variable-sized chunks.

VMDK is from a virtual machine installed Ubuntu
12.04LTS, which is a common use-case in real-world [7].
We compile source code, patch the system, and run an
HTTP server on the virtual machine. We backup the vir-
tual machine regularly. It consists of 102 full backups.
Each full backup is 14.48GB on average, and 90–98%
identical to its adjacent backups. Each backup contains
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Figure 5: The average utilization of last 20 backups
achieved by each rewriting algorithm.

about 15% self-referred chunks, and thus out-of-order
containers are dominant.

Linux, downloaded from the web[1], is a commonly
used public dataset [23]. It consists of 258 consecutive
versions of unpacked Linux kernel sources. Each version
is 412.78MB on average. Two consecutive versions are
generally 99% identical except when there are large up-
grades. In Linux, there are only a few self-references and
sparse containers are dominant.

Synthetic is generated according to existing approa-
ches [23, 9]. We simulate common operations of file
systems, such as create/delete/modify files. We finally
obtain a 4.5TB dataset with 400 versions. There is no
self-reference in Synthetic.

6.3 Average Utilization
The average utilization of a backup exhibits its maximum
restore performance. Figure 5 shows the average utili-
zations of rewriting algorithms. We observe that HAR
significantly improves average utilizations, and obtains
highest average utilizations in all datasets. The average
utilizations of HAR are 99%, 75.42%, and 65.92% in
VMDK, Linux, and Synthetic respectively, which indi-
cate the maximum speed factors (= average utilization∗
4) are 3.96, 3.02, and 2.64. CBR and CAP achieve low-
er average utilizations than the baseline in VMDK, be-
cause they rewrite many copies of self-referred chunks.
They improve the average utilizations in Linux and Syn-
thetic, although less than HAR by 30–50%. The hybrid
schemes achieve average utilizations similar to HAR’s.

6.4 Deduplication Ratio
Deduplication ratio explains the amount of written
chunks, and the storage cost if no backup is deleted. Sin-
ce we delete backups regularly to triggers garbage col-
lection, the actual storage cost is shown in Section 6.6.

Figure 6 shows deduplication ratios of rewriting al-
gorithms. The deduplication ratios of HAR are 22.78,
27.78, and 21.38 in VMDK, Linux, and Synthetic re-
spectively. HAR rewrites 11.66%, 62.83%, and 74.31%
more data than the baseline. However, the corresponding
rewrite ratios remain at a low level, respectively 0.45%,
1.38%, and 1.99%. It indicates the size of rewritten
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Figure 6: The comparisons between HAR and other
rewriting algorithms in terms of deduplication ratio.

data is small relative to the size of backups. Due to
such low rewrite ratios, the fingerprint lookup, content-
defined chunking, and SHA-1 computation remain the
performance bottleneck. Hence, HAR has trivial impacts
on the backup performance.

We observe that HAR achieves considerably high-
er deduplication ratios than CBR and CAP. Since the
rewrite ratios of CBR and CAP are 2 times larg-
er than that of HAR, it is reasonable to expect that
HAR outperforms CBR and CAP in terms of back-
up performance. The hybrid schemes, HAR+CBR and
HAR+CAP, achieve better deduplication ratio than CBR
and CAP respectively, but decrease deduplication ratios
compared with HAR, such as by 10% in VMDK.

6.5 Restore Performance
Figure 7 shows the restore performance achieved by each
rewriting algorithm with a given cache size. We tune the
cache size according to the datasets, and show the im-
pacts of varying cache size later in Figure 8. The default
caching scheme is OPT. We observe severe declines of
the restore performance in the baseline. For instance,
restoring the latest backup is 21X slower than restoring
the first backup in Linux. OPT alone increases restore
performance by 1.51X , 1.47X , and 1.88X respectively in
last 20 backups, however the performance remains at a
low level.

We further examine the average speed factor in last
20 backups of each rewriting algorithm. In VMDK,
CBR and CAP further improve restore performance by
1.46X and 1.53X respectively based on OPT. HAR out-
performs them and increases restore performance by a
factor of 1.72. The hybrid schemes are efficient, be-
cause HAR+CBR and HAR+CAP increase restore per-
formance by 1.2X and 1.3X based on HAR. Given
that their deduplication ratios are slightly smaller than
HAR, CBR and CAP are good complements to HAR
in the datasets where out-of-order containers are domi-
nant. The restore performance of the initial backups ex-
ceeds the maximum storage bandwidth (4 units of speed
factor), because self-referred chunks in the scope of the
cache improve restore performance.

In Linux, CBR and CAP further improve restore per-
formance by 5.4X and 6.12X . HAR is more efficient
and further increases restore performance by a factor of
10.25. Because out-of-order containers are less domi-
nant, the hybrid schemes can’t achieve significantly bet-
ter performance than HAR. Thus the hybrid schemes can
be disabled in the datasets where the problem of out-of-
order containers is less severe. There are some occasion-
al smaller values in the curve of HAR, because a large
upgrade in Linux kernel produces a large amount of spar-
se containers.

The results in Synthetic are similar with those in Lin-
ux. CBR, CAP, and HAR further increase restore per-
formance by 6.41X , 6.35X , and 9.08X respectively. The
hybrid schemes can’t outperform HAR remarkably.

Figure 8 compares restore performance among rewrit-
ing algorithms under various cache sizes. In VMDK,
because out-of-order containers are dominant, HAR re-
quires a large cache (e.g., 2048-container-size) to achieve
the maximum restore performance. We observe that if
the cache size continuously increases, the restore perfor-
mance of the baseline is approximate to that of CBR and
CAP. The reason is that the baseline, CBR, and CAP
achieve similar average utilizations as shown in Fig-
ure 5. CBR and CAP are great complements to HAR.
When the cache is small, the restore performance of
HAR+CBR (HAR+CAP) is approximate to that of CBR
(CAP); when the cache is large, the restore performance
of the hybrid schemes is approximate to that of HAR.
Compared with HAR, the hybrid schemes successfully
decrease the cache threshold by nearly 2X , and improve
the restore performance when the cache is small.

In Linux, HAR achieves better restore performance
than CBR and CAP, even with a small cache (e.g.,
8-container-size). Compared with HAR, the hybrid
schemes decrease the cache threshold by a factor of 2,
and improve the restore performance when the cache is
small. However, because the cache threshold of HAR is
small, a restore cache of reasonable size can address the
problem caused by out-of-order containers without de-
creasing deduplication ratio.

In Synthetic, HAR outperforms CBR and CAP by
1.41X and 1.42X when the cache is no less than 32-
container-size. With a small cache (e.g., 8-container-
size), CBR and CAP are better. However, because the
cache threshold of HAR is small, it is reasonable to allo-
cate sufficient memory for a restore. The hybrid schemes
improve restore performance when the cache is small.

The experimental maximum restore performance in
each dataset verifies our estimated values in Section 6.3.
In summary, we propose to use the hybrid schemes when
self-references are common; otherwise the exclusive use
of HAR is recommended.

9
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Figure 7: The comparisons of rewriting algorithms in terms of restore performance. The cache is 512-, 32-, and
64-container-sized in VMDK, Linux, and Synthetic respectively.
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Figure 8: The comparisons of rewriting algorithms under various cache size. Speed factor is the average value of last
20 backups. The cache size is in terms of # of containers.
Table 3: Metadata space overhead of inline reference
management approaches. HAR is used in all approaches.

VMDK Linux Synthetic
Reference 4.64MB 328.36KB 6.53MBCounter [24]
GMS [7] 5.26MB 190KB 7.23MB

CMA 58.19KB 2KB 81.62KB

6.6 Garbage Collection
We compare the metadata space overhead among exist-
ing inline reference management approaches in Table 3.
We assume each reference counter consumes one byte.
The metadata overhead of CMA is lowest, and no more
than 1/90 of that of GMS.

We examine how rewriting algorithms affect garbage
collection. The number of valid containers after garbage
collection exhibits the actual storage cost, and the results
are shown in Figure 9. In the initial backups, the base-
line has least valid containers, which verifies the discus-
sions in Section 5.2.1. The advantage of HAR becomes
more apparent over time, since the proportion of the for-
mer part in Equation 1 increases. Finally HAR decreases
the number of valid containers by 27.37%, 68.15%, and
68.43% compared to the baseline in VMDK, Linux, and
Synthetic respectively. In Synthetic, the number of valid
containers increases continuously because the data size
increases. The results indicate HAR achieves better stor-
age saving than the baseline, and the merging is no longer
necessary in a deduplication system with HAR.

We observe that CBR and CAP increase the number
of valid containers by 26.8% and 36.47% respectively in
VMDK compared to the baseline. It indicates that CBR
and CAP exacerbate the problem of garbage collection
in VMDK. The reason is that they rewrite many copies
of self-referred chunks into different containers, which
reduces the average utilizations as shown in Figure 5. In
Linux and Synthetic, CBR and CAP reduce the number
of valid containers by 50%, however they still require the
merging operation to achieve further storage savings.

HAR+CBR and HAR+CAP respectively result in
2.3% and 12.5% more valid containers than HAR in
VMDK. However they significantly reduce the number
of valid containers compared with the baseline. They
perform slightly worse than HAR in Linux and Synthet-
ic, and outperform CBR and CAP in all three datasets.

6.7 Varying the Utilization Threshold
The utilization threshold determines the definition of
sparse containers. The impacts of varying the utilization
threshold on deduplication ratio and restore performance
are both shown in Figure 10.

Varying the utilization threshold from 90% to 10%,
the deduplication ratio increases from 17.03 to 25.06
and the restore performance decreases by about 35%
in VMDK. In particular, with a 70% utilization thresh-
old and a 2048-container-sized cache, the restore perfor-
mance exceeds 4 units of speed factor. The reason is
that the self-referred chunks restore more data than them-
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Figure 9: The comparisons of rewriting algorithms in terms of garbage collection.
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Figure 10: Impacts of varying the utilization threshold on restore performance and deduplication ratio. Speed factor
is the average value of last 20 backups. The cache size is in terms of # of containers. Each curve shows varying the
utilization threshold from left to right: 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, and 10%.
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Figure 11: Impacts of varying the Utilization Threshold (UT) on garbage collection.

selves. In Linux and Synthetic, deduplication ratio and
restore performance are more sensitive to the change of
the utilization threshold than in VMDK. Varying the uti-
lization threshold from 90% to 10%, the deduplication
ratio increases from 14.34 to 42.49, and 5.68 to 35.26
respectively. The smaller the restore cache is, the more
significant the performance decrease is as the utilization
threshold decreases.

Varying the utilization threshold also has significant
impacts on garbage collection. The results are shown
in Figure 11. A lower utilization threshold results in
less valid containers in initial backups of all our data-
sets. However, we observe a trend that higher utilization
thresholds gradually outperform lower utilization thresh-
olds over time. For instance, the best utilization thresh-
old finally is 50–60% in VMDK, 50–70% in Linux, and
50% in Synthetic. There are some periodical peaks in

Linux, since a large upgrade to kernel results in a large
amount of emerging sparse containers. These containers
will be rewritten in the next backup, which suddenly in-
creases the number of valid containers. After the backup
expires, the number of valid containers is reduced.

Based on the experimental results, we believe a 50%
threshold is practical in most cases, since it causes mod-
erate rewrites and obtains significant improvements in re-
store and garbage collection.

7 Conclusions
The fragmentation decreases the efficiencies of restore
and garbage collection in deduplication-based backup
systems. We observe that the fragmentation comes in
two categories: sparse containers and out-of-order con-
tainers. Sparse containers determine the maximum re-
store performance of a backup while out-of-order con-
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tainers determine the required cache size to achieve the
maximum restore performance.

History-Aware Rewriting algorithm (HAR) accurate-
ly identifies and rewrites sparse containers via exploiting
historical information. We also implement an optimal re-
store caching scheme (OPT) and propose a hybrid rewrit-
ing algorithm as complements of HAR to reduce the neg-
ative impacts of out-of-order containers. HAR, as well as
OPT, improves restore performance by 2.6X–17X at an
acceptable cost in deduplication ratio. HAR outperforms
the state-of-the-art work in terms of both deduplication
ratio and restore performance. The hybrid schemes are
helpful to further improve restore performance in data-
sets where out-of-order containers are dominant.

The ability of HAR to reduce sparse containers facil-
itates the garbage collection. It is no longer necessary
to offline merge sparse containers, which relies on iden-
tifying valid chunks. We propose a Container-Marker
Algorithm (CMA) that identifies valid containers instead
of valid chunks. Since the metadata overhead of CMA
is bounded by the number of containers, it is more cost-
effective than existing reference management approaches
whose overhead is bounded by the number of chunks.
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Abstract

Most multi-core architectures nowadays support dynamic volt-
age and frequency scaling (DVFS) to adapt their speed to the
system’s load and save energy. Some recent architectures addi-
tionally allow cores to operate at boosted speeds exceeding the
nominal base frequency but within their thermal design power.

In this paper, we propose a general-purpose library that
allows selective control of DVFS from user space to accelerate
multi-threaded applications and expose the potential of hetero-
geneous frequencies. We analyze the performance and energy
trade-offs using different DVFS configuration strategies on sev-
eral benchmarks and real-world workloads. With the focus on
performance, we compare the latency of traditional strategies
that halt or busy-wait on contended locks and show the power
implications of boosting of the lock owner. We propose new
strategies that assign heterogeneous and possibly boosted fre-
quencies while all cores remain fully operational. This allows
us to leverage performance gains at the application level while
all threads continuously execute at different speeds. We also
derive a model to help developers decide on the optimal DVFS
configuration strategy, e.g, for lock implementations. Our in-
depth analysis and experimental evaluation of current hardware
provides insightful guidelines for the design of future hardware
power management and its operating system interface.

1 Introduction

While early generations of multi-core processors were essen-
tially homogeneous with all cores operating at the same clock
speed, new generations provide finer control over the frequency
and voltage of the individual cores. A major motivation for this
new functionality is to maximize processor performance with-
out exceeding the thermal design power (TDP), as well as re-
ducing energy consumption by decelerating idle cores [4, 35].

Two main CPU manufacturers, Intel and AMD, have pro-
posed competing yet largely similar technologies for dynamic
voltage and frequency scaling (DVFS) that can exceed the
processor’s nominal operation frequency, respectively named
Turbo Boost [39] and Turbo CORE [3]. When the majority
of cores are powered down or run at a low frequency, the
remaining cores can boost within the limits of the TDP. In
the context of multi-threaded applications, a typical use case
is the optimization of sequential bottlenecks: waiting threads
halt the underlying core and allow the owner thread to speed
up execution of the critical section.

Boosting is typically controlled by hardware and is com-
pletely transparent to the operating system (OS) and applica-
tions. Yet, it is sometimes desirable to be able to finely control

these features from an application as needed. Examples in-
clude: accelerating the execution of key sections of code on
the critical path of multi-threaded applications [9]; boosting
time-critical operations or high-priority threads; or reducing
the energy consumption of applications executing low-priority
threads. Furthermore, workloads specifically designed to run
on processors with heterogeneous cores (e.g., few fast and
many slow cores) may take additional advantage of application-
level frequency scaling. We argue that, in all these cases, fine-
grained tuning of core speeds requires application knowledge
and hence cannot be efficiently performed by hardware only.

Both Intel and AMD hardware implementations are con-
strained in several ways, e.g., some combination of frequencies
are disallowed, cores must be scaled up/down in groups,
or the CPU hardware might not comply with the scaling
request in some circumstances. Despite the differences of
both technologies, our comparative analysis derives a common
abstraction for the processor performance states (Section 2).
Based on the observed properties, we present the design and
implementation of TURBO, a general-purpose library for
application-level DVFS control that can programmatically
configure the speed of the cores of CPUs with AMD’s Turbo
CORE and Intel’s Turbo Boost technologies, while abstracting
the low-level differences and complexities (Section 3).

The cost of frequency and voltage transitions is subject
to important variations depending on the method used for
modifying processor states and the specific change requested.
The publicly available documentation is sparse, and we believe
to be the first to publish an in-depth investigation on the latency,
performance, and limitations of these DVFS technologies
(Section 4). Unlike previous research, our goal is not energy
conservation or thermal boosting [36], which is usually applied
to mobile devices and interactive applications with long idle
periods, but long running applications often found on servers.
We target efficiency by focusing on the best performance, i.e.,
shorter run times or higher throughput using the available TDP.
In this context, hardware is tuned in combination with the OS
to use frequency scaling for boosting sequential bottlenecks
on the critical path of multi-threaded applications. We use
the TURBO library to measure the performance and power
implications of both blocking and spinning locks (Section 4.2).
Our evaluation shows that connecting knowledge of appli-
cation behavior to programmatic control of DVFS confers
great benefits on applications having heterogeneous load.
We propose new configuration strategies that keep all cores
operational and allow a manual boosting control (Section 4.3).

Based on the evaluation of manual configuration strategies
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AMD FX-8120 Intel i7-4770
Model AMD Family 15h Model 1 Intel Core 4th generation

Codename “Bulldozer” “Haswell”
Design 4 modules with 2 ALUs & 1 FPU 4 cores with hyper-threading

L2 cache 4×2MB per module 4×256KB per core
L3 cache 1×8MB per package 1×8MB per package

TDP 124.95W (NB 14.23W) 84W
Frequency 3.1GHz, (1.4–4.0GHz) 3.4GHz (0.8–3.9GHz)

Stepping ACPI P-states, 100MHz multiplier P-states, 100MHz
Voltage 0.875–1.412V (3.41–27.68W) 0.707–1.86V (5–75W)

Table 1: Specification of the AMD and Intel processors.

Package

Northbridge: L3 cache, Integrated memory controller

Module

L2 cache

L1 data cache

x86 Core FPU x86 Core

L1 instr. cache L1 data cache

Module Module Module

Figure 1: Organization of an AMD FX-8120 processor.

and their latencies, we derive a simplified cost model (Sec-
tion 4.4) to guide developers at which size of a critical region a
frequency transition pays off. Four case studies investigate the
performance gains exploited by application-level frequency
control based on real-world benchmarks (Section 5).

2 Hardware Support for Boosting

With both AMD’s Turbo CORE and Intel’s Turbo Boost,
performance levels and power consumption of the processor
are controlled through two types of operational states: P-states
implement DVFS and set different frequency/voltage pairs
for operation, trading off higher voltage (and thus higher
power draw) with higher performance through increased
operation frequency. P-states can be controlled through special
machine-specific registers (MSRs) that are accessed through
the rdmsr/wrmsr instructions. The OS can request a P-state
change by modifying the respective MSR. P-state changes
are also not instantaneous: the current needs to be adapted
and frequencies are ramped, both taking observable time.

C-states are used to save energy when a core is idle.
C0 is the normal operational state. All other C-states halt
the execution of instructions and trade different levels of
entry/wakeup latency for lower power draw. The OS can
invoke C-states through various means such as the hlt and
monitor/mwait instructions. We argue in this paper that
there are benefits in keeping selected cores operational, albeit
at a lower frequency, and that manipulating P-states can be
more efficient in terms of latency than manipulating C-states.

We base our work on AMD’s FX-8120 [1] and Intel’s
i7-4770 [19] CPUs, whose characteristics are listed in Table 1.

2.1 AMD’s Turbo CORE

The architecture of the AMD FX-8120 processor is illustrated
in Figure 1. The cores of a package are organized by pairs
in modules that share parts of the logic between the two cores.

Our processor supports seven P-states summarized in Ta-
ble 2. We introduce a TURBO naming convention to abstract
from the manufacturer specifics. AMD uses P-state numbering
based on the ACPI standard with P0 being the highest perfor-
mance state. The two topmost are boosted P-states (#Pboosted

Hardware P-state P0 P1 P2 P3 P4 P5 P6
TURBO naming Pturbo Pbase Pslow

Frequency (GHz) 4.0 3.4 3.1 2.8 2.3 1.9 1.4
Voltage (mV) 1412 1412 1275 1212 1087 950 875

Power 4×nop (W) — 123.3 113.6 97.2 70.1 49.9 39.3
Power 4×ALU (W) — — 122.6 104.3 74.6 52.9 41.2

Power 3×Pslow, 1×P0..6 (W) 125.0 119.8 100.5 87.4 65.5 48.5 41.2
Power 3×mwait, 1×P0..6 (W) 120.1 116.5 90.9 77.6 55.5 40.5 32.8

Table 2: Default P-state configuration of AMD FX-8120.
=2) that are by default controlled by the hardware. The re-
maining five P-states can be set by the OS through the MSRs1.

The boosting of the frequency beyond the nominal P-state
(Pbase) is enabled by the hardware’s Turbo CORE technology if
operating conditions permit. The processor determines the cur-
rent power consumption and will enable the first level of boost-
ing (P1HW ) if the total power draw remains within the TDP
limit and the OS requests the fastest software P-state. A multi-
threaded application can boost one module to P1HW while
others are in Pbase if it does not use all features of the package
to provide the required power headroom, e.g., no FPUs are ac-
tive. The fastest boosting level (Pturbo) is entered automatically
if some cores have furthermore reduced their power consump-
tion by entering a deep C-state. Note that Turbo CORE is
deterministic, governed only by power draw and not tempera-
ture, such that the maximum frequency is workload dependent.
During a P-state transition, the processor remains active and
capable of executing instructions, and the completion of a
P-state transition is indicated in an MSR available to the OS.

The Turbo CORE features can be enabled or disabled al-
together, i.e., no core will run above Pbase. Selected AMD
processors allow developers to control the number of hardware-
reserved P-states by changing #Pboosted through a configuration
MSR. To achieve manual control over all P-states, including
boosting, one can set #Pboosted =0. The core safety mecha-
nisms are still in effect: the hardware only enters a boosted
P-state if the TDP limit has not been reached. In contrast to the
processor’s automatic policy, the manual control of all P-states
can enable Pturbo with all other cores in C0 but running at Pslow.

Due to the pairwise organization of cores in modules, the
effect of a P- and C-state change depends on the state of the
sibling core. While neighboring cores can request P-states
independently, the fastest selected P-state of the two cores will
apply to the entire module. Since the wrmsr instruction can
only access MSRs of the current core, it can gain full control
over the frequency scaling if the other core is running at Pslow.
A module only halts if both cores are not in C0.

The processor allows to read the current power draw (P) that
it calculates based on the load. Out of the total TDP, 14.24W
are reserved for the northbridge (NB) (including L3 cache)
and logic external to the cores. Each of the four modules is
a voltage (V ) and frequency ( f ) domain defined by the P-state.
The package requests V defined by the fastest active P-state
of any module from the voltage regulator module (VRM).

1The numbering in software differs from the actual hardware P-states:
PHW = PSW + #Pboosted . With a default of #Pboosted =2: Pbase = P0SW =
P2HW and Pturbo = P0HW . P0SW is the fastest requestable software P-state.
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Hardware P-state P39 P34 P20 P8
TURBO naming Pturbo Pbase Pslow

Frequency (GHz) 3.9 3.4 2.0 0.8
Voltage (mV) 1860 n/a n/a 707

Power nop (W) — 39 20 11
Power ALU (W) — 51 25 12

Power mwait (W) 25 19 11 8

Table 3: Default P-state configuration of Intel i7-4770.
Table 2 lists P with (1) all cores in the same P-state executing
nop instructions, (2) execution of integer operations with
ALU, (3) three modules in Pslow except one in the given P-
state, and (4) all modules halted using mwait except one
active core. The consumed active P depends on V , f and the
capacitance (C) that varies dynamically with the workload (P=
V2∗ f ∗Cdyn). Therefore, for the nop load all cores can boost
to P1HW , while for integer loads all cores can run only at Pbase.
Boosting under load can be achieved when other modules are
either in Pslow or halted. Mwait provides the power headroom
to automatically boost to Pturbo. The manual boosting control
allows to run one module in Pturbo if the others run at Pslow.

2.2 Intel’s Turbo Boost

Intel’s DVFS implementation is largely similar to AMD’s
but more hardware-centric and mainly differs in the level
of manual control. All cores are in the same frequency and
voltage domain but can each have an individual C-state. The
P-states are based on increasing multipliers for the stepping of
100MHz, non-predefined ACPI P-states in the opposite order.
Our processor supports frequencies from 0.8GHz to 3.9GHz
corresponding to 32 P-states that are summarized in Table 3.
In TURBO terms, Pbase corresponds to P34HW , leaving 5
boosted P-states. All active cores in C0 symmetrically run at
the highest requested frequency, even if some cores requested
slower P-states. The consumed power was measured in a
fashion analogous to that in Section 2.1, with hyper-threading
enabled and all cores always in the same P-State.

The processor enables Turbo Boost if not all cores are in C0.
The level of boosting depends on the number of active cores, es-
timated power consumption, and additionally the temperature
of the package. This “thermal boosting” allows the processor
to temporarily exceed the TDP using the thermal capacitance
of the package. In contrast to AMD, the maximum achievable
frequency also depends on the recent execution history, which
relates to the current package temperature and makes it some-
what stateful. While boosting can be enabled or disabled alto-
gether, the boosted P-states are always controlled automatically
by the processor and no manual control by software is possible.

Intel’s design choice targets to speed up critical periods of
computation, e.g., boosting sequential bottlenecks by putting
waiting cores to sleep using C-states or providing temporarily
peak performance for interactive applications as on mobile de-
vices or desktops. Our focus is on multi-threaded applications
mostly found on servers that run for long periods without much
idle time. Thermal boosting is not applicable to such work-
loads because on average one cannot exceed the TDP. Instead,
our goal is to improve the performance within the TDP limits.

Linux kernel
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Figure 2: Overview of TURBO library components.

3 TURBO Library

The TURBO library, written in C++ for the Linux OS, provides
components to configure, control, and profile processors from
within applications. Our design goals are twofold: we want
to provide a set of abstractions to (1) make it convenient to
improve highly optimized software based on DVFS; and (2) set
up a testbed for algorithms that explore challenges of future
heterogeneous cores [2], such as schedulers. The components
of the TURBO library are organized in layers with different
levels of abstraction as shown in Figure 2. All components
can be used individually to support existing applications that
use multiple threads or processes. The layered architecture
allows an easy extension to future hardware and OS revisions.

3.1 Processor and Linux Kernel Setup

The default configurations of the processors and Linux kernel
manage DVFS transparently for applications: All boosted
P-states are controlled by the processor and the Linux governor
will adapt the non-boosted P-states based on the current
processor utilization (“ondemand”) or based on static settings
that are enforced periodically (“performance”, “userspace”).

We must disable the influence of the governors and the
processor’ power saving features in order to gain explicit
control of the P-states and boosting in user space using our
library. Note that the “userspace” governor provides an
alternative but inefficient P-state interface [16]. Therefore,
we disable the CPU frequency driver (cpufreq) and turn
off AMD’s Cool’n’Quiet speed throttling technology in the
BIOS. To control all available P-states in user space, we can
either disable automatic boosting altogether, which is the only
solution for Intel, or for AMD set #Pboosted = 0 to enable
manual boosting control (for details see Section 2). Changing
the number of boosted P-states also changes the frequency
of the time stamp counter (tsc) for AMD processors so we
therefore disable tsc as a clock source for the Linux kernel
and instead use the high precision event timer (hpet). Note
that these tweaks can easily be applied to production systems
because we only change BIOS settings and kernel parameters.

The processor additionally applies automatic frequency
scaling for the integrated NB that can have a negative
impact on memory access times for boosted processor cores.
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Therefore, NB P-states are disabled and it always runs at the
highest possible frequency.

Linux uses the monitor and mwait instructions to idle
cores and change their C-state. When another core writes
to the address range specified by monitor, then the core
waiting on mwait wakes up. The monitor-mwait facility
provides a “polite” busy-waiting mechanism that minimizes
the resources consumed by the waiting thread. For experiments
on AMD, we enable these processor instructions for user space
and disable the use of mwait in the kernel to avoid lockouts.
Similarly, we must also disable the use of the hlt instruction
by the kernel, because otherwise we cannot guarantee that at
least one core stays in C0. We restrict the C-state for the Linux
kernel to C0 and use the polling idle mode. These changes
are required in our prototype only for the evaluation of C-state
transitions and are not necessary in a production system.

The presented setup highlights the importance of the con-
figuration of both hardware and OS for sound benchmarking.
Multi-threaded algorithms should be evaluated by enforcing
Pbase and C0 on all cores to prevent inaccuracies due to fre-
quency scaling and transition latencies. All other sources of un-
predictability should be stopped, e.g., all periodic cron jobs.

3.2 Performance Configuration Interface

The library must be aware of all threads even if they are
managed explicitly by the application. Therefore, the thread
registry is used first to create or register all threads. Next, the
threads are typically assigned to distinct cores based on the
processor’s topology, which is discovered during initialization.
If thread migration to another core is required at runtime, it
must be performed using our library to allow an update of
the core specific configuration, e.g., the P-state.

The easiest way to benefit from DVFS is to replace the appli-
cation’s locks with thread control wrappers that are decorated
with implicit P-state transitions, e.g., boosting the lock owner
at Pturbo, waiting at Pslow, and executing parallel code at Pbase.

If the wrappers are not sufficient, the application can request
an explicit performance configuration that is still independent
of the underlying hardware. Threads can request the executing
core to run at Pturbo, Pbase, or Pslow, and can alternatively spec-
ify the P-state in percent based on the maximum frequency.
The actual P-state is derived from the selected setup, e.g.,
if boosting is enabled and controlled manually. The current
P-state configuration is cached in the library in order to save
the overheads from accessing the MSRs in kernel space. If
a P-state is requested that is already set or cannot be supported
by the processor’s policy or TDP limits, then the operation has
no effect.2 Threads can also request to temporarily migrate
to a dedicated processor core that runs at the highest possible
frequency and stays fully operational in C0.

2In practice, we write our request in MSR Pcmd and can read from
MSR Pval what the CPU actually decided. We can either (a) wait until both
MSRs match, i.e., another core makes room in the TDP, (b) return the CPU’s
decision, or (c) just write and provide best-effort guarantees (default). De-
terministic hardware without thermal boosting does not overwrite MSR Pcmd .

The lowest layer presents hardware abstractions for the ma-
chine specific interfaces and DVFS implementations, as well
as the Linux OS. The Linux kernel provides a device driver
that lets applications access MSRs as files under root privilege
using pread and pwrite. We implemented a lightweight
TURBO kernel driver for a more streamlined access to the
processor’s MSRs using ioctl calls. The driver essentially
provides a wrapper for the wrmsr/rdmsr instructions to be
executed on the current core. Additionally, it allows kernel
space latency measurements, e.g., for P-state transition time,
with more accuracy than from user space. We derive the
topology from the Linux ACPI driver and use sysfs for
AMD’s package configuration using PCI functions.

3.3 Performance and Power Profiling

The TURBO library provides means to profile highly optimized
applications and algorithms for heterogeneous cores. The
profiling can be used to first identify sections that can benefit
from frequency scaling and later to evaluate the performance
and power implications of different configurations.

Again, the simplest ways to obtain statistics is to use thread
control wrappers, which exist to replace locks, barriers, and
condition variables. The wrappers can be decorated with pro-
filing capabilities of the performance monitor, which uses the
aperf/mperf and tsc counters of the processor [1, 19]
and the perf event facilities of the Linux kernel to access
the processor’s performance monitoring unit (PMU).

The performance monitor operates in intervals, e.g., defined
by a lock wrapper, for which it captures the cycles, frequency,
and C-state transitions. Additional counters such as the
number of cache misses or stalled cycles can be activated, e.g.,
to analyze the properties of a critical section. The PMU also
provides counters to read the running average power limit
(RAPL) on Intel and the processor power in TDP on AMD.

4 Processor Evaluation

On top of the TURBO library presented in Section 3, we
implemented a set of benchmark applications that configure
and profile the underlying processor. In this section, we
present (1) the static transition latencies introduced by the OS
and hardware, (2) the overheads of blocking upon contended
locks and when it pays off regarding speed and energy
compared to spinlocks, and (3) new static and dynamic
P-state transition strategies that optimize spinlocks and allow
applications to expose heterogeneous frequencies.

4.1 Hardware Transition Latency

The latency for DVFS results from a combination of OS
overhead to initiate a transition and hardware latency to adjust
the processor’s state. Therefore, we present in Tables 4 (AMD)
and 5 (Intel) the overhead for system calls, P-state requests
and the actual transition latencies in isolation. Throughout
our evaluation, we use a Linux kernel 3.11 that is configured
according to Section 3.1. We use only the x86 cores (ALU)
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P-State Mean Deviation
Operation Transition Cycles ns Cycles ns

System call overheads for futex and TURBO driver
syscall(futex wait private) — 1321 330 42 10
ioctl(trb) — 920 230 14 3

P-state MSR read/write cost using msr or TURBO driver
pread(msr, pstate) — 3044 761 43 10
ioctl(trb, pstate) — 2299 574 30 7
pwrite(msr, pstate, Pbase) Pbase→Pbase 2067 741 110 27
ioctl(trb, pstate, Pbase) Pbase→Pbase 1875 468 42 10
Hardware latencies for P-state set (wrmsr) and transition (wait) (kernel space)
wrmsr(pstate, Pslow) Pbase→Pslow 28087 7021 105 26
wrmsr(pstate, Pslow) & wait Pbase→Pslow 29783 7445 120 30
wrmsr(pstate, Pturbo) Pslow→Pturbo 1884 471 35 8
wrmsr(pstate, Pturbo) & wait Pslow→Pturbo 226988 56747 84 21
wrmsr(pstate, Pbase) & wait Pslow→Pbase 183359 45839 130 32
wrmsr(pstate, Pturbo) & wait Pbase→Pturbo 94659 23664 87 21
wrmsr(pstate, Pbase) Pturbo→Pbase 23203 5800 36 9
wrmsr(pstate, Pbase) & wait Pturbo→Pbase 24187 6046 139 34
wrmsr(pstate, P1HW) Pbase→P1HW 974 234 132 33
wrmsr(pstate, P1HW) & wait Pbase→P1HW 94642 23660 136 34
wrmsr(pstate, Pbase) & wait P1HW→Pbase 24574 6143 138 34

Hardware latencies for C-state transitions (in user space)
monitor & mwait — 1818 454 18 4

Software and hardware latency for thread migration
pthread setaffinity — 26728 6682 49 12

Table 4: Latency cost (AMD FX-8120, 100,000 runs).

P-State Mean Deviation
Operation Transition Cycles ns Cycles ns

System call overheads for futex and TURBO driver
syscall(futex wait private) — 1431 366 32 8
ioctl(trb) — 1266 324 64 16

P-state MSR read/write cost using msr or TURBO driver
pread(msr, pstate) — 2638 775 24 7
ioctl(trb, pstate) — 2314 680 54 16
pwrite(msr, pstate, Pbase) Pbase→Pbase 4246 1248 122 35
ioctl(trb, pstate, Pbase) Pbase→Pbase 3729 1096 72 21
Hardware latencies for P-state set (wrmsr) and transition (wait) (kernel space)
wrmsr(pstate,Pbase) Pslow→Pbase 44451 13073 131 38
wrmsr(pstate,Pbase) & wait Pslow→Pbase 48937 14393 86 25
wrmsr(pstate,Pslow) Pbase→Pslow 2015 592 61 17
wrmsr(pstate,Pslow) & wait Pbase→Pslow 58782 17288 65 19
wrmsr(pstate,Pturbo) Pbase→Pturbo 2012 591 44 12
wrmsr(pstate,Pturbo) & wait Pbase→Pturbo 41451 12191 78 22

Hardware latencies for C-state transitions (in kernel space)
monitor & mwait C1 — 4655 1369 25 7
monitor & mwait C2 — 36500 10735 1223 359
monitor&mwait C6 — 74872 22021 672 197

Software and hardware latency for thread migration
pthread setaffinity — 12145 3572 81 23

Table 5: Latency cost (Intel i7-4770, 100,000 runs).

and no FPU or MMX/SSE/AVX to preserve the required
headroom for manual boosting.

System calls for device-specific input/output operations
(ioctl) have a low overhead and are easily extensible using
the request code parameter. The interface of the TURBO
driver (trb) is based on ioctl, while the Linux MSR driver
(msr) uses a file-based interface that can be accessed most
efficiently using pread/pwrite. The difference in speed
between msr and trb (both use rdmsr/wrmsr to access
the MSRs) results mostly from additional security checks and
indirections that we streamlined for the TURBO driver. The cost
in time for system calls depends on the P-state, i.e., reading the
current P-state scales with the selected frequency, here Pbase.

Observation 1: P-state control should be made available
through platform-independent application program interfaces
(APIs) or unprivileged instructions. The latter would eliminate

the latency for switching into kernel space to access platform-
specific MSRs but require that the OS’s DVFS is disabled.

We measured the cost of the wrmsr instruction that
initiates a P-State transition of the current core, as well as
the latency until the transition is finished, by busy waiting
until the frequency identifier of the P-state is set in the status
MSR. Both measurements are performed in the TURBO driver,
removing the inaccuracy due to system call overheads.

For AMD, requesting a P-state faster than the current one
(e.g., Pslow→Pbase) has low overhead in itself, but the entire
transition has a high latency due to the time the VRM takes
to reach the target voltage. The request to switch to a slower
P-state (e.g., Pbase→Pslow) has almost the same latency as the
entire transition, i.e., the core is blocked during most of the tran-
sition. We suspect that this blocking may be caused by a slow
handshake to coordinate with the other module’s core to see if
an actual P-state change will occur. Overall, the transition has
a lower latency because the frequency can already be reduced
before the voltage regulator is finished. If only switching to a
slow P-state for a short period, the transition to a faster P-state
will be faster if the voltage was not dropped completely.

On the Intel CPU, total latency results are very similar: A
P-state transition also takes tens of microseconds but depends
on the distance between the current and requested P-state.
A significant difference to AMD, however, lies in the faster
execution of the wrmsr request of a P-state transition going
slower (e.g., Pbase→Pslow) because Intel does not need to
perform additional coordination.

Observation 2: The frequency transitions should be
asynchronous, triggered by a request and not blocking, i.e.,
keeping the core operational. The API should include the
ability to read or query P-state transition costs for building a
cost model that allows DVFS-aware code to adapt at runtime.

We additionally show costs related to the OS. In the mwait

experiment, one core continuously updates a memory location
while the other core specifies the location using monitor and
calls mwait. The core will immediately return to execution
because it sees the memory location changed, so the numbers
represent the minimal cost of executing both instructions. Al-
though AMD allows the use of mwait from user space, the
feature is typically used by the OS’s futex system call when
the kernel decides to idle. The pthread setaffinity

function migrates a thread to a core with a different L2 Cache
that is already in C0 state and returns when the migration is fin-
ished. Thread migration typically results in many cache misses
but the benchmark keeps only minimal data in the cache.

Observation 3: The OS should keep the current frequency
in the thread context to better support context switches and
thread migrations. Ideally, the OS would expose a new set
of advisory platform-independent APIs to allow threads to set
their desired DVFS-related performance targets. Furthermore,
the OS kernel (and potentially a virtual machine hypervisor)
would moderate potentially conflicting DVFS resource
requests from independent and mutually unaware applications.
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Figure 3: Frequency sequence for (a) spinning, (b) blocking, (c) frequency scaling and (d) critical regions.
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Figure 4: Characteristics of blocking and spinning.

4.2 Blocking vs. Spinning Locks

We evaluate the boosting capabilities using a thread on each
core that spends all its time in critical sections (CS). The CS
is protected by a single global lock implemented as an MCS
queue lock [29] in the TURBO library. The lock is decorated
such that upon contention, the waiting thread either spins or
blocks using mwait (AMD only) or futex. The sequence
is illustrated in Figure 3a and 3b, respectively. In all cases,
the thread-local MCS node is used for the notification of
a successful lock acquisition. Inside the CS, a thread-local
counter is incremented for a configurable number of iterations
(∼10 cycles each). While the global lock prevents any
parallelism, the goal of the concurrent execution is to find the
CS length that amortizes the DVFS cost.

We want to discuss when blocking is preferable over spin-
ning, both in terms of performance and energy, using the de-
fault configuration of hardware and OS: The P-states are man-
aged automatically by the processor and the setup from Sec-
tion 3.1 is not applied. We run the application for 100 seconds
and count the number of executed CS, which gives us the cycles
per CS including all overheads. Separately, we measure the
cycles per CS without synchronization at Pbase, i.e., the cycles
doing real work. The effective frequency inside a CS is: fCS=

fbase∗
cyclesnosync
cyclesmcs

. The energy results are based on the proces-
sor’s TDP/RAPL values, from which we take samples during
another execution. We compute the energy it takes to execute
1 hour of work at Pbase inside CS: E=Esample∗ cyclesmcs

cyclesnosync
.

The results are shown in Figure 4. The spin strategy runs
all cores at Pbase and is only effected by synchronization
overhead, with decreasing impact for larger sizes of CS. The
mwait and futex strategies are additionally effected by
C-state transitions that halt the core while blocking, which
allows to boost the active core. The C-state reached by mwait

is not deep enough to enable Pturbo, probably because it is
requested from user space. Still, CS are executed at P1HW and
the low overhead lets mwait outperform spin already at a CS
size of ∼4k cycles. Using futex has the highest overhead
because it is a system call. The C-state reached depends on
twait (see Figure 3b), which explains the performance drop:
Deep C-states introduce a high latency (see Table 5) but are
required to enable Pturbo. We verified this behavior using
aperf/mperf, which showed that the frequency in C0 is
at Pturbo only after the drop. The futex outperforms spin
and mwait at ∼1.5M cycles for AMD and ∼4M cycles for
Intel, which also boosts spin 2 steps. Note that an optimal
synchronization strategy for other workloads also depends on
the conflict probability and twait , but our focus is on comparing
boosting initiated by the processor and on application-level.

The sampled power values do not vary for different sizes of
CS (see Tables 2 and 3 for ALU and mwait), except for fu-

tex, which varies between 55-124W for AMD depending on
the reached C-state. The reduction in energy consumption due
to deeper C-states must first amortize the introduced overhead
before it is more efficient than spinning. With only a single
core active at a time, futex is the most energy efficient strat-
egy for AMD after a CS size of ∼1M cycles, which results for
8 threads in twait =∼7M cycles because the MCS queue lock
is fair. Intel is already more energy efficient after ∼10k cycles,
indicating that it trades power savings against higher latencies.
Boosting provides performance gains for sequential bottlenecks
and halting amortizes the active cores’ higher energy consump-
tion [31]. The default automatic boosting is not energy efficient
for scalable workloads because all energy is consumed only
by a single core without performance benefit [12].

4.3 Application-level P-state Transition Strategies

Our goal is to enable application-level DVFS while keeping all
cores active. Therefore, we enable manual P-state control with
the setup described in Section 3.1 and restrict the following
discussion to just AMD. For the evaluation, we use the same
application as in the previous Section 4.2 but with a different
set of decorations for the lock: The strategy one executes iter-
ations only on a single core that sets the P-state statically during
initialization to either Pslow, Pbase or Pturbo. All other threads
run idle on cores at Pslow in C0. This provides the baseline
for different P-state configurations without P-state transition
overheads but includes the synchronization. The dynamic
strategies ownr and wait are illustrated in Figure 3c. For
ownr, all threads are initially set to Pslow and the lock owner
dynamically switches to Pturbo during the CS. For wait, all
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Figure 5: Characteristics of manual P-state control.

threads initially request Pturbo and dynamically switch to Pslow
while waiting. The processor prevents an oversubscription and
allows Pturbo only if 3 modules are in Pslow. The remaining
strategies use only a subset of the cores for executing CS:
dlgt uses only 1 thread per module and delegates the P-state
transition request to the thread executing on the neighboring
core. The strategy is otherwise the same as ownr. mgrt uses
only 6 cores on 3 modules running at Pslow. The remaining
module runs at Pturbo and the current lock owner migrates to
a core of the boosted module during the CS.

The results are presented in Figure 5. The dynamic
strategies ownr and wait introduce overhead in addition to
the synchronization costs because two P-state transitions must
be requested for each CS. This overhead is amortized when
the resulting effective frequency of the CS is above one with
Pbase, starting at CS sizes of ∼600k cycles. Both strategies
behave similarly because the application does not execute
parallel code between CS. Otherwise, the idea is that wait

hides the slow blocking transition to Pslow (see Section 4.1)
within twait , whereas ownr must perform this transition after
releasing the lock. To that extent, dlgt shifts the P-state
transition cost entirely to the other core of the module and
can outperform one already at ∼200k cycles, but only half
of the processor cores can be used. The mgrt strategy does
not include overhead from P-state transitions but costly thread
migrations. Still, it outperforms one at ∼400k cycles. A
real-world benchmark would show worse results because it
suffers from more cache misses on the new processor core
than our synthetic benchmark that keeps only little data in
the cache [30]. Additionally, initiating a migration at Pslow
will be executed slowly until the thread reaches the boosted
core. Overall, we observe that application-level DVFS is more
effective than C-state control because it allows to outweigh
overheads for CS of sizes smaller than ∼1.5M cycles.

Observation 4: The P-state transition should be as fast as
possible so that short boosted sections can already amortize
the transition cost. It exists hardware that can switch to
arbitrary frequencies within one clock cycle [17].

As long as one modules runs at Pturbo, which is the case
here, the processor consumes the maximal TDP of 125W.
The consumed energy solely depends on the overheads of
each strategy because of the serialized execution. Note that
the energy for executing one with a static P-state is almost
identical for Pslow, Pbase and Pturbo, indicating that the energy

consumption is proportional to the P-state. In fact, we get for
a single module in Pturbo 29% more speed using 25% more
power compared to Pbase (see Table 2). Compared to mwait

and futex, application-level DVFS allows less power
savings because all cores stay in C0, but it can be applied to
parallel workloads, which we investigate in Section 5.

Observation 5: Processors should support heterogeneous
frequencies individually for each core to provide headroom
for boosting while staying active. The design should not limit
the frequency domain for a package (Intel) or module (AMD).
An integrated VRM supports fine grained voltage domains
to allow higher power savings at low speeds. Additionally,
for some workloads it would be beneficial to efficiently set
remote cores to Pslow in order to have local boosting control.

4.4 Performance Cost Model

Based on our experimental results, we derive a simplified cost
model for AMD’s boosting implementation to guide develop-
ers when boosting pays off regarding performance. We first
present a model for boosting sequential bottlenecks that for-
malizes the results from Section 4.3. We then specialize it for
boosting CS that are not a bottleneck as well as for workloads
that contain periods with heterogeneous workload distributions.

We make the following simplifying assumptions: (1) the
application runs at a constant rate of instructions per cycle
(IPC), regardless of the processor frequency; (2) we do not
consider costs related to thread synchronization; (3) the
frequency ramps linearly towards faster P-states (e.g.,
fPslow → fPturbo); and (4) the frequency transition to a slower
P-state takes as long as the P-state request. Assumption (4)
is a direct result of our latency measurement, (1) and (2) allow
an estimation without taking application specifics into account.
We will revisit assumptions (1) and (2) when looking at actual
applications that depend on memory performance and thus ex-
hibit varying IPC with changing frequency (due to the changed
ratio of memory bandwidth, latency and operation frequency).

For sequential bottlenecks, we follow the strategy ownr

described in Section 4.3 and illustrated in Figure 3c. Boosting
will pay off if we outperform the CS that runs at fPbase:
tCSfPturbo

≤tCSfPbase
. The minimal tCS must be greater than the

combined P-state request latencies and the number of cycles
that are executed during the P-State transition (tramp, i.e., the
difference between wrmsr and wait in Table 4) to Pturbo:

tCS≥tPslow→Pturbo+tramp+tPtubo→Pbase+
cyclesCS−cyclesramp

fPturbo
Based on the P-state transition behavior that we observed

in Section 4.3, we can compute the minimal tCS as follows:

tCS ≥
fPturbo

fPturbo − fPbase

· (tPslow→Pturbo + tPturbo→Pbase)

+
1
2
·

fPturbo − fPslow

fPturbo − fPbase

· tramp

The minimal wait time twait to acquire the lock should sim-
ply be larger than the time to drop to fPslow: twait ≥tPbase→Pslow .
With the results from Section 4.1, on AMD this equals to
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a minimal tCS of ∼436,648 cycles (∼109µs). Note that
optimized strategies can reach the break even point already
earlier (e.g., dlgt in Figure 5). Based on the above cost
model for sequential bottlenecks, we can derive a cost model
for boosting CS by one step (see Figure 3d):

tCS≥
fP1HW

fP1HW − fPbase

·(tPbase→P1HW +tP1HW→Pbase)+
1
2
·tramp

We never move below Pbase and boosting pays off if tCS
is longer than ∼336,072 cycles (∼84µs).

Besides boosting sequential bottlenecks, another interesting
target are periods of heterogeneous workload distributions.
These workloads can run one thread temporarily at a higher
priority than other active threads or have an asymmetric
distribution of accesses to CS from threads. Typically, such
critical regions are longer because they combine several CS,
thus improving the chances of amortizing the transition cost.
Based on the presented cost model, we compute the minimal
duration of such periods instead of the CS size. We present
examples in Section 5.

5 Boosting Applications

We evaluated the TURBO library using several real-world ap-
plications with user space DVFS on the AMD FX-8120. We
chose these workloads to validate the results from our synthetic
benchmarks and the cost model to boost sequential bottle-
necks (5.1); highlight gains by using application knowledge
to assign heterogeneous frequencies (5.2); show the trade-offs
when the IPC depends on the core frequency, e.g., due to mem-
ory accesses (5.3); and outweigh the latency cost of switching
P-states by delegating critical sections to boosted cores (5.4).

5.1 Python Global Interpreter Lock

The Python Global Interpreter Lock (GIL) is a well known
sequential bottleneck based on a blocking lock. The GIL must
always be owned when executing inside the interpreter. Its
latest implementation holds the lock by default for a maximum
of 5ms and then switches to another thread if requested. We are
interested in applying some of the P-state configuration strate-
gies presented in Section 4.3 to see if they provide practical
benefits. For this evaluation, we use the ccbench application
that is included in the Python distribution (version 3.4a).

The benchmark includes workloads that differ in the amount
of time they spent holding the GIL: (1) the Pi calculation
is implemented entirely in Python and spends all its time in
the interpreter; (2) the computation of regular expressions
(Regex) is implemented in C with a wrapper function that
does not release the GIL; and (3) the bz2 compression and
SHA1 hashing have wrappers for C functions that release the
GIL, so most time is spent outside the interpreter. Table 6
summarizes the characteristics of the workloads.

We evaluate the following P-state configuration strategies in
Figure 6. Base runs at Pbase and, hence, does not incur P-state
configuration overheads. Dyn waits for the GIL at Pslow, then
runs at Pturbo while holding the GIL and switches to Pbase
after releasing it. While the workloads Pi and Regex do

1 Thread 2 Threads 4 Threads
Task python native wait python native wait python native

Pi (P) 72694 160 4919 4933 14 14735 4958 18
Regex (C) 116593 160 5533 5556 18 16763 5600 18
bz2 (C) 17 991 10 24 992 34 25 998
SHA1 (C) 6 386 8 12 386 11 12 386

Table 6: ccbench characteristics: average time (µs) per
iteration spent in interpreter (python), executing native code
without GIL (native) and waiting for GIL acquisition (wait).
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Figure 7: ccbench throughput (Intel i7-4770).

not scale, Dyn supports at least the execution at Pturbo. The per-
formance and power implications are in line with our synthetic
benchmark results (Section 4.3) and the cost model (python in
Table 6 greater than tCS in Section 4.4). For the workloads bz2

and SHA1, the performance benefit reaches its maximum at 4
threads because we pin the threads such that each runs on a dif-
ferent module, giving the thread full P-state control. When two
threads run on a module, more P-state transitions are required
per package that eliminate the performance benefit at 8 threads.
Own runs all threads at Pbase and boosts temporarily to P1HW
while holding the GIL. This manifests in a higher throughput
when the GIL is held for long periods but for bz2 and SHA

the cost of requesting a P-state transition is not amortized by
the higher frequency. Wait runs at Pturbo if permitted by the
TDP and only switches to Pslow while waiting for the GIL.
This strategy works well with high contention but introduces
significant cost if the waiting period is too short (see Table 6).

In Figure 7 we compare Intel’s results for boosting disabled
(Base) and enabled automatically by the processor (Auto).
Overall, the results are similar to the ones obtained on AMD
and what we expect from Section 4.2: The level of boosting
depends on the number of halted cores, which enables Pturbo
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Figure 8: FastLane STM integer set benchmarks.
RB LL SL HS

Nb. threads 2 4 6 2 4 6 2 4 6 2 4 6
FL 63 44 35 68 48 44 68 39 24 56 25 13

FL-BM 64 55 54 70 49 53 68 42 28 56 29 16

Table 7: Commit ratio of the master thread (% of all commits).

for Pi and Regex. SHA1 and bz2 boost slightly because
not all processor features are used. The performance drop
beyond 4 threads is due to hyper-threading.

5.2 Software Transactional Memory

FastLane [43] is a software transactional memory (STM)
implementation that processes a workload asymmetrically.
The key idea is to combine a single fast master thread that
can never abort with speculative helper threads that can only
commit if they are not in conflict. The master thread has a very
lightweight instrumentation and runs close to the speed of an
uninstrumented sequential execution. To allow helper threads
to detect conflicts, the master thread must make the in-place
updates of its transactions visible (by writing information in
the transaction metadata). The helpers perform updates in
a write-log and commit their changes after a validation at the
end of the transaction. The benefit is a better performance
for low thread counts compared to other state-of-the art
STM implementations (e.g., TinySTM [13]) that suffer from
instrumentation and bookkeeping overheads for scalability.

We used integer sets that are implemented as a red-black
tree (RB), a linked list (LL), a skip list (SL), or a hash set (HS)
and perform random queries and updates [13]. The parameters
are the working set size and the update ratio. Either all threads
run at Pbase (FL) or the master statically runs at Pturbo (FL-BM)
and the helpers at Pslow, except the helper running on the same
module as the master. Note that the master thread is determined
dynamically. Moreover, we compare with TinySTM (Tiny) and
uninstrumented sequential execution (Seq) at Pbase. Our evalu-
ation on the AMD processor shows in Figure 8 that running the
master and helpers at different speeds (FL-BM) enables high
performance gains compared to running all threads at Pbase
(FL). The higher throughput can outweigh the higher power
(50% vs. 2% for LL), thus, being more energy efficient. Tiny
wins per design for larger thread counts. Table 7 shows that the
master can asymmetrically process more transactions at Pturbo.
While the helpers at Pslow can have more conflicts caused by

Bulk Resize 10MB Resize 1280MB
Move Strategy Ops/s ms stalled freq ms stalled freq

10k baseline 535k 16 63% 3099 2937 67% 3099
10k stat resizer 547k 15 82% 3999 2666 88% 4000
10k dyn resizer 547k 15 81% 3980 2691 87% 3987
10k dyn worker 535k 18 82% 3971 3155 88% 3982
100 baseline 529k 24 66% 3099 4021 68% 3100
100 stat resizer 540k 22 86% 3999 3647 90% 3999
100 dyn resizer 508k 30 56% 3259 4799 59% 3252
100 dyn worker 461k 48 60% 3211 7970 60% 3265

1 baseline 237k 770 72% 3099 103389 72% 3099
1 stat resizer 245k 721 94% 3999 98056 95% 4000
1 dyn resizer 209k 893 62% 3112 120430 63% 3113
1 dyn worker 90k 1886 64% 3111 252035 65% 3113

Table 8: Memcached hash table resize statistics.

the master, the conflict rate caused by other slow helpers does
not change. Dynamically boosting the commits of the helpers
did not show good results because the duration is too short.

This workload highlights the importance of making P-state
configuration accessible from the user space. It allows to
expose properties of the application that would otherwise not
be available to the processor. For applications that contain
larger amounts of non-transactional code, supporting the ability
to remotely set P-states for other cores would be very helpful.
When a master transaction is executed, it could slow down the
other threads in order to get fully boosted for a short period.

5.3 Hash Table Resize in Memcached

Memcached is a high performance caching system based on a
giant hash table. While for the normal operation a fine-grained
locking scheme is used, the implementation switches to a
single global spinlock that protects all accesses to the hash
table during the period of a resizing. The resize is done by
a separate maintenance thread that moves items from the old
to the new hash table and processes a configurable number
of buckets per iteration. Each iteration acquires the global
lock and moves the items in isolation.

Our evaluation was conducted with Memcached version
1.4.15 and the mc-crusher workload generator. We used
the default configuration with 4 worker threads that we pinned
on 2 modules. The maintenance thread and mc-crusher

run on their own modules. The workload generator sends
a specified number of set operations with distinct keys to
Memcached, which result in a lookup and insert on the hash
table that will eventually trigger several resizes. The hash table
is resized when it reaches a size of 2x×10MB. The cache
is initially empty and we insert objects until the 7th resize of
27×10MB (1280MB) is finished.

For the intervals in which the maintenance thread was active,
we gathered for the first (10MB) and the last (1280MB) resize
interval. These are reported in Table 8: number of items that
are moved during one iteration (bulk move, configurable), rate
of set operations during the entire experiment (ops/s), length of
the resize interval (ms), the number of (stalled) instructions and
average frequency achieved by the maintenance thread (freq).

We applied the following strategies during the resizing
period: baseline runs all threads at Pbase, stat resizer runs the
maintenance thread at Pturbo for the entire period, dyn resizer



202 2014 USENIX Annual Technical Conference USENIX Association

switches to Pturbo only for the length of an bulk move iteration
and causes additional transition overheads, dyn worker
switches to Pslow while waiting for the maintenance thread’s it-
eration to finish. The last strategy does not show a performance
improvement because the cost cannot be amortized especially
when the bulk move size gets smaller. The stat resizer shows
the best performance because it reduces the resizing duration.

While the benchmark shows the benefit of assigning
heterogeneous frequencies, an interesting observation is that
the speedup achieved by boosting is limited because the
workload is mainly memory-bound. Compared to baseline,
stat resizer shows only a speedup of the resize interval between
7%–9% while it runs at a 22% higher frequency. The higher
the frequency, the more instructions get stalled due to cache
misses that result from the large working set. The number of
stalled instructions effectively limit the number of instructions
that can be executed faster at a higher frequency. On the other
hand, the high cost of the P-state transitions in the dynamic
strategy dyn resizer is hidden by an decreased number of
stalled instructions but it still cannot outweigh the transition
latency. Memcached’s default configuration performs only a
single move per iteration, which according to our results shows
the worst overall duration of the experiment (ops/s). A better
balance between worker latency and throughput is to set bulk
move to 100. With this configuration, memcached spends 15%
of its execution time for resizes, which we can boost by 10%.
This reduces the total execution time by 1.5% and allows 1.5%
more ops/s because the worker threads spent less time spinning.
Combined, this amortizes the additional boosting energy.

5.4 Delegation of Critical Sections

We have shown that critical sections (CS) need to be relatively
large to outweigh the latencies of changing P-states. Remote
core locking [27] (RCL) is used to dedicate a single processor
core to execute all application’s CS locally. Instead of moving
the lock token across the cores, the actual execution of the
critical section is delegated to a designated server. We leverage
this locality property by statically boosting the RCL server
and eliminate the P-state transition overhead for small CS.

We experiment with three of the SPLASH-2 bench-
marks [44] and the accompanying version of BerkeleyDB [33].

We report speedup for all workloads over the single-threaded
baseline P-state in Figure 9, and find that we obtain only
incremental performance gains for the boosted cases. We show
various combinations of worker P-states (reported as “W Px”)
and P-states for the RCL server core (“R Px”), and contrast
these with configurations where all cores run at Pbase (“All P2”)
and P4HW (“All P4”) for comparison. Note that we do show
standard deviation of 30 trials, but there is hardly any noise
visible. We do not reduce the P-state for the waiting workers
(due to latency reasons), but it seems there is enough TDP
headroom for the brief RCL invocations to run even at P1HW
and we get speedups of 4% - 9%. As expected, the relative
boost is larger if we start from a lower baseline at P4HW .
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Figure 9: Throughput of SPLASH-2 and BerkeleyDB.
P-state Intra Module Cross Module
Config 0:0 100:10 500:50 0:0 100:10 500:50
All P2 91 169 461 480 570 876

W P2 R P1 83 154 421 468 557 906
W P2 R P0 70 131 357 445 491 772

All P4 123 227 621 578 699 1161
W P4 R P1 83 155 421 519 636 1112
W P4 R P0 70 133 358 417 566 1010

Table 9: Core to core memory transfer latency (ns) for an aver-
age round-trip (work iterations: NWorker :NRCL, 0.65ns each).

Overall, scalability of the benchmarks is good, reserving one
core exclusively for RCL will cap scalability at 7 (worker)
threads. The authors of RCL claim, however, that reserving this
single core pays off in comparison to cache coherence traffic
arising from spinlock ownership migrating between cores.

Focusing our attention on the CS, we find them to be short
(with a peak at ∼488ns) for the selected benchmarks. To better
understand the cost of communication and its behavior under
various boosting scenarios, we implemented the core of the
RCL mechanism, simple cross-thread polling message passing
with two threads, in a small micro-benchmark. We report
results for select configurations in Table 9 for AMD, which re-
flect unloaded latency with no competition for communication
channels. Overall we were surprised by the round-trip delay
when crossing modules, 480ns, vs. 91ns when communicating
inside a module (both at Pbase). Intra-module communication
benefits greatly from boosting (91ns vs. 70ns), due to both
communication partners and the communication link (shared
L2 cache) being boosted. Communicating cross-module,
boosting has a smaller performance impact on the communi-
cation latency (480ns vs. 445ns, via L3 cache), which helps to
explain the small benefit seen in our workloads with short CS.

6 Related Work

The field of DVFS is dominated by work about improving en-
ergy efficiency [23, 32, 14]. DVFS is proposed as a mid-term
solution to the prediction that, in future processor generations,
the scale of cores will be limited by power constraints [11, 7, 2].
In the longer term, chip designs are expected to combine few
large cores for compute intensive tasks with many small cores
for parallel code on a single heterogeneous chip. Not all cores
can be active simultaneously due to thermal constraints [42,
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22]. A similar effect is achieved by introducing heterogeneous
voltages and frequencies to cores of the same ISA [10]. Energy
efficiency is achieved by reducing the frequency and it was
observed that the overall performance is only reduced slightly
because it is dominated by memory [25] or network latencies.

Semeraro et al. [40] propose multiple clock domains
with individual DVFS. Inter-domain synchronization is
implemented using existing queues to minimize latency,
and frequency can be reduced for events that are not on the
application’s critical path. The energy savings can be extended
by profile-based reconfiguration [28, 5]. Another interesting
approach to save power is to combine DVFS with inter-core
prefetching of data into caches [21]. This can improve perfor-
mance and energy efficiency, even on serial code, when more
cores are active at a lower frequency. Choi et al. [8] introduce
a technique to decompose programs into CPU-bound (on-chip)
and memory-bound (off-chip) operations. The decomposition
allows fine tuning of the energy-performance trade-off, with
the frequency being scaled based on the ratio of the on-chip
to off-chip latencies. The energy savings come with little
performance degradation on several workloads running on a
single core. Hsu et al. [18] propose an algorithm to save energy
by reducing the frequency with HPC workloads. Authors also
present and discuss transition latencies. A recent study [24]
on the Cray XT architecture, which is based on AMD CPUs,
demonstrates that significant power savings can be achieved
with little impact on runtime performance when limiting both
processor frequency and network bandwidth. The P-states are
changed before the application runs. It is recommended that
future platforms provide DVFS of the different system compo-
nents to exploit the trade-offs between energy and performance.
Our work goes in the same direction, by investigating the
technical means to finely control the states of individual cores.

While energy efficiency has been widely studied, few
researchers have addressed DVFS to speed up workloads [15].
Park et al. [34] present a detailed DVFS transition overhead
model based on a simulator of real CPUs. For a large class of
multi-threaded applications, an optimal scheduling of threads
to cores can significantly improve performance [37]. Isci et
al. [20] propose using a lightweight global power manager
for CPUs that adapts DVFS to the workload characteristics.
Suleman et al. [41] optimize the design of asymmetric
multi-cores for critical sections. A study of Turbo Boost has
shown that achievable speedups can be improved by pairing
CPU intensive workloads to the same core [6]. This allows
masking delays caused by memory accesses. Results show
a correlation between the boosting speedup and the LLC
miss rate (high for memory-intensive applications). DVFS
on recent AMD processors with a memory-bound workload
limits energy efficiency because of an increase of static power
in lower frequencies/voltages [26]. Ren et al. [38] investigate
workloads that can take advantage of heterogeneous processors
(fast and slow) and show that throughput can be increased
by up to 50% as compared with using homogeneous cores.

Such workloads represent interesting use cases for DVFS.
Our TURBO library complements much of the related work

discussed in this section, in that it can be used to implement
the different designs and algorithms proposed in these papers.

7 Conclusion

We presented a thorough analysis of low-level costs and charac-
teristics of DVFS on recent AMD and Intel multi-core proces-
sors and proposed a library, TURBO3, that provides convenient
programmatic access to the core’s performance states. The
current implementation by hardware and OS is optimized for
transparent power savings and for boosting sequential bottle-
necks. Our library allows developers to boost performance
using properties available at application-level and gives broader
control over DVFS. We studied several real-world applications
for gains and limitations of automatic and manual DVFS. Man-
ual control exposes asymmetric application characteristics that
would be otherwise unavailable for a transparent optimization
by the OS. Limitations arise from the communication to mem-
ory and other cores that restict the IPC. Our techniques, while
useful today, also bring insights for the design of future OS
and hypervisor interfaces as well as hardware DVFS facilities.

For the future, we plan to add an automatic dynamic tuning
mechanism: based on decorated thread control structures,
e.g., locks, we can obtain profiling information and predict the
optimal frequency for each core. We also envision use cases
beyond optimizing synchronization, such as DVFS for flow-
based programming with operator placement (deriving the
frequency from the load factor) or data routing (basing DVFS
on deadlines or priorities). Finally, the TURBO library provides
a research testbed to simulate future heterogeneous multi-core
processors with fast/slow cores, as well as to evaluate
algorithms targeting energy efficiency or undervolting.
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Abstract
Modern CPUs employ Dynamic Voltage and Frequency
Scaling (DVFS) to boost performance, lower power, and
improve energy efficiency. Good DVFS decisions re-
quire accurate performance predictions across frequen-
cies. A new hardware structure for measuring lead-
ing load cycles was recently proposed and demonstrated
promising performance prediction abilities in simulation.

This paper proposes a method of leveraging exist-
ing hardware performance monitors to emulate a lead-
ing loads predictor. Our proposal, LL-MAB, uses ex-
isting miss status handling register occupancy informa-
tion to estimate leading load cycles. We implement
and validate LL-MAB on a collection of commercial
AMD CPUs. Experiments demonstrate that it can accu-
rately predict performance with an average error of 2.7%
using an AMD OpteronTM4386 processor over a 2.2x
change in frequency. LL-MAB requires no hardware- or
application-specific training, and it is more accurate and
requires fewer counters than similar approaches.

1 Introduction
Dynamic voltage and frequency scaling (DVFS) is
used to optimize performance under power and energy
constraints, typically under the control of the OS or
firmware. One of the key challenges of utilizing DVFS
effectively is dynamically predicting the performance
impact of frequency changes for arbitrary applications.
This can be difficult because program execution time
does not depend solely on core frequency. While some
sections of a program will run faster at higher frequen-
cies, others are limited by non-core components, such
as DRAM latency. Because of this, simple linear scal-
ing models (where performance is directly proportional
to frequency) often yield inadequate estimates [5].

Unfortunately, it can be difficult to predict the effect
of memory accesses on performance. Not all memory

∗This work took place while Bo Su interned with AMD Research.

accesses cause stalls to the core because of caches in the
core clock domain. In addition, processors can exploit
memory-level parallelism (MLP) by overlapping multi-
ple cache misses. As such, not all cache misses directly
affect the performance. Finally, DRAM access latency
varies with access patterns, making it difficult to predict
time spent waiting on memory from access counts alone.

One promising approach for predicting DVFS perfor-
mance is the recently proposed leading loads model [5,
7, 10], which splits the execution time of an applica-
tion into time spent in the core (which changes along
with frequency) and in the memory (which does not). It
then uses new leading load performance counters to ac-
curately estimate this memory time. Simulations demon-
strated that this approach could predict application per-
formance under DVFS with an order of magnitude higher
accuracy than previously proposed models, while requir-
ing no training (unlike regression-based models). These
results led the authors to suggest that hardware support
for leading loads should be added to future processors.

This paper demonstrates how to leverage existing
hardware performance counters that measure miss status
handling register (MSHR) activity on commodity AMD
processors in order to approximate a leading loads per-
formance predictor. This predictor can accurately esti-
mate the performance impact of DVFS changes on arbi-
trary applications running on real hardware. It requires
no hardware- or application-specific training, and uses
only a small number of performance counters.

We validate our method on three different AMD pro-
cessors across multiple hardware generations. We com-
pare our technique with previously proposed predictors
and explain how it is different from an ideal leading load
predictor. We show that our model provides a more accu-
rate prediction with less variance in error rate than other
predictors that work on existing hardware. To the best
of our knowledge, this is the first time the leading loads
model has been demonstrated on real hardware.
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2 Related Work
There is a large body of work on performance modeling
under frequency variation. Rountree et al. [10] and Eeck-
hout [4] describe many of the previous techniques. Eeck-
hout categorizes analytic performance estimation models
into empirical models, which use black-box approaches,
and mechanistic models which are designed from the un-
derlying machine principals. Some of the most popu-
lar empirical models are based on regression [11]. They
can have good accuracy, but need many input variables
and long training runs. Their accuracy is a function of
the quality of the training set, and they must be retrained
whenever the underlying machine changes.

Mechanistic models often include simplifications and
abstractions to make the problem tractable. Proportional
scaling models (or “linear scaling”) are the simplest and
assume that performance scales linearly with frequency.
These are simple to implement, but only work well when
the application spends little time accessing memory.

Recent mechanistic DVFS estimation models are built
from the underlying concept that program execution time
is split into core time (time doing work) and memory time
(time stalled waiting for memory). Core time is inversely
proportional to frequency. However, because the latency
to memory does not change when the core’s frequency
changes, memory time is not affected by DVFS.

The difficulty of this performance estimation mech-
anism lies in appropriately characterizing these times.
Modern processors can execute instructions out of or-
der, with multiple loads accessing memory in parallel.
Simple memory models do not capture this, which leads
to incorrect estimates. For example, stall models moni-
tor the amount of time that a core is not committing in-
structions and assume that this is due to time spent in the
memory system [5]. We will show later that this is often
an inaccurate assumption, since processors can stall for
numerous reasons besides memory latency.

2.1 Leading Loads (LL) Model
Leading loads were simultaneously defined by three
groups attempting to solve the problems of these lin-
ear and stall models [5, 7, 10]. They utilized the insight
that, while many memory accesses may be outstanding,
only one can stall the pipeline. As such, the first non-
speculative load that misses in the last level of the core’s
cache is considered a leading load. The time between
the miss and when it returns is assumed to be memory
time. This time is counted even if core work continues
under the miss. All misses until this load returns are not
leading loads – they represent MLP . A simplifying as-
sumption of this model is that these MLP accesses will
not eventually stall the pipeline.

Once a leading load returns, the next miss becomes
the leading load. All time when there is no leading load

Load miss A 
(Leading Load)

Load miss B 
(Non-Leading Load)

Load miss C 
(Leading Load)

delay A delay C

delay B (hidden)

Time

In
st
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t1 t2 t3 t4 t5 t6 t7 t8

Figure 1: Leading loads example.

is counted as core time. This is illustrated in Figure 1,
where there are 3 load misses: A, B and C. The misses
begin at t1, t2, and t6, then finish at t4, t5, and t8, respec-
tively. A and C are leading loads; their delay is memory
time. B is not a leading load because a leading load (A)
already exists; it is MLP and does not stall the core.

There are limitations to this model, such as the as-
sumption that MLP loads will not stall the pipeline, and
its inability to deal with bandwidth-bound applications
[9]. However, the simulated results for these counters
appear promising (with estimation errors of 0.2%), and
the hardware is simple, requiring only a single counter
per core. The major impediment was the apparent lack
of leading load hardware performance events, which pre-
vented testing this mechanism outside of simulation.

2.2 Green Governor (GG) Model
Because their newly proposed leading load counter did
not yet exist in hardware, Spiliopoulos et al. also devised
a simpler model in their Green Governors work that used
existing counters [12]. They monitor the number of last
level cache (LLC) misses and number of cycles without
a retired instruction. They then characterize the average
miss latency using a tool such as lmbench [8] and multi-
ply this delay by the number of LLC misses to estimate
memory time. If the amount of time not retiring instruc-
tions is less than this, the smaller time is used instead.

When predicting the program’s performance from fre-
quency f to f ′, this model can be described by Equa-
tion 1. The memory time Mt is calculated using stall cy-
cles S, the number of LLC misses N, the per-miss delay
time D, and the original frequency f . The new execution
time T ′ is then calculated from Mt , the original execution
time T , and the ratio of frequency change.

T ′ = (T −Mt)×
f
f ′
+Mt ;Mt = min(

S
f
,N ×D) (1)

This model makes a number of simplifying assumptions,
since it is constrained by existing hardware. First, it as-
sumes that LLC misses have a constant latency, since
it only measures miss count. Second, it ignores MLP.
Nonetheless, with careful tuning, it can yield reasonably
accurate performance estimates.

2
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3 Implementing Leading Loads

On AMD CPUs, a Miss Address Buffer (MAB)1 is a
structure that tracks a single outstanding cache miss.
Misses are assigned to available MABs based on a fixed
priority; a miss that occurs when the highest priority
MAB is available will always be assigned to that MAB.
The first miss will be assigned to the highest priority
MAB, as will the next miss after that one returns. Thus,
the amount of time that the highest priority MAB is oc-
cupied represents the aggregate latency of all of the lead-
ing loads. This MAB’s occupancy time can be measured
directly (in clock cycles) using a hardware performance
counter. To the best of our knowledge, no such mecha-
nism exists in processors from other vendors.

We thus describe our LL-MAB model, which assumes
that the wall-clock occupancy time of the highest pri-
ority MAB will remain unchanged across different core
frequencies, since its occupancy relies on values return-
ing from memory. The remaining execution time, when
nothing is in the highest priority MAB, is core time,
which is inversely proportional to frequency. More for-
mally, if an application’s execution time is T at frequency
f and the highest priority MAB is occupied for M clock
cycles, then the predicted execution time T ′ of the same
application at a frequency f ′ is given by Equation 2.

T ′ =
M
f
+(T − M

f
)× f

f ′
(2)

While Family 15h cores measure MAB occupancy
time for L2 cache misses, Family 10h cores measure L1
cache misses. For the purposes of implementing the LL
model, this introduces two inaccuracies. First, a leading
load from the L1 may still hit in the L2, which is also
in the core clock domain. Second, for leading loads that
miss in both the L1 and L2 caches, the MAB occupancy
time includes the latency of the request from the L1 to
L2. Neither should be counted as leading load time, since
they will change as the core frequency changes.

In addition, the MABs hold prefetch misses, which
should not be counted as leading loads because they will
not cause the core to stall. We will show in Section 4
that these inaccuracies are small enough that LL-MAB
model is still more accurate than existing predictors.

We implemented LL-MAB on three different AMD
processors with two different microarchitectures, de-
scribed in Table 1. These cores assign MABs in slightly
different orders: Family 10h and Family 15h processors
give highest priority to MAB1 and MAB0, respectively.
Our LL-MAB implementation uses these counters to es-
timate the leading load time.

We also implemented an enhanced version of the
Green Governor (GG) performance estimation model for

1Commonly known as a Miss Status Handling Register (MSHR).

Table 1: Processor configurations and hardware events.

AMD AMD AMD
PhenomTMII OpteronTM A10-

X6 1090T 4386 5800K
Family 10h 15h 15h

Core Freq. 1.6/3.2 GHz 1.4/3.1 GHz 1.4/3.8 GHz
DRAM DDR3-800 DDR3-1600 DDR3-1066

MAB Counter MAB1 MAB0 MAB0
L3 Latency 13.0ns 32.2ns n/a
L2 Latency 24.7ns 12.8ns 32.3ns

H/W Event Event Select Code
E1 Exe. Cyc. 0x00410076 0x00410076 0x00410076
E2 MAB Cyc. 0x00410169 0x00410069 0x00410069
E3 Stall Cyc. 0x014100c0 0x014100c0 0x014100c0
E4 L3 Misses 0x4004107e0 0x40040f7e1 No L3 Cache

0x40040ffe1
E5 L2 Misses 0x0001077e 0x00410043 0x00410043

comparison. Because the L3 cache in AMD processors
is in a separate clock domain from the cores, its access
time will remain constant at different core frequencies.
Spiliopoulos et al. measured last level cache misses,
which means that they did not measure L2 (core domain)
misses that hit in the L3 (memory domain). To compare
both of these designs, we build two GG models: one that
counts L2 misses, and one that counts L3 misses.

Different memory access patterns cause different
DRAM delays. As such, rather than using a single mem-
ory latency chosen arbitrarily from a microbenchmark,
we instead search the space of possible latencies to find
the value that yields the lowest estimation error. This
means that we are testing the algorithm on its training
data, which may yield optimistic results from the GG
model. However, this allows us to operate under the as-
sumption that the GG model’s latency has been chosen
well (which may not always be the case).

Finally, where possible, our GG models did not use
cache misses caused by prefetchers. On Family 15h
processors, specifying the appropriate selection of L3
performance events allows us to ignore prefetch misses.
However, this is not possible on Family 10h processors.

Table 1 shows the configurations of the systems we
measured and the specific performance events we used
to collect the data required by the predictors in our ex-
periments. All of the predictors use the Program Cy-
cles counter, though this could potentially be replaced by
the hard-coded timestamp counter to reduce counter re-
quirements. The linear estimation method uses only this,
while the stall model also uses Stall Cycles. LL-MAB
model needs only one additional counter: MAB Wait Cy-
cles. The GG models need 2 or 3 more. GG-L3 uses
Stall Cycles and L3 Misses (Family 15h uses 2 hardware
counters for this in order to remove prefetch misses). In
GG-L2, L3 Misses are replaced by L2 Misses.

3
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4 Evaluation Results and Analysis

4.1 Experimental Methodology
We validated our LL-MAB model using 66 single-
threaded benchmarks from the NAS Parallel Bench-
marks [1]2, PARSEC [2]3, Rodinia [3]4, and SPEC
CPU2006 [6]5. For comparison, we also tested the linear,
stall, GG-L2 and GG-L3 models.

The AMD PhenomTMII 1090T processor ran Canoni-
cal Ubuntu Desktop 12.04 (kernel 3.2.0-24), the AMD
OpteronTM4386 processor ran FedoraTM19 Desktop
(kernel 3.10.6-200), and the AMD A10-5800K proces-
sor ran CentOS release 6.4 (kernel 2.6.32-358.23.2). We
used msr-tools to set and read the performance coun-
ters, cpufreq to change DVFS states, and numactl to lock
each benchmark to a single core. For each processor, we
measured two frequencies, the higher at least twice the
lower. We then estimated the change in user-level un-
halted clock cycles between the two frequencies.

As mentioned, we chose the GG miss latency that pro-
vided the best average prediction accuracy across all of
the benchmarks, based on an exhaustive search of all pos-
sible latency values from 0 to 200ns with a step size of
0.1ns. These values are also listed in Table 1. Because
the L3 misses on the AMD PhenomTMII 1090T proces-
sor include prefetch misses, the ideal L3 miss latency
was lower than the L2 miss latency. These values are up
to 2× different than those measured with microbench-
marks, which implies that our GG results are optimistic.

4.2 Experimental Evaluation
Figures 2, 3, and 4 show the average and standard de-
viation of the absolute value of the prediction errors. In
this case, error is the difference between the estimated
and the actual cycles at one frequency when gathering
statistics at the other. Unless noted, all results are listed
in the order: AMD PhenomTMII 1090T processor, AMD
OpteronTM4386 processor, AMD A10-5800K processor.
The stall-based model had much higher average error
than the others and is not shown. Its average errors were
21.7%, 31.3% and 32.0%, respectively.

As shown in the figures, our LL-MAB predictor had
the lowest average error and standard deviation for all
three processors. The GG-L2 and GG-L3 models are
slightly worse, but have similar accuracy to one an-
other. It is worth reiterating that their latency values
were carefully tuned to reduce error rate, so these num-
bers do not necessarily mean that one is better than the
other. Nonetheless, LL-MAB model’s average error was

2NPB: All 10 SER programs; size ”B” for DC and ”C” for others.
3PARSEC: All 13 gcc-serial benchmarks with native inputs.
4Rodinia: bfs, b+tree, heartwall, hotspot, kmeans, lavaMD, leuko-

cyte, lud, particlefilter, pathfinder, srad, cfd, nw, streamcluster.
5SPEC CPU2006: All 29 benchmarks with ref inputs.

5.27%, 2.71%, and 4.80%, 1.22, 1.30, and 1.71 per-
centage points lower than the most accurate GG model.
Linear estimation had the worst average prediction error
among the models shown.

While a lower prediction error is preferred, the second
graph in each of these figures demonstrates the standard
deviation of these error rates. In this case, the LL-MAB
model had a much smaller variance in its errors, implying
a more consistent error rate. This is especially important
for performance estimation, since an outlier can lead to a
severe loss in performance or energy efficiency.

Figures 5 and 6 plot the absolute prediction error ver-
sus memory boundedness for each benchmark. As de-
scribed by Rountree et al. [10], memory boundedness
is the ratio of measured execution cycles at the two fre-
quencies. For compute-bound applications, the number
of execution cycles should be (approximately) fixed re-
gardless of the frequency, so the memory boundedness
should be (approximately) one. Larger values indicate
applications that spend more time in the memory system.

By definition, the linear model’s error is proportional
to the memory boundedness, so its error rate was highest
for memory-bound programs. The stall-based model, on
the other hand, exhibited large errors for compute-bound
programs, because it incorrectly assumed that compute-
bound applications with many pipeline stalls (due to, for
example, mispredicted branches) were memory bound.

The GG models use cache miss counts to reduce the
prediction error when the memory boundedness is low.
In this way, the GG models overcame the high error rate
of the stall-based model for more compute-bound appli-
cations, while keeping the relatively low error rate of the
stall-based model for more memory-bound applications.

Our LL-MAB model was accurate across a range of
benchmarks and hardware, because it more directly mea-
sures the time spent in the memory system. However, as
the memory boundedness increases, the limitations dis-
cussed in Section 3 cause some errors. For the programs
whose memory boundedness is greater than 1.1, the av-
erage absolute error of LL-MAB is still the lowest.

4.3 LL-MAB Model Discussion
LL-MAB demonstrates three primary advantages:

1. LL-MAB provides better average prediction accu-
racy. This was true despite the fact that we gave
our comparison point, GG, as many advantages as
possible. The accuracy of the GG models would be
even worse using directly measured miss latencies.

2. LL-MAB is easier to implement. It only requires
two performance counters, while the GG models
need three or four. The LL-MAB model also re-
quires no hardware- or application-specific training,
unlike Green Governor or regression models.

4
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Figure 2: Average and standard deviation of prediction errors on the AMD PhenomTMII 1090T processor.
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Figure 3: Average and standard deviation of prediction errors on the AMD OpteronTM4386 processor.
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Figure 4: Average and standard deviation of prediction errors on the AMD A10-5800K processor.
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Figure 5: Prediction error vs. measured memory boundedness (higher means more time in the memory system).
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Figure 6: Error vs. memory boundedness on the AMD
A10-5800K processor.

3. LL-MAB is more flexible to system configuration
changes. For example, changing the DRAM fre-
quency of a machine would not impact LL-MAB.
Other models would require retraining.

Unlike the leading loads results shown in the literature,
LL-MAB has a higher average error rate, between 2.5%
and 5%. All three initial papers that modeled LL showed
average error rates of 0.2%, though Miftakhutdinov et al.
ran simulations with a more complex memory system
that showed worse LL results [9]. Regardless, these re-
sults used LL counters that did not have the limitations
of our MAB counter. For instance, they only counted
misses to the LLC, they had no hardware prefetchers, and
(often) assumed a constant delay to memory.

Others (such as those detailed by Rountree et al. [10])
demonstrate regression models on real hardware with
better accuracy than LL-MAB. We did not study these
in detail, because they have the disadvantage of requir-
ing offline training and more hardware counters.

5 Conclusion and Future Work
In this paper, we presented LL-MAB, the first DVFS per-
formance prediction model based on leading loads im-
plemented on existing hardware. Experiments show it
has better prediction accuracy than other state-of-the-art
models. Moreover, it requires fewer hardware counters,
is easier to use, and has less error variance. Because it
is built using existing hardware, it can easily be used by
software to enable online DVFS performance prediction
with no further hardware changes.

Future work could include using the LL-MAB predic-
tor over short periods for fine-grained DVFS decisions.
Similarly, a regression model with this counter may show
even better performance than previous regression mod-
els. Because LL-MAB requires so few hardware coun-
ters, it may also be possible to do online power estima-
tion by monitoring other energy-hungry events.

There are also simple modifications that could in-
crease the accuracy of the MAB event, such as filtering
prefetches. Unlike the scheme described by Miftakhut-

dinov et al. [9], which would require at least an adder for
every MAB, these approaches may yield better results
with little added hardware.
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Abstract
Quantifying the power consumption of individual appli-
cations co-running on a single server is a critical compo-
nent for software-based power capping, scheduling, and
provisioning techniques in modern datacenters. How-
ever, with the proliferation of hyperthreading in the last
few generations of server-grade processor designs, the
challenge of accurately and dynamically performing this
power attribution to individual threads has been signifi-
cantly exacerbated. Due to the sharing of core-level re-
sources such as functional units, prior techniques are not
suitable to attribute the power consumption between hy-
perthreads sharing a physical core.

In this paper, we present a runtime mechanism that
quantifies and attributes power consumption to individ-
ual jobs at fine granularity. Specifically, we introduce
a hyperthread-aware power model that differentiates be-
tween the states when both hardware threads of a core are
in use, and when only one thread is in use. By capturing
these two different states, we are able to accurately at-
tribute power to each logical CPU in modern servers. We
conducted experiments with several Google production
workloads on an Intel Sandy Bridge server. Compared
to prior hyperthread-oblivious model, HaPPy is substan-
tially more accurate, reducing the prediction error from
20.5% to 7.5% on average and from 31.5% to 9.4% in
the worst case.

1 Introduction
As more of the world’s computation moves into large-
scale datacenter infrastructures, power management and
provisioning becomes increasingly important. In fact,
prior work [4] shows that the cost of powering the servers
housed in these infrastructures comprises about 30% of
the total cost of ownership (TCO) of modern datacen-
ter infrastructures. As we are reaching the limits of cur-
rent power delivery systems, many datacenter infrastruc-
tures house more machines than can be powered by the
supply infrastructure [17]. In tandem with these trends,
datacenter designers and operators have been investigat-
ing techniques to manage the available power resources
via software techniques such as power-capping [13, 11],
scheduling [12], and energy accounting/pricing [28],
among others. Software power capping and provision-
ing techniques ensure that servers do not use more than a

specified power threshold by suspending a subset of jobs.
Scheduling can also be used to limit processor utilization
to reach energy consumption goals. Beyond power bud-
geting, pricing the power consumed by jobs in datacen-
ters is also important in multi-tenant environments.

One capability that proves critical in enabling software
to monitor and manage power resources in large-scale
datacenter infrastructures is the attribution of power con-
sumption to the individual applications co-running on
a single server. This ability allows software to control
power consumption at the level of individual applications
on a single machine, as well as across entire clusters.
However, accurate attribution on real-world commodity
hardware has proven challenging for modern server de-
signs, particularly due to the fact that simultaneous multi-
threading, (or hyperthreading [14]) is now commonplace
in current server designs.

Processors that are hyperthreaded allow two or more
hardware thread contexts to share a single physical core.
Although the OS views each hardware thread context as a
logical CPU, a number of core-level resources are shared
across contexts such as functional units, alias register,
and cache resources, among others. Modern processors
do not provide specific power monitors for each hard-
ware thread context and thus attributing the power con-
sumption of individual processes and threads across log-
ical CPUs has proven particularly challenging.

In this work, we present HaPPy, a Hyperthread-aware
Power Profiling Dynamically. HaPPy is able to dy-
namically and near instantaneously attribute the power
consumed (in watts) to individual processes or threads.
To the best of our knowledge, this is the first such
hyperthread-aware power estimation approach. Central
to HaPPy is an estimation model that uses Intel Running
Average Power Limit (RAPL) power/performance mon-
itoring interface [14] that is widely available on current
commodity servers (Sandy Bridge/Ivy Bridge/etc). Al-
though RAPL provides no power monitoring information
of individual cores nor hardware thread contexts, HaPPy
uses a novel execution isolation technique implemented
on top of existing performance counter tool to predict the
power consumed by individual threads.

We evaluate HaPPy on six data-intensive Google pro-
duction workloads using real commodity server configu-
rations found in datacenters. Compared to prior work,
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HaPPy is substantially more accurate and reduces the
prediction error from 20.5% to 7.5% on average and from
31.5% to 9.4% in worse cases.

2 Background
The primary goal of this work is provide a technique to
enable the attribution of power consumption to individ-
ual threads. In this section, we first describe the need
for power estimation and the most related works. Then,
we describe the underlying hardware monitoring inter-
face that underpins our HaPPy approach.

2.1 Need for Power Estimation

Power estimation for individual jobs is critical for power
management systems in datacenters [13, 11, 17, 12, 28].
To lower the total cost of ownership, particularly the cost
of power infrastructures, modern datacenters are often
designed to house more servers than can be powered
by the underlying power supply infrastructure. At peak
time, the power demand of the datacenter may surpass
the supply of the power infrastructure, in which case
power capping techniques are applied to lower the de-
mand to under the provisioning threshold. There are var-
ious types of power capping techniques, including sus-
pending or limiting the processor utilization of certain
jobs. These approaches require accurate power estima-
tion for individual jobs. Power estimation allows us
to accurately identify the minimum amount of power-
hungry jobs the system needs to suspend given the tar-
get power demand threshold. A more conservative power
capping system without the power estimation might need
to suspend all low-priority jobs, which is much less cost-
effective. In addition to power capping, power estimation
is also critical for facilitating accurate pricing and ac-
counting in multi-tenant cloud infrastructures. Accurate
power usage estimation for individual applications on a
shared server allows us to design power-based billing and
pricing for cloud infrastructure users.

2.2 State of Power Estimation in Datacenters

Power constraints are well recognized as one of the pri-
mary limiting factors for datacenter design, and there is
a significant body of work [19, 13, 11, 26] targeting ad-
vanced power estimation and management in datacen-
ters. Two works emerge as most related. The work by
Fan et al. presents power provisioning designs for data-
centers [11]. The model presented in this paper focuses
on coarse-granularity prediction, which is suitable for its
goal. However, it is hyperthread-oblivious and incurs
high inaccuracy when directly applied to attributing total
server power to individual co-running tasks running on
hyperthreaded processors. The work by Shen et al. mod-
els CPU power at a fine-grained server requests level on
hyperthreading disabled servers [26]. Our work is com-
plementary to both of these important contributions as

our hyperthread aware CPU power modeling is applica-
ble to tasks concurrently running on a hyperthreaded ma-
chines.

2.3 The RAPL Interface

Recently Intel released the RAPL model specific regis-
ters (MSRs). These performance counters enable soft-
ware to read processor energy consumption at run time
on newer Intel processors such as Sandy Bridge and Ivy
Bridge. RAPL MSRs separate processor energy con-
sumption into three parts: pp0, package, and dram.
pp0 counts total energy consumed by all cores of a pro-
cessor (note that RAPL does not provide per-core mea-
surements on Sandy Bridge or Ivy Bridge); package

includes both cores and uncore (e.g. last-level-cache)
energy consumption; dram here means on-chip dram
channels, not the commonly referred off-chip memory
DIMM. Total processor energy consumption can be cal-
culated by aggregating package and dram readings. The
reported energy during a given time window can then be
converted to the average power.

The Linux kernel provides a powerful open-source
tool, called perf [1], to configure and monitor hardware
performance counters. We have extended this interface
to enable access to Intel’s RAPL counters. The extension
is implemented as a separate socket-level performance
monitoring unit (PMU). To monitor energy consumption
of a multi-socket system, it is only necessary to moni-
tor the RAPL events from one CPU on each socket. Our
perf patch has been open-sourced [2] and will appear in
upstream kernels (Linux 3.14 and newer).

3 Power Modeling
In this section, we first present a hyperthread-oblivious
model commonly used in prior work. We then dis-
cuss why it is insufficient and inaccurate on modern
servers with hyperthreading. Finally, we present our
hyperthread-aware model that can accurately attribute
power consumption across co-running tasks.

3.1 Hyperthread-oblivious Model

We first present a hyperthread-oblivious (HT-oblivious)
model, which is used in prior work for event-driven
power accounting [6, 26]. The model is based on the
hypothesis that the power consumption of a task is pro-
portional to the amount of computation CPUs perform
for that task, and one can estimate the amount of CPU
computation using hardware events, such as CPU cycles
and instructions.

Figure 1 presents the correlation between applica-
tions’ power consumption and their aggregated non-
halted CPU cycle1 counts (total cycle counts for all

1Non-halted means CPU is not executing the “halt” instruction in
x86 instruction set.
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workload description characteristics
bigtable (BT) [8] Distributed storage system for managing structured data Memory-intensive
web-index (IDX) [5] Web indexing CPU-intensive
youtube-encoding(YTB) Youtube video encoding Floating point-intensive
warp-correction (IMG) Corrects warped images in scanned material CPU-intensive
mapreduce (MR) [10] Map-reduce benchmark written in Sawzall [24] script Memory-intensive
rpc-bench (RPC) Google rpc call benchmark CPU-intensive

Table 1: Brief description of Google’s internal applications used in this study. All applications are memory resident
and fully utilize server memory and CPUs.
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Figure 1: Correlation of power with non-halted CPU
cycle.

threads of an application). In these experiments, we use
several diverse real Google workloads (see description in
table 1) and an Intel Sandy Bridge server with the same
configuration found in production. We run N instances
of each application on N physical cores on a server. We
do not use hyperthreading in this experiment, so only 1
hyperthread of a physical core is used. During the exper-
iment, we collect the total processor power consumption
and aggregated non-halted CPU cycles using perf [1].
As demonstrated in Figure 1, the aggregated CPU cycles
are strongly correlated with the power consumption (lin-
ear correlation coefficient 0.99).

Besides non-halted CPU cycles, we also examined
other metrics including instruction count, last-level-
cache reference and miss, through a wide range of mi-
crobenchmarks, including a busy-loop benchmark (high
instruction issue rate), a pointer chasing benchmark
(high cache miss rate), a CPU and memory intensive
benchmark (to mimic power virus behavior), and a set of
bubble-up benchmarks that incur adjustable amounts of
pressure on the memory systems [27]. Our conclusion is
that non-halted cycle is the best to correlate power (lin-
ear correlation coefficient above 0.95). This finding is
consistent with prior work [11] which suggests a strong
correlation between the machine-level power consump-
tion and CPU utilization.

Based on the correlation between the power consump-
tion and the cycle count when hyperthreading is not in
use, the power consumption across all currently running

0 100 200 300 400
50

60

70

80

90

100

110

120

130

140

150

160

Normalized Cycle Count

P
o

w
e

r(
W

)

 

 
BT /w HT

IDX /w HT

YTB /w HT

IMG /w HT

MR /w HT

RPC /w HT

BT /wo HT

IDX /wo HT

YTB /wo HT

IMG /wo HT

MR /wo HT

RPC /wo HT

Figure 2: Correlation between power and cycle when
hyperthreads are enabled.

tasks can be attributed simply based on each task’s cycle
count. This HT-oblivious model for attributing power is
as follows:

Power(Taski) = Total Active Power× Cycle(Taski)

∑
m
j=1 Cycle(Task j)

(1)

3.2 Why is accounting hyperthreading important?

The HT-oblivious model assumes that the power con-
sumption of a task is strongly correlated with the ag-
gregated CPU cycles of the task. However, as we will
demonstrate in this section, this is no longer the case
when hyperthreads are used. Figure 2 presents the cor-
relation between the measured power consumption and
the aggregated cycle counts when tasks use hyperthreads
(2 tasks pinned to the two hyperthreads of each physical
core) versus when tasks do not use hyperthreads (only
1 task pinned to each physical core). As presented in
Figure 2, the aggregated CPU cycles of a task are not
strongly correlated with its power consumption when hy-
perthreading may be in use. For example, as shown in the
figure, when the normalized cycle count is around 200,
the power consumption can be wildly different ranging
between 85w and 120w, almost 40% difference.

To illustrate the reason behind this 40% discrepancy,
imagine when both hyperthreads (HT) of a physical core
are in use, the aggregated CPU cycles may double com-
paring to the scenario when only 1 HT per core is in use
(each HT is a logical CPU). However, the power con-
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sumption is not doubled. Actually, there is only a slight
power increase over the scenario when 1 HT/core is used.
This is because that two hyperthreads of a physical core
share many low-level hardware resources (such as func-
tional units), thus only incur slight power increase when
both are active. A basic hyperthreading-oblivious model
does not distinguish these two scenarios (with and with-
out hyperthreading), and therefore is inaccurate.
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Figure 3: Power comparison when using only one or
both hyperthreads of a physical core.

Figure 3 further demonstrates the power consump-
tion difference between using no hyperthreading (1 task
pinned to only one logic CPU of a physical core) and
using hyperthreading (2 tasks pinned to the two hyper-
threads, logical CPUs, of a physical core). The x-axis
shows the number of physical cores used in each exper-
iment. For n physical cores, we execute n replica of
a task for w/o hyperthreading scenario and 2n replica
of the task for w/ hyperthreading scenario. The y-axis
shows the measured total CPU power. Again, as pre-
sented in Figure 3, accounting hyperthreading is critical
for the accuracy of a power model. For example, when
attributing power for 8 (single-threaded) tasks, it is im-
portant to differentiate whether 8 tasks are running on
eight cores (∼115w total and 14 w/task) or on four phys-
ical cores with 2 hyperthreads each core (∼90w total and
11 w/task, 30% less than 14 w/task) or the mix of both
scenarios. The Evaluation section (Section 4) will further
demonstrate the inaccuracy when one fails to acknowl-
edge the hyperthread configurations. Also note that, as
shown in Figure 3, the ratio between power consumption
when both hyperthreads are in use and that when only
one hyperthread is in use is about 1.1. We refer this ratio
as Rht for the rest of this paper.

3.3 Hyperthread-aware Model

In this section, we present a novel hyperthread-aware
(HT-aware) model that addresses the challenge of ac-
counting per task power consumption when tasks may
use hyperthreads. We first break down the total CPU
power consumption into static power and active power ,
and then focus on modeling the active power. To attribute

the active power across all co-running tasks, our model
first attributes the power consumption for each physical
core using a novel technique to account for how tasks are
taking advantage of hyperthreading of the core. We then
attribute the power consumption of each task based on
the cycles each task executes on each core.

3.3.1 Attributing active power among physical cores

Static Power - Processors often consume a small
amount of power just to be active, even when there is
not much computation activity. For example, linearly ex-
trapolating the data points in Figure 3 shows that when 0
core is in use, the power consumption is around 50 watt.
This means that there is around 50 watt of power con-
sumption even when there is minimum core activity. We
refer to this power consumption as the static power and
use linear extrapolation to estimate it. The static power
on our test machine is estimated to be 52.5 watts.

Thread1 Thread2

Cycle1

Cycle2

Time

CycletCycleoverlap

Figure 4: Illustration of how we capture the detailed uti-
lization of a physical core using three counters. Thread
1 and 2 are sibling hyperthreads of a physical core, and
their non-halted CPU cycles are respectively Cycle1 and
Cycle2. Cyclet represents non-halted cycles when at least
one of the two hyperthreads of a physical core is active.

Attributing the active power to each physical core -
We calculate the active power using the total CPU power
consumption minus the static power estimated as dis-
cussed above. To attribute the active power across phys-
ical cores, our model takes advantage of three hardware
counters. As illustrated in Figure 4, Cycle1and Cycle2
are non-halt CPU cycles respectively for thread 1 and 2.
Cyclet is CPU cycles when at least one of the two hyper-
threads of a physical core is running 2.

From these three counters, we can infer:

Cycleoverlap =Cycle1 +Cycle2 −Cyclet (2)

Cyclenonoverlap =Cyclet −Cycleoverlap (3)

Cycleoverlap is the portion of time when both hy-
perthreads of a physical core are running, while

2In perf tool, Cycle1 and Cycle2 are obtained by cpu event 0x3c
with umask=0x00, while Cyclet can be obtained by same event with
umask=0x00 and any=1.
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Cyclenonoverlap is that when only one thread is running.
Using Cycleoverlap and Cyclenonoverlap, we define the
weighted cycle of a physical core as follows:

Cycleweighted(Core) = Rht ×Cycleoverlap +Cyclenonoverlap (4)

The intuition here is that when two hyperthreads are
both executing on a physical core, the power consump-
tion of the physical core is Rht times its power consump-
tion when only one hyperthread is executing on the core.
Rht is computed from the data in Figure 3 to be 1.1. So
by calculating the time period when two hyperthreads
are executing (Cycleoverlap) and that when only one is
executing (Cyclenonoverlap), we can calculate a weighted
core utilization (Cycleweighted) and use it to estimate each
core’s power consumption.

Now we can attribute the total active power of a
processor among individual cores proportional to each
core’s hyperthread-weighted Cycleweighted :

Active Power(Corei) =

Total Active Power×
Cycleweighted(Corei)

∑
n
j=1 Cycleweighted(Core j)

(5)

3.3.2 Attributing active core power to hyperthreads

Following the same principle of Equation 4, we can cal-
culate the weighted cycles for individual hyperthreads on
each core:

Cycleweighted(HTi) =

Rht ×
Cycleoverlap

2
+(Cyclei −Cycleoverlap) (6)

HTi is one of two hyperthreads of a physical core.
Recall that Cycleoverlap indicates the time when both
threads are running (Equation 2), in which case we at-
tribute the power to each individual hyperthread evenly.
Cyclei −Cycleoverlap represents the time thread i runs
alone, in which case the thread is attributed the total
power consumed by the core. Using Cycleweighted(HTi)
calculated by Equation 6 and Active Power(Corei) cal-
culated by Equation 5, we can proportionally attribute
the total active power of a core to each hyperthread on
that core using the following equation:

Active Power(HTi) =

Active Power(Core)×
Cycleweighted(HTi)

Cycleweighted(Core)
(7)

3.4 Mapping from hardware to applications

Reserving logical CPUs is a common practice in dat-
acenters to achieve better performance isolation [22].
With this technique, the process threads associated with
a job run on dedicated CPUs using containers and the
set affinity API [3]. Our approach attributes active
power to such jobs by calculating the power consumption

of the hyperthread contexts associated with each hosted
process as shown in Equation 7. Reserving CPUs is
often used for minimizing performance interference to
latency-critical jobs as well as in Infrastructure as a Ser-
vice (IaaS) type of multi-tenant cloud services. We use
this execution approach as the basis of our evaluation.

When CPUs are time-shared by multiple jobs, our
models can be used to capture the power consumption
change at each context switch using Equation 7. The cost
of reading the performance counters is typically hun-
dreds of nanoseconds while the remaining cost of a con-
text switch is on the order of microseconds [20]. It is
important to note that the OS scheduler only needs to
save threads’ co-run performance counter information at
every context switch, more complex calculations can be
deferred to a coarser scale (seconds) or on demand.

4 Evaluation

In this section, we evaluate the accuracy of our model us-
ing production Google applications listed in Table 1. We
also duplicate our experiment using SPEC benchmarks
for repeatability. Our Google configuration is a 2.6GHz
Intel Sandy Bridge machine, equipped with 2 processor
sockets. Each socket has 8 cores, each with two hyper-
threads. Only one socket is used in our experiments. The
testbed runs a customized Linux kernel with necessary
RAPL support. We collect energy readings via perf tool
every 10 seconds and report the average power during a
300-second application execution.

4.1 Methodology

In our experimental setup, we co-run two jobs on a pro-
cessor socket and pin them to disjoint sets of cores. The
first job spawns 2N processes on N cores, while the sec-
ond job spawns N processes on another N cores. We
scale up N from 1 to 4 in our experiments. With this
configuration, the first job makes full usage of all hy-
perthreads (2N hyperthreads on N cores), while the sec-
ond job uses half of the available hyperthreads (N hy-
perthreads on N cores). We first calculate total active
power consumed by both jobs as Powertotal (measured
total processor power minus static power). We then esti-
mate each job’s power consumption, Power1 and Power2,
using both HT-oblivious model (Equation 1) and our HT-
aware model (Equations 2 - 7).

To evaluate the accuracy for estimating per job power
consumption, we remove one job from the server and
measure the power consumption of the remaining job as
Power′total . The delta between Powertotal and Power′total
is the actual active power of the removed job. We refer
to this measured per task power as “Oracle”, and use it
as an evaluation baseline in the following section.

5
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Workload HT-oblivious HT-aware
Avg Error Max Error Avg Error Max Error

{bigtable (BT), warp-correction (IMG)} 5.8w(23.1%) 11.9w(28.5%) 1.8w(7.0%) 3.7w(8.6%)
{web-index (IDX), mapreduce (MR)} 5.1w(19.4%) 13.4w(31.0%) 2.4w(9.3%) 4.4w(10.2%)

{youtube-encoding(YTB), rpc-bench (RPC)} 4.8w(19.1%) 13.9w(34.5%) 1.5w(6.2%) 3.9w(9.6%)
Average 5.2w(20.5%) 13.1w(31.3%) 1.9w(7.5%) 4.0w(9.4%)

Table 2: Average and maximal errors for Google benchmarks, both in absolute watt and relative percentage, of two
models when using Oracle as baseline. Error in percent is calculated as |Oracleavg−Model|

Oracleavg
and |Oraclemax−Model|

Oraclemax
.

1 2 3 4
−15

−10

−5

0

5

10

15

# of Physical Cores

E
s
ti
m

a
ti
o
n
 E

rr
o
r(

W
)

 

 

HT−Oblivious Model for BT

HT−Oblivious Model for IMG

HT−Aware Model for BT

HT−Aware Model for IMG

1 2 3 4
−15

−10

−5

0

5

10

15

# of Physical Cores

E
s
ti
m

a
ti
o
n
 E

rr
o
r(

W
)

 

 

HT−Oblivious Model for IDX

HT−Oblivious Model for MR

HT−Aware Model for IDX

HT−Aware Model for MR

1 2 3 4
−15

−10

−5

0

5

10

15

# of Physical Cores

E
s
ti
m

a
ti
o
n
 E

rr
o
r(

W
)

 

 

HT−Oblivious Model for YTB

HT−Oblivious Model for RPC

HT−Aware Model for YTB

HT−Aware Model for RPC

Figure 5: Results for three sets of workload {bigtable (BT), warp-correction (IMG)}, {web-index (IDX), mapreduce
(MR)}, and {youtube-encoding(YTB), rpc-bench (RPC)}

4.2 Results

We conduct the evaluation using three pairs of co-
running applications, chosen arbitrarily: {bigtable (BT),
warp-correction (IMG)}, {web-index (IDX), mapreduce
(MR)}, {youtube-encoding(YTB), rpc-bench (RPC)}
(applications are described in Table 1). As discussed in
Section 4.1, for each pair, we conduct four experiments
varying the number of physical cores N from 1 to 4. The
first job in a pair spawns 2N processes running on N
cores, while the second only spawns N processes on an-
other N cores. Each experiment runs three times. Both
the average values and standard deviations are reported.
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Figure 6: Improvement of power estimation for both
Google and SPECPU benchmarks.

Figure 5 presents our experimental results. It shows
the power attributing results for each co-run pair. As
shown in the figure, the prediction accuracy of our HT-
aware model outperforms the HT-oblivious model. Fig-
ure 5 shows that the HT-oblivious model tends to overes-
timate jobs with both hyperthreads running (i.e., bigtable
(BT), web-index (IDX), and youtube-encoding(YTB))
and underestimate jobs with only one hyperthread run-
ning (i.e., warp-correction (IMG), mapreduce (MR), and
rpc-bench (RPC)). These prediction errors are expected
since the HT-oblivious model solely depends on CPU cy-
cles. In contrast, our HT-aware model takes architec-
ture details into consideration and is more accurate in
all cases. As summarized in Table 2, it on average re-
duces error from 20.5% to 7.5% when compared to HT-
oblivious. The maximal error of HT-aware prediction is
significantly less than the HT-oblivious model, reducing
from ∼13 watts error (or 31.3%) for the HT-oblivious
model to ∼4 watts (or 9.4%) for our HT-aware model.

4.3 SPEC results

To demonstrate the repeatability of our experiments be-
yond Google applications, we duplicated the experi-
ments using SPEC CPU2006 benchmarks on another
Sandy Bridge machine. On this machine, each CPU
socket has six 1.9GHz physical cores. In these exper-
iments, we used 10 SPEC benchmarks and randomly
group them in 5 pairs. Figure 6 presents the power pre-
diction error achieved by HaPPy versus the hyperthread-
oblivious model. As shown in the figure, there is a

6
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significant improvement in prediction accuracy for both
Google and SPEC workloads.

5 Related Work
Several techniques have been proposed to predict the
server power [6, 9, 18, 15, 21, 23]. For example, Bel-
losa proposed an event driven approach for power mod-
eling. Choi et al. discussed power prediction and cap-
ping in consolidated environment [9]. Lee et al. de-
signed a regression model for power prediction in hard-
ware simulators [18], whereas our model is applicable
for real machines. Isci et al. presented a framework
to collect and analyze power phases [15]. These work
either do not explicitly address hyperthreaded servers
or simply disable hyperthreading. Fine-grained power
profiling tools are also proposed [25]. Shen et al. de-
signed a power container to profile server request level
power [26]. Kansal et al. and Bertran et al. used system
events to model application level power [16, 7]. Again
these models are not aware of hyperthreads. Power man-
agement in data center has attracted much research at-
tention recently [19, 13, 11]. These power management
techniques require accurate power estimation.

6 Conclusion
In this paper, we present a simple and accurate
hyperthread-aware power model to attribute power con-
sumption of a server to individual co-running applica-
tions. By leveraging on-chip energy counters and perf
tool, we prototype our model as a lightweight runtime
task power profiler. Our evaluation using Google com-
mercial benchmarks shows that the prediction accuracy
of our model is significantly better than the state-of-the-
art hyperthread-oblivious model.
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ABSTRACT

Reader-writer locks (rwlocks) aim to maximize paral-

lelism among readers, but many existing rwlocks either

cause readers to contend, or significantly extend writer

latency, or both. Further, some scalable rwlocks can-

not cope with OS semantics like sleeping inside criti-

cal sections, preemption and conditional wait. Though

truly scalable rwlocks exist, some of them cannot handle

preemption, sleeping inside critical sections, or other im-

portant functions required inside OS kernels. This paper

describes a new rwlock called the passive reader-writer

lock (prwlock) that provides scalable read-side perfor-

mance as well as small writer latency for TSO architec-

tures. The key of prwlock is a version-based consensus

protocol between multiple non-communicating readers

and a pending writer. Prwlock leverages bounded stale-

ness of memory consistency to avoid atomic instructions

and memory barriers in readers’ common paths, and uses

message-passing (e.g., IPI) for straggling readers so that

writer lock acquisition latency can be bounded. Evalu-

ation on a 64-core machine shows that prwlock signifi-

cantly boosts the performance of the Linux virtual mem-

ory subsystem, a concurrent hashtable and an in-memory

database.

1 INTRODUCTION

Reader-writer locking is an important synchronization

primitive that allows multiple threads with read accesses

to a shared object when there is no writer, and blocks all

readers when there is an inflight writer [13]. While ide-

ally rwlock should provide scalable performance when

there are infrequent writers, it is widely recognized

that traditional centralized rwlocks have poor scalabil-

ity [9, 25, 10]. For example, it is explicitly recommended

to not use rwlocks unless readers hold their locks for a

sufficiently long time [9].

While there have been a number of efforts to to im-

prove the scalability of rwlocks, prior approaches either

require memory barriers and atomic instructions in read-

ers [22, 18], or significantly extend writer latency [5],

or both [12, 2]. Further, many prior designs cannot

cope with OS semantics like sleeping inside critical sec-

tion, preemption and supporting condition synchroniza-

tion (e.g., wait/signal) [12, 2]. Hence, researchers some-

times relax semantic guarantees by allowing readers to

see stale data (i.e., RCU [21]). While RCU has been

widely used in Linux kernel for some relatively simple

data structures, it, however, would require non-trivial ef-

fort for some complex kernel data structures and may be

incompatible with some existing kernel designs [10, 11].

Hence, there are still thousands of usages or rwlocks in-

side Linux kernel [20].

This paper describes the prwlock, a scalable rwlock

design for read-mostly synchronization for TSO (Total

Store Ordering) architectures. Like prior designs such as

brlock [12, 2], instead of letting readers actively maintain

status regarding inflight readers, prwlock decentralizes

such information to each reader and only makes a con-

sensus among readers when a writer explicitly enquires.

By leveraging the ordered store property of TSO archi-

tectures, such as x86 and x86-64, Prwlock achieves truly

scalable reader performance. On TSO, it not only re-

quires no atomic instructions or memory barriers on the

common path, but it also limits writer latency when there

are concurrent readers.

The key of prwlock is a version-based consensus pro-

tocol between multiple non-communicating readers and

a pending writer. A writer advances the lock version and

waits other readers to see this version to ensure that they

have left their read-side critical sections. Unlike prior de-

signs such as brlocks, this design is based on our obser-

vation that even without explicit memory barriers, most

readers are still able to see a most-recent update of the

lock version from the writer within a small number of

cycles. We call this property bounded staleness. For

straggling readers not seeing and reporting the version

update, prwlock uses a message-based mechanism based

on inter-processor interrupts (IPIs) to explicitly achieve

consensus. Upon receiving the message, a reader will re-

port to the writer whether it has left the critical section.

As currently message passing among cores using IPIs is

not prohibitively high [4] and only very few straggling

readers require message-based consensus, a writer only

needs to wait shortly to proceed.

As a reader might sleep in the read-side critical sec-

tion, it may not be able to receive messages from the
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writer. Hence, a sleeping reader might infinitely delay

a writer. To address this issue, prwlock falls back to a

shared counter to count sleeping readers. As sleeping

in read-side critical sections is usually rare, the counter

is rarely used and contention on the shared counter will

not be a performance bottleneck even if there are a small

number of sleeping readers.

Prwlock is built with a parallel wakeup mechanism to

improve performance when there are multiple sleeping

readers waiting for an outstanding writer. As traditional

wakeup mechanisms (like Linux) usually use a shared

queue for multiple sleeping readers, a writer needs to

wake up multiple readers sequentially, which becomes

a scalability bottleneck with the increasing number of

readers. Based on the observation that multiple read-

ers can be woken up in parallel with no priority viola-

tion in many cases, prwlock introduces a parallel wakeup

mechanism such that each reader is woken up by the core

where it slept from.

We have implemented prwlock as a kernel mechanism

for Linux, which compromises around 300 lines of code

(LoC). To further benefit user-level code, we also created

a user-level prwlock library (comprising about 500 LoC)

and added it to a user-level RCU library (about 100 LoC

changes). Prwlock can be used in the complex Linux vir-

tual memory system (which currently uses rwlock), with

only around 30 LoC changes. The implementation is sta-

ble enough and has passed the Linux Test Project [1]. We

have also applied prwlock by substituting for a rwlock in

the Kyoto Cabinet database [17].

Performance evaluation on a 64-core AMD machine

shows that prwlock has extremely good performance

scalability for read-mostly workloads and still good per-

formance when there are quite a few writers. The per-

formance speedup of prwlock over stock Linux is 2.85X,

1.55X and 1.20X for three benchmarks on 64 cores and

prwlock performs closely to a recent effort in using RCU

to scale Linux virtual memory [10]. Evaluation using

micro-benchmarks and the in-memory database shows

that prwlock consistently outperforms rwlock in Linux

(by 7.37X for the Kyoto Cabinet database).

2 BACKGROUND AND RELATED WORK

2.1 Reader/Writer Lock

The reader/writer problem was described by Courtois

et al. [13] and has been intensively studied afterwards.

However, most prior rwlocks require sharing states

among readers and thus may result in poor critical sec-

tion efficiency on multicore. Hence, there have been in-

tense efforts to improve rwlocks. Table 1 shows a com-

parative study of different designs, using a set of criteria

related to performance and functionality. The first three

rows list the criteria critical to reader performance, in-

cluding memory barriers, atomic instructions and com-
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Condition wait � � � � � -

Writer preference � � � � � � � -

Reader preference � � -

Short writer latency w/ small #thread � � � � * -

Unchanged rwlock semantic � � � � � � �
*The writer latency of Percpu-rwlock is extremely long in most cases

Table 1: A comparison of synchronization primitives.

munication among readers. The next four rows depict

whether each design can support sleeping inside critical

section (which also implies preemption) and condition

wait (e.g., wait until a specific event such as queue is

not empty), and whether the lock is writer or reader pref-

erence. The last two rows indicate whether the writer

in each design has short writer latency when there are a

small number of threads, and whether the design retains

the original semantics of rwlock.

Big-reader Lock (brlock): The key design of brlock

is trading write throughput for read throughput. There

are two implementations of brlock: 1) requiring each

thread to obtain a private mutex to acquire the lock in

read mode and to obtain all private mutexes to acquire the

lock in write mode (brlock1); 2) using an array of reader

flags shared by readers and writer (brlock2). However,

brlock1 requires heavyweight operations for both reader

and writer sections, as the cost of acquiring a mutex is

still non-trivial and the cost for the writer is high for a

relatively large number of cores (i.e., readers).

Brlock2, like prwlock, uses per-core reader status and

forces writers to check each reader’s status, and thus

avoids atomic instructions in reader side. However, it

still requires memory barriers inside inside readers’ com-

mon paths. Further, both do not support sleeping inside

read-side critical sections as there is no centralized writer

condition to sleep on and wake up. Finally, they are vul-

nerable to deadlock when a thread is preempted and mi-

grated to another core. As a result, brlocks are most often

used with preemption disabled.

Prwlock can be viewed as a type of brlock. However,

it uses a version-based consensus protocol instead of a

single flag to avoid memory barriers in readers’ common

paths and to shorten writer latency. Further, by lever-

aging a hybrid design, prwlock can cope with complex

semantics like sleeping and preemption, making it viable

to be used in complex systems like virtual memory.

C-SNZI: Lev et al. [18] use scalable nonzero indi-

cator (SNZI) [16] to implement rwlocks. The key idea

is instead of knowing exactly how many readers are in

progress, the writer only needs to know whether there
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are any inflight readers. This, however, still requires ac-

tively maintaining reader status in a tree and thus may

have scalability issues under a relatively large number of

cores [8] due to the shared tree among readers.

Cohort Lock: Irina et al. leverage the lock cohort-

ing [15] technique to implement several NUMA-friendly

rwlocks, in which writers tend to pass the lock to another

writer within a NUMA node. While writers benefit from

better NUMA locality, its readers are implemented using

per-node shared counters and thus still suffer from cache

contention and atomic instructions. Prwlock is orthog-

onal to this design and can be plugged into it as a read

indicator without memory barriers in reader side.

Percpu-rwlock: Linux community is redesigning a

new rwlock, called percpu rwlock [5]. Although, like

prwlock, it avoids unnecessary atomic instructions and

memory barriers, its writer requires RCU-based quies-

cence detection and can only be granted after at least one

grace period, where all cores have done a mode/context

switch. Hence, according to our evaluation (section 6), it

performs poorly when there are a few writers, and thus

can only be used in the case of having extremely rare

writers.

Read-Mostly Lock: From version 7.0, the FreeBSD

kernel includes a new rwlock named reader-mostly lock

(rmlock). Its readers enqueue special tracker structures

into per-cpu queues. A writer lock is acquired by in-

structing all cores to move local tracker structures to a

centralized queue via IPI, then waiting for all the cor-

responding readers to exit. Like prwlock, it eliminates

memory barriers in reader fast paths. Yet, its reader fast

path is much longer compared to prwlock, resulting in

inferior reader throughput. Moreover, as IPIs need al-

ways to be broadcasted to all cores, and ongoing readers

may contented on the shard queue, its writer lock acquisi-

tion is heavyweight (section 6.2.4). In contrast, prwlock

leverages bounded staleness of memory consistency to

avoid IPIs in the common case.

2.2 Read-Copy Update

RCU increases concurrency by relaxing the semantics of

locking. Writers are still serialized using a mutex lock,

but readers can proceed without any lock. As a result,

readers may see stale data. RCU delays freeing mem-

ory until there is no reader referencing to the object, by

using scheduler-based or epoch-based quiescence detec-

tion that leverage context or mode switches. In contrast,

the quiescence detection (or consensus) mechanism in

prwlock does not rely on context or mode switches and

is thus faster due to its proactive nature.

RCU’s relaxed semantics essentially break the all-or-

nothing atomicity in reading and writing a shared object.

Hence, it also places several constraints on the data struc-

tures, including single-pointer update and readers can

only observe a pointer once (i.e., non-repeatable read).

This constrains data structure design and complicates

programming, since programmers must handle races and

stale data and cannot always rely on cross-data-structure

invariants. For example, a recent effort in applying RCU

to page fault handling shows that several subtle races

need to be handled manually [10], which make it very

complex and resource-intensive [11]. In contrast, though

prwlock can degrade scalability by preventing readers

from proceeding concurrently with a single writer, it still

preserves the clear semantics of rwlocks. Hence, it is

trivial to completely integrate it into complex subsys-

tems, such as address space management.

2.3 Prwlock’s Position

As prwlock strives to achieve scalable reader perfor-

mance with low reader-side latency, it is designed with

a simple yet fast reader fast path, which eliminates the

need of reader-shared state and even memory barriers.

Yet by leveraging bounded staleness for common cases

and IPIs for rare cases, its writer latency is still bounded,

especially when readers are frequent.

Prwlock targets the territory of RCU where extremely

low reader latency is preferred. Compared to RCU, it

trades obstruction-free reader access for a much stronger

and clearer semantic and much shorter writer latency.

Hence, it can be used to improve performance with trivial

effort for cases where RCU is hard to apply.

3 DESIGN OF PRWLOCK

3.1 Design Rationale

The essential design goal of reader-writer lock (rwlock)

is that readers should proceed concurrently, and thus

should not share anything with each other. Hence, a

scalable rwlock design should require no shared state

among readers and no explicit or implicit memory barri-

ers when there are no writers pending. However, typical

rwlocks rely on atomic instructions to coordinate readers

and writers. On many processors, an atomic instruction

implies a memory barrier, which prevents reordering of

memory operations across critical section boundary. In

this way, readers are guaranteed to see the newest version

of data written by the last writer. However, such mem-

ory barriers are unnecessary when no writer is present, as

there are no memory ordering dependency among read-

ers. Such unnecessary memory barriers may cause sig-

nificant overhead for short reader critical sections.

Message passing is not prohibitively expensive:

Commodity multicore processors resemble distributed

systems [4] in that each core has its own memory hier-

archy. Each core communicates with others using mes-

sage passing in essence, but hardware designers add an

abstraction (i.e., cache coherence) to emulate a shared

memory interface. Such an abstraction usually comes
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IPI Latency (Cycles) StdDev

AMD 64Core (Opteron 6274 * 4) 1316.3 171.4

Intel 40Core (Xeon E7-4850 *4) 1447.3 205.8

Table 2: IPI latency in different machines

at a cost: due to serialization of coherence messages,

sharing contended cache lines is usually costly (up to

4,000 cycles for a cache line read on a 48-core ma-

chine [6, 7]) and sometimes the cost significantly ex-

ceeds explicit message passing like inter-processor inter-

rupts (IPIs). Table 2 illustrates the pairwise IPI latency

on 2 recent large SMP systems, which is 1,316 and 1,447

cycles accordingly. This latency is low enough to be used

in rwlocks, whose writer latency usually exceeds several

tens of thousands of cycles.

Further, delivering multiple IPIs to different cores can

be parallelized so that the cost of parallel IPI is “indistin-

guishable” from point-to-point interrupt [23]. This may

be because point-to-point cache line movement may in-

volve multiple cores depending on the cache line state,

while an IPI is a simple point-to-point message.

Bounded staleness without memory barriers: In an

rwlock, a writer needs to achieve consensus among all its

readers to acquire the lock. Hence, a writer must let all

readers see its current status in order to proceed. Typi-

cal rwlocks either use an explicit memory barrier or wait

for a barrier [5] to make sure the version updates in the

reader/writer are visible to each other in order. However,

we argue that these are too pessimistic in either requiring

costly memory barriers that limit read-side scalability or

in significantly extending the writer latency (e.g., waiting

for a grace period).
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Figure 1: Cumulative percentage of stale readers

We observe that in commodity processors such as

x86(-64), multiple memory updates can usually be vis-

ible to other cores in a very short time. We use a micro-

benchmark to repeatedly write a memory location and

read the location on another core after a random delay.

We then collect the intervals of readers that see the stale

value. Figure 1 shows the cumulative percentage of stale

readers along with time; most readers can see the writer’s

update in a very short time (i.e., less than 400 cycles).

This is because a processor will actively flush its store

buffer due to its limited size. It is reasonable to simply

wait a small amount of time until a reader sees the up-

dated version for the common case, while using a slightly

heavyweight mechanism to guarantee correctness.

Memory barrier not essential for mutual exclusion:

To reduce processor pipeline stalls caused by memory

accesses or other time-consuming operations, modern

processors execute instructions out of order and incor-

porate a store buffer to allow the processor to continually

execute after write cache misses. This leads to weaker

memory consistency. To achieve correct mutual exclu-

sion, expensive synchronization mechanisms like mem-

ory barriers are often used to serialize the pipeline and

flush the store buffer.. This may cause notable perfor-

mance overhead for short critical sections.

Attiya et al. proved that it is impossible to build an al-

gorithm that satisfies mutual exclusion, is deadlock-free,

and avoids both atomic instructions and memory barri-

ers (which avoid read-after-write anomalies) in all exe-

cutions on TSO machines [3]. Although prwlock readers

never contain explicit memory barriers, and thus might

appear to violate this “law of order”, prwlock uses IPIs

to serialize reader execution with respect to writers, and

IPI handling has the same effect as a memory barrier.

3.2 Basic Design

Consensus using bounded staleness: Prwlock intro-

duces a 64-bit version variable (ver) to the lock structure.

Each writer increases the version and waits until all read-

ers see this version. As shown in Figure 2, ver creates a

series of happens-before dependencies between readers

and writers. A writer can only proceed after all readers

have seen its new version. This ensures correct rwlock

semantic on a machine with total-store order (TSO) con-

sistency since a certain memory store can be visible only

after all previous memory operations are visible.
Writer
lock(writer);

ver++;

for_each (id) {
while(status[id] < ver);

}

Reader

while (writer != FREE) {

status[my_id] = ver;
}

Figure 2: Simple reader-writer lock with version report

However, there are still several issues with such an ap-

proach. First, a writer may never be able to enter the

write-side critical section if a supposed reader never en-

ters the read-side critical section again. Second, a reader

may migrate from one core to another core so that the

departing core may not be updated. Hence, such an ap-

proach may lead to arbitrarily lengthy latency or even

starvation in the write side.

Handling straggling readers: To address the above

issues, prwlock introduces a message-based consensus

protocol to let the writer actively send consensus requests

to readers when necessary. The design is motivated by

the relatively small cost for message passing in contem-

porary processors. Hence, prwlock uses IPIs to request

straggling readers to immediately report their status.
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This design solves the straggling reader problem.

However, if a reader is allowed to sleep in a read-side

critical section, a sleeping reader may miss the consen-

sus request so that a writer may be blocked infinitely.

Supporting sleeping readers: To address the sleep-

ing reader issue, prwlock uses a hybrid design by com-

bining the above mechanism with traditional counter-

based rwlocks. Prwlock tracks two types of readers: pas-

sive and active ones. A reader starts as a passive one

and does not synchronize with others, and thus requires

no memory barriers. A passive reader will be converted

into an active one before sleeping. A shared counter is

increased during this conversion. The counter is later

decreased after an active reader released its lock. Like

traditional rwlocks, the writer uses this counter to decide

if there is any active reader.

As sleeping in reader-side critical section is rare,

prwlock enjoys good performance in the common case,

yet still preserves correctness in a rare case where there

are sleeping readers.

3.3 Prwlock Algorithms

Figure 3 and Figure 4 show a skeleton of the read-side

and write-side algorithms of prwlock. For exposition

simplicity, we assume that there is only one lock and pre-

emption is disabled within these functions so that they

can use per-cpu states safely.

Read-side algorithm: Passive readers are tracked

distributively by a per-core reader status structure (st),

which remembers the newest seen version and the pas-

sive status of a prwlock on each core. A reader should

first set its status to PASSIVE before checking the writer

lock, or there would be a time window at which the

reader has already seen that the writer lock is free but has

not yet acquired the reader lock. If the consensus mes-

sages (e.g., IPI) were delivered in this time window, the

writer could also successfully acquire the lock and enter

the critical section, which would violate the semantic of

rwlock. If the reader found that this lock is writer locked,

it should set its status back to FREE, wait until the writer

unlocks and try again (line 4-8).

Depending on the expected writer duration, prwlock

could either choose to spin on the writer status, or put the

current thread to sleep. In the latter case, reader perfor-

mance largely depends on the sleep/wakeup mechanism

(section 4).

If a reader is holding a lock in passive mode while

being scheduled out, the lock should be converted into

an active one by increasing the active counter (Schedule-

Out). To unlock a reader lock, one just needs to check

whether the lock is held in passive mode and unlock it

accordingly (ReadUnlock).

Hence, no atomic instructions/memory barriers are

necessary in reader common paths on TSO architectures.

Moreover, readers do not communicate with each other

as long as they remain PASSIVE, thus guaranteeing per-

fect reader scalability and low reader latency.

Write-side algorithm: Writer lock acquisition can be

divided into two phases. A writer first locks the writer

mutex and increases the version to enter phase 1 (line 6-

20). Then it checks all online cores in the current domain

to see if the core has already seen the latest version. If

so, it means that reader is aware of the writer’s intention,

and will not acquire reader lock until the writer releases

the lock. For cores not seeing the newest version, the

writer sends an IPI and asks for its status. Upon receiv-

ing an IPI, an unlocked reader will report to the writer

by updating its local version (Report). A locked reader

will report later after it leaves the read-side critical sec-

tion or falls asleep. After all cores have reported, the

consensus is done among all passive readers. The writer

then enters phase 2 (line 21-23). In this phase, the writer

simply waits until all active readers exit. For a writer-

preference lock, a writer can directly pass the lock to a

pending writer, without achieving a consensus again (line

1-2 in WriteUnlock and line 2-4 in WriteLock).

Function ReadLock(lock)

1 st ← PerCorePtr(lock.rstatus, CoreID);

2 st.reader ← PASSIVE;

3 while lock.writer �= FREE do

4 st.reader ← FREE;

5 st.version ← lock.version;

6 WaitUntil(lock.writer == FREE);

7 st ← PerCorePtr(lock.rstatus, CoreID);

8 st.reader ← PASSIVE;

9 /* Barrier needed here on non-TSO architecture */;

Function ReadUnlock(lock)

1 st ← PerCorePtr(lock.rstatus, CoreID);

2 if st.reader = PASSIVE then

3 st.reader ← FREE;

4 else

5 AtomicDec(lock.active);

6 /* Barrier needed here on non-TSO architecture */;

7 st.version ← lock.version;

Function ScheduleOut(lock)

1 st ← PerCorePtr(lock.rstatus, CoreID);

2 if st.reader = PASSIVE then

3 AtomicInc(lock.active);

4 st.reader ← FREE;

5 st.version ← lock.version;

Figure 3: Pseudocode of reader algorithms

Example: The right part of Figure 5 shows the state

machine for prwlock in the reader side. A reader in pas-

sive mode may switch to the active mode if the reader

goes to sleep. It cannot be directly switched back to pas-

sive mode until the reader releases the lock. The follow-

ing acquisition of the lock will be in passive mode again.

The left part of Figure 5 shows an example execution
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Function WriteLock(lock)

1 lastState ← Lock(lock.writer);

2 if lastState = PASS then

3 return;

4 /* Lock passed from another writer */

5 newVersion ← AtomicInc(lock.version);

6 coresWait ← /0;

7 for ID ∈ AllCores do

8 if Online(lock.domain, ID) ∧ ID �= CoreID then

9 if PerCorePtr(lock.rstatus, CoreID).version �=
newVersion then

10 AskForReport(ID);

11 Add(ID, coresWait);

12 for ID ∈ coresWait do

13 while PerCorePtr(lock.rstatus, CoreID).version �=
newVersion do

14 Relax();

15 while lock.active �= 0 do

16 Schedule();

Function WriteUnlock(lock)

1 if SomeoneWaiting(lock.writer) then

2 Unlock(lock.writer, PASS);

3 else

4 Unlock(lock.writer, FREE);

Function Report(lock)

1 st ← PerCorePtr(lock.rstatus, CoreID);

2 if st.reader �= PASSIVE then

3 st.version ← lock.version;

Figure 4: Pseudocode of writer algorithms

Core#1 reader1

Core#2

reader3

reader2

Core#3

reader4

reader3

Core#4 reader4

TimeRunning

Sleep

reader3

reader4

Active 
Reader

Rare case

Common
case

sleep

Passive 
Reader

wakeup
/sleep

unlock

lock

unlock
Unlock

phase1 phase2

3

1
2

4

5

1
2

3

4
5

Writer Starts
Passive readers 

finish

Sleeping readers 
finish

Figure 5: An example execution of readers (left) and the state

machine of reader (right). Writer is not shown here.

of readers and how the consensus is done. Before a writer

starts to acquire the lock, reader2 has finished its read

critical section, while reader3 sleeps in its read critical

section due to waiting for a certain event. Reader1 and

reader4 have just started their read critical sections but

have not finished yet.

In phase 1, there is a writer trying to acquire the lock

in write mode, which will increase the lock version and

block all upcoming readers. It will send IPIs to current

active readers that have not seen the newest lock version.

If reader2 in core2 has done a context switch and another

thread is running right now, no IPI is required for core2.

Reader4 in core4 may go to sleep to wait for a certain

event, which will switch to be an active reader. No IPI

is required for core4 as there is no reader in core4 at that

time. At the end of phase1, all passive readers have left

the critical sections. Thus, in phase 2, the writer waits all

active readers to finish their execution and finally the lock

can be granted in write mode. For a writer-preference

prwlock, the writer can directly pass the lock to next

writer, which can avoid unnecessary consensus among

readers for consecutive writers.

Correctness on TSO architecture: The main differ-

ence between rwlocks and other weaker synchronization

primitives is that rwlocks enface a strong visibility guar-

antee between readers and writers. This is guaranteed in

prwlock with the help of TSO consistency model.

Once a reader sees an FREE prwlock, we can be sure

that: 1) That FREE was set by the immediate previous

writer, as writers will always ensure all reader see its

LOCKED status before continuing; 2) As memory writes

become visible in order under TSO architectures, up-

dates made by the previous writer should also be visible

to that reader. The same thing goes with earlier writers;

3) A writer must wait until all readers to see it, so no fur-

ther writers can enter critical section before this reader

exits. Thus prwlock ensures a consistent view of shared

states.

These three properties together guarantee that a reader

should always see the newest consistent version of shared

data protected by prwlock. Moreover, as all readers ex-

plicitly report the newest version during writer lock ac-

quisition, writers are also guaranteed to see all the up-

dates (if any) made by readers to other data structures.

On non-TSO architectures, two additional memory

barriers are required in reader algorithm as marked in

Figure 3. The first one ensures that readers can see the

newest version of shared data after acquiring the lock

in the fast path. The second one makes readers’ mem-

ory updates visible to the writer before releasing reader

locks.

3.4 OS Kernel Incorporation

There are several issues in incorporating prwlock to an

OS kernel. First, the scope of a prwlock could be ei-

ther global or process-wide and there may be multiple

prwlocks in each scope. Each prwlock could be shared

by multiple tasks. To reduce messages between readers

and writers, prwlock uses the lock domain abstraction to

group a set of related prwlocks that can do consensus

together. A domain tracks CPU cores that are currently

executing tasks related to a prwlock. Currently, a domain

could be process-wide or global. We now describe how

prwlock uses the domain abstraction:

Domain Online/Offline: It is possible that the scope
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for a set of prwlocks may be switched off during OS ex-

ecution. For example, for a set of locks protecting the

address space structure for a process, the structure may

be switched off during an address space switch. In such

cases, prwlock uses the domain abstraction to avoid un-

necessary consensus messages. A domain maintains a

mapping from cores to its online/offline status. Only

CPU cores within an active domain will necessitate the

sending of messages. Figure 6 shows how to dynami-

cally adjust the domain. The algorithm is simple as the

consensus protocol can tolerant inaccurate domains.

When a domain is about to be online on a core, it sim-

ply sets the mapping and then performs a memory barrier

(e.g., mfence). As the writer always sets its status before

checking domains, it is guaranteed that either a writer

could see the newly online core, or incoming readers on

that core can see the writer is acquiring a lock. In either

case, the rwlock semantic is maintained. To correctly

make a domain offline from a core, a memory barrier is

also needed before changing the domain to ensure that

all previous operations are visible to other cores before

offline.

Currently, for domains that correspond to processes,

prwlock makes domains online/offline before and after

context switches. However, it is possible to make a do-

main offline at any time if readers are expected to be

infrequent afterward. When outside a domain, readers

must acquire all prwlocks in the slower ACTIVE state.

We choose to leave the choice to lock users as they may

have more insight on the workload.

Function DomainOnline(dom)

1 coreSt ← PerCorePtr(dom.cores, CoreID);

2 coreSt.online = TRUE;

3 MemoryBarrier();

Function DomainOffline(dom)

1 coreSt ← PerCorePtr(dom.cores, CoreID);

2 MemoryBarrier();

3 coreSt.online = FALSE;

Figure 6: Domain management algorithms

Task Online/Offline: A task (e.g., a thread) may be

context switched to other tasks and a task may also be mi-

grated from one core to another core. prwlock uses task

online/offline to handle such operations. When a task

is about to be switched out while holding a prwlock in

PASSIVE mode, it will change its lock status to be AC-

TIVE and increase the active reader counter if it previ-

ously holds a prwlock in passive read mode. This makes

sure that a writer will wait until this task is scheduled

again to leave its critical section to proceed. A task needs

to do nothing when it is scheduled to be online again.

Downgrade/Upgrade: Typical operating systems

usually support downgrading an rwlock from write mode

to read mode and upgrading from read mode to write

mode. Prwlock similarly supports lock downgrading

by setting the current task to be in read mode and then

releasing the lock in write mode. Unlike traditional

rwlocks, upgrading a prwlock from read mode to write

mode may be more costly in a rare case when the up-

grading reader is the only reader, due to the lack of ex-

act information regarding the number of readers. To up-

grade a lock from read to write mode, prwlock tries to

acquire the lock in write mode in the read-side critical

section, but counts one less readers (excluding the up-

grading reader itself) when acquiring the lock.

3.5 User-level Support

While it is straightforward to integrate prwlock in the

kernel, there are several challenges to implementing it in

user space. The major obstacle is that we cannot disable

preemption during lock acquisition at user space. That is

to say, we can no longer use any per-core data structure,

which makes the algorithm in Figure 3 impossible.

To solve this problem, prwlock instead relies on some

kernel support. The idea behind is simple: when it is

necessary to perform any operation on per-core state,

prwlock enters kernel and lets kernel handle it.

Instead of using a per-core data structure to main-

tain passive reader status, we introduce a per-thread data

structure in user space. Each thread should register an

instance of it to the kernel before performing lock opera-

tions, since there is only one thread running on each core

at any time. Such per-thread data structures resemble a

per-core data structure used in the kernel algorithm.

For performance considerations, the reader critical

paths should be entirely in user space, or the syscall over-

head would ruin prwlock’s advantage of short latency.

As a user application may be preempted at any time,

our reader lock may experience several TOCTTOU prob-

lems. Recall that in prwlock a passive lock is maintained

in per-core status while active locks are maintained in the

shared counter; checking and changing the passive lock

mode should be done atomically.

For example, line 2-3 of ReadUnlock algorithm in Fig-

ure 7 check if a reader is a passive one, and if so, release

the passive lock by setting status to FREE. If the thread

is preempted between line 2 and line 3, the lock might

be converted into an active lock and the active count is

increased. When it is later scheduled, the active count

will not be decreased since the decision has already been

made before. As a result, the rwlock becomes imbal-

anced and a writer can never acquire the lock again.

To overcome this problem, we add a preemption detec-

tion field into the per-thread data structure. As is shown

in Figure 7, the reader first sets the status to PASSIVE

and checks if it has been preempted while locking pas-

sively. If so, it decreases the active counter since the lock

is now an active lock.
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Function ReadUnlock(lock) for user-level prwlock

1 st ← PerThreadPtr(lock.rstatus);

2 st.reader ← FREE;

3 if st.preempted then

4 AtomicDec(lock.active);

5 st.preempted ← FALSE;

6 st.version ← lock.version;

Function ScheduleOut(lock)

1 st ← PerThreadPtr(lock.rstatus);

2 if st.reader = PASSIVE then

3 AtomicInc(lock.active);

4 st.preempted ← TRUE;

5 st.reader ← FREE;

6 st.version ← lock.version;

Figure 7: Pseudocode of unlock algorithm with preemption de-

tection

For the write-side algorithm, since it is not possible

to send IPIs in user space, almost all writers should en-

ter kernel to acquire the lock. Fortunately, mode switch

cost between kernel and user space (around 300 cycles)

is typically negligible compared to writer lock acquisi-

tion time (usually more than 10,000 cycles).

3.6 Performance Analysis

Memory barrier: In the common path of read-side crit-

ical section, prwlock requires no memory barrier when

there is no outstanding writer. The only memory bar-

rier required is when a CPU core is about to leave a

lock domain, e.g., switch to another task and make cur-

rent lock domain offline or online. However, domain

online/offline operations are rare in typical execution.

Hence, prwlock enjoys good performance scalability in

common cases.

Writer cost: It appears that using IPIs may signif-

icantly increase the cost of writes, due to the IPI cost,

possible mode switches and disturbed reader execution.

However, the cost of IPIs and mode switches are small

and usually in the scale of several hundreds to one thou-

sand cycles. Further, as a writer usually needs to wait

for a while until all readers have left the critical section,

such costs can be mostly hidden. Though there may be

a few cold cache misses due to disturbing reader execu-

tion, such misses on uncontended cache lines would be

much smaller than the contention on shared states be-

tween readers and writers in traditional rwlocks.

In contrast to traditional rwlocks, the more readers are

currently executing in the read-side critical section, the

faster that a write can finish the consensus and get the

lock in write mode (section 6.2.4). This is because read-

ers will likely see the writer, and thus report immedi-

ately. Such a feature fits well with the common usage of

rwlocks (more readers than writers).

Space overhead: Since prwlock is essentially a dis-

tributed rwlock, it needs O(n) space for a lock instance.

More specifically, current implementation needs 12 bytes

(8 for version and 4 for reader status) per core per lock

in order to maximize performance. It is also possible to

pack a 7 bit version and a 1 bit status into one byte to save

space. Another several bytes are needed to store writer

status, whose exact size depends on the specific writer

synchronization mechanism used. Further, an additional

1 byte per core is needed to store domain online status to

support the lock domain abstraction.

By using the Linux kernel’s per-cpu storage mecha-

nism, a lock’s per-cpu status could be packed into the

same cache line as other per-cpu status words. Compared

with other scalable rwlock algorithms (e.g. brlock, SNZI

rwlock, read-mostly lock), prwlock imposes similar or

lower space overhead.

Memory consistency model requirement: As

prwlock relies on a series of happened-before relation-

ship of memory operations, it requires that memory store

operations are executed and become visible to others in

issuing order (TSO consistency). Fortunately, this as-

sumption holds for many commodity processor architec-

tures like x86(64), SPARC and zSeries.

4 DECENTRALIZED PARALLEL WAKEUP

Issues with centralized sequential wakeup:

Sleep/wakeup is a common OS mechanism that al-

lows a task to temporarily sleep to wait until a certain

event happens (e.g., an I/O event). Operating systems

such as Linux, FreeBSD and Solaris use a shared queue

to hold all waiting tasks. It is usually the responsibility

of the signaling task to wake up all waiting tasks. To do

this, the signaling task first dequeues the task from the

shared task queue, and then does something to prepare

waking up the task. Next, the scheduler chooses a core

for the task and inserts the task to the percpu runqueue.

Finally, the scheduler sends a rescheduling IPI to the

target core so that the awakened task may get a chance

to be scheduled. The kernel will repeat sending IPIs

until all awakened tasks have been rescheduled.

There are several issues with such a centralized, se-

quential wakeup mechanism. First, the shared waiting

queue may become a bottleneck as multiple cores try-

ing to sleep may contend on the queue. Hence, our first

step involves using a lock-free wakeup queue so that the

lock contention can be mitigated. However, this only

marginally improves performance.

Our further investigation uncovers that the main per-

formance scalability issue comes from the cascading

wakeup phenomenon, as shown in Figure 8. When a

writer leaves its write-side critical section, it needs to

wake up all readers waiting for it. As there are multi-

ple readers sleeping for the writer, the writer wakes up

all readers sequentially. Hence, the waiting time grows
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P#1 writer

P#2 idle reader1

P#3 idle reader2

P#4 idle reader3

writer

idle reader1

idle reader2

idle reader3

TimeTime

Figure 8: Issue with centralized, sequential wakeup (left) and

how decentralized parallel wakeup solve this problem (right).
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Figure 9: Key data structure and state transition graph of de-

centralized parallel wakeup in each core.

linearly with the number of readers.

Decentralized parallel wakeup: To speed up this

process, prwlock distributes the duty of waking up tasks

among cores. In general, this would risk priority inver-

sion, but all prwlock readers always have equal priority.

Figure 9 shows the key data structure used in the de-

centralized parallel wakeup. Each core maintains a per-

core wakeup queue (PWake-queue) to hold tasks sleep-

ing on such a queue, each of which sleeps on a wakeup

condition word. When a running task is about to sleep

(step 1), it will be removed from the per-cpu runqueue

and inserted to the per-cpu wakeup queue. Before enter-

ing the scheduler, if the kernel indicates that there is a

pending request (e.g., by checking the wakeup counter),

each core will first peek the PWake-queue to see if there

is any task to wake up by checking the status word. If

so, it will then insert the task to runqueue. This may add

some cost to the per-cpu scheduler when there are some

pending wakeup requests. However, as there are usu-

ally only very few tasks waiting in a single core, the cost

should be negligible. Further, as all operations are done

locally in each core, no atomic instructions and memory

barriers are required. Finally, as a task generally wakes

up on the core that last executed it, this task may ben-

efit from better locality in both cache and TLBs. Af-

ter checking the PWake-queue, each core will execute its

scheduler (step 2) to select a task to execute (step 3).

As the new wakeup mechanism may require a core to

poll the wakeup queue to reschedule wakeup tasks in the

per-core scheduler, it may cause waste of power when

there are no runnable tasks in a processor. To address this

problem, our wakeup mechanism lets each idle core use

the mwait mechanism1 to sleep on a global word (step

4). When a writer finishes its work and signals to wake

up its waiting tasks, the writer touches the word to wake

up idle cores, which will then start to check if any tasks

in the wakeup queue should be wakened up.

5 IMPLEMENTATION AND APPLICATIONS

We have implemented prwlock on several versions of

Linux, and integrated it with the Linux virtual memory

system by replacing the default rwlock. The porting ef-

fort among different versions of Linux is trivial and one

student can usually finish it in less than one hour.

Linux address space: As prwlock is still an rwlock, it

can trivially replace the original rwlock in Linux virtual

memory subsystem. We write a script to replace more

than 600 calls to mmap sem. We add several hooks to

process fork, exec, exit, wakeup and context switch. The

prwlock library comprises of less than 300 LoC and re-

quires manual change of less than 30 LoC other than the

automatically replaced calls to mmap sem. This is sig-

nificantly less than the prior effort (around 2,600 LoC

for page fault handling on anonymous memory mapping

only) [10], yet with a complete replacement.

User-level prwlock and RCU: We have also imple-

mented user-level prwlock, which comprise about 500

LoC. We further used the consensus protocol of prwlock

to implement quiescence detection to implement a user-

level RCU; this has better read-side throughput and faster

quiescence detection than previous user-level quiescence

detection mechanisms (section 6.3). We modified a fa-

mous database system named Kyoto Cabinet [17], by re-

placing a rwlock with prwlock to protect its data tables.

6 EVALUATION

6.1 Evaluation Setup

Kernel prwlock: We use three workloads that place in-

tensive uses of virtual memory: Histogram [24], which is

a MapReduce application that counts colors from a 16GB

bitmap file; Metis [19] from MOSBENCH [6], which

computes a reverse index for a word from a 2GB Text file

residing in memory; and Psearchy [6], a parallel version

of searchy that does text indexing. They represent differ-

ent intensive usages of the VM system, whose ratio be-

tween write (memory mapping) and read (page fault) are

small, medium and large. We also implemented a con-

current hashtable [25] in kernel as a micro-benchmark to

characterize prwlock and its alternatives.

User-space prwlock: We use several micro-

benchmarks to compare prwlock with several alterna-

tives like brlock and user-level RCU. As prwlock has a

user-level RCU library, we also compare its performance

1mwait/monitor are x86 instructions that setup and monitor if an

memory location has been touched by other cores.
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to traditional signal-based user space RCU [14]. To show

that prwlock can scale up user-space applications, we

also evaluated the Kyoto Cabinet database using prwlock

and the original rwlock.

As the performance characteristic that prwlock relies

on are similar for Intel and AMD machines, we mainly

run our tests on a 64-core AMD machine, which has four

2.4 GHZ 16-core chips and 128 GB memory. For each

benchmark, we evaluate the throughput in a fixed time

and collect the arithmetic mean of five runs.

6.2 Kernel-level prwlock

6.2.1 Application Benchmarks

We compare the performance of prwlock with several al-

ternatives, including the default rwlock in Linux for vir-

tual memory, percpu read-write lock [5], and an RCU-

based VM design [10] (RCUVM). We are not able to di-

rectly compare prwlock with brlock as it has no sleeping

support. As RCUVM is implemented in Linux 2.6.37,

we also ported prwlock to Linux 2.6.37. As different

kernel versions have disparate mmap and page fault la-

tency, we use the Linux 2.6.37 kernel as the baseline

for comparison. For the three benchmarks, we present

the performance scalability for Linux-3.8 (L38), percpu-

rwlock (pcpu-38) and prwlock on Linux 3.8 (prw-38), as

well Linux 2.6.37 (L237), RCUVM (rcu) and prwlock

on Linux 2.6.37 (prw-237) accordingly.

Histogram: As histogram is a page-fault intensive

workload and the computation is very simple, it eventu-

ally hits the memory wall after 36 cores on Linux 3.8 for

both percpu-rwlock and prwlock, as shown in Figure 10.

Afterwards, both prwlock and percpu-rwlock show sim-

ilar performance thrashing, probably due to memory bus

contention. Percpu-rwlock scales similarly well and is

with only a small performance gap with prwlock; this is

because both have very good read-side performance. In

contrast, the original Linux cannot scale beyond 12 cores

due to contention on mmap sem. As a result, prwlock

outperforms Linux and percpu-rwlock by 2.85X and 9%

respectively on 64 cores.

It was quite surprising that prwlock significantly out-

performs RCUVM. This is because currently RCUVM

only applies RCU to page fault on anonymous pages,

while histogram mainly faults on a memory-mapped

files. In such cases, RCUVM retries page fault with

the original mmap sem and thus experiences poor per-

formance scalability. Though RCUVM can address this

problem by adding RCU support for memory-mapped

files, prwlock provides a much easier way to implement

and reason about correctness due to its clear semantic.

Metis: Metis has relatively more mmap operations

(mainly to allocate memory to store intermediate data),

but is still mainly bounded by page fault handling

on anonymous memory mapping. As shown in Fig-

ure 11, prwlock performs near linearly to 64 cores with

a speedup over percpu-rwlock and original Linux by

27% and 55% in 64 cores accordingly. This is mainly

due to scalable read-side performance and small write-

side latency. There is a little bit performance gap with

RCUVM, as RCUVM further allows a writer to proceed

in parallel with readers.

Psearchy: Psearchy has many parallel mmap opera-

tions from multiple user-level threads, which not only

taxes page fault handler, but also mmap operations. Due

to extended mmap latency, percpu-rwlock cannot scale

beyond 4 cores, as shown in Figure 12. In contrast,

prwlock performs similarly with Linux before 32 cores

and eventually outperforms Linux after 48 cores, with

a speedup of 20% and 5.63X over Linux and percpu-

rwlock for Linux 3.8. There is a performance churn

between 32 and 48 cores for Linux, probably due to

the contention pattern changes during this region. For

Linux 2.6.37 with smaller mmap latency, prwlock per-

forms similarly with Linux under 48 cores and begins

to outperform Linux afterwards. This is due to the con-

tention over rwlock in Linux, while prwlock’s excellent

read-side scalability makes it still scale up.

As psearchy is a relatively mmap-intensive workload,

prwlock performs worse than RCUVM as RCUVM al-

lows readers to proceed in parallel with writers. Under

64 cores, prwlock is around 6% slower than RCUVM.

Psearchy can be view as a worst case for prwlock and

we believe this small performance gap is worthwhile for

much less development effort.

6.2.2 Benefits of Parallel Wakeup

Figure 13 using the histogram benchmark to show how

parallel wakeup can improve the performance of both

RCUVM and original Linux. Parallel wakeup boosts

RCUVM by 34.7% when there are multiple readers wait-

ing. prwlock improves the performance of original Linux

by 47.6%. This shows that parallel wakeup can also be

separately applied to Linux to improve performance.

We also collected the mmap and munmap cost for both

Linux and prwlock, which are 934us, 1014us and 567us,

344us. With the fast wakeup mechanism, the cost for

Linux has decreased to 697us and 354us.

6.2.3 Benefits of Eliminating Memory Barriers

We use a concurrent hashtable [25] to compare prwlock

with RCU, rwsem and brlock. Figure 16 illustrates the

performance. RCU has a nearly zero reader overhead and

outperform all rwlocks. The throughput of rwsem van-

ishes because of cache contention. Thanks to elimination

of memory barriers, prwlock shows higher throughput

than brlock. More tests reveal that the lookup overhead

mainly comes from cache capacity misses while access-

ing hash buckets. Prwlock’s speedup over brlocks would
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Figure 10: Histogram throughput scalability for original

Linux, percpu-rwlock, prwlock on Linux 3.8
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Figure 11: Metis throughput scalability for original

Linux, percpu-rwlock, prwlock on Linux 3.8
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Figure 12: Psearchy throughput scalability for original

Linux, percpu-rwlock, prwlock on Linux 3.8
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Figure 13: Benefit of parallel wakeup for Histogram.
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Figure 15: Benefit of prwlock for an in-memory DB
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Figure 17: Resize latency of hashtable
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Figure 18: Relation between reader/writer throughput

be much larger if there was a cache hit (not shown here).

By using rwlocks instead of RCU, resizing the

hashtable is much simpler and faster as all readers are

blocked during resizing. Figure 17 presents the total

latency to shrink and grow the hash table on different

concurrency levels. Rwlocks shows up to two orders of

magnitude shorter resizing latency compared to RCU. As

hashtable resizes have negative impact on lookup per-

formance, shorter resize latency is desirable to main-

tain a stable lookup performance. Prwlock only shows

marginally better performance compared to other two

rwlocks, as in this test most of the time is spent in critical

section rather than writer lock acquisition.

6.2.4 Critical section efficiency

To better characterize different rwlocks, we also evalu-

ate their raw critical section overhead (lock/unlock pair

latency), which is shown in Table 3. prwlock shows best

reader performance as its common path is simple and

has no memory barriers. It is interesting that prwlock

has much higher writer latency when there is no reader,

since the writer has to use IPIs to ask every online core to

report. Though rmlock (Read-Mostly Lock in FreeBSD)

also eliminates memory barriers in reader common paths,

its reader algorithm is more complex than prwlock, and

thus results in higher reader latency. Writer of rwsem

(Linux’s rwlock) performs well for few readers, but suf-

fers from contention with excessive readers.

brlock rmlock rwsem prwlock

Reader latency (1 reader) 58 46 107 12

Reader latency (64 readers) 58 46 20730 12

Writer latency (0 reader) 17709 136 100 65511

Writer latency (63 readers) 89403 622341 3235736 6322

Table 3: Critical section efficiency (average of 10 millions runs)

6.3 User-level Prwlock

Figure 18 shows the impact of writer frequency on reader

throughput for several locking primitives, by running 63

reader threads and 1 writer thread. Writer frequency

is controlled by varying the delay between two writes,

which is similar done as Desnoyers et al. [14]. Note that

1 writer is the worst case of prwlock since if there is more

than 1 writer, the writer lock could be passed among writ-

ers without redoing consensus. To compare the time for

a consensus, we fixed the batch size of both RCU algo-
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rithms to 1. That means they must wait a grace period

for every update.

Prwlock achieves the highest writer rate. This con-

firms that our version-based consensus protocol is more

efficient than prior approaches. Prwlock’s read side per-

formance is similar to RCU, and notably outperforms br-

lock, mainly because prwlock requires no memory bar-

riers in reader side. Parallel wakeup also contributes

to prwlock’s superior performance. Since it improves

reader concurrency, prwlock is able to achieve higher

reader throughput when there are many writers. Writer

performance is also greatly improved since wakeup is of-

floaded to each core.

We can also notice that prwlock-based RCU performs

consistently better than the signal-based user-level RCU.

Thanks to prwlock’s kernel support, the reader-side al-

gorithm of prwlock RCU is simpler, which results in a

higher reader throughput. Besides, prwlock-RCU has or-

ders of magnitude higher writer rate than signal-based

RCU, due to its fast consensus protocol.

We further vary the batch size to study RCU perfor-

mance, as shown in Figure 14. Prwlock-RCU reaches its

peak performance before the batch size reaches 100 and

performs much better when the batch size is less than

1000. Small batch size helps control the memory foot-

print since it allows faster reclamation of unused objects.

Kyoto Cabinet: Figure 15 shows the improvement of

prwlock over using the original pthread-rwlock. As the

workload for different number of cores is different, the

increasing execution time with core does not mean poor

scalability. For all cases, prwlock outperforms original

rwlock and the improvement increases with core count.

Under 64 cores, prwlock outperforms pthread-rwlock by

7.37X (124.8s vs. 920.8s). The reason is that the work-

load has hundreds of millions read accesses and pthread-

rwlock incurs high contention on the shared counter,

while prwlock places no contention in the reader-side.

7 CONCLUSIONS AND FUTURE WORK

This paper has described passive reader-writer lock, a

reader-writer lock that provides scalable performance for

read-mostly synchronization. Prwlock can be imple-

mented in both kernel and user mode. Measurements on

a 64-core machine confirmed its performance and scala-

bility using a set of application benchmarks that contend

kernel components as well as a database. In future work,

we will investigate and optimize prwlock in a virtualized

environment (which may have higher IPI cost).
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Abstract

Application virtual address space is divided into pages,
each requiring a virtual-to-physical translation in the
page table and the TLB. Large working sets, common
among modern applications, necessitate a lot of transla-
tions, which increases memory consumption and leads
to high TLB and page fault rates. To address this prob-
lem, recent hardware introduced support for large pages.
Large pages require fewer translations to cover the same
address space, so the associated problems diminish.

We discover, however, that on systems with non-
uniform memory access times (NUMA) large pages may
fail to deliver benefits or even cause performance degra-
dation. On NUMA systems the memory is spread across
several physical nodes; using large pages may contribute
to the imbalance in the distribution of memory controller
requests and reduced locality of accesses, both of which
can drive up memory latencies.

Our analysis concluded that: (a) on NUMA systems
with large pages it is more crucial than ever to use mem-
ory placement algorithms that balance the load across
memory controllers and maintain locality; (b) there are
cases when NUMA-aware memory placement is not suf-
ficient for optimal performance, and the only resort is to
split the offending large pages. To address these chal-
lenges, we extend an existing NUMA page placement
algorithm with support for large pages. We demonstrate
that it recovers the performance lost due to the use of
large pages and makes their benefits accessible to appli-
cations.

1 Introduction

Applications with large memory working sets require
many virtual-to-physical address translations in page ta-
bles and TLBs. This drives up physical RAM con-
sumption, increases TLB miss rate, and hurts perfor-
mance [1][2][10]. According to one report, a large Or-

acle DBMS installation with 500 concurrent connections
consumed 7GB of RAM for page tables alone! [5]. To
address this problem, most modern hardware and OS in-
troduced support for large pages. On x86 systems large
pages are typically 2MB (512 times larger than regularly-
sized 4KB pages), and support for 1GB pages is on the
way1. Using larger pages requires fewer translations to
cover the address space and diminishes the pressure on
the TLB and physical memory.

While large pages are so crucial for performance of
large-memory systems, they, unfortunately, also have
downsides. Previous work reported and addressed in-
creased memory footprints and physical memory frag-
mentation [13]. In this work, we report on a new prob-
lem: large pages hurt performance on NUMA systems.

Modern NUMA systems are comprised of several pro-
cessor nodes each containing a multicore CPU and a
local DRAM, all inside a single physical server. The
nodes are connected by the high-speed interconnect into
a cache-coherent system, forming an abstraction of a sin-
gle globally addressable memory. While CPUs can trans-
parently allocate and access the memory on any node,
accesses to remote nodes traverse the interconnect and
access a remote memory controller, incurring higher la-
tency and contributing to congestion on the interconnect.
To achieve good performance on NUMA systems, we
need to (1) maximize the fraction of memory accesses
going to local nodes and (2) balance the traffic across
the nodes and interconnect links. Unbalanced distribu-
tion of memory requests can increase the memory access
latency on the overloaded controller to as many as 1000
cycles, compared to about 200 cycles on a not overloaded
controller [6].

In this paper we show that large pages can exacer-
bate harmful NUMA effects, such as poor locality and
imbalance. Using large pages makes the unit of mem-

11GB pages are already supported by the hardware; support by the
OS is still nascent, so few applications are able to use them at the time
of the writing.

1
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ory management (a page) more coarse. As a result, it is
more likely that many frequently accessed memory ad-
dresses happen to map to the same physical page and
overload the memory node hosting it – the so-called hot
page effect. The hot-page effect cannot be addressed by
page migration and balancing; page splitting must be per-
formed prior to any attempts to rebalance memory. Like-
wise, large pages lead to more frequent page-level false
sharing among threads, where threads access different
data on the same page. False sharing leads to poor local-
ity, which cannot be addressed by page migration alone.

In this work we:
• Quantify the performance degradation due to large

pages on NUMA systems. We find that they affect
between 25% and 30% of applications in our bench-
mark set and cause degradations between 5% and
43%.

• Demonstrate that these performance losses are due
to NUMA factors, such as poor locality and imbal-
ance.

• Show that the problem can be addressed using a
combination of old and new techniques.

Our solution consists of two components: an existing
NUMA-aware page placement algorithm Carrefour [6],
and large-page extensions to Carrefour: Carrefour-LP.
For some of the affected applications Carrefour alone is
able to recover the lost performance, but in other cases
Carrefour is ineffective due to the hot-page effect and
page-level false sharing.

Even though hot pages and false sharing touched only
a couple of benchmarks in our set, these effects will be-
come pervasive on systems with much larger pages (e.g.,
1GB), which are becoming common. Therefore, we
implemented Carrefour-LP which addresses these prob-
lems by dynamically splitting large pages as needed.
For applications affected by hot pages and false shar-
ing, Carrefour-LP improves performance by 10%-80%
relative to Carrefour alone. Carrefour together with
Carrefour-LP significantly diminish or completely elim-
inate the performance degradation introduced by large
pages and improve performance of some applications by
2-3× relative to Linux with large pages.

The rest of the paper is structured as follows: Section 2
motivates the work by presenting performance effects of
using large pages on NUMA systems, Section 3 presents
the solution, Section 4 evaluates it, Section 5 discusses
related work, and lastly Section 6 summarizes the paper.

2 Large Pages and Adverse NUMA Effects

2.1 Experimental platform
For our experiments, we used two different server-class
machines. Machine A has two 1.7GHz AMD Opteron

6164 HE processors, with 12 cores per processor, and
64GB of RAM. The system is equally divided into four
NUMA nodes (i.e., six cores and 12GB of RAM per
node). Machine B has four AMD Opteron 6272 proces-
sors, each with 16 cores (64 cores in total), and 512GB
of RAM. It has eight NUMA nodes – 8 cores and 64GB
of RAM per node. Both machines have HyperTransport
3.0 interconnect links.

We are running on Linux 3.9 and are using Trans-
parent Huge Pages (THP) for large page allocation2.
THP works by backing allocations of anonymous mem-
ory with 2MB pages whenever possible. Other kinds of
memory, such as memory mapped files, are unaffected by
THP and use 4KB pages. THP also uses a kernel thread
to periodically scan for free memory regions that are at
least 2MB in size, which are then used to replace groups
of existing 4KB pages.

We used several benchmark suites representing a vari-
ety of different workloads: the NAS Parallel Benchmarks
suite which is comprised of numeric kernels, MapReduce
benchmarks from Metis, SSCA v2.2 (a graph process-
ing benchmark) with a problem size of 20, and SPECjbb.
From the NAS benchmark suite we picked the bench-
marks that ran for at least 15 seconds. The memory us-
age of the benchmarks ranges from 518MB for EP from
the NAS suite to 34,291MB for IS from NAS.

2.2 Large Pages on Linux

Figure 1 compares the performance of 4KB pages and
2MB pages using THP. We can see that THP increases
performance (by up to 109%) for several benchmarks on
both machines (e.g. WC, WR, WRMEM, and SSCA),
but also significantly decreases performance by as much
as 43% in some cases. CG, UA, and SPECjbb are all
negatively affected by THP. Therefore, 2MB pages are
not universally beneficial and neither are 4KB pages, so
there is no “one size fits all.”

To understand this phenomenon, we recorded two
metrics that represent the potential benefits of large
pages: the number of L2 cache misses caused by page ta-
ble walks (obtainable from hardware performance coun-
ters), and the maximum time spent in the page fault han-
dler by any core. L2 misses due to page table walks is
a good indicator for the effect of TLB misses on per-
formance. We expect large pages to increase the TLB
coverage and reduce page table sizes. As a result, we ex-
pect the number L2 cache misses due to page table walks
to drop when we use large pages. Similarly, large pages
will reduce the number of page faults for allocations and

2Linux also allows using large pages via libhugetlbfs, but the latter
required recompiling applications and pre-allocating memory for large
pages, which was inconvenient, and, moreover, did not perform better
than THP in our experiments.
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thus the time spent in the page fault handler.
We also monitored two metrics related to NUMA ef-

ficiency: the local access ratio (LAR), which is the per-
centage of accesses to local memory, and the traffic im-
balance on the memory controllers. Traffic imbalance
is defined as the standard deviation of the memory re-
quest rate across the controllers, expressed as the percent
of the mean. For memory intensive applications, a low
LAR and a high imbalance signify a NUMA issue.

Table 1 shows the profiling results for a subset of inter-
esting applications. As expected, applications that ben-
efited from 2MB pages in Figure 1 (WC and SSCA)
have fewer L2 misses due to page table walks, and for
WC significantly less time spent in the page fault han-
dler. The effects can be dramatic. For example, with
SSCA on machine A the percentage of L2 misses due
to page table walks is decreased from 15% to 2% when
using 2MB pages, which results in a 17% performance
increase. WC, which experiences a similar decrease in
L2 misses but also a large decrease in time spent on page
faults, has its performance increased more than two-fold
on machine B.

The two other profiled benchmarks – CG and UA –
perform much worse with 2MB pages. The profiling re-
veals that the degradation is caused by NUMA effects.
With CG and 4KB pages, the load on the memory con-
trollers is almost perfectly balanced, but with 2MB pages
the imbalance is 20% on machine A and 59% on machine
B. For UA, the problem is that the LAR decreases when
using large pages, from about 88% to around 66%.

SPECjbb presents an interesting case. While the data
in Figure 1 suggests that it does not benefit from large
pages, profiling reveals that using large pages actually
decreases the percent of L2 misses due to page table
walks. At the same time, SPECjbb suffers from NUMA
issues: the imbalance rises from 16% to 39% with large
pages. Therefore, SPECjbb could benefit from large
pages if NUMA effects were reduced.

3 Solutions

The previous section demonstrated that using large pages
may introduce NUMA issues, which may either degrade
performance relative to small pages (as they did for CG
and UA) or leave the performance unchanged but pre-
vent an application from enjoying the benefits of large
pages (as they did for SPECjbb). In this section we first
demonstrate that using a NUMA-aware page placement
algorithm eliminates the NUMA issues for some appli-
cations, motivating the use of NUMA-aware page place-
ment with large pages.

We then identify two new problems that a placement
algorithm unaware of large pages does not address: the
hot-page effect and the page-level false sharing. These

effects, while affecting only two applications in our ex-
periments, will become especially important as much
larger pages (e.g., 1GB) come into use. To address them,
we introduce large-page extensions (LP) to an existing
NUMA placement algorithm.

For clarity of presentation, from now on we will fo-
cus on those applications that experience NUMA issues
when large pages are used. Specifically, if the LAR or
the imbalance is made worse by more than 15% by using
large pages as opposed to small ones on either machine,
the application is selected for presentation, otherwise it
is omitted. The selected applications are: CG.D, LU.B,
UA.B, UA.C, matrixmultiply, wrmem, SSCA, SPECjbb.
For completeness, and to demonstrate that our solutions
do not hurt the applications they cannot help, we do in-
clude performance results for the excluded applications
at the end of Section 4.

3.1 Page balancing is not enough

We used a NUMA-aware page balancing algorithm Car-
refour, which was shown to perform better than other
similar solutions [6]. Carrefour works by gathering ac-
cess samples for memory pages and then choosing a host
node for a page based on the samples. If all of the sam-
ples for a page originated from a single node, then the
page is migrated to that node. If the samples came from
multiple nodes, then the page is interleaved (i.e. migrated
to a random node). Carrefour also includes thresholds
based on hardware counters, so that it is only enabled if
NUMA problems are detected such as when the local ac-
cess ratio is low or the imbalance on memory controllers
is high.

We ran Carrefour in the kernel configured with 2M
pages (Carrefour-2M). Figure 2 shows the performance
of Carrefour-2M compared to Linux with 2M pages (la-
beled as THP) relative to Linux with 4K pages (labeled
as Linux). We observe that while Carrefour-2M does im-
prove performance for some applications, it fails to solve
the problem across the board. For SPECjbb, Carrefour-
2M addresses the NUMA issue; as shown in Table 2 it
restores the balance on memory controllers that was in-
troduced by large pages and improves the LAR.

At the same time, Carrefour-2M fails to improve per-
formance for UA and CG. To understand why, we show
profiling data for these applications in Table 2. We report
five metrics: the percentage of total accesses to the most
used page (PAMUP), the number of hot pages (NHP)
defined as pages comprising more than 6% of the total
accesses3, the percentage of memory accesses to pages

3In order to perfectly balance the load on a 8-node NUMA ma-
chine, each node must be the target of 12.5% of the total memory ac-
cesses. Thus, we consider that if a page represents more than half of
this amount, it is likely to create imbalance.
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Figure 1: THP performance improvement over Linux on (a) machine A and (b) machine B. THP sometimes perform
better than Linux, sometimes worse.

Perf. incr. Time spent in page fault % L2 misses due Local access Imbalance
THP/4k handler (% of total time) to page table walk ratio (%) (%)

(%) Linux THP Linux THP Linux THP Linux THP
CG.D (B) -43 2182ms (0.1%) 445ms (0%) 0 0 40 36 1 59
UA.C (B) -15 102ms (0.2%) 53ms (0.1%) 0 0 88 66 14 12

WC (B) 109 8731ms (37.6%) 3682ms (32.3%) 10 1 50 55 147 136
SSCA.20 (A) 17 90ms (0%) 147ms (0.1%) 15 2 25 26 8 52
SPECjbb (A) -6 8369ms (2.1%) 5905ms (1.5%) 7 0 12 15 16 39

Table 1: Detailed analysis of various application on machine A and B. The machine type is indicated in parentheses
next to the name of the benchmark.

shared by at least two threads (PSP), the percentage of
accesses to local memory (LAR), and the traffic imbal-
ance on the memory controllers.

The results for CG reveal that there is a hot page prob-
lem. Large pages cause the heavily accessed regions of
the address space to be coalesced into a small number of
hot pages (the PAMUP significantly increases), and be-
cause there are fewer hot pages than NUMA nodes it is
impossible to balance them.

UA does not have a hot page issue, but it does have
more pages that are shared among threads when large
pages are used (the PSP significantly increases). This
happens because each page holds more data and is thus
more likely to contain data used by multiple threads.
Since the threads do not share data, but share the page,
we refer to this problem as page-level false sharing.

Carrefour-2M is then forced to interleave these pages
whereas if there were less sharing the pages could be
placed on the nodes where they are most heavily used for
maximum locality. As a result, Carrefour-2M delivers a
lower LAR than Linux with small pages.

In summary, Carrefour-2M is only able to address
NUMA issues induced by large pages in cases where
they are not caused by the hot-page effect and page-level
false-sharing.

While these problems affected only two applications
in our experiments, they will become pervasive as pages
much larger than 2MB come into use. 1GB pages are al-
ready supported by the hardware; applications like large
DBMS clearly motivate their use [5]. We did not evaluate
1GB pages, because they are poorly supported in Linux.
1GB pages are not compatible with THP, and while in
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Figure 2: Performance improvement of Carrefour-2M and THP over Linux on applications whose NUMA metrics are
affected by THP (2MB pages). Carrefour-2M is not always able to solve the problems for applications that suffer from
THP.

theory it is possible to use them with lighugetlbfs, that
has many challenges. First of all, the implementation is
unreliable. We were not able to enforce the use of 1GB
pages with NAS applications and observed many crashes
with the Metis suite (because the latter uses a custom
memory allocator). Second, the splitting of large pages,
which is crucial to our solution, is not supported by lib-
hugetlbfs and implementing it would require a significant
effort.

However, since the use-case for very large pages is
definitely there, they will become more common as
the OS support improves. Then, the hot-page effect
and page-level false sharing will become more common
(Section 4.4 provides some preliminary data). To ad-
dress these problems, we propose large-page extensions
to Carrefour.

3.2 Carrefour-LP

Intuition suggests two basic solutions to the problem:
conservative – prevent the problem by only creating large
pages when necessary, or reactive – start with large pages
and fix NUMA problems when they are observed. Each
approach has potential benefits and drawbacks. The
conservative approach can avoid NUMA related perfor-
mance degradation but can also miss out on the benefits

Linux THP Carrefour
2M

SPECjbb

PAMUP 2% 6% 6%
NHP 0 0 0
PSP 10% 36% 36%
Imbalance 16% 39% 19%
LAR 26% 28% 27%

CG.D

PAMUP 0% 8% 8%
NHP 0 3 3
PSP 18% 34% 34%
Imbalance 0% 20% 20%
LAR 45% 45% 45%

UA.B

PAMUP 6% 6% 6%
NHP 0 0 0
PSP 16% 70% 70%
Imbalance 9% 15% 17%
LAR 90% 61% 58%

Table 2: Proportion of accesses to the most-used page
(PAMUP) in %, number of hot pages (NHP), proportion
of memory accesses to shared pages (PSP) in %, Imbal-
ance in % and local access ratio (LAR) in % for Linux,
THP and Carrefour-2M, on machine A (24 cores).

of large pages. On the other hand, the reactive approach
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will benefit from large pages, but must be able to quickly
and accurately detect NUMA issues and must pay the
overhead of fixing them.

We found that a good algorithm must be a combina-
tion of these approaches. The reactive component of
our algorithm continuously monitors the hardware coun-
ters looking for the presence of NUMA effects under
large pages, applies the page balancing techniques of
Carrefour and splits the large pages if the latter are in-
effective. The conservative component of the algorithm
continuously monitors the virtual memory metrics and
re-enables large pages if they are expected to deliver ben-
efit but were previously disabled.

We also found that it is more practical and involves
less overhead to enable large pages in the beginning and
disable them later if they are deemed harmful. In particu-
lar, many applications have intensive memory-allocation
phases at the very beginning of the program that suffer
from lock contention if small pages are used.

Our full algorithm is presented in Algorithm 1.
Lines 4-9 corresponds to the conservative component,
the rest to the reactive component. The algorithm also
details the hardware counter metrics that are being mon-
itored. Since the monitoring is done continuously, the
algorithm caters to phase changes in applications. Below
we describe the rationale behind the decisions made in
the algorithm.

3.2.1 Reactive component

The job of the reactive component is to disable large
pages when they are harmful to the extent that even
Carrefour-2M’s page-balancing techniques cannot ad-
dress the performance degradation. To that end, it es-
timates the local access ratio (LAR), a vital metric for
detecting NUMA issues, with and without Carrefour and
large pages.

We use AMD’s instruction-based sampling (IBS)4 to
sample memory accesses to pages, and to learn whether
the access was made from a local or a remote node. We
only consider pages that have at least one sample where
the access was serviced from DRAM, so that our deci-
sions are not affected by pages that are easily cached.
From the IBS samples, we estimate the LAR that would
be obtained if the shared pages were migrated to a ran-
dom node and if non-shared pages were migrated to the
local node (i.e. interleaving and migrating pages with
the Carrefour-2M algorithm). We also calculate the LAR
that would be obtained if the same technique were used
but with all of the 2MB pages split into 4KB pages.

Estimating the LAR for various what-if scenarios
(e.g., if a page were migrated or if large pages were split

4Intel systems have a similar facility called PEBS (Precise Event-
Based Sampling).

into regular-sized) is trivial with IBS samples. IBS gives
us data addresses and the node from which they were
accessed. So we can compute the current LAR as well
as the LAR that would be obtained if the pages where
placed on different nodes. Similarly, we can map the
data addresses to 4KB pages and compute the same met-
rics for the scenario if the large pages were split.

If, based on our estimates, the LAR can be improved
by 15% with Carrefour-2M only and without splitting the
pages, we simply run Carrefour-2M. Otherwise, if split-
ting pages would improve the LAR by at least 5%, then
all shared 2MB pages are demoted into 4KB pages. Note
that we are being cautious here: we try to address NUMA
issues by page migration first, and split pages only if ab-
solutely necessary. Splitting pages has overhead and may
hurt applications that need them – hence our decision. In
addition, large pages with more than 6% of the total ac-
cesses (hot pages, as defined in Section 3.1) are split and
the constituent 4KB pages are interleaved.

This part of the algorithm relies on two thresholds.
The first one is the 15% threshold used to decide whether
we can improve the LAR simply by rearranging memory
pages, without having to split large pages. That thresh-
old was relatively easy to set across applications: the key
is to use a relatively large number, since we want to be
rather confident that we can improve performance with-
out having to split pages. The second threshold, the 5%
performance gain that we expect from splitting pages,
needs to be any non-negligible number that would justify
the splitting. Again, that threshold was relatively easy to
tune across applications.

In the algorithm, we use the LAR computed per-
application. Another option would be to use the LAR
computed per-page, however this was difficult to do, be-
cause existing hardware monitoring facilities prevent us
from obtaining enough samples to accurately compute
per-page LAR (and even per-application LAR as ex-
plained in the next section). This is why the algorithm
splits all 2MB pages when it detects the LAR can be im-
proved.

3.2.2 Conservative component

The job of the conservative component is to re-enable
large pages when they have been disabled but monitoring
shows that they would be beneficial again. The conserva-
tive component uses two criteria to determine the benefit
of large pages: the performance impact of TLB misses
(based on the fraction of L2 misses caused by page table
walks) and the maximum percentage of time any core
spends processing page faults. The reason why we con-
sider the time spent processing page faults is that large
pages improve performance by decreasing this time. In-
deed, soft page faults not only take CPU time, but also

6
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Algorithm 1 Large-page Extensions to Carrefour
1: Enable 2MB page allocation and promotion
2: while true do
3: Gather hardware performance counters and IBS

samples for 1 sec
4: if L2 misses due to page table walks > 5% then
5: Enable 2MB page allocation
6: Enable 2MB page promotion
7: else if Max time spent on page faults > 5% then
8: Enable 2MB page allocation
9: end if

10: if Estimated LAR improvement with only Car-
refour > 15% then

11: SPLIT PAGES = false
12: else if Estimated LAR improvement with Car-

refour and splitting pages > 5% then
13: SPLIT PAGES = true
14: end if
15: if SPLIT PAGES = true or 2MB page allocation

is disabled then
16: Split all shared 2MB pages into 4KB pages
17: Disable 2MB page allocation
18: end if
19: Split and interleave 2MB hot pages
20: Interleave and migrate pages with Carrefour
21: end while

incur costly synchronization [3]. The latter is the reason
why we use the maximum fraction as opposed to the av-
erage: lock contention will be determined by the slowest
core that holds page table locks.

The conservative component works as follows. If the
impact of TLB misses is estimated to be greater than a
threshold of 5%, then 2MB page allocation and 2MB
page promotion5 are both enabled via THP. Similarly, if
the time spent in the page fault handler was more than
a threshold of 5%, then 2MB page allocation is enabled
but not 2MB page promotion, since there is little benefit
in promoting the pages on which we had already paid the
cost of page faults.

In order to estimate the impact of TLB misses on per-
formance, we use the fraction of L2 cache misses due
to page table walks. This assumes that TLB misses pri-
marily degrade performance when a page table traversal
causes an L2-cache miss (in that case, the miss is satis-
fied either from the L3 cache or from the DRAM, both
of which are costly), and that the application’s perfor-
mance is dominated by L2 cache misses. Although this
is a coarse approximation, it works well because appli-
cations that experience a lot of cache misses due to page

5Page promotion refers to dynamic consolidation of regular-sized
pages into large pages. It is supported by the default Linux kernel. We
set the frequency for page promotion checks to every 10ms.

table walks are those with large page tables. This implies
that they have large memory footprints, and so they are
memory-intensive. Therefore, it is safe to assume, for
these applications, that variations in performance can be
primarily explained by the number of L2 cache misses.
Conversely, applications with a very small fraction of
L2 cache misses resulting from page table walks are not
memory-intensive, so for them the impact of TLB misses
is negligible.

4 Evaluation

4.1 Performance evaluation
Figure 3 shows performance of Carrefour-LP and THP
relative to Linux with 4K pages. We continue focusing
only on the applications affected by NUMA issues; the
remaining applications are presented for completeness in
Figure 5. Figure 3 shows that Carrefour-LP:

• restores performance of applications that suffered
under large pages and do not stand to benefit from
them: CG.D, UA.B, UA.C,

• improves performance of applications that were ex-
pected to benefit from THP but did not (or did not
benefit fully): SSCA and SPECjbb, both on ma-
chine A,

• does not significantly hurt performance of the appli-
cations where NUMA effects did not cause perfor-
mance degradation under large pages and where no
performance improvements from large pages were
expected (the remaining applications).

We next provide the detailed analysis of Carrefour-
LP. We analyze the contribution to performance improve-
ments of its three components: Carrefour-2M, conserva-
tive and reactive. We demonstrate when and why it is suf-
ficient to just use Carrefour-2M alone and explain how
both conservative and reactive components contribute to
the solution. The performance breakdown is shown in
Figure 4.

Workloads other than CG.C, UA.B and UA.C are not
affected by the hot-page effect and page-level false shar-
ing, so in these cases Carrefour-LP performs similarly to
Carrefour-2M alone. It is able to meet the performance
of Carrefour-2M with minimal overhead (at most 3.7%
on machine A and 2.1% on machine B).

Table 3 demonstrates that Carrefour-LP eliminates the
hot-page effect and page-level false sharing and im-
proves NUMA metrics where Carrefour-2M fails. For
UA, the LAR drops from about 90% to roughly 60% un-
der THP and remains at that low level under Carrefour-
2M. Carrefour-LP is able to restore it almost to the pre-
vious level by dynamically splitting pages.
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Figure 3: Performance improvement on a reduced set of applications of THP and Carrefour-LP over Linux, on (a)
machine A and (b) machine B.
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Figure 4: Performance improvement on a reduced set of applications of Carrefour-2M, the conservative component,
the reactive component and Carrefour-LP over Linux with THP, on (a) machine A and (b) machine B.
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For CG.D, enabling large pages disturbs the perfect
memory-controller balance enjoyed under small pages.
Carrefour-2M is unable to restore it, while Carrefour-LP
restores it almost entirely.

We now analyze the importance of the two compo-
nents in Carrefour-LP. Figure 4 presents the performance
obtained when running Carrefour-2M alone (labeled as
Carrefour-2M), Carrefour-2M with the reactive compo-
nent designed for Carrefour-LP (labeled as Reactive), the
original Carrefour runtime (working on 4kB pages) to-
gether with the conservative component (labeled as Con-
servative), and Carrefour-LP (labeled as Carrefour-LP).
Figure 4 shows that in all cases, enabling the two compo-
nents (as done in Carrefour-LP) is always the best choice
(or close to the best). The conservative component alone
does not solve the problem, because it begins with 4K
pages. For SPECjbb, for example, it does not detect the
need for large pages soon enough, so the performance
is not as good as it could be. We similarly observed
that using the conservative component alone hurts per-
formance of many applications that were not included in
this analysis (but shown in Figure 5) for the same rea-
son: large pages were not enabled soon enough. These
applications have an intense memory allocation phase at
startup, which can benefit greatly from large pages due to
fewer page faults, but the conservative component does
not enable large pages soon enough.

Using the reactive component alone works well on
some applications. For CG.D, it is able to detect the “hot
page” and split it. Similarly, it is also able to split the
falsely shared pages for UA.B and UA.C. However, on
some applications, it fails to bring the maximum perfor-
mance improvement that can be achieved with 2M pages
(e.g. SSCA on machine A and SPECjbb on machine B).
The reason is that the LAR is sometimes misestimated,
and this results in 2M pages being split in applications
that do not suffer from NUMA issues. For instance, on
SSCA, the algorithm predicts a LAR of 59% if large
pages were all split into 4k pages, whereas the actual
LAR obtained after splitting is equal to 25%.

The problem is, in order to estimate the LAR under
regular-sized pages given the data samples collected un-
der large pages, we need to have enough samples on the
constituent sub-pages. Unfortunately, we found it to be
very difficult to gather enough samples; increasing the
sampling rate results in unacceptably high overhead. A
promising solution would be to use Lightweight Profil-
ing (LWP). LWP is an extension of AMD processors
that aims at providing the same level of details as IBS
with less overhead. To reduce the overhead, LWP stores
samples in a ring buffer and only interrupts the proces-
sor when the buffer is full. Unfortunately, on available
AMD processors, LWP is only partially implemented:
LWP samples only contain the instruction pointer of the

sampled instruction and a timestamp. This information
is not sufficient to predict LAR.

Because of these deficiencies in hardware profiling,
the reactive component may make mistakes in deciding
when to split large pages. This is where the conservative
component comes to the rescue and re-creates the large
pages when they are expected to help.

We conclude this section by explaining some perfor-
mance results in Figure 5, which contains applications
where THP did not create any NUMA issues. The key
observation is that the overhead of Carrefour-LP does
not significantly hurt these applications. Moreover, EP.C,
SP.B and pca enjoy better (sometimes much better) per-
formance with Carrefour-LP than with THP. That is be-
cause they had NUMA issues to begin with (which were
not exacerbated by large pages), and so the Carrefour-2M
component of the algorithm helped to address them.

4.2 Overhead assessment

Overhead in Carrefour-LP comes from collecting and
storing IBS samples, computing the metrics based on
these samples, migrating and splitting pages. Overall,
the overhead of Carrefour-LP compared to the reactive
approach is negligible: between 1% and 2% on all ap-
plications (on all machines) except CG (3.2%) and IS
(2.1%) on machine B. Even on these two applications,
the overhead is still within the standard deviation.

Compared to Carrefour-2M, the overhead is also
small. The maximum overhead observed is 3.7% on ma-
chine A (SP.B) and 3.2% on machine B (LU.B), but on
average it is below 2%.

Compared to Linux with 4k pages, Carrefour-LP has
an overhead of less than 3%, except on FT, IS (ma-
chine A) and LU (machine B). This overhead is not spe-
cific to Carrefour-LP but is rather caused by Carrefour-
2M, which spends too much time migrating large pages.
Since our solution is built on top of Carrefour-2M, it also
suffers from the same overhead.

4.3 Discussion

Our assessment of efficacy and downsides of Carrefour-
LP is as follows.

The solution could be much improved if we had a
more accurate way of estimating the LAR. Currently,
with inaccurate estimates, the solution may split and mi-
grate pages when there is no benefit to be gained, which
is why Carrefour-LP degrades performance of LU by
3.5% compared to Carrefour-2M. We believe that the
LAR could be predicted more accurately if we could col-
lect more data samples without additional overhead. A
complete implementation of LWP (i.e., if LWP provided
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Local Access ratio (%) Imbalance (%)
Default THP Carr. Carr. LP Default THP Carr. Carr. LP
Linux 2M Linux 2M

CG.D (B) 40 36 38 39 1 59 69 3
UA.B (A) 90 61 58 85 9 15 17 10
UA.C (B) 88 66 68 82 14 12 9 14

Table 3: NUMA metrics for CG.D on machine B, UA.B on machine A, and UA.C on machine B.
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Figure 5: Performance improvement of THP and Carrefour-LP over Linux on applications whose NUMA metrics are
not affected by THP, on (a) machine A and (b) machine B.

the same kind of samples as IBS) would solve this prob-
lem.

Our earlier implementation had scalability issues on
the system with 64 cores. The reason was that the cen-
tralized data structure where we stored IBS samples had
to be accessed and locked from multiple nodes. We ad-
dressed this problem by maintaining a data structure per
node. The per-node structures are still accessed by mul-
tiple cores, so we may need to revisit this scaling issue
on larger machines. Overall, the algorithm is likely to
scale well because all work generated by an interrupt is
performed independently on each node, so the number of
nodes can grow without creating scalability bottlenecks.

Splitting pages did not create too much overhead, but
the use of the page table lock for THP operations is
clearly a scalability concern. Linux developers are work-

ing on finer grain locks at the time of the writing, so we
hope that this problem will be avoided.

We did not observe many oscillations, where we go
back and forth between splitting and enabling large
pages. Overall, Carrefour-LP seems to be the more
robust than the conservative and the reactive compo-
nents used independently, because it naturally supports
transient states and phase changes by continuously re-
examining its decisions.

4.4 Very Large Pages

Although accessing the very large 1GB pages via lib-
hugetlbfs proved challenging for most applications, we
were able to enable them in SSCA and in streamclus-
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ter (an application from PARSEC)6. We immediately ob-
served the hot-page and page-level false-sharing prob-
lems. With 1GB pages, lots of hot small pages were co-
alesced on a single NUMA node, and the performance
dropped dramatically. For SSCA it degraded by 34%; for
streamcluster by a factor of 4. Neither of these applica-
tions suffered performance degradation when 2M pages
were used. Although preliminary, these data suggest a
much more pervasive presence of NUMA issues when
very large pages are used, and so Carrefour-LP will be-
come even more important in the future.

5 Related Work

5.1 Large pages and TLB performance
Several studies have characterized the effect of TLB
misses and large pages [2][10][15][14][7]. Battachar-
jee and Martonosi [2] specifically looked at the effect
of TLB misses on multicore systems with multithreaded
workloads. They found that some applications, such as
Canneal from the PARSEC benchmark suite, spend up
to 0.7 cycles per instruction on servicing D-TLB misses.
Another study [10] showed performance improvements
of up to 25% in the NAS benchmark suite due to using
large pages. For large-scale HPC applications, Zhang et
al. [15] found that large pages improve communication
performance significantly.

Weisberg and Wiseman [14] used the SPEC CPU2000
benchmarks to evaluate the relationship between page
size and the number of TLB misses. They argue that a
4KB page size is much too small for most applications,
and conclude that a page size of 256KB and a 64-entry
TLB is sufficient to drastically reduce the number of TLB
misses.

Sudan et al. [12] motivate the need for small pages.
They show that using 1KB pages allows optimizing the
usage of the DRAM row-buffer, yielding substantial en-
ergy savings and decreasing the average latency of mem-
ory accesses.

All these works motivate the use of different page
sizes, but none of them highlight or quantify the impact
of NUMA on the performance obtained when using dif-
ferent page sizes.

5.2 Large page support and optimization
Many software systems have been designed that make
large pages easier to use or more effective.

Navarro et al. [9] described an algorithm for operating
system support of large pages that reduces fragmenta-

6The PARSEC suite was not included in our study, because its ap-
plications did not experience performance differences under THP with
2M pages.

tion and does not require memory copies to create large
pages. Using their algorithm, a page fault reserves a
physical memory region of the size of a large page, but
it initially only allocates and maps a small page. Subse-
quent page faults use the reserved space until it has been
completely allocated, at which point the region is pro-
moted to a large page. The algorithm does not attempt to
optimize the placement of large pages.

Cascaval et al. [4] developed a model to predict the
benefit of using large pages on individual data structures
of applications, based on the predicted number of TLB
misses and page faults. The predictions are computed
using hardware counters throughout multiple runs of the
application. The data structures that are predicted to ben-
efit the most from large pages are backed by large pages.
A similar method is described in [11], with the major dif-
ference being that large page promotions are performed
at runtime.

Magee and Qasem [8] also devised a system for re-
stricting the usage of large pages to applications that ben-
efit the most from them. At compile-time, the working-
set size is estimated through static analysis. If the es-
timated working-set size is greater than the coverage of
the target CPU’s TLB, then large pages are used.

A different approach is explored by Basu et al. [1].
Instead of managing the use of large pages at the OS
level, they propose a hardware extension that allows ap-
plications to directly map memory segments. Addresses
within directly mapped segments bypass the TLB and so
translation is nearly free. The segments are conceptually
similar to very large pages and provide similar benefits,
but the authors do not analyze the potential NUMA ef-
fects which would be exacerbated by the large size of the
segments.

In summary, previous works mostly focused on the
limited availability of large pages and on reducing mem-
ory fragmentation. Several systems have been designed
to ensure that applications that benefit from large pages
actually use them, but no existing work has revealed and
addressed the NUMA issues raised by large pages.

6 Conclusion

We demonstrated that using large pages can create or
exacerbate NUMA issues like reduced locality or im-
balance. We showed that these problems can be in
some cases addressed by using a NUMA-aware page
placement algorithm, but the latter stumbles upon two
problems: the hot-page effect and page-level false shar-
ing, which cannot be addressed via page migration.
To address these problems, we implemented Carrefour-
LP: large-page extensions to the NUMA-aware page
placement algorithm Carrefour. Our results show that
Carrefour-LP restores the performance when it was lost
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due to large pages and makes their benefits accessible to
applications.

Solutions like Carrefour-LP will be even more impor-
tant in the future, when very large pages (1GB in size)
will be in widespread use.
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Abstract
Bugs often lurk in code that is infrequently executed (i.e.,
cold code), so testing and debugging requires tracing
such code. Alas, the location of cold code is generally
not known a priori and, by definition, cold code is elu-
sive during execution. Thus, programs either incur un-
necessary runtime overhead to “catch” cold code, or they
must employ sampling, in which case many executions
are required to sample the cold code even once.

We introduce a technique called bias-free sampling
(BfS), in which the machine instructions of a dynamic
execution are sampled independently of their execution
frequency by using breakpoints. The BfS overhead is
therefore independent of a program’s runtime behavior
and is fully predictable: it is merely a function of pro-
gram size. BfS operates directly on binaries.

We present the theory and implementation of BfS for
both managed and unmanaged code, as well as both ker-
nel and user mode. We ran BfS on a total of 679 pro-
grams (all Windows system binaries, Z3, SPECint suite,
and on several C# benchmarks), and BfS incurred per-
formance overheads of just 1–6%.

1 Introduction

Monitoring a program’s control-flow is a fundamental
way to gain insight into program behavior [5]. At one
extreme, we can record a bit per basic block that mea-
sures whether or not a block executed over an entire ex-
ecution (coverage) [29]. At another extreme, we can
record the dynamic sequence of basic blocks executed
(tracing) [28]. In between these two extremes there is
a wide range of monitoring strategies that trade off run-
time overhead for precision. For example, record-replay
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†tball@microsoft.com
‡george.candea@epfl.ch
§jerick@microsoft.com
¶madanm@microsoft.com

systems [12, 15] that record most execution events in a
program incur a large overhead, whereas sampling strate-
gies that collect fewer runtime events for both profiling
and tracing [16] incur less overhead.

In testing and debugging, there is a need to sample in-
frequently executed (i.e., cold) instructions at runtime,
because bugs often lurk in cold code [9, 23]. However,
we don’t know a priori which basic blocks will be cold
vs. hot at runtime, therefore we cannot instrument just
the cold ones. To make matters worse, traditional tem-
poral sampling techniques [21, 24] that trade off sam-
pling rate for sampling coverage can miss cold instruc-
tions when the sampling rate is low, requiring many exe-
cutions to gain acceptable coverage. As a result, develop-
ers do not have effective and efficient tools for sampling
cold code.

In this paper, we present a non-temporal approach
to sampling that we call bias-free sampling (BfS). BfS
is guaranteed to sample cold instructions without over-
sampling hot instructions, thereby reducing the overhead
typically associated with temporal sampling.

The basic idea is to sample any instruction of interest
the next time it executes and without imposing any over-
head on any other instructions in the program.

We do this using code breakpoints (a facility present in
all modern CPUs) dynamically. We created lightweight
code breakpoint (LCB) monitors for both the kernel and
user mode of Windows for both native (with direct sup-
port in the kernel) and managed applications (with a user-
space monitor) on both Intel and ARM architectures.

To ensure that none of the cold instructions are missed,
the bias-free sampler inserts a breakpoint at every ba-
sic block in the program, both at the beginning of the
program execution and periodically during the execu-
tion. This ensures at least one sample per period of every
cold instruction. We also show how to sample without
bias hot instructions independently of their execution fre-
quency at a low rate.

Devising an efficient solution that works well in prac-
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tice on a large set of programs requires solving multiple
challenges: (a) processing a large number of breakpoints,
in the worst case simultaneously on every instruction in
the program (existing debugging frameworks are unable
to handle such high volumes because their design is not
optimized for a large number of breakpoints that must be
processed quickly); (b) handling breakpoints correctly in
the presence of a managed code interpreter and JIT op-
timizations (managed code gets optimized during exe-
cution, therefore it cannot be handled the same way as
native code); and (c) preserving the correct semantics of
programs and associated services, such as debuggers.

A particular instance of LCB that we built is the
lightweight code coverage (LCC) tool. We have success-
fully run LCC at scale to simultaneously measure code
coverage on all processes and kernel drivers in a stan-
dard Windows 8 machine with imperceptible overheads.
We also have extended LCC with the ability to record
periodic code coverage logs. LCC is now being used in-
ternally at Microsoft to measure code coverage.

Using breakpoints overcomes many of the pitfalls of
code instrumentation. CPU support for breakpoints al-
lows setting (a) a breakpoint on any instruction, (b) an ar-
bitrary number of breakpoints, and (c) setting or clearing
a breakpoint without synchronizing with other threads
(with the exception of managed code) that could poten-
tially execute the same instruction.

The contributions and organization of this paper are:
• We analyze and dissect common approaches to cold

code monitoring, showing that there is need for im-
provement (§2);

• We present our BfS design (§3) and its efficient and
comprehensive implementation using breakpoints
for both the kernel and user mode of Windows for
both native and managed applications (§4);

• We show on a total of 679 programs that with our
implementation of LCB, our coverage tool LCC,
which places a breakpoint on every basic block in an
executable and removes it when fired, has an over-
head of 1-2% on a variety of native C benchmarks
and an overhead of 1-6% on a variety of managed
C# benchmarks (§5);

• We show how to use periodic BfS to extend LCC to
quickly build interprocedural traces with overheads
in the range of 3-6% (§6).

§7 discusses related work and §8 concludes with a dis-
cussion of applications for BfS.

2 From Rewriting to Bias-Free Sampling

In this section, we provide background on the approaches
used to monitor program behavior, and outline the con-
ceptual path that leads to our proposed technique.

2.1 Program Rewriting

A traditional approach to monitoring program behavior
is static program rewriting as done by Gcov [13], which
takes as input an executable E and outputs a new exe-
cutable E ′ that is functionally the same as E except that
it monitors the behavior of E. At Microsoft, many such
monitoring tools have been built on top of the Vulcan
binary rewriting framework [27], such as the code cover-
age tool bbcover. Vulcan provides a number of program
abstractions, such as the program control-flow graph, and
the tool user can leverage these abstractions to then use
the Vulcan APIs to add instructions at specific points in
the binary. Vulcan ensures that the branches of the pro-
gram are adjusted to reflect this addition of code.

Another approach to monitoring is dynamic program
rewriting, as done by DynInst [7] and Pin [22], as well
as Microsoft’s Nirvana and iDNA framework [6]. Many
of the tools built with rewriting-based approaches, both
static and dynamic, use “always-on” instrumentation
(they keep the dynamically-added instrumentation until
the program terminates), even when for goals that should
be much less demanding, like measuring code coverage.

2.2 Efficient Sampling

Static or dynamic program rewriting approaches that are
always-on incur prohibitive overheads, and they cannot
sample cold code in a bias-free manner.

In 2001, Arnold et al. introduced a framework for re-
ducing the cost of instrumented code that combines in-
strumentation and counter-based sampling of loops [24].
In this approach, there are two copies of each procedure:
The “counting” version of the procedure increments a
counter on procedure entry and a counter for each loop
back edge, ensuring that there is no unbounded portion
of execution without some counter being incremented.
When a user-specified limit is reached, control transfers
from the counting version to a more heavily instrumented
version of the procedure, which (after recording the sam-
ple) transfers control via the loop back edges back to the
counting version. In this way, the technique can record
more detailed information about acyclic intraprocedural
paths on a periodic basis.

Hirzel et al. extended this method to reduce overhead
further and to trace interprocedural paths [17]. They
implemented “bursty tracing” using Vulcan, and report
runtime overheads in the range of 3-18%. In further
work [16] they sample code at a rate inversely propor-
tional to its frequency, so that less frequently executed
code is sampled more often. This approach is based on
the premise that bugs reside mainly on cold paths.

Around the same time, Liblit et al. [21] proposed
“Sampling the Bernoulli Way” in their paper on what
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later was termed “cooperative bug isolation.” The mo-
tivation for their approach was that classic sampling for
measuring program performance “searches for the ’ele-
phant in the haystack’: it looks for the biggest consumers
of time” [21]. In contrast, the goal is to look for needles
(bugs) that may occur rarely, and the sampling rates may
be very low to maintain client performance. This leads
to the requirement that the sampling be statistically fair,
so that the reported frequencies of rare events be reliable.
The essence of their approach is to perform fair and uni-
form sampling from a dynamic sequence of events. To
obtain sufficient samples of rare events, their approach
relies on collecting a large number of executions.

2.3 Bias-Free Code Sampling

There’s a fundamental tension between the desire to look
for needles in a haystack (cold code), the use of bursty
tracing, and Bernoulli sampling to achieve efficiency.
Bursty tracing can trace cold code at a high cost; sam-
pling is efficient, but it requires many runs before cold
paths are sampled, and thus may incur a large overhead.

Consider the simple example of a hot loop containing
an if-then-else statement where the else branch is
very infrequently executed compared to the loop head—
say the else branch executes once every million itera-
tions of the loop. The desire to keep the sampling rate
low for efficiency means it’s unlikely that Bernoulli sam-
pling or the bursty tracing approach will hit upon the one
execution of the else branch in a million iterations.

Furthermore, we generally do not know a priori which
code blocks will be cold during the execution of interest.
Thus, we need a way to sample all code but not let the
different frequencies of execution of the different code
blocks influence the runtime performance overhead. In
other words, the sampling rate of a code block should be
(mostly) independent of how often it is executed. We say
“mostly” because there still is a dependency: the block
must be executed at least once for it to be sampled.

The basic idea behind our approach is (using the exam-
ple above) that placing a breakpoint on the first instruc-
tion in the else branch guarantees that we will sample
the next (albeit rare) execution of the else branch with
no cost for the many loop iterations before that point.
By refreshing this breakpoint periodically, we can obtain
several samples of this rare event.

Looking at it from the other side, Bernoulli sampling
gives equal likelihood that any of the million loop itera-
tions of the loop’s execution will be sampled. This may
be fair to all the loop iterations, but it doesn’t help iden-
tify the cold code. Cooperative bug isolation makes up
for the fact that a single execution may not uncover cold
code by the law of large numbers (of executions) to in-
crease the confidence that a rare event will be sampled.

Bias-free code sampling is a way to sample cold events
just as efficiently as Bernoulli sampling with far fewer
executions.

3 Design

The core idea of BfS is to use breakpoints to: (a) sam-
ple cold instructions that execute only a few times during
an execution, without over-sampling hot instructions; (b)
sample the remaining instructions independently of their
execution frequency. Algorithm 1 presents the BfS al-
gorithm. We discuss the algorithm in its full generality
before discussing particular instantiations.

3.1 Inputs

The algorithm takes as input three parameters. The pa-
rameter K ensures that the first K executions of any in-
struction are always sampled. Assuming a nonzero K,
this ensures that rare instructions, such as those in ex-
ception paths, are always sampled when executed.

The second parameter P is the sampling distribution
of the instructions. For instance, a memory leak detec-
tor [16] might only chose to sample memory access in-
structions, and accordingly P will indicate a zero prob-
ability for non-memory-accesses. Similarly, a data-race
detector [18] might only choose memory accesses that
are not statically provable as data-race-free. Among
the instructions with non-zero probability, P might ei-
ther dictate a uniform sampling, or bias towards some
instructions, based on application needs. For instance,
additional runtime profile information could be used to
increase the bias towards hot instructions or towards in-
structions that are likely to be buggy.

The final parameter R determines the desired sampling
rate, i.e., the number of samples generated per second.
This indirectly determines the overhead of the algorithm.
In the special case when R is infinity, the algorithm
periodically refreshes breakpoints on all instructions
selected according to P.

3.2 Cold Instruction Sampling

The algorithm maintains a map BPCount that deter-
mines the number of logical breakpoints set at a particu-
lar instruction. The algorithm ensures that a breakpoint
is set at a particular instruction whenever its BPCount
is greater than zero. When a breakpoint fires, this count
is decremented and the breakpoint is removed only when
this count is zero. Setting all entries of this array to K en-
sures that the first K executions of the instructions with
nonzero probability in P are sampled.

3
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Algorithm 1: Bias-free Sampling Algorithm
Input: int K, Dist P, int R

// BPCount[pc] > 0 implies pc has a breakpoint
Map < PC, int > BPCount
Map < PC, int > SampleCount
Set < PC > FreqInst

function Init
For all pc with nonzero probability in P

BPCount[pc] = K

function OnBreakpoint(pc)
BPCount[pc]−−
SampleCount[pc]++
SampleInstruction(pc)
if SampleCount[pc]>= K then

FreqInst.Add(pc)
if SampleCount[pc]> K then

ChooseRandomInst()

function Periodically()
hitNum = NumBPInLastPeriod()
if R is infinity then

BPCount[pc]++ for all pc in FreqInst
return

while hitNum++< R∗Period do
ChoseRandomInst()

function ChooseRandomInst()
pc = Choose(P,FreqInst)
BPCount[pc]++
FreqInst.Remove(pc)

At one extreme,With K 1, P choosing only the first
instruction in every basic block, and R as 0, we obtain
an efficient mechanism for code coverage, described as
LCC in Section 5. On the other extreme, when K is set to
infinity, one gets full execution tracing.

The algorithm maintains FreqInst, a set of instruc-
tions that have executed K or more times. Periodically,
the algorithm adds breakpoints to instructions selected
from this set based on the distribution P. When one such
breakpoint fires, another breakpoint is inserted on an in-
struction chosen from this set, again based on P. One can
consider this as a single logical breakpoint moving from
the sampled instruction to a new instruction. To maintain
the number of pending logical breakpoints, the algorithm
uses the BPCountmap to distinguish the initial K break-
points from new breakpoints.

3.3 Bias-Free Sampling

Perhaps surprisingly, the algorithm described above is
sufficient to sample instructions from FreqInst based
on P irrespective of whether these instructions are hot or
cold. Since an instruction is sampled only when a break-
point fires and these breakpoints are inserted based on P,

we meet the desired sampling distribution [18].
However, a single breakpoint set at a cold instruction

may take a long time to fire. This can arbitrarily reduce
the sampling rate achieved by this logical breakpoint. In
the worst case, a breakpoint set in dead code will reduce
the sampling rate to zero.

The algorithm has several mechanisms to avoid this
pitfall and maintain an acceptable sampling rate. First,
the algorithm starts by setting K logical breakpoints at
every instruction. This helps in identifying only those
instructions that have executed a few times. In partic-
ular, dead code will not be added to FreqInst. Sec-
ond, once a breakpoint is set at an instruction, it will
be removed from FreqInst till it fires (at which point
it is added back to FreqInst). This mechanism au-
tomatically prunes cold instructions from the set to pe-
riodically replenish the number of logical breakpoints.
This is similar to DataCollider [18], however, rather
than maintaining a constant number of pending logical
breakpoints, our algorithm increases the number of log-
ical breakpoints in every period that has a lower num-
ber of breakpoint firings than expected by the sampling
rate. As these logical breakpoints get “stuck” on cold
instructions, the continuous replenishing helps maintain
the sampling rate.

4 Implementation

Now, we describe the implementation of LCB in detail.
We start by reviewing hardware and operating system
support for breakpoints.

4.1 Breakpoint Mechanism
Modern hardware contain a special breakpoint instruc-
tion that tells the processor to trap into the operating
system. For instance, the x86 architecture provides an
int 3 instruction for this purpose. To set a breakpoint
on an instruction, one overwrites the instruction with
the breakpoint instruction. The breakpoint instruction is
no larger than other instructions in the ISA (in x86, the
breakpoint instruction is a single byte), making it possi-
ble to set a breakpoint without overwriting other instruc-
tions in the binary. When a breakpoint fires, the operat-
ing system forwards the interrupt to the process or to the
debugger if one is attached. Processing the breakpoint
involves removing the breakpoint by writing back the
original instruction at the instruction pointer and resum-
ing the program. The breakpoint instruction is designed
so that setting and removing a breakpoint can be done
atomically in the presence of other threads that might be
executing the same instructions. For example, in archi-
tectures (such as ARM) that support two-byte breakpoint
instructions, all instructions are always two-byte aligned.

4



USENIX Association  2014 USENIX Annual Technical Conference 247

4.2 Kernel Support

One of the key goals of LCB is to provide a general ca-
pability to set and remove a large number of breakpoints
as efficiently as possible. Equally important is to do so
without changing the semantics of the monitored pro-
grams and associated services such as debuggers. LCB
relies on kernel processing for efficient and transparent
processing of breakpoints. While most of the function-
ality of LCB can be implemented as a kernel driver that
is loaded early in the boot sequence, we relied on some
modifications to the Windows kernel. Another advan-
tage of kernel support is that we can use LCB to sample
kernel-mode drivers as well.

4.3 Efficient Processing of Breakpoints

4.3.1 Bypassing the Debugger

When a breakpoint fires, the default behavior of the ker-
nel is to notify the debugger (if attached) or send the in-
terrupt to the process. LCB driver registers itself as a
debugger so that it gets a first chance to process the in-
terrupt. Bypassing the regular debugger is crucial for ef-
ficiency, as debuggers do not handle well frequent firing
of any breakpoints. The LCB driver forwards the inter-
rupt to the debugger or to the process if the breakpoint is
not one inserted by LCB.

4.3.2 Handling Shared Modules

Another key design decision of LCB is how to handle
shared modules. The code section of modules that are
frequently loaded by many processes, such as the C li-
braries, are loaded in memory once and shared across
many processes through appropriate virtual memory
mapping. Setting a breakpoint at an instruction in such a
shared module can be implemented in one of two ways.
The first option is to make the breakpoint common to all
processes. Thereby, the sampling of the instruction is
triggered when any of the processes executes the instruc-
tion. Another option is to create a per-process copy of
the memory page containing the instruction, causing the
loss of memory savings achieved by sharing the module.

The current design of LCB uses the first option for effi-
ciency. In many of our usage scenarios, LCB is turned on
for many processes, and the memory bloat that would oc-
cur as a result of choosing the second option is unaccept-
able (as LCB sets breakpoints on all code pages). More-
over, this allows us to extend LCB-based sampling for
multiprocess programs. For instance, when measuring
code coverage, any of the processes executing a particu-
lar C library function is sufficient to cover that function.

Inst1&

Jmp&to&Inst2&

Inst1&Inst2!

Sampled&instruc5on&
with&a&breakpoint!

Resumed&instruc5on&copy&&
In&thread<local&buffer&

&
!

Figure 1: Implementation of multi-shot breakpoints.

4.3.3 Handling Multi-Shot Breakpoints

The functionality LCB provides may require resuming
the currently sampled instruction without removing the
breakpoint. Such multi-shot breakpoints are required,
for instance, for sampling the first K executions of a ba-
sic block. This goes against the default processing of
breakpoints, where the breakpoint needs to be removed
before resuming the sampled instruction. Once LCB has
resumed the execution, it would not get back control un-
less another breakpoint fires. In the interim, the sampled
instruction could have executed many times.

Another option is to use the single-stepping capability
of modern architectures. For instance, setting the Trap
Flag in the EFLAGS register causes the x86 processor to
generate an interrupt after executing a single instruction.
Debuggers use this facility to single-step an instruction
after removing its breakpoint and on the subsequent in-
terrupt (caused by single-stepping) set the breakpoint on
that instruction again. This is safe as debuggers usually
block all other threads during this process, however, this
generally has unacceptable overhead.

To handle multi-shot breakpoints in native code, LCB
creates a copy of the currently sampled instruction in a
thread-local buffer, as shown in Figure 1. Immediately
after the copy, LCB inserts a jump instruction to trans-
fer control to the instruction after the sampled instruc-
tion. When returning from the breakpoint handler, LCB
sets the current instruction pointer to the copy of the in-
struction. This allows the current thread to resume exe-
cution without removing the breakpoint. The jump after
the copy ensures that control returns to the original pro-
gram. Note that, this design works even if the sampled
instruction is a jump or branch instruction, in which cases
the jump instruction of the copy is not executed.

When creating a copy of the instruction, one has to
carefully handle instructions that refer to the instruc-
tion pointer. For instance, relative jump instructions
calculate their destination based on the current instruc-
tion pointer. Such instructions need to be appropriately
modified to retain their semantics when creating a copy.
While LCB handles many common cases, it defaults to
single-stepping (with all other threads blocked) for other
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instructions that refer to the instruction pointer.
The instruction copy in the thread-local buffer is re-

claimed by the thread when it ensures that its current in-
struction pointer and the return values in its stack trace do
not point to the copy. For kernel-mode drivers, LCB allo-
cates a processor-local buffer, rather than a thread-local
one. This buffer is shared by all contexts that execute on
a particular process, including interrupt handlers.

4.4 BfS for Managed Code

Supporting managed code in LCB (such as code writ-
ten in .NET languages and encoded into the Common
Intermediate Language (CIL)) required overcoming sev-
eral challenges: integration with the Common Language
Runtime [2], making sure that the just-in-time (JIT) opti-
mizations do not remove certain breakpoints, and finding
and fixing issues in CLR that prohibited setting a large
number of breakpoints. In this section, we detail how we
overcame these challenges1.

Initially, we attempted to place breakpoints on every
basic block without going through the CLR debugging
APIs. However, this did not work, because CLR intro-
spects the managed binary during JITing, and if it finds
that the binary has been modified (in this case to include
a breakpoint per basic block), it throws an exception and
causes the program to crash.

Consequently, we used the CLR debugging APIs to
support managed programs in LCB. To do this, we im-
plemented a special debugger within LCB that intercepts
the load of each managed module when a program is run
and places a breakpoint in each of the program’s basic
blocks. This debugger’s core responsibility is to place
breakpoints and track their firing. A program need not
be launched using this debugger for LCB to be opera-
tional: LCB can be automatically attached to a program
at load time.

The second challenge was that the CLR JIT optimiza-
tions were modifying the programs by eliminating some
basic blocks (e.g., through dead-code elimination) or by
moving them around (e.g., through loop-invariant code
motion), causing the correspondence between the re-
moved breakpoints and source code to be lost.

To overcome this challenge, we added an option to
LCB to disable JIT optimizations and obtain perfect

1In the process of implementing LCB for managed programs, we
discovered and fixed performance bottlenecks and bugs in the CLR.
CLR debugging APIs had such issues, because they were not built to
be used by a client such as LCB that places a breakpoint in each basic
block of a program. The first bug we fixed was a performance issue
that caused threads to unnecessarily stall while LCB was removing a
breakpoint, due to an incorrect spinlock implementation. The second
bug was a subtle correctness issue that occurred only when the number
of breakpoints was above 10,000, and JIT optimizations were enabled.
We also fixed this issue that was causing the CLR to crash.

correspondence between the source code and the basic
blocks. We are looking into recovering the lost corre-
spondence through program analysis as part of future
work, thereby not forcing users of LCB to disable JIT
optimizations.

4.5 Transparent Breakpoint Processing
For a facility that is commonly used, such as breakpoints,
one would not expect the use of breakpoints to change
the semantics of programs. While this is generally true,
we had to handle several corner cases in order to apply
LCB to a large number of programs.

4.5.1 Code Page Permissions

Setting a breakpoint requires write permission to modify
the code pages. However, for security purposes, all code
pages in Windows are read-only. A straightforward ap-
proach is to change the permission to enable writes, then
set/clear the breakpoint, and then reset the permission to
readonly. However, this leaves a window in which an-
other (misbehaving) thread could potentially write to the
code page. Under such conditions, the original program
would have received an access violation exception while
the same program running with LCB would not.

To avoid this, LCB creates an alternate virtual map-
ping to the same code page with write permissions and
uses this mapping to set and clear breakpoints. This map-
ping is created at a random virtual address to reduce the
chances of a wild memory access matching the address.
The virtual mapping is cached to amortize the cost of
creating the mapping across multiple breakpoints—due
to code locality, breakpoints in the same page are likely
to fire together.

When sampling kernel-mode drivers, LCB sometimes
has the need to process breakpoints at interrupt levels
during which it is unable to call virtual-memory-related
functions to create/tear down virtual mappings. In such
scenarios, LCB uses the copy mechanism for dealing
with multi-shot breakpoints described above (§ 4.3.3) to
temporarily resume execution without removing a break-
point. At the same time, LCB queues a deferred proce-
dure call that is later invoked at a lower interrupt level to
remove the breakpoint.

Finally, LCB does not set or clear breakpoints on code
pages that are writable in order to avoid conflicts with
self-generated code.

4.5.2 Making Breakpoints Invisible to the Debugger

Many programs with LCB enabled run with a debugger
attached. As described above, LCB hides its breakpoints
from the debugger by processing them before the debug-
ger. However, debuggers need to read the code pages,
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say in order to disassemble code to display to the user.
LCB traps such read requests and provides an alternate
view with all its breakpoints removed.

5 LCC Evaluation

In this section, we measure the cost of placing “one-shot”
breakpoints on every basic block in an executable us-
ing LCB monitors in order to measure code coverage.
The resulting code coverage tool is called LCC. LCC
represents the leanest instance of LCBẆe first perform
a case study on the Z3 automated theorem prover [10]
(§5.1), followed by a broader investigation on the SPEC
2006 CPU integer benchmarks (§5.2), then three man-
aged benchmarks from the CLR performance bench-
marks (§5.3), and a large scale evaluation on Windows
binaries (§5.4).

The code coverage evaluations were performed on an
HP Desktop with a 4-core Intel Xeon W3520 and 8 GB
of RAM running Windows 8. In our study, we consider
three configurations for each application: no code cov-
erage (base), the application statically rewritten by the
bbcover tool (bbcover), and the application breakpoint-
instrumented by LCC (lcc). In order to make the com-
parison between the tools as fair possible, we use the
same basic blocks for LCC breakpoints as identified by
the Vulcan framework for the bbcover tool. We instruct
LCC to insert a breakpoint at the address of the first in-
struction in each basic block. On the firing of a break-
point, a bit (in a bitvector) is set to indicate that the basic
block has been covered.

5.1 Z3

Z3 is an automated theorem prover written in C++ con-
sisting of 439,927 basic blocks (as measured by Vulcan).
Z3 is computationally and memory intensive, having a
SAT solver at its core, which is solving an NP-complete
problem. We run Z3 on a set of 66 input files that take
Z3 anywhere from under 1 second to 150 seconds to pro-
cess (and many points in between). Each file contains
a logic formula over the theory of bit vectors (generated
automatically by the SAGE tool [14]) that Z3 attempts to
prove satisfiable or unsatisfiable. Z3 reads the input file,
performs its computation, and outputs “sat” or “unsat”.
We test the 64-bit version of the Release build of Z3. For
each test file, we run each configuration five times.2

We added timers to LCC to measure the cost of setting
breakpoints, which comes to about 100 milliseconds to
set all 439,927 breakpoints.

2We validated that the output of Z3 is the same when run under each
code coverage configuration as in the base run and that the coverage
computed by LCC is the same as that computed by bbcover.
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Figure 2: Plot comparing the absolute run-times of cov-
erage tools bbcover (triangles, upper line) and LCC
(circles, lower line) on the Z3 program (y-axis) against
the base configuration (x-axis). Both times are seconds.
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Figure 3: Log-log plot comparing the overhead of
bbcover (orange triangles) and LCC (blue circles), in
seconds over base (y-axis), as a function of base (x-axis).

Figure 2 plots the absolute run time of each test t for
the base configuration (the median of 5 runs) against
each of the two code coverage configurations and shows
the best linear fit for each configuration. We see that the
overhead for LCC is less than 1%, with much less pertur-
bation than the overhead of bbcover, while the overhead
for bbcover is around 90% and has outliers.

We would expect that the overhead for LCC be a small
constant, independent of the running time of the base ex-
ecution. In the log-log plot of Figure 3, the x-axis is
the run-time in seconds of the base configuration on a
test t, while the y-axis represents the overhead (in sec-
onds) of each of the code coverage configurations (over
the base configuration) on the same test t. We see the
expected linear relationship of the cost of code coverage
with respect to execution time for bbcover. The plot
for LCC shows that the overhead for LCC appears to in-
crease slightly with the base time, although its overhead
never exceeds 1.5 seconds.

Figure 4 shows the number of basic blocks (y-axis)
covered as a function of run-time (x-axis, log scale).
The first thing to notice is that most of the tests cover
somewhere between 17,000 and 29,000 basic blocks, a
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Figure 4: Run-time of base configuration (x-axis, in sec-
onds on log scale) versus number of basic blocks cov-
ered, for each of the 66 tests.

small fraction of all the basic blocks in Z3. This is not a
surprise, as the 66 tests were selected from a suite that
exercises just a part of Z3 (the bit vector theory and
SAT solver). The two tests that cover less than 21,000
blocks also have the shortest runtimes. Block coverage
increases slightly as execution time increases, correlated
with the observed increase in runtime overhead for LCC.

5.2 SPEC CPU2006 Integer Benchmarks
To understand the cost of code coverage on a wider set
of programs, we integrated both bbcover and LCC into
the SPEC CPU2006 Monitoring Facility and performed
experiments on the SPEC 2006 CPU Integer benchmarks
(except for 462.libquantum and 483.xalancbmk, which
did not compile successfully on Windows 8).

Table 1 presents the results of the experiments, with
one row per benchmark. We ran each benchmark for five
iterations using base tuning. The second and third col-
umn show the number of basic blocks in a benchmark
and the number of tests for that benchmark (each itera-
tion runs all tests once and sums the results). We call
out the number of tests because each test is a separate
execution of the benchmark, which starts collection of
code coverage afresh. Thus, for example, the 403.gcc
benchmark has 9 tests and so will result in setting break-
points 9 times on all 198719 blocks (for one iteration).
The columns labeled base, lcc, and bbcover are the me-
dian times reported by the runspec script (in seconds)
of the five runs, for each configuration, respectively, as
well as the standard deviation. The overhead of the lcc
and bbcover configurations to the base configuration is
reported in the remaining two columns.

The overhead of bbcover ranges from a low of
18.67% (429.mcf) to a high of 176.22% (400.perlbench).
In general, the slowdown varies quite a bit depending on
the benchmark. Our experience with static instrumenta-
tion is that the number of the frequently executed basic
blocks in the executable is the main determiner of over-
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Figure 5: Plot comparing absolute runtimes in seconds
(y-axis) of bbcover (triangles), LCC (circles), and unin-
strumented execution (squares) on the RayTracer pro-
gram as a function of input size (x-axis).

head. The overhead of LCC, on the other hand, ranges
from 1.4% to 2.18%, showing that LCC achieves low
overhead across a range of benchmarks, despite the high
cost of breakpoints.

5.3 Managed Code
We evaluated LCB’s managed code support using three
programs used internally at Microsoft for CLR perfor-
mance benchmarking: RayTracer, a program that per-
forms ray tracing; BizTalk, a server application used in
business process automation; and ClientSimulator, a web
client simulation program. We measured the uninstru-
mented runtimes and coverage measurement overheads
for bbcover and LCC. All results are averages of five
runs.

In Figure 5, we vary the size of the input object Ray-
Tracer processes from 100 to 600 pixels to see how the
overhead changes with input size. The y-axis shows the
absolute runtime. The runtime overhead of LCC is a
steady 0.2 seconds corresponding to a maximum of 6%
overhead irrespective of input size, whereas the runtime
overhead of bbcover is proportional to the runtime of
RayTracer with a maximum absolute time of 28 seconds
and a maximum overhead factor of 3×.

Similar to the native Z3 binary, this experiment shows
that for the managed RayTracer binary, LCC’s overhead
is less than that of bbcover and it is independent of the
program’s runtime behavior.

For BizTalk and ClientSimulator, we used standard
workloads of the benchmarks. For Biztalk, LCC incurs
1.1% runtime overhead versus bbcover’s 2.0% over-
head; for ClientSimulator, LCC incurs 5.8% runtime
overhead versus bbcover’s 34.7% overhead.

RayTracer has several loops that execute many times,
therefore, for this case, the runtime overhead of bbcover
(which instruments the code) is two orders of magni-
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Benchmark num. of num. of base std. lcc std. bbcover std. lcc bbcover
blocks tests (sec.) dev. (sec.) dev. (sec.) dev. overhead overhead

400.perlbench 68224 3 473.71 0.98 481.98 1.33 1308.49 12.31 1.75% 176.22%
401.bzip2 6667 6 575.02 0.77 584.31 2.57 1108.96 5.73 1.62% 92.86%
403.gcc 198719 9 402.27 0.81 410.55 2.75 765.55 1.32 2.06% 90.31%
429.mcf 5363 1 366.49 0.66 373.00 5.50 434.93 0.99 1.78% 18.67%
445.gobmk 43714 5 530.79 0.74 541.47 0.72 1162.91 0.63 2.01% 119.09%
456.hmmer 15563 2 350.59 1.31 357.65 0.17 446.69 1.78 2.01% 27.41%
458.sjeng 10502 1 629.40 3.04 638.24 1.02 1496.96 3.06 1.40% 137.84%
464.h264ref 24189 3 604.54 0.74 613.95 0.93 1008.73 3.57 1.56% 66.86%
471.omnetpp 47069 1 342.99 0.64 350.47 0.12 641.45 1.97 2.18% 87.01%
473.astar 6534 1 439.59 0.77 446.95 0.59 670.12 4.81 1.67% 52.44%

Table 1: Results of running coverage tools on the SPEC 2006 CPU Integer benchmarks. See text for details.

tude more than LCC’s. LCC also has lower overhead
for BizTalk and ClientSimulator. We conclude that the
managed code support for LCC is efficient.

5.4 Windows Native Binaries
To evaluate the robustness of LCB, we applied LCC to
all the native binaries from an internal release of Win-
dows 8. We integrated and ran LCC on a subset of sys-
tem tests in the standard Windows test environment. The
goal of this experiment was to check if LCC can robustly
handle a variety of executables, including kernel-mode
drivers that are loaded during the operating system boot
up. Another goal of this experiment was to ensure that
LCC does not introduce test failures either due to imple-
mentation bugs or due to the timing perturbation intro-
duced by the firing of breakpoints.

The system tests ran for a total of 4 hours on 17 ma-
chines. We repeated the test for different system builds:
32-bit and 64-bit x86 binaries, and ARM binaries. The
size of the binaries covered ranges from 70 basic blocks
to ~1,000,000. All tests completed successfully with no
spurious failures or performance regressions.

To compare coverage, we ran the same tests with the
bbcover tool. Figure 6 shows the difference in coverage
achieved by the two tools. Of the 665 binaries, bbcover
didn’t produce coverage for 45 binaries because its over-
head caused those tests to time out, thereby failing them.
Therefore, the figure reports the coverage for the remain-
ing 620 binaries. The binaries in the x-axis are ordered
by the coverage achieved with bbcover.

As the tests are highly timing dependent and involve
several boot-reboot cycles, there can be up to 20% dif-
ference in coverage across runs. Despite this nondeter-
minism, Figure 6 shows a clear trend. For all but 40 bi-
naries, LCC reports more coverage than bbcover. This
increased coverage is due to the fact that tests that time
out or fail under bbcover, due to problems in relocation
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Figure 6: Difference between the coverage reported by
LCC vs. bbcover (y-axis) for 620 Windows binaries
(x-axis).

or excessive runtime, run to completion with LCC. For a
small number of cases, LCC reports less coverage than
bbcover due to test non-determinism.

6 Cold Block Tracing

In this section, we extend LCC to create a simple trac-
ing/logging facility for cold basic blocks, using two dif-
ferent strategies. First, we store the order in which break-
points fire in a log. This reflects a compressed form of
an execution trace where all instances of a basic block
beyond its first execution are dropped. The size of this
log is bounded by the size of the program. We call this
“single-shot logging”, since a basic block identifier will
appear at most once in the log. Second, we set the R
parameter to infinity in the BfS algorithm (§3), to pe-
riodically refresh breakpoints on all basic blocks. With
this option enabled, the size of the log file is proportional
to the length of program execution rather than program
size. Next, we discuss these two strategies in detail.
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base lcc per0.5 per5.0 lcc per0.5 per5.0
Test # (sec.) (sec.) (sec.) overhead (sec.) overhead blocks blocks Growth blocks Growth
21 31.46 32.94 36.29 15.33% 33.10 5.20% 28731 85459 2.97 46356 1.61
52 31.41 31.47 35.55 13.17% 32.72 4.15% 26506 72886 2.75 42359 1.60
12 46.95 47.38 54.39 15.84% 49.02 4.40% 25472 113730 4.46 45437 1.78
57 48.07 48.14 54.76 13.91% 49.69 3.37% 25525 114658 4.49 45882 1.80
43 57.22 56.89 65.44 14.36% 60.13 5.07% 27264 129836 4.76 51316 1.88
65 61.53 61.19 70.74 14.96% 63.90 3.84% 25175 138819 5.51 48581 1.93
14 70.74 71.63 81.27 14.88% 74.22 4.91% 25690 149329 5.81 59058 2.30
62 89.14 89.31 101.96 14.38% 94.07 5.54% 28191 185079 6.57 67408 2.39
29 155.09 156.63 175.82 13.37% 164.88 6.31% 25522 269179 10.55 72864 2.85

Table 2: Periodic logging of Z3 on tests that execute 30 seconds or more.
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Figure 7: Scatterplot of the coverage log for Z3 test 15
with single-shot code coverage. The base execution of
Z3 on test 15 took 20 seconds.

6.1 Single-Shot Code Coverage Logs

The additional cost to log basic block identifiers to a file
is negligible for long executions and can be ameliorated
by writing the log to a memory buffer, which in the case
of single-shot logging is bounded by the size of the pro-
gram. We give details on the overhead of logging when
we consider periodic logging.

We can view a code coverage log as a sequence of
events (i,b(i)), where i is the index of the event in the
log and b(i) is the block id. Such information about the
relative ordering of the first execution of each basic block
can be useful for identifying phases in a program’s exe-
cution. Each basic block b has associated symbol infor-
mation, including an identifier of the function f (b) in
which it resides. We assign to each function f a count
c( f ) which corresponds to the number of unique func-
tions that appear before it in the log.

Figure 7 shows, for a single execution of Z3, a scat-

ter plot that contains one point for each log entry (exe-
cuted basic block) with index i (x-axis), where the y-axis
is the count of the function containing block, namely
c( f (b(i))). The scatterplot shows there are about 4500
events in the log. Phases are identified naturally by the
pattern of “lower triangles” in which the blocks of a set
of functions execute close together temporally. In the
plot of the Z3 execution, we have highlighted six phases:
(1) initialization of basic Z3 data structures and parsing
of the input formula; (2) initialization of Z3’s tactics that
determine which decision procedures it will use to solve
the given formula; (3) general rewriting and simplifica-
tion; (4) bit blasting of bit-vector formula to proposi-
tional logic; (5) the SAT solver; (6) output of information
and freeing of data structures.

This simple analysis shows that a one-shot log can be
used to naturally identify sets of related functions since it
provides an interprocedural view of control-flow behav-
ior. We intend to use this information to identify program
portions with performance bottlenecks and to improve
job scheduling inside a datacenter [26, 11].

6.2 Periodic Logs

While one-shot code coverage logs are cheap to collect,
there are many other (cold) traces the program will ex-
ecute that will not be observed with the one-shot ap-
proach. To collect such information, we can periodically
refresh the breakpoints on all basic blocks, as supported
by the LCB framework.

Figure 8 shows the scatterplot of the execution log of
Z3 run on the same test as in Figure 7, but with break-
points refreshed every half second. From this plot, we
can see that the SAT solver accounts for most of the log.
Furthermore, notice that compared to the one-shot log
in Figure 7, we see the interplay between the code of
the SAT solver in phase 5 and the code of functions exe-
cuted early on (during phase 1), which represent various
commonly used data structures. We also observe more
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Figure 8: Scatterplot of the coverage log for Z3 test 15 with breakpoints are refreshed every .5 seconds.

activity between the functions in the final phase and the
rest of the code (except for the SAT solver).

To evaluate the time and space costs of periodic log-
ging, we selected all the 9 Z3 tests that execute 30 sec-
onds or more in the base configuration. In our first exper-
iment, we refresh all 439,927 breakpoints every half sec-
ond (configuration per0.5), measure the overhead as well
as the number of breakpoint firings. Note that the time to
set all breakpoints is around 0.1 seconds, expected over-
heads range from 6 (for a 30 second test) to 30 seconds
(for the longest test at around 150 seconds).

Table 2 shows the 9 tests ordered in increasing order
of base execution time. As expected, we see that the
execution times for per0.5 increase execution overhead
by 4 seconds on the low end (test 21) compared to base
and 20 seconds on the high end (test 29). While refresh-
ing breakpoints twice a second significantly increases the
overhead compared to the single-shot logging of the lcc
configuration, it is still less expensive than the bbcover
tool (which doesn’t log). Not surprisingly, the size of the
periodic log (column “per0.5 blocks”) compared to that
of one-shot logging (“lcc blocks”) is substantial (ranging
from a growth of 2.97× to 10.55×).

In the second experiment, we refresh the breakpoints
every 5 seconds (configuration per5.0), resulting in run-
times closer to that of lcc than per0.5, and reducing the
growth rate of the periodic log substantially.

7 Related Work

Once debuggers gave programmers the ability to set and
remove breakpoints on instructions [19], the idea of us-
ing a one-shot breakpoint to prove that an instruction was
executed (or covered) by a test was born. The rest is
just a “simple matter of coding”. The first tool we found
that uses one-shot breakpoints to collect code coverage

is the Coverage Assistant in the IBM Application Test-
ing Collection [4] which mentions “minimal” overheads
but does not provide implementation specifics.

DataCollider [18] uses hardware breakpoints to sam-
ple memory accesses and detect data races, therefore, it
uses a small number of breakpoints at a time (e.g. 4 in
x86 processors). Conversely, bias-free sampling requires
a large number of breakpoints—linear in the size of the
program—to be handled efficiently, which LCB does.

Residual test coverage [25] places coverage probes for
deployed software only on statements that have not been
covered by pre-deployment testing, but these probes are
not removed during execution when they have fired.

Tikir et al.’s work on efficient code coverage [29] uses
the dynamic instrumentation capabilities of the DynInst
system [7] to add and remove code coverage probes at
run-time. While efficient, such approaches suffer from
the problem that basic blocks that are smaller than the
jump instruction (5 bytes on x86) cannot be monitored
without sophisticated fixup of code that branches to the
code following the basic block. In addition, special care
has to be taken to safely perform the dynamic rewriting
of the branch instruction in the presence of concurrent
threads. For instance, DynInst temporarily blocks all the
threads in the program before removing the instrumen-
tation to ensure that all threads either see the instruction
before or after the instrumentation.

The Pin framework [22] provides a virtual machine
and trace-based JIT to dynamically rewrite code as it exe-
cutes, with a code cache to avoid rewriting the same code
multiple times. The overhead of Pin without any probes
added is around 60% for integer benchmarks. The code
cache already provides a form of code coverage as the
presence of code in the cache means it has been executed.

Static instrumentation tools like PureCoverage [3],
BullseyeCoverage [1], and Gcov [13] statically modify
program source code to insert instrumentation that will
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be present in the program throughout its lifetime. These
tools can also be used to determine infrequently executed
code, albeit at the expense of always triggering the in-
strumentation for frequently-executed code.

THeME [30] is a coverage measurement tool that
leverages hardware monitors and static analysis to mea-
sure coverage. THeME’s average overhead is 5% (with
a maximum overhead of up to 30%), however it can de-
termine only up to 90% of the actual coverage. LCB has
similar average overhead as THeME, but it fully accu-
rately determines the actual coverage. Furthermore, LCB
can be used to obtain multi-shot periodic logs.

Symbolic execution [20, 8] can be used to achieve high
coverage in the face of cold code paths. In particular,
symbolic execution can explore program paths that re-
main unexplored after regular testing, to increase cov-
erage. However, symbolic execution is typically costly,
and therefore, it is more suited to be used as an in-house
testing method. Developers can employ symbolic execu-
tion in conjunction with BfS; the latter can be used in the
field thanks to its low overhead.

8 Conclusion

Bias-free sampling of basic blocks provides a low over-
head way to quickly identify and trace cold code at
runtime. Its efficient implementation via breakpoints
has numerous advantages over instrumentation-based ap-
proaches to monitoring. We demonstrated the applica-
tion of bias-free sampling to code coverage and its ex-
tension to periodic logging, with reasonable overheads
and little in the way of optimization.
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Abstract— We show that the performance of existing
fault localization algorithms differs markedly for differ-
ent networks; and no algorithm simultaneously provides
high localization accuracy and low computational over-
head. We develop a framework to explain these behav-
iors by anatomizing the algorithms with respect to six
important characteristics of real networks, such as uncer-
tain dependencies, noise, and covering relationships. We
use this analysis to develop Gestalt, a new algorithm that
combines the best elements of existing ones and includes
a new technique to explore the space of fault hypotheses.
We run experiments on three real, diverse networks. For
each, Gestalt has either significantly higher localization
accuracy or an order of magnitude lower running time.
For example, when applied to the Lync messaging sys-
tem that is used widely within corporations, Gestalt lo-
calizes faults with the same accuracy as Sherlock, while
reducing fault localization time from days to 23 seconds.

1. Introduction

Consider a large system of components such as routers
and servers interconnected by network paths. This sys-
tem could be for audio, video, and text messaging (e.g.,
Lync [2]), for email (e.g., Microsoft Exchange), or even
for simple packet delivery (e.g., Abilene). When transac-
tions such as connection requests fail, a fault-localization
tool helps identify likely faulty components. An effec-
tive tool allows operators to quickly replace faulty com-
ponents or implement work-arounds, thus increasing the
availability of mission-critical networked system.

As an example, we conducted a survey of call failures
in the Lync messaging system deployed inside a large
corporation. We found that the median time for diagno-
sis, which was largely manual, was around 8 hours be-
cause the operators had to carefully identify the faulty
component from a large number of possibilities. This
time-consuming process is frustrating and leads to signif-

(a) Lync (real failures) (b) Exchange (simulated fail-
ures)

Figure 1: Applying different algorithms to two systems.
Legend shows median time to completion.

icant productivity loss for other employees. A good fault
localization tool that can identify a short list of potential
suspects in a short amount of time would greatly reduce
diagnosis time. Later in the paper, we will show how our
tool, Gestalt, reduces by 60x the number of components
that an operator must consider for diagnosis; and it has a
median running time of under 30 seconds.

Of course, we are not the first to realize the importance
of fault localization, and other researchers have devel-
oped many algorithms (e.g., [3, 6, 8, 11, 13, 14, 16–18]).

However, we have consistently heard from operators
(e.g., at Google and Microsoft) that the effectiveness of
existing fault localization algorithms in terms of running
times and accuracy depends on the network. There are no
studies that connect network characteristics to the choice
of algorithm, making it difficult to determine an appro-
priate algorithm for a given network. Figure 1 illustrates
this difficulty by running three prior algorithms on two
different networks. We picked these algorithms because
they use disparate techniques. In the graphs, the y-axis
is the diagnostic rank, which is the percentage of net-
work components deemed more likely culprits than the
components that actually failed; thus, lower values are
better1. The failures are sorted by diagnostic rank. We
1In information retrieval terms, diagnostic rank includes the
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provide more experimental details in §9,
The left graph shows the results for the Lync de-

ployment mentioned above. We see that the algorithms
perform differently. Sherlock [6](modified) does best,
and SCORE [17] does worst. The right graph shows
the results for simulated failures in an Exchange deploy-
ment [9]. We see that the algorithms exhibit different
relative performance. SCORE matches Sherlock, and
Pinpoint does worst. Further, the appropriate approach
for the two networks differs—Sherlock for Lync, and
SCORE for Exchange as it combines high localization
accuracy and fast running time.

There is also a tradeoff between localization accuracy
in the presence of impairments such as noise and compu-
tational cost for large networks. This tradeoff can be seen
in Figure 1. While SCORE runs in a few microseconds,
it localizes faults poorly for Lync. On the other hand,
while Sherlock [6] has good performance for both net-
works, it takes a long time. In large networks, this time
can be days. Running time matters because it directly in-
fluences time to recovery. For a large network like Lync,
ideally we would want a localization algorithm with ac-
curacy closer to Sherlock but runtime closer to SCORE.

Rather than simply developing yet another localiza-
tion algorithm with its own tradeoffs, we first develop
a framework to understand the design space and answer
the basic question: When is a given fault localization ap-
proach better and why? We observe that existing fault lo-
calization algorithms can be anatomized into three parts
that correspond to how they i) model the system, ii) com-
pute the likelihood of a component failure, and iii) ex-
plore the state space of potential failures. Delineating
the choices made by an algorithm for each part enables
systematic analysis of the algorithm’s behavior.

Our anatomization also explains phenomena found
empirically, but not fully explained, in existing work.
For example, Kompella et al. [18] discover that noise
leads SCORE to produce many false positives; they then
suggest mitigation through additional heuristics. By con-
trast, we show that certain design choices of SCORE are
inherently sensitive to noise, and changing these would
lead to more robust fault localization than the suggested
heuristic. As a second example, Pinpoint was found to
have poor accuracy for simultaneous failures [8]. We
show that this problem is fundamentally caused by how
Pinpoint explores the state space of failures.

We use our understanding to devise a new fault local-
ization algorithm, called Gestalt. Gestalt combines the
best features of existing algorithms to work well in many
networks and conditions. While Gestalt benefits from
reusing existing components, we also introduce a new

impact of both precision and recall. It will be high if com-
ponents deemed more likely are not actual failures (poor preci-
sion) or if actual failures are deemed unlikely (poor recall).

method for exploring the space of potential failures. Our
method navigates a continuum between the extremes of
greedy failure hypothesis exploration (e.g., SCORE) and
combinatorial exploration (e.g., Sherlock).

Experiments on three real, diverse networks show that
Gestalt simultaneously provides high localization accu-
racy and low computational cost. For instance, in Fig-
ure 1, we can see that Gestalt has higher accuracy than
SCORE and Pinpoint; its accuracy is similar to Sherlock,
but its running time is an order of magnitude lower.

In summary, this paper contributes a new fault local-
ization algorithm that simultaneously provides high lo-
calization accuracy and low running time for a range of
networks. Its design is not driven by our intuition alone,
but by anatomization of the design space of fault local-
ization algorithms. and by analysis of the ability of the
design choices of existing algorithms to handle various
characteristics of real networks (e.g., noise).Our analy-
sis framework also explains why certain algorithms work
well for some networks and not for others.

2. Related Work

Network diagnosis can be thought of as having two
phases. The first processes available information (e.g.,
log files, passive or active measurements) to estimate
system operation and is often used to detect faults.
Several system-specific techniques exist for this phase
[5, 9–11, 15, 19–21, 23–25]. Its output is often fed to a
second phase that localizes faults. Localization identifies
which system components are likely to blame for failing
transactions.

Fault localization techniques are extremely valuable
because information on component health may not be
easily available in large networks and manual localiza-
tion can lead to several hours of downtime. Even where
component health information is available, it may be
incorrect (as in the case of "gray failures" in which a
failed component appears functional to liveness probes)
or insufficient towards identifying culprits for failing
transactions [6]. Fault localization has also been studied
widely [3,6,8,11,13,14,16–18,26,27]. We focus on this
second phase and ask: given information from the first
phase, which fault localization algorithm gives the best
accuracy with the lowest overhead, and why?.

Some diagnostic tools like [21, 23, 24] leave fault lo-
calization to a knowledgeable network operator and aim
to provide the operator with a reduced dependency graph
for a particular failure. While this is different from what
we call fault localization in this paper, the automated
fault-localization techniques we discuss can be used in
those tools as well, to narrow down the list of suspects.

Steinder and Sethi [28] suvey the fault localization
landscape but consider each approach separately. To the
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best of our knowledge, ours is the first work to analyze
the design space for fault localization, and to use this in-
sight to propose a better fault localization tool Gestalt.

3. Fault Localization Anatomy

We consider the following common fault localization
scenario. The network is composed of components such
as routers and servers. The success of a transaction in the
network depends on the health of the components it uses.
The goal of fault localization is to identify components
that are likely responsible for failing transactions. While
we use the term transaction for simplicity in this paper,
it can be any indicator of network health (e.g., link load)
for which we want to find the culprit component.

More formally, the state of the network is represented
by a vector I with one element I[ j] per network compo-
nent that represents the health of component j. Let O
be a vector of observation data such that O[k] represents
whether transaction k succeeded. For example, O could
represent the results of pings between different sources
and destinations. The broad goal is to infer likely val-
ues of I that explain the observations O. Specifically, the
fault localization algorithm outputs a sequence of possi-
ble state vectors I1, I2, .. ordered in terms of likelihood.

We measure the goodness of an algorithm by its di-
agnostic rank: given ground truth about the components
that failed denoted by Itrue, the diagnostic rank is j if
Itrue = I j for some j in the output sequence; and n, the
total number of possible state vectors, otherwise. For ex-
ample, a network with two routers R and S and one link
E between them will have a 3 element state vector denot-
ing the states of R, S, and E respectively. Let us say that
only router R has failed so Itrue = (F,U,U) where F de-
notes failed and U denotes up. If the output of the fault
localization algorithm is (U,F,U),(F,U,U),(U,U,F)
then the diagnostic rank on this instance of running fault
localization is 2 because one other component failure
(router S) has been considered more likely. Lower diag-
nostic rank implies fewer "false leads" that an operator
must investigate. A second metric for an algorithm is
the computation time required to produce the ranked list
given the observation vector O.

We find that practical fault localization algorithms can
be anatomized into three parts: a system model, a scor-
ing function, and a state-space explorer. First, any fault
localization algorithm needs information such as which
components are used by each transaction, and possible
failure correlations between component failures (e.g., a
group of links in a load-balancing relationship). Thus,
localization algorithms start with a system model S that
predicts the observations produced when the system is in
state I. System models in past work are often cast in the
form of a dependency graph between transactions and

components but there is considerable variety in the types
of dependency graphs used (§4.1).

Second, in theory fault localization can be cast as a
Bayesian inference problem. Given observation O, rank
system states I based on PS(I|O), the probability that I
led to O when passed through the system model S. How-
ever, even approximate Bayesian inference [12, 22] can
seldom handle the complexity of large networks [13].
So practical algorithms use a heuristic scoring func-
tion Score that maps each component to a metric that
represents the likelihood of that component failing. The
underlying assumption is that for two system states Ii and
I j and respective observations Oi and O j predicted by S:
PS(Ii|O)≥PS(I j|O) when Score(Oi,O) ≥ Score(O j,O),
where O is the actual observation vector. This scoring
function is the second part of the pattern.

Finally, given the system model and scoring function
the final job of a fault localization algorithm is to list and
evaluate states that are more likely to produce the given
observation vector. But system states can be exponential
in the number of components since any combination of
components can fail. Thus, localization algorithms have
a third part that we call state space exploration in which
heuristic algorithms are used to explore system states,
balancing computation time with accuracy.

We do not claim that this pattern fits all possible fault
localization algorithms. It does not fit algorithms based
on belief propagation [26, 27]; such algorithms are com-
putationally expensive and have not been shown to work
with real systems. However, as Table 3 shows, this pat-
tern does capture algorithms that have been evaluated for
real networks, despite considerable diversity in this set.

4. Design Choices for Localization

We map existing algorithms into the three-part pattern
by describing the choices they make for each part. §4.1-
4.3 describes the choices, and §4.4 provides the mapping.

Prior algorithms also use different representations
such as binary [8, 17, 18] or probabilities [14]) for trans-
action and component states. We use the 3-value rep-
resentation from Sherlock [6] as it can model all prior
representations. Specifically, the state of a component or
transaction is a 3-tuple, (pup, ptroubled , pdown), where pup

is the probability of being healthy, pdown that of having
failed, and ptroubled that of experiencing partial failure;
pup+ptroubled+pdown=1. The state of a completely suc-
cessful or failed transaction or component is (1,0,0) or
(0,0,1); other tuples represent intermediate degrees of
health. A monitoring engine determines the state of
a transaction in a system specific way; for example, a
transaction that completes but takes a long time may be
assigned ptroubled > 0.
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(a) Network (b) DTL: C2→S2 (c) PTL: C2→S2 (d) PML: C2→S2 (e) C1→S1

Figure 2: An example network and models for two transactions.

Table 1: Transaction state (pup) predicted by different
models for transaction C2→S2 in Figure 2

4.1 System Model
A system model represents the impact of network

components on transactions. It can be encoded as a di-
rected graph, where an edge from A to B implies that A
impacts B. Three types of system models have been used
by prior localization algorithms:
1. Deterministic Two Level (DTL) is a two-level
model in which the top level corresponds to system
components and the bottom level to transactions. Com-
ponents connect to transactions they impact. The model
assumes that components independently impact depen-
dent transactions, and a transaction fails if any of its
parent components fails.
2. Probabilistic Two Level (PTL) is similar to DTL
except that the impact is modeled as probabilistic. Com-
ponent failure leads to transaction failure with some
probability.
3. Probabilistic Multi Level (PML) can have more
than two levels; intermediate levels help encode more
complex relationships between components and transac-
tions such as load balancing and failover.

The network in Figure 2(a) helps illustrate the three
models. The network has two clients (C1,C2), two
servers (S1,S2), two routers (R1,R2), and several links.
Transactions are requests from a client to a server
(Ci→S j). Each request uses the shortest path, based
on hop count, between the client and server. Where mul-
tiple shortest paths are present, as for C2→S2, requests
are load balanced across those paths.

Assume that the components of interest for diagno-
sis are the two routers and the two servers. Then, Fig-
ures 2(b)-(d) show the models for the transaction C2→S2.
Different models predict different relationships between

the failures of components and that of the transaction.
These predictions are shown in Table 1. For simplic-
ity, the table shows the value of pup; pdown = 1− pup

and ptroubled = 0 in this example. DTL predicts that
the transaction fails when any of the components upon
which it relies fails. Thus, the transaction is (incorrectly)
predicted as always failing even when only one of the
routers fails. PTL provides a better approximation in
that the transaction is not deemed to completely fail
when only one of the router fails. However, it still does
not correctly model the impact of both routers failing
simultaneously. PML is able to correctly encode com-
plex relationships. While this example shows how PML
correctly captures load balancing, it can also model other
relationships such as failover [6]. However, this higher
modeling fidelity does not come for free; as we discuss
later, PML models have higher computational overhead.

In this network, the three models for the other three
types of transactions (C1→S{1,2},C2→S1) are equivalent.
The model for C1→S1 is shown in Figure 2(e)

4.2 Scoring function
Scoring functions evaluate how well the observa-

tion vector predicted by the system model for a sys-
tem state matches the actual observation vector. Let
(pup, ptroubled , pdown) be the state of a transaction in the
predicted observation vector. Let (qup,qtroubled ,qdown)
be the actual state determined by the monitoring engine.
Then, the computation of various scoring functions can
be compactly explained using the following quantities:

Explained failure eF = pdownqdown

Unexplained failure nF = (1− pdown)qdown

Explained success eS = pupqup + ptroubledqtroubled

Unexplained success nS = (1− pup)qup +
(1− ptroubled)qtroubled

eF is the extent to which the prediction explains the ac-
tual failure of the transaction, and nF measures the ex-
tent to which it does not. eS and nS have similar in-
terpretations for successful transactions. We also define
another quantity T F= Σ(eF + nF), where the summa-
tion is over all elements of observation vectors. Because
eF + nF = qdown, T F is the total number of failures in
the actual observation vector.
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Table 2: Score computed by different scoring functions
for three possible failures.

Different scoring functions aggregate these basic
quantities across observation elements in different ways.
We find three classes of scoring functions:
1. FailureOnly (eF,T F): Such scoring functions only
measure the extent to which a hypothesis explains actual
failures. They thus use only eF and TF.
2. InBetween (eF,nS,T F): Such scoring functions
only measure the extent to which a hypothesis explains
failures and unexplained successes.
3. FailureSuccess (eF,eS): Such scoring functions
measure both the extent to which a hypothesis explains
failures and how well it explains successes.

Concrete instances of these classes are shown in Ta-
ble 3. As expected, the score increases as eF and eS
increase, and decreases when nF and nS increase. Given
the large number of elements, each aggregates them in a
way that is practical for high-dimensional spaces [4, 7].

Instead of analyzing every instance, in this paper we
use a representative for each of the three classes. We
find that the performance of different functions in a class
is qualitatively similar. Our experiments use as repre-
sentatives the functions used by SCORE (FailureOnly),
Pinpoint (InBetween), and Sherlock (FailureSuccess).

To understand how different scoring functions can lead
to different diagnoses, consider Figure 2 again. Assume
that R1 has failed and the actual state of four transactions
is available to us. Two of these are C1→S1, both of which
have failed (since they depend on R1); and the other two
are C2→S2, one of which has failed (because it used R1,
while the other used R2). Table 2 shows how the scoring
functions evaluate three system states in which exactly
one of R1, R2, and S1 has failed. The computation uses
DTL for the system model. The top four rows show the
values of the basic quantities. As an example, ΣeF is
3 in Column 1 because R1’s failure correctly explains
the three failed transactions; it is 1 in Column 2 because
R2’s failure explains the failure of only one transaction
(C2→S2) and not of the two C1→S1 transactions.

The bottom three rows of the table show the scores of
the three scoring functions for each failure. Even in this

simple example, different scoring functions deem differ-
ent failures as more or less likely. FailureOnly and InBe-
tween deem R1 as the most likely failure that explains the
observed data, FailureSuccess deems (incorrectly) that
the data can be just as well be explained by the failure
of S1. While it may appear that FailureSuccess is a poor
choice, we show later that FailureSuccess actually works
well in a variety of real networks.

4.3 State space exploration
State space exploration determines how the large

space of possible system states (i.e., combinations of
failed components) is explored. Prior work uses four
types of explorers.
1. Independent explores only system states with ex-
actly one component failure.
2. Jointk explores system states with at most k failures.
It is a generalization of Independent (which is Joint1).
3. Greedy set cover (Gsc) is an iterative method. In
each iteration, a single component failure that explains
the most failed transactions is chosen. Iterations repeat
until all failed transactions are explained. Thus, it greed-
ily computes the set of component failures that cover all
failed transactions.
4. Hierarchical is also an iterative method. As in Gsc,
in each iteration the component C that best explains the
actual observations is chosen. However, a major differ-
ence is that if there are additional observations that C
impacts, then these are added to the list of unexplained
failures even if they were originally not marked as hav-
ing failed in the input. Thus unlike Gsc, the set of unex-
plained failures need not decrease monotonically.

4.4 Mapping fault localization algorithms
Table 3 maps the fault localization portion of nine

prior tools to our framework. Readers familiar with a
tool may not immediately see how its computation maps
to the choices shown because the original description
uses different terminology. But in each case we have
analytically and empirically verified the correctness of
the mapping: composing the choices shown for the three
parts leads to a matching computation (except for as-
pects mentioned below). Due to space constraints, we
omit these verification experiments.

The last column lists aspects of the tool that are not
captured in our framework. Most relate to pre- or post-
processing data, e.g., candidate pre-selection removes ir-
relevant components at the start. The table does not list
other suggestions by tool authors such as using priors
that capture baseline component failure probabilities.

While the aspects we do not model are useful enhance-
ments, they are complementary to the core localization
algorithm. Our goal is to understand the behavior of
fundamental choices made in the core algorithm. By
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Tool Target system System
Model

Scoring Function State Space
Exploration Aspects not captured

Codebook [16] Satellite comm. network DTL,PTL FailureSuccess (Σ(eF + eS)) Independent Codebook selection
MaxCoverage
[18] ISP backbone DTL FailureOnly ( ΣeF

T F ) Gsc
Candidate post-selection,
Hypothesis selection

NetDiagnoser
[11]

Intra-AS, multi-AS
internetwork DTL FailureOnly ( ΣeF

T F ) Gsc Candidate pre-selection

NetMedic [14] Small enterprise network PTL FailureOnly (ΣeF) Independent Re-ranking
Pinpoint [8] Internet services DTL InBetween ( ΣeF

T F+ΣnS ) Hierarchical

SCORE [17] ISP backbone DTL FailureOnly( ΣeF
T F ) Gsc

Threshold based
hypothesis selection

Sherlock [6] Large enterprise network PML FailureSuccess (∏(eF + eS)) Joint3 Statistical significance test
Shrink [13] IP network PTL FailureSuccess (∏(eF + eS)) Joint3
WebProfiler [3] Web applications DTL InBetween ( ΣeF

ΣnS+ΣeF ) Joint2 Re-ranking

Table 3: Different fault localization algorithms mapped to our framework.

employing these choices, tools inherit their implications
(§7) even when they use additional enhancements. Our
paper abuses notation for simplicity; when we refer to a
particular tool by name, we are referring to the computa-
tion that results from combining its three-part choices.

5. Network Characteristics

Localization algorithms must handle network charac-
teristics that confound inference. We selected six such
characteristics by simply asking: “what could go wrong
with inference?" Clearly, dependency graph informa-
tion can be incorrect (which we call uncertainty) and
measurements may be wrongly recorded (which we call
noise). We, and other researchers, have seen each char-
acteristic empirically: e.g., noise in Lync and uncertainty
in Exchange. We make no claim that our six characteris-
tics are exhaustive but only that they helped explain why
inference in the real networks we studied was hard.

In detail, the six characteristics we study are:
1. Uncertainty Most networks have significant non-
determinism that makes the impact of a component
failure on a transaction uncertain. For example, if a DNS
translation is cached, a ping need not consult the DNS
server; thus the DNS server failure does not impact the
ping transaction if the entry is cached, but otherwise
it does. This creates an uncertain dependency because
the localization algorithm is not privy to DNS cache
state. Load balancing is another common source of
non-determinism e.g., C2→S2 transaction in Figure 2.

More precisely, if a component potentially (but not al-
ways) impacts a transaction failure, we call the depen-
dency uncertain. A network whose system model con-
tains uncertain edges is said to exhibit uncertainty. The
degree of uncertainty is measured by the number of un-
certain dependencies and the uncertainty of each depen-
dency. Probabilistic models like PTL and PML can en-
code uncertainty while deterministic models cannot.
2. Observation noise So far, we assumed that obser-
vations are measured correctly. However, in practice,

pings could be received correctly but lost during trans-
mission to the stored log: thus an “up" transaction can
be incorrectly marked as “down". Errors can also occur
in reverse. In Lync, for example, the monitoring sys-
tem measures properties of received voice call data to
determine that a voice call is working; however, the voice
call may still have been unacceptable to the humans in-
volved. Both problems have been encountered in real
networks [3, 11, 17, 18]. They can be viewed as intro-
ducing noise in the observation data that can lead sensi-
tive localization algorithms astray. A network with 10%
noise can be thought of as flipping 10% of the transaction
states before presentation to the localization algorithm.
3. Covering relationships In some systems, when a
particular component is used by a transaction, other com-
ponents are used as well. For example, when a link par-
ticipates in an end-to-end path, so do the two routers on
either end. More precisely, component C covers com-
ponent D if the set of transactions that C impacts is a
superset of the transactions that D impacts.

Covering relationships confuse fault localization be-
cause any failed transaction explained by the covered
component (link) can also be explained by the covering
component (router). Other observations can be used to
differentiate such failures; when a router fails, there may
be path failures that do not involve the covered link. But
some fault localization methods are better than others at
making this distinction.
4. Simultaneous failures Diagnosing multiple, simul-
taneous failures is a well-known hurdle. Investigating
k simultaneous failures among n components potentially
requires examining O(nk) combinations of components.
For example, in Lync, even if we limit localization to
components that are actively involved in current trans-
actions, the number of components can be around 600;
naively considering 3 simultaneous failures as in Joint3
can take days to run. The key characteristic is the max-
imum number s of simultaneous failures; the operator
must feel that more than s simultaneous failures are ex-
tremely unlikely in practice.
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Figure 3: Lync architecture.

5. Collective impact So far, we assumed that a sin-
gle component failure affects a transaction in possibly
uncertain fashion. However, many networks exhibit a
more complex dependency between a transaction and a
set of components; the transaction’s success depends on
the collective health of the components in the set. For in-
stance, when two servers are in a failover configuration,
the transaction fails only if they both fail; otherwise, it
succeeds. Collective impact is not limited to failover and
load-balancing servers. Routers or links on the primary
and backup paths in an IP network also have collective
impact on message delivery. Multi-level models (e.g.,
PML) can model collective impact using additional logi-
cal nodes, but two-level models do not.2

6. Scale Network size impacts the speed of fault lo-
calization, which is key to fast recovery and high avail-
ability. Scale can be captured using the total number of
components in the network and/or the typical number of
observations fed to the localization algorithm. For Lync,
the two numbers are 8000 and 2500.

6. Analysis methodology

Our goal is to analyze the relative merits of the choices
made by various localization algorithms in the face of
the network characteristics above. We do this by com-
bining first principles reasoning and simulations of three
diverse, real networks. This section describes our sim-
ulation method and the networks we study, and the next
section presents our findings.

6.1 Simulation harness
In each simulation, we first select which system com-

ponents fail. We then generate enough transactions—
some of which fail due to the failed components—such
that diagnosis is not limited by a lack of observations, as
is true of large, busy networks [18, 21]. Finally, we feed
these observations to the fault localization algorithm and
obtain its output as a ranked list of likely failures.

2Our notion of collective impact differs from so called “cor-
related failures” in the literature which refers to components
likely to fail together such as two servers are connected to the
same power source.

Unless otherwise specified, the components to fail and
the transaction endpoints are selected randomly. In prac-
tice, failures may not be random; we have verified that
results are qualitatively similar for skewed failure dis-
tributions. In §9, we show that our findings agree with
diagnosing real failures in Lync.

As is common, we quantify localization performance
using diagnostic rank and computation time. Since diag-
nostic rank is the rank of components that have actually
failed, it reflects the overhead of identifying real failures,
assuming that operators investigate component failures
in the order listed by the localization algorithm. Our sim-
ulation harness takes as input any network, any failure
model, and any combination of localization methods.

6.2 Networks considered
To ensure that our findings are general, we study three

real networks that are highly diverse in terms of their
size, services offered, and network characteristics. The
first network, Lync, supports interactive, peer-to-peer
communication between users; the second, Exchange,
uses a client-server communication model; and the third,
Abilene, is an IP-based backbone. Each network has one
or more challenging characteristics. For instance, Lync
has significant noise and simultaneous failures while Ex-
change has significant uncertainty. To our knowledge we
are the first to consider diagnosis in a Lync-like network.
1. Lync Lync is an enterprise communication system.
that supports several communication modes, including
instant messages, voice, video and conferencing. We fo-
cus on the peer-to-peer communication aspects of Lync.
The main components of a Lync network are shown in
Figure 3. Internal users are registered with registrars and
authenticated with AD (active directory). Audio calls
connect via mediation servers, and out of the enterprise
into a PSTN (public switched telephone network) using
gateway. Edge servers handle external calls. Branch of-
fices connect to the main sites by a WAN and PSTN.

The deployment of Lync that we study spans many of-
fices worldwide of a large enterprise. It has over 8K com-
ponents and serves 22K users. We have information on
the network topology and locations of users. For a two-
month period, we also have information on failures from
the network’s trouble ticket database and on transactions
from its monitoring engine.
2. Exchange Exchange is a popular email system. Its
transactions include sending and receiving email and are
based on client-server communication. Important com-
ponents of an Exchange network include mail servers,
DNS, and Active Directory(AD) servers.

We study the Exchange deployment used in [9], with
530 users across 5 regions. The network has 118 compo-
nents. The number of hubs, mailboxes, DNS and AD
servers in a region are proportional to the number of
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users. AD servers are in a load balancing cluster; hubs,
DNS and mailbox servers are in a failover configuration.
3. Abilene Abilene is an IP-based backbone that con-
nects many academic institutions in the USA. The topol-
ogy [1] that we use has 12 routers and 15 links, for a total
of 27 network components. The workload used for Abi-
lene consists of paths between randomly selected ingress
and egress routers selected.

7. Analysis results

Table 4 summarizes our findings by qualitatively rat-
ing models, scoring functions and explorers on how they
handle the six network characteristics. For each network
characteristic (columns), it rates each method as good,
OK, or poor. An empty (shaded) subcolumn for a char-
acteristic implies that each row is qualitatively equiva-
lent with respect to that characteristic. For instance, the
choice of state space explorer has little impact on the
ability to handle uncertainty. We focus on parts of the
table where different options behave differently. Each
such part highlights the relative merits of choices, and
we use it later to guide the design of Gestalt.

7.1 Uncertainty
Uncertainty arises when the impact of a component

on a transaction is not certain. Conventional wisdom is
that deterministic models cannot handle uncertainty [6,
13, 14]. But we find that:
Finding 1 In the presence of uncertainty, DTL suffices
if the scoring function is FailureOnly. Consider a DNS
server D whose impact on a specific transaction, say ping
1, is uncertain. In DTL, this uncertainty must be resolved
(since the model is binary) in favor of assuming impact;
for instance, we must assume that ping 1 depends on the
D even if it used a locally cached entry. (If we err in
the opposite direction and assume that ping 1 does not
depend on the D, we would never be able to implicate D
if the cache is empty and D actually fails.)

If this assumption happens to be true, no harm is done.
But if false (i.e., the transaction does not depend on the
component), there are two concerns. First, consider the
case when the the real failure was a different component;
for example, ping 1 failed because some router R in the
path failed and not because D failed. In that case, D may
be considered a more likely cause of the failure of ping 1
than R; but this can increase the diagnostic rank of R by
at most 1, which is insignificant.

The second, more important, concern is that the abil-
ity to diagnose the failure of the falsely connected com-
ponent itself may be significantly diminished. For ex-
ample, when D fails, other transactions, say ping 2 and
ping 3, may succeed because they use cached entries.
This can confuse the fault localization algorithm because

it increases the number of unexplained successes nS at-
tributed to D, and decreases eS, potentially increasing
significantly the diagnostic rank of D.

FailureOnly functions are not hindered by the false
connection because they use only eF and nF in comput-
ing their score. But FailureSuccess and InBetween are
negatively impacted because they do use eS and nS.

Figure 4 provides empirical confirmation for this find-
ing using Exchange which has significant uncertainty be-
cause of the use of DNS servers whose results can be
cached. It plots the diagnostic rank for 1000 trials; in
each trial, a single random failure is injected. Observe
that DTL with FailureOnly handles uncertainty just as
well as PML and PTL. By contrast, DTL with Failure-
Success has much worse diagnostic rank (50 versus 5
in some trials). An implication of Finding 1 is that if
the network has only uncertainty, it can be best handled
(with small computation time and comparable diagnostic
rank) using DTL and FailureOnly.

7.2 Observation noise
Finding 2 FailureSuccess is most robust to observa-

tion noise, followed by InBetween, and then by Failure-
Only. Intuitively, using more evidence and all available
elements reduces sensitivity to noise. Noise turns suc-
cessful transactions into apparent failures or vice versa.
FailureOnly is the most impacted because it uses only
failure elements. FailureSuccess is the least impacted as
legitimate failures appearing as successes add to eS the
same amount as that subtracted from eF , and vice versa.

Figure 6(a) confirms this behavior. We inject single
failures in Abilene and introduce 0-50% noise. We run
100 trials for each noise level and plot the median diag-
nostic rank for each level. This graph uses DTL and In-
dependent as the system model and state space explorer;
the relative trends are similar with other combinations.
Finding 3 Iterative state space explorers, Gsc and Hi-
erarchical, are highly sensitive to noise. This is because
an erroneous inference (due to noise) made in an early
iteration can cause future inferences to falter.

Figure 6(b) confirms this behavior. In this experiment,
we introduced two independent failures in Abilene and
0-50% observation noise. The experiment uses DTL and
FailureSuccess while varying the state space explorer;
other combinations of model and scoring function pro-
duce similar trends. Figure 6(b) plots the median diag-
nostic rank across 100 trials. We see that Gsc and Hierar-
chical deteriorate with small amounts of noise. Finding
3 helps explain the extreme sensitivity of SCORE, which
uses FailureOnly and Gsc, to noise, that prior work [18]
empirically observed but did not fully explain.

7.3 Covering relationships
Recall that a component C covers a component D if
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Observation Covering Simultaneous Collective
Uncertainty Noise relationship failures Impact Scale

DTL Good w/ FailureOnly. Poor GoodPoor w/ other scoring funcs.
PTL Good Poor OK
PML Good Good w/ Jointk . OK

Poor otherwise.
FailureOnly(FO) Good Poor Poor Good

InBetween Good w/ PTL, PML OK Good OKPoor with DTL
FailureSuccess(FS) Good w/ PTL, PML. Good Good OKPoor with DTL
Independent(Ind) Good Poor Poor Good

Jointk(Jt_k) Good Good (s≤k). Good (c≤k). Poor
Poor (s>k) Poor (c>k)

Gsc Poor Good∗ Poor Good
Hierarchical Poor Poor Poor OK

Table 4: Effectiveness of diagnostic methods with respect to factors of interest. ∗ depends on the network.

Figure 4: DTL can handle
uncertainty when used with

FailureOnly. [Exchange]

Figure 5: FailureOnly
performs poorly for

covering relationships.
[Abilene]

(a) Scoring functions (b) State space explorers

Figure 6: Sensitivity to observation noise. [Abilene]

the set of transactions that D impacts is a subset of those
that C impacts. In other words, when a transaction that D
impacts fails, it is impossible to distinguish a failure of C
from that of D by looking only at failures.
Finding 4 For covering relationships, FailureOnly
scoring functions should not be used. Other scoring
functions (FailureSuccess, InBetween) can better disam-
biguate the failures of the covering and covered compo-
nent because they use successful transactions (eS, nS)
as well, and not only failed ones. For instance, consider
a failed link. All failed transactions due to the link can
also be explained by the failure of the attached routers.
By using successful transactions that include the routers
but not the failed link, the scoring function can assign a
higher likelihood to link failure than router failure.

Figure 5 verifies Finding 4 by showing the results of
an experiment using Abilene, which has many covering
relationships. We randomly introduced a single failure
in the network and diagnosed it using different scoring
functions (combined with DTL and Independent). We
see that FailureOnly has the worst performance with non-
zero diagnostic rank in 60% of the trials while the other
two methods have rank 0 most of the time.

We note that FailureOnly has been used by several

tools to diagnose ISP backbones [11,17,18], which have
many covering relationships. Finding 4 suggests that the
localization accuracy of these tools can be improved by
changing their scoring function.

7.4 Simultaneous failures
We now discuss simultaneous failures of components

that have independent impact on transactions. The next
section discusses collective impact.
Finding 5 For a small number of simultaneous failures
(s≤k), Jointk is best and Hierarchical is worst. The effec-
tiveness of Jointk follows because it examines all system
states with k or fewer failures. Hierarchical does poorly
because its clustering approach forces it to explain more
failures than needed. Suppose transactions O1,O2,O3
have failed and component C explains O1 and O2 and no
other component explains more failures. Suppose, how-
ever, that C also impacts transaction O4. Then Hierarchi-
cal will add C to the cluster but will also add transaction
O4 as a new failed transaction to be explained by subse-
quent iterations. Intuitively, the onus of explaining more
failures than those observed can lead Hierarchical astray.

Figure 7(a) shows the performance of different state
space explorers when diagnosing two (randomly picked)
simultaneous failures in Abilene. The graph uses PML
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(a) 2 simultaneous failures (b) 3-4 simultaneous failures

Figure 7: Ability of state space explorers to handle
simultaneous failures. [Abilene]

(a) 2 collective failures (b) 3 collective failures

Figure 8: Ability of a model+state space explorer to
handle collective impact failures. [Abilene]

and FailureSuccess; other combinations produce similar
trends. We see that Jointk is highly effective (rank 2 or
less), and Hierarchical is poor (rank > 20 in 25% of tri-
als). Gsc has bimodal behavior with a rank > 25 in a
small fraction of trials. Closer investigation confirms that
these trials involve the simultaneous failures of two com-
ponents that together cover a third component.

Finding 5 explains why Pinpoint [8], which uses Hier-
archical, has poor performance (see Figure 4 in [8]) for
even two simultaneous failures, despite the handling of
simultaneous failures being an explicit goal of Pinpoint.
It suggests that replacing Hierarchical state space explo-
ration in Pinpoint (with, say, Joint2) while keeping the
same system model and scoring function would improve
Pinpoint’s diagnosis of simultaneous failures.

7.5 Collective impact
We now study simultaneous failures of components

that have a collective impact on transactions by being, for
instance, in a load balancing or failover relationship. We
find that in such cases, the choice of system model and
state space explorer should be jointly made. We explored
two cases: when the number s of failed components in a
collection is small (s≤k), and when it is large (s>k).
Finding 6 For diagnosing a small number of simulta-
neous failures in a collection (s ≤ k), combining PML
and Jointk is most effective; any other system model or
state space explorer leads to poor diagnosis. This is
because, among existing models, only PML can encode
collective impact relationships. Other models represent
approximations that can be far from reality. However,
picking the right model is not enough. The state explorer
must also consider simultaneous failure of these compo-
nents. Among existing state space explorers, only Jointk
has this property. Independent does not consider simul-
taneous failures, and Gsc and Hierarchical assume that
components have independent impact.

Figure 8(a) demonstrates this behavior. We modeled
failures among components with collective impact in
Abilene as follows. Each trial randomly selects a pair of
nodes that has two vertex-disjoint paths between them.

For messages between these nodes, the two paths can be
considered to be in a failover relationship with collective
impact. We then introduced a randomly selected failure
along each path. Thus, all messages sent between the
pair of nodes will now fail. For 1000 such trials, the
graph plots the diagnostic ranks of several combinations
of system model and state space explorer. It uses Fail-
ureSuccess for scoring function, but others yield similar
results. We omit results for Gsc and Hierarchical; they
had worse performance than Independent. As we can
see, only PML+Joint2 is effective.

This result implies that half-way measures are insuf-
ficient for diagnosing collective impact failures. We
must both model relationships (PML) and explore joint
failures (Jointk). Localization suffers if either choice is
wrong. For example, Shrink [13] uses PTL with Jointk
even though it targets IP networks which may have po-
tentially many failover paths. Finding 6 suggests that
Shrink would do better to replace PTL with PML.

8. Gestalt

The insights from the analysis above led us to develop
Gestalt. It combines ideas from existing algorithms and
also includes a new state space exploration method.

For the system model, Gestalt uses a hybrid between
DTL and PML that combines the simplicity of DTL
(fixed number of levels, deterministic edges) with the
expressiveness of PML (ability to capture complex com-
ponent relationships). Our model has three levels, where
the top level corresponds to system components that
can fail independently and the bottom level to transac-
tions. An intermediate level captures collective impact
of system components. Instead of encoding probabilistic
impact on the edges, the intermediate node encodes the
function that captures the nature of the collective impact.
The domain of this function is the combinations of states
of the parent nodes, and the range is the impact of each
combination on the transaction. Figure 9(a) shows how
Gestalt models the example in Figure 2a. The interme-
diate node I encodes the collective impact of R1 and R2.
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Algorithm 1: Pseudocode for Gestalt
1: Hall = {};
2: For each hitRatio in 1,0.95, · · ·0 do
3: Hcurr = (); //current hypothesis
4: Ounexp = Oall ; //unexplained observations
5: Hall += GenHyp(1, Ounexp, hitRatio, Hcurr);
6: Return Hall

GenHyp(i, Ounexp, hitRatio, Hcurr)
1: Hreturn = {Hcurr };
2: Cnew = NewCandidates(hitRatio, Ounexp);
3: For each c in Cnew
4: hypnew = (hyp, c);
5: If (i == k)
6: Hreturn += hypnew;
7: Else
8: Oexp = ExpObs(hypnew,Ounexp);
9: Hreturn += GenHyp(i+1, Ounexp − Oexp, hitRatio,

hypnew);
10: Return Hreturn

NewCandidates(hitRatio, Ounexp)
1: Cnew = {};
2: For each c in CandidatePool
3: If (HitRatio(c) ≥ hitRatio)
4: Cnew += c;
5: scoremax = MaxScore(Cnew, Ounexp);
6: scorenoise = Noisethresh × |Ounexp |;
7: For each c in Cnew
8: If (Score(c) < scoremax − scorenoise)
9: Cnew −= c;

10: Return Cnew

The function represented by I is shown in the figure,
which shows values only for pup (pdown=1–pup).

While for this example, PML too has only three levels,
Figure 9(b) illustrates the difference between PML and
Gestalt. Here, to reach S, C spreads packets across R1
and R2, and R2 spreads across R3 and R4. Figures 9(c)
and 9(d) show PML and Gestalt models for this network.

Another difference between PML and our model is
how we capture single components with uncertain im-
pact on a transaction (e.g., a DNS server whose responses
may be cached). Gestalt models these with 3 levels too.
An intermediate node captures the uncertainty from the
component’s state to its impact on the transaction. It may
deem, for instance, that the transaction will succeed with
some probability even if the component fails.

As scoring function, we use FailureSuccess because of
its robustness to noise and covering relationships (Find-
ings 2 and 3). By explicitly modeling uncertainty (unlike
DTL), the combination of our model and FailureSucess
is robust to uncertainty as well (Finding 1).

For state space exploration, we develop a method that
has the localization accuracy of Jointk and the low com-
putational overhead of Gsc. It is based on the following
observations. Gsc is susceptible to covering relationships
because many failure combinations can explain the ob-
servations and Gsc explores only a subset, ignoring oth-
ers (Finding 5). Gsc is susceptible to noise because noise
can make it pick a poor candidate and rule out other pos-

sibilities (Finding 3). The diagnostic accuracy of Jointk
for collective impact failures stems from the fact that it
explores combinations of at most k failures; exploring a
smaller number does not help (Finding 6). But because
its exploration is fully combinatorial, it has a high com-
putational overhead.

Our new exploration method is shown in Algorithm 1.
It takes two parameters as input. The first is Noisethresh,
the percentage of observation noise expected in the net-
work, which can be estimated from historical data. Given
ground truth (post resolution) about a failure and the
transaction logs, the percentage of transactions that can-
not be explained by the ground truth reflects the level of
observation noise. In Lync, we found this to be around
10%. The second parameter is k, the maximum number
of simultaneous failures expected in the network. It can
also be gleaned from historical failure data.

The candidate failures that we explore are single com-
ponent failures and combinations of up to k components
with collective impact. This candidate pool explicitly
accounts for collective impact failures (making them di-
agnosable, unlike in Gsc). It is also much smaller than
the pool considered by Jointk which includes all possi-
ble combinations of up to k failures. The output of the
exploration is a ranked list of hypotheses, where each
hypothesis is a set of at most k candidates from the pool.

These sets are computed separately for different
thresholds of hit ratio [17]. The hit ratio of a candidate
is the ratio of number of failed versus total transactions
in which the component(s) participated. Iterating over
candidates in decreasing order of hit ratios gives us a
systematic way of exploring failures while focusing on
more likely failures first because actual failures are likely
to have larger hit ratios. Hit ratios are not used in the
scoring function.

For a given hit ratio threshold, the hypothesis sets are
built iteratively (i.e., not all possible sets are considered)
in k steps. We start with the empty set. At each step,
each set is forked into a number of child sets, where each
child set has one additional candidate than the parent set.

The child candidates are computed as follows. Let
Ounexp be the set of observations whose status cannot be
explained by the parent set (i.e., the status does not match
what would be predicted by the system model). Initially,
when the parent set is empty, this set equals Oall , the
set of all observations. Then, we first compute the score
of each candidate in the entire pool with hit ratio higher
than the current threshold. This computation uses the
scoring function (FailureSuccess) and is done with re-
spect to Ounexp. Candidates more likely to explain the as
yet unexplained observations will have higher scores.

If there were no observation noise, candidates with
the maximum score can be used as child candidates be-
cause they best explain the remaining unexplained ob-

11
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(a) Gestalt model for Figure 2a (b) Another example
network

(c) PML for
Fig. 9(b)

(d) Gestalt model for Figure 9(b)

Figure 9: Modeling in Gestalt

servations. But due to noisy observations, the score of
actual failures may go down and the score of some other
candidates may go up. By focusing only on candidates
with the maximum score, we run the risk of excluding
actual failures from the set, like Gsc.

We thus cast a wider net; the width of the net is
proportional to expected noise. The score of the ac-
tual culprit can be expected to reduce due to observa-
tion noise by scorenoise = Noisethresh × |Ounexp|. The
selected candidates are those with scores higher than
scoremax − scorenoise, where scoremax is the maximum
score across all candidates. This reduces chances of
missing actual failures. Noisethresh and k enable Gestalt
to explore the continuum between Gsc and exhaustive
search. Noisethresh set to 0 mimics Gsc (but handles
covering relationship), and Noisethresh set to 100 mimics
Jointk.

9. Gestalt Evaluation

We now evaluate Gestalt and compare it to 3 exist-
ing algorithms that use very different techniques. We
start with Lync and use the algorithms to diagnose real
failures using real transactions available in system logs.
Based on information from days prior to the failures we
diagnose, we set Noisethresh=10% and k=2 for Gestalt.

Original
recovery delay
(days, hh:mm)

#
potential
failed
comps

Gestalt
diagnos-
tic
rank

Gestalt
run time
(mm:ss)

1 0,01:50 196 11 4:02
2 0,00:50 625 7 2:59
3 0,01:55 552 6 0:05
4 0,22:05 608 9 0:05
5 1,23:45 521 7 0:12
6 0,10:55 655 6 0:21
7 14,06:25 676 12 2:43
8 0,01:45 571 13 1:06
9 0,20:15 562 13 0:23
10 0,08:20 455 3 1:03

Table 5: Statistics for a sample of real failures in Lync.

Figure 1(a) shows the results for a number of failures
seen in a two month period (the actual failure count is
hidden for confidentiality). The legend shows the median
running time for the algorithms on a 3 GHz dual-core
PC. We see that SCORE and Pinpoint perform poorly.
Gestalt and Sherlock perform similarly, but the running
time of Gestalt is lower by more than an order of magni-
tude. This is despite the fact that we ran Sherlock with
Joint2. Using Joint3, recommended in the original Sher-
lock paper [6], would have taken ∼ 20 hours per failure.

Table 5 provides more details for ten sample failures
in the logs. We see that the time it took for the operators
to manually diagnose these failures, reflected in the orig-
inal recovery delay, was very high. The median time was
around 8 hours, though it took more than a day for two
failures. The primary reason for slow recovery time was
the large diagnosis time due to the number of network
components that had to be manually inspected3. The ta-
ble lists the number of components involved in failing
transactions as an estimate of the number of possible
components that might need to be checked. Of course,
using domain knowledge and expertise, an operator will
only check a subset of these components; but the esti-
mate underscores the challenge faced by operators today.
We see that using Gestalt, the operator will have to check
only 3-13 components before identifying the real culprits
compared to 196-655 components for manual diagnosis,
significantly reducing diagnosis time. The run time for
Gestalt to whittle down the list of suspects by 1-2 orders
of magnitude is at most a few minutes.

We next consider simulated failures in the Exchange
network. Figures 10(a) and 10(b) show results for diag-
nosing one and two component simulated failures. We
again used Joint2 for Sherlock and k=2 and Noisethresh=0
for Gestalt. As expected based on our earlier analysis,
Score does very well for single failure scenarios, but
suffers in two-failure scenarios due to covering relation-

3In Lync, once a problem was diagnosed, service was restored
quickly by repair or diverting transactions around the failed
component.

12
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(a) Single failure (b) 2 simultaneous failures (c) 3 simultaneous failures (d) 4 simult. failures, 1% noise

Figure 10: Diagnostic efficacy of different algorithms with Exchange network with different number of failures.

ships. Sherlock and Gestalt do well for both cases, but
Sherlock takes two orders of magnitude more time.

In order to experiment with more simultaneous fail-
ures and Joint3, we reduced the size of the Exchange
network by half (to 67 components). Figures 10(c)
and 10(d) show the results for three failures and for four
failures with 1% observation noise. In the latter case,
we run Gestalt with Noisethresh=1%. We see that Gestalt
matches Sherlock’s diagnostic accuracy for three fail-
ures, with running time that is two orders of magnitude
faster. For four failures, Gestalt has better diagnostic
accuracy than Sherlock because it accounts for noise.
Its running time is still better by 20x, even though noise
makes it explore more failure combinations.

We omit results for Abilene, but we found them to be
qualitatively similar to those above. Gestalt had better di-
agnostic efficacy than SCORE and Pinpoint for all cases.
Gestalt matched Sherlock’s accuracy for most cases and
exceeded it in the presence of noise and more than three
simultaneous failures. Its running time was 1-2 orders of
magnitude lower than Sherlock.

10. Conclusion

We presented Gestalt, a fault localization algorithm
that borrows the best ideas from prior work and includes
a new state space explorer that represents a continuum
between greedy, low-accuracy exploration and combina-
torial, high-overhead exploration. The result is an algo-
rithm that simultaneously provides high localization ac-
curacy and low overhead for a range of networks. Its
design is guided by an analysis framework that anato-
mizes the design space of fault localization algorithms
and explains how the design choices of existing algo-
rithms interact with key characteristics of real networks.
Beyond the specific algorithm it helped develop, we hope
this framework takes a modest step towards understand-
ing the gestalt of fault localization.
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Abstract

Online service failures in production computing envi-

ronments are notoriously difficult to debug. When those

failures occur, the software developer often has little

information for debugging. In this paper, we present

Insight, a system that reproduces the execution path of

a failed service request onsite immediately after a failure

is detected. Upon a request failure is detected, Insight

dynamically creates a shadow copy of the production

server and performs guided binary execution exploration

in the shadow node to gain useful knowledge on how the

failure occurs. Insight leverages both environment data

(e.g., input logs, configuration files, states of interacting

components) and runtime outputs (e.g., console logs,

system calls) to guide the failure path finding. Insight

does not require source code access or any special

system recording during normal production run. We have

implemented Insight and evaluated it using 13 failures

from a production cloud management system and 8 open

source software systems. The experimental results show

that Insight can successfully find high fidelity failure

paths within a few minutes. Insight is light-weight and

unobtrusive, making it practical for online service failure

inference in the production computing environment.

1 Introduction

Although online services1 are expected to be operational

24x7, recent production service outages [2, 1] show great

challenge to meet such an expectation. Unfortunately,

when those online services experience failures in a pro-

duction computing environment, the software developer

is often given little information for debugging.

Particularly, we focus on non-crashing failures where

the server does not crash but fails to process some

1The online services considered in this paper refer to those request

and response services such as a web server or a virtual machine (VM)

reservation service in an infrastructure-as-a-service cloud.

requests. Different from crash failures that often receive

immediate attention, those non-crashing failures often go

unnoticed. We observe that those failures are common

in online services based on our experience with the

virtual computing lab (VCL) [3] which is a production

cloud computing infrastructure. Users who experience

frequent service failures will be seriously discouraged

to use the service again. Most production servers are

well engineered to avoid fatal crash failures and strive

to capture all the request failures with error messages.

However, those error messages do not tell us why a

service request has failed and can be misleading some-

times [7, 36].

To debug a production-run failure, software devel-

opers generally need to reproduce the failure at the

developer-site to understand what happened during the

production run in order to infer the root cause. Much

effort has been devoted to explore the right balance be-

tween recording overhead and debugging effectiveness,

ranging from deterministic record-replay techniques [19,

17, 18, 13] to partial record-replay [6, 14]. However,

production infrastructures are often reluctant to adopt

any intrusive system recording approaches due to de-

ployment and privacy concerns.

In this paper, we present Insight, a system that can

infer the execution path of a failed service request in-

side the production environment without any intrusive

system recording. We view Insight as a first-step failure

inference tool for the developer to gain useful knowledge

about how a service request fails in the production com-

puting environment. Insight can significantly expedite

the debugging process by narrowing down the scope of

diagnosis from thousands of functions to a few of them.

Moreover, the failure paths reproduced by Insight can be

fed into a debugger (e.g., GDB) or a symbolic execution

engine [10, 8] for further analysis.

The key idea of Insight is to perform in-situ failure

path inference inside the production environment. The

rationale behind our approach is that the production com-
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puting environment provides many useful clues for us

to perform failure inference more efficiently than offline

approaches. Those clues include both environment data

(e.g., input logs2, configuration files, state of the faulty

component, interaction with other production servers

such as database query results) and runtime outputs (e.g.,

console logs, system call traces). Our experiments show

that using environment data and runtime outputs can

greatly reduce the failure path search scope and provide

important guidance for us to find the correct failure path.

When a request failure is detected, Insight dynami-

cally creates a shadow component of the faulty produc-

tion server which produced the error message or was

identified by an online server component pinpointing

tool [11, 20, 27]. We detect a request failure by inter-

cepting error messages or employing system anomaly

detection tools [32, 15]. Since the production server

is still alive during non-crashing failures, the shadow

component can inherit the failure states of the faulty

production server. Moreover, the shadow component

allows us to decouple failure inference from the pro-

duction operation. The production server can continue

to process new requests without worrying about losing

important diagnostic information. Our current proto-

type implements dynamic shadow component creation

by augmenting the live virtual machine (VM) cloning

technique [9, 22, 26]. Our scheme allows the shadow

component to acquire environment data and runtime

outputs from the production environment while imposing

minimum disturbance to the production operation.

Insight proposes a novel guided binary execution ex-

ploration scheme that can efficiently leverage the produc-

tion environment data and runtime outputs as guidance to

search the failure paths. We make careful design choices

in our failure inference algorithm in order to meet the

following requirements: 1) binary-only since we can-

not assume source code is available in the production

environment; 2) fast path search in order to leverage

the “fresh” environment data at the failure moment (i.e.,

the environment does not change much and the failure-

triggering inputs or similar inputs are still in the buffer

of the recent input log.); 3) no intrusive recording; and

4) support both interpreted and compiled programs.

Our guided binary execution exploration starts by

replaying the last input in the input log when a failure

is detected. However, Insight does not require the exact

failure-triggering input to find the failure path since

our binary execution exploration scheme can inherently

handle incorrect environment data (e.g., different inputs,

outdated or missing query results). During replay, we

2We observe that most production servers buffer a set of recent

inputs. Although it might be impractical to assume the input log access

for offline diagnosis (e.g., the privacy concern), it is easy to acquire the

input log within the production computing environment.

use the runtime outputs as guidance to stop searching

along wrong paths, that is, if the replay produces a

mismatched output, we roll back the execution to the

previous branch point and flip the branch condition value

(e.g., from true to false) to search a different path.

If no matched path is found using the current input, we

replay the next input in the input log and repeat the above

process. We also support concurrent multi-path search

to further shorten the failure path search time. Multi-

path search also allows Insight to find multiple candidate

failure paths that match the output of the production run.

We consider both console log messages and system

call traces in the output matching. Most production

servers already record console logs. If the production

program produces many console log messages, our ex-

periments show that Insight can rely on console log mes-

sages to produce high fidelity failure paths. However,

if the production program includes very few console

log messages, we propose to use system calls as hints

to search paths between console logs. We chose to

match system calls because they often represent key

operations and can be collected using kernel-level tracing

tools [5, 16] with low overhead (< 1%).

We intentionally skip the constraint checking during

the binary path search in order to achieve fast failure

path inference in the production computing environment.

With the help of environment data, we observe that

Insight only needs to flip a small number of branches

and the chance of finding an infeasible path is small.

To filter out infeasible paths in our final result, we can

apply constraint solver [12, 29, 24] to the candidate

failure paths found by Insight, which is much faster than

applying constraint solver during the path search.

We make the following contributions in this paper:

• We propose to perform in-situ failure path inference

using a dynamically created shadow server inside

the production computing environment.

• We present a guided binary execution exploration

algorithm that can use available environment data

(e.g., inputs, configuration files, states of interacting

components) and runtime outputs (e.g., console

logs, system calls) as guidance to quickly find the

failure path over binary code directly.

• We evaluate Insight using real system failures. Ex-

periments show that in-situ failure path inference is

feasible. Insight can efficiently use the environment

data and runtime outputs when they are present to

find high fidelity failure paths within minutes.

The rest of the paper is organized as follows. Section 2

compares our work with related work. Section 3 presents

the design and implementation of Insight. Section 4
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presents the experimental results. Finally, the paper

concludes in Section 5.

2 Related Work

Production-run failure debugging is a well known chal-

lenging task. In this section, we focus on reviewing the

work that is most related to Insight and describing the

difference between Insight and previous approaches.

Triage [33] first proposed an onsite production run

failure diagnosis framework. It uses checkpoint-replay

with input/environment modification to perform just-in-

time problem diagnosis by comparing good runs and bad

runs. Although Insight shares the same idea of onsite

failure analysis with Triage, Insight differs from Triage

in the following major ways. First, Triage performs on-

site debugging on the production server directly, which

can cause significant downtime to the online service.

In contrast, Insight creates a shadow server to decou-

ple the failure inference from the production operation.

Second, Insight does not rely on repeated replays with

input/environment modifications, which can incur a long

failure analysis time and sometimes difficult to achieve

in production systems. In comparison, Insight provides

a fast binary execution exploration approach that uses

the environment data and runtime outputs as guidance to

search the failure paths on a dynamically created shadow

component.

Alternatively, previous work (e.g., [19, 17, 18, 13, 30,

6, 28, 25, 39]) has proposed to introduce application-

level or system-level instrumentation and infer the failure

path based on instrumentation data. However, large-scale

production computing environments are reluctant to

adopt continuous intrusive system recording approaches

due to overhead and deployment concerns. For example,

Aftersight [13] proposed to decouple complex program

analysis from normal executions using VM record and

replay techniques. However, VM recording can impose

high overhead to the normal production execution (e.g.,

worst case overhead reached 31% and 2.6x for some

workloads [13]). Crameri et al. [14] proposed to use

static and dynamic analysis to identify those branches

that depend on input and only record those branches for

failure reproduction. In comparison, Insight does not

record any branch during the production run but instead

exploits production environment data and runtime out-

puts to find the correct failure path onsite immediately

after the failure occurs.

Another alternative is to perform offline failure infer-

ence using static source code analysis [37, 38]. For

example, Sherlog [37] uses static source code analysis

to infer the possible failure paths from console logs.

ESD [38] uses program source code and bug reports (i.e.,

core dump information) to reproduce a failure execution.

ESD first statically analyzes the source code to infer

the control path capable of reaching the bug location,

and then symbolically executes the program along the

inferred control path to reproduce the failure execution.

Because reproducing a production run failure outside

the production environment is challenging [33], offline

analysis cannot leverage the production environment

data (e.g., inputs, configuration files, interaction results)

or some runtime outputs that are difficult to obtain offline

(e.g., system calls). Moreover, it is difficult for the offline

approach to localize environment issues (e.g., network

failure, wrong database query results). S2E [12] provides

an in-vivo multi-path analysis framework using selective

symbolic execution over binaries for finding all potential

bugs. In contrast, Insight aims at quickly finding the

execution path for a specific occurring production-run

failure. S2E also does not consider runtime outputs when

finding the failure path.

We view Insight as a first-step light-weight failure

inference tool that can be used inside the production

environment. We can apply the static/dynamic program

analysis or symbolic execution to the candidate failure

paths found by Insight to further validate the feasibil-

ity of the failure paths and localize root cause related

branches.

3 System Design and Implementation

In this section, we describe the design and implementa-

tion details of the Insight system. We first present the dy-

namic shadow server creation scheme. We then describe

our guided binary execution exploration algorithms.

3.1 Dynamic Shadow Server Creation

When a service request failure is detected, Insight dy-

namically creates a shadow component of the produc-

tion server on a separate physical host using live VM

cloning [9, 22]. Since Insight targets non-crashing

failures and performs immediate cloning, we assume that

the state of the shadow component is similar to the state

of the production server when the failure occurs. We

found this assumption holds for all the server failures we

tested in our experiments.

The current prototype of Insight uses a pre-copy live

KVM VM cloning system [26]. However, we can in-

tegrate Insight with other VM cloning techniques easily.

Insight only requires a brief stop-and-copy phase (e.g., <

100 milliseconds [26]) where the production component

is paused temporarily for transferring any remaining

dirty pages. During the stop-and-copy phase, the pro-

duction server just pauses its processing but can continue

to receive the user requests in its input buffer. For all

the server systems we tested, Insight can complete the
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Figure 1: Our field study production server: VM reservation

servers in the VCL cloud computing infrastructure [3]. The

user makes a VM reservation request via a web interface. The

request is stored in a database which is continuously polled

by the reservation server. The reservation server forks a new

process for handling each VM reservation request. First, the

reservation server allocates a set of physical hosts for the user.

If these hosts do not have the VM images required by the

user, the reservation server then loads requested images from

an image database. The reservation server then starts the ssh

service and creates a user account for the user.

whole shadow component creation process within tens of

seconds. Additionally, Insight performs transparent fast

disk cloning to make the shadow component completely

independent of the production server [26].

After the cloning is done, we need to reconfigure the

shadow server to prepare it for the failure reproduction.

Note that all the reconfigurations do not require any

modification to the server software. Because live VM

cloning makes the shadow server inherit all the state from

the production server, which includes the IP address,

the shadow server may immediately send out network

packets using the same IP address as the production

server, causing duplicate network packets and applica-

tion errors. To avoid this, we first disconnect the network

interface of the shadow server, clear the network buffer,

and then reconnect the network interface of the shadow

server with a new IP address.

To leverage the production environment for failure

reproduction, we need to allow the shadow server to

interact with other servers in the production environment

for retrieving needed information. Figure 1 shows our

field study production server which is a VM reservation

server in an infrastructure-as-a-service cloud. The reser-

vation server needs to interact with a MySQL database

server to search for available physical hosts, look up the

VM image name, and update the reservation state. In-

sight registers the shadow server with the database server

using event-driven application auto-configuration [26].

Other interactions can be enabled in a similar way.

If the interaction requires the shadow server to read

information from the environment (e.g., query from

a database), the interaction is allowed. However, if

the interaction requires the shadow server to update

some information in the environment (e.g., write to

a database), the interaction will be filtered to avoid

undesired disturbance to the production server. We use

an interaction filtering proxy to intercept outputs from

the shadow server and drop selected outputs based on the

query type. The proxy runs outside the shadow server

software but on the same physical host with the shadow

server. For example, our field study production server is

written in Perl. We implemented the interaction filtering

proxy within the Perl interpreter. We can also perform in-

teraction recording on the shadow server to log important

environment data which will be helpful for developers to

diagnose a failure caused by an environment issue.

Insight is resilient to false alarms by providing

light-weight runtime failure path inference and flexible

cloning. If a false alarm is confirmed by the online

anomaly detection tool before the shadow server is

started, we simply cancel the live VM cloning operation.

If a false alarm is confirmed after the shadow server is

already started, we issue a delete command to the shadow

server and release all resources allocated to the shadow

server. In our field study server system, we use the

critical error messages for detecting failures, which has

few false positives [21]. We can also combine the error

message detection with other failure prediction tools [31]

to further reduce the false alarms.

3.2 Guided Binary Execution Exploration

Insight performs guided binary execution exploration in

the shadow component to find the failure path. The

execution exploration engine intercepts conditional jump

statements (e.g., JZ, JNE, JE) in the binary code and

explores different execution paths by manipulating the

jump conditions (true or false). We assume all

the conditional statements including the switch state-

ments are translated into one or multiple conditional

jump statements in the binary code. For example, in

C/C++ program, we can compile the code using the

fno-jump-tables option in gcc.

To start the execution exploration, we first replay the

last input in the input log when the failure is detected.

We employ an input replay proxy to retrieve the input

log from the production server when the failure is de-

tected. As mentioned in the Introduction, most pro-

duction servers buffer recent inputs in an input log file.

For example, a web server stores its input (i.e., HTTP

requests) in the access log file. For VCL reservation

server, the inputs (i.e., VM reservation requests) are

stored on a database server. Although our experiments

show that inputs play a crucial role in the failure path
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inference, Insight does not require the exact failure-

triggering input to find the failure path.

During the replay, we check whether the shadow

component produces the same outputs (i.e., console log

messages, system call sequences) as the failed service

request. We will describe the output matching scheme

details in the next section. A replayed path can produce

mismatched outputs either because we did not replay the

exact failure-triggering input or because some environ-

ment data (e.g., database content) was changed during

the shadow component creation. We use an unmatched

output as a hint to stop searching along a wrong path.

Under those circumstances, the execution is rolled back

to the previous branch point and we flip the branch

condition to search a different path. If rolling back to the

previous branch point still cannot produce any matched

failure path, we rollback to the branch point before the

previous branch point and so on. To avoid redundant

search, we stop the rollback process when we see the

previous console log message again. If no matched

path is found using the current input, we replay the next

input in the input log and repeat the above process. To

support the above mechanism, Insight performs process

checkpointing at each branch point and each console log

output. We implement the process/thread checkpointing

using f ork.

Insight supports concurrent multi-path search to

achieve fast failure reproduction. We implement the

concurrent multi-path search by using a set of probing

processes/threads called probes to explore different exe-

cution paths simultaneously. When the probe encounters

a conditional jump statement, it forks a new child probe

for exploring both the true and the false branches

concurrently. To avoid overloading the system with a

large number of concurrent searches, we set a concur-

rency quota CQ to limit the number of probes that can

simultaneously run. When the number of probes exceeds

CQ, we make the parent probe wait and allow the child

probe to explore either the true or false branch. If

the child probe produces an unmatched output, we kill

the child probe to discontinue the search along the wrong

path and release one concurrency quota. If the parent

probe of the terminated child probe is waiting for the

quota, the parent probe will be signaled to continue its

exploration. When a probe produces the next matched

output (i.e., console log message or system call), we stop

the exploration and switch back to concrete execution

mode (i.e., continue the execution without forking).

If an explored path contains a loop, Insight forks a new

child probe at the beginning of each iteration by default.

The parent probe will then exit the loop (i.e., the false

branch) and allow the child probe to continue to execute

the next iteration of the loop (i.e., the true branch).

However, if the program does not produce any console

log messages or system calls within the loop, Insight will

never get any hint on when to stop exploring the loop. To

avoid unnecessary loop explorations, Insight performs

loop detection by checking for repeated program coun-

ters within one function. If no console log message

or system call is produced within the loop, we disable

exploration for that loop branch statement (i.e., do not

fork new child probe) and let the loop exit naturally as

its normal execution.

When a probe produces the same complete console

log and system call sequences as the failed request,

Insight marks the execution path explored by the probe

as one matched failure path. Our approach can also

find multiple matched failure paths simultaneously. The

failure path inference will be terminated after the target

number of matched failure paths are found or the search

process times out. We also annotate each reproduced

path with useful diagnostic information such as which

branch points were manipulated by our exploration pro-

cess and what the environment values were when the

branch points were flipped by our system. Developers

can use this information to decide the fidelity of the

reproduced paths and perform informed value inferences.

Since Insight works on binaries directly, most In-

sight components can be applied to compiled or inter-

preted programs written in different languages without

any modification. The only program-specific parts are

how to intercept branch statements and change branch

conditions. Insight currently supports Perl and C/C++

programs. For Perl programs, we modified the Perl

interpreter to intercept the conditional jump statement.

The jump condition value is stored in the interpreter’s

execution stack. We modify the jump condition value

by changing the execution stack value. For C/C++

programs, Insight uses the Pin tool [23] to intercept

the conditional jump statements and modify the jump

conditions by changing the appropriate flags (i.e., jump

flag, carry flag, overflow flag, and parity flag) in the

EFLAGS register. Note that the above system modifica-

tion and instrumentation are only applied to the shadow

server during the execution exploration time. Insight

does not perform any modification or instrumentation to

the production server.

3.3 Runtime Output Matching

Insight uses runtime outputs as hints to check whether

it explores a correct or incorrect path. We chose to

match two different types of runtime outputs: console

log messages [35, 37] and system calls for the following

reasons. Production systems often produce console

log messages for debugging production-run failures [35,

37]. In today’s practice, console logs often provide the

sole information source for diagnosing production run
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failures. Since console log messages are inserted by

software developers for recording operations considered

to be important, they are often able to provide useful

clues about key program execution states. However, we

also observe some systems (e.g., open source software)

contain a limited number of log messages. Under those

circumstances, we propose to match system call traces

because system calls can be easily collected using kernel-

level tracing tools with negligible overhead (< 1% CPU

load) and system calls often denote the key operations

in the program. Different from user-level tracing tools

such as ptrace [4], kernel-level tracing tools impose

little overhead by avoiding context switches. We use

SystemTap [5] in our current prototype.

During binary execution exploration, we continuously

match the console log messages and system call se-

quences produced by the explored execution path with

those from the failed production-run request. For console

log matching, we adopt the same strategy as previous

work [35, 37] by only considering the static text parts

called message templates since the variable parts (e.g.,

timestamp, variable values) typically differs over dif-

ferent runs. Those message templates can be easily

extracted from the source code and provided to Insight

by software developers. Alternatively, we can extract the

message templates directly from log files [34], which is

however orthogonal to our work. We can also leverage

parameter run-time values in the console log messages

to extract more hints about the failure. We might be

able to increase the failure path accuracy using those

parameter values by incorporating Insight with taint

analysis techniques. However, doing so will probably

increase the runtime overhead. Our current results show

that Insight can still successfully infer the failure paths

without using those parameter values.

If the console log is too sparse, Insight still faces

the challenge of large exploration scope. Thus, we use

system calls as hints to guide our path search between

any two consecutive console log messages L1 and L2. We

observe that each console log message is written into the

console log file using a sequence of sys write system

calls. The system call sequence S in-between those two

groups of sys write calls are marked as the system

call sequence between L1 and L2. We use readlink

and file descriptor contained in each sys write to

identify whether it writes into the console log file. When

we perform failure path search between L1 and L2, we

match the system call sequence S. We currently only

consider system call types when we perform matching.

We could also consider system call arguments or return

values, which, however, might increase the system call

tracing and matching overhead significantly.

When a mismatched system call is encountered, we

roll back the exploration to the previous branch point

and flip the branch condition to execute a different path.

During our experiments, we observe that requiring an

exact match sometimes prevents us from finding any

matched path. The reason is that the same function call

such as mallocmight invoke slightly different numbers

of system calls (e.g., mmap) depending on the appli-

cation’s heap usage. During those circumstances, we

allow k mismatches (measured by string edit distance)

to occur during system call sequence matching. We start

from k = 0 and gradually increase k until we either find

a matched path or our search times out. During our

experiments, we find k needs to be no more than 2.

4 System Evaluation

In this section, we present the experimental evaluation

for the Insight system. We first present our evaluation

methodology followed by our experimental results.

4.1 Evaluation Methodology

Case study systems. We first test Insight using the

virtual computing lab (VCL) [3] which is a production

cloud computing infrastructure. VCL has been in pro-

duction use for 9 years and has over 8000 daily users.

Figure 1 shows the architecture of VCL. The key control

part in VCL is the cluster of reservation servers which are

written in about 145K lines of Perl code. The database

server is configured to allow access from hosts in the

same subnet, thus allowing the access from the shadow

component. In our experiments, we deploy the Insight

system on all the reservation servers and perform the in-

situ failure path inference over the reservation servers

which produce the reservation failure messages.

We also test Insight with several real software bugs in

a set of open source softwares (Apache, Squid, Lighttpd,

PBZIP2, aget, and GNU Coreutils).

Case study failures. We evaluated Insight using a

set of real failures listed in Table 1. We also report the

number of function calls and branch points contained in

each failure execution path along with the root cause

function of each failure. Each failure contains one

error message. In our experiments, we detect failures

by intercepting error messages: console log messages

containing critical or fatal keyword or are written into

stderr.

Evaluation metrics. We first evaluate whether the

reproduced failure execution path is useful for debugging

by checking whether the reproduced execution shows the

same failure symptom (i.e., throwing out the same error

messages), covers the root cause functions and branch

statements. We then evaluate the precision and efficiency

of Insight using the following metrics:
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System

name

System

description
LOC

Failure path length Num. of

console

log msgs

Failure description
Root cause

functionNum. of

functions

Num. of

branches

VCL

(v2.2.1)

VM reservation

server

145K 112 378 132 Overlapping reservation failure: User tries to re-

quest the same VM reservation twice.

computer not

being used

VCL

(v2.2.1)

VM reservation

server

145K 299 1331 290 Network failure: The management node fails to

create the VM reservation on a physical host due to

the network failure on the host.

ssh status

VCL

(v2.2.1)

VM reservation

server

145K 298 1328 409 Authentication failure. The management node is

unable to login into the reservation host due to a

missing public key.

run ssh

command

VCL

(v2.2.1)

VM reservation

server

145K 147 601 178 Image corruption failure. The VM image file corre-

sponding to the user request is corrupted and cannot

be copied.

load

Apache

(httpd-

2.0.55)

Web server 176K 176 21212 1 Authentication failure. Apache rejects a valid re-

quest due to incorrect file name setting for Auth-

GroupFile option (#37566).

groups for

user

Apache

(httpd-

2.2.0)

Web server 209K 164 4983 1 CGI failure. Apache does not handle a malformed

header generated by CGI script correctly (#36090).

ap scan script

header err

core

Squid

(v2.6)

Web cache and

proxy server

110K 588 19679 195 Non-crashing stop failure. Squid is not able to

handle a long value of “ACL name” option (#1702).

aclParseAcl

List

Lighttpd

(v1.4.15)

Web server 38K 730 4308 3 Proxy failure. Lighttpd could not find the back-end

server when configured as a reverse proxy for 1 back-

end server with round-robin policy (#516).

mod proxy

check

extension

PBZIP2

(v1.4.15)

Multithreaded

data

compression

3.9K 41 58 14 Decompression failure. The program fails to decom-

press files with trailing garbage (#886625).

decompress Er-

rCheck Single

aget

(v0.4.1)

Multithreaded

download

accelerator

1.5K 2 8 1 Download failure. The program fails to download a

file when setting the number of threads bigger than

the maximum concurrent connection allowed in the

server holding the file.

http get

rmdir

(v4.5.1)

GNU coreutils 0.2K 2 24 2 Option failure. The program does not handle trailing

slashes with the “-p”.

remove parents

ln

(v4.5.1)

GNU coreutils 0.6K 1 47 1 Option failure. The program does not handle “target-

directory” correctly.

do link

touch

(v7.6)

GNU coreutils 0.5K 1 7 1 Time failure. The program rejects a valid input with

the leap second.

main

Table 1: Real system failures used in our experiments. All the failures have one error log message produced during the failure run.

1) Call path difference denotes the deviation of the call

path discovered by Insight from the original call path

of the failed production run. The call path consists of

a sequence of invoked functions during the execution.

We used the string edit distance to measure the deviation

between two compared call paths. We instrumented all

the tested programs to record the original call path of the

failed production run. Generally, the call path difference

reflects how close the reproduced execution is to the

original execution.

2) Normalized branch difference. We use the branch

difference to denote the deviation at the branch level

between the path reproduced by Insight and the original

failure path. We also use the string edit distance to

measure the branch difference between two execution

paths. To perform comparison between different

application failures, we normalize the branch difference

of each failure using its maximum string edit distance

between the reproduced path and the original path (i.e.,

no overlapping at all).

Generally, the call path difference and the branch

difference reflect how close the reproduced execution is

to the original execution. The branch difference is a more

fine-grained comparison than the call path difference.

3) Percentages of flipped branches denotes the

percentage of the branches whose conditions are

manipulated by Insight due to incomplete environment

information or different input.

4) Exploration time defines the time taken by Insight to

discover the target number of the matched failure paths.

5) Performance impact and overhead. We evaluate the

runtime performance impact of Insight to the production

system by comparing the per-request processing time

between with and without the Insight system. We also

report the overhead of the Insight system in terms of

additional resource consumptions.

Impact of environment data. To understand the

impact of the environment information on the accuracy

of our in-situ failure path inference, we compare the

failure inference accuracy results under three different



276 2014 USENIX Annual Technical Conference USENIX Association

Failure name Environment setting Call path

difference

Branch

difference

Cover root

cause functions

Cover root

cause branches

VCL overlapping

reservation failure

Complete environment data 0 0 Yes Yes

Partial environment data 0 0 Yes Yes

No environment data 0 0 Yes Yes

VCL network

failure

Complete environment data 0 0 Yes Yes

Partial environment data 0 3.4% Yes Yes

No environment data Failed Failed N/A N/A

VCL

Authentication

failure

Complete environment data 0 0 Yes Yes

Partial environment data 0 2.7% Yes Yes

No environment data Failed Failed N/A N/A

VCL Image

corruption failure

Complete environment data 0 0 Yes Yes

Partial environment data 0 3.1% Yes Yes

No environment data Failed Failed N/A N/A

Apache

authentication

failure

Original input 0 0 Yes Yes

Same input type + console log 17 66% Yes Yes

Same input type + console log + system call 11 61.5% Yes Yes

Apache CGI failure

Original input 0 0 Yes Yes

Same input type + console log 140 41.8% Yes Yes

Same input type + console log + system call 9 14.8% Yes Yes

Squid failure

Original input 0 0 Yes Yes

Same input type + console log 0 0.0001% Yes Yes

Same input type + console log + system call 0 0.0001% Yes Yes

Lighttpd failure

Original input 0 0 Yes Yes

Same input type + console log 0 0.8% Yes Yes

Same input type + console log + system call 0 0.8% Yes Yes

PBZIP2 failure

Original input 0 0 Yes Yes

Same input type + console log 1 4.4% Yes Yes

Same input type + console log + system call 0 1.3% Yes Yes

aget failure

Original input 0 0 Yes Yes

Same input type + console log 0 0 Yes Yes

Same input type + console log + system call 0 0 Yes Yes

rmdir failure

Original input 0 0 Yes Yes

Same input type + console log 0 17.5% Yes Yes

Same input type + console log + system call 0 5.3% Yes Yes

ln failure

Original input 0 0 Yes Yes

Same input type + console log 0 25.3% Yes Yes

Same input type + console log + system call 0 9.1% Yes Yes

touch failure

Original input 0 0 Yes Yes

Same input type + console log 0 53.5% Yes Yes

Same input type + console log + system call 0 0 Yes Yes

Table 2: Summary of Insight failure path inference accuracy results.

environment contexts in the VCL system: 1) complete

environment data where all the query results from the

database are assumed to be the same during the whole

failure path inference process; 2) partial environment

data where all the database entries that are related to

the failed reservation request are deleted to emulate the

case when the failure inference is triggered after the

reservation server clears up the failed requests. However,

the shadow server can still access some general database

information such as “computer load state” and “OS type”

needed by the failure path finding; and 3) no environment

data where all the query results from the database are

unavailable. This emulates the case of offline failure

reproduction.

Since all the C/C++ server failures are produced under

stand-alone mode, we could not evaluate the impact of

the environment data on the open source systems.

Impact of input. We evaluate the impact of the input

by performing failure reproduction using the original

failure triggering input or using a different input that

does not trigger the failure but is of the same type as the

original input.

We define the same type of input for different open

source systems as follows: 1) Apache authentication

failure: the same type of input is a http request to

access a webpage with a correct AuthGroupFile setting;

2) Apache CGI failure: the same type of input is a

http request to execute a normal CGI script; 3) Squid

failure: we use a default configuration file with a normal

“ACL name”; 4) Lighttpd failure: we use a http request

using a reverse proxy with two back-end servers instead

of one back-end server that makes the system fail; 5)

PBZIP2 failure: we use a compressed file with no trailing

garbage; 6) aget failure: we use a request that does not

have restriction on the maximum concurrent connection;

7) rmdir failure: we use a command without the “-p”
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option; 8) ln failure: we use a command without the

“target-directory” option; and 9) touch failure: we use

an input that does not have a leap second.

Since the inputs (i.e., reservation requests) in the VCL

system are stored in the database, they are considered as

part of the environment data.

We conducted all the experiments on a computer

cluster in our lab. Each cluster node is equipped with

a quad-core Xeon 2.53GHz CPU, 8GB memory, and is

connected to Gigabit network. Each host runs CentOS

6.2 64-bit with KVM 0.1.2. The guest VMs run CentOS

6.2 32-bit and are configured with one virtual CPU and

2GB memory. We repeated each experiment five times

and report the mean and standard deviation values. In all

experiments, we set the concurrency quota CQ=20.

4.2 Results and Analysis

Failure path accuracy result summary. Table 2

summarizes the accuracy of the failure paths reproduced

by Insight for different failures. We observe that the

environment data in VCL allows Insight to find the

exact failure paths for all the VCL failures. With

partial environment data, Insight can still achieve high

accuracy with 0 call path difference and small (<

5%) branch difference. However, when we remove

all the environment data, emulating the offline failure

reproduction situation, we cannot find any matched path

for three out of four VCL failures after searching for

several hours. This indicates that environment data plays

a crucial role in timely failure path finding because

they can greatly reduce the search scope for the binary

execution exploration.

For the open source software systems, we observe

that with the original failure-triggering inputs, Insight

can always reproduce the exact failure path for each

failure. When given the same type of input (see Section

4.1 for the definition of the same input type), Insight

can still reproduce high fidelity failure paths with 0 call

path difference and small (< 10%) branch difference

for most failure cases. The only exceptions are those

failures that include only 1 error message without any

other console log messages. This is expected as Insight

has too few runtime outputs to guide the exploration.

However, we observe that system call sequences can

greatly help improve the failure path inference accuracy

for the failure cases where sparse console logs are

present. The branch difference reduction can be up to

100% (i.e., the branch difference of the touch time failure

is reduced from 53.5% to 0).

We then validate whether the failure paths reproduced

by Insight cover the root cause functions and branches

by manually analyzing the source code. We observe

that the failure paths found by Insight always cover the

Figure 2: Percentage of flipped branches for VCL failures.

Figure 3: Total failure reproduction time (i.e., the shadow

component creation time + failure path search time) for

reproducing VCL failures.

root cause functions and branches. Another interesting

observation we observe is that the root cause branch

points often do not appear right before the error message

is produced, but reside in the middle of the execution

path. For example, in the VCL overlapping reservation

failure case, the error message “Reservation failed on

vmsk1: process failed because computer is not available”

does not provide the correct clue that the reservation

failure is caused by an overlapping reservation not by the

machine is not available. However, the failure path found

by Insight covers the root cause branch where pgrep

returns a process matching the request ID, indicating

the same reservation has been made on the machine.

For the Lighttpd failure, the reproduced path shows

that the failure is caused by the back-end server lookup

operation returning empty when the round-robin policy

is employed and there is only one back-end server. The

buggy code segment does not appear right before the

error message.

We also examined how VM cloning helps Insight

to find the failure paths. For example, the shadow

component of the VCL reservation server inherits the

configuration files that specify the supporting VM types

(e.g., xCat, KVM), VM image locations, and public

keys. Without those configuration parameters, it is

extremely difficult to perform any replay. Similarly,

the configuration file of Squid defines the permissions

associated with the “ACL” name which are needed by
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Figure 4: Failure reproduction time results for open source

software bugs.

the failure reproduction. In Lighttpd, code modules such

as mod proxy and back-end servers are specified in the

configuration file. Additionally, VM cloning also ensures

the same third-party libraries are installed on the shadow

component.

Detailed VCL failure reproduction results. We now

present the detailed failure reproduction results for all the

VCL failures. Table 2 shows the branch difference for

different VCL failures. As mentioned in the accuracy

result summary, Insight can find a failure path with little

branch difference compared to the original failure path

when in-situ failure reproduction is performed.

Figure 2 shows the percentage of branch points that

are flipped by our binary execution exploration engine

during path finding. We observe that Insight only flips a

small number of branches when part of the environment

data is not available.

Figure 3 shows the failure reproduction time for the

VCL failures. The reproduction time includes the time

for Insight to create the shadow component and the time

taken to search the failure path. We observe that Insight

can reproduce the failure path within a few minutes.

It took Insight about 30 seconds to create the shadow

component using live VM cloning. We also observe

that the environment data has an impact on the failure

reproduction time. When complete environment data is

available, Insight can quickly reproduce the failure path

within tens of seconds. When part of the environment

data is missing, the reproduction time is longer, taking up

to 250 seconds to complete. As mentioned before, when

no environment data is available, Insight cannot find any

matched failure paths after searching for several hours.

Detailed open source software failure reproduction

results. We now present the results for the open source

software bugs. Table 2 shows the normalized branch

difference for the open source system failures. Figure 4

shows the failure reproduction time. We observe that

with the original inputs, Insight can always reproduce

the exact failure paths within tens of seconds including

the shadow component creation time.

Given the same types of inputs, Insight can

still reproduce the failure paths for Squid, PBZIP2,

aget, and all the Coreutils failures within several

minutes. However, Insight cannot reproduce the Apache

authentication failure, the Apache CGI failure, and

Lighttpd failure within a short period of time (< 1

hour) which is a requirement for our in-situ failure

reproduction. The reason is that those open source

systems produce zero or very few (i.e., 3) console

log messages except the error message during their

failure executions. With such little guidance, Insight

is faced with a large path search scope. Under those

circumstances, Insight uses a code selector in a similar

way as S2E [12] to limit the path exploration within

a specified target code module. For the Apache

authentication failure, the target code module is the

authentication module. For the Apache CGI failure, the

target code module is the CGI component that handles

CGI scripts. For Lighttpd, mod proxy is the target

code module. After limiting the path exploration scope,

Insight is able to find the failure paths within tens of

seconds.

We observe that system call sequences can greatly

reduce the branch difference for those failures with few

console logs. We also notice that the branch difference in

the Apache authentication failure is significantly larger

than the other failure cases when the original input

is absent. The reason is that the program includes a

large loop that includes many branch points but does

not generate any console log message or system call.

Because of the input difference, Insight executes the

loop with a different number of iterations from the

original failure execution, which causes the high branch

difference.

Generally, we observe a higher branch differences in

the open source failures than those in the VCL failures.

This is expected as the open source software systems

have less environment data to leverage under the stand

alone mode and contain fewer console logs than the VCL

system. Insight can definitely benefit from a rich set of

environment data and a system with a good number of

console logs. Based on our observation and feedback

from our industry partners, we believe most production

systems do contain abundant console logs as they are

the sole information source for the software developer

to diagnose production failures.

We also wish to compare Insight with existing

static analysis and symbolic execution approaches.

Unfortunately, none of them can support the Perl

program that forms the main part of the VCL production

cloud management service. For open source software

systems, we found that Insight can achieve much faster
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System
Production runtime overhead Logging overhead (1 day) Shadow

creation

time

Stop-and-copy

timeWith system call

tracing

With shadow

component

Console log Input log Interaction log System call log

VCL N/A < 0.3% 0.49 ± 0.01 GB 0.13 ± 0.01 GB 0.86 ± 0.01 GB N/A 26.7 ± 2.3 s 49.6 ± 15.9 ms

Apache < 1% < 0.2% 0.3 ± 0.01 MB 19.6 ± 0.1 MB N/A 11.9 ± 0.01 MB 23± 1.3 s 38.6 ± 6.5 ms

Table 3: Performance and resource overhead of the Insight system. Request rate in VCL: 120 VM reservation requests per minute.

Request rate in Apache: 50 HTTP requests per second.

failure reproduction. For example, static analysis

techniques need up to 28 minutes to analyze an Apache

failure [37]. Symbolic execution requires up to 6 hours

to explore a program with 1.3 KLOC [12]. This is

expected as Insight can leverage many environment data

and runtime outputs to greatly reduce the path search

scope.

Insight system overhead. Table 3 shows the

performance and resource overhead of the Insight system

for the VCL reservation server and the Apache server.

The results for other open source servers are omitted

as they are similar to the Apache results. Insight

does not require any system instrumentation during

the production run except the system call tracing.

We observe that the system call tracing imposes <

1% performance impact and <1.5% CPU load to the

production server. The performance impact is measured

by comparing the per-request processing time when

running systems without system call tracing and with

system call tracing. We also measure the performance

impact for the production operation when the production

server runs concurrently with the shadow server. Again,

we observe very little performance impact. We also

study the logging overhead incurred by Insight. We

can see the logging overhead is small compared to

the capacity of modern storage systems. Finally, we

measured the shadow component creation time and stop-

and-copy time for different servers. The results show that

we can finish the live VM cloning and shadow server

configuration within 30 seconds. During the shadow

server creation, we only need to pause the production

server for less than 100 milliseconds.

5 Conclusion

We have presented Insight, an in-situ failure path infer-

ence system for online services running inside the pro-

duction computing environment. Insight uses a shadow

component to achieve efficient onsite failure inference

while imposing minimum interference to the production

service. Insight employs a guided binary execution

exploration process to achieve accurate failure path infer-

ence by exploiting the production-site environment data

and two different types of runtime outputs (i.e., console

logs, system calls).

Our initial prototype implementation shows that In-

sight is both feasible and efficient. We tested Insight

using real request failures collected on a production

cloud computing infrastructure and a set of real software

bugs in open source software systems. Our experiments

show that Insight can efficiently use the environment data

and runtime outputs to find the failure paths with high

fidelity (i.e., little difference from the original failure

path) within a few minutes. Insight is lightweight

and unobtrusive, imposing negligible overhead to the

production service.
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Abstract
Online services often use replication for improving the
performance of user-facing services. However, using
replication for performance comes at a price of weak-
ening the consistency levels of the replicated service. To
address this tension, recent proposals from academia and
industry allow operations to run at different consistency
levels. In these systems, the programmer has to decide
which level to use for each operation. We present SIEVE,
a tool that relieves Java programmers from this error-
prone decision process, allowing applications to auto-
matically extract good performance when possible, while
resorting to strong consistency whenever required by the
target semantics. Taking as input a set of application-
specific invariants and a few annotations about merge
semantics, SIEVE performs a combination of static and
dynamic analysis, offline and at runtime, to determine
when it is necessary to use strong consistency to preserve
these invariants and when it is safe to use causally con-
sistent commutative replicated data types (CRDTs). We
evaluate SIEVE on two web applications and show that
the automatic classification overhead is low.

1 Introduction

To make web services more interactive, the providers of
planetary-scale services—such as Google, Amazon, or
Facebook—replicate the state and the application logic
behind these services either within a data center or across
multiple data centers, and direct users to a single (and
preferably the closest or least loaded) replica [11, 28,
14]. Gaining performance through replication, however,
comes at a price. To avoid the high cost of coordinat-
ing among replicas, the infrastructures that provide repli-
cated services resort to weak consistency levels such as
causal consistency [23, 4], eventual consistency [11], or
timeline consistency [10]. Under these weak consistency
models, good performance is extracted by the fact that
only a small number of replicas needs to be contacted

for the execution of each operation before producing a
reply to the user. However, this adaption also modifies
the semantics provided by the replicated service, when
compared to strong consistency models like serializabil-
ity [36] or linearizability [13], where a replicated system
behaves like a single server that serializes all operations.
Using weak consistency models requires special care, be-
cause their semantics may violate user expectations, for
example by allowing an auction service to declare two
different users to be the winners of the same auction.

Recognizing this tension between performance and
meeting user expectations, many research [18, 30, 20,
33] and commercial [31, 12, 25] systems offer the choice
between executing an operation under a strong or a weak
consistency model. All of these proposals require the ap-
plication programmer to declare which operations should
run under which consistency level. In most cases this
is done explicitly by extending the interface for opera-
tion execution with an indication of the desired consis-
tency level, while in a recent proposal this is done im-
plicitly by associating a consistency SLA to each oper-
ation, ranking and assigning utility values to the various
consistency levels [33]. The problem with these strate-
gies is that they impose on the application programmer
the non-trivial burden of understanding the semantics of
each operation and how the assignment of different con-
sistency levels to different operations influences overall
semantics that are perceived by the users.

In this paper, we address this problem by automating
the process that assigns consistency levels to the vari-
ous operations, focusing on an important and widely de-
ployed class of applications, namely Java-based applica-
tions with a database backend. To achieve this goal, we
build on prior work [20] that defines sufficient proper-
ties for safely using a weak consistency model (namely
causal consistency), and changes the replication model to
separate the generation of the side effects of an operation
from their application to the state of the replicas. Adapt-
ing existing applications to this model requires manual
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work that can be challenging and error-prone. First, one
must transform every application operation into a gener-
ator and a commutative shadow operation. Second, one
must correctly identify which shadow operations may
break some application invariant, and label them appro-
priately so that they execute under strong consistency.

In order to ease the burden on the programmer, we
have designed SIEVE, a tool that automates this adap-
tation. Using SIEVE, we require the programmer to only
specify the application invariants that must be preserved
and to annotate a small amount of semantic information
about how to merge concurrent updates. SIEVE achieves
this automation by addressing the two identified chal-
lenges using the following approach:

First, to ensure convergence under weak consistency,
SIEVE automatically transforms the side effects of ev-
ery application operation into their commutative form.
To this end, we build on previous work on commutative
replicated data types (CRDTs) [29, 26], i.e., data types
whose concurrent operations commute, and apply this
concept to relational databases. This allows program-
mers to only specify which particular CRDT semantics
they intend by adding a small annotation in the database
schema, and SIEVE automatically generates the shadow
operation code implementing the chosen semantics.

Second, SIEVE uses program analysis to iden-
tify commutative shadow operations that might vio-
late application-specific invariants when executed un-
der weak consistency semantics, and runs them under
strong consistency [20]. To make the analysis accurate
and lightweight, we divide it into a potentially expensive
static part and an efficient check at runtime. The static
analysis generates a set of abstract forms (templates) that
represent the space of possible shadow operations pro-
duced at runtime, and identifies for each template a logi-
cal condition (weakest precondition) under which invari-
ants are guaranteed to be preserved. This information is
then stored in a dictionary, which is looked up and eval-
uated at runtime, to determine whether each shadow op-
eration can run under weak consistency.

We evaluate SIEVE using TPCW and RUBiS. Our re-
sults show that it is possible to achieve the performance
benefits of weakly consistent replication when it does not
lead to breaking application invariants without imposing
the burden of choosing the appropriate consistency level
on the programmer, and with a low runtime overhead.

2 Background

Before presenting the various aspects of SIEVE, we first
introduce the system model it builds upon, and the oper-
ation classification methodology it relies on.

In previous work [20], we defined RedBlue consis-
tency, where operations can be labeled red (strongly con-

sistent) or blue (weakly consistent). Red operations are
totally ordered with respect to each other, meaning that
they execute in the same relative order at all replicas,
and therefore no two red operations execute concurrently.
(This corresponds to the requirements of serializability.)
In contrast, blue operations can be reordered with re-
spect to other operations, provided they preserve causal-
ity (corresponding to causal consistency).

A pre-requisite to being able to label operations as
blue is that operations should commute, so that execut-
ing them in a different order at various replicas does not
lead to a divergent replica state. To increase the space
of commutative operations, we proposed a change in the
state machine replication model such that operations are
split between a generator operation running only on the
replica that first receives the operation and producing no
side effects, and a shadow operation sent to all repli-
cas, which effectively applies the side effects in a com-
mutative way. More formally, in the original state ma-
chine replication model, an operation u deterministically
modifies the state of a replica from S to S′ (denoted as
S+ u = S′). In the proposed model, the application pro-
grammer decomposes every operation u into generator
and shadow operations gu and hu(S), respectively, where
S is the replica state against which gu was executed.
The pair of generator and shadow operations must sat-
isfy the following correctness requirement: for any state
S, S+gu = S and S+hu(S) = S+u.

Given this system model, we defined sufficient condi-
tions for labeling operations in a way that ensures that
application invariants are not violated. In particular, a
shadow operation can be labeled blue if it commutes
with all other shadow operations, and it is invariant safe,
meaning that if states S and S′ preserve the invariants,
then the state S′+hu(S) does so as well.

3 Overview

Using RedBlue consistency requires the programmer to
generate commutative shadow operations and identify
which can be blue and which must be red. Our goal is
to automate these two tasks, to the extent possible.

For the first task, we leverage the rich commuta-
tive replicated data type (CRDT) literature [29, 26],
which defines a list of data types whose operations com-
mute. CRDTs can be employed to produce commuta-
tive shadow operations that converge to identical final
states, independent of the order in which they are applied.
Shadow operations are thus constructed as a sequence of
updates to CRDT data types that commute by construc-
tion.

The challenge in developing shadow operations based
on CRDTs is that the programmer must explicitly trans-
form the applications to replace all the application state

2
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mutations by calls to the appropriate CRDT object. This
involves not only identifying the parts of the programs
that encode these actions, but also understanding the cat-
alogue of CRDT structures and choosing the appropriate
one. To minimize this programmer intervention, we fo-
cus on two-tier architectures that store all of the state that
must persist across operations in a database. This gives us
two main advantages: (1) We can automatically identify
the actions that mutate the state, namely the operations
that access the database. (2) We can reduce the user in-
tervention to small annotations referring to the database
data organization.

The second challenge SIEVE addresses is automati-
cally labeling commutative shadow operations. To this
end, for each shadow operation that is generated, we need
to decide whether it is invariant safe, according to the
definition in Section 2. (Commutativity does not need to
be checked since the previous step ensures that shadow
operations commute by design.) To automate the classifi-
cation process, two design alternatives that represent two
ends of a spectrum: (1) a dynamic solution, which de-
termines at runtime, when the shadow operation is pro-
duced, whether that shadow operation meets the invariant
safety property, and (2) a fully static solution that deter-
mines which combinations of initial operation types, pa-
rameters, and initial states they are applied against lead to
generating a shadow operation that is invariant safe. The
problem with the former solution is that it introduces run-
time overheads, and the problem with the latter solution,
as we will detail in Section 5, is that the static analysis
could be expensive and end up conservatively flagging
too many operations as strongly consistent.

To strike a balance between the two approaches, we
split the labeling into a potentially expensive static part
and a lightweight dynamic part. Statically, we generate a
set of templates corresponding to different possible com-
binations of CRDT operations that comprise shadow op-
erations, along with weakest preconditions for each tem-
plate to be invariant safe. Then, at runtime, we perform
a simple dictionary lookup to determine which template
the shadow operation falls into, so that we can retrieve
the corresponding weakest precondition and determine
whether it is met.

These two main solutions lead to the high level sys-
tem architecture depicted in Figure 1. The application
programmer writes the application code as a series of
transactions written in Java, which access a database
for storing persistent state. Beyond the application code,
the only additional inputs that the programmer needs
to provide are CRDT annotations specifying the se-
mantics for merging concurrent updates and a set of
application-specific invariants. The static analyzer then
creates shadow operation templates from the code of
each transaction, where these templates represent differ-
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precondition.)

ent sequences of invocations of functions in a CRDT li-
brary. The analyzer also computes the weakest precon-
ditions required for each template to be invariant safe.

At runtime, application servers run both the Java logic
and the runtime checker, and interact with a database
server (not shown in the figure) and the replication tier
(not shown in the figure). While executing a transaction,
the application server runs the generator operation in-
side a shadow operation creator, which, instead of di-
rectly committing side effects to the database, generates
a shadow operation consisting of a sequence of invoca-
tions from the CRDT library. This shadow operation is
then fed to the weakest precondition checker to decide
which static template it falls into, and what is the pre-
condition required for the operation to be invariant safe,
which allows the runtime to determine how to label the
operation. The labeled shadow operation is then fed to
the replication system implementing multi-level consis-
tency. In the following sections we further discuss the
design and implementation of the main components of
this architecture.

4 Generating shadow operations

This section covers how we automate the conversion of
application code into commutative shadow operations.

4.1 Leveraging CRDTs
We leverage several observations and technologies to
achieve a sweet spot between the need to capture the
semantics of the original operation when encoding its
side effects and the desire to minimize the amount of
programmer intervention. First, we observe that many
applications are built under a two-tier model, where all
the persistent state of the service is stored in a relational
database accessed through SQL commands. Second, we
leverage CRDTs [26], which construct operations that
commute by design by encapsulating all side effects into
a library of commutative operations.

3
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SQL
type CRDT Description

FIELD*
LWW Use last-writer-wins to solve

concurrent updates
NUMDELTA Add a delta to the numeric value

TABLE

AOSET,
UOSET,
AUSET,
ARSET

Sets with restricted operations
(add, update, and/or remove).
Conflicting ops. are logically
executed by timestamp order.

Table 1: Commutative replicated data types (CRDTs)
supported by our type system. * FIELD covers primitive
types such as integer, float, double, datetime and string.

These two concepts allow us to achieve commutativity
while overcoming the disadvantage of CRDTs, namely
the need to adapt applications. This is because the state
of two-tier applications is accessed through the narrow
SQL interface, and therefore we can focus exclusively
on adapting the implementation of SQL commands to ac-
cess a CRDT. For example, database tables can be seen
as a set of tuples, and therefore all the calls in the orig-
inal operation to add or remove tuples in a table can be
replaced in the shadow operation with a CRDT set add
or remove, which, in turn, is implemented on top of the
database. The programmer only has to select the appro-
priate merging strategy (i.e., the adequate CRDT type) to
encode these operations, without being required to pro-
gram these CRDT transformations or to change the code
of each operation.

However, it is impossible to completely remove the
programmer from the loop, due to the choice of which
CRDT to use for encoding appropriate merging seman-
tics. For instance, when an integer field of a tuple is writ-
ten to in a SQL update command, the programmer could
have two different intentions in terms of what the update
means and how concurrent updates should be handled:
(1) the update can represent a delta to be added or sub-
tracted from the current value (e.g., when updating the
stock of a certain item), in which case all concurrent up-
dates should be applied possibly in a different order at
all replicas to ensure that no stock changes are lost, or
(2) it can be overwriting an old value with a new value
(e.g., when updating the year of birth in a user profile),
in which case an order for these updates should be ar-
bitrated, and the last written value should prevail. Even
though both strategies ensure convergence, their seman-
tics differ significantly. For example, the second strategy
leads to a final state that does not reflect the effects of all
update operations.

Since the appropriate merging strategy is application-
specific, the programmer has to convey this decision.
To minimize this input, we only require the program-
mer to declare such semantics on a per-table and per-
attribute basis. In more detail, we provide programmers
a number of CRDT types (shown in Table 1). These
types form two categories: field, which is the small-

@AUSET CREATE TABLE exampleTable (
objId INT(11) NOT NULL,
@NUMDELTA objCount INT(11) default 0,
@LWW objName char(60) default NULL,
PRIMARY KEY (id)

) ENGINE=InnoDB

Figure 2: Annotated table definition schema.

est component of a record and defines its commuting
update operation in the presence of concurrency, and
set, which is a collection of such records plus the sup-
port for commutative appending or removing. Program-
mers only need to annotate the data schema with the de-
sired CRDT type using the following annotation syntax:
@[CRDT Name][TableName|DataFieldName]

Figure 2 presents a sample annotated SQL table cre-
ation statement. We assign exampleTable the type
AUSET (Append-Update Set), a CRDT set that only al-
lows append and update operations, thus precluding the
concurrent insertion and deletion of the same item (less
restrictive CRDT sets also exist). The field objCount as-
sociated with NUMDELTA always expects a delta value to
be added or subtracted to its current value. By default, if
no annotations are provided, we conservatively mark the
corresponding table or field to be read-only.

4.2 Runtime creation of shadow operations

With these schema annotations in place, it is easy to gen-
erate commutative shadow operations at runtime. The
idea is to invoke the original operation upon the ar-
rival of a new user request (as would happen in a sys-
tem that does not make use of shadow operations) but
with the difference that all the calls to execute com-
mands in the database are intercepted by a modified
JDBC driver that builds the sequence of CRDT opera-
tions that comprise the shadow operation as the original
operation progresses. Furthermore, using the schema an-
notations, SIEVE maps each database update to an appro-
priate merge semantics and replaces the operations on a
certain table with the appropriate operations over the cor-
responding CRDT type.

For instance, to create a shadow operation for a trans-
action that updates objCount in Figure 2, when an up-
date is invoked, we first query the old value s, and then,
given the new value s′, we compute a delta by subtract-
ing s from s′. Finally, we use delta and the primary key
pk of the corresponding object to parameterize a CRDT
operation that reads the tuple identified by pk and then
adds delta to it.

Finally, when the original operation issues a commit
to the database, the tool outputs a shadow operation con-
taining the accumulated sequence of CRDT operations.

4
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1 Beg in transaction;

f o r (int i = 0; i < x.length; i++){

3 i f (x[i] < 100)

x[i]++;

5 e l s e
x[i] = -100 }

7 End transaction;
(a) Original code

1 func txnShadow(int[] obsX , int[] deltaA){

f o r (i = 0; i < obsX.length; i++){

3 i f (obsX[i] < 100)

CRDT_x[i]. applyDelta(deltaA[i]);

5 e l s e :
CRDT_x[i]. applyDelta(deltaA[i]); }

7 }
(b) Possible corresponding shadow template

Figure 3: Code snippet of a transaction and a possible template for the corresponding shadow operation.

5 Classification of shadow operations

In this section we explain how we automatically label
shadow operations as strongly or weakly consistent.

5.1 Overview
As mentioned in Section 3, a possible solution would
be to statically compute the combinations of operation
types, parameters, and initial states that generate invari-
ant safe shadow operations. This can be done by per-
forming a weakest precondition computation—a com-
mon technique from Programming Languages and Ver-
ification research for which some tool support already
exists—which enables us to statically compute, given the
code of each operation and the application-specific in-
variants (which are inserted as postconditions), a precon-
dition over the initial state and operation parameters that
ensures the invariant safety property. However, this raises
the following two important problems.

First, there is a scalability problem, which is exempli-
fied by the following hypothetical code for the generator
operation, assuming an invariant that the state variable
x should be non-negative. (For simplicity, we write con-
ventional Java code accessing variable x instead of SQL.)

void generator(string s) {

if (SHA-1(s)==SOME_CONSTANT) {

if (x>=10)

x -= 10;

} else

x +=10;

}

The problem with this code is that a weakest precon-
dition analysis to determine which values of s lead to
a negative (non-invariant safe) delta over x is computa-
tionally infeasible, since it amounts to inverting a hash
function. As such, we would end up conservatively label-
ing the shadow operations generated by this code as red
(i.e., the weakest precondition would be FALSE). Even
though this is an extreme example, it highlights the dif-
ficulty in handling complex conditions over the input,
even when the side effects are simple. In particular, that
there are only three patterns of side effects produced by
this generator, regardless of the inputs provided to the

generator operation. Based on this observation, to sim-
plify the weakest precondition computation and to mini-
mize the space of strongly consistent shadow operations,
our static analysis is conducted over the set of possible
sequences of CRDT operations that can be generated,
which is the same as saying that we analyze all possi-
ble shadow operations. We call each possible sequence
of shadow operations that can be generated by a given
generator operation a template. In the above example,
there are only three sequences of shadow operations that
can be generated: the empty sequence, adding a delta of
10, and adding a delta of −10. From these three possible
sequences, only a delta of −10 leads to a weakest precon-
dition of FALSE, i.e., is always non-invariant safe. The
remaining ones have a weakest precondition of TRUE.

The second challenge that needs to be overcome is re-
lated to handling loops. The generator code in Figure 3(a)
illustrates that the number of iterations in the loop can be
unbounded, which in turn leads to an unbounded num-
ber of CRDT operations in the shadow operation. To ab-
stract this, we could produce a template that preserves
the loop structure, such as the one in Figure 3(b). How-
ever, when computing a weakest precondition over this
piece of code, verification tools face a scalability prob-
lem, which is overcome by requiring the programmer to
specify loop invariants that guide the computation of this
weakest precondition [17]. Again, this would represent
an undesirable programmer intervention.

To address this challenge, we note that in many cases
(including all applications that we analyzed), loop itera-
tions are independent, in the sense that the parts of the
state modified in each iteration are disjoint. Again, this is
illustrated by the example in Figure 3, where the loop is
used to iterate over a set of items, and each iteration only
modifies the state of the item being iterated.

This iteration independence property enables us to
significantly simplify the handling of loops. In particu-
lar, when generating the weakest precondition associated
with a loop, we only have to consider the CRDT opera-
tions invoked in two sets of control flow paths, one where
the code within the loop is never executed, and another
with all possible control flow paths when the loop is ex-
ecuted and iteration repetitions are eliminated. (We will
explain in detail how to handle loops using an example
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Sequential path Description
2 ·3 ·4 ·2 only if
2 ·3 ·6 ·2 only else

2 ·3 ·4 ·2 ·3 ·6 ·2 else follows if
2 ·3 ·6 ·2 ·3 ·4 ·2 if follows else

Table 2: Distinct sequential paths obtained for the trans-
action in Figure 3(a).

in the following subsection.) This condition can then be
validated against each individual iteration of the loop at
runtime and, given the independence property, this vali-
dation will be valid for the entire loop execution.

In our current framework, the iteration independence
property is validated manually. In all our case-study ap-
plications, it was straightforward to see that this property
was met at all times. We leave the automation of this step
as future work.

5.2 Generating templates
Instead of reasoning about the generator code, our anal-
ysis is simplified by reasoning about the side effects of
each code path taken by the generator operation. Further-
more, we can cut the number of possible code paths by
eliminating code sections that are repeated due to loops.

To perform this analysis, we require an algorithm for
extracting the set of sequential paths of a transaction
and eliminating loop repetition. The high level idea of
this algorithm is to split branch statements and replace
loops with all non-repeating combinations of branches
that can be taken within a loop. The algorithm works as
follows. First, for every transaction, we create its path
abstraction, which is a regular expression encoding all
control flow information within that transaction. In the
example shown in Figure 3(a), its path abstraction is
2 · (3 · (4|6) · 2)∗, where numbers represent the state-
ment identifiers shown in the figure, · concatenates two
sequential statements, | is a binary operator that indi-
cates that the statements at its two sides are in alterna-
tive branches, and ∗ represents repetition within a loop.
Second, we recursively apply the following two steps to
simplify a path abstraction until it is sequential (i.e., no
∗ and |). For a path abstraction containing ∗, we create
two duplicated abstractions, where one excludes the en-
tire loop, and the other simplifies the loop into its body.
For a path abstraction containing the operator |, we cre-
ate two duplicated path abstractions, where one excludes
the right operand and the other excludes the left operand.
Additionally, if such | is affected by a ∗, then we have
to create another path abstraction combining both alter-
natives, i.e., where the if and the else sides are executed
sequentially.

In the previous example, the set of sequential paths
that is produced is shown in Table 2. By ignoring the
read-only path where the loop is not executed, we only

consider four cases, namely only the if or the else path,
and the two sequences including both if and else. Be-
cause of the loop independence property, these cases are
able to capture all relevant sequences of shadow opera-
tions. Note that we would only require considering one of
the two orderings for the if and the else code within the
loop, since their side effects commute, but taking both
orderings into account simplifies the runtime matching
of an execution to its corresponding path.

Given a set of sequential paths for a transaction, creat-
ing shadow operation templates become straightforward.
For each path, we collect a sequence of statements spec-
ified by the identifiers in the abstraction from the cor-
responding control flow graph. Then, we translate every
database function call into either a CRDT operation by
following the instructions stated in Section 4, or a no-
op operation (for read-only queries). Finally, all these
CRDT operations are packed into a function, which de-
notes the shadow operation template. These CRDT oper-
ations are parameterized by their respective arguments,
and the static analysis computes a weakest precondition
over these arguments for the template to be invariant safe.

The final output from the static analysis is a dictio-
nary consisting of a set of < key,value > pairs, one for
each previously generated shadow operation template,
where key is the unique identifier of the template, and
value is the weakest precondition for the template. The
unique identifier of the template encodes the set of pos-
sible paths using signatures of CRDT operations in a re-
stricted form of regular expression.

5.3 Runtime evaluation
Template/shadow operation matching. At runtime, it
is necessary to evaluate the weakest precondition to clas-
sify operations as red or blue. To this end, we must
lookup in the dictionary created during the static analysis
the template corresponding to each shadow operation as
it is produced.

The challenge with performing this lookup is that it re-
quires determining the identifier of the shadow operation
corresponding to the path taken, and this must be done
by taking into account only the operations that are con-
trolled by the runtime, i.e., the CRDT operations. This
explains why the dictionary keys consist only of CRDT
operations. With the shadow operation identifier, match-
ing the path taken at runtime with the keys present in the
dictionary is done efficiently by using a search tree.
Weakest precondition check. Finally, once the weak-
est precondition for the template that corresponds to
a particular shadow operation is retrieved, we evaluate
that precondition against the CRDT parameters of the
shadow operation. This is achieved by simply replacing
the variables in the precondition with their instantiated
values and evaluating the final expression to either true or
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App Invariants
TCPW ∀item ∈ item table. item.stock ≥ 0

RUBiS
∀item ∈ item table. item.stock ≥ 0
∀u,v ∈ user table.

u.uname = v.uname =⇒ u = v

Table 3: Application-specific invariants

false. If the weakest precondition is evaluated to true the
shadow operation is labeled blue, otherwise the shadow
operation in labeled red.

After this step, the shadow operation is delivered to
the replication layer, which replicates it using different
strategies according to its classification.

6 Evaluation

In this section, we report our experience with implement-
ing SIEVE, adapting existing web applications to run with
SIEVE, and evaluating these systems.

6.1 Implementation
We implemented most of our tool using Java (15k lines
of code), and changed parts of the Jahob code to obtain
weakest preconditions in OCaml (553 lines of code). The
backend storage system we used was a MySQL database.
We used an existing Java parser [1] to parse java files.
Finally, we connected our tool to the Gemini replication
and coordination system [20] to enable both consistency
classification and operation replication.

6.2 Use cases
To adapt an application to use SIEVE, one has to annotate
the corresponding SQL schema with the proper CRDT
semantics, specify all invariants, and finally the original
JDBC driver must be replaced by the driver provided by
SIEVE, to enable SIEVE to intercept interactions between
the application and the database.

We applied SIEVE to two web application benchmarks,
namely TPCW [9] and RUBiS [7]. Both of them simulate
an online store and the interactions between users and the
web application. There are two main motivations for se-
lecting these use cases: (1) both have been widely used
by the community to evaluate system performance; and
(2) both have application-specific invariants that can be
violated under weak consistency. (In our prior work [20]
a social application is evaluated, but it made no sense to
include this application because it did not contain any in-
variants that could be violated under weak consistency.)

For TPCW, we use AOSET, AUSET, UOSET and ARSET

to annotate the database tables, no annotations for un-
modified attributes, NUMDELTA for stock, and LWW for
the remaining attributes. For RUBiS, we annotate its ta-
bles with AUSET and AOSET. We use NUMDELTA as an-
notations for both quantity and numOfBids, and no

annotations or LWW for the remaining attributes. Identi-
fied invariants in these two applications are summarized
in Table 3. For additional details, we refer the interested
reader to the code available in [2].

In terms of the time required to do this adaptation, we
do not report results for TPCW as we relied on this use
case during the design and development phase of SIEVE.
However for the RUBiS use case, the entire process was
concluded in only a few hours. An interesting point to
highlight is that SIEVE is able to detect inconsistencies
between these annotations, enabling programmers to cor-
rect mistakes such as type omissions in the SQL schema
that are inconsistent with the CRDT annotations.

In both our prior work [20] and the current work, the
effort we made analyzing application code to determine
invariants and merge semantics is unavoidable. In our
prior work, however, we additionally spent a significant
amount of time manually implementing merge seman-
tics, and classifying shadow operations by taking into ac-
count their properties, for every application. SIEVE elim-
inates all this manual work, and limits human error.

6.3 Experimental setup
All reported experiments were obtained by deploying ap-
plications on a local cluster, where each machine has
2*6 i7 cores and 48GB RAM, and runs Linux 3.2.48.1
(64bit), MySQL 5.5.18, Tomcat 6.0.35, and Java 1.7.0.

6.4 Experimental results
Our experimental work aims at evaluating both the static
analysis component of SIEVE and also the runtime com-
ponent, which includes a performance comparison be-
tween each application using our tool, its unmodified ver-
sion, and its version under RedBlue consistency where
the entire classification is done manually and offline.

Concerning the static analysis component we focus
on the following main questions: (i) How long does the
static analysis process take to complete? (ii) What is the
scalability of the static analysis component in relation to
the size of the code base?

For the runtime component of SIEVE we focus on
the following main questions: (i) Is the runtime classi-
fication of shadow operations accurate? (ii) What is the
(runtime) overhead for adapted applications compared to
their stand-alone unmodified counterparts? (iii) What are
the performance gains obtained through weakly consis-
tent replication using SIEVE?

6.4.1 Static analysis

As mentioned before, taking the application source code
and CRDT annotations as input, SIEVE first maps each
transaction into a set of distinct paths, and automatically
transforms each path into a shadow operation template.
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Transaction name #paths #templates Transaction name #paths #templates Transaction name #paths #templates
read-only txns (13) 1 0 createNewCustomer 2 2 doBuyConfirm-A 32 32
createEmptyCart 1 1 adminUpdate 4 4 doCart 36 36
refreshSession 1 1 doBuyConfirm-B 16 16

Transaction name #paths #templates Transaction name #paths #templates Transaction name #paths #templates
ViewUserInfo 6 0 PutComment 10 0 PutBid 14 0
BrowseRegions 5 0 StoreComment 11 3 StoreBid 17 5
BuyNow 7 0 ViewBidHistory 11 0 AboutMe 37 0
SearchItemsByRegion 20 0 StoreBuyNow 13 6 RegisterItem 59 24
SearchItemsByCategory 20 0 BrowseCategories 13 0
ViewItem 10 0 RegisterUser 14 3

Table 4: Number of reduced paths and templates generated for each transaction in TPCW (top) and RUBiS (bottom).

Table 4 summarizes the number of paths (excluding
loops) and the corresponding number of shadow oper-
ation templates that were produced by SIEVE for both
TPCW and RUBiS. For TPCW, 15 out of the total 20
transactions only exhibit a single path, as the code of
these transactions is sequential. The two most complex
transactions in this use case are doBuyConfirm and
doCart, which are associated with the user actions of
shopping and purchasing. In contrast, most transactions
in RUBiS have a more complex control flow, which gen-
erated a larger number of possible execution paths.

Note that the majority of transactions in both use cases
do not lead SIEVE to produce any template. This happens
when the transactions are read-only, and therefore do not
have side effects. Additionally, in TPCW every path in
an update transaction generates a shadow operation tem-
plate, since system state is always modified. However,
this is not true in RUBiS, because its code verifies sev-
eral conditions, some of which lead to a read-only trans-
action.

As depicted in Table 5, the execution of SIEVE gen-
erated a total of 92 and 41 shadow operation templates
for TPCW and RUBiS, respectively. In addition to these
templates, our tool also generates automatically a set
of Java classes that represent database data structures,
which are necessary for computing weakest precondi-
tions.

Table 6 depicts a full list of the different weakest pre-
conditions generated by SIEVE for both use cases. These
weakest preconditions alongside their respective shadow
operation template identifiers are used by the runtime
logic to classify shadow operations as either blue or red.
A weakest precondition denoted by True implies that
any shadow operation associated with that template is

App #code templates #db code #specsnum #code
TPCW 8.3k 92 1554 879 730
RUBiS 9.8k 41 251 477 371

Table 5: Overview of the output produced by the static
analysis. “db code” refers to the Java classes represent-
ing database structures required for computing weakest
preconditions.

WP Comments

TPCW True Not influencing invariants
delta≥ 0 Non-negative stock

RUBiS

True Not influencing invariants
False Nickname must be unique

delta≥ 0 Non-negative quantity
quantity≥ 0 Non-negative quantity (new item)

Table 6: Weakest preconditions (WP)

App JahobSpec Template WP Total
TPCW 9.1 ± 0.1 3.8 ± 0.1 3.3 ± 0.1 16.2 ± 0.3
RUBiS 8.9 ± 0.0 3.3 ± 0.3 0.9 ± 0.1 13.2 ± 0.3

Table 7: Average and standard deviation of latency in
seconds for static analysis tasks (5 runs).

always invariant safe and therefore labeled blue. In con-
trast, a weakest precondition denoted by False implies
that shadow operations associated to that template must
always be classified as red. The remaining non-trivial
conditions must be evaluated at runtime by replacing
their arguments with concrete values. For instance, when
a doBuyConfirm transaction produces a negative delta,
then the condition will be evaluated to False and the
corresponding shadow operation will be classified as red,
otherwise the condition will be evaluated to True and the
shadow operation will be classified as blue.

Cost of static analysis. A relevant aspect of the static
analysis component in SIEVE is the time required to exe-
cute it. To study this we have measured the time taken by
the static analysis and present the obtained results in Ta-
ble 7. We not only measured the end-to-end completion
time, but also the time spent for each step, namely, creat-
ing database data structures required by Jahob (Jahob-
Spec), template creation (Template), and weakest pre-
condition computation (WP). Overall, we can see that
the execution time of the static component of SIEVE is
acceptable, as less than 20 seconds are required to ana-
lyze both TPCW and RUBiS. The code generation phase
including both JahobSpec and Template dominates the
overall static analysis. Compared to TPCW, the time
spent computing weakest preconditions is shorter in RU-
BiS, due to the smaller number of templates in Table 5.

Scalability. The code base size of TPCW and RUBiS
is somewhat small when compared to deployed applica-
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Figure 4: Static analysis time vs. code base size.

tions. This raises a question concerning the scalability
of the static analysis component of SIEVE with respect
to the size of the code base. In order to analyze this as-
pect of SIEVE we have artificially doubled and tripled
the size of each application code base and measured the
time spent analyzing these larger code bases when com-
pared with the original. The results are shown in Fig-
ure 4. The time spent generating the data structures re-
quired by Jahob is constant, since we did not change the
database schema. However, the time spent computing the
weakest preconditions for templates in TPCW grows ex-
ponentially, and the time taken for the remaining steps
presents a sub-linear increase. These results lead us to
conclude that the static analysis of SIEVE may scale to
reasonable code sizes, especially taking into account that
this process is executed a single time when adapting an
application through the use of SIEVE.

6.4.2 Runtime logic

We evaluated the runtime performance of our example
applications using SIEVE on top of Gemini, which is a
coordination and replication layer supporting generator
and shadow operation execution [20].

Configurations. We populated the dataset for TPCW
using the following parameters: 50 EBS and 10,000
items. For RUBiS we populated the dataset with 33,000
items for sale, 1 million users, and 500,000 old items. We
exercised all TPCW workloads, namely browsing mix,
shopping mix, and ordering mix, where the purchase ac-
tivity varies from 5% to 50%. For RUBiS, we ran the
bidding mix workload, in which 15% of all user activi-
ties generate updates to the application state.
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Figure 5: Throughput-latency graph without replication

Correctness validation. To verify that SIEVE labels
operations correctly for both case studies, we inspected
the log files generated by running SIEVE with TPCW
and RUBiS, and we found that SIEVE conducts the same
classification that was achieved manually in our previous
work [20].

SIEVE runtime overhead. Next we compared the per-
formance (throughput vs. latency) of the two applica-
tions across three single-site deployments: 1) SIEVE, 2)
Original—the original unreplicated service without any
overheads from creating and applying shadow opera-
tions, and 3) Manual—the RedBlue scheme with all la-
beling performed offline by the programmer. The ex-
pected sources of overhead for SIEVE are: i) the dynamic
creation of shadow operations; and ii) the runtime classi-
fication of each shadow operation. The results in Figure 5
show that the performance achieved by SIEVE is similar
to the one obtained with a manual classification scheme,
and therefore the overheads of runtime classification are
low. The comparison with the original scheme in a sin-
gle site shows some runtime overhead due to creating
and applying shadow operations (which is required for a
replicated deployment so that all operations commute).

To better understand the sources of overhead imposed
by SIEVE we measured the latency contribution of each
runtime step executed by SIEVE and compared it with
the latency contribution of these steps when relying on a
manual adaptation. In particular, we focused on the fol-
lowing tasks: generator execution (producing a shadow
operation), classification (determining shadow operation
colors), and shadow execution (applying shadow opera-
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Figure 6: Breakdown of latency.

tions).
Figure 6 shows the average contribution to request la-

tency of each of these steps (Only update requests are
considered since read-only queries do not generate side
effects.) For the manual adaptation, there is no latency
associated with classifying shadow operations, since the
classification of all shadow operations is pre-defined. In
contrast, SIEVE performs a runtime classification, but the
results show that the time consumed in this task is neg-
ligible. In particular, SIEVE takes 0.064 ± 0.002 ms and
0.072 ± 0.001 ms for looking up the dictionary and eval-
uating the condition for TPCW and RUBiS, respectively.
Regarding the generator execution and shadow execu-
tion, both the manual adaptation and SIEVE present the
same latency overheads.

Replication benefits. The results previously discussed
in this section have shown that the use of SIEVE imposes
a small overhead when compared to a standalone execu-
tion of the unmodified use cases, mostly due to runtime
classification. However, SIEVE was designed to allow
replication to bring performance gains through the use
of weak consistency in replicated deployments. To eval-
uate these benefits, we conducted an experiment where
we deployed the two applications (1) without replica-
tion, (2) using manual classification in Gemini, and (3)
using SIEVE, with two replicas in the same site for the
last two options. (The use of single site replication in-
stead of geo-replication makes our results conservative,
since the overheads of runtime classification become di-
luted when factoring in cross-site latency.)

The results in Figure 7 show that weakly consistent
replication for a large fraction of the operations brings
performance gains. In particular, one observes that the
peak throughput with 2 replicated Gemini instances run-
ning TPCW is improved by 59.0%, and the peak through-
put for RUBiS in this setting is improved by 37.4%. The
additional latency introduced in this case is originated by
the necessity of coordination among replicas to totally
order red shadow operations. The results also confirm
that the overhead of runtime classification when com-
pared to the manual, offline classification are low. Note
that there is a point where the throughput goes down
while there is still an increase in latency in Figure 7(b).
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Figure 7: Throughput-latency graph with two replicas.

This happens because the database becomes saturated at
this point.

7 Related work

We summarize and compare previous work with SIEVE
according to the following categories:

Eventual consistency and commutativity. A large
number of replicated systems have relied on eventual
consistency for supporting low latency for operations by
returning as soon as an operation executes in a single
replica. These systems must handle conflicts that may
arise from concurrent operations. In some systems, such
as Bayou [34], Depot [24], and Dynamo [11], applica-
tions must provide code for merging concurrent versions.
Other systems, such as Cassandra [19], COPS [22],
Eiger [23] and ChainReaction [4], use a simple last-
writer-wins strategy for merging concurrent versions.
This simple strategy may, however, lead to lost updates.

Some systems have explored using operation commu-
tativity to guarantee that all replicas converge to the same
state, regardless of operation execution order. For exam-
ple, Walter [32] includes a single pre-defined data type
with commutative operations, cset. This system could be
extended for supporting other data types with commuta-
tive operations proposed in the literature [26, 29]. Lazy
replication [18] and RedBlue [20] support unordered ex-
ecution of commutative operations defined by program-
mers. Furthermore, RedBlue [20] extends the space of
commutative operations by decoupling operation gener-
ation and application, requiring only that operation ap-
plication code is commutative.
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Unlike these systems, SIEVE automatically adapts ap-
plications so that commutativity is obtained without
modifying existing application code or adopting a new
programming model – a commutative operation that en-
codes the operation side effects is automatically gener-
ated from the application code.

Multi-level consistency. As some application oper-
ations cannot execute correctly under eventual consis-
tency, a few multi-level consistency models that com-
bine eventual and strong consistency have been pro-
posed [32, 20, 18, 33]. The properties of these models
overlap with each other, and differ mainly in the compo-
sition of the different consistency levels. For instance,
some work [32, 20] has found that it is sufficient to
categorize operations into strong and weak consistency.
Some other work [33] presents a more fine-grained di-
vision for read-only operations, which includes consis-
tent prefix read, monotonic reads, and so on. We build on
these models, and, in order to keep our design and our
presentation simple, we follow the two-level consistency
model proposed by RedBlue consistency [20].

Classification for multi-level consistency. In order to
help developers adopt different proposals for multi-level
consistency models, their creators introduced a few in-
structions to guide how to use their work. Relying on
a probabilistic model, consistency rationing [16] asso-
ciates different consistency levels with different states,
instead of operations, and allows states to switch from
one level to another at runtime. Unlike this approach,
we partition operations into strong and eventual con-
sistency groups. Both RedBlue consistency [20] and I-
confluence [6] define conditions that operations must
meet in order to run under weak consistency, i.e., without
coordination. We build on this line of work and extend it
so that an automatic tool, and not the programmer, is re-
sponsible for determining whether the operations meet
these conditions.

To free programmers from the classification process,
some researchers have attempted to apply program anal-
ysis techniques to reason about the consistency require-
ments of real applications. Alvaro et al. [5] identify code
locations that need to inject coordination to ensure con-
sistency, while Zhang et al. [36] inspect read/write con-
flicts across all operations. However, they focus on com-
mutativity, and ignore application invariants, which are
very important and taken into account by our solution.
Very recently, Roy et al. [27] devised a way to summa-
rize transaction semantics to allow sites to execute trans-
actions independently, and without leading to inconsis-
tencies. Their approach differs in the way that invari-
ants are maintained, which resembles the concept of war-
ranties [21] in that some operations cannot proceed so
that others execute locally. Furthermore, the paper fo-
cuses extensively on the analysis of transaction code to

determine their abstract semantics, which is complemen-
tary to the goal of our work since we rely on Jahob to
determine only certain properties of shadow operations.

Commutativity and classification beyond eventual
consistency. Commutativity has been explored in other
settings to improve performance and scalability – e.g.
in databases [35] and in OS design for multi-core sys-
tems [8]. Program analysis techniques have also been
used to identify commuting code blocks. Aleen et al. [3]
proposed a new approach to find commutative functions
automatically at compile time for allowing legacy soft-
ware to extract performance from many-core architec-
tures. Kim et al. [15] used the Jahob verification sys-
tem to determine commuting conditions under which two
operations can execute in different orders. Unlike these
two prior solutions that focus on identifying commuta-
tive code blocks, our tool automatically transforms oper-
ations by decoupling operation generation and applica-
tion, which makes more operations commute [20], and
we also focus on determining invariant safety.

8 Conclusion

In this paper we presented SIEVE, the first system to auto-
mate the choice of consistency levels in a replicated sys-
tem. Our system relieves the programmer from having to
reason about the behaviors that weak consistency intro-
duces, only requiring the programmer to write the system
invariants that must be preserved and provide annotations
regarding merge semantics. Our evaluation shows that
SIEVE labels operations accurately, incurring a modest
runtime overhead when compared to labeling operations
manually and offline.
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Abstract
The main memory of a typical application server is now
large enough to hold many interesting reference datasets
which the application must access frequently but for
which it is not the system of record. However, appli-
cation architectures have not evolved to take proper ad-
vantage. Common solutions based on caching data from
a separate persistence tier lead to error-prone I/O code
that is still subject to cache miss latencies. We present
an alternative library-based architecture that provides de-
velopers access to in-memory, native data structures they
control while neatly handling replication and persistence.
Our open-source library Sirius can thus give developers
access to their reference data in single-node program-
ming style while enjoying the scaling and robustness of
a distributed system.

1 Introduction

Many applications need to use reference data—
information that is accessed frequently but not necessar-
ily updated in-band by the application itself. For ex-
ample, a TV guide application may need to know the
titles, seasons, and descriptions of various TV shows.
Furthermore, many reference datasets now fit comfort-
ably in memory, especially as the exponential progress
of Moore’s Law has outstripped these datasets’ growth
rates. To illustrate, the total number of feature films listed
in the Internet Movie Database (IMDb) grew 40% from
1998 to 2013 [11], whereas commodity server RAM
grew by 12,000% in the same period.1

In addition, common “n-tier” service architectures
tend to separate the management of reference data from
the application code that must use it. In order to main-
tain low latency, application developers maintain caching
layers, either built into a supporting library such as an

11998 Sun Ultra 2 server with 256 MB vs. 2013 Elastic Compute
Cloud (EC2) “m3.2xlarge” instance with 30 GB.

object-relational mapper (ORM) or managed explicitly
with external caches like memcached [6] or Redis [17].
These schemes may be difficult to use correctly [18],
force developers to deal with I/O, and are still subject to
cache misses which drive up upper-percentile latencies.
This raises the question at hand:

How can we keep this reference data entirely in
RAM, while ensuring it gets updated as needed
and is easily accessible to developers?

In this paper, we describe an alternative architecture to
the classic n-tier approach for managing reference data,
based on a distributed system library called Sirius. Sirius
offers the following combination of properties:

• Simple and semantically transparent interface and
freedom to use arbitrary, native data structures for
the in-memory representation of the reference data
(Section 4).

• Eventually consistent, near real-time replication of
reference data updates across datacenters connected
by wide-area networks (WANs) and designed for ro-
bustness to certain common types of server and net-
work failures. (Section 5).

• Persistence management and automated recovery
after application server restarts (Section 6).

• Adequate write throughput to support reference data
updates (Section 7).

We have been using Sirius for over 15 months in pro-
duction to power applications serving tens of millions of
clients. We discuss the operational aspects of this archi-
tecture in Section 8.

2 Background

We will begin with a description of reference data to es-
tablish the context for this paper. As a motivating exam-
ple, we will use the domain of professionally-produced
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television and movie metadata—the primary use case
that motivated the design and implementation of Sirius.
Examples of this metadata include facts such as the year
Casablanca was released, how many episodes were in
Season 7 of Seinfeld, or when the next episode of The
Voice will be airing (and on which channel). Such refer-
ence datasets have certain distinguishing characteristics:

Small. The overall dataset is not “big data” by any
stretch of the imagination, and in fact can fit in main
memory of modern commodity servers. For example,
the entertainment metadata we use is in the low tens of
gigabytes (GB) in size.

Very high read/write ratio. Overwhelmingly, this
data is write-once, read-many—for example, the origi-
nal Casablanca likely won’t get a different release date,
Seinfeld won’t suddenly get new Season 7 episodes, and
The Voice will probably air as scheduled. However, this
data is central to almost every piece of functionality and
user experience in relevant applications—and those ap-
plications may have tens of millions of users.

Asynchronously updated. End users largely have a
read-only view of this data and hence are not directly ex-
posed to the latency of updates. For example, an editorial
change to correct a misspelling of “Cassablanca” may
take a while to propagate to all the application servers,
with end users seeing the update occur but without be-
ing able to distinguish whether it was accomplished in
minutes or milliseconds. There are thresholds of accept-
able latency, however: if a presidental press conference
is suddenly called, schedules may need to be updated
within minutes rather than hours.

Such reference datasets are relatively common: a
download of the U.S. Federal Reserve’s data on foreign
exchange rates is 1.2 MB compressed [4], the entire En-
cylopædia Britannica is 4.2 GB [27], and the collection
of global daily weather measurements from 1929–2009
is only 20 GB [2]. In fact, the most recent versions of all
the English Wikipedia articles total around 43 GB in un-
compressed XML format as of December 2, 2013, which
already fits in the 88 GB of RAM on a “cr1.8xlarge” EC2
instance. In other words, many reference datasets are al-
ready “small,” and more will become so as server mem-
ory sizes continue to grow.

2.1 Operational Environment

We would like to access our reference data in the context
of providing modern interactive, consumer-facing Web
and mobile application services. This imposes some im-
portant constraints and design considerations on a poten-
tial solution. In particular, these services must support:

Multiple datacenters. We expect our services to run
in multiple locations both to minimize latency to geo-
graphically disparate clients but also to protect against

datacenter failures caused by the proverbial backhoe or
regional power outages. For example, AWS has experi-
enced multiple total-region failures but no multi-region
or global failures to date.

Low access latency. Because we are building interac-
tive applications where actual humans are waiting for re-
sponses from our application servers, we must have fast
access to our reference data. Service latencies directly
impact usage and revenue [9].

Continuous delivery. Our services will be powering
products that are constantly being evolved. We expect
our application developers to spend a lot of time modify-
ing the code that interacts with their reference data, and
we expect to be able to deploy code updates to our pro-
duction servers multiple times per day. In order to do this
safely, we prefer approaches that support easy and rapid
automated testing.

Robustness. Since we will be supporting large de-
ployments, we expect to experience a variety of fail-
ure conditions, including application server crashes, net-
work partitions, and failures of our own service de-
pendencies. We would like our overall system to
continue operating—although perhaps with degraded
functionality—in the face of these failures.

Operational friendliness. Any system of sufficient
complexity will exhibit emergent (unpredictable) behav-
ior, which will likely have to be managed by operational
staff. We would like our approach to have a simple oper-
ational interface: it should be easy to understand “how
it works,” things should fail in obvious but safe ways, it
should be easy to observe system health and metrics, and
there should be “levers” to pull with predictable effects
to facilitate manual interventions.

3 Approach

As we have seen, we can fit our reference data comfort-
ably in RAM, so we start with the idea that we will sim-
ply keep a full mirror of the data on each application
server, stored in-process as native data structures. This
offers them ultimate convenience:

• No I/O calls are needed to external resources to ac-
cess the data. Correspondingly, there is no connec-
tion pool tuning required nor is there a need to han-
dle network I/O exceptions.

• Automated tests involving the reference data can be
vanilla unit tests that neither perform I/O nor require
extensive use of mock objects or test doubles.

• Profilers are actually useful for finding and fixing
application bottlenecks since behavior is isolated
from external dependencies. By contrast, com-

2
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mon “n-tier” application servers are often I/O bound
rather than CPU bound.

• Developers have full freedom to choose data struc-
tures directly suited to the application’s use cases.

• There are no “cache misses,” as the entire dataset is
present; access is fast and predictable.

Of course, this approach raises several important ques-
tions in practice. How do we keep the mirror up to date?
How do we run multiple servers while ensuring each gets
every update? How do we restore the mirrors after appli-
cation server restarts?

3.1 Update publishing
We assume there are external systems responsible for cu-
rating the reference data set(s), and that these system
will publish updates to our server rather than having our
server poll the system of record looking for updates. This
event-driven approach is straightforward to implement
in our application; we update the native data structures
in our mirror and continue serving client requests. We
model this interface after HTTP as a series of PUTs and
DELETEs against various URL keys.

Furthermore, this introduces a separation of opera-
tional concerns: should the external system of record be-
come unavailable, our application simply stops receiv-
ing updates without needing the error handling code that
would be required by a polling approach. Indeed, our
application cannot (and does not need to) distinguish a
failed source system from one with no fresh updates.

Finally, this is a parsimonious way to process updates
where much of the reference data does not change from
moment to moment, but where there is a regular trickle
of updates. For example, our production datasets experi-
ence a nominal update rate of no more than 150 updates
per second. This incremental approach allows us to avoid
re-downloading and re-parsing a full mirror and then ei-
ther calculating diffs ourselves or swapping out a mirror
entirely for an updated version.

3.2 Replication and Consistency
To run a cluster of application servers, we need to ap-
ply the updates at every server. To isolate the system
of record from needing to know how many application
servers are deployed, we route updates through a load
balancer, then rely on the servers to replicate the updates
to each other. Thus, a source system can publish each
update once. This also isolates the system of record from
individual server failures.

Because we will be operating a distributed system
across a WAN, we know we will experience frequent net-
work partitions due to unusually high latency, route flaps,

or other failures. Therefore, the CAP theorem dictates
we will need to decide between availability and consis-
tency during these times. We need read access to the
reference data at all times and will have to tolerate some
windows of inconsistency. That said, we want to pre-
serve at least eventual consistency to retain operational
sanity, and we can tolerate some unavailability of writes
during a partition, as our reference data updates are asyn-
chronous from the point of view of our clients.

To achieve this, our cluster uses a variant of the Multi-
Paxos [5] protocol to agree on a consistent total ordering
of updates, and then have each server apply the updates
in order. This means that the system of record cannot
publish updates without a quorum of available servers,
but it also allows servers to read the reference data with-
out coordination. A formal consensus protocol also al-
lows us to consistently order updates from multiple sys-
tems of record. We provide more detail in Section 5.

Finally, we use a catchup protocol for filling in lost or
missing updates from peers. This protocol can also be
used to set up dependent servers that do not participate
in Paxos but nonetheless receive and apply the stream of
updates. As a result, we can set up very flexible replica-
tion topologies to scale out read access to the dataset.

3.3 Persistence

As with many Paxos implementations, each server pro-
vides persistence by maintaining a local transaction log
on disk of the committed updates. When a server in-
stance starts up, it replays this transaction log to rebuild
its mirror from scratch, then rejoins the replication proto-
col described above, which includes “catch up” facilities
for acquiring any missing updates.

Because updates are modeled as idempotent PUT and
DELETE operations, we can compact this log to retain
only the most recent updates for active keys, without re-
quiring the application to implement checkpointing. Our
live log compaction scheme is described in Section 6.

3.4 Library Structure

Finally, we have structured the overall system around a
library called Sirius that handles the Paxos implementa-
tion, persistence, log compaction, and replay. The host-
ing application is then conceptually separated into two
pieces: its external interface and business logic, and its
mirror, as shown in Figure 1. There are then two differ-
ent data paths used for processing reference data updates
and client requests.

A server receiving a reference data update hands it off
as a PUT or DELETE to Sirius, which runs it through the
Paxos protocol and writes it to the persistent transaction

3
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Figure 1: Architecture of a Sirius-based application.

log. The Sirius library on each server then hands the
update off to its local mirror to be applied.

The application server can handle read requests in one
of two ways. It can hand a request off to its local Sirius,
which will serialize it with respect to outstanding updates
and then route it as a GET to the mirror. This method
would be most appropriate if the application developers
wish to have Sirius provide a level of transactional iso-
lation for read requests–ensuring that no updates are ap-
plied concurrently to those reads. However, it comes at
the expense of serialized access, which may become a
performance bottleneck.

In practice, though, our developers use concurrent data
structures in the mirror and manage concurrency them-
selves, bypassing Sirius entirely on the read path.

4 Programming Interface

As we have just seen, a Sirius-based application is con-
ceptually divided into two parts, with the Sirius library
as an intermediary. The application proper provides its
own interface, for example, exposing HTTP endpoints to
receive the reference data publishing events. The appli-
cation then routes reference data access through Sirius.

After taking care of serialization, replication, and per-
sistence, Sirius invokes a corresponding callback to a
request handler provided by the application. The re-
quest handler takes care of updating or accessing the in-
memory representations of the reference data. The ap-
plication developers are thus completely in control of the
native, in-memory representation of this data.

The corresponding programming interfaces are shown
in Figure 2; there is a clear correspondence between

public interface Sirius {

Future<SiriusResult>

enqueueGet(String key);

Future<SiriusResult>

enqueuePut(String key, byte[] body);

Future<SiriusResult>

enqueueDelete(String key);

boolean isOnline();

}

public interface RequestHandler {

SiriusResult handleGet(String key);

SiriusResult handlePut(String key,

byte[] body);

SiriusResult handleDelete(String key);

}

Figure 2: Sirius interfaces. A SiriusResult is a Scala
case class representing either a captured exception or a
successful return, either with or without a return value.

the Sirius-provided access methods and the application’s
own request handler. As such, it is easy to imagine a
“null Sirius” implementation that would simply invoke
the application’s request handler directly. This semantic
transparency makes it easy to reason functionally about
the reference data itself.

The primary Sirius interface methods are all asyn-
chronous; the contract is that the library itself takes care
of scheduling the invocation of the request handlers at
the right time to ensure enventual consistency across the

4
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cluster nodes. The overall contract is:

• The request handlers for PUTs and DELETEs will
be invoked serially and in a consistent order across
all nodes.

• Enqueued asynchronous updates will not complete
until successful replication has occurred.

• An enqueued GET will be routed locally only, but
will be serialized with respect to pending updates.

• At startup time, Sirius will not report itself as “on-
line” until it has completed replay of its transaction
log, as indicated by the isOnline method.

Sirius does not provide facilities for consistent condi-
tional updates (e.g., compare-and-swap); it merely guar-
antees consistent ordering of the updates. The low update
rate coupled with Sirius not being the system of record
mean that the simpler interface presented here has been
sufficient in practice.

5 Replication

Updates passed to Sirius via enqueuePut or
enqueueDelete are ordered and replicated via
Multi-Paxos with each update being a command as-
signed to a slot by the protocol; the slot numbers are
recorded as sequence numbers in the persistent log
(Section 6). Our implementation fairly faithfully follows
the description given by van Renesse [26]. However,
there are some slight differences needed to produce a
practical implementation and some optimizations made
possible by our particular use case.

Stable leader. First, we use the common optimization
that disallows continuous “Phase 1” weak leader elec-
tions; when a node is pre-empted by a peer with a higher
ballot number, it follows that peer instead of trying to win
the election again. While following, it pings the leader to
check for liveness, and forwards any update requests. If
the pings fail, a new Phase 1 election begins. This lim-
its vote conflicts, and resultant chattiness, which in turn
enhances throughput.

End-to-end retries. Second, because all of the up-
dates are idempotent, we do not track unique request
identifiers, as the updates can be retried by the external
system of record if a publication attempt is not acknowl-
edged. In turn, this assumption means that we do not
need to write the internal process state of the Paxos pro-
tocol processes to stable storage to recover from crashes,
beyond the persistent log recording decisions assigning
updates to specific sequence/slot numbers. This may re-
sult in an in-flight update being lost in certain failure sce-
narios, like a cluster-wide power outage, but as the exter-
nal client will not have had the write acknowledged, it

will eventually time out and retry. This end-to-end de-
sign argument for retries allows us to work around the
assumption from van Renesse that “a message sent by
a non-faulty process to a non-faulty destination process
is eventually received (at least once) by the destination
process,” i.e., that the network is reliable.

Similarly, we bound some processes—notably the
“Commander” process that attempts to get a quorum of
cluster members to agree on the assignment of an update
to a particular slot number—with timeouts and a limited
number of retries before giving up on the command. As a
practical example, during a long-lived network partition,
a minority partition will not be able to make progress,
and this prevents the buildup of an unbounded amount of
protocol state for attempted but incomplete writes during
the partition. In turn, this means Sirius degrades grace-
fully and does not slow the read path for those nodes,
even though their reference datasets in memory may be-
gin to become stale.

Write behind. Finally, the Paxos replicas apply deci-
sions in order by sequence number, buffering any out-of-
order decisions as needed. We elected to write the deci-
sions out to the log in sequence number order, as it sim-
plifies log replay and the compaction activities described
below in Section 6. We also acknowledge the write once
a decision for it has been received, but without waiting
for persistence or application to complete; this reduces
system write latency and prevents “head-of-line” block-
ing.

On the other hand, this means that an external publish-
ing client may not get “read your writes” consistency and
that there is a window during which an acknowledged
write can be lost without having been written to stable
storage (e.g., due to a power outage). In practice, neither
of these is a problem, as the reference dataset updates
are read-only from the point of view of the application’s
primary customers; similarly, Sirius is not the system of
record for the reference dataset, so it is possible to recon-
struct lost writes if needed by re-publishing the relevant
updates from the upstream system.

State pruning. Once updates have been applied lo-
cally, a hint with the maximum sequence number is sent
to the local Paxos replica; this allows the in-memory state
of proposed updates and recorded decisions to be pruned.
We additionally prune proposed but unfinished updates
that are older than a given configured cutoff window we
expect is longer than an external client’s read timeout set-
ting, again relying on the end-to-end retry mechanism to
re-publish them.

5.1 Catch-Up Protocol

Because updates must be applied in the same order on
all nodes and we also want to log updates to disk in

5
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that order, nodes are particularly susceptible to lost deci-
sion messages; these delay updates with higher sequence
numbers. Therefore, each node periodically selects a
random peer and requests a range of updates starting
from the lowest sequence number for which it does not
have a decision.

The peer replies with all the decisions it has that fall
within the given slot number range. Some of these may
be returned from a small in-memory cache of updates
kept by the peer, especially if the missing decision is a
relatively recent one. However, the peer may need to
consult the persistent log for older updates no longer in
its cache (see Section 6).

If the peer replies with a full range of updates, the pro-
cess continues: the node requests the next range from the
same peer. Once a partial range is returned, the catchup
protocol ceases until the next period begins with a new,
random peer.

The catchup protocol also provides for dependent
cluster members that do not participate in Paxos. Clus-
ter configurations contain only primary members, which
thereby know about each other and can participate in
Paxos. Other cluster members periodically catch up via
the primaries. In practice, this allows a primary “ingest”
cluster to feed several dependent application clusters fol-
lowing along for updates—often within seconds of each
other and across datacenters, depending upon configura-
tion of the catchup range size and request interval.

In turn, this lets us keep write latencies to a minimum:
Paxos only runs across local area networks (LANs). Dif-
ferent clusters can be activated as primaries by pushing
a cluster configuration update, which the Sirius library
processes without an application restart.

6 Persistence

As updates are ordered by Paxos, Sirius also writes them
out to disk in an append-only file. Each record includes
an individual record-level checksum, its Paxos sequence
number, a timestamp (used for human-readable logging,
not for ordering), an operation code (PUT or DELETE),
and finally a key and possibly a body (PUTs only), along
with related field framing information. This results in
variable-sized records, which are not ordinarily a prob-
lem: the log is appended by normal write processing,
and is normally only read at application startup, where it
is scanned sequentially anyway.

There is one exception to this sequential access pat-
tern: while responding to catchup requests, we need to
find updates that have fallen out of cache, perhaps be-
cause of a node crash or long-lived network partition. In
this case, we must find a particular log entry by its se-
quence number.

At system startup time, Sirius will read the log in or-
der to stream the updates to the application’s request
handler. At the same time, it will construct a com-
panion index file if one does not already exist. This
index file consists of fixed-length records of the form
<seqnum, offset, checksum>. Although the log file is
guaranteed to be sorted in increasing sequence number
order, compaction—as we will see shortly—may intro-
duce gaps in the sequence. We perform a binary search
on the index file itself to find a particular update num-
ber, then use the file offset to locate the update itself in
the main log file. Because the index file is small, the
operating system’s filesystem cache can usually keep it
in memory, allowing a quick binary search. When an
update is found in the log, any further updates in the re-
quested catchup range can then be streamed without re-
consulting the index. In practice, the catchup protocol
streams updates to other nodes at least as fast as new up-
dates are written.

6.1 Compaction

Sirius can compact its log file: because the PUTs and
DELETEs are idempotent, we can remove every log en-
try for a key except the one with the highest sequence
number. Because the overall reference dataset does not
grow dramatically in size over time, a compacted log is
a relatively compact representation of it; we find that the
reference dataset takes up more space in RAM than it
does in the log once all the appropriate indices have been
created in the application’s mirror. This avoids the need
for the application to participate in creating snapshots or
checkpoints, as in other event-sourced systems [5].

The original Sirius-based application we deployed was
under continuous development at the time and was rede-
ployed with new code nearly every day. We took advan-
tage of the application restarts to compact offline during
deployments. A separate tool that understands log for-
mat would compact the log while a particular application
instance was down; the application would then restart by
replaying the compacted log. While workable, this was
suboptimal: the offline compaction lengthened deploy-
ments, and we relied on frequent restarts to prevent the
log from getting unwieldy.

Therefore, we developed a scheme for live compaction
that the Sirius library manages itself in the background.
In order to bound the resources (particularly memory)
needed by the compaction scheme, we work incremen-
tally by dividing the log into segments with a maxi-
mum number of entries in each, as in other log-based
systems [23, 24]. Each segment is kept in its own di-
rectory, and contains a data file and an index file, as
described above. Sirius adds new entries only to the
highest-numbered segment; when that segment fills up,

6
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its file is closed and a new segment is started.
The overall compaction process is as follows: we take

a segment si and find the set of all keys mentioned in it,
K(si). Then, for each lowered-numbered segment s j, we
produce a new copy of its data file s′j that only contains
updates to keys not in K(si). When s′j is complete, we
swap it into place for s j atomically. Files are named and
managed in a way that allows the compaction process to
recover from an application restart; if it finds an existing
s′j file it assumes it is incomplete, removes it, and restarts
the compaction of that segment.

After the compaction of the individual segments, we
then check if any adjacent segments are small enough to
be merged and still fit under the maximum segment size;
this calculation can be done cheaply by checking the size
of the relevant segment index files. The merge operation
itself is simply a concatenation of the log and index files
for the relevant segments.

Live compaction in Sirius is thus incremental and
restartable and does not require a manual operational
maintenance step with a separate tool. Thus, while op-
erations staff for a Sirius-based application need to be
aware of the segment directory, they do not have to ac-
tively manage it. Because all the log segments are reg-
ular files, they can be backed up normally, or zipped
and copied to another machine. Since the logs are nor-
mally append-only, and compaction is incremental, these
copies can be taken while the application is running with-
out any special synchronization. We have taken advan-
tage of this to bootstrap new nodes efficiently, especially
when seeding a new datacenter, or to copy a production
dataset elsewhere for debugging or testing.

7 Experimental Evaluation

In practice we have found Sirius has sufficient write
throughput to support our reference data use cases. In
this section, we analyze our Sirius implementation ex-
perimentally. The library is written in Scala, using the
Akka actor library.

All experiments were run on Amazon Web Services
(AWS) Elastic Computer Cluster (EC2) servers running
a stock 64-bit Linux kernel 2 on “m1.xlarge” instances3

with 4 virtual CPUs and 15 GB RAM. These instances
have a 64-bit OpenJDK Java runtime4 installed; Sirius-
based tests use version 1.1.4 of the library.

7.1 Write throughput
Because the optimized read path for an application by-
passes Sirius to read directly from the mirror, we are pri-

2Kernel 3.4.73-64.112.amzn1.x86 64.
3http://aws.amazon.com/ec2/instance-types/
4Java version 1.6.0 24; OpenJDK release IcedTea6 1.11.14.
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Figure 3: Sirius write throughput.

marily interested in measuring Sirius’ write throughput.
For these tests, we embed Sirius in a reference web ap-
plication5 that exposes a simple key-value store interface
via HTTP and uses Java’s ConcurrentHashMap for its
mirror. Load is generated from separate instances run-
ning JMeter6 version 2.11. All requests generate PUTs
with 179 byte values (the average object size we see in
production use).

For these throughput tests, we begin by establishing a
baseline under a light load that establishes latency with
minimal queueing delay. We then increase load until we
find the throughput at which average latency begins to in-
crease; this establishes the maximum practical operating
capacity. Our results are summarized in Figure 3.

This experiment shows write throughput for various
cluster sizes; it was also repeated for a reference appli-
cation with a “null” RequestHandler (Sirius-NoBrain)
and one where disk persistence was turned off (Sirius-
NoDisk). There are two main observations to make here:

1. Throughput degrades as cluster size increases. This
is primarily due to the quorum-based voting that
goes on in Paxos: the more cluster members there
are, the more votes are needed for a quorum, and
hence the greater chance that there are enough ma-
chines sporadically running “slow” (e.g., due to a
garbage collection pause) to slow down the algo-
rithm. This trend is consistent with those reported
by Hunt et al. for ZooKeeper [10].

2. Throughput is not affected by disabling the persis-
tence layer nor by eliminating RequestHandler

work; we conclude that the Paxos algorithm (or our
implementation of it) is the limiting factor.

5http://github.com/Comcast/sirius-reference-app
6http://jmeter.apache.org/
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Figure 4: Comparison to ZooKeeper.

7.2 Comparison to ZooKeeper
One of the primary related technologies is
ZooKeeper [10]. ZooKeeper offers similar seman-
tics: consistent ordering of writes and eventually
consistent reads. However, ZooKeeper also implements
a broader set of functionality than Sirius provides, for
example, allowing strongly consistent read operations.

We created a modified version of ZooKeeper where
the atomic broadcast and persistence layers were re-
placed with Sirius. This “ZK-Sirius” only supports the
core create, read, update, and delete primitives that the
systems have in common, but not the full ZooKeeper
API. This was sufficient to run benchmarks comparing
ZK-Sirius with the native ZooKeeper using a third-party
open source benchmarking tool.7 Because we reused
the ZooKeeper interface, we did not have to modify the
benchmarking tool at all. The results from testing 5-node
clusters are shown in Figure 4. Our prototype and all ex-
periments were based on version 3.4.5 of ZooKeeper.

From the authors’ description of the benchmark:

“The benchmark exercises the ensemble’s per-
formance at handling znode reads, repeated
writes to a single znode, znode creation, re-
peated writes to multiple znodes, and znode
deletion.... The benchmark connects to each
server in the ZooKeeper ensemble using one
thread per server.”

We conducted the test using the synchronous mode of
operation, where each client makes a new request upon
receiving the result of the previous one.

As expected, the Sirius-backed version of ZooKeeper
achieves essentially identical read performance to the
standard ZooKeeper implementation. Throughput on
write operations—SETSINGLE, CREATE, SETMULTI

7https://github.com/brownsys/zookeeper-benchmark

and DELETE—is measured to be approximately 40–
50% of standard ZooKeeper throughput. Given the read-
heavy nature of our reference data workloads, this is a
practical tradeoff in order to get the key benefit Sirius
provides: namely, in-memory access to the data via arbi-
trary, native datastructures.

Our point is not to suggest an alternative implemen-
tation for ZooKeeper—in particular, Sirius does not
support the synchronous reads that are possible with
ZooKeeper—but rather to illustrate that our relatively un-
tuned Sirius is in the neighborhood of a highly tuned and
production-hardened system like ZooKeeper. This exer-
cise also illustrates two major points:

1. The Sirius programming interface is simple
and flexible enough to easily integrate it into
ZooKeeper’s internals.

2. Distributed system semantics similar to
ZooKeeper’s—consistently ordered writes with
eventually consistent local reads—are available in
the form of arbitrary, native data structures.

8 Operational Concerns

In addition to providing a convenient programming in-
terface, we designed Sirius to be operationally friendly.
This means that major errors, when they occur, should be
obvious and noticeable, but also means that the system
should degrade gracefully and preserve as much func-
tionality as possible. Errors and faults are expected, and
by and large Sirius manages recovery on its own, al-
though operations staff may intervene if needed. Finally,
Sirius has relatively few moving parts that nonetheless
provide a lot of operational flexibility.

8.1 Bootstrapping

When a server is first brought online, either as a new
cluster member or after recovering from a failure, it may
be far behind its active peers. It may have a partial or
empty log. While these scenarios do not happen often,
they are among the most obvious (and inescapable). With
Sirius, there are two fairly straightforward ways to bring
such a server back up to date.

First, as mentioned in Section 6, the log is just a col-
lection of regular files that can simply be copied from
an existing peer. Second, we can spin up a server with
an empty log, and it will use the catch-up protocol to
fetch the entire log from a neighbor. Anecdotally, we
have bootstrapped several gigabytes of log in minutes
this way.

8



USENIX Association  2014 USENIX Annual Technical Conference 301

Paxos participants

followers

A

followers

followers

Paxos
Catchup only

A A

B B B C C C

D D D

Figure 5: Flexible replication topologies with Sirius.

8.2 Follower Topology

As we described in Section 5, cluster membership is
managed with a simple configuration file, with non-
Paxos members using the catch-up protocol to “follow”
along the primary ingest cluster. This leads to a large
amount of topology flexibility; we can, and have, set up
small “ingest-only” clusters to process the reference data
updates, followed by multiple, larger follower clusters
that are scaled out to serve reads. In fact, by specifying
different membership files for different clusters, it is pos-
sible to follow multiple, redundant clusters and to set up
chains of following clusters if desired.

Consider the example topology shown in Figure 5 with
four clusters labeled A–D. Clusters A, B, and C share
a common configuration that lists the servers of cluster
A as primary members; this causes cluster A to partici-
pate in Paxos, and clusters B and C to follow the servers
in cluster A. Cluster D has a configuration that lists the
members of clusters B and C as primaries; this causes
cluster D to catch up from randomly selected members
of both clusters, even though neither of them are the pri-
mary Paxos cluster.

8.3 waltool

To support debugging and operations, we distribute the
command-line waltool along with Sirius. Waltool pri-
marily allows for manipulation of the Sirius log, and pro-
vides the following functionality:

• log format conversion (e.g., from the original unseg-
mented version to the segmented version and back)

• print the last few entries in the log in human-
readable format (similar to the Unix tail command)

• log filtering on keys via regular expression—similar
to grep—to produce a new log that contains or ex-
cludes keys matching the expression

• offline compaction

• replay PUT/DELETEs for each update in the log as
equivalent HTTP requests sent to a specified server

8.4 Error Handling

Each update in both the index and data files are check-
summed. Eventually, a bit will flip, a checksum will
fail, and Sirius will refuse to start. Currently, recovery
is manual, albeit straightforward: Sirius reports the point
at which the problematic record begins. An operator can
truncate the log at this point or delete a corrupted index,
and Sirius can take care of the rest, rebuilding the index
or retrieving the missing updates as needed.

As mentioned above, the liveness of a server’s Paxos
subsystem is tied to its cluster membership. While rare,
we have seen some cases of a cluster failing to make
progress. Generally, these resolve themselves (tempo-
rary network partitions, DNS flaps), but occasionally
they require manual intervention, such as when Paxos
has livelocked due to a bug in implementation. We
have found that these can almost always be addressed by
“power-cycling” Paxos: that is, removing all nodes from
the cluster, then putting them back, effectively restarting
with a blank slate. This is done without restarting any
nodes, simply by changing the monitored configuration
file. Nevertheless, situations needing this kind of inter-
vention are rare, and are becoming more rare as we hunt
down the last of the bizarre edge cases.

8.5 MBean Server

If supplied with a JMX MBean server8, Sirius will auto-
matically register many metrics and status markers into
it. These include the perceived liveness of the neighbor-
ing cluster members, the identity and ballot of the cur-
rently elected leader, the number of out-of-order events
buffered for persistence, the rolling average time of per-
sisting to disk, the duration of the latest compaction,
among others.

8See http://en.wikipedia.org/wiki/Java_Management_

Extensions.
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9 Related Work

“A good scientist is a person with original
ideas. A good engineer is a person who makes
a design that works with as few original ideas
as possible.” –Freeman Dyson

9.1 Consensus
As we described in Section 5, our Paxos [16] im-
plementation follows the one described by van Re-
nesse [26] closely—in fact, our first implementation was
a fairly straightforward translation of his pseudocode into
Scala/Akka. Similarly, Chandra et al. [5] implemented
their own state machine description language in C++ in
order to get a concise description of the protocol. We also
use master leases as they describe to optimize through-
put of the Multi-Paxos algorithm.

Finally, there are alternative consensus protocols such
as RAFT [20], Egalitarian Paxos [19], or ZAB [10] we
could have used instead of Paxos without changing the
overall application architecture; we will discuss some of
these in Section 10. Initially, however, we were attracted
to the deep coverage of classic Paxos in the literature to
guide our implementation.

9.2 Persistence
Transaction logs are a well-known mechanism for crash
recovery in databases, and the Sirius log functions pri-
marily as the commit log for Paxos. Unlike more general
Paxos implementations like Chubby [5], we do not have
to implement application state snapshots or checkpoints
in Sirius, as the semantics encoded in the log allow us
to successfully compact it without assistance from the
client application. We also take advantage of the append-
only nature of the log in the common-case write path to
minimize write latencies to spinning disks, as in journal-
ing file systems [22].

As in log-structured filesystems (LFS) [23], the Sirius
log is the primary storage location. We similarly use seg-
ments as a way to partition the work of compaction, al-
though in our case it is more about enabling faster replay
at startup time and bounding the resources needed for
continuous compaction than it is about reclaiming free
space. Finally, we also create indices mapping sequence
numbers to locations within the log, although these are
kept separate from the log segments themselves and are
essentially hints that can be rebuilt when needed.

Bitcask [24] is a log-structured, persistent hashtable
similar in style to the Sirius write-ahead log: it segments
the log, periodically merges old segments, and builds
hint files alongside the segments to provide file addresses
for the data bound to particular keys. Indeed, Sirius’s log

file format is very similar to Bitcask’s, although we ex-
plicitly differentiate PUTs from DELETEs and also have
to record our Paxos sequence numbers. Unlike Bitcask,
though, we do not have to build the in-memory keydir
version of the hint files, as Sirius does not have to pro-
vide random read access to the latest update for a partic-
ular key. Our index files facilitate, rather, finding updates
by sequence number to support catchup.

Finally, LevelDB [1] is a persistent, ordered hashtable
that might have handled compaction for us by tracking
the most recent updates to particular keys, except that we
really have a need for two indices into the set of updates:
one by sequence number to support replay and catchup
and one by key to support compaction.

9.3 Replicated data structures
There are libraries that provide replicated data
structures–typically hashtables–such as Hazelcast [8],
Gemfire [21], and Terracotta [25]. While these cover
a number of important and practical use cases, they
do not permit the use of arbitrary data structures for
the replicated data. Although reference datasets are
represented as a stream of key-value pairs with Sirius,
our applications construct more complex representations
in their in-memory mirrors. In particular, the reference
data describing television schedules required custom
data structures to support all of our use cases efficiently.

9.4 Shared External Logs
Tango [3], like Sirius, provides in-memory views that
are backed by a shared, persistent log. However, this
requires a specialized array of SSD nodes, whereas we
needed Sirius to be able to run in a commodity cloud
environment. In addition, Tango requires checkpointing
support from the client application in order to truncate
its logs. Finally, the SSD array, while highly redundant
itself, is a single point of failure from the point of view
of the client applications, whereas Sirius-related failures
are localized to individual cluster nodes.

9.5 External storage
Another option would have been to keep the reference
datasets in another system external to the application,
such as memcached [6], Redis [17], or ZooKeeper [10].
However, systems like these bring a rich yet ultimately
limited set of data structures and require I/O for reads,
whether directly by the application programmer or via
library calls. In either case, the programmer is still on
the hook to provide error handling and proper I/O con-
figuration, something that is difficult for many—if not
most—developers to do correctly.

10
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9.6 Event sourcing and message buses

The LMAX architecture [7] builds memory-resident
data structures in a single master system while asyn-
chronously replicating the master’s transaction log to
secondary and tertiary spares. Unlike Sirius, however,
this architecture requires the application to participate in
producing checkpoints as a way of eventually truncating
the log. While the LMAX system posted truly impres-
sive throughput for a single node, ultimately we needed
a system that would enable us to scale read operations by
adding more servers.

Another approach might have been to use a distributed
message bus like Kafka [14] to distribute the updates
out to all the cluster nodes. However, Kafka does make
some consistency tradeoffs—including the possibility of
acknowledged writes being lost [12]—to achieve high
throughput. For our reference data use cases, however,
we preferred the opposite tradeoff. Kafka also has a lim-
ited historical window, which means we would have had
to implement checkpointing and replay for our applica-
tions anyway.

9.7 In-memory data distribution

Koszewnik [13] describes an entirely different approach
to distributing reference data updates, where a single
master machine periodically pulls the updates and ap-
plies them to an in-memory model. A serialization li-
brary, Zeno, then emits optimized deltas of each incre-
mental run to well-known server locations, as well as
periodically generating a full checkpoint. This allows
downstream clients to individually poll for and apply
deltas, and allows new server instances to bootstrap from
the most recent checkpoint.

This avoids the need for running a complex consensus
algorithm like Paxos, at the expense of having to man-
ually restart the master process if it fails. On the other
hand, it dictates the in-memory representation used by all
the cluster members, whereas Sirius permits different ap-
plications to be part of the same Sirius cluster, sharing the
same update stream while building their own customized
in-memory representations of the data.

10 Conclusions and Future Work

Overall, we have been happy with Sirius; we will have
been using Sirius-powered services in production for al-
most two years at the time of this paper’s publication
with few, if any, operational problems. The library’s sim-
ple and transparent interface, coupled with the ease and
control of using native data structures, have led multiple
independent teams within Comcast to incorporate Sirius

into their services, all to positive effect. Nevertheless, we
have identified some opportunities for improvements.

10.1 Paxos Improvements
As with most Multi-Paxos systems, overall write
throughput in Sirius is limited by the throughput of the
currently-elected leader, and we do experience periodic
“bulk load” events where this becomes a bottleneck, al-
beit a tolerable one to date. Alternative protocols such
as Egalitarian Paxos [19] could alleviate this bottleneck
with little change to the overall application architecture.

In addition, our cluster configuration is currently stat-
ically configured, although our implementation period-
ically polls its configuration file to watch for updates.
Technically, this leaves a window open for inconsistency
because cluster membership is not synchronized with the
consensus protocol. In practice, however, we are able to
pause and buffer the writes into the cluster, switch the
configuration, and then resume writing. Consensus pro-
tocols like RAFT [20] that integrate cluster membership
with consensus could ease our operations.

10.2 Replication
As we described earlier, our WAN replication currently
piggybacks on our Paxos catch-up mechanism. There-
fore, every member of our downstream non-ingest clus-
ters pulls a copy every update across the WAN. In prac-
tice, again, this does not result in a problematic amount
of bandwidth, but it is clearly inefficient. Allowing
for topology-aware configuration and replication such as
those found in Cassandra [15] could allow us to pull
fewer (perhaps one) copy of each update across the
WAN, before then further replicating locally.

10.3 Replay
In practice, since our reference datasets fit in memory,
so do their representations in our write-ahead logs. This
means the system read-ahead caches do a good job at
the I/O required for the linear scans necessary for re-
play at system startup time. Still, there is a bottleneck
where Sirius passes the updates synchronously and seri-
ally to the application’s RequestHandler; an alternative
mechanism for safely processing some updates in paral-
lel would be desirable.

10.4 Conclusions
In this paper, we have described a novel architectural ap-
proach for handling application reference data centered
around a new distributed system library, Sirius. A Sirius-
based architecture allows for:
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• in-memory, local access to the reference data in ar-
bitrary data structures;

• eventually consistent replication of updates;

• local persistence and replay of updates;

• with a semantically-transparent library interface.

The Sirius library is available under the Apache 2 Li-
cense from: http://github.com/Comcast/sirius.
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Abstract
Raft is a consensus algorithm for managing a replicated

log. It produces a result equivalent to (multi-)Paxos, and

it is as efficient as Paxos, but its structure is different

from Paxos; this makes Raft more understandable than

Paxos and also provides a better foundation for build-

ing practical systems. In order to enhance understandabil-

ity, Raft separates the key elements of consensus, such as

leader election, log replication, and safety, and it enforces

a stronger degree of coherency to reduce the number of

states that must be considered. Results from a user study

demonstrate that Raft is easier for students to learn than

Paxos. Raft also includes a new mechanism for changing

the cluster membership, which uses overlapping majori-

ties to guarantee safety.

1 Introduction
Consensus algorithms allow a collection of machines

to work as a coherent group that can survive the fail-

ures of some of its members. Because of this, they play a

key role in building reliable large-scale software systems.

Paxos [13, 14] has dominated the discussion of consen-

sus algorithms over the last decade: most implementations

of consensus are based on Paxos or influenced by it, and

Paxos has become the primary vehicle used to teach stu-

dents about consensus.

Unfortunately, Paxos is quite difficult to understand, in

spite of numerous attempts to make it more approachable.

Furthermore, its architecture requires complex changes

to support practical systems. As a result, both system

builders and students struggle with Paxos.

After struggling with Paxos ourselves, we set out to

find a new consensus algorithm that could provide a bet-

ter foundation for system building and education. Our ap-

proach was unusual in that our primary goal was under-

standability: could we define a consensus algorithm for

practical systems and describe it in a way that is signifi-

cantly easier to learn than Paxos? Furthermore, we wanted

the algorithm to facilitate the development of intuitions

that are essential for system builders. It was important not

just for the algorithm to work, but for it to be obvious why

it works.

The result of this work is a consensus algorithm called

Raft. In designing Raft we applied specific techniques to

improve understandability, including decomposition (Raft

separates leader election, log replication, and safety) and

state space reduction (relative to Paxos, Raft reduces the

degree of nondeterminism and the ways servers can be in-

consistent with each other). A user study with 43 students

at two universities shows that Raft is significantly easier

to understand than Paxos: after learning both algorithms,

33 of these students were able to answer questions about

Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus al-

gorithms (most notably, Oki and Liskov’s Viewstamped

Replication [27, 20]), but it has several novel features:

• Strong leader: Raft uses a stronger form of leadership

than other consensus algorithms. For example, log en-

tries only flow from the leader to other servers. This

simplifies the management of the replicated log and

makes Raft easier to understand.

• Leader election: Raft uses randomized timers to elect

leaders. This adds only a small amount of mechanism

to the heartbeats already required for any consensus al-

gorithm, while resolving conflicts simply and rapidly.

• Membership changes: Raft’s mechanism for changing

the set of servers in the cluster uses a new joint consen-

sus approach where the majorities of two different con-

figurations overlap during transitions. This allows the

cluster to continue operating normally during configu-

ration changes.

We believe that Raft is superior to Paxos and other con-

sensus algorithms, both for educational purposes and as a

foundation for implementation. It is simpler and more un-

derstandable than other algorithms; it is described com-

pletely enough to meet the needs of a practical system;

it has several open-source implementations and is used

by several companies; its safety properties have been for-

mally specified and proven; and its efficiency is compara-

ble to other algorithms.

The remainder of the paper introduces the replicated

state machine problem (Section 2), discusses the strengths

and weaknesses of Paxos (Section 3), describes our gen-

eral approach to understandability (Section 4), presents

the Raft consensus algorithm (Sections 5–7), evaluates

Raft (Section 8), and discusses related work (Section 9).

A few elements of the Raft algorithm have been omitted

here because of space limitations, but they are available in

an extended technical report [29]. The additional material

describes how clients interact with the system, and how

space in the Raft log can be reclaimed.

2 Replicated state machines
Consensus algorithms typically arise in the context of

replicated state machines [33]. In this approach, state ma-

chines on a collection of servers compute identical copies

of the same state and can continue operating even if some

of the servers are down. Replicated state machines are

used to solve a variety of fault tolerance problems in dis-

tributed systems. For example, large-scale systems that
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Figure 1: Replicated state machine architecture. The con-

sensus algorithm manages a replicated log containing state

machine commands from clients. The state machines process

identical sequences of commands from the logs, so they pro-

duce the same outputs.

have a single cluster leader, such as GFS [7], HDFS [34],

and RAMCloud [30], typically use a separate replicated

state machine to manage leader election and store config-

uration information that must survive leader crashes. Ex-

amples of replicated state machines include Chubby [2]

and ZooKeeper [9].

Replicated state machines are typically implemented

using a replicated log, as shown in Figure 1. Each server

stores a log containing a series of commands, which its

state machine executes in order. Each log contains the

same commands in the same order, so each state ma-

chine processes the same sequence of commands. Since

the state machines are deterministic, each computes the

same state and the same sequence of outputs.

Keeping the replicated log consistent is the job of the

consensus algorithm. The consensus module on a server

receives commands from clients and adds them to its log.

It communicates with the consensus modules on other

servers to ensure that every log eventually contains the

same requests in the same order, even if some servers fail.

Once commands are properly replicated, each server’s

state machine processes them in log order, and the out-

puts are returned to clients. As a result, the servers appear

to form a single, highly reliable state machine.

Consensus algorithms for practical systems typically

have the following properties:

• They ensure safety (never returning an incorrect result)

under all non-Byzantine conditions, including network

delays, partitions, and packet loss, duplication, and re-

ordering.

• They are fully functional (available) as long as any ma-

jority of the servers are operational and can communi-

cate with each other and with clients. Thus, a typical

cluster of five servers can tolerate the failure of any two

servers. Servers are assumed to fail by stopping; they

may later recover from state on stable storage and re-

join the cluster.

• They do not depend on timing to ensure the consistency

of the logs: faulty clocks and extreme message delays

can, at worst, cause availability problems.

• In the common case, a command can complete as soon

as a majority of the cluster has responded to a single

round of remote procedure calls; a minority of slow

servers need not impact overall system performance.

3 What’s wrong with Paxos?
Over the last ten years, Leslie Lamport’s Paxos proto-

col [13] has become almost synonymous with consensus:

it is the protocol most commonly taught in courses, and

most implementations of consensus use it as a starting

point. Paxos first defines a protocol capable of reaching

agreement on a single decision, such as a single replicated

log entry. We refer to this subset as single-decree Paxos.

Paxos then combines multiple instances of this protocol to

facilitate a series of decisions such as a log (multi-Paxos).

Paxos ensures both safety and liveness, and it supports

changes in cluster membership. Its correctness has been

proven, and it is efficient in the normal case.

Unfortunately, Paxos has two significant drawbacks.

The first drawback is that Paxos is exceptionally diffi-

cult to understand. The full explanation [13] is notori-

ously opaque; few people succeed in understanding it, and

only with great effort. As a result, there have been several

attempts to explain Paxos in simpler terms [14, 18, 19].

These explanations focus on the single-decree subset, yet

they are still challenging. In an informal survey of atten-

dees at NSDI 2012, we found few people who were com-

fortable with Paxos, even among seasoned researchers.

We struggled with Paxos ourselves; we were not able to

understand the complete protocol until after reading sev-

eral simplified explanations and designing our own alter-

native protocol, a process that took almost a year.

We hypothesize that Paxos’ opaqueness derives from

its choice of the single-decree subset as its foundation.

Single-decree Paxos is dense and subtle: it is divided into

two stages that do not have simple intuitive explanations

and cannot be understood independently. Because of this,

it is difficult to develop intuitions about why the single-

decree protocol works. The composition rules for multi-

Paxos add significant additional complexity and subtlety.

We believe that the overall problem of reaching consensus

on multiple decisions (i.e., a log instead of a single entry)

can be decomposed in other ways that are more direct and

obvious.

The second problem with Paxos is that it does not pro-

vide a good foundation for building practical implemen-

tations. One reason is that there is no widely agreed-

upon algorithm for multi-Paxos. Lamport’s descriptions

are mostly about single-decree Paxos; he sketched possi-

ble approaches to multi-Paxos, but many details are miss-

ing. There have been several attempts to flesh out and op-

timize Paxos, such as [24], [35], and [11], but these differ

from each other and from Lamport’s sketches. Systems

such as Chubby [4] have implemented Paxos-like algo-

rithms, but in most cases their details have not been pub-
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lished.

Furthermore, the Paxos architecture is a poor one for

building practical systems; this is another consequence of

the single-decree decomposition. For example, there is lit-

tle benefit to choosing a collection of log entries indepen-

dently and then melding them into a sequential log; this

just adds complexity. It is simpler and more efficient to

design a system around a log, where new entries are ap-

pended sequentially in a constrained order. Another prob-

lem is that Paxos uses a symmetric peer-to-peer approach

at its core (though it eventually suggests a weak form of

leadership as a performance optimization). This makes

sense in a simplified world where only one decision will

be made, but few practical systems use this approach. If a

series of decisions must be made, it is simpler and faster

to first elect a leader, then have the leader coordinate the

decisions.

As a result, practical systems bear little resemblance

to Paxos. Each implementation begins with Paxos, dis-

covers the difficulties in implementing it, and then de-

velops a significantly different architecture. This is time-

consuming and error-prone, and the difficulties of under-

standing Paxos exacerbate the problem. Paxos’ formula-

tion may be a good one for proving theorems about its cor-

rectness, but real implementations are so different from

Paxos that the proofs have little value. The following com-

ment from the Chubby implementers is typical:

There are significant gaps between the description of

the Paxos algorithm and the needs of a real-world

system. . . . the final system will be based on an un-

proven protocol [4].

Because of these problems, we concluded that Paxos

does not provide a good foundation either for system

building or for education. Given the importance of con-

sensus in large-scale software systems, we decided to see

if we could design an alternative consensus algorithm

with better properties than Paxos. Raft is the result of that

experiment.

4 Designing for understandability
We had several goals in designing Raft: it must provide

a complete and practical foundation for system building,

so that it significantly reduces the amount of design work

required of developers; it must be safe under all conditions

and available under typical operating conditions; and it

must be efficient for common operations. But our most

important goal—and most difficult challenge—was un-

derstandability. It must be possible for a large audience to

understand the algorithm comfortably. In addition, it must

be possible to develop intuitions about the algorithm, so

that system builders can make the extensions that are in-

evitable in real-world implementations.

There were numerous points in the design of Raft

where we had to choose among alternative approaches.

In these situations we evaluated the alternatives based on

understandability: how hard is it to explain each alterna-

tive (for example, how complex is its state space, and does

it have subtle implications?), and how easy will it be for a

reader to completely understand the approach and its im-

plications?

We recognize that there is a high degree of subjectiv-

ity in such analysis; nonetheless, we used two techniques

that are generally applicable. The first technique is the

well-known approach of problem decomposition: wher-

ever possible, we divided problems into separate pieces

that could be solved, explained, and understood relatively

independently. For example, in Raft we separated leader

election, log replication, safety, and membership changes.

Our second approach was to simplify the state space

by reducing the number of states to consider, making the

system more coherent and eliminating nondeterminism

where possible. Specifically, logs are not allowed to have

holes, and Raft limits the ways in which logs can become

inconsistent with each other. Although in most cases we

tried to eliminate nondeterminism, there are some situ-

ations where nondeterminism actually improves under-

standability. In particular, randomized approaches intro-

duce nondeterminism, but they tend to reduce the state

space by handling all possible choices in a similar fashion

(“choose any; it doesn’t matter”). We used randomization

to simplify the Raft leader election algorithm.

5 The Raft consensus algorithm
Raft is an algorithm for managing a replicated log of

the form described in Section 2. Figure 2 summarizes the

algorithm in condensed form for reference, and Figure 3

lists key properties of the algorithm; the elements of these

figures are discussed piecewise over the rest of this sec-

tion.

Raft implements consensus by first electing a distin-

guished leader, then giving the leader complete responsi-

bility for managing the replicated log. The leader accepts

log entries from clients, replicates them on other servers,

and tells servers when it is safe to apply log entries to

their state machines. Having a leader simplifies the man-

agement of the replicated log. For example, the leader can

decide where to place new entries in the log without con-

sulting other servers, and data flows in a simple fashion

from the leader to other servers. A leader can fail or be-

come disconnected from the other servers, in which case

a new leader is elected.

Given the leader approach, Raft decomposes the con-

sensus problem into three relatively independent subprob-

lems, which are discussed in the subsections that follow:

• Leader election: a new leader must be chosen when an

existing leader fails (Section 5.2).

• Log replication: the leader must accept log entries

from clients and replicate them across the cluster, forc-

ing the other logs to agree with its own (Section 5.3).

• Safety: the key safety property for Raft is the State Ma-
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Invoked by candidates to gather votes (§5.2).

Arguments:
term candidate’s term
candidateId candidate requesting vote
lastLogIndex index of candidate’s last log entry (§5.4)
lastLogTerm term of candidate’s last log entry (§5.4)

Results:
term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Receiver implementation:
1. Reply false if term < currentTerm (§5.1)
2. If votedFor is null or candidateId, and candidate’s log is at

least as up-to-date as receiver’s log, grant vote (§5.2, §5.4)

RequestVote RPC

Invoked by leader to replicate log entries (§5.3); also used as
heartbeat (§5.2).

Arguments:
term leader’s term
leaderId so follower can redirect clients
prevLogIndex index of log entry immediately preceding

new ones
prevLogTerm term of prevLogIndex entry
entries[] log entries to store (empty for heartbeat;

may send more than one for efficiency)
leaderCommit leader’s commitIndex

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogIndex and prevLogTerm

Receiver implementation:
1. Reply false if term < currentTerm (§5.1)
2. Reply false if log doesn’t contain an entry at prevLogIndex

whose term matches prevLogTerm (§5.3)
3. If an existing entry conflicts with a new one (same index

but different terms), delete the existing entry and all that
follow it (§5.3)

4. Append any new entries not already in the log
5. If leaderCommit > commitIndex, set commitIndex =

min(leaderCommit, index of last new entry)

AppendEntries RPC

Persistent state on all servers:
(Updated on stable storage before responding to RPCs)
currentTerm latest term server has seen (initialized to 0

on first boot, increases monotonically)
votedFor candidateId that received vote in current

term (or null if none)
log[] log entries; each entry contains command

for state machine, and term when entry
was received by leader (first index is 1)

Volatile state on all servers:
commitIndex index of highest log entry known to be

committed (initialized to 0, increases
monotonically)

lastApplied index of highest log entry applied to state
machine (initialized to 0, increases
monotonically)

Volatile state on leaders:
(Reinitialized after election)
nextIndex[] for each server, index of the next log entry

to send to that server (initialized to leader
last log index + 1)

matchIndex[] for each server, index of highest log entry
known to be replicated on server
(initialized to 0, increases monotonically)

State

All Servers:
• If commitIndex > lastApplied: increment lastApplied, apply
log[lastApplied] to state machine (§5.3)

• If RPC request or response contains term T > currentTerm:
set currentTerm = T, convert to follower (§5.1)

Followers (§5.2):
• Respond to RPCs from candidates and leaders
• If election timeout elapses without receiving AppendEntries
RPC from current leader or granting vote to candidate:
convert to candidate

Candidates (§5.2):
• On conversion to candidate, start election:
• Increment currentTerm
• Vote for self
• Reset election timer
• Send RequestVote RPCs to all other servers

• If votes received from majority of servers: become leader
• If AppendEntries RPC received from new leader: convert to
follower

• If election timeout elapses: start new election

Leaders:
• Upon election: send initial empty AppendEntries RPCs
(heartbeat) to each server; repeat during idle periods to
prevent election timeouts (§5.2)

• If command received from client: append entry to local log,
respond after entry applied to state machine (§5.3)

• If last log index ≥ nextIndex for a follower: send
AppendEntries RPC with log entries starting at nextIndex
• If successful: update nextIndex and matchIndex for
follower (§5.3)

• If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry (§5.3)

• If there exists an N such that N > commitIndex, a majority
of matchIndex[i] ≥ N, and log[N].term == currentTerm:
set commitIndex = N (§5.3, §5.4).

Rules for Servers

Figure 2: A condensed summary of the Raft consensus algorithm (excluding membership changes and log compaction). The server

behavior in the upper-left box is described as a set of rules that trigger independently and repeatedly. Section numbers such as §5.2

indicate where particular features are discussed. A formal specification [28] describes the algorithm more precisely.
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Election Safety: at most one leader can be elected in a

given term. §5.2

Leader Append-Only: a leader never overwrites or deletes

entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same

index and term, then the logs are identical in all entries up

through the given index. §5.3

Leader Completeness: if a log entry is committed in a

given term, then that entry will be present in the logs of

the leaders for all higher-numbered terms. §5.4

State Machine Safety: if a server has applied a log entry at

a given index to its state machine, no other server will ever

apply a different log entry for the same index. §5.4.3

Figure 3: Raft guarantees that each of these properties is true

at all times. The section numbers indicate where each prop-

erty is discussed.

chine Safety Property in Figure 3: if any server has ap-

plied a particular log entry to its state machine, then

no other server may apply a different command for the

same log index. Section 5.4 describes how Raft ensures

this property; the solution involves an additional re-

striction on the election mechanism described in Sec-

tion 5.2.

After presenting the consensus algorithm, this section dis-

cusses the issue of availability and the role of timing in the

system.

5.1 Raft basics

A Raft cluster contains several servers; five is a typical

number, which allows the system to tolerate two failures.

At any given time each server is in one of three states:

leader, follower, or candidate. In normal operation there

is exactly one leader and all of the other servers are fol-

lowers. Followers are passive: they issue no requests on

their own but simply respond to requests from leaders

and candidates. The leader handles all client requests (if

a client contacts a follower, the follower redirects it to the

leader). The third state, candidate, is used to elect a new

leader as described in Section 5.2. Figure 4 shows the

states and their transitions; the transitions are discussed

below.

Raft divides time into terms of arbitrary length, as

shown in Figure 5. Terms are numbered with consecutive

integers. Each term begins with an election, in which one

or more candidates attempt to become leader as described

in Section 5.2. If a candidate wins the election, then it

serves as leader for the rest of the term. In some situations

an election will result in a split vote. In this case the term

will end with no leader; a new term (with a new election)

will begin shortly. Raft ensures that there is at most one

leader in a given term.

Different servers may observe the transitions between

terms at different times, and in some situations a server

may not observe an election or even entire terms. Terms

Figure 4: Server states. Followers only respond to requests

from other servers. If a follower receives no communication,

it becomes a candidate and initiates an election. A candidate

that receives votes from a majority of the full cluster becomes

the new leader. Leaders typically operate until they fail.

Figure 5: Time is divided into terms, and each term begins

with an election. After a successful election, a single leader

manages the cluster until the end of the term. Some elections

fail, in which case the term ends without choosing a leader.

The transitions between terms may be observed at different

times on different servers.

act as a logical clock [12] in Raft, and they allow servers

to detect obsolete information such as stale leaders. Each

server stores a current term number, which increases

monotonically over time. Current terms are exchanged

whenever servers communicate; if one server’s current

term is smaller than the other’s, then it updates its current

term to the larger value. If a candidate or leader discovers

that its term is out of date, it immediately reverts to fol-

lower state. If a server receives a request with a stale term

number, it rejects the request.

Raft servers communicate using remote procedure calls

(RPCs), and the consensus algorithm requires only two

types of RPCs. RequestVote RPCs are initiated by candi-

dates during elections (Section 5.2), and AppendEntries

RPCs are initiated by leaders to replicate log entries and

to provide a form of heartbeat (Section 5.3). Servers retry

RPCs if they do not receive a response in a timely manner,

and they issue RPCs in parallel for best performance.

5.2 Leader election

Raft uses a heartbeat mechanism to trigger leader elec-

tion. When servers start up, they begin as followers. A

server remains in follower state as long as it receives valid

RPCs from a leader or candidate. Leaders send periodic

heartbeats (AppendEntries RPCs that carry no log entries)

to all followers in order to maintain their authority. If a

follower receives no communication over a period of time

called the election timeout, then it assumes there is no vi-

able leader and begins an election to choose a new leader.

To begin an election, a follower increments its current

term and transitions to candidate state. It then votes for
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itself and issues RequestVote RPCs in parallel to each of

the other servers in the cluster. A candidate continues in

this state until one of three things happens: (a) it wins the

election, (b) another server establishes itself as leader, or

(c) a period of time goes by with no winner. These out-

comes are discussed separately in the paragraphs below.

A candidate wins an election if it receives votes from

a majority of the servers in the full cluster for the same

term. Each server will vote for at most one candidate in a

given term, on a first-come-first-served basis (note: Sec-

tion 5.4 adds an additional restriction on votes). The ma-

jority rule ensures that at most one candidate can win the

election for a particular term (the Election Safety Prop-

erty in Figure 3). Once a candidate wins an election, it

becomes leader. It then sends heartbeat messages to all of

the other servers to establish its authority and prevent new

elections.

While waiting for votes, a candidate may receive an

AppendEntries RPC from another server claiming to be

leader. If the leader’s term (included in its RPC) is at least

as large as the candidate’s current term, then the candidate

recognizes the leader as legitimate and returns to follower

state. If the term in the RPC is smaller than the candidate’s

current term, then the candidate rejects the RPC and con-

tinues in candidate state.

The third possible outcome is that a candidate neither

wins nor loses the election: if many followers become

candidates at the same time, votes could be split so that

no candidate obtains a majority. When this happens, each

candidate will time out and start a new election by incre-

menting its term and initiating another round of Request-

Vote RPCs. However, without extra measures split votes

could repeat indefinitely.

Raft uses randomized election timeouts to ensure that

split votes are rare and that they are resolved quickly. To

prevent split votes in the first place, election timeouts are

chosen randomly from a fixed interval (e.g., 150–300ms).

This spreads out the servers so that in most cases only a

single server will time out; it wins the election and sends

heartbeats before any other servers time out. The same

mechanism is used to handle split votes. Each candidate

restarts its randomized election timeout at the start of an

election, and it waits for that timeout to elapse before

starting the next election; this reduces the likelihood of

another split vote in the new election. Section 8.3 shows

that this approach elects a leader rapidly.

Elections are an example of how understandability

guided our choice between design alternatives. Initially

we planned to use a ranking system: each candidate was

assigned a unique rank, which was used to select between

competing candidates. If a candidate discovered another

candidate with higher rank, it would return to follower

state so that the higher ranking candidate could more eas-

ily win the next election. We found that this approach

Figure 6: Logs are composed of entries, which are numbered

sequentially. Each entry contains the term in which it was

created (the number in each box) and a command for the state

machine. An entry is considered committed if it is safe for that

entry to be applied to state machines.

created subtle issues around availability (a lower-ranked

server might need to time out and become a candidate

again if a higher-ranked server fails, but if it does so too

soon, it can reset progress towards electing a leader). We

made adjustments to the algorithm several times, but after

each adjustment new corner cases appeared. Eventually

we concluded that the randomized retry approach is more

obvious and understandable.

5.3 Log replication

Once a leader has been elected, it begins servicing

client requests. Each client request contains a command to

be executed by the replicated state machines. The leader

appends the command to its log as a new entry, then is-

sues AppendEntries RPCs in parallel to each of the other

servers to replicate the entry. When the entry has been

safely replicated (as described below), the leader applies

the entry to its state machine and returns the result of that

execution to the client. If followers crash or run slowly,

or if network packets are lost, the leader retries Append-

Entries RPCs indefinitely (even after it has responded to

the client) until all followers eventually store all log en-

tries.

Logs are organized as shown in Figure 6. Each log en-

try stores a state machine command along with the term

number when the entry was received by the leader. The

term numbers in log entries are used to detect inconsis-

tencies between logs and to ensure some of the properties

in Figure 3. Each log entry also has an integer index iden-

tifying its position in the log.

The leader decides when it is safe to apply a log en-

try to the state machines; such an entry is called commit-

ted. Raft guarantees that committed entries are durable

and will eventually be executed by all of the available

state machines. A log entry is committed once the leader

that created the entry has replicated it on a majority of

the servers (e.g., entry 7 in Figure 6). This also commits
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all preceding entries in the leader’s log, including entries

created by previous leaders. Section 5.4 discusses some

subtleties when applying this rule after leader changes,

and it also shows that this definition of commitment is

safe. The leader keeps track of the highest index it knows

to be committed, and it includes that index in future

AppendEntries RPCs (including heartbeats) so that the

other servers eventually find out. Once a follower learns

that a log entry is committed, it applies the entry to its

local state machine (in log order).

We designed the Raft log mechanism to maintain a high

level of coherency between the logs on different servers.

Not only does this simplify the system’s behavior and

make it more predictable, but it is an important component

of ensuring safety. Raft maintains the following proper-

ties, which together constitute the Log Matching Property

in Figure 3:

• If two entries in different logs have the same index and

term, then they store the same command.

• If two entries in different logs have the same index and

term, then the logs are identical in all preceding entries.

The first property follows from the fact that a leader

creates at most one entry with a given log index in a given

term, and log entries never change their position in the

log. The second property is guaranteed by a simple con-

sistency check performed by AppendEntries. When send-

ing an AppendEntries RPC, the leader includes the index

and term of the entry in its log that immediately precedes

the new entries. If the follower does not find an entry in

its log with the same index and term, then it refuses the

new entries. The consistency check acts as an induction

step: the initial empty state of the logs satisfies the Log

Matching Property, and the consistency check preserves

the Log Matching Property whenever logs are extended.

As a result, whenever AppendEntries returns successfully,

the leader knows that the follower’s log is identical to its

own log up through the new entries.

During normal operation, the logs of the leader and

followers stay consistent, so the AppendEntries consis-

tency check never fails. However, leader crashes can leave

the logs inconsistent (the old leader may not have fully

replicated all of the entries in its log). These inconsisten-

cies can compound over a series of leader and follower

crashes. Figure 7 illustrates the ways in which followers’

logs may differ from that of a new leader. A follower may

be missing entries that are present on the leader, it may

have extra entries that are not present on the leader, or

both. Missing and extraneous entries in a log may span

multiple terms.

In Raft, the leader handles inconsistencies by forcing

the followers’ logs to duplicate its own. This means that

conflicting entries in follower logs will be overwritten

with entries from the leader’s log. Section 5.4 will show

that this is safe when coupled with one more restriction.

Figure 7: When the leader at the top comes to power, it is

possible that any of scenarios (a–f) could occur in follower

logs. Each box represents one log entry; the number in the

box is its term. A follower may be missing entries (a–b), may

have extra uncommitted entries (c–d), or both (e–f). For ex-

ample, scenario (f) could occur if that server was the leader

for term 2, added several entries to its log, then crashed before

committing any of them; it restarted quickly, became leader

for term 3, and added a few more entries to its log; before any

of the entries in either term 2 or term 3 were committed, the

server crashed again and remained down for several terms.

To bring a follower’s log into consistency with its own,

the leader must find the latest log entry where the two

logs agree, delete any entries in the follower’s log after

that point, and send the follower all of the leader’s entries

after that point. All of these actions happen in response

to the consistency check performed by AppendEntries

RPCs. The leader maintains a nextIndex for each follower,

which is the index of the next log entry the leader will

send to that follower. When a leader first comes to power,

it initializes all nextIndex values to the index just after the

last one in its log (11 in Figure 7). If a follower’s log is

inconsistent with the leader’s, the AppendEntries consis-

tency check will fail in the next AppendEntries RPC. Af-

ter a rejection, the leader decrements nextIndex and retries

the AppendEntries RPC. Eventually nextIndex will reach

a point where the leader and follower logs match. When

this happens, AppendEntries will succeed, which removes

any conflicting entries in the follower’s log and appends

entries from the leader’s log (if any). Once AppendEntries

succeeds, the follower’s log is consistent with the leader’s,

and it will remain that way for the rest of the term.

The protocol can be optimized to reduce the number of

rejected AppendEntries RPCs; see [29] for details.

With this mechanism, a leader does not need to take any

special actions to restore log consistency when it comes to

power. It just begins normal operation, and the logs auto-

matically converge in response to failures of the Append-

Entries consistency check. A leader never overwrites or

deletes entries in its own log (the Leader Append-Only

Property in Figure 3).

This log replication mechanism exhibits the desirable

consensus properties described in Section 2: Raft can ac-

cept, replicate, and apply new log entries as long as a ma-
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jority of the servers are up; in the normal case a new entry

can be replicated with a single round of RPCs to a ma-

jority of the cluster; and a single slow follower will not

impact performance.

5.4 Safety

The previous sections described how Raft elects lead-

ers and replicates log entries. However, the mechanisms

described so far are not quite sufficient to ensure that each

state machine executes exactly the same commands in the

same order. For example, a follower might be unavailable

while the leader commits several log entries, then it could

be elected leader and overwrite these entries with new

ones; as a result, different state machines might execute

different command sequences.

This section completes the Raft algorithm by adding a

restriction on which servers may be elected leader. The

restriction ensures that the leader for any given term con-

tains all of the entries committed in previous terms (the

Leader Completeness Property from Figure 3). Given the

election restriction, we then make the rules for commit-

ment more precise. Finally, we present a proof sketch for

the Leader Completeness Property and show how it leads

to correct behavior of the replicated state machine.

5.4.1 Election restriction

In any leader-based consensus algorithm, the leader

must eventually store all of the committed log entries. In

some consensus algorithms, such as Viewstamped Repli-

cation [20], a leader can be elected even if it doesn’t

initially contain all of the committed entries. These al-

gorithms contain additional mechanisms to identify the

missing entries and transmit them to the new leader, ei-

ther during the election process or shortly afterwards. Un-

fortunately, this results in considerable additional mecha-

nism and complexity. Raft uses a simpler approach where

it guarantees that all the committed entries from previous

terms are present on each new leader from the moment of

its election, without the need to transfer those entries to

the leader. This means that log entries only flow in one di-

rection, from leaders to followers, and leaders never over-

write existing entries in their logs.

Raft uses the voting process to prevent a candidate from

winning an election unless its log contains all committed

entries. A candidate must contact a majority of the cluster

in order to be elected, which means that every committed

entry must be present in at least one of those servers. If the

candidate’s log is at least as up-to-date as any other log

in that majority (where “up-to-date” is defined precisely

below), then it will hold all the committed entries. The

RequestVote RPC implements this restriction: the RPC

includes information about the candidate’s log, and the

voter denies its vote if its own log is more up-to-date than

that of the candidate.

Raft determines which of two logs is more up-to-date

by comparing the index and term of the last entries in the

Figure 8: A time sequence showing why a leader cannot de-

termine commitment using log entries from older terms. In

(a) S1 is leader and partially replicates the log entry at index

2. In (b) S1 crashes; S5 is elected leader for term 3 with votes

from S3, S4, and itself, and accepts a different entry at log

index 2. In (c) S5 crashes; S1 restarts, is elected leader, and

continues replication. At this point, the log entry from term 2

has been replicated on a majority of the servers, but it is not

committed. If S1 crashes as in (d), S5 could be elected leader

(with votes from S2, S3, and S4) and overwrite the entry with

its own entry from term 3. However, if S1 replicates an en-

try from its current term on a majority of the servers before

crashing, as in (e), then this entry is committed (S5 cannot

win an election). At this point all preceding entries in the log

are committed as well.

logs. If the logs have last entries with different terms, then

the log with the later term is more up-to-date. If the logs

end with the same term, then whichever log is longer is

more up-to-date.

5.4.2 Committing entries from previous terms

As described in Section 5.3, a leader knows that an en-

try from its current term is committed once that entry is

stored on a majority of the servers. If a leader crashes be-

fore committing an entry, future leaders will attempt to

finish replicating the entry. However, a leader cannot im-

mediately conclude that an entry from a previous term is

committed once it is stored on a majority of servers. Fig-

ure 8 illustrates a situation where an old log entry is stored

on a majority of servers, yet can still be overwritten by a

future leader.

To eliminate problems like the one in Figure 8, Raft

never commits log entries from previous terms by count-

ing replicas. Only log entries from the leader’s current

term are committed by counting replicas; once an entry

from the current term has been committed in this way,

then all prior entries are committed indirectly because

of the Log Matching Property. There are some situations

where a leader could safely conclude that an older log en-

try is committed (for example, if that entry is stored on ev-

ery server), but Raft takes a more conservative approach

for simplicity.

Raft incurs this extra complexity in the commitment

rules because log entries retain their original term num-

bers when a leader replicates entries from previous

terms. In other consensus algorithms, if a new leader re-

replicates entries from prior “terms,” it must do so with

its new “term number.” Raft’s approach makes it easier



USENIX Association  2014 USENIX Annual Technical Conference 313

Figure 9: If S1 (leader for term T) commits a new log entry

from its term, and S5 is elected leader for a later term U, then

there must be at least one server (S3) that accepted the log

entry and also voted for S5.

to reason about log entries, since they maintain the same

term number over time and across logs. In addition, new

leaders in Raft send fewer log entries from previous terms

than in other algorithms (other algorithms must send re-

dundant log entries to renumber them before they can be

committed).

5.4.3 Safety argument

Given the complete Raft algorithm, we can now ar-

gue more precisely that the Leader Completeness Prop-

erty holds (this argument is based on the safety proof; see

Section 8.2). We assume that the Leader Completeness

Property does not hold, then we prove a contradiction.

Suppose the leader for term T (leaderT) commits a log

entry from its term, but that log entry is not stored by the

leader of some future term. Consider the smallest term U

> T whose leader (leaderU) does not store the entry.

1. The committed entry must have been absent from

leaderU’s log at the time of its election (leaders never

delete or overwrite entries).

2. leaderT replicated the entry on a majority of the

cluster, and leaderU received votes from a majority of the

cluster. Thus, at least one server (“the voter”) both ac-

cepted the entry from leaderT and voted for leaderU, as

shown in Figure 9. The voter is key to reaching a contra-

diction.

3. The voter must have accepted the committed entry

from leaderT before voting for leaderU; otherwise it would

have rejected the AppendEntries request from leaderT (its

current term would have been higher than T).

4. The voter still stored the entry when it voted for

leaderU, since every intervening leader contained the en-

try (by assumption), leaders never remove entries, and fol-

lowers only remove entries if they conflict with the leader.

5. The voter granted its vote to leaderU, so leaderU’s

log must have been as up-to-date as the voter’s. This leads

to one of two contradictions.

6. First, if the voter and leaderU shared the same last

log term, then leaderU’s log must have been at least as

long as the voter’s, so its log contained every entry in the

voter’s log. This is a contradiction, since the voter con-

tained the committed entry and leaderU was assumed not

to.

7. Otherwise, leaderU’s last log term must have been

larger than the voter’s. Moreover, it was larger than T,

since the voter’s last log term was at least T (it contains

the committed entry from term T). The earlier leader that

created leaderU’s last log entry must have contained the

committed entry in its log (by assumption). Then, by the

Log Matching Property, leaderU’s log must also contain

the committed entry, which is a contradiction.

8. This completes the contradiction. Thus, the leaders

of all terms greater than T must contain all entries from

term T that are committed in term T.

9. The Log Matching Property guarantees that future

leaders will also contain entries that are committed indi-

rectly, such as index 2 in Figure 8(d).

Given the Leader Completeness Property, it is easy to

prove the State Machine Safety Property from Figure 3

and that all state machines apply the same log entries in

the same order (see [29]).

5.5 Follower and candidate crashes

Until this point we have focused on leader failures. Fol-

lower and candidate crashes are much simpler to han-

dle than leader crashes, and they are both handled in the

same way. If a follower or candidate crashes, then fu-

ture RequestVote and AppendEntries RPCs sent to it will

fail. Raft handles these failures by retrying indefinitely;

if the crashed server restarts, then the RPC will complete

successfully. If a server crashes after completing an RPC

but before responding, then it will receive the same RPC

again after it restarts. Raft RPCs are idempotent, so this

causes no harm. For example, if a follower receives an

AppendEntries request that includes log entries already

present in its log, it ignores those entries in the new re-

quest.

5.6 Timing and availability

One of our requirements for Raft is that safety must

not depend on timing: the system must not produce incor-

rect results just because some event happens more quickly

or slowly than expected. However, availability (the ability

of the system to respond to clients in a timely manner)

must inevitably depend on timing. For example, if mes-

sage exchanges take longer than the typical time between

server crashes, candidates will not stay up long enough to

win an election; without a steady leader, Raft cannot make

progress.

Leader election is the aspect of Raft where timing is

most critical. Raft will be able to elect and maintain a

steady leader as long as the system satisfies the follow-

ing timing requirement:

broadcastTime ≪ electionTimeout ≪ MTBF

In this inequality broadcastTime is the average time it

takes a server to send RPCs in parallel to every server

in the cluster and receive their responses; electionTime-

out is the election timeout described in Section 5.2; and

MTBF is the average time between failures for a single
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server. The broadcast time should be an order of mag-

nitude less than the election timeout so that leaders can

reliably send the heartbeat messages required to keep fol-

lowers from starting elections; given the randomized ap-

proach used for election timeouts, this inequality also

makes split votes unlikely. The election timeout should be

a few orders of magnitude less than MTBF so that the sys-

tem makes steady progress. When the leader crashes, the

system will be unavailable for roughly the election time-

out; we would like this to represent only a small fraction

of overall time.

The broadcast time and MTBF are properties of the un-

derlying system, while the election timeout is something

we must choose. Raft’s RPCs typically require the recip-

ient to persist information to stable storage, so the broad-

cast time may range from 0.5ms to 20ms, depending on

storage technology. As a result, the election timeout is

likely to be somewhere between 10ms and 500ms. Typical

server MTBFs are several months or more, which easily

satisfies the timing requirement.

6 Cluster membership changes
Up until now we have assumed that the cluster config-

uration (the set of servers participating in the consensus

algorithm) is fixed. In practice, it will occasionally be nec-

essary to change the configuration, for example to replace

servers when they fail or to change the degree of replica-

tion. Although this can be done by taking the entire cluster

off-line, updating configuration files, and then restarting

the cluster, this would leave the cluster unavailable dur-

ing the changeover. In addition, if there are any manual

steps, they risk operator error. In order to avoid these is-

sues, we decided to automate configuration changes and

incorporate them into the Raft consensus algorithm.

For the configuration change mechanism to be safe,

there must be no point during the transition where it

is possible for two leaders to be elected for the same

term. Unfortunately, any approach where servers switch

directly from the old configuration to the new configura-

tion is unsafe. It isn’t possible to atomically switch all of

the servers at once, so the cluster can potentially split into

two independent majorities during the transition (see Fig-

ure 10).

In order to ensure safety, configuration changes must

use a two-phase approach. There are a variety of ways

to implement the two phases. For example, some systems

(e.g., [20]) use the first phase to disable the old configura-

tion so it cannot process client requests; then the second

phase enables the new configuration. In Raft the cluster

first switches to a transitional configuration we call joint

consensus; once the joint consensus has been committed,

the system then transitions to the new configuration. The

joint consensus combines both the old and new configu-

rations:

• Log entries are replicated to all servers in both config-

Figure 10: Switching directly from one configuration to an-

other is unsafe because different servers will switch at dif-

ferent times. In this example, the cluster grows from three

servers to five. Unfortunately, there is a point in time where

two different leaders can be elected for the same term, one

with a majority of the old configuration (Cold) and another

with a majority of the new configuration (Cnew).

urations.

• Any server from either configuration may serve as

leader.

• Agreement (for elections and entry commitment) re-

quires separate majorities from both the old and new

configurations.

The joint consensus allows individual servers to transition

between configurations at different times without com-

promising safety. Furthermore, joint consensus allows the

cluster to continue servicing client requests throughout

the configuration change.

Cluster configurations are stored and communicated

using special entries in the replicated log; Figure 11 illus-

trates the configuration change process. When the leader

receives a request to change the configuration from Cold

to Cnew, it stores the configuration for joint consensus

(Cold,new in the figure) as a log entry and replicates that

entry using the mechanisms described previously. Once a

given server adds the new configuration entry to its log,

it uses that configuration for all future decisions (a server

always uses the latest configuration in its log, regardless

of whether the entry is committed). This means that the

leader will use the rules of Cold,new to determine when the

log entry for Cold,new is committed. If the leader crashes,

a new leader may be chosen under either Cold or Cold,new,

depending on whether the winning candidate has received

Cold,new. In any case, Cnew cannot make unilateral deci-

sions during this period.

Once Cold,new has been committed, neitherCold nor Cnew

can make decisions without approval of the other, and the

Leader Completeness Property ensures that only servers

with the Cold,new log entry can be elected as leader. It is

now safe for the leader to create a log entry describing

Cnew and replicate it to the cluster. Again, this configura-

tion will take effect on each server as soon as it is seen.

When the new configuration has been committed under

the rules of Cnew, the old configuration is irrelevant and

servers not in the new configuration can be shut down. As
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Figure 11: Timeline for a configuration change. Dashed lines

show configuration entries that have been created but not

committed, and solid lines show the latest committed configu-

ration entry. The leader first creates the Cold,new configuration

entry in its log and commits it to Cold,new (a majority of Cold

and a majority of Cnew). Then it creates the Cnew entry and

commits it to a majority of Cnew. There is no point in time in

which Cold and Cnew can both make decisions independently.

shown in Figure 11, there is no time when Cold and Cnew

can both make unilateral decisions; this guarantees safety.

There are three more issues to address for reconfigura-

tion. The first issue is that new servers may not initially

store any log entries. If they are added to the cluster in

this state, it could take quite a while for them to catch

up, during which time it might not be possible to com-

mit new log entries. In order to avoid availability gaps,

Raft introduces an additional phase before the configu-

ration change, in which the new servers join the cluster

as non-voting members (the leader replicates log entries

to them, but they are not considered for majorities). Once

the new servers have caught up with the rest of the cluster,

the reconfiguration can proceed as described above.

The second issue is that the cluster leader may not be

part of the new configuration. In this case, the leader steps

down (returns to follower state) once it has committed the

Cnew log entry. This means that there will be a period of

time (while it is committing Cnew) when the leader is man-

aging a cluster that does not include itself; it replicates log

entries but does not count itself in majorities. The leader

transition occurs when Cnew is committed because this is

the first point when the new configuration can operate in-

dependently (it will always be possible to choose a leader

from Cnew). Before this point, it may be the case that only

a server from Cold can be elected leader.

The third issue is that removed servers (those not in

Cnew) can disrupt the cluster. These servers will not re-

ceive heartbeats, so they will time out and start new elec-

tions. They will then send RequestVote RPCs with new

term numbers, and this will cause the current leader to

revert to follower state. A new leader will eventually be

elected, but the removed servers will time out again and

the process will repeat, resulting in poor availability.

To prevent this problem, servers disregard RequestVote

RPCs when they believe a current leader exists. Specif-

ically, if a server receives a RequestVote RPC within

the minimum election timeout of hearing from a cur-

rent leader, it does not update its term or grant its vote.

This does not affect normal elections, where each server

waits at least a minimum election timeout before starting

an election. However, it helps avoid disruptions from re-

moved servers: if a leader is able to get heartbeats to its

cluster, then it will not be deposed by larger term num-

bers.

7 Clients and log compaction
This section has been omitted due to space limitations,

but the material is available in the extended version of this

paper [29]. It describes how clients interact with Raft, in-

cluding how clients find the cluster leader and how Raft

supports linearizable semantics [8]. The extended version

also describes how space in the replicated log can be re-

claimed using a snapshotting approach. These issues ap-

ply to all consensus-based systems, and Raft’s solutions

are similar to other systems.

8 Implementation and evaluation
We have implemented Raft as part of a replicated

state machine that stores configuration information for

RAMCloud [30] and assists in failover of the RAMCloud

coordinator. The Raft implementation contains roughly

2000 lines of C++ code, not including tests, comments, or

blank lines. The source code is freely available [21]. There

are also about 25 independent third-party open source im-

plementations [31] of Raft in various stages of develop-

ment, based on drafts of this paper. Also, various compa-

nies are deploying Raft-based systems [31].

The remainder of this section evaluates Raft using three

criteria: understandability, correctness, and performance.

8.1 Understandability

To measure Raft’s understandability relative to Paxos,

we conducted an experimental study using upper-level un-

dergraduate and graduate students in an Advanced Oper-

ating Systems course at Stanford University and a Dis-

tributed Computing course at U.C. Berkeley. We recorded

a video lecture of Raft and another of Paxos, and created

corresponding quizzes. The Raft lecture covered the con-

tent of this paper; the Paxos lecture covered enough ma-

terial to create an equivalent replicated state machine, in-

cluding single-decree Paxos, multi-decree Paxos, recon-

figuration, and a few optimizations needed in practice

(such as leader election). The quizzes tested basic un-

derstanding of the algorithms and also required students

to reason about corner cases. Each student watched one

video, took the corresponding quiz, watched the second

video, and took the second quiz. About half of the par-

ticipants did the Paxos portion first and the other half did

the Raft portion first in order to account for both indi-

vidual differences in performance and experience gained

from the first portion of the study. We compared partici-

pants’ scores on each quiz to determine whether partici-

pants showed a better understanding of Raft.

We tried to make the comparison between Paxos and
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Figure 12: A scatter plot comparing 43 participants’ perfor-

mance on the Raft and Paxos quizzes. Points above the diag-

onal (33) represent participants who scored higher for Raft.

Raft as fair as possible. The experiment favored Paxos in

two ways: 15 of the 43 participants reported having some

prior experience with Paxos, and the Paxos video is 14%

longer than the Raft video. As summarized in Table 1, we

have taken steps to mitigate potential sources of bias. All

of our materials are available for review [26, 28].

On average, participants scored 4.9 points higher on the

Raft quiz than on the Paxos quiz (out of a possible 60

points, the mean Raft score was 25.7 and the mean Paxos

score was 20.8); Figure 12 shows their individual scores.

A paired t-test states that, with 95% confidence, the true

distribution of Raft scores has a mean at least 2.5 points

larger than the true distribution of Paxos scores.

We also created a linear regression model that predicts

a new student’s quiz scores based on three factors: which

quiz they took, their degree of prior Paxos experience, and

the order in which they learned the algorithms. The model

predicts that the choice of quiz produces a 12.5-point dif-

ference in favor of Raft. This is significantly higher than

the observed difference of 4.9 points, because many of the

actual students had prior Paxos experience, which helped

Paxos considerably, whereas it helped Raft slightly less.

Curiously, the model also predicts scores 6.3 points lower

on Raft for people that have already taken the Paxos quiz;

although we don’t know why, this does appear to be sta-

tistically significant.

We also surveyed participants after their quizzes to see

which algorithm they felt would be easier to implement

or explain; these results are shown in Figure 13. An over-

whelming majority of participants reported Raft would be

easier to implement and explain (33 of 41 for each ques-

tion). However, these self-reported feelings may be less
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Figure 13: Using a 5-point scale, participants were asked

(left) which algorithm they felt would be easier to implement

in a functioning, correct, and efficient system, and (right)

which would be easier to explain to a CS graduate student.

reliable than participants’ quiz scores, and participants

may have been biased by knowledge of our hypothesis

that Raft is easier to understand.

A detailed discussion of the Raft user study is available

at [28].

8.2 Correctness

We have developed a formal specification and a proof

of safety for the consensus mechanism described in Sec-

tion 5. The formal specification [28] makes the informa-

tion summarized in Figure 2 completely precise using the

TLA+ specification language [15]. It is about 400 lines

long and serves as the subject of the proof. It is also use-

ful on its own for anyone implementing Raft. We have

mechanically proven the Log Completeness Property us-

ing the TLA proof system [6]. However, this proof relies

on invariants that have not been mechanically checked

(for example, we have not proven the type safety of the

specification). Furthermore, we have written an informal

proof [28] of the State Machine Safety property which

is complete (it relies on the specification alone) and rela-

tively precise (it is about 3500 words long).

8.3 Performance

Raft’s performance is similar to other consensus algo-

rithms such as Paxos. The most important case for per-

formance is when an established leader is replicating new

log entries. Raft achieves this using the minimal number

of messages (a single round-trip from the leader to half the

cluster). It is also possible to further improve Raft’s per-

formance. For example, it easily supports batching and

pipelining requests for higher throughput and lower la-

tency. Various optimizations have been proposed in the

literature for other algorithms; many of these could be ap-

plied to Raft, but we leave this to future work.

We used our Raft implementation to measure the per-

formance of Raft’s leader election algorithm and answer

two questions. First, does the election process converge

Concern Steps taken to mitigate bias Materials for review [26, 28]

Equal lecture quality Same lecturer for both. Paxos lecture based on and improved from exist-

ing materials used in several universities. Paxos lecture is 14% longer.

videos

Equal quiz difficulty Questions grouped in difficulty and paired across exams. quizzes

Fair grading Used rubric. Graded in random order, alternating between quizzes. rubric

Table 1: Concerns of possible bias against Paxos in the study, steps taken to counter each, and additional materials available.
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Figure 14: The time to detect and replace a crashed leader.

The top graph varies the amount of randomness in election

timeouts, and the bottom graph scales the minimum election

timeout. Each line represents 1000 trials (except for 100 tri-

als for “150–150ms”) and corresponds to a particular choice

of election timeouts; for example, “150–155ms” means that

election timeouts were chosen randomly and uniformly be-

tween 150ms and 155ms. The measurements were taken on a

cluster of five servers with a broadcast time of roughly 15ms.

Results for a cluster of nine servers are similar.

quickly? Second, what is the minimum downtime that can

be achieved after leader crashes?

To measure leader election, we repeatedly crashed the

leader of a cluster of five servers and timed how long it

took to detect the crash and elect a new leader (see Fig-

ure 14). To generate a worst-case scenario, the servers in

each trial had different log lengths, so some candidates

were not eligible to become leader. Furthermore, to en-

courage split votes, our test script triggered a synchro-

nized broadcast of heartbeat RPCs from the leader before

terminating its process (this approximates the behavior

of the leader replicating a new log entry prior to crash-

ing). The leader was crashed uniformly randomly within

its heartbeat interval, which was half of the minimum

election timeout for all tests. Thus, the smallest possible

downtime was about half of the minimum election time-

out.

The top graph in Figure 14 shows that a small amount

of randomization in the election timeout is enough to

avoid split votes in elections. In the absence of random-

ness, leader election consistently took longer than 10 sec-

onds in our tests due to many split votes. Adding just 5ms

of randomness helps significantly, resulting in a median

downtime of 287ms. Using more randomness improves

worst-case behavior: with 50ms of randomness the worst-

case completion time (over 1000 trials) was 513ms.

The bottom graph in Figure 14 shows that downtime

can be reduced by reducing the election timeout. With

an election timeout of 12–24ms, it takes only 35ms on

average to elect a leader (the longest trial took 152ms).

However, lowering the timeouts beyond this point violates

Raft’s timing requirement: leaders have difficulty broad-

casting heartbeats before other servers start new elections.

This can cause unnecessary leader changes and lower

overall system availability. We recommend using a con-

servative election timeout such as 150–300ms; such time-

outs are unlikely to cause unnecessary leader changes and

will still provide good availability.

9 Related work
There have been numerous publications related to con-

sensus algorithms, many of which fall into one of the fol-

lowing categories:

• Lamport’s original description of Paxos [13], and at-

tempts to explain it more clearly [14, 18, 19].

• Elaborations of Paxos, which fill in missing details and

modify the algorithm to provide a better foundation for

implementation [24, 35, 11].

• Systems that implement consensus algorithms, such as

Chubby [2, 4], ZooKeeper [9, 10], and Spanner [5]. The

algorithms for Chubby and Spanner have not been pub-

lished in detail, though both claim to be based on Paxos.

ZooKeeper’s algorithm has been published in more de-

tail, but it is quite different from Paxos.

• Performance optimizations that can be applied to

Paxos [16, 17, 3, 23, 1, 25].

• Oki and Liskov’s Viewstamped Replication (VR), an

alternative approach to consensus developed around the

same time as Paxos. The original description [27] was

intertwined with a protocol for distributed transactions,

but the core consensus protocol has been separated in

a recent update [20]. VR uses a leader-based approach

with many similarities to Raft.

The greatest difference between Raft and Paxos is

Raft’s strong leadership: Raft uses leader election as an

essential part of the consensus protocol, and it concen-

trates as much functionality as possible in the leader. This

approach results in a simpler algorithm that is easier to

understand. For example, in Paxos, leader election is or-

thogonal to the basic consensus protocol: it serves only as

a performance optimization and is not required for achiev-

ing consensus. However, this results in additional mecha-

nism: Paxos includes both a two-phase protocol for basic

consensus and a separate mechanism for leader election.

In contrast, Raft incorporates leader election directly into

the consensus algorithm and uses it as the first of the two

phases of consensus. This results in less mechanism than

in Paxos.

Like Raft, VR and ZooKeeper are leader-based and

therefore share many of Raft’s advantages over Paxos.

However, Raft has less mechanism that VR or ZooKeeper

because it minimizes the functionality in non-leaders. For

example, log entries in Raft flow in only one direction:

outward from the leader in AppendEntries RPCs. In VR
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log entries flow in both directions (leaders can receive

log entries during the election process); this results in

additional mechanism and complexity. The published de-

scription of ZooKeeper also transfers log entries both to

and from the leader, but the implementation is apparently

more like Raft [32].

Raft has fewer message types than any other algorithm

for consensus-based log replication that we are aware of.

For example, VR and ZooKeeper each define 10 differ-

ent message types, while Raft has only 4 message types

(two RPC requests and their responses). Raft’s messages

are a bit more dense than the other algorithms’, but they

are simpler collectively. In addition, VR and ZooKeeper

are described in terms of transmitting entire logs during

leader changes; additional message types will be required

to optimize these mechanisms so that they are practical.

Several different approaches for cluster member-

ship changes have been proposed or implemented in

other work, including Lamport’s original proposal [13],

VR [20], and SMART [22]. We chose the joint consensus

approach for Raft because it leverages the rest of the con-

sensus protocol, so that very little additional mechanism

is required for membership changes. Lamport’s α-based

approach was not an option for Raft because it assumes

consensus can be reached without a leader. In comparison

to VR and SMART, Raft’s reconfiguration algorithm has

the advantage that membership changes can occur with-

out limiting the processing of normal requests; in con-

trast, VR stops all normal processing during configura-

tion changes, and SMART imposes an α-like limit on the

number of outstanding requests. Raft’s approach also adds

less mechanism than either VR or SMART.

10 Conclusion
Algorithms are often designed with correctness, effi-

ciency, and/or conciseness as the primary goals. Although

these are all worthy goals, we believe that understandabil-

ity is just as important. None of the other goals can be

achieved until developers render the algorithm into a prac-

tical implementation, which will inevitably deviate from

and expand upon the published form. Unless developers

have a deep understanding of the algorithm and can cre-

ate intuitions about it, it will be difficult for them to retain

its desirable properties in their implementation.

In this paper we addressed the issue of distributed con-

sensus, where a widely accepted but impenetrable algo-

rithm, Paxos, has challenged students and developers for

many years. We developed a new algorithm, Raft, which

we have shown to be more understandable than Paxos.

We also believe that Raft provides a better foundation

for system building. Using understandability as the pri-

mary design goal changed the way we approached the de-

sign of Raft; as the design progressed we found ourselves

reusing a few techniques repeatedly, such as decomposing

the problem and simplifying the state space. These tech-

niques not only improved the understandability of Raft

but also made it easier to convince ourselves of its cor-

rectness.
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Abstract

Graphics processing units (GPUs) are a powerful plat-

form for building high-speed network traffic processing

applications using low-cost hardware. Existing systems

tap the massively parallel architecture of GPUs to speed

up certain computationally intensive tasks, such as cryp-

tographic operations and pattern matching. However,

they still suffer from significant overheads due to critical-

path operations that are still being carried out on the

CPU, and redundant inter-device data transfers.

In this paper we present GASPP, a programmable net-

work traffic processing framework tailored to modern

graphics processors. GASPP integrates optimized GPU-

based implementations of a broad range of operations

commonly used in network traffic processing applica-

tions, including the first purely GPU-based implementa-

tion of network flow tracking and TCP stream reassem-

bly. GASPP also employs novel mechanisms for tackling

control flow irregularities across SIMT threads, and shar-

ing memory context between the network interface and

the GPU. Our evaluation shows that GASPP can achieve

multi-gigabit traffic forwarding rates even for computa-

tionally intensive and complex network operations such

as stateful traffic classification, intrusion detection, and

packet encryption. Especially when consolidating mul-

tiple network applications on the same device, GASPP

achieves up to 16.2× speedup compared to standalone

GPU-based implementations of the same applications.

1 Introduction

The emergence of commodity many-core architectures,

such as multicore CPUs and modern graphics proces-

sors (GPUs) has proven to be a good solution for accel-

erating many network applications, and has led to their

successful deployment in high-speed environments [10,

12–14, 26]. Recent trends have shown that certain net-

work packet processing operations can be implemented

efficiently on GPU architectures. Typically, such opera-

tions are either computationally intensive (e.g., encryp-

tion [14]), memory-intensive (e.g., IP routing [12]), or

both (e.g., intrusion detection and prevention [13, 24,

26]). Modern GPU architectures offer high computa-

tional throughput and hide excessive memory latencies.

Unfortunately, the lack of programming abstractions

and GPU-based libraries for network traffic processing—

even for simple tasks such as packet decoding and

filtering—increases significantly the programming ef-

fort needed to build, extend, and maintain high-

performance GPU-based network applications. More

complex critical-path operations, such as flow tracking

and TCP stream reassembly, currently still run on the

CPU, negatively offsetting any performance gains by the

offloaded GPU operations. The absence of adequate OS

support also increases the cost of data transfers between

the host and I/O devices. For example, packets have

to be transferred from the network interface to the user-

space context of the application, and from there to kernel

space in order to be transferred to the GPU. While pro-

grammers can explicitly optimize data movements, this

increases the design complexity and code size of even

simple GPU-based packet processing programs.

As a step towards tackling the above inefficiencies, we

present GASPP, a network traffic processing framework

tailored to modern graphics processors. GASPP inte-

grates into a purely GPU-powered implementation many

of the most common operations used by different types

of network traffic processing applications, including the

first GPU-based implementation of network flow track-

ing and TCP stream reassembly. By hiding complicated

network processing issues while providing a rich and ex-

pressive interface that exposes only the data that matters

to applications, GASPP allows developers to build com-

plex GPU-based network traffic processing applications

in a flexible and efficient way.

We have developed and integrated into GASPP novel

mechanisms for sharing memory context between net-

work interfaces and the GPU to avoid redundant data

movement, and for scheduling packets in an efficient way
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that increases the utilization of the GPU and the shared

PCIe bus. Overall, GASPP allows applications to scale

in terms of performance, and carry out on the CPU only

infrequently occurring operations.

The main contributions of our work are:

• We have designed, implemented, and evaluated

GASPP, a novel GPU-based framework for high-

performance network traffic processing, which

eases the development of applications that process

data at multiple layers of the protocol stack.

• We present the first (to the best of our knowl-

edge) purely GPU-based implementation of flow

state management and TCP stream reconstruction.

• We present a novel packet scheduling technique that

tackles control flow irregularities and load imbal-

ance across GPU threads.

• We present a zero-copy mechanism that avoids re-

dundant memory copies between the network in-

terface and the GPU, increasing significantly the

throughput of cross-device data transfers.

2 Motivation

The Need for Modularity. The rise of general-purpose

computing on GPUs (GPGPU) and related frameworks,

such as CUDA and OpenCL, has made the implemen-

tation of GPU-accelerated applications easier than ever.

Unfortunately, the majority of GPU-assisted network ap-

plications follow a monolithic design, lacking both mod-

ularity and flexibility. As a result, building, maintaining,

and extending such systems eventually becomes a real

burden. In addition, the absence of libraries for network

processing operations—even for simple tasks like packet

decoding or filtering—increases development costs even

further. GASPP integrates a broad range of operations

that different types of network applications rely on, with

all the advantages of a GPU-powered implementation,

into a single application development platform. This al-

lows developers to focus on core application logic, alle-

viating the low-level technical challenges of data trans-

fer to and from the GPU, packet batching, asynchronous

execution, synchronization issues, connection state man-

agement, and so on.

The Need for Stateful Processing. Flow tracking and

TCP stream reconstruction are mandatory features of a

broad range of network applications. Intrusion detec-

tion and traffic classification systems typically inspect

the application-layer stream to identify patterns that

span multiple packets and thwart evasion attacks [9, 28].

Existing GPU-assisted network processing applications,

however, just offload to the GPU certain data-parallel

tasks, and are saturated by the many computationally

heavy operations that are still being carried out on the
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Figure 1: GASPP architecture.

CPU, such as network flow tracking, TCP stream re-

assembly, and protocol parsing [13, 26].

The most common approach for stateful processing is

to buffer incoming packets, reassemble them, and deliver

“chunks” of the reassembled stream to higher-level pro-

cessing elements [6, 7]. A major drawback of this ap-

proach is that it requires several data copies and signif-

icant extra memory space. In Gigabit networks, where

packet intervals can be as short as 1.25 µsec (in a 10GbE

network, for a MTU of 1.5KB), packet buffering requires

large amounts of memory even for very short time win-

dows. To address these challenges, the primary objec-

tives of our GPU-based stateful processing implementa-

tion are: (i) process as many packets as possible on-the-

fly (instead of buffering them), and (ii) ensure that pack-

ets of the same connection are processed in-order.

3 Design

The high-level design of GASPP is shown in Figure 1.

Packets are transferred from the network interfaces to

the memory space of the GPU in batches. The captured

packets are then classified according to their protocol

and are processed in parallel by the GPU. For stateful

protocols, connection state management and TCP stream

reconstruction are supported for delivering a consistent

application-layer byte stream.

GASPP applications consist of modules that control

all aspects of the traffic processing flow. Modules are

represented as GPU device functions, and take as input

a network packet or stream chunk. Internally, each mod-

ule is executed in parallel on a batch of packets. After

processing is completed, the packets are transferred back

to the memory space of the host, and depending on the

application, to the appropriate output network interface.

3.1 Processing Modules

A central concept of NVIDIA’s CUDA [5] that has influ-

enced the design of GASPP is the organization of GPU

programs into kernels, which in essence are functions

that are executed by groups of threads. GASPP allows
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is executed by a different thread for every incoming

packet.

users to specify processing tasks on the incoming traf-

fic by writing GASPP modules, applicable on different

protocol layers, which are then mapped into GPU kernel

functions. Modules can be implemented according to the

following prototypes:

__device__ uint processEth(unsigned pktid,

ethhdr *eth, uint cxtkey);

__device__ uint processIP(unsigned pktid,

ethhdr *eth, iphdr *ip, uint cxtkey);

__device__ uint processUDP(unsigned pktid,

ethhdr *eth, iphdr *ip, udphdr *udp, uint cxtkey);

__device__ uint processTCP(unsigned pktid,

ethhdr *eth, iphdr *ip, tcphdr *tcp, uint cxtkey);

__device__ uint processStream(unsigned pktid,

ethhdr *eth, iphdr *ip, tcphdr *tcp, uchar *chunk,

unsigned chunklen, uint cxtkey);

The framework is responsible for decoding incoming

packets and executing all registered process*() mod-

ules by passing the appropriate parameters. Packet de-

coding and stream reassembly is performed by the un-

derlying system, eliminating any extra effort from the

side of the developer. Each module is executed at the

corresponding layer, with pointer arguments to the en-

capsulated protocol headers. Arguments also include a

unique identifier for each packet and a user-defined key

that denotes the packet’s class (described in more de-

tail in §5.3). Currently, GASPP supports the most com-

mon network protocols, such as Ethernet, IP, TCP and

UDP. Other protocols can easily be handled by explicitly

parsing raw packets. Modules are executed per-packet

in a data-parallel fashion. If more than one modules

have been registered, they are executed back-to-back in

a packet processing pipeline, resulting in GPU module

chains, as shown in Figure 2.

The processStream() modules are executed when-

ever a new normalized TCP chunk of data is available.

These modules are responsible for keeping internally the

state between consecutive chunks—or, alternatively, for

storing chunks in global memory for future use—and

continuing the processing from the last state of the previ-

ous chunk. For example, a pattern matching application

can match the contents of the current chunk and keep the

state of its matching algorithm to a global variable; on

the arrival of the next chunk, the matching process will

continue from the previously stored state.

As modules are simple to write, we expect that users

will easily write new ones as needed using the function

prototypes described above. In fact, the complete imple-

mentation of a module that simply passes packets from

an input to an output interface takes only a few lines

of code. More complex network applications, such as

NIDS, L7 traffic classification, and packet encryption,

require a few dozen lines of code, as described in §6.

3.2 API

To cover the needs of a broad range of network traffic

processing applications, GASPP offers a rich GPU API

with data structures and algorithms for processing net-

work packets.

Shared Hash Table. GASPP enables applications to

access the processed data through a global hash table.

Data stored in an instance of the hash table is persis-

tent across GPU kernel invocations, and is shared be-

tween the host and the device. Internally, data objects

are hashed and mapped to a given bucket. To enable

GPU threads to add or remove nodes from the table in

parallel, we associate an atomic lock with each bucket,

so that only a single thread can make changes to a given

bucket at a time.

Pattern Matching. Our framework provides a GPU-

based API for matching fixed strings and regular expres-

sions. We have ported a variant of the Aho-Corasick al-

gorithm for string searching, and use a DFA-based im-

plementation for regular expression matching. Both im-

plementations have linear complexity over the input data,

independent of the number of patterns to be searched.

To utilize efficiently the GPU memory subsystem, packet

payloads are accessed 16-bytes at a time, using an int4

variable [27].

Cipher Operations. Currently, GASPP provides AES

(128-bit to 512-bit key sizes) and RSA (1024-bit and

2048-bit key sizes) functions for encryption and decryp-

tion, and supports all modes of AES (ECB, CTR, CFB

and OFB). Again, packet contents are read and written

16-bytes at a time, as this substantially improves GPU

performance. The encryption and decryption process

happens in-place and as packet lengths may be modified,

the checksums for IP and TCP/UDP packets are recom-

puted to be consistent. In cases where the NIC controller

supports checksum computation offloading, GASPP sim-

ply forwards the altered packets to the NIC.

Network Packet Manipulation Functions. GASPP

provides special functions for dropping network pack-

ets (Drop()), ignoring any subsequent registered user-
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defined modules (Ignore()), passing packets to the

host for further processing (ToLinux()), or writing

their contents to a dump file (ToDump()). Each func-

tion updates accordingly the packet index array, which

holds the offsets where each packet is stored in the packet

buffer, and a separate “metadata” array.

4 Stateful Protocol Analysis

The stateful protocol analysis component of GASPP is

designed with minimal complexity so as to maximize

processing speed. This component is responsible for

maintaining the state of TCP connections, and recon-

structing the application-level byte stream by merging

packet payloads and reordering out-of-order packets.

4.1 Flow Tracking

GASPP uses a connection table array stored in the global

device memory of the GPU for keeping the state of TCP

connections. Each record is 17-byte long. A 4-byte hash

of the source and destination IP addresses and TCP ports

is used to handle collisions in the flow classifier. Con-

nection state is stored in a single-byte variable. The

sequence numbers of the most recently received client

and server segments are stored in two 4-byte fields, and

are updated every time the next in-order segment arrives.

Hash table collisions are handled using a locking chained

hash table with linked lists (described in detail in §3.2).

A 4-byte pointer points to the next record (if any).

The connection table can easily fill up with adversar-

ial partially-established connections, benign connections

that stay idle for a long time, or connections that failed to

terminate properly. For this reason, connection records

that have been idle for more than a certain timeout, set to

60 seconds by default, are periodically removed. As cur-

rent GPU devices do not provide support for measuring

real-world time, we resort to a separate GPU kernel that

is initiated periodically according to the timeout value.

Its task is to simply mark each connection record by set-

ting the first bit of the state variable. If a connection

record is already marked, it is removed from the table.

A marked record is unmarked when a new packet for this

connection is received before the timeout expires.

4.2 Parallelizing TCP Stream Reassembly

Maintaining the state of incoming connections is simple

as long as the packets that are processed in parallel by the

GPU belong to different connections. Typically, how-

ever, a batch of packets usually contains several packets

of the same connection. It is thus important to ensure

that the order of connection updates will be correct when

processing packets of the same connection in parallel.

TCP reconstruction threads are synchronized through

a separate array used for pairing threads that must pro-

cess consecutive packets. When a new batch is re-

h(seq)

Packet B

h(seq+len)

Packet A

h(seq+len) h(seq)

Packet C

Thread N-1 Thread N

CBA B

CBA
A

Thread N+1

Barrier

next_packet :

h(seq+len)h(seq)

Bindex :

Figure 3: Ordering sequential TCP packets in parallel.

The resulting next packet array contains the next in-order

packet, if any (i.e. next packet[A] = B).

ceived, each thread hashes its packet twice: once us-

ing hash(addr s, addr d, port s, port d, seq), and a sec-

ond time using hash(addr s, addr d, port s, port d, seq+

len), as shown in Figure 3. A memory barrier is

used to guarantee that all threads have finished hash-

ing their packets. Using this scheme, two packets x

and y are consecutive if: hashx(4-tuple, seq + len) =

hashy(4-tuple, seq). The hash function is unidirectional

to ensure that each stream direction is reconstructed sep-

arately. The SYN and SYN-ACK packets are paired

by hashing the sequence and acknowledge numbers cor-

respondingly. If both the SYN and SYN-ACK pack-

ets are present, the state of the connection is changed

to ESTABLISHED, otherwise if only the SYN packet is

present, the state is set to SYN RECEIVED.

Having hashed all pairs of consecutive packets in the

hash table, the next step is to create the proper packet

ordering for each TCP stream using the next packet

array, as shown in Figure 3. Each packet is uniquely

identified by an id, which corresponds to the index

where the packet is stored in the packet index array. The

next packet array is set at the beginning of the current

batch, and its cells contain the id of the next in-order

packet (or -1 if it does not exist in the current batch),

e.g., if x is the id of the current packet, the id of the

next in-order packet will be y = next packet[x]. Fi-

nally, the connection table is updated with the sequence

number of the last packet of each flow direction, i.e., the

packet x that does not have a next packet in the current

batch.

4.3 Packet Reordering

Although batch processing handles out-of-order packets

that are included in the same batch, it does not solve the

problem in the general case. A potential solution for in-

line applications would be to just drop out-of-sequence

packets, forcing the host to retransmit them. Whenever

an expected packet would be missing, subsequent pack-
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e)d)

c)

f)

Received and forwarded packet New packet

Figure 4: Subsequent packets (dashed line) may arrive

in-sequence ((a)–(d)) or out of order, creating holes in

the reconstructed TCP stream ((e)–(f)).

ets would be actively dropped until the missing packet ar-

rives. Although this approach would ensure an in-order

packet flow, it has several disadvantages. First, in sit-

uations where the percentage of out-of-order packets is

high, performance will degrade. Second, if the endpoints

are using selective retransmission and there is a high rate

of data loss in the network, connections would be ren-

dered unusable due to excessive packet drops.

To deal with TCP sequence hole scenarios, GASPP

only processes packets with sequence numbers less than

or equal to the connection’s current sequence number

(Figure 4(a)–(d)). Received packets with no preceding

packets in the current batch and with sequence numbers

larger than the ones stored in the connection table im-

ply sequence holes (Figure 4(e)–(f)), and are copied in a

separate buffer in global device memory. If a thread en-

counters an out-of-order packet (i.e., a packet with a se-

quence number larger than the sequence number stored

in the connection table, with no preceding packet in the

current batch after the hashing calculations of §4.2), it

traverses the next packet array and marks as out-of-

order all subsequent packets of the same flow contained

in the current batch (if any). This allows the system to

identify sequences of out-of-order packets, as the ones

shown in the examples of Figure 4(e)–(f). The buffer size

is configurable and can be up to several hundred MBs,

depending on the network needs. If the buffer contains

any out-of-order packets, these are processed right after

a new batch of incoming packets is processed.

Although packets are copied using the very fast

device-to-device copy mechanism, with a memory band-

width of about 145 GB/s, an increased number of out-of-

order packets can have a major effect on overall perfor-

mance. For this reason, by default we limit the num-

ber of out-of-order packets that can be buffered to be

equal to the available slots in a batch of packets. This

size is enough under normal conditions, where out-of-

order packets are quite rare [9], and it can be configured

as needed for other environments. If the percentage of

out-of-order packets exceeds this limit, our system starts

to drop out-of-order packets, causing the corresponding

host to retransmit them.

GPU

NIC

DMA
Buffer

DMA
Buffer

Main Memory

DMA
Buffer

Main Memory

NIC GPUCPU

(a) (b)

Figure 5: Normal (a) and zero-copy (b) data transfer be-

tween the NIC and the GPU.

5 Optimizing Performance

5.1 Inter-Device Data Transfer

The problem of data transfers between the CPU and the

GPU is well-known in the GPGPU community, as it re-

sults in redundant cross-device communication. The tra-

ditional approach is to exchange data using DMA be-

tween the memory regions assigned by the OS to each

device. As shown in Figure 5(a), network packets are

transferred to the page-locked memory of the NIC, then

copied to the page-locked memory of the GPU, and from

there, they are finally transferred to the GPU.

To avoid costly packet copies and context switches,

GASPP uses a single buffer for efficient data sharing be-

tween the NIC and the GPU, as shown in Figure 5(b), by

adjusting the netmap module [20]. The shared buffer is

added to the internal tracking mechanism of the CUDA

driver to automatically accelerate calls to functions, as

it can be accessed directly by the GPU. The buffer is

managed by GASPP through the specification of a pol-

icy based on time and size constraints. This enables real-

time applications to process incoming packets whenever

a timeout is triggered, instead of waiting for buffers to

fill up over a specified threshold. Per-packet buffer al-

location overheads are reduced by transferring several

packets at a time. Buffers consist of fixed-size slots, with

each slot corresponding to one packet in the hardware

queue. Slots are reused whenever the circular hardware

queue wraps around. The size of each slot is 1,536 bytes,

which is consistent with the NIC’s alignment require-

ments, and enough for the typical 1,518-byte maximum

Ethernet frame size.

Although making the NIC’s packet queue directly ac-

cessible to the GPU eliminates redundant copies, this

does not always lead to better performance. As previ-

ous studies have shown [12, 26] (we verify their results

in §7.1), contrary to NICs, current GPU implementations

suffer from poor performance for small data transfers. To

improve PCIe throughput, we batch several packets and

transfer them at once. However, the fixed-size partition-

ing of the NIC’s queue leads to redundant data transfers

for traffic with many small packets. For example, a 64-



326 2014 USENIX Annual Technical Conference USENIX Association

Rx

HtoD

Tx

GPU DtoH

Rx

HtoD

Tx

GPU DtoH

Rx

HtoD

Tx

GPU DtoH

Figure 6: The I/O and processing pipeline.

byte packet consumes only 1/24th of the available space

in its slot. This introduces an interesting trade-off, and as

we show in §7.1, occasionally it is better to copy pack-

ets back-to-back into a second buffer and transferring it

to the GPU. GASPP dynamically switches to the optimal

approach by monitoring the actual utilization of the slots.

The forwarding path requires the transmission of net-

work packets after processing is completed, and this is

achieved using a triple-pipeline solution, as shown in

Figure 6. Packet reception, GPU data transfers and

execution, and packet transmission are executed asyn-

chronously in a multiplexed manner.

5.2 Packet Decoding

Memory alignment is a major factor that affects the

packet decoding process, as GPU execution constrains

memory accesses to be aligned for all data types. For ex-

ample, int variables should be stored to addresses that

are a multiple of sizeof(int). Due to the layered na-

ture of network protocols, however, several fields of en-

capsulated protocols are not aligned when transferred to

the memory space of the GPU. To overcome this issue,

GASPP reads the packet headers from global memory,

parses them using bitwise logic and shifting operations,

and stores them in appropriately aligned structures. To

optimize memory usage, input data is accessed in units

of 16 bytes (using an int4 variable).

5.3 Packet Scheduling

Registered modules are scheduled on the GPU, per pro-

tocol, in a serial fashion. Whenever a new batch of pack-

ets is available, it is processed in parallel using a number

of threads equal to the number of packets in the batch

(each thread processes a different packet). As shown in

Figure 2, all registered modules for a certain protocol are

executed serially on decoded packets in a lockstep way.

Network packets are processed by different threads,

grouped together into logical units known as warps (in

current NVIDIA GPU architectures, 32 threads form a

warp) and mapped to SIMT units. As threads within

the same warp have to execute the same instructions,

load imbalance and code flow divergence within a warp

can cause inefficiencies. This may occur under the fol-

lowing primary conditions: (i) when processing differ-

ent transport-layer protocols (i.e., TCP and UDP) in the

same warp, (ii) in full-packet processing applications

when packet lengths within a warp differ significantly,

and (iii) when different packets follow different process-

TCP TCP TCP TCPTCP TCP UDP TCPUDP UDP TCP

Thread-Packet Redirection Array

UDP

App1 App2 App1 App1 App2 App1 App2 App1 App1 App2 App1 App1
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Figure 7: Packet scheduling for eliminating control flow

divergences and load imbalances. Packet brightness rep-

resents packet size.

ing paths, i.e., threads of the same warp execute different

user-defined modules.

As the received traffic mix is typically very dynamic,

it is essential to find an appropriate mapping between

threads and network packets at runtime. It is also cru-

cial that the overhead of the mapping process is low, so

as to not jeopardize overall performance. To that end,

our basic strategy is to group the packets of a batch

according to their encapsulated transport-layer protocol

and their length. In addition, module developers can

specify context keys to describe packets that belong to the

same class, which should follow the same module exe-

cution pipeline. A context key is a value returned by a

user-defined module and is passed (as the final param-

eter) to the next registered module. GASPP uses these

context keys to further pack packets of the same class to-

gether and map them to threads of the same warp after

each module execution. This gives developers the flexi-

bility to build complex packet processing pipelines that

will be mapped efficiently to the underlying GPU archi-

tecture at runtime.

To group a batch of packets on the GPU, we have

adapted a GPU-based radix sort implementation [1].

Specifically, we assign a separate weight for each packet

consisting of the byte concatenation of the ip proto

field of its IP header, the value of the context key re-

turned by the previously executed module, and its length.

Weights are calculated on the GPU after each module ex-

ecution using a separate thread for each packet, and are

used by the radix sort algorithm to group the packets.

Moreover, instead of copying each packet to the appro-

priate (i.e., sorted) position, we simply change their order

in the packet index array. We also attempted to relocate

packets by transposing the packet array on the GPU de-

vice memory, in order to benefit from memory coalesc-

ing [5]. Unfortunately, the overall cost of the correspond-

ing data movements was not amortized by the resulting

memory coalescing gains.
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Using the above procedure, GASPP assigns dynami-

cally to the same warp any similar-sized packets meant

to be processed by the same module, as shown in Fig-

ure 7. Packets that were discarded earlier or of which

the processing pipeline has been completed are grouped

and mapped to warps that contain only idle threads—

otherwise warps would contain both idle and active

threads, degrading the utilization of the SIMT proces-

sors. To prevent packet reordering from taking place dur-

ing packet forwarding, we also preserve the initial (pre-

sorted) packet index array. In §7.2 we analyze in detail

how control flow divergence affects the performance of

the GPU, and show how our packet scheduling mecha-

nisms tackle the irregular code execution at a fixed cost.

6 Developing with GASPP

In this section we present simple examples of represen-

tative applications built using the GASPP framework.

L3/L4 Firewall. Firewalls operate at the network layer

(port-based) or the application layer (content-based). For

our purposes, we have built a GASPP module that can

drop traffic based on Layer-3 and Layer-4 rules. An

incoming packet is filtered if the corresponding IP ad-

dresses and port numbers are found in the hash table;

otherwise the packet is forwarded.

L7 Traffic Classification. We have implemented a L7

traffic classification tool (similar to the L7-filter tool [2])

on top of GASPP. The tool dynamically loads the pat-

tern set of the L7-filter tool, in which each application-

level protocol (HTTP, SMTP, etc.) is represented by a

different regular expression. At runtime, each incoming

flow is matched against each regular expression indepen-

dently. In order to match patterns that cross TCP segment

boundaries that lie on the same batch, each thread con-

tinues the processing to the next TCP segment (obtained

from the next packet array). The processing of the

next TCP segment continues until a final or a fail DFA-

state is reached, as suggested in [25]. In addition, the

DFA-state of the last TCP segment of the current batch

is stored in a global variable, so that on the arrival of

the next stream chunk, the matching process continues

from the previously stored state. This allows the detec-

tion of regular expressions that span (potentially delib-

erately) not only multiple packets, but also two or more

stream chunks.

Signature-based Intrusion Detection. Modern NIDS,

such as Snort [7], use a large number of regular expres-

sions to determine whether a packet stream contains an

attack vector or not. To reduce the number of packets

that need to be matched against a regular expression, typ-

ical NIDS take advantage of the string matching engine

and use it as a first-level filtering mechanism before pro-

ceeding to regular expression matching. We have im-

Buffer 1KB 4KB 64KB 256KB 1MB 16MB

Host to GPU 2.04 7.12 34.4 42.1 45.7 47.8

GPU to Host 2.03 6.70 21.1 23.8 24.6 24.9

Table 1: Sustained PCIe throughput (Gbit/s) for transfer-

ring data to a single GPU, for different buffer sizes.

Packet size (bytes) 64 128 256 512 1024 1518

Copy back-to-back 13.76 18.21 20.53 19.21 19.24 20.04

Zero-copy 2.06 4.03 8.07 16.13 32.26 47.83

Table 2: Sustained throughput (Gbit/s) for various packet

sizes, when bulk-transferring data to a single GPU.

plemented the same functionality on top of GASPP, us-

ing a different module for scanning each incoming traffic

stream against all the fixed strings in a signature set. Pat-

terns that cross TCP segments are handled similarly to

the L7 Traffic Classification module. Only the matching

streams are further processed against the corresponding

regular expressions set.

AES. Encryption is used by protocols and services,

such as SSL, VPN, and IPsec, for securing communi-

cations by authenticating and encrypting the IP packets

of a communication session. While stock protocol suites

that are used to secure communications, such as IPsec,

actually use connectionless integrity and data origin au-

thentication, for simplicity, we only encrypt all incoming

packets using the AES-CBC algorithm and a different

128-bit key for each connection.

7 Performance Evaluation

Hardware Setup Our base system is equipped with

two Intel Xeon E5520 Quad-core CPUs at 2.27GHz and

12 GB of RAM (6 GB per NUMA domain). Each CPU

is connected to peripherals via a separate I/O hub, linked

to several PCIe slots. Each I/O hub is connected to an

NVIDIA GTX480 graphics card via a PCIe v2.0 x16

slot, and one Intel 82599EB with two 10 GbE ports, via

a PCIe v2.0 8× slot. The system runs Linux 3.5 with

CUDA v5.0 installed. After experimentation, we have

found that the best placement is to have a GPU and a

NIC on each NUMA node. We also place the GPU and

NIC buffers in the same memory domain, as local mem-

ory accesses sustain lower latency and more bandwidth

compared to remote accesses.

For traffic generation we use a custom packet genera-

tor built on top of netmap [20]. Test traffic consists of

both synthetic traffic, as well as real traffic traces.

7.1 Data Transfer

We evaluate the zero-copy mechanism by taking into ac-

count the size of the transferred packets. The system can

efficiently deliver all incoming packets to user space, re-

gardless of the packet size, by mapping the NIC’s DMA



328 2014 USENIX Annual Technical Conference USENIX Association

Effective

Packet size (bytes)

64 128 256 512 1024 1518

T
h
ro

u
g
h
p
u
t 
(G

b
it
/s

)

0

10

20

30

40

Rx+Tx Rx+GPU+Tx

Figure 8: Data transfer throughput for different packet

sizes when using two dual-port 10GbE NICs.

packet buffer. However, small data transfers to the GPU

incur significant penalties. Table 1 shows that for trans-

fers of less than 4KB, the PCIe throughput falls below

7 Gbit/s. With a large buffer though, the transfer rate to

the GPU exceeds 45 Gbit/s, while the transfer rate from

the GPU to the host decreases to about 25 Gbit/s.1

To overcome the low PCIe throughput, GASPP trans-

fers batches of network packets to the GPU, instead of

one at a time. However, as packets are placed in fixed-

sized slots, transferring many slots at once results in re-

dundant data transfers when the slots are not fully oc-

cupied. As we can see in Table 2, when traffic consists

of small packets, the actual PCIe throughput drops dras-

tically. Thus, it is better to copy small network pack-

ets sequentially into another buffer, rather than transfer

the corresponding slots directly. Direct transfer pays off

only for packet sizes over 512 bytes (when buffer occu-

pancy is over 512/1536 = 33.3%), achieving 47.8 Gbit/s

for 1518-byte packets (a 2.3× speedup).

Consequently, we adopted a simple selective offload-

ing scheme, whereby packets in the shared buffer are

copied to another buffer sequentially (in 16-byte aligned

boundaries) if the overall occupancy of the shared buffer

is sparse. Otherwise, the shared buffer is transferred di-

rectly to the GPU. Occupancy is computed—without any

additional overhead—by simply counting the number of

bytes of the newly arrived packets every time a new in-

terrupt is generated by the NIC.

Figure 8 shows the throughput for forwarding pack-

ets with all data transfers included, but without any GPU

computations. We observe that the forwarding perfor-

mance for 64-byte packets reaches 21 Gbit/s, out of the

maximum 29.09 Gbit/s, while for large packets it reaches

the maximum full line rate. We also observe that the

GPU transfers of large packets are completely hidden on

the Rx+GPU+Tx path, as they are performed in parallel

using the pipeline shown in Figure 6, and thus they do

not affect overall performance. Unfortunately, this is not

the case for small packets (less than 128-bytes), which

suffer an additional 2–9% hit due to memory contention.

1The PCIe asymmetry in the data transfer throughput is related to

the interconnection between the motherboard and the GPUs [12].

7.2 Raw GPU Processing Throughput

Having examined data transfer costs, we now evalu-

ate the computational performance of a single GPU—

exluding all network I/O transfers—for packet decoding,

connection state management, TCP stream reassembly,

and some representative traffic processing applications.

Packet Decoding. Decoding a packet according to its

protocols is one of the most basic packet processing oper-

ations, and thus we use it as a base cost of our framework.

Figure 9(a) shows the GPU performance for fully de-

coding incoming UDP packets into appropriately aligned

structures, as described in §5.2 (throughput is very sim-

ilar for TCP). As expected, the throughput increases as

the number of packets processed in parallel increases.

When decoding 64-byte packets, the GPU performance

with PCIe transfers included, reaches 48 Mpps, which is

about 4.5 times faster than the computational through-

put of the tcpdump decoding process sustained by a sin-

gle CPU core, when packets are read from memory. For

1518-byte packets, the GPU sustains about 3.8 Mpps and

matches the performance of 1.92 CPU cores.

Connection State Management and TCP Stream Re-

assembly. In this experiment we measure the perfor-

mance of maintaining connection state on the GPU, and

the performance of reassembling the packets of TCP

flows into application-level streams. Figure 9(b) shows

the packets processed per second for both operations.

Test traffic consists of real HTTP connections with ran-

dom IP addresses and TCP ports. Each connection

fetches about 800KB from a server, and comprises about

870 packets (320 minimum-size ACKs, and 550 full-

size data packets). We also use a trace-driven work-

load (“Equinix”) based on a trace captured by CAIDA’s

equinix-sanjose monitor [3], in which the average and me-

dian packet length is 606.2 and 81 bytes respectively.

Keeping state and reassembling streams requires sev-

eral hashtable lookups and updates, which result to

marginal overhead for a sufficient number of simultane-

ous TCP connections and the Equinix trace; about 20–

25% on the raw GPU performance sustained for packet

decoding, that increases to 45–50% when the number of

concurrent connections is low. The reason is that smaller

numbers of concurrent connections result to lower par-

allelism. To compare with a CPU implementation, we

measure the equivalent functionality of the Libnids TCP

reassembly library [6], when packets are read from mem-

ory. Although Libnids implements more specific cases of

the TCP stack processing, compared to GASPP, the net-

work traces that we used for the evaluation enforce ex-

actly the same functionality to be exercised. We can see

that the throughput of a single CPU core is 0.55 Mpps,

about 10× lower than the GPU version with all PCIe data

transfers included.
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Figure 9: Average processing throughput sustained by the GPU to (a) decode network packets, (b) maintain flow state

and reassemble TCP streams, and (c) perform various network processing operations.

Elements 1M buckets 8M buckets 16M buckets

0.1M 463 3,595 7,166

1M 463 3,588 7,173

2M 934 3,593 7,181

4M 1,924 3,593 7,177

8M 3,935 3,597 7,171

16M 7,991 7,430 7,173

32M 16,060 15,344 14,851

Table 3: Time spent (µsec) for traversing the connection

table and removing expired connections.

Removing Expired Connections. Removal of expired

connections is very important for preventing the connec-

tion table from becoming full with stale adversarial con-

nections, idle benign connections, or connections that

failed to terminate cleanly [28]. Table 3 shows the GPU

time spent for connection expiration. The time spent to

traverse the table is constant when occupancy is lower

than 100%, and analogous to the number of buckets; for

larger values it increases due to the extra overhead of it-

erating the chain lists. Having a small hash table with a

large load factor is better than a large but sparsely pop-

ulated table. For example, the time to traverse a 1M-

bucket table that contains up to 1M elements is about

20× lower than a 16M-bucket table with the same num-

ber of elements. If the occupancy is higher than 100%

though, it is slightly better to use a 16M-bucket table.

Packet Processing Applications. In this experiment

we measure the computational throughput of the GPU for

the applications presented in §6. The NIDS is configured

to use all the content patterns (about 10,000 strings)

of the latest Snort distribution [7], combined into a sin-

gle Aho-Corasick state machine, and their correspond-

ing pcre regular expressions compiled into individual

DFA state machines. The application-layer filter applica-

tion (L7F) uses the “best-quality” patterns (12 regular ex-

pressions for identifying common services such as HTTP

and SSH) of L7-filter [2], compiled into 12 different

DFA state machines. The Firewall (FW) application uses

10,000 randomly generated rules for blocking incom-

ing and outgoing traffic based on certain TCP/UDP port

numbers and IP addresses. The test traffic consists of the

HTTP-based traffic and the trace-driven Equinix work-

load described earlier. Note that the increased asymme-

try in packet lengths and network protocols in the above

traces is a stress-test workload for our data-parallel ap-

plications, given the SIMT architecture of GPUs [5].

Figure 9(c) shows the GPU throughput sustained by

each application, including PCIe transfers, when packets

are read from host memory. FW, as expected, has the

highest throughput of about 8 Mpps—about 2.3 times

higher than the equivalent single-core CPU execution.

The throughput for NIDS is about 4.2–5.7 Mpps, and

for L7F is about 1.45–1.73 Mpps. The large difference

between the two applications is due to the fact that the

NIDS shares the same Aho-Corasick state machine to

initially search all packets (as we described in §6). In

the common case, each packet will be matched only once

against a single DFA. In contrast, the L7F requires each

packet to be explicitly matched against each of the 12 dif-

ferent regular expression DFAs for both CPU and GPU

implementations. The corresponding single-core CPU

implementation of NIDS reaches about 0.1 Mpps, while

L7F reaches 0.01 Mpps. We also note that both appli-

cations are explicitly forced to match all packets of all

flows, even after they have been successfully classified

(worst-case analysis). Finally, AES has a throughput

of about 1.1 Mpps, as it is more computationally inten-

sive. The corresponding CPU implementation using the

AES-NI [4] instruction set on a single core reaches about

0.51 Mpps.2

Packet Scheduling In this experiment we measure

how the packet scheduling technique, described in §5.3,

2The CPU performance of AES was measured on an Intel Xeon

E5620 at 2.40GHz, because the Intel Xeon E5520 of our base system

does not support AES-NI.
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Figure 10: Performance gains on raw GPU execution

time when applying packet scheduling (the scheduling

cost is included).

affects the performance of different network applica-

tions. For test traffic we used the trace-driven Equinix

workload. Figure 10(a) shows the performance gain of

each application for different packet batch sizes. We note

that although the actual work of the modules is the same

every time (i.e., the same processing will be applied on

each packet), it is executed by different code blocks, thus

execution is forced to diverge.

We observe that packet scheduling boosts the per-

formance of full-packet processing applications, up to

55% for computationally intensive workloads like AES.

Memory-intensive applications, such as NIDS, have a

lower (about 15%) benefit. We also observe that gains

increase as the batch size increases. With larger batch

sizes, there is a greater range of packet sizes and pro-

tocols, hence more opportunities for better grouping.

In contrast, packet scheduling has a negative effect on

lightweight processing (as in FW, which only processes

a few bytes of each packet), because the sorting over-

head is not amortized by the resulting SIMT execu-

tion. As we cannot know at runtime if processing will

be heavyweight or not, it is not feasible to predict if

packet scheduling is worth applying. As a result, quite

lightweight workloads (as in FW) will perform worse,

although this lower performance will be hidden most of

the time by data transfer overlap (Figure 6).

Another important aspect is how control flow diver-

gence affects performance, e.g., when packets follow dif-

ferent module execution pipelines. To achieve this, we

explicitly enforce different packets of the same batch to

be processed by different modules. Figure 10(b) shows

the achieved speedup when applying packet schedul-

ing over the baseline case of mapping packets to thread

warps without any reordering (network order). We

see that as the number of different modules increases,

our packet scheduling technique achieves a significant

speedup. The speedup stabilizes after the number of

modules exceeds 32, as only 32 threads (warp size) can

run in a SIMT manner any given time. In general, code

divergence within warps plays a significant role in GPU

performance. The thread remapping achieved through
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Figure 11: Sustained traffic forwarding throughput (a)

and latency (b) for GASPP-enabled applications.

our packet scheduling technique tolerates the irregular

code execution at a fixed cost.

7.3 End-to-End Performance

Individual Applications. Figure 11 shows the sus-

tained end-to-end forwarding throughput and latency

of individual GASPP-enabled applications for different

batch sizes. We use four different traffic generators,

equal to the number of available 10 GbE ports in our

system. To prevent synchronization effects between the

generators, the test workload consists of the HTTP-based

traffic described earlier. For comparison, we also evalu-

ate the corresponding CPU-based implementations run-

ning on a single core, on top of netmap.

The FW application can process all traffic delivered

to the GPU, even for small batch sizes. NIDS, L7F,

and AES, on the other hand, require larger batch sizes.

The NIDS application requires batches of 8,192 packets

to reach similar performance. Equivalent performance

would be achieved (assuming ideal parallelization) by

28.4 CPU cores. More computationally intensive appli-

cations, however, such as L7F and AES, cannot process

all traffic. L7F reaches 19 Gbit/s a batch size of 8,192

packets, and converges to 22.6 Gbit/s for larger sizes—

about 205.1 times faster than a single CPU core. AES

converges to about 15.8 Gbit/s, and matches the perfor-
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Figure 12: Sustained throughput for concurrently run-

ning applications.

mance of 4.4 CPU cores with AES-NI support. As ex-

pected, latency increases linearly with the batch size, and

for certain applications and large batch sizes it can reach

tens of milliseconds (Figure 11(b)). Fortunately, a batch

size of 8,192 packets allows for a reasonable latency for

all applications, while it sufficiently utilizes the PCIe bus

and the parallel capabilities of the GTX480 card (Fig-

ure 11(a)). For instance, NIDS, L7F, and FW have a la-

tency of 3–5 ms, while AES, which suffers from an extra

GPU-to-host data transfer, has a latency of 7.8 ms.

Consolidated Applications. Consolidating multiple

applications has the benefit of distributing the overhead

of data transfer, packet decoding, state management, and

stream reassembly across all applications, as all these op-

erations are performed only once. Moreover, through the

use of context keys, GASPP optimizes SIMT execution

when packets of the same batch are processed by differ-

ent applications. Figure 12 shows the sustained through-

put when running multiple GASPP applications. Appli-

cations are added in the following order: FW, NIDS, L7F,

AES (increasing overhead). We also enforce packets of

different connections to follow different application pro-

cessing paths. Specifically, we use the hash of the each

packet’s 5-tuple for deciding the order of execution. For

example, a class of packets will be processed by appli-

cation 1 and then application 2, while others will be pro-

cessed by application 2 and then by application 1; even-

tually, all packets will be processed by all registered ap-

plications. For comparison, we also plot the performance

of GASPP when packet scheduling is disabled (GASPP-

nosched), and the performance of having multiple stan-

dalone applications running on the GPU and the CPU.

We see that the throughput for GASPP converges to

the throughput of the most intensive application. When

combining the first two applications, the throughput re-

mains at 33.9 Gbit/s. When adding the L7F (x=3), per-

formance degrades to 18.3 Gbit/s. L7F alone reaches

about 20 Gbit/s (Figure 11(a)). When adding AES (x=4),

performance drops to 8.5 Gbit/s, which is about 1.93×

faster than GASPP-nosched. The achieved throughput

when running multiple standalone GPU-based imple-

mentations is about 16.25× lower than GASPP, due to

excessive data transfers.

8 Limitations

Typically, a GASPP developer will prefer to port func-

tionality that is parallelizable, and thus benefit from the

GPU execution model. However, there may be parts of

data processing operations that do not necessarily fit well

on the GPU. In particular, middlebox functionality with

complex conditional processing and frequent branching

may require extra effort.

The packet scheduling mechanisms described in §5.3

help accommodate such cases by forming groups of

packets that will follow the same execution path and will

not affect GPU execution. Still, (i) divergent workloads

that perform quite lightweight processing (e.g., which

process only a few bytes from each packet, such as the

FW application), or (ii) workloads where it is not easy

to know which packet will follow which execution path,

may not be parallelized efficiently on top of GASPP. The

reason is that in these cases the cost of grouping is much

higher than the resulting benefits, while GASPP cannot

predict if packet scheduling is worth the case at runtime.

To overcome this, GASPP allows applications to selec-

tively pass network packets and their metadata to the

host CPU for further post-processing, as shown in Fig-

ure 1. As such, for workloads that are hard to build on

top of GASPP, the correct way is to implement them by

offloading them to the CPU. A limitation of this approach

is that any subsequent processing that might be required

also has to be carried out by the CPU, as the cost of trans-

ferring the data back to the GPU would be prohibitive.

Another limitation of the current GASPP implementa-

tion is its relatively high packet processing latency. Due

to the batch processing nature of GPUs, GASPP may not

be suitable for protocols with hard real-time per-packet

processing constraints.

9 Related Work

Click [19] is a popular modular software router that suc-

cessfully demonstrates the need and the importance of

modularity in software routers. Several works focus on

optimizing its performance [10, 11].

SwitchBlade [8] provides a model that allows packet

processing modules to be swapped in and out of recon-

figurable hardware without the need to resynthesize the

hardware. Orphal [18] and ServerSwitch [17] provide

a common API for proprietary switching hardware, and

leverages the programmability of commodity Ethernet

switching chips for packet forwarding. ServerSwitch

also leverages the resources of the server CPU to pro-

vide extra programmability. In order to reduce costs and

enable quick functionality updates, there is an ongoing

trend of migrating to consolidated software running on

commodity “middlebox” servers [11, 15, 22].

GPUs provide a substantial performance boost to

many network-related workloads, including intrusion
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detection [13, 24, 26] cryptography [14], and IP rout-

ing [12]. Many recent works also deal with GPU re-

source management in the OS [16, 21]. GPUfs [23] en-

hances the API available to GPU code, allowing GPU

software to access host files directly. Finally, software

mechanisms for tackling irregularities in both control

flows and memory references have been proposed [29].

10 Conclusion

We have presented the design, implementation, and

evaluation of GASPP, a flexible, efficient, and high-

performance framework for network traffic processing

applications. GASPP explores the design space of com-

bining the massively parallel architecture of GPUs with

10GbE network interfaces, and enables the easy integra-

tion of user-defined modules for execution at the cor-

responding L2–L7 network layers. GASPP has been

implemented using solely commodity, inexpensive com-

ponents, and our development experiences further show

that GASPP is easy to program using the C/CUDA lan-

guage. We have used our framework to develop repre-

sentative traffic processing applications, including intru-

sion detection and prevention systems, packet encryption

applications, and traffic classification tools.

As part of our future work, we plan to investigate fur-

ther how to schedule module execution on the CPU, and

how these executions will affect the overall performance

of GASPP. We also plan to implement an opportunis-

tic GPU offloading scheme, whereby packets with hard

real-time processing constraints will be handled by the

host CPU instead of the GPU to reduce latency.
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Abstract
The operational challenges posed in enterprise net-

works present an appealing opportunity for automated
orchestration by way of Software-Defined Networking
(SDN). The primary challenge to SDN adoption in the
enterprise is the deployment problem: How to deploy
and operate a network consisting of both legacy and SDN
switches, while benefiting from simplified management
and enhanced flexibility of SDN.

This paper presents the design and implementation of
Panopticon, an architecture for operating networks that
combine legacy and SDN switches. Panopticon exposes
an abstraction of a logical SDN in a partially upgraded
legacy network, where SDN benefits can extend over the
entire network. We demonstrate the feasibility and eval-
uate the efficiency of our approach through both testbed
experiments with hardware switches and through simula-
tion on real enterprise campus network topologies entail-
ing over 1500 devices. Our results suggest that when as
few as 10% of distribution switches support SDN, most
of an enterprise network can be operated as a single SDN
while meeting key resource constraints.

1 Introduction
Software-Defined Networking (SDN) has the potential
to provide a principled solution to both simplify man-
agement and enhance flexibility of the network. SDN
is a paradigm that offers a programmatic, logically-
centralized interface for specifying the intended network
behavior. Through this interface, a software program acts
as a network controller by configuring forwarding rules
on switches and reacting to topology and traffic changes.

While commercial SDN deployment started within
data-centers [19] and the WAN [11], the roots of today’s
SDN arguably go back to the policy management needs
of enterprise networks [4, 5]. In this paper, we focus on
mid to large enterprise networks, i.e., those serving hun-
dreds to thousands of users, whose infrastructure is phys-
ically located at a locally-confined site. We choose this

environment due to its complexity as well as the practical
benefits that SDN network orchestration promises.

Enterprises stand to benefit from SDN on many dif-
ferent levels, including: (i) network policy can be de-
clared over high-level names and enforced dynamically
at fine levels of granularity [4, 8, 22], (ii) policy can dic-
tate the paths over which traffic is directed, facilitating
middlebox enforcement [28] and enabling greater net-
work visibility, (iii) policy properties can be verified for
correctness [15, 16], and (iv) policy changes can be ac-
complished with strong consistency properties, eliminat-
ing the chances of transient policy violations [30].

Existing enterprises that wish to leverage SDN how-
ever, face the problem of how to deploy it. SDN is not a
“drop-in” replacement for the existing network: SDN re-
defines the traditional, device-centric management inter-
face and requires the presence of programmable switches
in the data plane. Consequently, the migration to SDN
creates new opportunities as well as notable challenges:
Realizing the benefits. In the enterprise, the bene-
fits of SDN should be realized as of the first deployed
switch. Consider the example of Google’s software-
defined WAN [11], which required years to fully de-
ploy, only to achieve benefits after a complete overhaul
of their switching hardware. For enterprises, it is undesir-
able, and we argue, unnecessary to completely overhaul
the network infrastructure before realizing benefits from
SDN. An earlier return on investment makes SDN more
appealing for adoption.
Eliminating disruption while building confidence.
Network operators must be able to incrementally deploy
SDN technology in order to build confidence in its reli-
ability and familiarity with its operation. Without such
confidence, it is risky and undesirable to replace all pro-
duction control protocols with an SDN control plane
as a single “flag-day” event, even if existing deployed
switches already support SDN programmability. To in-
crease its chances for successful adoption, any network
control technology, including SDN, should allow for a

1
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small initial investment in a deployment that can be grad-
ually widened to encompass more and more of the net-
work infrastructure and traffic.
Respecting budget and constraints. Rather than a
green field, network upgrade starts with the existing de-
ployment and is typically a staged process—budgets are
constrained, and only a part of the network can be up-
graded at a time.

To address these challenges, we present Panopticon,
a novel architecture for realizing an SDN control plane
in a network that combines legacy switches and routers
with SDN switches that can be incrementally deployed.
We call such networks transitional networks. Panopticon
abstracts the transitional network into a logical SDN, ex-
tending SDN capabilities potentially over the entire net-
work. As an abstraction layer, Panopticon is responsible
for hiding the legacy devices and acting as a “network
hypervisor” that maps the logical SDN abstraction to the
underlying hardware. In doing so, Panopticon overcomes
key limitations of current approaches for transitional net-
works, which we now briefly review.

1.1 Current Transitional Networks
We begin with the “dual-stack” approach to transitional
or “hybrid” SDN, shown in Figure 1a, where the flow-
space is partitioned into several disjoint slices and traf-
fic is assigned to either SDN or legacy processing [21].
To guarantee that an SDN policy applies to any arbitrary
traffic source or destination in the network, the source or
destination must reside at an SDN switch. Traffic within
a flow-space not handled by SDN forwarding and traf-
fic that never traverses an SDN switch may evade policy
enforcement, making a single SDN policy difficult to re-
alize over the entire network.

In summary, this mode’s prime limitation is that it does
not rigorously address how to realize the SDN control
plane in a partial SDN deployment scenario, nor how
to operate the resulting mixture of legacy and SDN de-
vices as an SDN. It thus requires a contiguous deploy-
ment of hybrid programmable switches to ensure SDN
policy compliance when arbitrary sources and destina-
tions must be policy-enforced.

The second approach (Figure 1b) involves deploying
SDN at the network access edge [6]. This mode has the
benefit of enabling full control over the access policy and
the introduction of new network functionality at the edge,
e.g., network virtualization [19]. Unlike a data-center
environment where the network edge may terminate at
the VM hypervisor, the enterprise network edge termi-
nates at an access switch. At the edge of an enterprise
network, to introduce new functionalities not accommo-
dated by existing hardware involves replacing thousands
of access switches. This mode of SDN deployment also
limits the ability to apply policy to forwarding decisions
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Figure 1: Current transitional network approaches vs. Pan-
opticon: (a) Dual-stack ignores legacy and SDN integra-
tion. (b) Full edge SDN deployment enables end-to-end
control. (c) Panopticon partially-deployed SDN yields an
interface that acts like a full SDN deployment.

within the network core (e.g., load balancing, waypoint
routing).

1.2 Panopticon
Panopticon realizes an SDN control plane for incremen-
tally deployable software-defined networks. Our main
insight is that the benefits of SDN to enterprise networks
can be realized for every source-destination path that in-
cludes at least one SDN switch. Thus, we do not man-
date a full SDN switch deployment—a small subset of all
switches may suffice. Conceptually, a single SDN switch
traversed by each path is sufficient to enforce end-to-end
network policy (e.g., access control). Moreover, traffic
which traverses two or more SDN switches may be con-
trolled at finer levels of granularity enabling further cus-
tomized forwarding (e.g., traffic load-balancing).

Based on this insight, we devise a mechanism
called the Solitary Confinement Tree (SCT), which
uses VLANs to ensure that traffic destined to operator-
selected switchports on legacy devices passes through at
least one SDN switch. Combining mechanisms readily
available in legacy switches, SCTs correspond to a span-
ning tree connecting each of these switchports to SDN
switches, overcoming VLAN scalability limitations.

Just as many enterprise networks regularly divert traf-
fic to traverse a VLAN gateway or a middlebox, a natu-
ral consequence of redirecting traffic to SDN switches is
an increase in certain path lengths and link utilizations.
As we discuss later (§4), deployment planning requires
careful consideration to mind forwarding state capaci-
ties and to avoid introducing performance bottlenecks.
Consequently, Panopticon presents operators with var-
ious resource-performance trade-offs, e.g., between the
size and fashion of the partial SDN deployment, and the
consequences for the traffic.

As opposed to the dual-stack approach, Panopticon
(Figure 1c) abstracts away the partial and heteroge-
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neous deployment to yield a logical SDN. As we rea-
son later (§ 2.4), many SDN control paradigms can be
achieved in a logical SDN. Panopticon enables the ex-
pression of any end-to-end policy, as though the network
were one big, virtual switch. Routing and path-level pol-
icy, e.g., traffic engineering can be expressed too [2],
however the abstract network view is reduced to just the
deployed SDN switches. As more of the switches are
upgraded to support SDN, more fine-grained path-level
policies can be expressed.

In summary, we make the following contributions:

1. We design a network architecture for realizing an
SDN control plane in a transitional network (§ 2),
including a scalable mechanism for extending SDN
capabilities to legacy devices.

2. We demonstrate the system-level feasibility of our
approach with a prototype (§ 3).

3. We conduct a simulation-driven feasibility study
and a traffic performance emulation study using
real enterprise network topologies (with over 1500
switches) and traffic traces (§ 4).

2 Panopticon SDN Architecture
This section presents the Panopticon architecture, which
abstracts a transitional network, where not every switch
supports SDN, into a logical SDN. The goal is to en-
able an SDN programming interface, for defining net-
work policy, which can be extended beyond the SDN
switches to ports on legacy switches as well.

Our architecture relies on certain assumptions under-
lying the operational objectives within enterprise net-
works. To verify these, we conducted five in-person in-
terviews with operators from both large (≥10,000 users)
and medium (≥500 users) enterprise networks and later,
solicited 60 responses to open-answer survey questions
from a wider audience of network operators [20].

Based on our discussions with network operators, and
in conjunction with several design guidelines (e.g., see
[7, 13]), we make the following assumptions about mid
to large enterprise networks and hardware capabilities.
Enterprise network hardware consists primarily of Eth-
ernet bridges, namely, switches that implement standard
L2 mechanisms (i.e., MAC-based learning and forward-
ing, and STP) and support VLAN (specifically, 802.1Q
and per-VLAN STP). Routers or L3 switches are used
as gateways to route between VLAN-isolated IP subnets.
For our purposes, we assume a L3 switch is also capable
of operating as a L2 switch. In addition, we assume that
enterprises no longer intentionally operate “flood-only”
hub devices for general packet forwarding.

Under these assumptions about legacy enterprise net-
works, Panopticon can realize a broad spectrum of log-
ical SDNs: Panopticon can extend SDN capabilities to
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every SDNc (SDN-controlled) port overlaid on the physical
topology. (b) Corresponding logical view of all SDNc ports,
connected to SDN switches via pseudo-wires.

potentially every switchport in the network, however not
every port need be included in the logical SDN. We en-
vision an operator may conservatively choose to deploy
Panopticon only in part of the network at first, to build
confidence and reduce up-front capital expenditure, and
then iteratively expand the deployment.

To accommodate iterative expansion of the logical
SDN, we divide the set of switchports in the network into
SDN-controlled (SDNc) ports, that is, those that need to
be exposed to and controlled through the logical SDN
and legacy ports, those that are not. Note that while an
SDNc port is conceptually an access port to the logical
SDN network, it is not necessarily physically located on
an SDN switch (see port A in Figure 2): It may be con-
nected to an end-host or a legacy access switch.

We extend SDN capabilities to legacy switches by en-
suring that all traffic to or from an SDNc port is always
restricted to a safe end-to-end path, that is, a path that
traverses at least one SDN switch. We call this key prop-
erty of our architecture Waypoint Enforcement. The chal-
lenge to guaranteeing Waypoint Enforcement is that we
may rely only on existing mechanisms and features read-
ily available on legacy switches.

2.1 Realizing Waypoint Enforcement
Panopticon uses VLANs to restrict forwarding and guar-
antee Waypoint Enforcement, as these are ubiquitously
available on legacy enterprise switches. To conceptu-
ally illustrate how, we first consider a straightforward,
yet impractical scheme: For each pair of ports which in-
cludes at least one SDNc port, choose one SDN switch as
the waypoint, and compute the (shortest) end-to-end path
that includes the waypoint. Next, assign a unique VLAN
ID to every end-to-end path and configure the legacy
switches accordingly. This ensures that all forwarding
decisions made by every legacy switch only send packets
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along safe paths. However, such a solution is infeasible,
as VLAN ID space is limited to 4096 values, and often
fewer are supported in hardware for simultaneous use.
Such a rigid solution furthermore limits path diversity to
the destination according and cripples fault tolerance.
Solitary Confinement Trees. To realize guaranteed
Waypoint Enforcement in Panopticon, we introduce the
concept of a Solitary Confinement Tree (SCT): a scalable
Waypoint Enforcement mechanism that provides end-to-
end path diversity. We first introduce the concepts of cell
block and frontier. Intuitively, the role of a cell block is
to divide the network into isolated islands where VLAN
IDs can be reused. The border of a cell block consists of
SDN switches and is henceforth called the frontier.

Definition 1 (Cell Blocks). Given a transitional network
G, Cell Blocks CB(G) is defined as the set of connected
components of the network obtained after removing from
G the SDN switches and their incident links.

Definition 2 (Frontier). Given a cell block c ∈ CB(G),
we define the Frontier F (c) as the subset of SDN
switches that are adjacent in G to a switch in c.

Intuitively, the solitary confinement tree is a spanning
tree within a cell block, plus its frontier. Each SCT pro-
vides a safe path from an SDNc port π to every SDN
switch in its frontier—or if VLAN resources are scarce,
a subset of its frontier, which we call the active frontier.
A single VLAN ID can then be assigned to each SCT,
which ensures traffic isolation, provides per-destination
path diversity, and allows VLAN ID reuse across cell
blocks. Formally, we define SCT s as:

Definition 3 (Solitary Confinement Tree). Let c(π) be
the cell block to which an SDNc port π belongs. And
let ST(c(π)) denote a spanning tree on c(π). Then, the
Solitary Confinement Tree SCT(π) is the network ob-
tained by augmenting ST(c(π)) with the (active) fron-
tier F (c(π)), together with all links in c(π) connecting
a switch u ∈ F (c(π)) with a switch in SCT(π).

Example. Let us consider the example transitional net-
work of eight switches in Figure 2a. In this example,
SCT (A) is the tree that consists of the paths 5 → 1 → 2
and 5 → 3 → 4. Instead note that SCT (B), which corre-
sponds to the path 6 → 2, includes a single SDN switch
because switch 2 is the only SDN switch adjacent to cell
block c(B). Figure 2b shows the corresponding logical
view of the transitional network enabled by having SCTs.
In this logical view, every SDNc port is connected to at
least one frontier SDN switch via a pseudo-wire (realized
by the SCT).

2.2 Packet Forwarding in Panopticon
We now illustrate Panopticon’s basic forwarding behav-
ior (Figure 3). As in any SDN, the control application is
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Figure 3: The forwarding path between A and B goes via
the frontier shared by SCT (A) and SCT (B); the path be-
tween A and C goes via an Inter-Switch Fabric path con-
necting SCT (A) and SCT (C).

responsible for installing the necessary forwarding state
at the SDN switches (e.g., in accordance with the access
policy) and for reacting to topology changes (fault toler-
ance is discussed in § 2.3).

Let us first consider traffic between a pair of SDNc
ports s and t. When a packet from s enters SCT(s), the
legacy switches forward the packet to the frontier based
on MAC-learning, which establishes a symmetric path.
Note that a packet from s may use a different path within
SCT(s) to the frontier for each distinct destination. Once
traffic toward t reaches its designated SDN switch u ∈
F (c(s)), one of two cases arises:
SDN switches act as VLAN gateways. This is the case
when the destination SDNc port t belongs to a cell block
whose frontier F (c(t)) shares at least one switch u with
F (c(s)). Switch u acts as the designated gateway be-
tween SCT(s) and SCT(t), that is, u rewrites the VLAN
tag and places the traffic within SCT(t). For instance, in
the example of Figure 2a, switch 2 acts as the gateway
between ports A, B and C.
Inter-Switch Fabric (ISF). When no SDN switch is
shared, we use an Inter-Switch Fabric (ISF) path: point-
to-point tunnels between SDN switches which can be re-
alized e.g., with VLANs or GRE. In this case, the switch
u chooses one of the available paths to forward the packet
to an SDN switch w ∈ F (c(t)), where w is the desig-
nated switch for the end-to-end path p(s, t). In our ex-
ample of Figure 2a, ISF paths are shown in gray and are
used e.g., for traffic from B or C to E or F , and vice versa.

We next turn to the forwarding behavior of legacy
ports. Again, we distinguish two cases. First, when
the path between two legacy ports only traverses the
legacy network, forwarding is performed according to
the traditional mechanisms and is unaffected by the par-
tial SDN deployment. Policy enforcement and other op-
erational objectives must be implemented through tradi-
tional means, e.g., ACLs. In the second case, anytime a
path between two legacy ports necessarily encounters an
SDN switch, the programmatic forwarding rules at the
switch can be leveraged to police the traffic. This is also
the case for all traffic between any pair of an SDNc and a
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legacy port. In other words, Panopticon always guaran-
tees safe paths for packets from or to every SDNc port,
which we formally prove in the technical report [20].

2.3 Architecture Discussion
Having described all components of the architecture, we
now discuss certain key properties.
Key SCT properties. Recall that one VLAN ID is
used per SCT and that VLAN IDs can be reused across
Cell Blocks. Limiting the size of the active frontier al-
lows further VLAN ID reuse across fully-disjoint SCTs
within the same cell block. A different path may be used
within the SCT for each distinct destination. SCTs can
be precomputed and automatically installed onto legacy
switches (e.g.via SNMP) however, re-computation is re-
quired when the physical topology changes.
ISF path diversity trade-offs. Within the ISF, there
may be multiple paths between any given pair of SDN
switches. We expect that some applications may require
a minimum number of paths. A minimum of two dis-
joint paths is necessary, to tolerate single link failures. If
the ISF is realized using a VLAN-based approach, each
path consumes a VLAN ID from every cell block it tra-
verses. Alternative mechanisms, e.g., IP encapsulation or
network address translation can be used to implement the
ISF depending on SDN and legacy hardware capabilities.
Coping with broadcast traffic. Broadcast traffic can
be a scalability concern. We take advantage of the fact
that each SCT limits the broadcast domain size, and we
rely on SDN capabilities to enable in-network ARP and
DHCP proxies as shown in [17]. We focus on these im-
portant bootstrapping protocols as it was empirically ob-
served that broadcast traffic in enterprise networks is pri-
marily contributed by ARP and DHCP [17, 26]. Last,
we note that in the general case, if broadcast traffic must
be supported, the overhead that Panopticon introduces
is proportional to the number of SCTs in a cell block,
which, at worst, grows linearly with the number of SDNc
ports of a cell block.
Tolerating failures. We decompose fault tolerance into
three orthogonal aspects. First, within an SCT, Panopti-
con relies on standard STP mechanisms to survive link
failures, although to do so, there must exist sufficient
physical link redundancy in the SCT. The greater the
physical connectivity underlying the SCT, the higher the
fault tolerance. Additionally, the coordination between
SDN controller and legacy STP mechanisms allows for
more flexible fail-over behavior than STP alone. When
an SDN switch at the frontier F of an SCT notices an
STP re-convergence, we can adapt the forwarding deci-
sions at F ’s SDN switches to restore connectivity. A
similar scheme can address link failures within the ISF.

Second, when SDN switches or their incident links
fail, the SDN controller recomputes the forwarding state

and installs the necessary flow table entries. Further-
more, precomputed fail-over behavior can be leveraged
as of OpenFlow version 1.1 [29].

Third, the SDN control platform must be robust and
available. In this respect, previous work [18] demon-
strates that well-known distributed systems techniques
can effectively achieve this goal.

2.4 Realizing SDN Benefits
By now, we have described how Panopticon shifts the ac-
tive network management burden away from the legacy
devices and onto the SDN control plane. This conceptu-
ally reduces the network to a logical SDN as presented
in Figure 2b. Consequently, we want to be able to reason
about what types of policy can be specified and which ap-
plications can be realized in such a transitional network.

Panopticon exposes an SDN abstraction of the under-
lying partial SDN deployment. In principle, any control
application that runs on a full SDN can be supported in
Panopticon since, from the perspective of the application,
the network appears as though it is a full SDN deploy-
ment consisting of just the SDN switches. In practice,
there are a small number of caveats.
SDNc ports in the logical SDN. An SDNc port in Pan-
opticon is not necessarily physically located at an SDN
switch, and it may be attached to multiple SDN switches.
Accordingly, the SDN controller must take into account
that each SDNc port may be reached from its frontier
via multiple paths. Furthermore, visibility into how re-
sources are shared on legacy links can not be guaranteed.
Logical SDN vs. full SDN. As an abstraction layer,
Panopticon is responsible for hiding the legacy devices
and acts as a “network hypervisor” that maps the logical
SDN abstraction to the underlying hardware (similar to
the concept of network objects in Pyretic [22]). How-
ever, because the global network view is reduced to the
set of SDN switches, applications are limited to control
the forwarding behavior based on the logical SDN. This
should not be viewed strictly as a limitation, as it may be
desirable to further abstract the entire network as a sin-
gle virtual switch over which to define high-level poli-
cies (e.g., access policy) and have the controller platform
manage the placement of rules on physical switches [14].
Nevertheless, the transitional network stands to benefit in
terms of management simplification and enhanced flexi-
bility as we next illustrate.
More manageable networks. Arguably, as control over
isolation and connectivity is crucial in the enterprise con-
text we consider, the primary application of SDN is pol-
icy enforcement. As in Ethane [4], Panopticon enables
operators to define a single network-wide policy, and the
controller enforces it dynamically by allowing or pre-
venting communication upon seeing the first packet of
a flow as it tries to cross an SDN switch.
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The big switch [14] abstraction enables the network
to support Ethernet’s plug-and-play semantics of flat ad-
dressing and, as such, simplifies the handling of host
mobility. This can be observed from the fact that our
architecture is an instance of the fabric abstraction [6].
The ISF represents the network core and SCTs realize
the edge. At the boundary between the SCTs and ISF,
the SDN switches enable the decoupling of the respec-
tive network layers, while ensuring scalability through
efficient routing in the ISF.
More flexible networks. The controller maintains the
global network view and performs route computation for
permitted flows. This provides the opportunity to effi-
ciently enforce middlebox-specific traffic steering within
the SDN-based policy enforcement layer, as in SIM-
PLE [28]. Integrating middleboxes in Panopticon re-
quires that middleboxes are connected to SDNc ports.

A logical SDN also enables the realization of strong
consistency semantics for policy updates [30]. Although
legacy switches do not participate in the consistent net-
work update, at the same time, they do not themselves
express network policy—as that forwarding state resides
exclusively on SDN switches.

Putting it all together, Panopticon is the first architec-
ture to realize an approach for operating a transitional
network as though it were a fully deployed SDN, yield-
ing benefits for the entire network, not just the devices
that support SDN programmability.

3 Panopticon Prototype
To cross-check certain assumptions on which Panopti-
con is built, this section describes our implementation
and experimental evaluation of a Panopticon prototype.
The primary goal of our prototype is to demonstrate fea-
sibility for legacy switch interaction–namely, the ability
to leverage path diversity within each SCT, and respond
to failure events and other behaviors within the SCT.

Our prototype is implemented upon the POX Open-
Flow controller platform [1] and comprises two modules:
path computation and legacy switch interaction.
Path computation. At the level of the logical SDN,
our path computation module is straightforward: it re-
acts to the first packet of every flow and, if the flow
is permitted, it uses the global network view to deter-
mine the shortest path to the destination. Consequently,
it installs the corresponding forwarding rules. Our im-
plementation supports two flow definitions: (1) the ag-
gregate of packets between a pair of MAC addresses,
and (2) the micro-flow, i.e., IP 5-tuple. As each SDNc
port may be reached over multiple paths from the SDN
switches on its frontier, our prototype takes into account
the behavior of STP within the SCT (monitored by the
component below) to select the least-cost path based on
source-destination MAC pair.

Legacy switch interaction. The Spanning Tree Proto-
col (STP) or a variant such as Rapid STP, is commonly
used to achieve loop freedom within L2 domains and we
interact with STP in two ways. First, within each SCT,
we configure a per-VLAN spanning tree protocol (e.g.,
Multiple STP) rooted at the switch hosting the SCT’s
SDNc port. We install forwarding rules at each SDN
switch to redirect STP traffic to the controller, which in-
terprets STP messages to learn the path cost between any
switch on the frontier and the SCT’s SDNc port, but does
not reply with any STP messages. Collectively, this be-
havior guarantees that each SCT is loop free. When this
component notices an STP re-convergence, it notifies the
path computation module, which in turn adapts the for-
warding decisions at SDN switches to restore connectiv-
ity as necessary. Second, to ensure network-wide loop
freedom for traffic from legacy ports, SDN switches be-
have as ordinary STP participants. When supported, this
is achieved by configuring STP on the switches them-
selves. Otherwise, Panopticon can run a functionally
equivalent implementation of STP.

3.1 Application: Consistent Updates
To showcase the “logical SDN” programming interface
exposed by Panopticon, we have implemented per-packet
consistency [30] for transitional networks. Our applica-
tion allows an operator to specify updates to the link state
of the network, while ensuring that the safety property of
per-packet consistency applies over the entire network,
even to legacy switches.

To implement this application, we modify the path
computation to assign a unique configuration version
number to every shortest path between SDNc ports. This
version number is used to classify packets according to
either the current or the new configuration.

When the transition from current to new configura-
tion begins, the controller starts updating all the SDN
switches along the shortest path for both the forward and
backward traffic. This update includes installing a new
forwarding rule and using the IP TOS header field (i.e., in
a monotonically increasing fashion) to encode or match
the version number. The rules for the old configuration
with the previous version number, if there are any, are
left in place and intact. This procedure guarantees that
any individual packet traversing the network sees only
the “old” or “new” policy, but never both.

Once all the rules for the new configuration are in
place at every switch, gratuitous ARP messages are sent
over to the legacy switches along the new path so that
the traffic is re-routed. After a operator-defined grace-
period, when the last in-flight packet labeled with the
“old” tag leaves the network, the controller deletes the
old configuration rules from all the SDN switches, and
the process completes.
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3.2 Evaluation
Our prototype is deployed on a network of hard-
ware switches comprising two NEC IP8800 OpenFlow
switches and one Cisco C3550XL, three Cisco C2960G,
and two HP 5406zl MAC-learning Ethernet switches, in-
terconnected as in Figure 2a. To emulate 6 hosts (A
through F), we use an 8-core server with an 8-port 1Gbps
Ethernet interface which connects to each SDNc port on
the legacy switches depicted in the figure. Two remain-
ing server ports connect to the OpenFlow switches for an
out-of-band control channel.

We conduct a first experiment to demonstrate how
Panopticon recovers from an STP re-convergence in an
SCT, and adapts the network forwarding state accord-
ingly. We systematically emulate 4 link failure scenarios
between links (5,1) and (1,2) by disabling the respective
source ports of each directed link. Host A initiates an
iperf session over switch 2 to host D. After 10 seconds
into the experiment, a link failure is induced, triggering
an STP re-convergence. The resulting BDPU updates
are observed by the controller and connectivity to host
D is restored over switch 4. Figure 4a shows the elapsed
time between the last received segment and first retrans-
mitted packet over 10 repetitions and demonstrates how
Panopticon quickly restores reachability after the failure
event. Interestingly, we observe that Panopticon reacts
faster to link changes detected via STP reconvergence
(e.g., sw5 to sw1) than to link changes at the OpenFlow
switches themselves (sw1 to sw2), since our particular
switches appear to briefly, internally delay sending those
event notifications.

We next conduct a second experiment to explore how
the SCT impacts the performance of a BitTorrent file
transfer conducted among the hosts attached to SDNc
ports. In this experiment, we begin by seeding a 100MB
file at one host (A through F), in an iterative fashion.
All other hosts are then initialized to begin simultane-
ously downloading the file from the seeder and amongst
one another. We repeat each transfer 10 times, and mea-
sure the time for each host to complete the transfer. We
then compare each time with an identical transfer in a L2
spanning tree topology. Figure 4b, illustrates that some
of the hosts (i.e., A and D) are able to leverage the multi-
path forwarding of their SCTs to finish sooner. Others,
e.g., B and C experience longer transfer times, as their
traffic shares the same link to their frontier switch.

4 Incremental SDN Deployment
Panopticon makes no assumptions about the number of
SDN switches or their locations in a partial SDN deploy-
ment. However, under practical resource constraints, an
arbitrary deployment may make the feasibility of the log-
ical SDN abstraction untenable, as the flow table capac-
ities at the SDN switches and the availability of VLAN
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Figure 4: Testbed experiments: (a) Panopticon recovers
from link failure within seconds. (b) Panopticon enables
path diversity but also increases load on some links.

IDs on legacy switches are limited.
Beyond feasibility, the SDN deployment also influ-

ences network performance. By ensuring Waypoint En-
forcement, SDN switches may become choke points that
increase path lengths and link loads, in some cases be-
yond admissible values. Deployment planning therefore
becomes a necessity.

4.1 Deployment Planning
Deciding the number and location of SDN switches
to deploy can be viewed as an optimization problem
wherein the objective is to yield a good trade-off between
performance and costs subject to feasibility. We envision
that a tool with configurable parameters and optimization
algorithms may assist operators in planning the deploy-
ment by answering questions such as “What is the mini-
mal number of SDN switches needed to support all ports
as SDNc ports?” or “Which switches should be first up-
graded to SDN to reduce bottleneck link loads?”

In a companion technical report of this paper [20], we
present a general integer programming algorithm to com-
pute a partial SDN deployment optimized for different
objective functions and resource constraints. This al-
gorithm can assist operators in upgrading the network,
starting from a legacy network or one that is already par-
tially upgraded.

We observe however that specific objectives and con-
straints for planning an SDN deployment are likely to
depend on practical contextual factors such as hardware
life-cycle management, support contracts and SLAs,
long-term demand evolution and more. Unfortunately,
these factors are rather qualitative, vary across environ-
ments, and are hard to generalize.

Instead, we reason more generally about how deploy-
ment choices influence feasibility and performance of
our approach. To navigate the deployment problem space
without the need to account for all contextual factors, we
focus on a few general properties of desirable solutions:
(i) Waypoint Enforcement: Every path to or from an
SDNc port must traverse at least one SDN switch.
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Site Access/Dist/Core max/avg/min degree
LARGE 1296 / 412 / 3 53 / 2.58 / 1
EMULATED 489 / 77 / 1 30 / 6.3 / 1
MEDIUM – / 54 / 3 19 / 1.05 / 1
SMALL – / 14 / 2 15 / 3 / 2

Table 1: Evaluated network topology characteristics.

(ii) Feasible: SDN switches must have sufficient for-
warding state to support all traffic policies they must
enforce. VLAN requirements to realize SCTs must be
within limits.
(iii) Efficient: The resulting traffic flow allocations
should be efficient. We reason about efficiency using two
metrics: The first metric is the path stretch, which we de-
fine for a given path (s, t) as the ratio between the length
of the path under Waypoint Enforcement and the length
of the shortest path in the underlying network. The sec-
ond metric is the expected maximum load on any link.

4.2 Simulation-assisted Study
To explore feasibility and efficiency of Panopticon, we
simulate different partial SDN deployment scenarios us-
ing real network topologies under different resource con-
straints and traffic conditions. These simulations let us
(i) evaluate the feasibility space of our architecture, (ii)
explore the extent to which SDN control extends to the
entire network, and (iii) understand the impact of partial
SDN deployment on link utilization and path stretch.

4.2.1 Methodology

To simulate Panopticon deployment, we first choose net-
work topologies with associated traffic estimates and re-
source constraints.
Topologies. Detailed topological information, includ-
ing device-level configurations, link capacities, and end-
host placements is difficult to obtain for sizeable net-
works: operators are reluctant to share these details due
to privacy concerns. Hence, we leverage several pub-
licly available enterprise network topologies [34,38] and
the topology of a private, local large-scale campus net-
work. The topologies range from SMALL, comprising
just the enterprise network backbone, to a MEDIUM net-
work with 54 distribution switches, to a comprehensive
large-scale campus topology derived from anonymized
device-level configurations of 1711 L2 and L3 switches.
Summary information on the topologies is given in Ta-
ble 1. Every link in each topology is annotated with
its respective capacity. We treat port-channels (bundled
links), as a single link of its aggregate capacity.

Simulation results on the SMALL and MEDIUM net-
work gave us early confidence in our approach, however
their limited size does not clearly demonstrate the most
interesting design trade-offs. Thus, we only present sim-
ulation results for LARGE.

Focus on distribution switches. In our approach,
we distinguish between access switches, distribution
switches, and core switches. Access switches are iden-
tified both topologically, as well as from device-level
configuration metadata. Core switches are identified as
multi-chassis devices, running a L3 routing protocol.
Due to their topological location, SCT construction to
core switches becomes challenging, thus, we focus on
distribution switches (in the following referred to as the
candidate set for the upgrade). In case of the LARGE
network, this candidate set has cardinality 412 of which,
95 devices are identified as L3 switches (running OSPF
or EIGRP). Within this distribution network, we rea-
son about legacy distribution-layer switchports as can-
didates to realize SDNc ports, subject to Waypoint En-
forcement. Each distribution-layer switchport leads to
an individual access-layer switch to which end-hosts are
attached. Thus, we identify 1296 candidate SDNc ports.
Unless otherwise noted, we construct SCTs connecting
each SDNc port to its full frontier.
Traffic estimates. We use a methodology similar to
that applied in SEATTLE [17] to generate a traffic ma-
trix based on packet-level traces from an enterprise cam-
pus network, the Lawrence Berkeley National Labora-
tory (LBNL) [26]. The LBNL dataset contains more
than 100 hours of anonymized packet level traces of ac-
tivity of several thousands of internal hosts. The traces
were collected by sampling all internal switchports pe-
riodically. We aggregate the recorded traffic according
to source-destination pairs and for each sample, we esti-
mate the load imposed on the network. We note that the
data contains sources from 22 subnets.

To project the load onto our topologies, we use the
subnet information from the traces to partition each of
our topologies into subnets as well. Each of these sub-
nets contains at least one distribution switch. In addition,
we pick one node as the Internet gateway. We associate
traffic from each subnet of the LBNL network in random
round-robin fashion to candidate SDNc ports. All traffic
within the LBNL network is aggregated to produce the
intra-network traffic matrix. All destinations outside of
the LBNL network are assumed to be reachable via the
Internet gateway and thus mapped to the chosen gateway
node. By running 10 different random port assignments
for every set of parameters, we generate different traffic
matrices, which we use in our simulations. Still, before
using a traffic matrix we ensure that the topology is able
to support it. For this purpose we project the load on the
topology using shortest path routes, and scale it conser-
vatively, such that the most utilized gigabit link is at 50%
of its nominal link capacity.
Resource constraints. Although the maximum num-
ber of VLAN IDs expressible in 802.1Q is 4096, most
mid- to high-end enterprise network switches support
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Figure 5: Percentage of SDNc ports as a function of deployed SDN switches, under different VLAN availability. When more
VLANs are supported by legacy devices, more SDNc ports can be realized with fewer SDN switches.

512-1024 VLAN IDs for simultaneous use. Accordingly,
we focus on simulating scenarios where legacy switches
support at most 256, 512, and 1024 simultaneous VLAN
IDs. While first generation OpenFlow capable switches
were limited to around 1K flow table entries many cur-
rent switches readily support from 10K to 100K entries
for exact and wild-card matching. Bleeding edge devices
support up to 1M flow table entries [25]. To narrow our
parameter space, we fix the flow table capacity of our
SDN switches to 100k entries, and vary the average num-
ber of rules required to realize policy for a single SDNc
port from 10 to 20. We furthermore ensure that every
SDN switch maintains at all times both policy and ba-
sic forwarding state (one entry per SDNc port reached
through that switch) to ensure all-to-all reachability in
the absence of any policy. We note, this is a conserva-
tive setting; by comparison, if flow table entries were
kept only in the temporal presence of their respective,
active source-destination traffic in the LBNL dataset, the
maximum number of entries would never exceed 1,200
flows/s [4].

4.2.2 Switch Deployment Strategies

Given our topology and traffic estimates, we next ex-
plore how SDN switch deployment influences feasibil-
ity and performance. We study this through a simple yet
effective deployment heuristic inspired by classical tech-
niques such as Facility Location, called VOL.

VOL iteratively selects one legacy switch to be re-
placed at a time, in decreasing order of switch egress
traffic volume. SDNc candidate ports are then accom-
modated in the following greedy fashion: SDNc ports
from the previous iteration are accommodated first (we
initially iterate over a random permutation of SDNc can-
didates). An SCT is constructed to the active frontier,
whose size, chosen by the designer, defines a feasibility-
efficiency trade-off we investigate later. If an SCT can be
created, designated SDN switches from the active fron-
tier are selected for each destination port, and flow table
entries are allocated. If flow table policy is accommo-
dated, the traffic matrix is consulted and traffic is pro-
jected from the candidate port to every destination along

each waypoint-enforced path. When no link exceeds its
maximum utilization (or safety threshold value), the port
is considered SDNc. The remaining SDNc candidates
are then tried and thereafter, the next SDN switch can-
didate is deployed and the process repeats. As VOL is a
greedy algorithm and does not backtrack, it may termi-
nate prior to satisfying all SDNc candidates, despite the
existence of a feasible solution.

For comparison, we make use of RAND, which itera-
tively picks a legacy switch uniformly at random, subject
to VLAN, flow table, and link utilization constraint satis-
faction. RAND allows us to evaluate the sensitivity of the
solution to the parameters we consider and the potential
for sophisticated optimizations to outperform naı̈ve ap-
proaches. We repeat every RAND experiment with 10
different random seeds.

4.2.3 SDNc Ports vs. Deployment Strategy

As Panopticon is designed to enable a broad spectrum
of partial SDN deployments, we begin our evaluation by
asking, “As a deployment grows, what fraction of can-
didate SDNc ports can be accommodated, under varying
resource constraints?”
Scenario 1: To answer this question, we choose
three values for the number of maximum simultane-
ous VLANs supported on any legacy switch (256, 512,
1024). We choose a policy requirement of 10 flow ta-
ble entries on average for every (SDNc, destination port)
pair as defined in the traffic matrix, so as to avoid a pol-
icy state bottleneck. We reason that policy state resource
bottlenecks can be avoided by the operator by defining
worst-case policy state needs in advance and then de-
ploying SDN switches with suitable flow table capac-
ity. We then compare our two deployment strategies
VOL and RAND for different numbers of deployed SDN
switches, as depicted by Figure 5 in which repeated ex-
perimental runs are aggregated into boxplots.
Observations 1: Figure 5 illustrates that the ability to
accommodate more SDNc ports with a small number of
SDN switches depends largely on the number of VLAN
IDs supported for use by the legacy hardware. Under fa-
vorable conditions with 1024 VLANs, 100% SDNc port
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Figure 6: SDN deployment vs. max link utilization, 90th percentile path stretch and relative link util increase. Feasible
100% SDNc port coverage can be realized with 33 SDN switches, with acceptable link utilization and path stretch.

coverage can be had for as few as 33 SDN switches.
VLAN ID availability is necessary to construct SCTs and
in Figure 5a we see that when legacy switches support at
most 256 VLANs, over 140 SDN switches must be de-
ployed before achieving full SDNc port coverage. Fig-
ure 5b shows the importance of choosing where to de-
ploy SDN switches, as the earliest 100% SDNc feasible
solution requires 20 additional SDN switch over VOL.

4.2.4 How Will Panopticon Affect Traffic?

We next ask: “As more SDNc ports are accommodated,
what will Waypoint Enforcement do to the traffic?”
Scenario 2: To answer this question, we evaluate the
metrics path stretch and link utilization as we increase
the SDN deployment, subject to two different VLAN re-
source constraints. As in Scenario 1, we assume aver-
age policy requirement of 10 flow table entries for every
(SDNc, destination port) pair. Recall that our methodol-
ogy scales up the baseline traffic matrix to ensure that the
most utilized link in the original network is 50% utilized.

Figure 6 plots the relationship between the percent-
age of accommodated SDNc ports, the maximum link
utilization, and the 90th percentile link utilization path
stretch. Median values are shown for all metrics, across
the repeated experiments. The feasible regions of each
full “logical SDN” deployment with respect to all re-
source constraints are indicated by the vertical bar.
Observations 2: Figure 6a indicates that with 512
VLANs usable in the legacy network, a full logical
SDN becomes feasible with 95 switches where the most
utilized link reaches 55% of its capacity. The 90th
percentile path stretch hovers around 2.1. As further
switches are upgraded, the stretch and relative link uti-
lization continue to improve. A more optimistic case is
depicted in Figure 6c where full logical SDN is achieved
with 33 switches. However, given fewer SDN waypoints,
the maximum link utilization is higher at 60%. The key
takeaway from this plot is that given conservative base
link utilization, the additional burden imposed by SDN
Waypoint Enforcement is small in many deployments.

4.2.5 Efficient 100% SDNc Port Feasibility

As we point out in our architecture section, Panopti-
con allows the designer to make efficiency trade-offs,
where a full logical SDN can be realized with fewer SDN
switches, at the expense of higher link utilization and
path stretch. The parameter that governs this trade-off
is the active frontier size. We next look to Figures 6a
and 6b, which illustrate how this trade-off plays out.

Recall from Figure 6a that for a legacy network sup-
porting 512 VLANs, a full logical SDN becomes feasi-
ble with about 95 SDN switches when using all avail-
able frontier switches. However, each path to the frontier
switches consumes a VLAN, which blocks other SDNc
candidate ports later on. By limiting the active frontier
to at most 2 switches, Figure 6b illustrates that a feasi-
ble solution can be achieved with 56 switches. The path
stretch notably increases to a factor of 2.4, compared to
less than 2 when a larger frontier is used. This trade-off
underlines the flexibility of Panopticon: Operators can
make design choices tailored to their individual network
performance requirements.

4.3 Traffic Emulation Study
To compliment our simulation-based approach and fur-
ther investigate the consequences of Panopticon on traf-
fic, we conduct a series of emulation-based experiments
on portions of a real enterprise network topology. These
experiments (i) provide insights into the consequences
of Waypoint Enforcement on TCP flow performance, and
(ii) let us explore the extent to which the deployment size
impacts TCP flow performance when every access port is
operated as an SDNc port.
Setup. We use Mininet [10] to emulate a Panopticon
deployment. Due to the challenges of emulating a large
network [10], we scale down key aspects of the network
characteristics of the emulation environment. We (i) use
a smaller topology, EMULATED (see Table 1), which is
a 567-node sub-graph of the LARGE topology obtained
by pruning the graph along subnet boundaries, (ii) scale
down the link capacities by 2 orders of magnitude, and
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min median avg max
Flow Sizes (in MB) 0.00005 6.91 9.94 101.70
Path Stretch A 1.0 1.0 1.002 1.67
Path Stretch B 1.0 1.0 1.16 3.0
Path Stretch C 1.0 1.33 1.25 3.0

Table 2: Traffic parameter and path stretch statistics.

(iii) correspondingly reduce the TCP MSS to 536 bytes
to reduce packet sizes in concert with the reduced link
capacities. This allows us to avoid resource bottlenecks
that otherwise interfere with traffic generation and packet
forwarding, thus influencing measured TCP throughput.

We run our experiments on a 64-core at 2.6GHz AMD
Opteron 6276 system with 512GB of RAM running the
3.5.0-45-generic #68 Ubuntu Linux kernel using Open-
VSwitch version 2.1.90. Baseline throughput tests indi-
cate that our system is capable of both generating and
forwarding traffic of 489 simultaneous TCP connections
in excess of 34Gbps, sufficiently saturating the aggregate
emulated link capacity of every traffic sender in our ex-
periments. We note that traffic in the subsequent experi-
ments is generated on the system-under-test itself.

Thus, our emulation experiments involve 489 SDNc
ports located at “access switches” at which traffic is sent
into and received from the network. The distribution net-
work consists of 77 devices of which 28 devices are iden-
tified as IP router gateways that partition the network in
Ethernet broadcast domains. Within each broadcast do-
main, we introduce a single spanning tree to break for-
warding loops.
Traffic. We apply a traffic workload to our emulated
network based on (i) a traffic matrix, defined over the
489 SDNc ports, and (ii) a synthetically generated flow
size distribution where individual TCP flow sizes are ob-
tained from a Weibull distribution with shape and scaling
factor of 1, given in Table 2.

We re-use the traffic matrix used in the simulations to
define the set of communicating source-destination pairs
of SDNc ports in the network. For system scalability rea-
sons, we limit the number of source-destination pairs to
1024, selected randomly from the traffic matrix. For each
pair of SDNc ports, we define a sequence of TCP connec-
tions to be established in iterative fashion, whose transfer
sizes are determined by the aforementioned Weibull dis-
tribution. The total traffic volume exchanged between
each pair is limited to 100MB. When the experiment be-
gins, every source-destination pair, in parallel begins to
iterate through its respective connection sequence. Once
every traffic source has reached its 100MB limit, the ex-
periment stops.
Scenarios. We consider three deployment scenarios in
which we evaluate the effects of Panopticon on TCP traf-
fic: Scenario A in which 28 switches out of the 77 distri-
bution switches are operated as SDN switches, and sce-
narios B and C, which narrow down the number of SDN
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Figure 7: In both scenarios A and B (28 and 10 SDN
switches), the median throughput over all experiments re-
mains close to the performance of the legacy network.

switches in A to 10 and 5 SDN switches, respectively.
SDN switch locations are selected at random based on lo-
cation of IP routers, identified from the topology dataset.
Results. In each scenario, we compare TCP flow
throughput in the Panopticon deployment versus the
original network topology (which uses shortest-path IP
routes with minimum cost spanning trees). Table 2 lists
path stretch statistics for each scenario, namely, the ra-
tio of SDN (waypoint-enforced) to legacy path length for
every source-destination pair in the network.

Figure 7 illustrates the impact of Waypoint Enforce-
ment on TCP performance in the three scenarios. The
first observation we make is that in scenario A, when the
28 IP routers are replaced with SDN switches, the impact
on median TCP throughput is negligible. This is per-
haps expected, as all traffic across subnets must traverse
some IP router in the legacy network, regardless. Some
flows experience congestion due to Waypoint Enforce-
ment. Other flows actually experience a performance in-
crease due to the availability of multiple alternate paths
in Panopticon. As the SDN deployment shrinks to more
conservative sizes in scenarios B and C, the effects of
Waypoint Enforcement becomes more prominent, sup-
porting our observed simulation results.

4.4 Discussion
Scalability. As the number of SDNc candidates in-
creases, the resource demands grow as well. We believe
that one or two SDNc ports for every access switch how-
ever is a reasonable starting point for most partial SDN
deployments. Even at one SDNc per access switch, a
reasonable level of policy granularity, as end-hosts con-
nected to the same physical access switch are often con-
sidered to be part of the same administrative unit as
far as policy-specification is concerned. Should finer-
grained SDNc port allocation be necessary, features such
as Cisco’s protected switchports (or similar ones from
other vendors) may be leveraged to extend Waypoint En-
forcement to individual access-switch ports without the
need for additional SCTs.
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Why fully deploy SDN in enterprise networks? Per-
haps many enterprise networks do not need to fully de-
ploy SDN. As our results indicate, it is a question of
the trade-offs between performance requirements and re-
source constraint satisfaction. Our Panopticon evaluation
suggests that partial deployment may in-fact be the right
mid-term approach for some enterprise networks.

5 Related Work
Our approach toward a scalable, incrementally deploy-
able network architecture that integrates legacy and SDN
switches to expose the abstraction of a logical SDN both
builds upon and complements previous research.
SDN. In the enterprise, SANE [5] and Ethane [4]
propose architectures to enforce centrally-defined, fine-
grained network policy. Ethane overcomes SANE [5]’s
deployment challenges by enabling legacy device com-
patibility. Ethane’s integration with the existing deploy-
ment is however, ad-hoc and the behavior of legacy de-
vices falls out of Ethane’s control. Panopticon by con-
trast, can guarantee SDN policy enforcement through
principled interaction with legacy devices to forward
traffic along safe paths. Google’s transition to a software-
defined WAN involved an overhaul of their entire switch-
ing hardware to improve network performance [11]. In
contrast to their goals, we take an explicit stance at tran-
sitioning to an SDN control plane without the need for
a complete hardware upgrade. Considering a partial
SDN deployment, Agarwal et al. [2] demonstrate effec-
tive traffic engineering of traffic that crosses at least one
SDN switch. Panopticon is an architecture that enforces
this condition for all SDNc ports. The work on software-
controlled routing protocols [36] presents mechanisms
to enable an SDN controller to indirectly program L3
routers by carefully crafting routing messages. We view
this work as complementary to ours in that it could be
useful to extend Waypoint Enforcement to IP routers.
Enterprise network design and architecture. Scal-
ability issues in large enterprise networks are typically
addressed by building a network out of several (V)LANs
interconnected via L3 routers [7, 13]. TRILL [27] is
an IETF Standard for so-called RBridges that combine
bridges and routers. Although TRILL can be deployed
incrementally, we are not aware of any work regarding
its use for policy enforcement in enterprise networks.

Sun et al. [33] and Sung et al. [34] propose a system-
atic redesign of enterprise networks using parsimonious
VLAN allocation to ensure reachability and provide iso-
lation. These works focus on legacy networks only. The
SEATTLE [17] network architecture uses a one-hop DHT
host location lookup service to scale large enterprise Eth-
ernet networks. However, such clean-slate approach is
not applicable for the transitional networks we consider.
Scalable data-center network architectures. There

is a wealth of recent work towards improving data-
center network scalability. To name a few, FatTree [3],
VL2 [9], PortLand [24], NetLord [23], PAST [32] and
Jellyfish [31], offer scalable alternatives to classic data-
center architectures at lower costs. As clean-slate archi-
tectures, these approaches are less applicable to transi-
tional enterprise networks, which exhibit less homoge-
neous structure and grow “organically” over time.
Evolvable inter-networking. The question of how
to evolve or run a transitional network, predates SDN
and has been discussed in many contexts, including Ac-
tive Networks [37]. Generally, changes in the network
layer typically pose a strain to network evolution, which
lead to overlay approaches being pursued (e.g., [12,35]).
In this sense, the concept of Waypoint Enforcement is
grounded on previous experience.

6 Conclusion
SDN promises to ease network management through
principled network orchestration. However, it is nearly
impossible to fully upgrade an existing legacy network
to an SDN in a single operation.

Accordingly, we have developed Panopticon, an en-
terprise network architecture realizing the benefits of a
logical SDN control plane from a transitional network
which combines legacy devices and SDN switches. Our
evaluation highlights that our approach can deeply ex-
tend SDN capabilities into existing legacy networks. By
upgrading between 30 to 40 of the hundreds of distribu-
tion switches in a large enterprise network, it is possible
to realize the network as an SDN, without violating rea-
sonable resource constraints. Our results motivate the
argument, that partial SDN deployment may indeed be
an appropriate mid-term operational strategy for enter-
prise networks. Our simulation source code is available
at http://panoptisim.badpacket.in.
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Abstract

With wireless technologies becoming prevalent at the last
hop, today’s network operators need to manage WiFi ac-
cess networks in unison with their wired counterparts.
However, the non-uniformity of feature sets in exist-
ing solutions and the lack of programmability makes
this a challenging task. This paper proposes Odin, an
SDN-based solution to bridge this gap. With Odin, we
make the following contributions: (i) Light Virtual Ac-
cess Points (LVAPs), a novel programming abstraction
for addressing the IEEE 802.11 protocol stack complex-
ity, (ii) a design and implementation for a software-
defined WiFi network architecture based on LVAPs, and
(iii) a prototype implementation on top of commodity ac-
cess point hardware without modifications to the IEEE
802.11 client, making it practical for today’s deploy-
ments. To highlight the effectiveness of the approach we
demonstrate six WiFi network services on top of Odin
including load-balancing, mobility management, jammer
detection, automatic channel-selection, energy manage-
ment, and guest policy enforcement. To further foster
the development of our framework, the Odin prototype
is made publicly available.

1 Introduction
Today’s access networks are increasingly dominated by
wireless technology at the last hop. Indeed, the WiFi
Alliance, the certification authority for WiFi devices, re-
ports almost 1.1 billion WiFi devices were shipped in
2011 [1], and predicts that this number will double by
2015. However, supporting this ever increasing num-
ber of wireless capable devices across residential, pub-
lic, and enterprise networks is non-trivial and raises new
challenges for network management, in particular for
integrating wired, cellular, and wireless network man-
agement. To highlight this need, we point to the fact
that large operators such as Deutsche Telekom (DT) [3]
and Swisscom [6] are offloading data from their cellu-

lar networks to WiFi networks to reduce the stress on
the former. Indeed, DT aims to deploy 2.5 million WiFi
hotspots by 2016. Thus, these operators face the chal-
lenge of managing their different networks in unison and
all the way to the users’ premises.

Furthermore, modern enterprise WiFi networks typi-
cally consist of few dozens to thousands of Access Points
(APs) serving a multitude of client devices including
smart-phones, laptops, and tablets. For performance
and scalability reasons, these networks require services
which include mobility management, load-balancing, in-
terference management, and channel reconfigurations.
These services have to be realized as applications on top
of the basic management functionality of the individual
access points. However, different devices from different
vendors typically offer different interfaces and do not of-
fer native support for the needed applications. Addition-
ally, today’s enterprises and provider networks are Bring-
Your-Own-Device (BYOD) networks, implying that the
network has to accommodate an even more diverse set of
user device types of different generations.

To manage this growing complexity, network oper-
ators need novel abstractions as well as new tools to
uniformly manage the wired and wireless parts of their
network, e.g., to verify network configurations, perform
troubleshooting, or systematic debugging. In wired net-
works, recent advances in Software-Defined Networking
(SDN) have enabled such features through programmatic
control of networks. In an SDN, the control plane and
data plane are decoupled, allowing network intelligence
and state to be logically centralized. Using this centrally-
available global view of the network, SDN allows oper-
ators to perform principled control and management of
networks through the use of abstractions [26]. The best
known SDN interface is OpenFlow, which specifies a
protocol for a logically centralized controller to remotely
manage forwarding tables within switches.

However, OpenFlow does not address the complexi-
ties of WiFi protocols and WiFi networks which include
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interference mitigation, mobility management, and chan-
nel selection techniques. This is unfortunate, because
point-solutions exist for these WiFi-specific network
problems but are often provided only by enterprise ven-
dors through vertically integrated solutions. However,
most cheap, off-the-shelf commodity hardware as de-
ployed in today’s access networks is outside the purview
of such enterprise solutions.

Yet, proposals exist for extensible and programmable
WiFi networks [20, 39]. However, these depend on
client-side modifications which we argue is impractical
to deploy. This is an obstacle not only for provider
networks, but also for enterprise deployments given the
trend towards BYOD.

We, in this paper, present Odin, an SDN-based so-
lution which presents a programming abstraction which
can provide the features enterprise and provider networks
need. It bridges the gap between the range of features re-
quired by network operators and the lack of programma-
bility in today’s WiFi networks. In the process of design-
ing Odin, we address the following research questions:

1. What programming abstractions are needed to ad-
dress the complexities of the IEEE 802.11 protocol
stack?

2. How can these abstractions be fit into an SDN ar-
chitecture?

3. Can the SDN architecture already be realized on top
of today’s commodity access point hardware and
without client modifications?

We find that the above questions can be answered af-
firmatively through the following contributions:

• The proposed Light Virtual Access Point (LVAP)
abstraction captures the complexities of the IEEE
802.11 protocol stack.

• We present a prototype implementation of the LVAP
approach which we have made publicly available1.

• We evaluate the framework by presenting six typical
WiFi network applications.

Odin is extensible in accordance with the features re-
quired in today’s WiFi networks, whilst being deploy-
able on top of low-cost commodity access point hard-
ware. While we introduced the basic concept of LVAPs
in our HotSDN workshop paper [30] and showed the sys-
tem’s capabilities in multiple demos [17, 24], this paper
includes the detailed architecture for software-defined
WiFi networks, a prototype implementation, as well as
a system evaluation using multiple WiFi applications.

2 Use cases
Odin has been designed for the following use cases:

1Odin source: http://sdn.inet.tu-berlin.de.

Traffic Offloading and Client Mobility: Offloading
user’s devices to WiFi allows operators to reduce stress
on their cellular infrastructure. To this end, it is benefi-
cial to provide users with consistent authentication cre-
dentials across their home networks, hotspots, and cel-
lular connections, whilst managing client mobility. This
will prevent the user from having to maintain multiple
authentication credentials, whilst allowing operators to
offload a user’s traffic onto a hotspot when available.
This is similar to what is proposed by the Hotspot 2.0 ini-
tiative, which however requires clients to support IEEE
802.11u. Furthermore, mobility management is an im-
portant feature within enterprise WiFi deployments, typ-
ically offered by today’s vendors [5] and also explored
by the research community [14, 18, 19, 20].
Network Performance Management: Channel selec-
tion, load balancing and wireless troubleshooting are
crucial for the performance of WiFi networks, partic-
ularly within dense deployments like large enterprises
or residential networks. Channel selection [7, 15,
35] involves continuously monitoring and then react-
ing to changes in the wireless environment. Load-
balancing [9, 21] typically requires control of clients’
attachment points to the network or the ability to hand
off clients between WiFi access points. Lastly, there is a
need for the ability to measure, detect, and localize inter-
ferers. This is because interference caused by non-WiFi
devices can severely impact the achievable throughput
of WiFi devices within the same vicinity [23], since both
kinds of devices share the same wireless spectrum.

3 The Odin System
In this section, we describe the components of Odin and
the Light Virtual Access Point (LVAP) abstraction.

3.1 Odin System Components
Figure 1 illustrates the components of the proposed de-
sign and their interactions. In line with the SDN con-
cept, the design decouples the control from the data
plane. This is done by having a logically centralized con-
troller that leverages OpenFlow for the wired network,
and a separate control plane protocol for the wireless
part (elaborated upon in § 8). We chose to have sepa-
rate protocols for programming the wired and wireless
parts. This is because in its current state, OpenFlow does
not extend well into the realm of the IEEE 802.11 MAC,
as its scope is restricted to programming flow table rules
on Ethernet- based switches. For instance, it cannot per-
form matching on wireless frames, cannot accommodate
measurements of the wireless medium, report per-frame
receiver side statistics, or be used for setting per-frame
or -flow transmission settings for the WiFi datapath. We
now describe the individual components in Odin:
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Figure 1: High-level design of the Odin architecture.

Odin controller: The controller enables network ap-
plications to programmatically orchestrate the underly-
ing physical network. It exposes a set of interfaces to
the applications (the northbound API) and then translates
these calls into a set of commands on the network devices
(the southbound API). The controller also maintains a
view of the network including clients, APs, and Open-
Flow switches, which the Odin applications can then
control.

Odin agents: Agents run on the wireless APs and ex-
pose the necessary hooks for the controller (and thus ap-
plications) to orchestrate the WiFi network and report
measurements. Time critical aspects of the WiFi MAC
protocol (such as IEEE 802.11 acknowledgments) con-
tinue to be performed by the WiFi NIC’s hardware. On
the other hand, non time-critical functionality includ-
ing management of client associations is implemented in
software on the controller and the agents. This realizes
a distributed WiFi split-MAC architecture. In addition,
they perform matching on incoming frames to support a
publish-subscribe system wherein network applications
can subscribe to per-frame events.

Applications: For wireless network applications to
take effective control decisions, they need access to
statistics not only at a per- frame granularity, but also
measurements of the medium itself (for instance, to
infer interference from non-WiFi devices operating in
the same spectrum). Thus, applications in Odin work
either reactively or proactively by accessing measure-
ments from multiple layers. This includes (i) measure-
ments collected by the agents, (ii) OpenFlow statistics
and (iii) measurements collected by external tools (e.g.
snmpd). Odin applications can program the network
through the northbound API offered by the controller.

3.2 Light Virtual Access Points
The Light Virtual Access Point (LVAP) is the abstraction
in our system that allows us to address the specific re-
quirements of WiFi networks, whilst allowing for unified
management of the wired and wireless portions of the
network. The LVAP is a per-client AP which simplifies
the handling of client associations, authentication, han-
dovers, and unified slicing of both the wired and wire-

less portions of the network. It enables a port-per-source
view of WiFi networks akin to that of wired networks. In
doing so, it remains orthogonal, but complementary, to
trends in physical layer virtualization and RF spectrum
slicing [29]. LVAPs are hosted on the agent, and their
assignment to agents is controlled by the controller.

3.2.1 LVAPs as per-client APs
In regular IEEE 802.11 networks, clients need to asso-
ciate with a physical AP before sending data frames.
The association process begins with the discovery phase,
where a client either actively scans for APs by generat-
ing probe requests, or passively learns about APs through
beacon frames generated by the latter. During an active
scan, APs that respond with probe response messages
become candidates for the client to associate with. The
client then decides which AP to associate with via a lo-
cally made choice. At this point, the association is de-
fined between the client’s MAC address and the BSSID
of the AP. The BSSID of an AP is a MAC address of the
AP’s wireless interface and is different from the SSID,
which is a network name.

This design of the WiFi protocol is inconvenient; there
is no mechanism for centralized control over the client’s
association because the client makes the association de-
cision entirely on its own. Furthermore, the infrastruc-
ture cannot instruct the client to re-associate without in-
troducing additional signaling techniques such as [20].

The approach of LVAPs overcomes these difficulties
without introducing additional signaling mechanisms be-
tween clients and the infrastructure, and thus conforms
to our objective of not introducing client-side modifica-
tions. With LVAPs, every client receives a unique BSSID
to connect to, essentially making them client-specific
APs. Figure 2 indicates the decision flow in handling
a client’s association using LVAPs.

When a client probe scans, a new LVAP is spawned
within the Odin agent on the physical AP. This LVAP
then responds to the client with a probe response as in-
structed by the controller, following which, the clients
completes the association handshake with its LVAP. As
a result, a physical AP hosts a unique LVAP for each
connected client. Every LVAP periodically unicasts bea-
con frames to its corresponding client. This ensures that
a client never processes a beacon frame from another
client’s LVAP. The overhead of per-client beacon gen-
eration can be reduced by increasing the beacon inter-
val, by setting the NO_ACK bit on the beacon frame, and
also leveraging higher data-rates because of the unicast
transmission. Note, beacons are typically broadcasted
but are identical to probe response frames which are uni-
casted. Unicasting beacons does not confuse client de-
vices (cf. 6.4).

As long as the client receives ACKs for the data frames
it generates and receives beacons from the AP it is asso-
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ciated to (in this case, an LVAP), the client stays asso-
ciated. If the state corresponding to the client’s LVAP
is migrated to and instantiated at another Odin agent
fast enough, the client does not attempt to re-scan (since
from the client’s point of view, its AP is still available).
Thus, by migrating a client’s LVAP between physical
APs, the infrastructure can now control the client’s at-
tachment point to the network, without triggering a re-
association at the client. The LVAP is thus an abstraction
for the client’s association state, and simplifies the ex-
pression of any handoff-based service like mobility man-
agers and client load-balancers in the form of network
applications. Since it does not introduce any additional
signaling mechanism between the infrastructure and the
client, it is legacy client compatible. In addition, it brings
a port-per-source view of WiFi networks akin to that of
wired networks, which simplifies fine-grained policy en-
forcement. Note, if a client experiences significant signal
strength reduction as a result of an LVAP being migrated
to a distant AP, the client will perform a regular re-scan.

While the notion of per-client BSSIDs is employed
commercially to handle mobility [5], the concept of an
LVAP is new. The LVAP as a programming abstraction
solves problems that extend beyond mobility manage-
ment, as we will demonstrate in this paper.

3.2.2 State Encapsulated by LVAPs
Figure 3 represents the state that is bound to each LVAP.
For every associated client (identified by the client’s
WiFi MAC address), there is a corresponding LVAP
which comprises the following information: a unique
virtual BSSID, one or more SSIDs, the IP address of the
client, and a set of OpenFlow rules. With encryption,
the session key will be part of the LVAP state. When
an LVAP is migrated from one physical AP to another,
all corresponding state (the BSSID, SSIDs, IP address
of the client, and OpenFlow rules) is migrated as well.
Since the LVAP’s BSSID is always consistent, the client
does not perform a re-association. By binding a set of
OpenFlow rules to the LVAP and allowing applications
to program the wireless and wired side of the AP, we in-
tegrate our framework with OpenFlow.

3.2.3 Slicing and Control Logic Isolation with
LVAPs

Accommodating multiple logical networks on top of the
same physical infrastructure with different policies and
control applications is called network slicing. A network
slice is a virtual network with a specific set of SSIDs,
where for example, the traffic may be VLAN tagged or
directed to a specific destination port. Figure 4 indicates
how slicing can be layered on top of LVAPs. A slice
is defined as a set of physical APs (or agents), clients
(and thus LVAPs), network applications, and one or more
unique SSIDs. When clients attempt to associate to a
particular SSID, they are automatically assigned to the
slice to which the SSID belongs. Thus, the client and
its LVAP are now assigned to the same slice. Applica-
tions operating on this slice can now manage the client
(e.g., perform migrations, or add/remove/update Open-
Flow rules on the client’s LVAP (cf. § 5)). The controller
ensures that an application is only presented a view of the
network corresponding to its slice. Since LVAPs are the
primitive type upon which applications make control de-
cisions, and applications do not have visibility of LVAPs
from outside their slice, we thus achieve control logic
isolation between slices.

3.2.4 Supporting Authentication Through LVAPs

Our architecture is compatible with the two most com-
monly deployed approaches for authentication.

WPA2 is the de-facto standard for authentication in
today’s WiFi networks (defined by IEEE 802.11i). In
WPA2 Enterprise, a client authenticates against an au-
thentication server with the AP acting as an authentica-
tion proxy to negotiate a session key. This session key is
added to the client’s LVAP state (cf. 3.2.2) and then used
to encrypt the connection.

Guest WiFi: In this mode, a client’s first HTTP re-
quest is redirected through OpenFlow rules associated
with the LVAP to a login page. The authentication server
returns a security token for the client to the controller
after a successful authentication.
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3.2.5 Multi-Channel Operation
Odin benefits from operating physical APs’ wireless in-
terfaces on the same channel for performing seamless
client migration. However, when performing LVAP mi-
grations between physical APs of different channels, the
operation is similar to regular WiFi handovers where
clients needs to perform a re-association. For multi-
channel operation, Odin can leverage IEEE 802.11h (re-
stricted to 5GHz band) to instruct clients to switch to a
different channel while keeping association state intact.
Additionally, Odin’s port-per-source approach to man-
aging clients with LVAPs is complementary to upcoming
trends in RF spectrum slicing such as [29]. This will en-
able multiple LVAPs on the same AP to operate on dif-
ferent channels using a single antenna.

3.3 Reactive and Proactive Applications
Network applications written on top of Odin can function
both reactively and/or proactively. Proactive applications
are timer-driven whereas reactive applications use trig-
gers and callbacks to handle events. The latter mode of
operation is important particularly within WiFi networks
due to the dynamic nature of the channel, and the system
needs to react based on inputs from different measure-
ment sources. To this end, in our current implementation,
an application can utilize multiple measurement sources.

Measurements from the agent: Reactive applica-
tions make use of a publish-subscribe system of the Odin
agent in order to have a handler invoked at the applica-
tion whenever a per-frame event of interest occurs at the
agents. In our current implementation, applications reg-
ister thresholds for link-based (PHY and MAC layer) rx-
statistics like receiver signal strength indicator (RSSI),
bit-rate, and timestamp of the last received packet. For
instance, an application can ask to be notified whenever
a frame is received at an agent at an RSSI greater than
-70dBm. In addition, applications can make use of mea-
surements such as spectral scans that can be collected by
the agents.

OpenFlow statistics: OpenFlow provides flow and
port-based statistics of entries in switches’ flow tables.
Applications can query these statistics through the con-
troller to make traffic-aware routing decisions.

External measurement sources: In addition to the
usual per-link and per-flow statistics, applications can ac-
cess data from multiple measurement sources outside the
Odin framework, too, including the CPU and memory
utilization and the channel active/busy times collected by
tools such as collectd. We demonstrate this in § 5.

4 Odin on Commodity Hardware
In this section, we describe implementation details of the
Odin prototype.

4.1 Controller
The controller is implemented as an extension to Flood-
light OpenFlow controller. This allows us to use Open-
Flow for Odin specific functionality such as tracking
client IP addresses to be attached to their respective
LVAPs by tapping into DHCP messages (cf. § 4.4). The
initial assignment of agents to slices, the initial set of
SSIDs per slice, and the network applications to run on
each slice are defined via a configuration file. The con-
troller uses a TCP-based control channel to invoke the
Odin protocol commands on the agents (cf. 7). The con-
troller organizes state on a per-slice basis, allowing it to
present applications only a view of their respective slice
in terms of associated clients, their LVAPs, and physical
APs. Applications are expressed as Java code and run on
top of the controller as threads. The programming API
includes hooks for applications to view and control map-
pings of clients to APs, add/remove SSIDs to slices, and
to register/unregister subscriptions for the pub-sub mech-
anism. As a result of using Floodlight, the controller is
not distributed and runs on a single machine.

4.2 Agent
Odin agents run on physical APs, and are implemented
in the Click Modular Router [16]. The agents imple-
ment the WiFi split-MAC together with the controller,
host LVAPs, and collect statistics on a per-frame and host
basis. They notify the controller whenever a frame is re-
ceived that matches a per-frame event subscription reg-
istered by a particular application (cf. § 3.3). Along-
side the agents, we run Open vSwitch on the APs to host
OpenFlow rules carried by LVAPs as well as those ex-
pressed explicitly by network applications and the con-
troller (for instance, to handle DHCP acknowledgments
as described in § 3.2.2). Excluding the OpenFlow rules,
the state associated with each LVAP hosted by an agent
is approximately 48 bytes in size, and up to 32 bytes per-
SSID in the slice (slices can announce multiple SSIDs).

4.3 ACK Generation
As mentioned in Section 3.2, the agent needs to ensure
the IEEE 802.11 requirement of generating ACKs for
each data frame that the client sends to its LVAP. ACK
frame generation is handled in hardware by the WiFi
cards due to their strict timing constraint. On Atheros
WiFi cards, this is implemented using a BSSID mask reg-
ister which indicates the common bits of all the BSSIDs
being hosted on that card.

Whenever the card receives a valid frame, it verifies
whether the destination address of the frame matches
one of the BSSIDs it is hosting as per the bits set in the
BSSID mask. If yes, an ACK frame is generated. How-
ever, a practical limitation exists with this mechanism.
Consider the following two BSSIDs 02:00:00:00:00:02
and 02:00:00:00:00:01. In this case, the last two bits are
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uncommon between the two BSSIDs, causing the mask
to be ff:ff:ff:ff:ff:fc. This leads to the hardware ignoring
the last two bits of the destination address of an incom-
ing frame to decide whether to generate an ACK frame.
In this case, a frame destined to 02:00:00:00:00:03 will
also cause the hardware to generate an ACK, even though
it is not hosting a BSSID with that value: a false positive.

In Odin, since we use one BSSID per client, this needs
to be handled carefully. One way to overcome this is-
sue is to assign BSSIDs to client LVAPs such that the
mask on the AP where the LVAP is being assigned re-
tains as many set bits as possible and remains orthogonal
to the masks of neighboring APs. This can be achieved in
software by the controller. Spreading LVAPs over mul-
tiple NICs and APs will also alleviate the problem. An-
other approach is to suppress spurious ACKs by modify-
ing the check that the hardware performs upon receiving
a frame. Today’s low-end Broadcom WiFi cards sup-
port custom firmware such as OpenFWWF (our Atheros
hardware does not support this). However, we conjecture
that a programmable content-addressable memory for
matching incoming frames in hardware enables possi-
bilities beyond just selective ACK generation, with little
increase in cost [2] and performance impact. This is par-
ticularly important as 802.11ac adoption is increasing,
which supports throughputs on the order of 6.77 Gb/s.
Recent work on software radios such as OpenRadio [8]
will also aid in this direction.

4.4 LVAP Assignment
We now explain how Odin assigns LVAPs to clients.
Discovery: As per IEEE 802.11, clients perform active
scans on all possible channels by broadcasting probe re-
quest messages. An agent that receives such a probe re-
quest forwards it to the controller. The controller then
generates a BSSID unique to the client, and retrieves the
list of SSIDs to announce (the union of SSIDs across
all slices that the agent belongs to). It then instructs
the agent to generate a probe response for each of these
SSIDs, through the client-specific BSSID. This is how
clients discover SSIDs being hosted via Odin.
Association: When a client tries to associate to a specific
SSID, it generates probe requests that specify the corre-
sponding SSID. An agent that receives such a probe re-
quest forwards the message to the controller. If the con-
troller has not already created an LVAP for the client,
it spawns an LVAP for the client on the agent from
which this probe request was first received. The client
is mapped to the slice that the SSID belongs to (an SSID
can only be part of one slice). Once the LVAP is spawned
for the client at an agent, the association is performed be-
tween the client and the LVAP. If a client does not asso-
ciate to its LVAP within a configurable amount of time, it
is removed from the agent. The agent process maintains

a lookup table with the mappings of the client’s MAC
address to the LVAPs state (cf. 3.2.2). It then makes use
of this per client state to prepare the right 802.11 frames
and ARP packets when communicating with clients.
DHCP and ARP: The IP address of the client is re-
quired for the agent to correctly handle ARP requests that
concern the client. The IP address of each client is ob-
tained dynamically by the controller which sets up Open-
Flow rules in order to receive an OpenFlow PACKET_
IN event whenever a DHCP-ACK packet is received at
an AP. This is done when an agent first registers with
the controller. After a client associates and begins to
obtain an IP address over DHCP, the controller receives
the DHCP-ACK via OpenFlow, obtains the IP address,
updates the client’s LVAP, and then forwards the DHCP
packet to the client via an OpenFlow PACKET_OUT.

5 Network Services on top of Odin
On top of our framework, we realized six different Odin
applications which are correlated to the use cases de-
scribed in § 2. For the evaluations, we use ten APs
from our indoor testbed distributed across the 16th floor
(roughly 750 m2) of the TEL building at the TU Berlin
campus. The WiFi APs are based on embedded hard-
ware (PC Engines Alix 3D2) equipped with Atheros
IEEE 802.11abgn cards. All APs are running OpenWrt
with the ath9k Linux driver, user-level Click, and
Open vSwitch supporting OpenFlow version 1.0. The
Odin controller runs on a x86-based server equipped with
2 CPUs at 2.1 GHz and 4 GB of RAM. We did not hit
CPU or memory limitations in any of our experiments.

Application I: Mobility Manager
Supporting client mobility is a crucial feature in en-
terprise WiFi deployments. We have implemented a
purely reactive mobility manager (89 source lines of
code (SLOC)) on top of Odin, that leverages LVAP
migrations. The application registers a subscription at
the agents to be notified whenever an agent receives a
frame at a receiver signal strength indicator (RSSI) above
a specified value. Using context information passed
through the corresponding callback (such as the exact
value of the RSSI value and source that triggered the
event), the application maintains a map of each client’s
RSSI value from the point of view of different agents. It
then assigns the clients to the agents where they can get
the best RSSI value, whilst subjecting its decisions to a
hysteresis to prevent spurious oscillations of a client be-
tween APs. With legacy switches in the core, a packet is
sent out by the new AP to trigger the “backwards learn-
ing" mechanism (ARP flushing) to setup new flow en-
tries. With OpenFlow in the core, this can be achieved
by updating flow entries along the new path.

We evaluate the architectural consequence of our reac-
tive mobility manager’s design, i.e., the number of noti-
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Table 1: Notifications generated between a handoff for two
RSSI thresholds (Trss) signal strength difference (∆).

Frame Reception Trss =−96dBm Trss =−76dBm
Rate (frames/sec) ∆ = 5 ∆ = 20 ∆ = 5 ∆ = 20

1 13.2 15.8 13.0 16.2
1000 731.66 910.4 670.2 927.0
5000 3373.4 4609.2 3223.8 4515

fications required before performing a client handoff un-
der a given mobility scenario. We show in § 6.2 that
LVAP migrations have a negligible effect on the client’s
throughput. We note that this is only one example of a
mobility manager that can be built atop Odin. As demon-
strated in 5, Odin applications can utilize different met-
rics from multiple sources to base mobility decisions on.
Experiment scenario: We use two APs and a single
x86-based client. The client associates to the network
and initiates a UDP flow. We vary three parameters for
the evaluation: (1) the threshold Trss the application sets
for subscription notifications, (2) the threshold ∆, i.e.,
the minimum required difference of the client’s RSSI ob-
served at its current AP and potential new AP for the mo-
bility manager to perform a handoff, and (3) the client’s
transmission rate. We artificially add a fixed offset to the
client’s RSSI value being recorded by the APs. Using
this, we initially set the client’s RSSI at the first AP to
be 20dB more than at the other, and then reduce it by 0.1
unit every 100ms whilst increasing it at the other AP by
the same amount. After 10s, the client’s RSSI is higher
at the second AP. When the difference is above ∆, the
client is LVAP-migrated to the new AP. Thus, only the
relative RSSI values of the client at the two APs affects
the results (not the absolute values), which enables test-
ing the application using a stationary client. We conduct
5 runs for each combination of parameters and average
the results.
Results: Table 1 shows the results of our experiments for
different combinations of Trss, ∆, and the client’s trans-
mission rate. A decreasing Trss leads to an increased
number of notifications generated. A smaller ∆ leads
to the handoff being performed faster, and reduces the
number of notifications in between handoffs. However,
the dominant factor here is the transmission rate of the
client itself. This shows that it is beneficial to introduce
a rate-limiter for generating notifications by the agents.
After all, for the same mobility scenario and during the
handoff, there is a large number of notifications gener-
ated that do not further improve the mobility manager’s
decisions. Note, the framework cannot track clients that
do not transmit any frames at all. One workaround is to
use Odin’s beacons as a mechanism to track idle clients
at different physical APs. In regular WiFi, ACK frames
do not contain the source address, but only the recipient
address. Since beacons in Odin are unicast, they cause
the client to generate an ACK frame addressed to their

unique BSSID (which identifies the client). In order to
reduce overhead, the system can set the NO_ACK bit on
the beacons to avoid ACKs from active clients.

Application II: Load Balancer
The benefit of using a load-balancer in a WiFi setting
is to increase the throughput for clients due to increased
airtime fairness. To illustrate this, consider a scenario
where there are multiple clients and one AP: each de-
vice gets almost the same share of channel access when
operating at the same physical data rate. If only one of
the clients generates upload traffic whereas the other sta-
tions only download data via the AP, the total upload
throughput almost equals the combined throughput of
the downloaders (since all download traffic is transmit-
ted by the AP and it has to share channel access with a
single uploader). This leads to airtime unfairness among
the clients. With more APs and proper load balancing,
this unfairness can be alleviated. Furthermore, load-
balancing can lead to better resource utilization due to
spacial reuse and the capture effect when the collision
probability is high. The 802.11k amendment also at-
tempts to address load-balancing, but requires modifica-
tions to the client.

Since LVAP-migrations are cheap, fast, and
infrastructure-controlled (§ 6.2), client-migration
based load-balancing is a good fit for an Odin applica-
tion. We implemented a load-balancer (76 SLOC) to
demonstrate the feasibility of such an application on top
of Odin. This application queries the framework once
per minute to obtain the list of clients that can be seen
by different APs and their corresponding RSSI values.
It uses this information to build a map of clients to lists
of agents that are candidates for hosting their respective
LVAPs. The application then evenly re-distributes
LVAPs (clients) across physical APs, constrained by the
hearing map.
Experiment scenario: We use up to ten APs. 32 clients
automatically associate to the network and request files
from a server. We use Harpoon [28] for flow-level traf-
fic generation using a heavy-tailed flow size distribution,
similar to traffic on the Internet. After the standard WiFi
association, each client sends web requests to the Har-
poon server. We conduct experiments with and with-
out load-balancing enabled. Without load-balancing, the
client is assigned to the first AP that receives the associ-
ation request. With load-balancing, each LVAP is placed
on a physical AP that has the highest RSSI and does not
violate the client load on the AP. Because of the fixed
PHY rate, no rate anomaly [31] can arise. We set the
rate for management and data frames to the basic rate
(6 Mbps). This ensures that all associated clients can ex-
change data with the APs.
Results: As expected, the overall TCP throughput in-
creases when load-balancing is enabled (see Figure 5).
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band as seen by the ACS application.

Furthermore, the total throughput is increased when in-
creasing the number of APs. The gain in throughput is
attributed to spacial reuse and the capture effect when
collisions occur. We observe that TCP connections were
established by at least 28 clients across all runs with a
median of 30 clients requesting data from the server (see
Figure 7). Figure 6 shows the CDF of the per-client
throughput of a single run. We observe an increase in
fairness among clients with load balancing enabled: i.e.,
roughly 50% of the clients were able to transmit around
20 MB of data with load balancing enabled compared
to 15% without load-balancing. The gain of per-client
throughput can be attributed to the previously mentioned
spacial reuse, capture effect, and medium access proba-
bility of the APs, where each client gets roughly an equal
share of airtime at the AP.

Application III: Wireless troubleshooting
Interference from non-WiFi devices such as microwave
ovens, cordless phones, wireless security systems, and
RF jammers can significantly impede the achievable
throughput of nearby WiFi devices. To address this, in-
terference identification systems (e.g., Cisco CleanAir)
are starting to become a part of today’s enterprise de-
ployments. These systems detect, localize, and quantify
the interference impact caused by non-WiFi sources.

To this end, Odin leverages functionality of modern
WiFi cards like Atheros AR9280 that provide coarse-
grained energy samples per sub-carrier (frequency spac-
ing of 312.5 KHz) of a WiFi channel. This provides the
necessary interface for the development of systems like
WiFiNet [23] on top of Odin for detection, localization
and quantification of interference from a variety of non-
WiFi interference sources.

Our troubleshooting application (102 SLOC) periodi-

cally (roughly every 5s) collects channel snapshots. Fig-
ure 8 shows the effect of a jammer (continuous stream
of garbage frames) on channel 11 at 2462Mhz over a pe-
riod of 5 minutes. This data can be used by a jammer
detection application, e.g., to localize a jammer via tri-
angulation.

Application IV: Automatic Channel Selection
Automatic Channel Selection (ACS) algorithms aim at
automatically determining the best available channel for
a WiFi interface. However, identifying combinations of
channels for different APs while minimizing interference
is challenging. Due the increasing amount of differ-
ent channel bandwidths within the 2.4 and 5 GHz band.
On top of Odin, an ACS application can query different
channel properties from the agent (or external sources)
for data that characterizes the channel properties. This
includes, but is not limited to, spectral samples from the
sub-carriers or the active- and busy-time in order to esti-
mate the amount of interference on the channel.

We implemented a simple ACS (97 SLOC) applica-
tion on top of Odin that is based on a per-AP channel
selection scheme. It scans across all available channels
and computes the average and the max RSSI for each
channel center frequency. Based on multiple subsequent
spectral scans, the ACS application picks the channel
with the smallest maximum and average RSSI. This ex-
ample Odin application can be extended to also utilize
additional channel properties provided by the Odin agent
or external data sources in order to estimate the chan-
nel load, e.g., channel active- and busy-time. This infor-
mation can then be used to implement functionality akin
to [25].

Figure 10 shows a snapshot of channel load of all cen-
ter frequencies within the 2.4 GHz band during the day in
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our office environment.These snapshots are aggregated
by our ACS application over time in order to get to a
view similar to the one in Figure 9. Based on this ag-
gregated view, the application then performs channel se-
lection according to the heuristic described above. As
indicated within the snapshot and the aggregated view, it
can be seen that channel 11 is less utilized than channel
1, which we confirmed to be correlated with the number
of APs operating on each channel.

Application V: Energy Efficient WiFi Networks
The problem of energy consumption in telecommunica-
tions infrastructure and mechanisms to address it have
been studied in detail [12, 22, 33]. In earlier work [24]
we demonstrated a system that uses Odin and leverages
an integrated energy and mobility management system.
The APs are organized into clusters, with each cluster
having a master AP and multiple slave APs. The mas-
ter APs always remain online and provide full coverage.
Using a combination of observed network demand and
an energy saving policy, the system activates or deacti-
vates slave APs, and offloads clients between the master
and the slaves accordingly. This is expressed as an en-
ergy manager written as an Odin application, which col-
lects energy measurements via energy meters in order to
make informed handover decisions.

Application VI: Guest policy enforcement
Centralized policy enforcement is an important require-
ment in enterprise WiFi deployments. This is one avenue
where LVAPs complement OpenFlow-based access con-
trol particularly well. A guest network application uses
the framework’s API in order to instantiate a guest net-
work on top of a slice of physical APs. It then attaches
OpenFlow rules to all LVAPs of that slice which restricts
the corresponding clients to be able to access only a cer-
tain set of subnets and ports. Since the OpenFlow entries
follow the LVAP, other applications such as a mobility
manager or load-balancer can operate on the same slice
and perform LVAP migrations as well.

6 System Evaluation
In this section, we evaluate the CPU and memory utiliza-
tion of the Odin controller as well as the latency involved
in handling probe requests.

6.1 Controller load due to Pub-Sub
We evaluate the controller’s CPU and memory utilization
when running the mobility manager (cf. Section 5) under
synthetically generated load. The aim is to understand
the load involved in running a realistic application that
makes use of the publish-subscribe subsystem.

We use nine APs of our testbed. The mobility man-
ager is notified whenever a frame is received by any of
the APs above a given signal strength threshold. Based
on these notifications, the mobility manager decides on

whether or not to trigger a client handover. A load gener-
ator running on a dedicated server invokes RPCs on the
agents in order to mock client associations from a fixed
list of clients. It then creates 1000 mock frame recep-
tions per client per second at the APs at varying signal
strengths to simulate the reception of arbitrary 802.11
frames. Depending on the signal strength of each frame,
the agents notify the controller. Across different runs of
the experiments we vary the number of clients as well as
the number of APs that can overhear a single frame trans-
mission by a client (density factor). The density factor
determines how many APs generate a notification for a
single frame transmission by a client. Each run of our
load generator for a particular parameter takes 250 sec-
onds. We repeat the experiment 10 times for each com-
bination of the parameters and observe the steady state
CPU and memory utilization.

We find that an increase in the number of clients for a
fixed density factor leads to an increase in the controller’s
CPU utilization (see Figure 11). Furthermore, for a fixed
number of clients, an increase in the density factor leads
to an increased number of the mobility manager’s sub-
scriptions being triggered, leading to more control mes-
sages to the controller. For 500 clients with density fac-
tors of 5 and 7, our APs were CPU bottlenecked before
being able to saturate the controller. However, we note
that 500 is already a very large number of clients to sup-
port with only 9 APs. The memory utilization at the con-
troller is 180±7MB across all runs.

6.2 LVAP Handoff Micro-Benchmark
Since LVAPs are a central primitive of Odin, we per-
form experiments to gauge their effectiveness. The goal
is to understand what performance related assumptions
Odin applications can make. To this end, we compare
LVAP-handoffs against standard WiFi handoffs. We also
demonstrate that frequent LVAP-based handoffs do not
affect the throughput of a TCP connection.

We use a single client and two APs of our testbed.
An HTTP server in the same network acts as a traffic
end-point. Since DHCP and authentication related de-
lays only appear in the first connection to the network,
the client is provided a static IP and no authentication is
performed. Note that an LVAP handoff is not susceptible
to the authentication delay. We conduct this experiment
on a 5 GHz channel during the night to limit interference.

Comparison of Handoffs
For comparing the impact of handoffs, a client associates
to an AP and begins an HTTP download of a large file.
After 13 seconds, the client is made to handoff to another
AP. When using Odin, the handoff uses an LVAP migra-
tion, whereas with regular WiFi, the client is explicitly
told to perform a handoff using the iw command.
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Table 2: Latency for serving probe requests (excluding
transmission time on the channel) across 9 APs

Scans per AP/s Avg. Latency [ms] Std-deviations [ms]
10 1.791 1.078
20 1.633 0.911

100 1.442 3.266
200 7.373 28.881

Figure 12 shows the TCP throughput over time with
standard WiFi compared to Odin. For regular WiFi, the
throughput drops to zero for several seconds before re-
covering. With Odin’s LVAP handoff, the TCP through-
put is unaffected. As Figure 12 indicates, there is an
overall reduction of throughput (close to 5 Mbit/sec) with
Odin as opposed to regular WiFi. This is, because we
currently use userspace Click to run the Odin agents, re-
sulting in slower and jittery forwarding performance on
our APs which makes TCP to throttle down. However,
this is orthogonal to continuously maintaining L2 and L3
connectivity, which Odin successfully achieves through
LVAP migrations.

LVAP-Handoff frequency benchmark
To understand how often an LVAP-handoff can be exe-
cuted against a client without affecting its performance,
a single iperf-based TCP flow is executed with the
client as the source over a period of 30 seconds. Between
the 5th and 25th seconds of the measurement, LVAP-
handoffs are repeatedly triggered between the two APs
at fixed rates. Figure 13 shows that LVAP-based hand-
offs are leading to no significant throughput degrada-
tion of the TCP flow. Specifically, even when repeatedly
performing LVAP-handoffs every 100 ms the throughput
degradation is negligible. This illustrates the inexpen-
sive nature of this operation. Furthermore, in the event
of LVAP oscillations due to poorly written control-logic,
client performance will not be impacted significantly.

6.3 Probe request serving latency
Since Odin invokes the controller for handling active-
scans by clients, we evaluate whether our system can
deliver probe responses to clients within the stipulated
30ms constraint.

For the experiment, a load-generator uses a hook on
the agent that triggers the effect of a probe request re-
ception. Nine APs of our testbed are used. We increase
the rate of probe requests received at each agent. Each

agent measures the time it takes in between receiving the
probe request, informing the controller, having the con-
troller respond with a BSSID, and then for the agent to
construct a probe response message.

Table 2 shows, that the delays introduced due to
our split-MAC design are well within the 30ms bound
described above. We note that the latency is domi-
nated by the network round-trip delay. Running the
load-generator at 1,800 scans per-second (200 scans
per-second-per-AP) lead to excessive queuing in the
100 Mbit/s Ethernet switch that our APs were connected
to, which lead to the larger delays.

6.4 Compatibility with clients
We have tested our framework with common WiFi client
devices, such as Windows, Linux, Mac OS X, iOS and
Android devices. Compatibility with a multitude of
client devices was demonstrated at [24, 17].

7 Related Work
We next position our work with respect to existing ap-
proaches that introduce programmability and/or perform
centralized management of wireless networks.
Why not OpenFlow?: There have been efforts to bring
OpenFlow to wireless APs (e.g., using OpenFlow to-
gether with SNMP [38]). However, we argue that Open-
Flow in its current state is ill-suited to orchestrate WiFi
networks for many reasons. It cannot perform match-
ing on wireless frames, cannot accommodate measure-
ments of the wireless medium, report per-frame receiver
side statistics, or be used for setting per-frame or -flow
transmission settings for the WiFi datapath. Yet, extend-
ing OpenFlow to accommodate these requirements does
not yield any specific benefits. By implementing a cus-
tom protocol for handling Odin agents, we thus achieve
a cleaner separation of concerns.
Vendor solutions: A plethora of commercial enterprise
WiFi solutions exist. These solutions typically man-
age APs centrally via a controller which is hosted either
in the local network [5], or remotely in the cloud [4].
Unfortunately, these solutions do not extend into the
purview of cheap low-cost commodity AP hardware that
is used by provider networks, nor do they support com-
mon, open and programmable interfaces.
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Virtual APs: Virtualization of APs have been studied in
different contexts. [5] uses a one-BSSID-per-client ap-
proach to provide seamless mobility. SplitAP [10] pools
together multiple APs in order to regulate air-time fair-
ness. On the other hand, we demonstrate multiple use-
cases for the LVAP abstraction as well as its utility as an
API for building an SDN for WiFi networks.

Programmable wireless networks and centralized
scheduling: Dyson [20] addresses the problem of ex-
tensibility in wireless LANs, by defining a set of APIs
for clients and APs to be managed by a controller. The
controller can query these nodes for channel informa-
tion, form a global view of the network, and then con-
trol the network’s behavior to enforce a set of policies.
Flashback [11] proposes a control channel technique for
WiFi networks, by allowing stations to send short control
messages concurrently with data transmissions, without
affecting throughput. This ensures a low overhead con-
trol plane for WiFi networks that is decoupled from the
data plane. DIRAC [39] proposes a split-architecture
wherein link-layer information is relayed by agents run-
ning on the APs to a central controller to improve net-
work management decisions. However, these systems
require special software or hardware on the client, which
raises questions of practicality, and goes against the de-
sign requirements for our framework. There are systems
that do not modify the client in order to deliver services.
In DenseAP [19], channel assignment and association re-
lated decisions are made centrally by taking advantage
of a global view of the network. However, it does not
offer slicing of the WiFi, and provides a limited form of
client association management because explicitly forces
clients to disconnect, and then perform a re-scan in order
to change the client’s attachment point to the network.
Thus, they do not perform client handoffs seamlessly.

CENTAUR [34] improves the data path in enterprise
WiFi networks by using centralization to mitigate hidden
terminals and to exploit exposed terminals. It is a natu-
ral fit for an application on top of Odin. FlowVisor [27]
slices the network resources at the flow level and dele-
gates control of different slices to controllers for wired
networks. It achieves this by acting as a transparent
proxy between OpenFlow switches and multiple Open-
Flow controllers. This results in isolation of slices by
ensuring that a controller operating on one slice cannot
control traffic of another slice. With our framework, we
have brought these concepts of isolation into WiFi net-
works. [37] supports multiple concurrently running ex-
periments using slicing by SSIDs. However, as we show
in this paper, slicing by BSSIDs as is done in Odin offers
more powerful client isolation and management abilities.

8 Discussion and Further Steps
In designing Odin, we were careful to keep in
mind upcoming trends in physical layer virtualization
techniques, datapath programmability, hardware-based
packet matching and operator requirements.
Virtualization of the PHY layer: Although we have
addressed isolation at the IEEE 802.11 MAC layer, our
system does not handle virtualization of the PHY layer,
which is a logical next step. The IEEE 802.11 stan-
dard defines a Point Coordination Function (PCF), for
centrally scheduled channel access. However, the PCF
is rarely implemented in today’s WiFi hardware/drivers.
Picasso [29] enables virtualization across the MAC/PHY.
It proposes a technique to perform spectrum slicing and
allows a single radio to receive and transmit on different
frequencies simultaneously. MAClets [13] allows multi-
ple MAC/PHY protocols to share a single RF frontend.
These advances can be used by Odin to operate multiple
LVAPs with different characteristics on different chan-
nels on top of the same AP. Alternative approaches, such
as [32] and [36], are incompatible with today’s WiFi
MAC/PHY and thus do not fit our design requirements.
Programmability of the WiFi data path: Odin’s cur-
rent implementation does not yet provide programmabil-
ity of per-flow WiFi PHY settings. This is well within
the scope of our design because the per-flow and -client
transmission settings can be added as LVAP state. En-
abling per-flow transmission settings will allow appli-
cations to centrally implement rate and power control.
With OpenRadio [8], our system could also benefit from
a clean-slate programmable network dataplane. This
would allow Odin to work around hardware limitations
such as that with the BSSID registers used for ACK gen-
eration (cf. § 4.3). We see OpenRadio, combined with
Odin, as a steps towards WiFi networks that are fully
programmable down to the PHY.
Performance isolation between slices: Odin in its cur-
rent form achieves control logic isolation between slices.
As of now, it is difficult to enforce FlowVisor-like band-
width and CPU isolation (on an AP) between slices.
First, per-flow bandwidth isolation can be performed
on the agents using a token-bucket approach, but this
only provides weak isolation on the physical layer, due
to the dynamic characteristic of the wireless medium.
Although modern WiFi cards are equipped with multi-
ple queues to provide QoS, the assigned priorities and
scheduling are hard to adjust. Hence, the FlowVisor ap-
proach of per-port queues does not suffice, and WiFi-
specific QoS mechanisms need to be incorporated. Sec-
ond, for agent CPU isolation, throttling control messages
between the controller and agent does not suffice. This is
because the performance of the pub-sub mechanism has
a direct bearing on the effectiveness of a reactive applica-
tion. If we throttle notifications being sent from an agent
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to the controller, it may negatively affect the decision-
making at the application. We are currently exploring
what the right design points are.

9 Conclusion
In this paper, we introduced Odin, an SDN framework
for WiFi networks. Through the LVAP abstraction, Odin
is well suited to address the complexities of the IEEE
802.11 protocol as demonstrated via the six common net-
work services we have realized with it. Odin runs on top
of today’s commodity access point hardware without re-
quiring client modifications, whilst being well-suited by
design to take advantage of upcoming trends in physical
layer virtualization and hardware extensions. Thus, with
our publicly available prototype, we present one promis-
ing way to uniformly manage both wired and WiFi net-
works given the requirements of today’s network opera-
tors. We are exploring this further by focusing on unified
management of both wired and wireless resources.
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Abstract
WiFi’s physical layer has increased in speed from
802.11b’s 11 Mbps to the Gbps rates of emerging
802.11ac. Despite these gains, WiFi’s inefficient MAC
layer limits achievable end-to-end throughput. The culprit
is 802.11’s mandatory idle period before each medium
acquisition, which has come to dwarf the duration of a
packet’s transmission. This overhead is especially punish-
ing for TCP traffic, whose every two data packets elicit
a short TCP ACK. Even frame aggregation and block
link-layer ACKs (introduced in 802.11n) leave signifi-
cant medium acquisition overhead for TCP ACKs. In
this paper, we propose TCP/HACK (Hierarchical AC-
Knowledgment), a system that applies cross-layer opti-
mization to TCP traffic on WiFi networks by carrying
TCP ACKs within WiFi’s link-layer acknowledgments.
By eliminating all medium acquisitions for TCP ACKs
in unidirectional TCP flows, TCP/HACK significantly
improves medium utilization, and thus significantly in-
creases achievable capacity for TCP workloads. Our mea-
surements of a real-time, line-speed implementation for
802.11a on the SoRa software-defined radio platform and
simulations of 802.11n networks at scale demonstrate that
TCP/HACK significantly improves TCP throughput on
WiFi networks.

1 INTRODUCTION

In today’s WiFi wireless networks, each time a sender
wishes to transmit, it must first sense the medium to be
idle for a randomly chosen interval. These random de-
lays desynchronize would-be concurrent senders. To use
a concrete example, Enhanced Distributed Channel Ac-
cess (EDCA) in 802.11n [1] enforces an average idle
period of 110.5 µs before a frame’s transmission, whereas
a 1500-byte payload itself lasts only 80 µs at 150 Mbps.
Each frame’s link-layer acknowledgment (LL ACK) con-
sumes further channel capacity. As the physical-layer
bit-rate increases but the pre-transmission idle period re-
mains the same, this inefficiency only worsens. If a 600
Mbps 802.11n sender sent single frames in this fashion,
it would only achieve 9% of the theoretical channel ca-
pacity. Moreover, WiFi senders back off exponentially
after a failed transmission, and so incur even longer mean

The research leading to these results has received funding under the
EU’s 7th Framework Programme, grant n◦ 257422, n◦ 287581, and
European Research Council grant n◦ 279976. We gratefully acknowl-
edge a hardware donation from the Microsoft Research Software Radio
Academic Program.

pre-transmission idle periods under contention, further
reducing medium efficiency.

In an effort to amortize the significant overhead of
medium acquisition over multiple data frames, 802.11n’s
MAC protocol batches multiple data frames into a single
aggregate MAC protocol data unit (A-MPDU), and in-
curs only a single medium acquisition for each such batch.
802.11n further aggregates the LL ACKs for the data pack-
ets in a received A-MPDU into a single LL Block ACK.
While batching helps one sender, TCP traffic is inherently
bidirectional: a TCP receiver typically transmits a single
TCP ACK packet for every pair of TCP data packets it
receives. Not only do TCP ACKs incur further expensive
medium acquisitions by the TCP receiver—they run the
risk of colliding with the TCP data sender’s transmissions
as well.

WiFi’s data frames elicit LL ACKs that the receiver
sends without contending for the medium, as other would-
be senders defer for an ACK frame’s duration after hear-
ing a data frame. We observe that this LL ACK is an ideal
vessel for carrying TCP ACK information on the reverse
path without incurring a costly medium acquisition. We
name this overall cross-layer approach—in which a single
transmission of feedback by a lower-layer protocol addi-
tionally carries feedback from a higher-layer protocol—
Hierarchical ACKnowledgment (HACK). Though apply-
ing HACK to carry TCP ACKs in LL ACKs is conceptu-
ally quite simple, a robust design to do so must address
several systems challenges. In this paper, we describe and
evaluate such a design, TCP-over-HACK (TCP/HACK).
Our contributions in this work include:

• We offer an analysis of the capacity of the 802.11n
MAC protocol for TCP traffic as function of bit-rate,
and the throughput gains theoretically achievable by
avoiding medium acquisitions for TCP ACK packets.

• We describe TCP/HACK, a scheme that increases the
WiFi MAC’s efficiency by encapsulating TCP ACK
information in WiFi LL ACKs. TCP/HACK fully sup-
ports 802.11n’s batching of data packets and use of LL
Block ACKs.

• We show how to efficiently encode the full range of
TCP ACK information (e.g., timestamp options, re-
ceiver window changes) within LL ACKs.

• We identify potential pathological interactions between
TCP’s reliability and congestion control mechanisms
and WiFi’s LL reliability protocol that would limit
system throughput, and ensure that TCP/HACK avoids
such interactions, without any changes to any node’s
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TCP implementation.
• We offer an interface between the network device driver

software and the network interface card (NIC) hard-
ware that minimizes complexity in the NIC while al-
lowing prompt sending of TCP ACK information in
WiFi LL ACKs generated in response to WiFi data
packets.

• Through an evaluation in simulation of up to 10 com-
peting TCP flows on a 150 Mbps 802.11n network, we
illustrate that TCP/HACK improves aggregate through-
put up to 22% over TCP on “stock” 802.11n.

• Through an evaluation of a prototype online, wire-
speed implementation of TCP/HACK for 802.11a on
the SoRa software-defined radio platform, we illustrate
that TCP/HACK improves aggregate throughput up to
32% over TCP on “stock” 802.11a.

2 PROBLEM AND DESIGN GOALS

There are two distinct facets to improving the efficiency
of the WiFi MAC layer for TCP transfers at fast bit-rates.
First, we must understand the overhead of medium acqui-
sition in WiFi 802.11a and 802.11n networks. How inef-
ficient is the status quo, and what potential performance
gains can one achieve by reducing the number of medium
acquisitions? Second, we must articulate goals for our
design to ensure that it meets the practical challenges of
carrying feedback from a higher-layer protocol in a lower-
layer one, as we propose to do in HACK. Such challenges
arise because of the vagaries of wireless links (e.g., fre-
quent packet losses on links with poor signal-to-noise
ratios), the potential for pathological interactions between
TCP and the WiFi MAC protocol when optimizing across
layers, and the constraints of real-world protocol stacks,
network device drivers, and NICs. We now consider these
two facets—medium acquisition overhead and practical
design goals—in turn.

2.1 WiFi MAC Overhead
Consider a typical WiFi use scenario, where a single
802.11a or 802.11n client downloads a large file from a
remote TCP sender. We assume throughout that the TCP
receiver uses delayed ACK, and thus generates one TCP
ACK packet for every two TCP data packets it receives.1

In Figures 1(a) and 1(b), the curves labeled “TCP
802.11{a,n}” show analytical predictions of the through-
put a single TCP downloader achieves as a function of
physical-layer bit-rate on lossless 802.11a and 802.11n
networks, respectively. These analytical predictions are
based on the parameters of the 802.11a and -n MACs. A
detailed derivation of the capacity of the 802.11n MAC

1Note that this assumption is the best case for the efficiency of the
status quo WiFi MAC—were delayed ACK not used, a TCP receiver
would generate twice as many ACK packets, and the WiFi MAC would
incur significantly more medium acquisitions.
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Figure 1: Theoretical goodput for 802.11a (a) and
802.11n (b) rates. In (b), theoretical TCP/HACK achieves
an 8% improvement on average over TCP/802.11n for
physical rates lower than 100 Mbps.

layer may be found in [6]; we do not repeat it here. The
calculation for 802.11a is similar. (Figures 1(a) and 1(b)
also show the improved throughput achieved by HACK,
our modified 802.11 MAC protocol that carries TCP
ACKs in link-layer ACKs, which we describe in Sec-
tion 3.)

Note that for “stock” 802.11a and -n, the achievable
TCP throughput is a progressively smaller fraction of the
physical layer bit-rate as the latter increases. Time spent
on non-payload overhead for each medium acquisition is
to blame. In 802.11a, these overheads include the dura-
tions of DIFS and the contention window (both before a
data frame’s transmission), the data frame’s preamble, the
SIFS interval between data frame and LL ACK, and the
LL ACK itself.2

As noted earlier, 802.11n aggregates data frames into
A-MPDUs so as to amortize medium acquisition over-
head over many frames, and combines multiple LL ACKs
into Block ACKs in response. The results in Figure 1(b)
include the application of these techniques, and show
that while they reduce 802.11a’s overhead, TCP still suf-
fers progressively greater throughput limitations vs. the
physical-layer rate because of the overhead of medium
acquisitions for TCP ACKs.

2.2 Design Goals
To work robustly in practice, TCP/HACK must meet sev-
eral demands that arise from the constraints of a modern
wireless host’s networking software and hardware, some
of which are particularly unforgiving.

Hard real-time deadlines A WiFi receiver must reply
to a data packet with an LL ACK within SIFS, an interval
defined in the 802.11a specification (for example) as 16
µs. That deadline is of course far too short to meet in
host software, so WiFi NICs validate received frames and
generate LL ACKs in hardware. TCP/HACK must comply
with these same LL ACK deadlines imposed by today’s

2802.11n’s parameter names and values differ slightly (e.g., AIFS in-
stead of DIFS); the overall scheme of per-medium acquisition overhead
does not.
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WiFi MAC. But if TCP/HACK is to enclose TCP ACK
information in LL ACKs, the host TCP implementation
cannot possibly generate a TCP ACK for a newly received
TCP data packet within SIFS. To accommodate typical
host protocol stack processing delays, TCP/HACK must
allow the TCP ACK for a newly received TCP data packet
to be enclosed within the LL ACK for a different TCP
packet received later. Yet it mustn’t unduly delay the
return of an ACK to the TCP sender (see “cross-layer
nuances” below).

Efficient encoding of general TCP ACK information
The WiFi MAC reserves time on the wireless medium
for a LL ACK to return after a data packet, so that other
senders’ transmissions do not collide with the LL ACK.
It is important that TCP/HACK encode TCP ACKs in LL
ACKs efficiently, to minimize the period of medium occu-
pancy for these lengthened LL ACKs. The encoding for
TCP ACKs must be compact yet allow the full generality
of information that may potentially be found in a TCP
ACK, (e.g., TCP timestamp options, changes in receiver’s
advertised window, &c.) all of which is important to the
correct and efficient operation of TCP.

Simplicity of NIC modifications TCP/HACK should
not require any in-NIC intelligence about TCP packet
headers or other TCP protocol details. Both at clients and
APs, all TCP-aware processing must occur in the host
software. We set this goal to minimize the complexity
and thus the cost of the NIC, but also because we would
like HACK to generalize to other higher layers than TCP
such as SCTP [10] or DCCP [5]: if the NIC treats the
feedback to be appended to an LL ACK as opaque bits
that it needn’t understand, then HACK should generalize
in this way.

No changes to TCP TCP changes are difficult to stan-
dardize and difficult to deploy, as many widely used
OSes ship with a single closed-source TCP implemen-
tation. Both at clients and APs, HACK-related function-
ality should be confined to the WiFi NIC’s device driver
(which is bound to the NIC’s hardware design—i.e., NIC
hardware that supported HACK would routinely ship with
a driver supporting HACK).

Avoid pathological cross-layer interactions Finally,
it is important to note that TCP relies on a stream of
TCP ACKs reaching the sender to maintain steady packet
transmissions by the sender (and thus high throughput).
TCP/HACK must not disrupt the timely return of correct
TCP ACKs to the sender.

3 HACK DESIGN

We first offer an overview of TCP/HACK’s design. We
then explore nuances of the cross-layer interactions be-
tween TCP and 802.11n, which motivate refinements to

TCP/HACK that improve robustness and performance.
Finally, we consider the constraints of real-world systems
software and NIC hardware, as well as of lossy wireless
links, and flesh out the design of TCP/HACK into a fully
practical system.

In the interest of brevity, we describe the design of
TCP/HACK in the context of an 802.11 client acting as
a TCP receiver while downloading via an 802.11 AP.
Throughout, we refer to this downloader as the “client.”
Note, however, that TCP/HACK is a fully symmetric
design—both the design and our implementation of it
also work on TCP uploads by an 802.11 client.

3.1 HACK in Overview
Let us first consider how TCP/HACK works in the sim-
pler case of 802.11a, without batching of packets into
A-MPDUs. When a regular TCP client receives a TCP
data packet, its network stack generates a TCP ACK and
enqueues it for transmission by the WiFi NIC.

Under TCP/HACK, a client does not immediately en-
queue a TCP ACK for transmission. Instead, the client
compresses each TCP ACK and appends them to a com-
pressed frame that it builds. When the next data packet
from the AP arrives, the client encapsulates the com-
pressed TCP ACK frame within the returning LL ACK,
effectively avoiding all medium acquisitions for the corre-
sponding TCP ACKs. The AP recognizes an “augmented”
LL ACK, which it decompresses, reconstitutes the en-
coded TCP ACKs, and forwards them upstream.

Now let us consider 802.11n, where data packets can
be aggregated into a single batched A-MPDU, and link-
layer ACKs take the form of a Block ACK that includes a
bitmap indicating which packets from the A-MPDU were
received. On “stock” 802.11n during a TCP download the
normal repeating pattern will then be:
1. one A-MPDU from AP to client containing TCP data
2. one Block ACK from client to AP
3. one A-MPDU from client to AP containing TCP ACKs
4. one Block ACK from AP to client
To eliminate medium acquisitions for TCP ACKs in
802.11n, we would like a TCP/HACK client to encap-
sulate all the TCP ACKs generated in step 3 in the Block
ACK sent in step 2, and thus avoid step 4 entirely. In prac-
tice, the arrival of an A-MPDU containing a batch of TCP
data packets will cause the client’s OS to generate a burst
of TCP ACK packets in step 3 after the Block ACK has
departed for that A-MPDU. These TCP ACKs arrive at
the client’s transmit queue where they are compressed and
concatenated, waiting for the arrival of the next A-MPDU
from the AP. The client will then append this compressed
frame to the Block ACK it sends the AP in step 2.

Although the description above is for downloads, the
design is in fact symmetric; we envisage TCP/HACK as
especially useful for wireless backup to LAN-attached
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Figure 2: Interaction between A-MPDUs, Block ACKs
and encapsulated HACK packets

storage, such as a Time Capsule.

3.2 Cross-Layer Nuances
We now refine our design to handle the subtle cross-layer
interactions that arise between TCP and 802.11.

In principle, we would like to encapsulate TCP ACKs
on the link-layer ACKs of the TCP packets they acknowl-
edge. For example, if a batch containing TCP packets
1-64 arrives, the client would like to piggyback the TCP
ACKs for packets 1-64 on the Block ACK for that batch.
However, the 16µs SIFS interval between receiving data
and sending the link-layer ACK or Block ACK is too
short for the host’s TCP stack to turn around the TCP
ACKs, compress them, and DMA them to the NIC. For
HACK to be practical, the compressed ACKs will have
to wait until the next data arrives, and piggyback on its
ACK or Block ACK. It turns out that this significantly
complicates the dynamics of TCP/HACK and we will
explore the consequences.

Figure 2 illustrates this process3. In response to a batch
containing TCP packets 1 and 2, TCP ACKs 1 and 2
arrive at the client transmit queue too late to be carried
on that batch’s Block ACK. Instead, the TCP ACKs are
compressed but not yet sent. When the next batch carrying
TCP packets 3 and 4 arrives, its Block ACK can now carry
the compressed frame with TCP ACKs 1 and 2. The AP
then reconstitutes the full TCP ACKs and passes them up
the network stack.

So long as TCP data packets continue to arrive, there
is a steady stream of Block ACKs on which to piggyback
compressed TCP ACK frames: all TCP ACKs are carried

3For simplicity it assumes that delayed TCP ACKs are disabled

as HACK packets and no vanilla TCP ACK packets need
to be sent. But what happens if no further data packets
arrive? The client cannot retain the TCP ACKs for too
long, or it will cause the TCP sender to time out and
retransmit. Thus, after some time period, the client must
send uncompressed vanilla TCP ACKs in the normal way.
In Figure 2, TCP ACKs 3 and 4 meet this fate, and are in
turn Block-ACKed.

Figure 1 summarizes the theoretical upper bound on
TCP/HACK throughput on 802.11a (Figure 1(a)) and
802.11n (Figure 1(b)). The curves assume that the sender
transmits the largest possible A-MPDUs,4 that HACK
manages to encapsulate all TCP ACKs in TCP Block
ACKs, and that the compression is performed using
the algorithm in Section 3.3. As the bit-rate increases,
TCP/HACK significantly improves capacity, with a 20%
improvement seen at 600 Mbps on 802.11n. In reality,
the improvement can actually exceed that shown in the
figure, as TCP/HACK can get closer to its bound than
vanilla TCP can. This is due to collisions between TCP
data packets and vanilla TCP ACK packets, a problem
HACK sidesteps.

To HACK or not to HACK?

To maximize the benefits, TCP/HACK packets should
be used whenever possible. But TCP ACKs must not
be delayed when no more TCP data packets will arrive.
How long should the client retain these TCP ACKs before
giving up and sending them natively?

There are several reasons no more packets may arrive,
including that the sender has stopped sending, but with
802.11n, the principal reason is the adverse effect of A-
MPDUs on TCP’s ACK clock. On a busy AP or during
slow start, it is common for the entire TCP congestion
window to be queued at the AP and then to be sent to the
client in a single A-MPDU. An entire congestion window
of TCP ACKs is generated and compressed, and these now
sit at the client, waiting for the arrival of another incoming
data packet so they can be send on its Block ACK. As the
congestion window is full, this next packet never arrives
and the connection stalls until TCP’s retransmit timer fires.
On 802.11a, which lacks aggregation, we don’t often see
this problem, but it is normal during slow start when
802.11n batching is used. We consider the following three
different designs to address these concerns:
Explicit Timer A naive approach would be to have
TCP/HACK time out and fall back to sending regular
ACKs after a delay. In practice there is no good delay
value that can be chosen, since the client cannot know the
RTT and congestion window at the TCP sender, how the
sender’s packets will be spaced throughout the RTT, nor

4A-MPDU length is limited either by the 64 KByte A-MPDU bound
or at lower bitrates by 802.11n’s 4 ms transmit opportunity limit.
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if the AP will suddenly start sending to another client.
Opportunistic HACK A more adaptive approach is not
to explicitly delay TCP ACKs at all, but rather be oppor-
tunistic. When the wireless link is the bottleneck, the next
downstream data batch will contend with the upstream
TCP ACK batch. If the downstream batch wins, HACK
can be used, but otherwise vanilla TCP ACKs will be sent.
Such a design may often squander the opportunity to use
HACK, but it has the virtue of seeming simple—until
one considers the complexity of the NIC-network driver
interface needed to implement it.
The MORE DATA Bit In Figure 2, initially there are four
data packets queued at the AP. When the AP forms the
first batch containing TCP data packets 1 and 2, it already
knows more data will be sent to that client, as it already
has packets 3 and 4 in its queue. So long as the AP has
more packets queued than will fit in a batch, it knows
that it is safe for the client to save up compressed ACKs
waiting for the next batch. The AP simply tells the client
that there is more data coming by setting the MORE DATA
bit in the 802.11 header of the A-MPDU.5 When the client
sees this flag, it latches this state and will not transmit
any more non-encapsulated TCP ACKs until the next data
packet arrives, when it can use HACK to send them.

3.3 HACK in Practice
In the preceding section, we have presented a concep-
tual description of TCP/HACK, but several questions
concerning the practicality of this conceptual design re-
main unanswered. First, how realizable is TCP/HACK
given current systems and hardware? In particular, how
should TCP/HACK’s functionality be divided between
a station’s network interface card (NIC) hardware and
NIC device driver? Finally, what manner of compression
should TCP/HACK employ to reliably encode the TCP
ACKs?

3.3.1 Driver and NIC Functionality

We realize TCP/HACK (including the MORE DATA mech-
anism) with very few changes to a station’s 802.11 NIC.
The main strategy is to implement the bulk of TCP/HACK
within the NIC’s driver, as we demonstrate using the ex-
ample shown in Figure 2. Our discussion is in the context
of a modern Linux wireless driver, such as the Atheros
ath9k driver.6

AP (data transmission) The only modification needed
to the AP when transmitting data packets is to set the
MORE DATA flag when there are more packets remaining
in the transmit queue for the same client.

5This bit exists in stock 802.11 to assist with power saving. HACK
uses this bit irrespective of whether power saving is enabled.

6http://wireless.kernel.org/en/users/Drivers/ath9k
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of the next frame.

Client The client’s driver needs to determine when it
can use TCP/HACK and when it must send TCP ACKs
normally. In Figure 2, on receiving packets 1 and 2, the
client’s NIC also passes the MORE DATA state to the
driver. The client TCP stack acknowledges the data, gen-
erating TCP ACKs 1 and 2, and puts them in the transmit
queue at point 1 .

Figure 3 shows what happens at points 1 and 2 from
Figure 2 in more detail. If the driver is not in the MORE
DATA state, it simply enqueues these ACKs normally.
However, if MORE DATA is set, it compresses the arriving
TCP ACKs and creates corresponding buffer descriptors.
A separate buffer descriptor chain per destination address
is needed to match compressed TCP ACKs with Block
ACKs for that destination.

At point 2 the driver DMAs the buffer descriptor
chain to the NIC. The NIC maintains this table of com-
pressed TCP ACK descriptors separately from normal
transmission descriptors. Finally, the driver sets a flag in
the NIC to indicate that TCP/HACK is ready.

Figure 4 shows what happens when the next batch from
the AP arrives at the client. If the TCP/HACK flag indi-
cates “ready,” the NIC uses the corresponding descriptors
to DMA the compressed TCP ACK frames to the card.
It concatenates these frames, and appends them to the
returning Block ACK at point 3 . Recall that the NIC
normally fires an interrupt when it receives data packets.
In this case, the interrupt must also indicate whether the
NIC succeeded in sending the compressed ACKs.

This design also copes with the race condition where
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the batch carrying packets 3 and 4 arrives with the MORE
DATA flag not set before the driver has succeeded in con-
veying compressed TCP ACKs 1 and 2 to the NIC. In
this case, the TCP/HACK “ready” check will fail. The
NIC sends a normal Block ACK and signals to the driver
a TCP/HACK failure in the receive interrupt. The driver
now is free to re-enqueue the TCP ACKs on the transmit
queue for normal transmission.

AP (ACK reception) Finally, the AP needs to recog-
nize and decompress the “augmented” Block ACKs. The
task of recognition falls to the AP’s NIC, which extracts
the compressed TCP ACK frame from the received Block
ACK, adds it to the transmit complete report and inter-
rupts to indicate transmit complete. The driver extracts
the compressed TCP ACK frame, decompresses and re-
constitutes the TCP ACKs, and forwards them upstream.

3.3.2 Compression

A critical component of the design is choosing a compres-
sion method for TCP ACKs. As 802.11a and -n transmit
LL ACKs at one of the slower basic rates, e.g. 6 Mbps,
it is desirable to minimize the size of the TCP ACK in-
formation appended to LL ACKs. Moreover, the 802.11a
and -n MAC protocols’ DIFS and AIFS intervals protect
“stock” LL ACKs from collisions. Ideally, the compressed
ACK information that HACK appends to LL ACKs should
be short enough to fit within DIFS and AIFS, to avoid
risking a collision.7 We would like to leverage the redun-
dancy within TCP and IP headers across consecutive TCP
ACKs. Since most of the TCP/IP header fields remain
static for a particular flow, they can be cached at the com-
pression and decompression endpoints. To encode TCP
and IP header fields reliably, TCP/HACK uses Robust
Header Compression (ROHC) [8] to efficiently condense
TCP/IP segments. ROHC supports the most popular TCP
options like Timestamps and Selective Acknowledgments
(SACK), and defines the notion of contexts, each with a
particular identifier (CID). A context for TCP/HACK’s
purposes maps nicely to a particular TCP flow. In addi-
tion to caching static fields like the TCP/IP five-tuple at
the endpoints, ROHC losslessly compresses the dynamic
fields like the TCP Sequence and ACK numbers.

TCP/HACK-specific ROHC optimizations Since
TCP/HACK applies ROHC in a specific context, we
make the following simplifications:
1. We do not explicitly send Initialize-Refresh (IR) pack-

ets from the TCP client to the AP. To initialize a new
7In our simulations in Section 4.3, we find that 98.5% of the LL

ACKs carrying ROHC-compressed TCP ACKs fit within AIFS for best-
effort traffic. For the few that don’t fit, the sender may either split the
compressed TCP ACKs across multiple LL ACKs (ensuring each LL
ACK is fully protected by AIFS) or it may send them all on a single LL
ACK (risking a collision with a hidden terminal). Our simulator does
the latter; there are no hidden terminals in the scenarios we simulate.

Receive Data

Is TCP/HACK
ready?

DMA

Yes
No

Wireless Medium

Client NIC

Client Driver

Compressed TCP ACKs

LL ACK

Send LL ACK

Rx Interrupt
 More Data State

TCP/HACK Success State

LL ACK

3

Figure 4: Client-side TCP/HACK receiving a batched
frame from the air and including compressed TCP ACK
frames in the corresponding link-layer acknowledgment.

context, the client can simply send uncompressed TCP
ACKs outside of the TCP/HACK mechanism. The AP
will consequently store the necessary state for the new
context and assign it the correct CID.

2. The client and AP need not exchange any messages to
agree upon a new CID for an emergent flow. Instead
CIDs are computed independently at each endpoint.
The client’s driver on receiving a TCP ACK for a new
flow computes the MD5 [9] hash over the ACK’s 5-
tuple and selects the lowest byte as the CID.

3. Compressed TCP ACK packets encapsulated within
link-layer ACKs require a new mechanism to deal with
losses outside of sending explicit ROHC feedback pack-
ets. We describe how TCP/HACK handles losses in
Section 3.4.

With ROHC, a driver can shrink a TCP ACK to about 4
bytes, or even 3 bytes if the associated flow transmits a
constant payload size (e.g. for large file downloads) [8].

3.4 Avoiding Cross-Layer Pathologies
The protocol we have described so far works well in
a lossless environment. When applying HACK in low
signal-to-noise ratio (SNR) regimes, decoding failures
will cause packet drops. Any of the various packets sent
by TCP/HACK may be dropped: TCP data packets, TCP
ACKs, LL HACKs that contain LL Block ACKs and
TCP ACK information, LL ACKs, &c. Under such losses,
several concerns arise. To decompress headers correctly,
ROHC requires that compression state at sender and re-
ceiver remain synchronized. Packet losses may cause loss
of synchronization of this state, and in turn cause CRC
failures on decompressed TCP ACK packets. Such loss of
synchronization must not be persistent. We now describe



USENIX Association  2014 USENIX Annual Technical Conference 365

AP Client
2 3

X

4 5

Block Ack Request

Compressed  
TCP ACK 1

Comp. Ack  
State Held

Block Ack  

+ TCP ACK 1

Block Ack  

+ TCP ACK 1

Block Ack 

X

2

Compressed  
TCP ACK 1

Comp. Ack  
State Held

Ack  

+ TCP ACK 1

2

Ack  

+ TCP ACK 1

3 4

Block Ack 

AP Client

(a) (b)

Comp. Ack  
State cleared

Comp. Ack  
State cleared

Figure 5: Coping with loss of (a) Block ACKs and (b)
single LL ACKs by retaining TCP ACK state.

to restore lost synchronization quickly, to preserve the
flow of TCP ACKs to the TCP sender.

Loss of LL ACK. First, consider the scenarios in Fig-
ures 5(a) and 5(b), where a Block ACK and single LL
ACK carrying compressed TCP ACK information cannot
be decoded, respectively. In both these scenarios, to de-
liver compressed TCP ACK(s) reliably, the client must
retain them until it determines that its LL ACK (whether
a Block ACK or a single LL ACK) has reached the AP.
There is no such explicit indication from the AP, however.
The client must enclose the same compressed TCP ACKs
in all LL ACKs it sends to the AP until an implicit indi-
cation from the AP that the AP received the client’s LL
ACK. When the client has sent a Block ACK in response
to an A-MPDU, as in Figure 5(a), receipt by the client of
any subsequent A-MPDU (whether containing retransmit-
ted MPDUs or not) indicates that the AP has received the
client’s Block ACK—if the AP has not done so, it must
instead send a Block ACK Request. Alternatively, when
the client has sent a single LL ACK in response to a single
MPDU, as in Figure 5(b), the client can be certain that the
AP has received its LL ACK upon receiving an MPDU
with a greater MAC-layer sequence number—if the AP
has not done so, it must instead retransmit the MPDU
with the same MAC-layer sequence number. In both these
cases, once the client has implicitly determined that its LL
ACK has been received by the AP, it can safely discard
any compressed TCP ACK information it has previously
sent to the AP within that LL ACK.

Loss of retransmission. Since the ACKs themselves are
not acknowledged, the ambiguity shown in Figure 6 can
arise. The client cannot tell from the Block ACK request
for 4 that the Block ACK for 5 and 6 was actually received.
Thus it appends the compressed ACKs for 1,2 and 3 to
the Block ACK response. Note that we cannot use the
starting sequence number in the Block ACK Request as a
signal that we have moved on to new data here because

AP Client
4 5 6✘

Block ACK 5, 6 +

compressed TCP

ACKs 1, 2, 3

4 7 8✘ ✘ ✘
Block ACK request 4

1 2 3 Compressed
TCP ACKs

Block ACK +

compressed TCP

ACKs 1, 2, 3

1 2 3 Compressed
TCP ACKs

(not cleared)Duplicates: Failure
to decompress

Figure 6: Retaining state: gap in sequence space.

AP Client
4 5 6

Block ACK 5, 6 +

compressed TCP

ACKs 1, 2, 3

1 2 3 Compressed
TCP ACKs

TCP ACKs

4, 5, 6

no more data

✘

Figure 7: Flushing state: HACK-to-TCP ACK transition.

in this case it points to a gap in the sequence space, even
though the rest of the aggregate is new.

The AP has already received and decompressed these
ACKs, so its state is incorrect for decoding their retrans-
mission. ROHC already has a mechanism to cope with
duplicates—it has a master sequence number that in-
creases monotonically. The lower 4 bits are normally
included in each compressed packet. This is not sufficient
for the first compressed TCP ACK packet carried in a
Block ACK as an A-MPDU can carry 64 packets. We ex-
tend this first master sequence number to 8 bits, allowing
the AP to discard duplicate compressed TCP ACKs and
get back in sync.

Lost Block ACK, No More Data. Another corner case
arises in Figure 7 when a Block ACK with compressed
ACKs is lost, and the client needs to send vanilla TCP
ACK packets because the last batch was not marked
MORE DATA. Here, the client clears any compressed
TCP ACKs it has retained, and sends the next TCP ACK
packet with a higher sequence number. TCP ACKs are
cumulative and the upstream server will deal with the
newer TCP ACK correctly even though there is a gap in
received TCP ACK numbers.

Repeated loss of Block ACK. Finally, what happens
when a Block ACK with compressed TCP ACKs is lost
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Figure 8: SYNC bit for retaining state.

repeatedly? Under normal 802.11n operation, the AP will
continue to send Block ACK requests until it hits the retry
limit, when it will give up and send the next batch of data.
The client does not know that the AP has failed to receive
the compressed TCP ACKs and, when it sees new data, it
would normally discard the previously retained TCP ACK
state. In this case, the AP explicitly notifies the client that
it has moved on by setting a SYNC bit in the next batch’s
header. Upon seeing this bit set, the client doesn’t discard
the compressed TCP ACKs but rather appends them to
the next Block ACK, as shown in Figure 8.

4 EVALUATION

We evaluate TCP/HACK through a combination of sim-
ulation in ns-3 and experiments with a real-world imple-
mentation for the SoRa software-defined radio platform.
We simulate TCP/HACK for 802.11n in ns-3, while our
SoRa implementation is for 802.11a, as the public SoRa
release does not support 802.11n.

4.1 SoRa Implementation
We implemented TCP/HACK including the MORE DATA
bit and ROHC compression for the SoRa user-level phys-
ical layer on Windows 7. Hardware limitations of our
SoRa radio boards require us to run 802.11a in the 2.4
GHz band, but this does not affect protocol behavior.

One quirk of the SoRa platform bears mention. We
have found that SoRa receivers sometimes return 802.11
link-layer ACKs later than the 802.11 specification’s ACK
timeout interval, causing spurious link-layer retransmits
and backoffs. To avoid this performance hit, we increased
the 802.11 ACK timeout to accommodate SoRa’s late
LL ACKs. The net effect of these delayed LL ACKs is
that at 54 Mbps, our SoRa implementation only achieves
87% of the theoretical throughput across all protocols. We
confirmed though simulation that this change does not
significantly affect the relative benefit of TCP/HACK over
regular 802.11a, but the absolute performance numbers
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Figure 9: TCP throughput with stock 802.11a (T), TCP
with HACK (H), and UDP (U) with stock 802.11a, with 1
and 2 clients.

are slightly lower.
Testbed Our three wireless nodes each have four-core
Intel Core i7 CPUs, between 8–24 GB of RAM, and a
PCI Express SoRa radio control board. One acts as the
AP and the other two act as clients. We operate the SoRa
interfaces in ad hoc mode to eliminate periodic beacon
transmission. We run experiments on 802.11g channel 14
(2.484 GHz) in an open-plan office environment. We use
iperf to generate TCP data streams with a 1500 byte MTU
and send at 54 Mbps, the highest 802.11a rate.

4.2 SoRa Results
Besides demonstrating a successful implementation as
evidence of TCP/HACK’s practicality, we wish to answer
several questions experimentally:

• Are TCP/HACK’s capacity benefits in line with theo-
retical predictions?

• When an AP sends TCP flows to two clients, does TCP
over 802.11a suffer collisions between clients’ TCP
ACKs, and if so, does TCP/HACK offer a performance
benefit partly by eliminating such collisions?

• Do TCP/HACK’s benefits come only from eliminating
channel acquisitions and collisions, or are there other
overheads that TCP/HACK eliminates?

Baseline Comparison Figure 9 compares the application-
level throughput achieved by TCP/802.11a and
TCP/HACK for bulk downloads, with UDP/802.11a
for comparison. Each bar shows a different experiment:
sending to one or both clients, using TCP over HACK,
TCP over stock 802.11a or, as a control experiment,
unidirectional UDP, which gives an upper bound on
usable capacity. The data is the mean over five different
120-second runs; error bars show standard deviation.

Client 1’s throughput is slightly less than Client 2’s be-
cause it suffers a greater packet loss rate, even when only
one flow is active. UDP’s unidirectional data minimizes
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medium acquisitions, and achieves the greatest through-
put possible on SoRa with link-layer ACKs enabled. In
an ideal 802.11 MAC, UDP would achieve 30.2 Mbps;
on SoRa, UDP averages 26.5 Mbps across the three ex-
periments. SoRa’s link-layer ACK delays alone reduce
the attainable throughput to 28.1 Mbps, and our UDP
measurements approach that figure.

If TCP/HACK encapsulated all TCP ACKs in LL
ACKs, it would achieve almost the same throughput as
UDP (though UDP’s packet headers are smaller). In prac-
tice, TCP/HACK’s single-client throughput of 25.0 Mbps
(mean of C1 and C2) is very close to the UDP bench-
mark. TCP/802.11a only achieves 19.4 Mbps in this sce-
nario. TCP/HACK improves performance by 29% and
32.2% in the one- and two-client cases respectively. Both
TCP/HACK and TCP/802.11a are fair.

UDP/ TCP/ TCP/
802.11a HACK 802.11a

Client 1 no retries 99% 97% 87%
1 or more 1% 3% 13%

Client 2 no retries 99% 98% 88%
1 or more 1% 2% 12%

Both no retries 99% 98% 86%
1 or more 1% 2% 14%

Table 1: Percentage of frames successfully sent on the
first attempt (no retries) and after one or more retries,
when the AP is sending to Client 1 and Client 2 alone,
and both clients at the same time, using UDP/802.11a,
TCP/HACK, and TCP/802.11a.

Where do TCP/HACK’s savings come from?

We note with interest that TCP/HACK improves through-
put more than predicted analytically in Section 2.1. That
prediction focused solely on saving medium acquisitions
for TCP ACKs. In Table 1 we show the percentage of
frames received after the first transmission, and the per-
centage that required one or more retransmissions. We
see that TCP/802.11a experiences far more link-layer re-
transmissions than TCP/HACK or UDP/802.11a. These
retransmissions occur because of collisions between TCP
ACKs sent by clients and TCP data packets sent by the
AP. TCP/HACK obviates most (but not all) of these TCP
ACKs, and so significantly reduces the number of retrans-
missions needed. TCP/HACK not only eliminates costly
channel acquisition overheads, but by encapsulating TCP
ACKs in LL ACKs, also incurs fewer collisions.

ACK ACK ACKC ACKC Comp.
count bytes count bytes ratio

TCP/802.11a 9060 471120 0 0 (1)
TCP/HACK 10 520 9050 39478 12

Table 2: Conventional and compressed ACK counts, and
compression rates of ROHC-compressed ACKs.

To understand other contributing factors in more detail,
we ran an experiment where the AP transmits 25 Mbytes
of data to a client using TCP/802.11 and TCP/HACK. By
fixing the amount of work we can compare both protocols
in time. The first two columns of Table 2 show the number
of TCP ACKs sent as well as how many bytes were in
those ACKs. The next two columns show the same figures
for compressed ACKs, and the last column shows the
compression rates ROHC acheives.

Reducing the number of transferred bytes is beneficial,
but TCP ACKs are treated as regular data when sending
over 802.11 wireless links and are sent at 54 Mbit/s in
our experiments. LL ACKs, however, use the more robust
24 Mbit/s rate. To factor this in, we investigate how saved
bytes translate into saved transmission time, together with
TCP/HACK’s impact on channel acquisition time and
retransmission time.

TCP Acquire LL ACK
ACK ROHC Channel overhead

TCP/802.11a 70 ms 0 1093 ms 456 ms
TCP/HACK 0.08 ms 13.1 ms 1.17 ms 0.46 ms

Table 3: TCP ACK time overhead breakdown for
TCP/802.11 and TCP/HACK.

Table 3 shows time taken to send TCP ACKs (TCP
ACK), time to send compressed TCP ACKs (ROHC),
time spent waiting for channel before transmitting TCP
ACKs (Channel) and extra time waiting for LL ACKs (LL
ACK overhead). From the table, we see that most savings
come from channel acquisition and LL ACK overhead.

Ideally LL ACKs are returned immediately after a SIFS
time, but this is not always the case in the real 802.11 im-
plementations. On SoRa we observe 37 µs on average
of additional LL ACK overhead, while on two differ-
ent commercially-available wireless NICs (the Atheros
AR9300 and the Intel 5300) we measure 10.4-13.4 µs of
LL ACK overhead, on average. While TCP/HACK ben-
efits more from saving ACK overhead on SoRa than on
the commercial cards, the benefit on commercial wireless
hardware is still large. TCP/HACK not only eliminates
channel overheads, it also reduces collisions and any ad-
ditional LL ACK overheads incurred by the device.

SoRa and ns-3 Cross-Validation

To cross-validate our SoRa implementation against the ns-
3 simulator, we simulated 802.11a in ns-3 with the same
packet loss rate as that observed on SoRa (12% and 2%
for TCP/802.11a and TCP/HACK, respectively). Since
ns-3 returns LL ACKs immediately after SIFS, whereas
SoRa incurs additional delay, ns-3 running TCP/802.11a
achieves 22.4 Mbit/s vs. SoRa’s 19.6 Mbit/s. After post-
processing to eliminate SoRa’s added LL ACK delay, we
observe SoRa throughput of 22 Mbit/s, which matches
simulation. Similarly, when simulating TCP/HACK in
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ns-3, we get 28 Mbit/s vs. SoRa’s 25.5 Mbit/s. After ac-
counting for SoRa’s extra LL ACK delay, SoRa achieves
27.7 Mbit/s, which matches simulation.

4.3 Simulation Results
We now examine how TCP/HACK interacts with frame
aggregation, with a larger number of clients than possi-
ble in our testbed. To this end, we implement A-MPDU
support and TCP/HACK in ns-3. We evaluate both the op-
portunistic and MORE DATA variants of HACK described
in Section 3.2 to verify that the the latter outperforms the
former as hypothesized.

We simulate multiple WiFi clients scattered randomly
within a circle of 10-meter radius centered on the AP.
Our aim is to model the scenario where several clients
connect via 802.11n WiFi to a server located nearby on a
high-speed LAN. We present results modeling an 802.11n
single-antenna setup using data packet and link-layer
ACK bit-rates of 150 Mbps and 24 Mbps, respectively.
The wired link between the server and the AP has a la-
tency of one millisecond and a bit-rate of 500 Mbps.

To glean the benefits of the MORE DATA scheme, we
would like AP’s transmit queue to contain at least 126
packets per flow. We choose this number so that the AP
may buffer of up to three batches of 42 packets per client,
accounting for some variability in the A-MPDU size in
the presence of TCP retransmissions. To avoid adverse
“buffer bloat” effects [3], the transmit queue should not
be too large in the case of one flow, but rather grow as the
number of flows increases. A large buffer in our system
would cause an excessive loss of packets when slow start
overflows the buffer, with or without TCP/HACK. With
ten clients, the AP’s transmit queue would be 1260, which
is reasonable since Linux drivers usually use buffer sizes
of 1000 packets.
TCP/HACK vs. TCP/802.11n To determine the benefit
of TCP/HACK and its constituent parts, we compute the
aggregate goodput for TCP flows sending 1460 byte pack-
ets, averaged across five simulated runs per experiment.
To mitigate phase effects with multiple clients, we stagger
the starts of clients’ downloads. As such, we compute
the aggregate goodput over the steady-state portion of the
runs, once all the clients have more or less exited slow
start.

Figure 10 shows that UDP maintains a roughly con-
stant goodput as the number of downloading clients
varies, as expected. As a unidirectional protocol, UDP’s
performance is minimally affected by the number of
clients competing for the link. In contrast, the goodput of
TCP/802.11n decreases slightly as the number of down-
loading clients increases. Although the AP elicits TCP
ACK packets from clients in turn, there is still a chance
that two or more clients’ TCP ACKs can collide, or that
a TCP ACK can collide with a data packet from the AP.
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Figure 10: TCP goodput for different transmission
schemes with 1–10 clients, and UDP for comparison.

These collisions account for the lower measured goodput
than that predicted in Section 2.1.

We note with surprise that Opportunistic TCP/HACK
does not significantly outperform TCP/802.11n: this most
naı̈ve implementation of HACK sends few compressed
TCP ACKs in LL ACKs, and mostly regular TCP ACKs.
It therefore does not achieve a TCP goodput closer to the
physical rate.

Role of MORE DATA Bits We now turn our attention to
the bars labeled “TCP/HACK More Data” in Figure 10.
We observe that the MORE DATA variant of TCP/HACK
achieves the most pronounced throughput gain over un-
modified 802.11n. While simple, the MORE DATA mech-
anism is crucial to TCP/HACK’s success in reducing
medium acquisitions, and gives rise to goodput improve-
ments between 15% for one client and 22% for ten clients
at the physical rate of 150 Mbps.

Lossy Environment We next evaluate TCP/HACK un-
der different SNR regimes. In addition to providing a
wider spectrum of comparison between TCP/HACK and
TCP/802.11n, these experiments will verify whether the
HACK protocol with the properties described in Sec-
tion 3.4 can indeed avoid any decompression CRC fail-
ures, or stalls due to recurring TCP timeouts.

We begin with a setup similar to that described above,
and then place a single client at varying distances from the
AP in order to simulate a decreasing set of SNRs. In lieu
of simulating bit rate adaptation explicitly, at each partic-
ular distance we simulate a download of a 100 MB file at
a rate selected from a range of 802.11n high throughput
rates. This range corresponds to rates which are achiev-
able using a 40 MHz channel, 400 ns guard interval and
one antenna. The corresponding LL ACK rates are chosen
from the set of basic rates (6, 12 and 24 Mbps) accord-
ing to the rules outlined in the 802.11n specification. To
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Figure 11: Envelope of average TCP goodput for
TCP/HACK and TCP/802.11n under different SNR
regimes and physical rates. The lower graph shows
TCP/HACK’s percent improvements over TCP/802.11n.

emulate a real system, we applied the 4 ms transmit op-
portunity limit to all transmissions, therefore limiting the
size of A-MPDU packets for experiments using lower
physical rates. At each distance/physical rate combina-
tion, we computed the average TCP goodput (including
slow start) over five runs.

Figure 11 shows the average TCP goodput for
TCP/HACK and TCP/802.11n. It plots a separate dashed
curve per 802.11n physical rate for TCP/HACK. We use
these curves to compute the envelope (in black), which
indicates the best goodput achievable by an ideal bit rate
adaptation algorithm. Similarly we plot the correspond-
ing envelope for regular TCP/802.11n (the separate rate
curves for TCP/802.11n are not shown).

Our simulations indicate that TCP/HACK functions
correctly in a lossy environment and does not elicit any
decompression CRC failures. Moreover, TCP/HACK im-
proves TCP goodput by an average of 12.6% across the
range of SNR values. Figure 11 shows that as the physical
rate drops, the relative improvement increases slightly for
the cases where the transmit opportunity limit reduces the
number of packets a station can possibly transmit in an ag-
gregate. Recall that 802.11n uses aggregation to amortize
medium access costs, therefore we expect a better good-
put gain for TCP/HACK over regular TCP at these rates.
Similarly, as the physical rate increases past 90 Mbps,
the overall improvement increases slightly to about 14%,
because the 802.11n medium access delays now consume
a larger portion of the transmission time relative to data.
Analytical Predictions vs. Simulations How well does
the average TCP goodput measured in simulation match
that computed analytically in Section 2.1? We extract the
highest achievable goodput at each physical rate for both
TCP/802.11 and TCP/HACK from the prior experiment,
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Figure 12: Theoretical and simulated TCP goodputs vs
802.11n physical rates.

and plot these and the analytical predictions in Figure 12.
As we expect, simulated goodputs are lower than the cor-
responding analytical predictions—the predictions do not
model 802.11n collisions or retries, nor do they take into
account TCP’s retransmissions and congestion control.

Note, however, that the goodput improvement
TCP/HACK offers over TCP/802.11n exceeds that pre-
dicted analytically. Since TCP/802.11n suffers more from
collisions than TCP/HACK, its throughput suffers cor-
respondingly more. TCP/HACK greatly reduces the col-
lision rate by eliminating medium acquisitions for TCP
ACK packets. At 150 Mbps, TCP/HACK offers a simu-
lated goodput improvement of 14%, vs. the 7% improve-
ment predicted analytically.

5 DISCUSSION

Both batching using A-MPDUs and TCP/HACK help to
reduce the time wasted on unnecessary WiFi medium
acquistions. TCP/HACK relies on the MORE DATA bit
to know when it is safe to compress ACKs and wait
for another packet on whose LL ACK to piggyback. A-
MPDUs require sufficient packets in the AP’s queue to
gain efficiencies. With sufficient buffering at the AP and a
large window, both work well. In such cases the wireless
medium is busy, and efficiency is important. TCP/HACK
can significantly reduce collisions when there are multiple
senders by turning bidirectional TCP flows into unidirec-
tional ones, reducing the number of contending hosts.
However, if the traffic patterns are such that queues do not
build in the AP or clients, there won’t be enough packets
to fill A-MPDUs or any remaining packets in the queue to
allow the MORE DATA bit to be set. Neither mechanism
will work well in this case. Similarly, if an AP has very
many clients, it may not buffer enough packets for each
client for either mechanism to work well.

Longer batches improve utilization, but monopolize
the medium for longer. 802.11e allows the AP to reduce
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medium acquisition latency by specifying a shorter max-
imum batch duration through the transmit opportunity
limit. In such cases, we would expect TCP/HACK to help
claw back some of the efficiency loss caused by limiting
the maximum batch duration.

Sending a TCP timestamp option in the last TCP ACK
of a batch would generalize the MORE DATA mechanism.
The TCP sender would echo it, and the client could use
receipt of the echo as an implicit ACK-of-ACK. When
the client hasn’t yet received a timestamp echo, it can
reasonably expect further data to arrive, and thus delay
sending TCP ACKs. We leave this for future work.

6 RELATED WORK

One approach to amortizing medium acquisition over-
head across more data is narrow-band channelization.
Since the effective data rate on each subband is much
lower than that of wide-band 802.11, the time required
for MAC-layer contention becomes smaller relative to
the packet transmission time on a single subband, thus
more effectively amortizing medium acquisition over-
head across multiple packet transmissions. FICA [11] and
WiFi-NC [2] take this approach. Both require redesigns
of the physical and MAC layers. TCP/HACK is comple-
mentary: combining the two systems should yield greater
medium efficiency than either system achieves alone.

WiFi-Nano [6] shortens the 802.11 contention slot time
to 800 ns. TCP/HACK is again complementary: while
WiFi-Nano reduces medium acquisition overhead, our
proposal eliminates many medium acquisitions entirely.

Maranello [4] is a link-layer design for 802.11 wireless
networks that incorporates sub-frame granularity check-
sums into link-layer acknowledgments, allowing the com-
municating pair to undertake partial packet recovery on
corrupted frames. Unlike TCP/HACK, Han et al. imple-
ment Maranello partially on the firmware processor of a
commodity 802.11 NIC, thus requiring access to the as-
sembly source code of the firmware processor. While
Maranello does not share the same networking goals
as TCP/HACK, it does share systems context in terms
of the hardware and software available to both designs.
Like Maranello, TCP/HACK is realizable with very few
changes to the NIC itself.

Of prior work in reducing channel acquisition over-
head, Pang et al. [7] most closely resembles TCP/HACK,
proposing that a client use a MAC-layer ACK to signal
successful reception of TCP data. However, the designs
they propose are only capable of communicating to the
AP when a client observes a TCP ACK for the same data
packet just received. The authors do not mention the pos-
sibility of the generation of a TCP ACK with a lower
ACK number after a loss, and the link-layer feedback
mechanism they propose is incapable of communicating
any information to the AP other than “cumulative ACK

for the data packet just sent to the client” or “no ACK
for the data packet just sent to the client.” As a result,
these designs prevent the delivery of duplicate ACKs to
the TCP sender, and prevent the use of fast retransmit,
leaving only inefficient TCP timeouts. Furthermore, this
work took place before the introduction of 802.11n, and
as a result, does not consider the interaction with frame
aggregation or block ACKs.

7 CONCLUSION

In this paper, we have described the design and imple-
mentation of TCP/HACK, a cross-layer acknowledgment
design for TCP and the 802.11 MAC that eliminates most
of the expensive medium acquisitions that TCP ACK
packets require, significantly increasing TCP flows’ wire-
less throughput. TCP/HACK improves throughput further
when used with frame aggregation, yet offers significant
throughput improvements without it. While frame aggre-
gation and other previous approaches reduce the cost of
individual medium acquisitions [11, 2, 6], TCP/HACK
eschews many medium acquisitions entirely. It is thus
complementary to these prior approaches. Our evalua-
tions in simulation and in a real-world implementation
confirm TCP/HACK’s throughput improvements.
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Abstract
Performance problem diagnosis is a critical part of net-

work operations in ISPs. Service providers typically

deploy monitoring nodes at several vantage points in

their network, to record end-to-end measurements of net-

work performance. Network operators use these mea-

surements offline; for example, to troubleshoot customer

complaints. In this work, we leverage such monitoring

infrastructure deployments in ISPs to build a system for

near real time performance problem detection and root

cause diagnosis. Our system works with wide area inter-

domain monitoring, unlike approaches that require data

sources from network devices (SNMP, Netflow, router

logs, table dumps, etc.). Operators can input operational

and domain knowledge of performance problems to the

system to add diagnosis functionality. We have deployed

the system on existing monitoring infrastructure in the

US, diagnosing over 300 inter-domain paths. We study

the extent and nature of performance problems that man-

ifest in edge and core networks on the Internet.

1 Introduction

End-to-end diagnosis of network performance is a sig-

nificant part of network operations of Internet service

providers. Timely diagnosis information is integral not

only in the troubleshooting of performance problems, but

also in maintaining SLAs (for example, SLAs of enter-

prise network and cloud provider customers). Knowl-

edge of the nature of performance pathologies can also

be used to provision network resources.

Performance diagnosis, however, is a challenging

problem in wide area ISPs, where end-to-end (e2e) net-

work paths traverse multiple autonomous systems with

diverse link and network technologies and configura-

tions. In such networks, operators may not have: (i) per-

formance metrics from all devices comprising e2e paths,

and (ii) labeled training data of performance problems.

In this work, we explore a new system for troubleshoot-

ing based on domain knowledge, relying on e2e mea-

surements and not requiring training data.

We leverage the monitoring infrastructure that ISPs

deploy to record network health – consisting of several

commodity hardware monitors. These monitors run low-

overhead network measurement tools similar to ping, to

record e2e delays, losses and reordering of monitored

paths. Operators place monitors at vantage points in the

network to maximize network coverage. An example of

such deployments common in wide area academic and

research networks is the perfSONAR software [6]; there
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Figure 1: A deployment of Pythia.

are currently over 1,000 perfSONAR monitors spread

across 25 countries [1]. Monitors running perfSONAR

usually run the One-Way Ping (OWAMP) measurement

tool, which probes over UDP every 100ms and records

send/receive timestamps and sequence numbers.

Pythia works with e2e measurement streams recorded

at monitors to do two tasks. First, it detects whether there

is a performance problem on a monitored path at a given

time. Second, it diagnoses the root cause(s) of detected

performance problems. Pythia also localizes problems to

network interfaces (using traceroutes recorded by moni-

tors) [25]. In this paper, we focus on near-real time de-

tection and diagnosis of short-lived and sporadic perfor-

mance problems. Sporadic problems may not always be

noticed by network operators, but can result in long-term

failures and network downtime (e.g., gradual failure of

an optical line card [1]).

A typical deployment of Pythia includes lightweight

agent processes that run on monitors, and centralized

database and web services (see Figure 1). Deployment

can be done incrementally in ISP networks since de-

ployment only involves adding the agent to new moni-

tors. Pythia allows the operator to input diagnosis defini-

tions using an expressive specification language as func-

tions of symptoms in the measurements. This is useful

since operators understand performance problems (and

new ones that arise after network upgrades). Symptoms

could include, for example, statistical changes in the de-

lay timeseries, packet losses and/or packet reordering.

Pythia generates a diagnosis forest from the pathology

specifications in order to reduce the number of symptoms

that are tested on a measurement timeseries. The diag-

nosis forest reduces the agent’s computation overhead at

the monitor; and becomes important as the number of

specifications grows with time or in large monitoring de-

ployments. In practice, at a perfSONAR monitor prob-

ing a nominal set of 10 paths, each at 10Hz (default for

1
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OWAMP), the Pythia agent receives a measurement ev-

ery 10ms; we design a per-measurement agent run time

of less than 100us. We describe common pathology spec-

ifications in Pythia that we wrote based on operator in-

put: broadly related to congestion and buffering, loss na-

ture, routing and reordering.

We make the following contributions in this paper. We

design an efficient and scalable system and algorithms

for real time detection and diagnosis (§2,4,5,6). We de-

ploy Pythia in production wide area backbone networks

to diagnose several pathologies. We use Pythia to do a

first large-scale study of performance problems in edge

and backbone networks (§9).

2 System and Monitoring Model

Pythia is a distributed system that works on top of exist-

ing monitoring infrastructure in ISPs. We design Pythia

to scale to large monitoring deployments (potentially

hundreds of monitors), without affecting the accuracy

and timing of measurements taken at the monitors; and

at the same time, with low network communication over-

head. Pythia consists of a agent processes that run on

monitors, a central database and a web server that ren-

ders real time diagnosis summaries (see Figure 1).

The agent is a lightweight process that performs two

tasks. First, when the agent bootstraps, it parses the

pathology specifications and generates efficient diagno-

sis code. Second, at runtime, agent reads measurements

recorded at a monitor to detect and diagnose performance

problems in near real time. It writes diagnosis output to

the database. In order to minimize diagnosis-related traf-

fic at agents, the agent runs diagnosis computation on the

node that records the measurements; the agent computes

diagnosis that requires information from other monitors

using the database1. We design detection and diagnosis

algorithms for the agent in Sections 4 and 5.

We consider a simple but general model of ISP moni-

toring. Suppose that N monitors are deployed by the ISP.

Measurement tools in these monitors send active probes

to other monitors, potentially over N × (N −1) end-to-

end paths. For each monitored path A → B, monitor A

sends probes at a reasonably high frequency2 to monitor

B, and B records measurements of the probes; we do not

require a specific probe sampling process. For each mea-

surement probe that monitor B receives, a measurement

tuple of sender and receiver timestamps, and a (sender)

sequence number is recorded by B. The sequence num-

ber is incremented by one at the sender for each probe in

the flow. We require loose clock synchronization (error

margin of seconds) between the sender and receiver to

1An alternative design is to ship measurements to a centralized com-

pute cluster; this may not be feasible in ISPs due to network policies.
2The probing frequency for a path is expected to be high enough

to observe short-lived performance problems, but at the same time, the

average probing traffic is expected to be low-overhead.

Listing 1 Pathology specification grammar.

1. ’SYMPTOM’ symptom

2. ’PATHOLOGY’ pathology ’DEF’ ( symptom |

’NOT’ symptom )

3. symptom → symptom 1 ’AND’ symptom 2

4. symptom → symptom 1 ’OR’ symptom 2

5. symptom → ( symptom )

6. ’PROCEDURE’ symptom func

correlate pathologies between monitors. Monitor Mi col-

lects information about all probes sent to it; a lost packet

is either “marked” by Mi as lost after a pre-defined time-

out interval, or implicitly marked by a missing sequence

number at Mi for that flow. We expect that a suitable in-

terface exists on each monitor so that Pythia’s agent can

read measurements; the interface could be an API, a local

cache, or simply files written to the disk.

As an example, the perfSONAR monitoring soft-

ware follows this model. It runs the OWAMP tool; an

OWAMP endpoint A sends 40B UDP packets at 10Hz

to endpoint B, and B records timestamps and sequence

numbers in a file. Reading these, the Pythia agent at B

computes one-way delay, loss and reordering for A → B.

3 Pathology Specification

One of the design goals of Pythia is to allow the operator

to add performance pathology definitions to the system

based on, for example, domain knowledge of the network

or the network performance. To do this, we would need

a simple model for a pathology; the model would enable

us to design a pathology specification language.

We model a performance pathology as a unique ob-

servation on a set of symptoms. Given a measurement

timeseries E , a symptom is a boolean-valued test T (E ) :

E →{0,1} such that T returns true if the symptom ex-

ists in the timeseries. A pathology is a logical expression

on one or more symptoms. Pathologies differ either in

the set of symptoms on which they are defined, or on the

logical expression. Examples of symptoms include “in-

terquartile of delays exceeds 100ms”, “loss probability

exceeds 0.5” and “non-zero reordering metric”.

The pathology specification language is based on the

pathology model. A pathology can be specified using

the language as conjunction or disjunction operations on

symptoms. The language also allows negations of symp-

toms. Listing 1 shows the pathology specification lan-

guage grammar. An example of a pathology specification

for a form of congestion is the following:

PATHOLOGY CongestionOverload DEF delay-exist

AND high-util AND NOT bursty-delays AND NOT

high-delayRange AND NOT large-triangle AND NOT

unipoint-peaks AND NOT delay-levelshift

The statement specifies a rule for the pathology

CongestionOverload using seven symptoms.

2
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The language keyword PROCEDURE specifies subrou-

tine names for symptom tests. We define 11 pathologies

in Pythia by default along with their symptom tests (§6).

In order to add a new pathology definition, the user adds

a pathology in the specification language and writes sub-

routines for boolean-valued tests that the pathology uses

(or the user could reuse existing symptom tests). The

parser replaces specifications of each pathology P con-

taining disjunctions with multiple specifications of P that

only contain conjunctions. Expressions of conjunctions

allow us to represent specifications as a decision tree.

The diagnosis module generates a diagnosis forest, a

compact intermediate representation of the specifications

(§5), and generates diagnosis code from it.

4 Detecting Performance Problems

The problem of detection is the first step towards perfor-

mance diagnosis. The agent process at a monitor reads

path measurements of packet delays, loss and reordering

to test if there is a performance problem at a given point

of time in a monitored path. A challenge in detection is

to define a generic notion of a performance problem –

which is not based on the symptoms or pathologies. We

define detection using a performance baseline.

We define detection as testing for significant devia-

tions from baseline end-to-end performance. Suppose

that we have a timeseries of measurements from a sender

S to a receiver R (our methods are robust to measure-

ment noise in timestamping). Under non-pathological

(normal) conditions, three invariants hold true for a time-

series of end-to-end measurements of a path:

1. The end-to-end delays are close to (with some noise

margin) the sum of propagation, transmission and

processing delays along the path,

2. No (or few) packets are lost, and

3. No packets are reordered (as received at R).

These invariants define baseline conditions, and a vio-

lation of one or more of these conditions is a deviation

from the baseline. We implement three types of problem

detection: delay, loss and reordering detection, depend-

ing on the baseline invariant that is violated.

The agent divides the measurement timeseries for a

given path into non-overlapping back-to-back windows

of 5s duration, and marks the windows as either “base-

line”, or as “problem” (i.e., violating one or more invari-

ants). The agent then merges problem windows close to

each other into a single problem window.

Delay detection: Delay detection looks for significant

deviations from baseline end-to-end delays. We use the

delay invariant condition (1) above, which can be viewed

as a condition on modality of the distribution of delay

measurements. Under normal conditions, the distribu-

tion of delay sample in the window will be unimodal with

most of the density concentrated around the delay base-

line dmin of the path (sum of propagation, transmission

and processing delays). If there is a deviation from the

delay baseline, the delay distribution will have additional

modes: a low density mode around dmin, and one or more

modes higher than dmin. The lowest mode in the delay

sample’s pdf is used as an estimate of the baseline delay

for the window.

We use a nonparametric kernel smoothing density es-

timate [21] to find modes; with a Gaussian kernel (a con-

tinuous function) and the Silverman’s rule of thumb for

bandwidth3 [21]. A continuous pdf enables us to locate

modes (local maxima), the start and end points of a mode

(local minima), and density inside a mode with a single

pass on the pdf. The module also keeps track of the pre-

vious window’s baseline for diagnosis of problems with

duration longer than a window. To discard self-queueing

effects in probing, the agent pre-processes the timeseries

to check for probes sent less than 100µs apart.

We note that the delay detection algorithm has limita-

tions; in particular, it may sometimes detect a long-term

problem (minutes or longer) as multiple short-term prob-

lems. For example, a pathology such as a queue backlog

(congestion) that persists for minutes may cause a level

shift in delays – which could “shift” the baseline. The

agent merges “problem” windows that are close to each

other, and the operator may tune the window size to over-

come this limitation. Our focus in this work, however, is

on short-term performance problems.

Loss detection: Loss detection looks for significant de-

viations from the baseline loss invariant condition (2).

Under normal conditions, the number of lost packets

measured by monitors depends on several factors, in-

cluding the cross traffic along the path, link capacities

and the probing process. Since ISPs deploy low probing

rates (e.g., 10Hz), Pythia looks at every lost probe. The

loss detection algorithm marks a window as “problem”

if the window contains at least one lost packet. Similar

to delay detection, the agent merges “problem” windows

close to each other into a single “problem” window.

Reordering detection: Reordering detection looks for

significant deviations from baseline reordering invariant

condition (3). The reordering module computes a re-

ordering metric R for each 5s window of sequence num-

bers in received order, {n1 . . .nk}, based on the RD met-

ric definition in RFC 5236 [9]. For each received packet

i, it computes an expected sequence number nexp,i; nexp

is initialized to the lowest recorded sequence number in

the timeseries, and is incremented with every received

packet. If a sequence number i is lost, nexp skips the

value i (assume that the window starts with i = 1). A re-

order sum is computed as: ηsum =∑
k
i=1 | ni−nexp,i |. The

reordering module estimates the number of reordered

3In case the bandwidth estimate is large, the delay distribution under

the case of baseline deviation may be unimodal, but with a large range

of delays under the mode.

3
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packets in the window based on mismatch in the two se-

quence numbers: η = ∑
k
i=1 I

[
ni �= nexp,i

]
. The reorder-

ing metric R for the window is defined as the ratio of the

above (RFC 5236 [9]): R = (ηsum/η) I [η �= 0].
Note that R is zero if there was no reordering, and

R increases with the amount of reordering on the path

(i.e., both number of packets and how “far” they are re-

ordered). Our goal is not to estimate the number of re-

ordered packets (which may not have a unique solution),

but to quantify the extent of reordering for a window of

packets (and use R in diagnosis). The detection algorithm

marks a window as “problem” if R �= 0 for that window.

The algorithm appends R to a reordering timeseries.

System sensitivity: Pythia provides a simple knob to the

user to configure sensitivity of detection towards perfor-

mance problems without asking the user for thresholds.

This functionality reduces the number of problems that

the system reports to the user, while ignoring relatively

insignificant problems. Sensitivity is defined on a scale

of one to 10, based on the fraction of delays higher than

the baseline or the loss rate in the problem time window.

5 Diagnosis of Detected Problems

Diagnosis refers to the problem of finding the root

cause(s) of a detected performance problem. The agent

triggers diagnosis whenever it detects a (delay, loss or

reordering) problem in the measurements of a path. The

agent performs diagnosis by matching a problem time-

series with the performance pathology specifications,

which network operators can extend using operational or

domain knowledge. When the agent bootstraps, it gen-

erates diagnosis code from the specifications by building

an efficient intermediate representation. We focus on the

intermediate representation and code in this section.

A key aspect of diagnosis is to design algorithms

that have low resource (CPU and memory) consumption,

since the agent should not affect the measurement accu-

racy or probe timing at the monitor on which it runs. This

becomes particularly important when tests for symptoms

are resource intensive, or as the list of pathologies to test

for gets large.

The diagnosis forest: A brute-force approach to diag-

nose a performance problem is to test the problem time-

series against all symptoms, and subsequently evaluate

each pathology specification to find matching patholo-

gies. This can be computationally expensive, since

symptom tests could be expensive. Our goal is to re-

duce the number of symptoms the agent tests for when

diagnosing a problem. An efficient way to do this is to

build a decision tree from the pathology specifications.

We evaluate the overhead of the algorithms in Section 8.

In order to generate diagnosis code, the agent gener-

ates an intermediate representation of the specifications:

a diagnosis forest. A diagnosis forest is a forest of de-

cision trees (or diagnosis trees). A diagnosis tree is an

3-ary tree with two types of nodes: the leaf nodes are

pathologies, and rest of the nodes are symptoms. The

tree edges are labeled either true, false or unused,

depending on whether that symptom is required to be

true or false, or if the symptom is not used. Hence, a

path from the root node to a leaf node L in a diagnosis

tree corresponds to a logical conjunction of symptoms

for pathology L (specifically, symptoms that have non-

unused edge labels).

Why not existing methods? There are several variants

of decision tree construction methods such as the C4.5

and ID3. These algorithms iteratively choose an attribute

(symptom) based on the criteria of one that best classifies

the instances (pathologies). They generate small trees by

pruning and ignoring attributes that are not “significant”.

We found that existing construction methods are not suit-

able for the pathology specifications input for three rea-

sons. First, pathologies may use only a small subset

of symptoms (hence, we cannot treat unused as an at-

tribute value in existing tree construction algorithms). In

addition, not all outcomes of the symptom may be used

in diagnosis; for example, Pythia does not include any

pathologies which require the “loss exists” symptom to

be false. Second, a pathology is required to be diag-

nosed using all symptoms in its specification (existing

decision tree methods consider the smallest set of symp-

toms). Third, pathologies may exist simultaneously in an

end-to-end path, and hence can be diagnosed in parallel

(unlike a decision tree). Two pathologies can be diag-

nosed in parallel if both of their specifications match the

problem timeseries.

Forest construction: The diagnosis forest is constructed

in two steps. In the first step, the agent divides the set

of pathologies P into disjoint subsets {P1 . . .Pk}, such

that: (1) pathologies in each Pi use overlapping symp-

toms, and (2) sets Pi and Pj (i �= j) do not use common

symptoms. Since no two members of the set {P1 . . .Pk}

use overlapping symptoms, we can run tests for Pi and Pj

independently, and potentially have multiple diagnoses

for a problem.

In the second step, the agent constructs a decision tree

for diagnosing members in each pathology subset Pi. The

initial tree is constructed such that the root node is the

symptom that is most frequently used by pathologies, and

such that the frequency of symptom usage drops as we

go towards the leaves (Fig. 2). At the end of this step,

the trees will contain all symptoms that are required to

diagnose each pathology. We may, however, have some

symptoms with unused outgoing edge labels.

Finally, the tree construction algorithm prunes as

many unused symptoms as possible in the decision

tree(s). This consists of two rounds of pruning on each

tree (Fig. 2; the leaves are pathologies, and shades show

symptoms). First, we ensure that each symptom node has

4
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Unused
True
False

Figure 2: Decision tree construction: pruning and merging.

unique outgoing edge labels by merging edges with same

labels. Second, we delete all edges with labels unused

where feasible4.

The default diagnosis rules configured in Pythia result

in a forest of two trees – the first for diagnosis of de-

lay and loss-based problems, and the second for diagno-

sis of reordering-based problems. The agent generates

diagnosis code by traversing the decision forest. Each

symptom node in a tree corresponds to a procedure call

implemented by the agent for that symptom; and each

leaf (pathology) node indicates a diagnosis output.

Unknowns: In practice none of the pathology defini-

tions may match a detected problem timeseries. In such

cases, the problem is tagged by the diagnosis logic as

“unknown”. For each “unknown” problem, the agent

checks whether the problem originated from a monitor,

by looking at diagnoses across monitored paths in the

system (see Section 6.6). In our data, we have observed

that less than 10% of problems are tagged as “unknown”.

6 Common Diagnosis Specifications

We configure Pythia with a set of pathology specifica-

tions based on our domain knowledge of performance

problems, and based on inputs from network operators.

We expect that the network operator would add more

based on her domain and operational knowledge of the

network. Our goal behind the default choice of patholo-

gies in Pythia is to provide the network operator with

useful diagnosis information of the monitored networks.

In this section, we cover five classes of pathology

specifications, and the statistical tests for matching the

associated symptoms. We design boolean tests for symp-

toms by extracting salient and noise-resilient features of

pathology models. The symptoms are defined over the

measured timeseries for an end-to-end path - which in-

cludes delay, loss and reordering measurements. Table

1 lists the symptoms we test for. Some of the symp-

toms use domain knowledge-based thresholds, and can

be fine-tuned by the operator.

Our network path model is as follows. An end-to-end

path consists of a sequence of store-and-forward hops

having a limited buffer size. We do not assume that

links are work conserving, FIFO, or of a constant capac-

4More specifically, for each edge A → B, we delete A and move B

upwards if (1) A → B has label unused (i.e., symptom A is unused in

diagnosis of the sub-tree of A), and (2) B does not have any siblings.

ity (for example, 802.11 wireless links violate these as-

sumptions). Monitoring hosts may induce delays, losses

and “noise” in measurements.

6.1 End-host Pathologies

Our experience deploying Pythia on production moni-

tors showed occurrence of short-term end-host patholo-

gies – significant delays induced by effects inherent to

commodity operating systems and userspace tools. Such

pathologies occur at the monitoring nodes on which a

Pythia agent runs. End-host pathologies may also refer

to significant delays induced due to measurement appli-

cation behavior (e.g., due to delays in timestamping or

delays in sending probe packets). End-host effects may

not be useful to the network operator; however, it is im-

portant for Pythia to identify and discard them, and not

report them as pathological network delays5.

End-host effects: A common artifact of commodity

OSes is context switches. A busy OS environment may

lead to significant packet wait delays at the sender and/or

the receiver-side measurement end points. For example,

these could be delays: (i) after a userspace send() call

till packet transmission, or (ii) after the network deliv-

ers a packet to the OS until userspace recv() call (and

corresponding timestamping).6

We can model an end-host induced delay symptom

as follows. We model the buffered path from a mea-

surement application to the NIC buffer (and the reverse

path) as a single abstract buffer. Under normal condi-

tions, this buffer services packets as they arrive from the

measurement tool (or from the network). Under patho-

logical conditions (e.g., when the OS is busy schedul-

ing other processes or not processing I/O), the buffer is

a non-work conserving server with “vacation periods”.

If a vacation period of W is induced while packet i is

being served, successive packet arrivals will see steadily

decreasing wait delays (Ti is the send timestamp of i):

di+k = max{W − [Ti+k −Ti] ,0} (1)

at the end-host (assuming the other packets do not see

new vacation periods, and no other sources of delay vari-

ation). This behavior manifests in end-to-end delay mea-

surement timeseries as a “triangular peak” symptom of

height W , and the duration of this peak is also W .

It can be argued that a vacation period could be a burst

of cross traffic that arrived in the inter-probe duration δ .

We choose our threshold for W to avoid matching such

cases. Suppose that a burst arrived at a rate λ at a link of

5An alternative approach is to tackle end-host pathologies by rewrit-

ing the monitoring tool to reduce OS-level noise; e.g., by running in

kernel space. It is, however, not feasible to do this in production.
6Note that context switches may also occur in network devices due

to wait periods when the OS resources are busy; in practice, the likeli-

hood is much higher in end-hosts, since they may be running multiple

resource intensive processes (other than measurement tools).

5
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Table 1: Default symptoms and their boolean-valued tests. Tests take input delay sample D = {d1 . . .dn}, and the estimated

baseline delay is b (both in ms). Tests work on a reordering metric timeseries R = {R1 . . .Rl}. I (x) is the 0-1 indicator function,

and m(. . .) is the sample median. The default thresholds are tuned using empirical observations on perfSONAR data.

Symptom Sample Boolean-valued Test

High delay utilization More than 50% are large delays: ∑
n
i=1I (di > b+1) > 0.5n

Bursty delays Largest delay hill duration less than 70% of delay hill duration

Extreme delay range Very small: D0.95 −D0.05 < 1ms; very large: D0.95 −D0.05 > 500ms

Delay-loss correlation For a lost packet i: d j > b+1ms, for majority of j ∈ [i−5, i+5]−{i}

Small loss duration All packets between i and j > i+1 are lost, and Tj −Ti > 1s

Delay level shift (LS) Estimate LS: first/last di < b±10ms; 10% points before/after LS

Large triangle Sudden rises in delay over 300ms: ∑
n
i=1I (di+1 −di > 300)< 0.1n

Single-point peaks Median of neighbors of i:di > b+1ms ≈ median of d j:d j ≤ b+1

Reordering shift One-proportion test for: ∑
k
i=l/2+1

I
(

Ri > m(R1 . . .Rl/2)
)
= 0.5(l/2)

capacity C. If the delay increase was due to cross traffic,

we have the following condition for the queue backlog:(
λ−C

C

)
δ ≥ W ; in other words: λ ≥

(
1+ W

δ

)
C. In our

monitoring infrastructure, δ = 100ms; so we can define

a threshold for W by choosing an upper bound for the

input-output ratio λ/C. We use a ratio of 4, giving us

W ≥ 300ms in case of an end-host pathology.

Depending on the magnitude of the vacation period W ,

we can have two end-host pathology symptoms. First, if

W is of the order of 100s of milliseconds (e.g., when the

receiver application does not process a probe in time), we

will observe a “large triangle” delay signature (see Ta-

ble 1), described by Equation 17. Second, if W is much

smaller – of the order of 10s of milliseconds (typical du-

ration of context switches in a busy commodity OS) –

and if the inter-probe gap is close to W , the delay symp-

tom is a set of “single-point peaks”: delay spikes that are

made of a single (or few) point(s) higher than the base-

line delay. The number of spikes is a function of the OS

resource utilization during measurement.

6.2 Congestion and Buffers

Network congestion: We define congestion as a signif-

icant cross traffic backlog in one or more queues in the

network for an extended period of time (few seconds or

longer). Pythia identifies two forms of congestion based

on the backlogged link’s queueing dynamics. First, con-

gestion overload is a case of a significant and persistent

queue backlog in one or more links along the path. Over-

load may be due to a single traffic source or an aggregate

of sources with a persistent arrival rate larger than the

serving link’s capacity. The congestion overload speci-

fication requires a high delay utilization above the base-

line, and a traffic aggregate that is not bursty.

7We assume that the inter-probe gap is much lower than such W .

Second, bursty congestion is a case of a significant

backlog in one or more network queues, but where the

traffic aggregate is bursty (i.e., high variability in the

backlog). We use the term “bursty” to refer to a spe-

cific backlog condition that is not persistent. The bursty

congestion specification requires a high delay utilization,

and “bursty” delays, i.e., the timeseries shows multiple

delay hills each of reasonable duration. Both congestion

specifications require that the timeseries does not show

end-host pathology symptoms.

Buffering: A buffer misconfiguration is either an

over-provisioned buffer or an under-provisioned buffer.

Over-buffering has the potential to induce large delays

for other traffic flows, while under-buffering may induce

losses (and thus degrade TCP throughput). Pythia di-

agnoses a path as having a buffer that is either over- or

under-provisioned based on two symptoms. First, the

delay range during the problem is either too large or

too small. Second, an under-provisioned buffer diag-

nosis requires that there is delay-correlated packet loss

during the problem (see Section 6.3). We do not make

any assumption about the buffer management on the path

(RED, DropTail, etc.). We choose thresholds for large

and small delay ranges as values that fall outside the typi-

cal queueing delays on the Internet (the operator can tune

the values based on knowledge of network paths).

6.3 Loss Events

Random / delay-correlated loss: Packet losses can

severely impact TCP and application performance. It is

useful for the operator to know if the losses that flows

see on a path are correlated with delays - in other words,

delay samples in the neighborhood of the loss are larger

than baseline delay. Examples of delay-correlated losses

include losses caused by buffering in a network device,

such as a full DropTail buffer, or a RED buffer over the

6
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minimum backlog threshold.

On the other hand, random losses are probe losses

which do not show an increase in neighborhood delays.

Random losses may be indicative of a potential physi-

cal layer problem, such as line card failure, bad fiber or

connector, or a duplex mismatch (we defined these based

on operator feedback [2]). In theory, a random loss is

the conditional event: P[loss | delay increase in neigh-

borhood] = P[loss], where the neighborhood is a short

window of delay samples. In practice, we may not have

sufficient losses during the problem to estimate the prob-

abilities; hence we look at the delay neighborhood8. Our

loss-based pathologies may not have one-to-one corre-

spondence with a root cause; however, operators have

found them useful in troubleshooting [2].

Short outage: Network operators are well aware of

long outages. They may overlook infrequent short out-

ages, possibly caused by an impending hardware fail-

ure. A short outage can disrupt existing communications.

Pythia diagnoses loss bursts that have a small loss dura-

tion (one to few seconds) as short outages.

6.4 Route Changes

The symptom of a route change is a level shift in the de-

lay timeseries (and possibly, packet loss during the level

shift). Routing events could be either long-term route

changes, or route flaps. Pythia currently diagnoses long-

term route changes. It does so by finding significant

changes in the baseline and in the propagation delay.

Note that delay level shifts can also occur due to clock

synchronization at the monitors; Pythia currently reports

delay level shifts as “either route change or clock syn-

chronization”. We do not support identification of clock

synchronization events9.

6.5 Reordering Problems

Reordering may occur either due to a network configu-

ration such as per-packet multi-path routing or a routing

change; or it could be internal to a network device (e.g.,

switching fabric design in high-speed devices) [4]. Re-

ordering may not be a pathology, but it can significantly

degrade TCP performance. If it exists, reordering will

be either persistent and stationary (e.g., due to a switch-

ing fabric or multi-path routing), or non-stationary (e.g.,

routing changes).

Pythia diagnoses the above two types of reordering.

The detection logic computes a reordering metric R for

each time window of measurements (Section 4). R is

zero if there is no reordering, and it increases with the

amount of reordering on the path. Pythia diagnoses re-

8For a loss burst, Pythia considers delays before and after the burst.
9Identification of clock sync. events is an expensive operation. It

can be done, for example, at a monitor M by correlating delays from

all timeseries destined to or starting at M; if there is a clock sync, all

timeseries will show a level shift at about the same time.

ordering non-stationarity by looking at the set of 10 most

recent reordering measurements. Pythia uses the “re-

ordering shift test” to diagnose non-stationarity (or sta-

tionarity) in reordering (see Table 1).

6.6 Unknowns

In practice, there may be detected problems that do not

match any of the input pathology specifications. We call

such problems as “Unknown” problems. When an agent

finds that a problem is unknown, it performs an addi-

tional check across the monitored network to diagnose if

the problem is a result of an end-host (monitor) pathol-

ogy. Specifically, the agent checks whether a significant

number of paths ending at/starting from its monitor show

a performance problem at the same time. It does this

by querying the Pythia database. The agent tags all un-

known problems as end-host pathologies if a majority

of paths were diagnosed as having an “Unknown” or an

end-host problem.

7 Live Deployment

Many wide area ISPs consist of geographically dis-

tributed networks connected using inter-domain paths.

Monitoring infrastructure in such ISPs consists of nodes

in the constituent networks. For example, the US De-

partment of Energy’s Energy Sciences Network (ESnet),

a wide area research backbone, connects several stub net-

works, each hosting several perfSONAR monitors.

We deploy Pythia on a wide area perfSONAR mon-

itoring infrastructure that spans seven ESnet monitors

across the US, a Georgia Tech monitor and monitors in

15 K-12 school district networks in GA, USA10. The cur-

rent deployment uses the default corpus of 11 perfor-

mance pathology definitions, some of which were for-

mulated based on ESnet and Internet2 operational expe-

rience. We are in the process of expanding Pythia to sev-

eral monitors in ESnet, Internet2 and other networks.

Our live deployment showed some interesting patterns

from K-12 networks. We found using Pythia that in

a typical week, about 70% of network-related patholo-

gies are related to congestion, leading to packet losses.

In particular, about 29% of the problems are due to

traffic burstiness. Pythia also found that about 5% of

the problems are packet losses not related to buffering,

which may be due to physical layer-related problems.

Moreover, Pythia’s localization shows that almost 80%

of the network interfaces are affected by one or more

performance problems. Pythia also showed diurnal and

weekday-related congestion patterns. Pythia’s findings

confirm with a prior study on the same K-12 networks in

2010 [18]. We use monitoring data to do a large-scale

study of pathologies in Section 9.

10The infrastructure is a part of the Georgia Measurement and Mon-

itoring (GAMMON) project, which aims to assess the feasibility of

online learning requirements of Georgia Department of Education.

7
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Figure 3: Agent run time vs. input measurement duration: me-

dian, 5th and 95th percentile across 100 sample measurement

files, excluding database commit times.

8 Monitoring data and Validation

In the remainder of the paper, we look at how the differ-

ent performance pathologies that Pythia diagnoses (§6)

manifest in core and edge networks in the Internet. In or-

der to do this, we collect data from production monitor-

ing deployments in two backbone networks and leverage

a popular measurement tool run by home users; we run

the agent on the data. We collect data since we use it for

offline validation and accuracy estimation.

Datasets: We collect data from production wide area

monitoring deployments in backbone networks, and we

build our own monitoring infrastructure to collect data

from edge networks. We use four sources of data:

Backbone: This is data from production perfSONAR

monitoring infrastructure in ESnet (33 monitors, 12

days) and Internet2 (9 monitors, 22 days). This data rep-

resents high-capacity, wide area inter-domain networks.

Residential: We use residential user-generated data from

ShaperProbe [11]. ShaperProbe includes a 10s probing

session in upstream and downstream directions. We con-

sider 58,000 user runs across seven months in 2012.

PlanetLab: We build and deploy a full-mesh monitor-

ing infrastructure similar to perfSONAR, using 70 nodes.

We collect data for 12 hours in March 2011. We monitor

commercial and academic networks.

Our data comes from 40 byte UDP probes, with an

average sampling rate of 10Hz per path. OWAMP (perf-

SONAR) uses a Poisson process, while ShaperProbe and

PlanetLab tools maintain a constant packet rate. All

monitored networks have wide area inter-domain paths.

Agent overhead: We first measure the run time of de-

tection and diagnosis algorithms in the agent. Figure 3

shows the agent run time as a function of input size –

duration of measurements for a path – on a 3GHz Xeon

processor. We use 100 randomly picked measurement

timeseries from ESnet and Internet2. On an average, the

agent takes about 60µs to process a single e2e measure-

ment. Hence, the agent can handle large monitoring de-

ployments (i.e., several measurement paths per monitor).
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Figure 4: Validation of diagnosis logic: classification accu-

racy of different diagnoses. Datasets include academic, re-

search, commercial and residential broadband networks.

Validation: It is hard to validate an inter-domain diag-

nosis method, since it is not feasible to get systematic

“ground truth” diagnoses (labeled data) of performance

problems across the network. This is further complicated

by our focus on (i) short-term problems which are typi-

cally unnoticed by network operators, and (ii) wide area

ISPs, which include problems from multiple networks

and inter-domain links.

In order to overcome paucity of labeled data, we use

manually classified pathology data. We first run Pythia

to find and classify performance problems in the data

into different pathology types. For each of the four data

sources, we choose a uniform random sample of 10 prob-

lems from each pathology type. We select a total of 382

problems for manual classification. Note that we would

not be able to evaluate the false negative detection rate;

it is infeasible to find problems that go undetected given

the size of our data. Our detection methods, however,

are not based on symptoms, and hence do not introduce

systematic biases towards/against certain pathologies.

We manually observe the delay and loss timeseries of

each problem and classify it into one or more patholo-

gies (or as “Unknown”). For each problem, we mark as

many valid (matching) pathologies as we see fit. We con-

sider this as our ground truth. This approach has limita-

tions. First, a high delay range in the timeseries (e.g., due

to few outliers) may visually mask problems that occur

over a smaller delays. Second, if the problem is long-

duration, it may be hard to visualize small timescale be-

havior (e.g., a small burst of packet losses will be visual-

ized as a single loss). Third, if there are unsupported di-

agnoses (e.g., short-term delay level shifts), the matching

pathology definitions would be wrong, while the ground

truth would be correct. Finally, the ground truth gen-

eration does not include “cross-path” checks that Pythia

uses. An example of such checks is for diagnosing end-

host pathologies in “Unknown” problems (§6.6).

To validate, we compare the diagnoses generated by

Pythia for each problem with the manually classified di-

8
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Table 2: Occurrence of non-network problems in different

datasets. Acronyms: “E.H.N.” - “EndHostNoise”, “C.S.” -

“ContextSwitch”, “Unk.” - “Unknown”.

Dataset # Problems E.H.N. C.S. Unk.

ESnet 465,135 52% 43% 3%

Internet2 18,774 1% 3% 13%

PlanetLab 718,459 56% 16% 1%

ShaperProbe 8,790 54% 9% 9%

agnoses. We did not find any false positive detections in

manual inspection. We define “accuracy” as follows11.

We ignore problems that were manually classified as

“Unknown”. We show two measures of diagnosis ac-

curacy. For each problem:

• A diagnosis is correct if at least one of Pythia’s diag-

noses exists in the manually classified diagnoses. The

diagnosis accuracy across all problems is 96%.

• A diagnosis is correct if all of Pythia’s diagnoses exist

in the manually classified diagnoses. The diagnosis

accuracy across all problems is 74%. There were 1.42

diagnoses per problem on average.

Figure 4 shows validation accuracy for each pathology;

we ignore pathologies for which we have less than 35 in-

stances. A diagnosis for a problem is marked as “correct”

if it exists in the ground truth. The “CongestionOver-

load” and “CongestionBursty” diagnoses include short-

term delay level shifts; these are false diagnoses, since

Pythia does not support them, and they comprise 42% of

the total false diagnoses of the two congestion types.

9 Case Studies of Networks

In this section, we use Pythia to study performance prob-

lems in the Internet. We use measurements from pro-

duction monitoring deployments in backbone and edge

networks (see §8 for details of the data).

9.1 Monitor-related problems

Before we look at network pathologies, we study end-

host (monitor) pathologies across different monitoring

infrastructures. Our data comes from a wide variety of

monitor platforms: Linux-based dedicated servers (ES-

net and Internet2), desktop and laptops running differ-

ent OSes at homes (ShaperProbe), and virtual machines

(PlanetLab). Table 2 shows the fraction of detected prob-

lems that are diagnosed as end-host pathologies. We

show frequencies separately for the two forms of end-

host pathologies: “EndHostNoise” (short wait periods)

and “ContextSwitch” (long wait periods).

The table shows an interesting feature that validates

known differences between monitor types. The Internet2

11Our diagnosis is a multiclass multilabel classifier that includes the

“Unknown problem” output. It is not straightforward to define preci-

sion and recall in this case. We define accuracy as fraction of classified

samples that are not unknown and are “correct”.
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Figure 5: Breakdown of network-based pathologies among the

four datasets (omitting “Unknown” and end-host pathologies).

monitors are dedicated resources for measurement tools,

while the ESnet monitors also run MySQL databases for

indexing measurement streams. Hence, Internet2 data

shows a smaller fraction of end-host-related pathologies

than ESnet, since the OS environment is more likely to be

busy in ESnet monitors. The PlanetLab environment is

also likely to be busy, given that the resources are shared

among virtual machines. ShaperProbe data comes from

a userspace tool running on commodity OSes, and where

the users run other processes such as web browsers.12

The table also shows that the fraction of problems

that Pythia diagnoses as “Unknown“ are typically lower

than 10%. In the rest of this section, we focus on

network-related problems (i.e., excluding end-host and

“Unknown” pathologies).

Implications: Production monitoring infrastructure is

dedicated to measurements, and hence is not expected to

induce large delays in measurements (other than monitor

downtime). While this may be true for long-term moni-

toring (minutes to hours), we find that when the focus is

on short-lived problems, we see a nontrivial proportion

of monitor-induced delays. It hence becomes important

to diagnose and separate such problems.

9.2 Core vs. Edge networks

We look at the composition of network-related patholo-

gies in the different networks in Figure 5. We see that the

high-capacity backbone networks, ESnet and Internet2,

show a high incidence of congestion pathologies (both

overload and bursty congestion). Moreover, there is no

significant difference in the composition of pathologies

between the two (similar) core networks.

The residential edge (ShaperProbe) shows a high in-

cidence of both congestion and loss pathologies. Note

that we do not see a significant fraction of “LargeBuffer”

pathologies in home networks, though the presence of

large buffers in home networks has been shown before

12We note that “ContextSwitch” problems in ShaperProbe may in-

clude problems arising from either end-hosts or 802.11 links inside the

home (Section 6.1). Separating end-host pathologies in ShaperProbe

data allows us to focus on the ISP access link.

9
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Figure 6: Composition of different network-based pathologies

among the four residential ISPs (both up and downstream).
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Figure 7: Residential broadband networks: fraction of runs

detected as pathology in upstream and downstream directions,

for three cable and one DSL provider.

[12]. This is because Pythia can diagnose a large buffer

problem only if cross traffic creates a significant back-

log in the buffer during the 10s probing time. Planet-

Lab data shows a high incidence of loss pathologies, but

not congestion. The pathologies include delay-correlated

and random losses, as well as short outages.

Implications: The results show differences in problems

between backbone and edge networks. Despite the pres-

ence of large buffers, home networks are prone to loss-

based problems, which can significantly degrade perfor-

mance of web sessions. This may be due to 802.11 wire-

less links inside homes. A real time e2e diagnosis system

can help quickly address customer trouble tickets.

9.3 Residential network pathologies

We look at four large residential broadband providers

in our dataset: cable providers Comcast, Road Runner

and Cox; and DSL provider AT&T. The number of net-

work problems in our data depends on the number of runs

ShaperProbe receives from ISP users (problems per link

ranged from about 250 in AT&T to 12,000 in Comcast).

Note that ShaperProbe data has an inherent “bias” – the

tool is more likely to be run by a home user when the

user perceives a performance problem.
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Figure 8: Composition of different network-based pathologies

in Comcast, as a function of link direction.

Figure 7 shows fraction of user runs showing perfor-

mance problem in the upstream and downstream direc-

tions for the four ISPs. We use runs which had recorded

over 50% of expected number of measurement samples

in 10s (at 10Hz). We see a difference in the frequency

of problems in upstream and downstream directions be-

tween cable and DSL providers. A plausible explanation

is that in the case of cable, DOCSIS uplink is a non-FIFO

scheduler, while the downlink is multiplexed with neigh-

borhood homes; DSL uses FIFO statistical multiplexing

in both directions, but the link capacity is relatively more

asymmetric. To cross-check the problem detection num-

bers, we look at the difference between 95th and 5th

percentiles of the delay distribution during the problem.

We find that about 59% upstream and 25% downstream

Comcast runs have a difference exceeding 5ms (the de-

fault delay detection threshold); while for AT&T, the fig-

ures were 45% and 63% respectively.

Figure 6 shows composition of performance patholo-

gies in each of the four ISPs. We see that the DSL

provider AT&T shows a higher incidence of loss patholo-

gies than the cable providers (both delay-correlated and

random loss pathologies).

We next look at whether cable links show different

pathology distributions among problems in the upstream

and downstream directions. Figure 8 shows composition

of pathologies across runs from Comcast. We do not see

a significant difference in the composition of patholo-

gies, even though there are more problem detections in

the cable upstream than downstream.

Implications: We see that within residential ISPs the na-

ture and composition of performance pathologies varies.

Hence, we cannot build a one-size-fits-all system for res-

idential ISPs; the system should allow operators to input

domain knowledge-based pathologies.

10 Discussion and Limitations

In this paper, we presented Pythia, a system for detec-

tion and diagnosis of performance problems in wide area

providers. Prior work has taken two key approaches

10
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to performance diagnosis in ISPs (see §11). The first

approach involves designing and deploying new prob-

ing tools that diagnose specific pathologies. This en-

ables detailed diagnosis, but new tools add probing over-

head. The second approach involves mining network-

wide data, from every network device and other data

such as trouble tickets. This enables detailed diagnosis

as well, but does not work in wide area ISPs, where paths

can be inter-domain.

We explore a new complimentary approach that works

with existing monitoring infrastructure and tools, and

works in the inter-domain case. Pythia uses diagnosis

rules, which are defined as logical expressions over prob-

lem symptoms. Operators can add these rules to the sys-

tem using a specification language. This design enables

ISPs to incrementally deploy diagnosis in production:

not only when adding new monitors to the network, but

also as and when new performance problems are seen by

operators. At the same time, this approach eliminates the

need for training data, which is hard to have in wide area

ISPs. Pythia provides real time diagnosis summaries by

using non-invasive detection and diagnosis algorithms at

the monitors. In the course of building Pythia, we have

noted some limitations and considerations when building

and deploying the system.

Monitoring: Pythia relies on existing monitoring in the

ISP. This could mean that the diagnosis may be limited

by probing (e.g., probing frequency). For example, our

results on home networks show a low incidence of large

buffer-related problems, since not all large buffer delay

increases may not sampled by the probing process.

Specifications: Language specifications of diagnosis

rules may have limitations, despite the flexibility that

they offer. When adding diagnosis rules, operators need

to consider the tradeoff between specificity and general-

ity of new diagnosis rules relative to existing rules – in

particular with large number of rules. Further, it may not

be feasible to specify some pathologies, since the moni-

tored feature set, and hence the symptom set, is limited.

Sensitivity: In practice, Pythia’s detection logic can lead

to a large number of reported pathologies. We address

this by including a knob that allows the operator to tune

sensitivity, defined as the magnitude of deviation from

the baseline (§4). We leave it to future work to rank

pathologies based on operator interest and criticality.

Symptoms: The symptoms used in diagnosis rules may

be based on models of performance (e.g., the end-host

class), or may be based on static thresholds. We note that

symptoms based on static thresholds may be common in

practice, since they are likely to be based on operator ex-

perience. Since these thresholds could change with time,

an open feature in Pythia is to extend the specification

language to support threshold declarations.

Pathologies: Our deployment experience has shown that

signatures induced by monitors may be common in prac-

tice when the focus of diagnosis is on short-lived prob-

lems. We leave open the analysis of problems that Pythia

finds “Unknown”. Pythia could augment these with a

similarity measure over a specified space of features.

Similarity compares the problem against a representative

set of diagnoses to find the most similar diagnosis.

11 Related work

There has been significant prior work on detection and

diagnosis of performance problems. The prior work falls

into two classes of design. We present representative

work in each class.

Data-oriented methods: These are diagnosis methods

that use significant amount of data sources that are usu-

ally available in enterprises and single administrative

domains, but not in wide area inter-domain settings.

These methods give detailed diagnosis; there is a trade-

off, however, between how detailed the diagnosis can

be and the wide-area applicability (generality) of a di-

agnosis method. A summary of some of these meth-

ods follows. AT&T’s G-RCA [24] works on data from

a single network such as SNMP traps, syslogs, alarms,

router configurations, topology and end-to-end measure-

ments. It mines dependency graphs from the data and

constructs diagnosis rules from the graphs. SyslogDi-

gest [19] mines faults from router syslogs. NetMedic

[10] and Sherlock [3] diagnose faults in enterprise set-

tings by profiling end-host variables and by mining de-

pendencies from historic data. NICE [16] enables trou-

bleshooting by analyzing correlations across logs, router

data and loss measurements. META [23] looks at spa-

tial and temporal features of network data to learn fault

signatures. A recent study [22] uses email logs and net-

work data to analyze routing-based failures. Learning

methods may require prior training; however, they can

complement Pythia by classifying problems that cannot

be diagnosed using domain knowledge.

Data-oriented methods have also been used to diag-

nose specific pathologies in the context of a single net-

work. Feather et al. look at diagnosing soft failures in

a LAN using domain knowledge on a pre-defined set

of features [5]. We take a similar approach to diagno-

sis using domain knowledge, but in the more general

wide area inter-domain context. Lakhina et al. used un-

supervised clustering methods on packet-level features

in packet traces to classify performance anomalies [14].

Huang et al. use structural properties of packet traces to

detect performance problems in a LAN [7]. Huang et

al. identified inter-domain routing anomalies using BGP

updates [8]. There has been extensive work on structural

methods to detect anomalies in volume data in an ISP;

for example, the influential work by Lakhina et al. uses

dimensionality reduction on volume data [13].

Active probing methods: These methods rely on ac-
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tive probing, and are typically based on domain knowl-

edge. They can reveal detailed and accurate diagnosis,

since they provide the choice of carefully crafting prob-

ing structures. It is, however, hard to widely deploy a

new active probing tool in a large monitoring network,

especially if some of the monitors are in other ASes. We

summarize a few representative tools below. Netalyzr

[12] probes to help a user with troubleshooting infor-

mation. Tulip [15] diagnoses and localizes reordering,

loss and congestion using a single end-point. PlanetSeer

[26] uses a combination of active and passive methods to

monitor path failures. Prior work designed probing tools

for specific diagnoses such as Ethernet duplex mismatch

[20] and buffering problems [17].

12 Conclusion

In this paper, we have designed a performance problem

detection and diagnosis system for wide area ISPs, that

works in conjunction with deployed monitoring infras-

tructure. Pythia only requires a lightweight agent pro-

cess running on the monitors. We have designed efficient

detection and diagnosis algorithms that enable such an

agent without affecting measurements. Pythia provides

an expressive language to the operator to specify per-

formance pathology definitions based on domain knowl-

edge. We have deployed Pythia in monitoring infrastruc-

ture in wide area ISPs, diagnosing over 300 inter-domain

paths. We used Pythia to study performance patholo-

gies in backbone and edge networks. Our experience

with Pythia has shown that existing monitoring infras-

tructure in ISPs is a good starting point for building near

real time wide area problem diagnosis systems, enabling

incremental diagnosis deployment.
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Abstract
BISmark (Broadband Internet Service Benchmark) is a
deployment of home routers running custom software,
and backend infrastructure to manage experiments and
collect measurements. The project began in 2010 as an
attempt to better understand the characteristics of broad-
band access networks. We have since deployed BISmark
routers in hundreds of home networks in about thirty coun-
tries. BISmark is currently used and shared by researchers
at nine institutions, including commercial Internet ser-
vice providers, and has enabled studies of access link
performance, network connectivity, Web page load times,
and user behavior and activity. Research using BISmark
and its data has informed both technical and policy re-
search. This paper describes and revisits design choices
we made during the platform’s evolution and lessons we
have learned from the deployment effort thus far. We
also explain how BISmark enables experimentation, and
our efforts to make it available to the networking commu-
nity. We encourage researchers to contact us if they are
interested in running experiments on BISmark.

1 Introduction
A defining feature of today’s Internet is the proliferation of
high-speed broadband access. The United States alone has
more than 245 million broadband users, and usage statis-
tics in other regions are even more impressive: at the end
of 2012, China reported more than 560 million Internet
users, with a penetration rate of more than 40% [20, 21],
and Africa is seeing increased penetration and plummeting
costs for high-speed connectivity [22, 28].

These changes encouraged us to study the nature and
evolution of Internet connectivity as many users now ex-
perience it. We aimed to deploy a platform that could
support continuous measurements from long-running van-
tage points and allow researchers to develop, test, and
deploy new systems and services for common access net-
work environments. To support rich and accurate Internet
measurements from vantage points that are characteristic
of typical Internet users, researchers need a testbed that

∗These authors contributed equally to this paper.

represents the perspective of the growing population of
Internet users.

Our vision for such a testbed was perhaps most compa-
rable to long-running testbeds with dedicated hardware,
such as PlanetLab [2] and the RIPE Atlas Project [33].
Inspired by these projects, we decided that deploying ded-
icated hardware, in the form of commodity home routers,
was the best way to ensure that we could perform both
long-running and on-demand measurements from a con-
sistent set of vantage points where researchers previously
did not have access. Such a deployment enables mea-
surements that are continuous (unlike many measurement
tools, which report only a single set of measurements ini-
tiated by the user), direct (unlike browser or host-based
measurement tools, which can often reflect the perfor-
mance of the host or application rather than of the network
itself) and comprehensive (unlike client hardware, which
cannot directly measure many aspects of both home and
access networks). In contrast to PlanetLab, however, our
goal was to focus on broadband access networks, as op-
posed to research networks, thus achieving a more diverse
set of vantage points. Moreover, in contrast to the RIPE
Atlas testbed, we designed the testbed to be extensible,
supporting custom measurements, systems, and services.
We also designed the testbed with user security and privacy
as a first-order concern.

To address this need, we developed BISmark, a sys-
tem that allows researchers, operators, and policymakers
to deploy experiments and applications that gather data
about network availability, reachability, topology, security,
and performance from home routers running in globally
distributed access networks.

Beyond the conventional challenges of operating a long-
running service in the wide-area Internet (e.g., PlanetLab),
we faced a unique set of challenges when deploying such a
testbed in home networks. First, incentives do not naturally
align: whereas in PlanetLab, researchers have an incentive
to host machines to gain access to the testbed, BISmark
explicitly targets home users, who may not necessarily
be interested in networking research. Second, unlike in
universities where PlanetLab nodes are deployed, techni-
cal support is not readily available, which makes system
robustness, remote maintenance, and recovery even more
important. Third, nodes must be small and easy-to-deploy;
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such nodes are typically resource-constrained. Finally,
BISmark nodes are on the direct path of real Internet
users; a malfunctioning BISmark device not only disrupts
a normal user’s Internet connectivity but also typically
results in the loss of the device. (At this point, a user is
likely to remove the device from the network entirely and
never re-install it.) Therefore, BISmark must also ensure
that an unstable device or a poorly designed experiment
cannot wreak havoc on the user’s Internet connection.

BISmark has enjoyed reasonable success in its first four
years. It has enabled the publication of many studies from
broadband access networks from around the world, and
is now being adopted by major ISPs, policymakers, and
researchers in several countries. Many research groups
are either using the data we have collected or deploying
custom experiments. Yet, enabling a broader set of ex-
periments and scaling BISmark beyond its current size
poses new challenges. Security and robustness remain
paramount, and device deployment and attrition are an
uphill battle, particularly in certain regions. This paper
discusses the constraints we have faced (and continue to
face) in the design, implementation, and deployment of
BISmark, discusses lessons and things that we would have
done differently (or will change in the future), and de-
scribes new challenges as the platform expands both in
terms of the number of vantage points and the diversity of
experiments we aim to support.

The two audiences who will find this paper most use-
ful are (1) designers and developers of network testbeds,
who can read about BISmark’s architecture and deploy-
ment lessons in Sections 3 and 5, respectively; and (2)
researchers who want to use BISmark to collect measure-
ments for their own work, who can read about how other
researchers have used BISmark in Section 4. Anyone who
is interested in deploying user-facing testbeds or measure-
ment systems in hardware or software may learn from our
experiences. More generally, we hope that anyone who
has ever grappled with building a testbed—or plans to
do so in the future—will take important lessons from our
experience, many of which surprised us, and still others
that may seem obvious in hindsight but are nonetheless
well worth codifying.

2 Related Work
Fixed server or gateway deployments. PlanetLab [31]
is probably the most similar platform to BISmark in that it
aims to be a fixed, large-scale deployment hosting a variety
of research experiments. Because BISmark is deployed in
home networks on resource-constrained devices, however,
it faces additional challenges. The RIPE Atlas [33] project
has deployed thousands of probing devices worldwide, but
their capabilities are limited to simple measurements (e.g.,
ping, traceroute). SamKnows [35] has deployed thousands

of home routers in the US and the UK, but only supports
limited performance measurements.

Host-based deployments. Dasu [36] is a host-based soft-
ware client. It has a very large footprint (tens of thou-
sands), and allows a variety of network measurements
from end hosts. However, its advantages of scale comes
at the cost of decreased flexibility: (1) it lacks the per-
missions to run certain measurements due to application
restrictions, (2) it cannot run continuous measurements
(i.e., since hosts can be turned off, moved, etc.), and,
(3) the measurements can reflect limitations of the host or
the application taking the measurement and thus do not
reflect the performance of a fixed network vantage point.
The Grenouille project in France [17] measures the per-
formance of access links using an agent that runs from an
end host inside the home network. Neti@Home [38] and
BSense [3] also use this approach, but with fewer users
than Grenouille. Network Diagnostic Tool (NDT) [9] and
Network Path and Application Diagnostics (NPAD) [25]
send active probes to detect issues with client performance.
Glasnost [16] performs active measurements to determine
whether a user’s ISP blocks BitTorrent traffic.

Netalzyr [23] lets users conduct a series of tests from
a browser, but measurements are not continuous, and re-
searchers cannot run custom tests from a set of hosts—the
measurements collected are fixed, and the set of hosts
from which measurements are collected depend on the
users who decide to run the tool.

Programming frameworks. The process of vetting BIS-
mark experiments is manual (as it was in previous testbeds
such as RON [1]), which will be a limiting factor as the
deployment grows. BISmark must ultimately strike a bal-
ance between flexibility (allowing researchers to specify
experiments) and a constrained programming environment
(limiting researchers from specifying experiments that
could interfere with home users). Previous work on sand-
boxed, programmable measurement environments, such
as Seattle [8] or ScriptRoute [39], could ultimately serve
as a useful environment for specifying BISmark tests.

Other measurement studies of broadband access net-
works. Previous work characterizes access networks us-
ing passive traffic measurements from DSL provider net-
works in Japan [11], France [37], and Europe [24]. Siekki-
nen et al. [37] show that applications (e.g., peer-to-peer
file sharing applications) often rate limit themselves, so
performance observed through passive traffic analysis may
reflect application rate limiting instead of the performance
of the access link. Other studies have characterized access
network performance by probing access links from servers
in the wide area [12, 13].
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Figure 1: BISmark architecture. The packages repository server
and data collection server scale to multiple instances. The
monitoring server is harder to scale, but also sees less load.

Figure 2: Locations of the 178 BISmark routers that were online
in January 2014. We have focused concentrations of routers in
the US, South Africa, Pakistan, and the UK.

3 Architecture and Implementation
BISmark aims to enable research and experimentation
under constraints inherent to home routers and networks.
Many of the challenges that we faced are not unique to
our deployment, but they are exacerbated by operating
(1) in a resource-limited setting on home routers; (2) in
a setting where downtime (or general interference with
users’ Internet connectivity) is not acceptable.

BISmark’s software fulfills four roles. First, it uniquely
identifies each router and correlates it with metadata useful
for conducting networking research. Second, it manages
software installation and upgrades, which lets us fix bugs,
issue security patches, and deploy new experiments after
we have mailed the routers to participants. Third, it pro-
vides experiments a common, easy-to-use, and efficient
way to upload data to a central collection server. Finally, it
enables flexible and efficient remote troubleshooting. We
describe BISmark’s evolution path, its components, and
the various roles that the BISmark software plays.

3.1 System Components
Figure 1 shows BISmark’s architecture. The deployment
currently comprises BISmark routers and a collection of
servers that manage software, collect data, and facilitate
troubleshooting.
BISmark routers. As of January 2014, the deployment
has 178 active routers in over 20 countries. Figure 2 maps
router locations and Figure 3 graphs the deployment’s
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Figure 3: The number of routers online during each month.
BISmark has grown to nearly 200 routers over the past two and
a half years. klatch and quirm signposts indicate two firmware
releases; PAWS indicates a new deployment in the UK. Growth
falters in some later months because we focused deployment in
developing countries, where router availability is inconsistent.
Numbers dropped in late 2013 when the PAWS study ended.

growth over the past two and a half years. We purchased,
prepared, and mailed nearly half of these routers, while
the rest have arisen either organically (e.g., as users “flash”
their own routers with BISmark firmware) or through
coordinated efforts (e.g., with other organizations or re-
search groups). We currently deploy Netgear WNDR 3800
routers, which have a 450 MHz MIPS processor, 16 MB
of flash storage, 128 MB of RAM, 5 gigabit Ethernet
ports, and a dual-band wireless interface. This hardware is
limited, even when compared to other embedded mobile
devices like smartphones, yet it is powerful enough to
reliably support both basic routing features and a variety
of measurement experiments.

We replace the router’s default software with a custom
version of OpenWrt Linux [29]. OpenWrt has an active
developer community, a simple and usable configuration
GUI, and broad, mature hardware support. It frees us from
maintaining our own firmware, but ties us to its release
cycles, bugs and all. Despite a few persistent problems
that have occasionally affected some users, we have been
satisfied with OpenWrt. We have deployed two hardware
revisions of Netgear routers and four firmware releases.

Some users download the BISmark firmware from our
project page and install it on their own hardware. This
enables further growth, but introduces the challenge of
determining the identities of these users. To handle this
scenario, our latest firmware includes a user registration
system that prompts users to complete a simple registra-
tion process after configuring network settings. Regis-
tration serves two purposes: it automates the previously
manual collection of metadata from users about their ISP;
and it binds the user’s identity to a router so we can restore
the router configuration each time the router is reflashed.
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Section 5.4 discusses the security implications of letting
users install BISmark on their own hardware.
Management servers. To support the router deployment,
BISmark has three types of servers:

1. Package repository servers decide which software
should run on each router. Different routers can run
slightly different sets of software because we’ve de-
ployed several firmware versions and users have con-
sented to run various experiments.

2. Data collection servers validate, store and serve data
gathered by routers. We serve publicly accessible ac-
tive measurements data from Amazon S3 and mirror
all data in servers at our university.

3. Monitoring servers track availability and can initiate
SSH connections to routers for troubleshooting.

Measurement servers. BISmark uses a fixed set of mea-
surement servers against which it conducts standard per-
formance measurements (e.g., throughput ). The validity
of these experiments in many cases depends on having
measurement servers that are geographically close to the
deployed routers. We have been fortunate to obtain ac-
cess to the globally distributed Measurement Lab (MLab)
infrastructure [26]. In some cases where we have a crit-
ical mass of routers, we have also deployed additional
measurement servers. Measurements are scheduled on the
measurement servers by a central scheduler. This prevents
overloading of servers by several concurrent requests from
BISmark routers. We note that this infrastructure is used
for intensive active tests such as throughput measurements.
Other experiments that do not rely on a low-latency, glob-
ally distributed infrastructure do not use these servers.

3.2 Architectural Constraints
Like many rapidly growing systems, BISmark evolved or-
ganically in response to use. Several components written
for an early pilot deployment persist. Although many de-
sign choices were sub-optimal in retrospect, the software
has always addressed three practical constraints.

Constraint 1: Severely limited client resources dominate
software design decisions.

Resource limitations preclude several conveniences. For
example, we cannot run heavy scripting languages like
Python or Ruby; instead, we glue together standard UNIX
utilities and small C programs with shell and Lua scripts.

Constraint 2: The basic routing functionality of BISmark
routers is critical; users often place them on the home
network’s forwarding path.

The router should not noticeably affect the user’s network-
ing experience (e.g., by frequently saturating the uplink).
Combined with limited client resources, this constraint
requires us to thoroughly test software before deploying

it, because the consequences of malfunctioning software
may be the potentially terminal loss of a deployment site.
(In our experience, most users simply unplug the router
at the first annoyance and never plug it in again.)

Constraint 3: User intervention is impractical and
should be as limited as possible.

Users expect their router to “just work”. They have no
desire to otherwise interact with it. After installation,
attempts to interact with users via the router itself are
awkward and annoying (e.g., captive portals) and out-of-
band communication (e.g., email) is unreliable.

3.3 Naming
We assign each router a unique router identifier, which
we use for data analysis, troubleshooting, and inventory;
we correlate this identifier with all measurements we col-
lect from the router, participant-provided details about
the upstream ISP’s advertised performance, the router’s
geographic location, and the participant’s name and mail-
ing address (used to ship the router). We do not disclose
personal information except when required by law enforce-
ment [5] (a scenario that we have not yet encountered).

Constraint 4: Router identifiers must be (1) unique and
(2) persistent across reboots and reflashes.

Common identifiers such as manually assigned hostnames,
dynamically generated tokens, or public IP addresses do
not satisfy these requirements. Instead, we use the routers’
LAN-facing MAC address, which is both unique and un-
changing. We chose LAN (rather than WAN) addresses
because they are printed on the back of the router, which
simplifies technical support and inventory.

Unfortunately, LAN-facing MAC addresses pose a se-
curity risk because attackers could use them to geograph-
ically locate a router. By default, routers broadcast their
MAC address to WiFi devices in the vicinity, including
smartphones and collectors for Google’s Street View and
similar data collection projects. An attacker with access to
both the router’s MAC address and these databases could
geolocate a router [43]. This vulnerability highlights a
broader set of tradeoffs BISmark makes between privacy
and transparency; Section 5 discusses these tradeoffs.

3.4 Troubleshooting
Remote access allows us to fix critical problems that would
otherwise require a lengthy packaging and software update
cycle to fix.

Constraint 5: We need a fast but secure technique to log
in to routers on demand.

Every BISmark router runs an SSH server which is only
exposed on the LAN interface. Exposing the server on
the WAN interface has security concerns; additionally,
over 60% of our routers are obscured by at least one layer
of Network Address Translation (NAT), rendering the
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SSH server on WAN useless. Instead, BISmark routers
poll the monitoring server for SSH session requests by
sending small UDP probes (“heartbeats”) once per minute.
If the server wishes to initiate an SSH session with a
router, it responds with a UDP response to that effect;
the router then opens an SSH tunnel forwarding a port
on the monitoring server to the router’s local SSH server.
Administrators on the server then initiate SSH sessions
to the forwarded server port. Although session requests
and responses may be lost in the network, we can usually
establish a tunnel within one minute and almost always
within five minutes.

Tunnel creation uses restricted SSH authorization to
prevent routers from executing arbitrary commands on the
server. Because the server does not authenticate the UDP
probes themselves (only the resulting tunnels), we rate
limit requests to prevent denial-of-service or reflection
attacks against the server or unsuspecting routers.

The overhead of the tunneling protocol is minimal.
Each probe/response pair is 139 bytes, resulting in an
overhead of 200 KB per day or 6 MB per month. The
DNS time-to-live on the monitoring server is 15 minutes,
resulting in an additional overhead from DNS lookups of
less than 1 MB per month. Using a domain name with
a reasonable TTL allows us to quickly migrate the moni-
toring server in an emergency. Although a DNS hijacker
could direct routers’ probes to a different address, such an
attack will not compromise security of the routers because
they use SSH to establish tunnels.

3.5 Software Upgrades
After we have deployed a router, we must be able to man-
age its software packages. Throughout the lifetime of
the deployment, we have issued many bug and security
fixes as package upgrades, deployed new measurement
experiments by installing new packages, and rolled back
faulty experiments via package removal. OpenWrt’s built-
in opkg lacks several features and safeguards necessary for
managing software on a large deployment in the homes
of non-technical users. This section illustrates several of
BISmark’s unique software management constraints and
we overcome them.
Constraint 6: Router state should be centrally managed
and controlled.

Exogenous events can interfere with stateful package man-
agement. For example, if a user resets their router to its
original configuration, the router should automatically in-
stall and upgrade the software it had prior to the reset.
Instead of executing one-time commands sent by a server,
the router downloads a list of packages reflecting the cur-
rent desired state of the router, and installs, removes, and
upgrades its packages accordingly.

We built custom package management utilities on top
of opkg that meet these constraints. We eschewed off-

the-shelf tools like Puppet, Chef, or CFEngine because
of resource and complexity constraints, which reflects a
general tension between custom and commodity software
that we faced throughout the project. Existing software is
often both more complicated than we need and untested on
non-x86 architectures. Sometimes writing a small custom
package from scratch for limited functionality is easier
than porting and rigorously testing an existing one.

Constraint 7: Software package management must occur
without intervention from either home network users or
the BISmark administrators.

This constraint contrasts with large-scale software admin-
istration frameworks for other platforms (e.g., Android,
Mac OS X, and Windows), which have at least some user
interaction. Home users are often non-technical or oth-
erwise have little desire to administer their router, and
the BISmark administrators cannot manually run package
commands on hundreds of routers. Therefore, software
installation, upgrade, and removal must happen automati-
cally. Routers in our deployment automatically perform
these tasks at boot and approximately every twelve hours.

Constraint 8: The consequences of accidental installa-
tion, upgrade, or removal of packages are high.

Automating package management increases risk, because
a single faulty or buggy package could cripple the entire
deployment. Our management tools impose several re-
strictions to guard against accidental installation, upgrade,
and removal of packages. First, routers only allow re-
moval of packages that are not included with their base
firmware image, which prevents us from accidentally re-
moving critical software. For example, before instituting
this restriction an errant experiment accidentally removed
the libc package from a router during testing, rendering
it unbootable. Second, packages must be explicitly tagged
as “upgradable” on the server before routers will upgrade
them, which helps prevent us from accidentally pushing
newer, incompatible versions of packages. Finally, we
require all new packages and versions be tested for several
days on a small set of canary routers owned by members
of our research group before wider deployment.

Routers usually sit on a home network’s critical path
and must continue functioning at all times. Fortunately,
basic function only relies on a few core packages, and
almost always continues to work even if our management
tools fail. Even if we lose access to the router entirely,
the home router’s core functions are typically undisturbed,
since those functions are isolated from our packages.

Constraint 9: Routers have diverse packages and ver-
sions.

There are three versions of the BISmark firmware cur-
rently deployed; each requires a different set of packages
because of library incompatibilities. Some routers also
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run additional packages because their users participate in
optional BISmark measurement experiments. Our pack-
age management tools must install the correct packages
and versions on each router. The consequences of mis-
takes range from broken functionality (e.g., missing mea-
surements) to unauthorized collection of data (e.g., if we
collect passive measurements from users who have not
consented to it.)

3.6 Data Collection
Experiments generate data of a wide variety of sizes and
rates and upload it to data collection servers for analysis.
We initially used off-the-shelf file synchronization tools
to upload this data, but resource, flexibility, and reliabil-
ity constraints motivated us to develop custom software.
bismark-data-transmit is our client application, which de-
tects new files in a filesystem subtree using Linux’s inotify
filesystem monitoring interface. The client uploads these
files over HTTPS to a Web application that validates and
archives the data.

Constraint 10: Bandwidth is scarce and may be capped.

Efficient use of bandwidth is crucial because BISmark
routers share uplink capacity with the home network. Ex-
periments can generate lots of small files, often frequently,
but need to upload them with minimal protocol overhead.
Routers store these files on a volatile RAM disk and up-
load files as soon as possible; both excessive wear and
extreme scarcity prevent them from storing data on persis-
tent flash storage. To minimize the risk of data loss when
they lose power or reboot, routers do not batch files for
more efficient transmission. To avoid frequent and expen-
sive handshakes while still continuously uploading files,
we send all files over a single HTTPS connection with a
high keep-alive timeout. Although Web services generally
use keep-alive timeouts of only a few seconds, bismark-
data-transmit sets a one hour timeout, which makes sense
for communicating with a small, fixed set of clients.

Constraint 11: Network and power are unreliable in
some locations; data collection should gracefully han-
dle uplink outages and power outages.

Some experiments measure properties of the home net-
work itself rather than the home’s Internet connectivity
and thus continue generating data even when the router’s
uplink is offline. These experiments can quickly accu-
mulate a lot of data if unchecked. bismark-data-transmit
retries failed uploads every three minutes and starts dis-
carding data in FIFO order once it has more than 24 MB
queued for upload, so even routers connected to very unre-
liable uplinks can contribute data without exhausting their
limited onboard storage. Some routers frequently lose
power, particularly those deployed in developing coun-
tries. bismark-data-transmit minimizes data loss in these
cases by uploading data as soon as possible. Routers can
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Figure 4: Downstream and upstream throughput for routers.
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Figure 5: Distribution of the fraction of time each router is
online during its deployment. We only include routers that have
been online for at least a month.

lose data accumulated during a long uplink outage that
immediately precedes a power outage.

4 Experimentation on BISmark
This section describes research projects that have used
BISmark. We first describe the modes of collaboration
that we have used since opening BISmark to external
researchers in mid-2013. Because the platform is both
resource constrained and on many users’ critical path to
the Internet, experiments on BISmark must cope with
stricter conditions than most existing testbeds that support
long-running deployments (e.g., PlanetLab). For exam-
ple, experiments must deal with nodes that have highly
variable connectivity and availability. Figure 4 plots the
95th percentile of throughput of homes in the deployment;
we see ranges from basic broadband (about 1 Mbps) to
fiber speeds (100 Mbps). Figure 5 shows the fraction of
time a router is available and online during its lifetime;
about 50% of the routers are available more than 90% of
the time, but a significant fraction of routers have much
patchier availability.

4.1 Modes of Collaboration
Data from many active measurements are public for any-
one to use. Additionally, we have been advertising BIS-
mark to collaborators and encouraging them to run experi-
ments on the deployment. Most of this recruiting has been
through word-of-mouth, as we build confidence that we
can support a larger group of researchers (in fact, we an-
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ticipate that we would be unlikely to satisfy all requests).
In many of these cases, we have informally adopted a
PlanetLab-like incentives model by asking the researchers
to spearhead their own small deployment of BISmark
routers in an ISP or region of interest. In certain research
projects, the researchers want to do this anyhow because
they have a specific group of users that they want to study.
We have two modes of collaboration, which we outline
below. In both cases, researchers must be comfortable
with OpenWrt and embedded platform development.
Public deployment. Collaborators run experiments on
the main deployment of routers, which we manage. We
control access and schedule the experiment to run in con-
junction with other experiments running on the deploy-
ment. This mode works well for researchers running light-
weight experiments from the variety of vantage points that
our deployment offers. We have enabled research from
the University of Southern California in this way.
Private deployments. Researchers (or, in some cases, op-
erators) purchase and deploy their own routers, while we
provide the client software and manage back-end services.
In these cases, the researchers retain a high degree of ac-
cess to their routers, giving them an incentive to keep their
deployment running. This mode is best for researchers
who want to run complex or time-consuming experiments
in a small geographic area. For example, University of
Cambridge has deployed more than 20 BISmark routers in
under-privileged communities in Nottingham to study the
mechanics of Internet sharing in such communities. We
have also engaged with several ISPs who have wanted to
run their own autonomous deployments.

4.2 Research Projects
BISmark offers the ability to study poorly understood or
understudied aspects of home networks, including access
link performance, application characterization, user behav-
ior patterns, security, and wireless performance. Table 1
summarizes several experiments we are coordinating on
the deployment. In many cases, we are leading (or have
led) the study ourselves; more recently, we have been col-
laborating with the researchers who are leading the study.
The latter projects are works-in-progress. The following
sections describe both sets of projects in more detail. Our
discussion of experiments that have been run on BISmark
is not exhaustive but is intended to highlight both the
capabilities and shortcomings of the platform.

4.2.1 Performance Characterization

BISmark’s location at the hub of the home network lets it
gauge performance of both local devices and the access
link without being affected by confounding factors from
the rest of the network.
Broadband performance in the US and abroad. The
home access point is ideally suited for measuring access
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Figure 6: Distribution of latencies to the nearest MLab server
from each BISmark router, with annotations of the median la-
tency from several countries with many routers. Latencies from
Pakistan are very high because the nearest server is in Europe.

link characteristics. We characterized access link perfor-
mance and the effects of access technology and customer
premise equipment in the United States [40] using data
from BISmark and the similar FCC/SamKnows deploy-
ment. Our study showed, amongst other things, how the
access link can have a significant impact on end-to-end
performance. Research ICT Africa (RIA) reproduced our
study in South Africa [10] and expanded it to include mo-
bile devices and 3G dongles. BISmark is well suited for
such studies because of its view into the last mile, and
its ability to account for confounding factors and to run
longitudinal experiments.
Application performance. Because hardware limitations
can prevent us from running full applications (e.g., Web
browsers), we aim to emulate applications’ network be-
havior. In our work measuring network bottlenecks in
Web performance [41], we used a custom browser em-
ulator to measure one aspect of Web performance—the
impact of the last mile. This study found that Web per-
formance becomes bottlenecked on latency for broadband
connections faster than 16 Mbps. Although BISmark was
suitable for this particular experiment, we did not measure
other aspects of Web performance, such as user perception,
the effect of object ordering, or scripting on performance.
This is because we cannot run a full browser on the router;
it is also difficult to get such information from passive data.
In such cases, we have to carefully design the experiment
so that we know what we are able to study.
Wireless performance. We are developing techniques
that isolate the source of performance bottlenecks to either
the access link or the wireless network, as well as tools
that help us understand the nature of wireless pathologies.
The home access point sits between two common sources
of performance issues—the access link and the wireless
network—and is therefore ideally suited for identifying
and isolating problems between these locations.
Lessons and caveats. As demonstrated above, BISmark
is ideally suited for access link and home network charac-
terization because it lets us probe these components and
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Project Institution(s) Description Publications
Performance Characterization

Broadband performance Georgia Tech, University of Napoli, INRIA,
FCC/SamKnows, Research ICT Africa, Na-
tional University of Sciences and Technology

Study factors affecting broadband perfor-
mance in the US and in developing countries.

[10, 40], WiP

Web performance Georgia Tech, INRIA Characterize and mitigate last-mile bottle-
necks affecting Web performance.

[41]

Home wireless performance Georgia Tech Study home wireless pathologies and bottle-
necks in home networks

WiP

Usage and Home Network Characterization
Home network characterization Georgia Tech Understand usage and connectivity. [18]
Home Constant Guard Comcast Expand Constant Guard to provide informa-

tion about devices infected in home networks.
WiP

PAWS University of Cambridge Internet sharing in underserved communities. WiP
Topology and Connectivity Characterization

Google cache measurements University of Southern California Study effects of Google’s cache deployment
on performance of Web services.

[7], WiP

Network Connectivity Georgia Tech, USC, RIA Characterize ISP connectivity and path infla-
tion in Africa.

[19]

Network outages and DHCP University of Maryland Study effects of outages on IP address alloca-
tion worldwide.

WiP

OONI/censorship NUST, University of Napoli Study the extent and practice of censorship in
various countries (initial focus on Pakistan).

WiP

Table 1: Summary of various experiments (and publications) that BISmark has enabled to date. “WiP” denotes work in progress.

collect passive data from them. Application performance
characterization is harder. Applications (or their emula-
tions) must be light enough to run on the router; this might
preclude certain types of applications.

Experiments that measure the access link by sending
active probe traffic (e.g., throughput tests) must not de-
grade performance of the home network while doing so.
For users with bandwidth caps, probe traffic and data traf-
fic (from uploading measurements to the server) should
not constitute a significant fraction of the cap without the
user’s knowledge or consent. Some measurements such
as TCP throughput require server deployments with low
latency. Fortunately, Measurement Lab’s global server
infrastructure has helped: BISmark nodes automatically
select the nearest MLab node for throughput measure-
ments; Figure 6 shows that over 80% of nodes are within
100 ms of a measurement server.

4.2.2 Usage and Home Network Characterization

Several projects leverage BISmark’s view of the home
network behind the NAT.
Home network availability, usage, and infrastructure.
We study the kinds of devices home users use to access the
network, how they access the network, and their usage pat-
terns [18]. Our study found interesting behavioral patterns
(e.g., users in developing countries turn off home routers
when not using them) and usage patterns (e.g., most traffic
is exchanged with a few domains). Most prior studies are
incomplete because they rely on one-time or infrequent
probes from clients with limited network visibility.
Home network security. The ability to isolate traffic
from different devices behind the NAT can be used to im-

prove security. Comcast offers a security solution called
Constant Guard, which captures DNS lookups to suspi-
cious domains to inform a user when devices in their
home may be compromised. We are extending BISmark
to let Constant Guard identify infected devices and redirect
some or all flows from suspected devices through Comcast
security middleboxes via a virtual private network [4].

Internet usage in underprivileged communities. The
PAWS project [30] distributes BISmark routers augmented
with extra measurement tools to broadband customers who
volunteer to share their high-speed broadband Internet con-
nection for free with fellow citizens. The project studies
how underprivileged communities share Internet access.

Lessons and caveats. BISmark’s view into the home net-
work and its ease of deployability allows it to run experi-
ments that are not possible with other platforms. However,
it also raises new concerns. Resource constraints limit
the amount of data that can be collected and processed
on the device. User privacy is a significant concern; for
any experiment that studies user behavior, we must ob-
tain informed consent from the user, which can be a slow
and cumbersome process. We have conducted our own
experiments that have required institutional review board
(IRB) approval, but complications arise when BISmark
serves as a host platform for experiments run from other
universities that are sometimes in other countries. Even
with permission to collect personal information, we design
our experiments to collect only information necessary to
answer targeted questions.
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4.2.3 Connectivity Characterization

BISmark’s worldwide presence lends itself to measuring
many different aspects of Internet connectivity.
Measuring Internet topology and connectivity. We
have looked at Internet availability in developed and de-
veloping countries [18], and researchers at USC are using
BISmark to extend their study of the effects of Google’s
expanding cache deployment [7] on the performance of
various Web services. Researchers at the University of
Maryland are analyzing BISmark’s UDP “heartbeat” logs
(Section 3.4) to understand the effects of network outages
on DHCP address allocations. Our recent work explores
correlated latency spikes in ISPs [34] and the extent to
which interconnectivity (or lack thereof) at Internet ex-
change points contributes to latency inflation and degraded
application performance [19].
Global measurements of censorship. BISmark routers
represent a unique opportunity to collect detailed, longi-
tudinal data about how countries engage in censorship.
Researchers in Pakistan have deployed BISmark routers
in several homes to measure this phenomena; routers in
other countries could also potentially collect similar mea-
surements. We are replicating OONI [14] on BISmark.
Lessons and caveats. BISmark is well-suited for connec-
tivity measurements because of its geographical footprint,
availability, and its ability to run periodic measurements
(time scale of minutes) over a long period of time (months,
or even years). We could also run probes and tests between
BISmark routers, but while some such experiments may be
better run on platforms like Dasu which will likely always
have more deployment sites, BISmark is a full-featured (if
low-powered) Linux machine that offers the ability to per-
form a much larger variety of experiments. Experiments
that measure censorship have additional ethical concerns
because it is illegal in some countries, and may even place
the household at risk. In these cases, we must obtain in-
formed consent, which may be difficult with users who
flashed their own hardware or don’t speak English.

5 Lessons
This section summarizes lessons we have learned (often
the hard way) during BISmark’s development.

5.1 Recruiting Users
Convincing users to deploy routers in their homes, partic-
ularly custom hardware, is not easy. Prior to our current
deployment of commodity routers, we conducted a year-
long pilot study with the NOX Box, a small form-factor PC
that ran the NOX OpenFlow controller on Debian Linux.
We assembled the hardware from an ALIX 2D13 6-inch
by 6-inch board with a 500 MHz AMD Geode processor,
256 MB of RAM, 2 GB of flash memory, three Ethernet
ports, and a wireless card. Although the NOX Box’s rel-

(a) NOX Box (b) Netgear WNDR 3800

Figure 7: We used the NOX Box for our pilot deployment and
the Netgear WNDR3700/WNDR3800 for the second deployment.
Unlike the NOX Box, the Netgear router looks like standard
home networking equipment.

atively unconstrained hardware and full-featured Linux
distribution helped rapid prototyping, our pilot faced sev-
eral practical problems in the field.

Lesson 1: Form factor matters. Users often trust com-
modity hardware over custom hardware simply because it
is in a recognizable form.

Figure 7 compares the NOX Box hardware from our pilot
phase to the commodity Netgear hardware from our cur-
rent deployment. The NOX Box doesn’t look like a typical
home router: it lacks familiar branding, lacks labels for
status lights and Ethernet ports, and has a metal rather than
plastic enclosure. These factors bred an inherent distrust
of the NOX Box. People were generally more willing to
deploy commodity hardware.

Lesson 2: Users often blame BISmark for problems in
their home network, whether or not the problem was
caused by BISmark. Many users react by removing the
router permanently from their network.

Even with commodity hardware, users have heightened
awareness of the BISmark router, particularly the experi-
mental nature of the device, and therefore suspect it first
when problems arise with their home network. In some
cases, BISmark is indeed at fault. For example, a firmware
bug causes unstable wireless connectivity on some devices,
notably Apple MacBooks. In other cases, the router uncov-
ered buffering problems elsewhere in the home network,
temporarily degrading network conditions in the process.
Many times, users misconfigured the router themselves
(e.g., by changing firewall settings) or incorrectly blamed
BISmark for upstream ISP outages or problems with end
hosts (e.g., older devices that lack support for WPA2.)

Regardless of the causes of these problems, many users
“solve” them by removing the BISmark router from the
network. This has consequences in terms of money (the
router likely will not be turned on again) and time (in
flashing, packaging, and shipping the router to the user).
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Figure 8: Distribution of router lifetime, the difference between
the first and last time we saw the router online. For 178 routers
currently online, it is how long they have been online to date.
169 are now offline, while 31 never turned on at all.

Lesson 3: Home users and researchers have vastly diver-
gent incentives. Home users want a working network, and
researchers want to gather data and information. Care
and effort must be invested to align these incentives.

It is critical that our deployment strategy allows us to fi-
nance and maintain a large number of routers. PlanetLab’s
incentive structure (i.e., hosting infrastructure for the right
to run deployment-wide experiments) does not work in
our case, because many of the most interesting vantage
points will be hosted by users who are not networking
researchers and have no interest in conducting their own
experiments. We use two deployment strategies:

Free (or subsidized) router distribution. Our initial strat-
egy was to ship routers to acquaintances, friends of
friends, and through targeted advertising in venues such as
NANOG and Internet2. It is difficult and time consuming
to track routers in such cases, particularly when users turn
them off. Due to the cost and effort involved, individual
shipments only work at relatively small scales. About 50%
of routers we distributed have either never been turned on
or have since been decommissioned by their users.

Federated distribution. We are now attempting a federated
deployment model to expand our geographical footprint.
We work with a local contact who buys or receives a ship-
ment of routers from us, recruits volunteers and ensures
that routers stay up. This approach worked well for a
deployment of approximately 15 routers in South Africa
and 20 routers in the UK, and we are now attempting sim-
ilar approaches in Tunisia, Pakistan, Nigeria, Cyprus, and
Italy. We are also working with Comcast to deploy routers
in their customers’ homes in return for network analytics.

5.2 Sustaining the Deployment
Even after deploying BISmark routers in homes, it is a
struggle to keep them online. Figure 8 shows attrition
of the deployment. Nearly 25% of all routers go offline
within three months, while another 25% have remained
online for more than a year. We have learned many lessons,
both about how to deploy reliable router software and how

to keep users involved when unreliable software disrupts
the user experience.

Lesson 4: Users must be engaged to help keep routers
online. Engagement can come in a variety of forms, and
may be as simple as helping them better understand their
network using the data we collect.

If users disconnect their routers, we stand to lose both the
device hardware and the data. We attempt to keep users
engaged by providing useful tools like the Network Dash-
board [27] to visualize ISP performance and uCap [42] to
help users visualize and manage their home network usage.
We conduct our development and data collection in the
open; users can track BISmark development online [6, 32].

Lesson 5: Upgrading critical software in the field is risky,
but the ability to upgrade other software is essential for
sustainable deployment.

The ability to upgrade non-critical software after deploy-
ment has enabled us to pursue “good-enough” software
development by deploying systems that are not fully ready.
We can fix bugs and deploy new features by upgrading
software in the field. This helps us reconcile the need for
deploying systems that work for end users with constraints
that include the need for extensibility and experimentation
and limited time and manpower for testing and support.

We do not update certain critical software when there
is a chance, however small, that a critical functionality
(e.g., the wireless network) could break. Our approach has
been to minimize such cases by using a well-tested base
platform that can maintain basic functionality even when
higher-level client and backend software malfunctions.

Lesson 6: Every home network has unique conditions
and usage patterns, making comprehensive testing before
deployment nearly impossible; bugs arise in practice.

We aim to ensure that BISmark is foremost a stable access
point, and that our custom software and experiments do
not degrade user experience. The BISmark gateway is on
the critical path of Internet access for at least one device
in 92% of the homes; a malfunctioning router will disrupt
network connectivity and, in the worst case, even com-
pletely take those devices offline. We have one window
of opportunity per user to ensure that a router is installed
and working correctly. Most people have no desire to
troubleshoot home networks and will readily disconnect
their BISmark router if it stops working as intended.

Lesson 7: Community support is crucial; we rely heavily
on commodity hardware manufacturers and open source
software developers to build reliable, usable home routers.

Commodity hardware solves many problems we faced
with custom hardware because manufacturers (e.g., Net-
gear) design hardware specifically to deploy it in the
homes of non-technical users, which exactly matches BIS-
mark’s deployment scenario. Besides appearance, com-
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modity hardware addresses many of the NOX Box’s relia-
bility and usability problems: (a) flash storage cards failed
after only 3–4 months in the field, far sooner than expected
for our workload; (b) we assembled each NOX Box from
components, a laborious process; and (c) the component
cost for each device was approximately $250 USD, or 2–3
times the cost of a commodity wireless router.

Similarly, OpenWrt’s global community ensures that
it is much more comprehensively tested on a variety of
home routers than Debian. Although we occasionally
found ourselves “held hostage” by bugs that were not fixed
on our timescales, becoming embedded in OpenWrt’s
developer community was generally helpful.
Lesson 8: Users may want to customize router settings,
but doing so may introduce security vulnerabilities.

BISmark routers have a flexible administrative interface to
help users configure the router; this is a potential security
vulnerability. One household accidentally disabled the
router’s firewall, opening its DNS resolver to the Internet.
Attackers eventually recruited the router for amplification
attacks over a period of many months, which we only
discovered when the ISP notified the user of the problem.
Although the disabled firewall was the culprit in this case,
it led to a wholesale audit of the deployment and a spirited
email exchange with the affected user. It is still unclear
exactly how the firewall was disabled.

5.3 Experimentation
Designing and deploying measurements on BISmark has
highlighted several nuances of supporting experimentation
in production home networks.
Lesson 9: It is difficult to reconcile the need for open
data with that of user privacy.

To encourage open data, we publish measurements col-
lected from BISmark, but only if doing so doesn’t threaten
user privacy. Sometimes this decision isn’t obvious. It
is unclear when active data measurements can yield in-
sight into user behavior; for example, patterns in router
availability or throughput and latency measurements could
indicate when users are home and using the network.
Lesson 10: Vetting experiments is challenging, and a
poorly designed (or controlled) experiment can cripple a
user’s Internet connection.

Enabling a wide range of experiments introduces manage-
ment and security concerns, specifically with reviewing
code, controlling access, and ensuring that experiments do
not disrupt user experience by making the device unstable
or consuming too much network resources.

One household had comparatively slow upstream con-
nectivity (512 Kbps upload) and an old modem with a
large buffer, where even short throughput tests can induce
bufferbloat pathologies [15]. Although the household’s
typical workload did not stress the network often enough

to expose bufferbloat in their typical usage, BISmark’s
periodic throughput tests saturated the buffer and rendered
the Internet unusable for the duration of the test (a few
seconds). The degradation was bad enough for the user to
complain and stop using the device after a few weeks.

5.4 Security

BISmark routers should compromise neither home net-
work security nor the integrity of the platform. Although
we try to minimize the possibility of security vulnerabili-
ties by adopting industry-standard software and protocols
wherever possible, some attacks against BISmark’s back-
end infrastructure are still possible.

Lesson 11: Users have access to the hardware and can
modify firmware; this imposes new security challenges.

BISmark’s backend is subject to two broad security threats.
The first is denial-of-service attacks, where malicious
users could attempt to exhaust server resources for pro-
cessing legitimate routers or measurements. Attackers
could impersonate other users or even mount Sybil attacks
to create many fake routers. Several backend components
employ rate limiting, but these limits generally only pro-
tect against errant behavior of non-malicious clients. Thus
far, we have deliberately chosen not to fix this class of vul-
nerabilities to make it easier for people to install BISmark
on their routers without our involvement.

Other attacks could contribute malicious data to influ-
ence conclusions. Mitigating such attacks requires instru-
menting routers with Trusted Platform Modules running
signed executables to generate signed data. Attackers have
physical access to router hardware and the software source
code, so we rely on social measures: we try to deploy to
trusted users and assume that they won’t collude. Anyone
can install BISmark on their own hardware, so we treat
measurements from such routers with greater suspicion.

6 Conclusion

Although we did not initially plan to build (and maintain)
such a large testbed, we realized the need for it 2009
when we began a study of access network performance.
We recognized the variety of uses for a programmable
testbed in home networks, and we also discovered that
other researchers and operators share our interest. As
BISmark continues to expand in terms of size and the
diversity of experiments that it hosts, we will need to
continually re-evaluate many of our design decisions. We
believe our experiences thus far offer a unique perspective
in comparison to existing long-running testbeds and useful
lessons for others who perform research in broadband
access networks.
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Abstract
DCAC is a practical OS-level access control system that
supports application-defined principals. It allows normal
users to perform administrative operations within their
privilege, enabling isolation and privilege separation for
applications. It does not require centralized policy spec-
ification or management, giving applications freedom to
manage their principals while the policies are still en-
forced by the OS. DCAC uses hierarchically-named at-
tributes as a generic framework for user-defined policies
such as groups defined by normal users. For both local
and networked file systems, its execution time overhead
is between 0%–9% on file system microbenchmarks, and
under 1% on applications.

This paper shows the design and implementation of
DCAC, as well as several real-world use cases, includ-
ing sandboxing applications, enforcing server applica-
tions’ security policies, supporting NFS, and authenticat-
ing user-defined sub-principals in SSH, all with minimal
code changes.

1. Introduction
Continued high-profile computer security failures and
data breaches demonstrate that computer security for ap-
plications is abysmal. While there is extensive research
into novel security and access control models little of
this work has an impact on practice. Instead of appli-
cations consistently reimplementing security vulnerabili-
ties, they need a practical and expressive way to use thor-
oughly debugged system-level primitives to achieve best
security practices.

DCAC (DeCentralized Access Control) is our attempt
to make modern security mechanisms practical for ac-
cess control. It has three distinguishing characteristics: it
is decentralized in privilege, decentralized in policy spec-
ification, and allows application-defined principals and
synchronization requirements. Although DCAC greatly
increases the flexibility of access control, it retains a
familiar model of operation, with per-process metadata
checked against per-object ACLs to determine the al-
lowed access. It relies on the standard OS infrastructure
of a hierarchical file namespace, extended file attributes,
and file descriptors. It is practical for distributed envi-
ronments because it avoids requiring centralized storage,
consistency, or management.

∗ Work completed while at the University of Texas at Austin.

Decentralized privilege. In Linux and Windows, users
and groups are principals, and can be assigned privileges.
A user might consider creating another user (a “sub-
principal”) and assigning it a subset of her privileges.
This allows an application to run as the sub-principal,
and thus with restricted privileges compared to the case
where the user directly runs the application. However, on
Linux and Windows, administrative functions on users
and groups require root privilege. As a result, current OS-
level access control does not allow many applications to
run with least privilege.

DCAC decentralizes administrator privilege: a nor-
mal user can perform administrative operations within
her privilege, like creating principals with subsets of her
privilege. Privilege separation makes complex applica-
tions more difficult to exploit. But current systems re-
quire administrative involvement to install and deploy
privilege-separated software.

For example, the suEXEC feature of Apache HTTP
Server allows it to run CGI and SSI programs under UIDs
different from the UID of the calling web server, by using
setuid binaries. However, creating UIDs for CGI/SSI
programs and setting up the setuid binaries requires
administrator privilege. Not only can use of administra-
tive privilege require human involvement, it also adds op-
portunities for configuration mistakes that can actually
harm security. The suEXEC documentation1 warns the
user, “if suEXEC is improperly configured, it can cause
any number of problems and possibly create new holes
in your computer’s security. If you aren’t familiar with
managing setuid root programs and the security issues
they present, we highly recommend that you not con-
sider using suEXEC.” By contrast, DCAC allows forms
of privilege separation, like delegating user privileges to
sub-principals, that even in the case of a configuration
mistake, limit the effect of a compromise to the privi-
leges of the original user.

Decentralized policy specification. OS-level access
control typically defines its principals and policies in a
centralized, secure location, such as the /etc/group

file, the policy.conf file in SELinux, or a central pol-
icy server (e.g., a Lightweight Directory Access Protocol
(LDAP) server). DCAC decentralizes policy specifica-
tion: policies are stored in files and file metadata at arbi-
trary locations. DCAC generalizes the setuid mecha-
nism of Unix, allowing processes to use the file system

1 http://httpd.apache.org/docs/2.4/suexec.html
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to gain fine-grained, user-defined privileges (i.e., not just
root). With DCAC, applications control their privileges
with a mechanism implemented and enforced by the op-
erating system, but without central coordination.

DCAC is particularly practical for distributed environ-
ments, e.g., where machines share a file system via NFS.
In such an environment, applications simply use the file
system to express access control policy, and any host that
mounts the file system will enforce identical access con-
trol rules. DCAC does not add its own synchronization
requirements, such as entries in a central database. Ap-
plications make all access control decisions with access
only to their own files. In contrast, a centralized policy
server might become a bottleneck when policy queries
and updates are frequent, as in many server applications.

Application-defined principals: attributes. Attributes
make applications simpler and more secure by allowing
them to use access control implemented by the operating
system rather than reimplementing their own. Traditional
OS principals, such as users, are heavy-weight abstrac-
tions that cannot be directly used by applications e.g., a
web application that manages its own users.

DCAC attributes are hierarchically named strings.
Strings are separated into components by the “.” char-
acter. The string .u.alice can represent the user Alice,
but applications are free to define their own encodings
and even their own principals. For example, the string
.p.387.1357771171 might be a principal referring to a
process with identifier 387 started about 1.4 billion sec-
onds after January 1, 1970; .app.browser.password
might be a component of a browser that is responsible
for storing and retrieving the user’s passwords. A pro-
cess may carry multiple attributes simultaneously.

Practicality. DCAC combines ideas from mandatory
access control (MAC) systems [7, 16], sandboxing [6],
and decentralized information flow control (DIFC) [9,
15, 17, 21, 29] into a practical access control system that
is fully backward compatible with current Linux. While
MAC and DIFC systems can provide stronger guarantees
than DCAC, they require far more effort to use and often
struggle with backward compatibility. We believe that
application developers will incrementally improve the
security of their applications if presented with a simple
security programming model that introduces a minimum
of new concepts and that can implement security idioms
common in modern web-connected applications.

The next section (§2) provides motivating scenarios
for DCAC, followed by an extended discussion of design
(§3) and relationship to Linux DAC (§4). We describe
our DCAC prototype (§5), with a discussion of several
applications we modified to use DCAC (§6). We evaluate
DCAC (§7), discuss related work (§8) and conclude (§9).

2. Modern access control idioms
We discuss three access control idioms common in to-
day’s web-connected applications that are difficult to
achieve in modern systems: sandboxing, ad hoc shar-
ing, and managing users. Because these idioms are not
well served by current system security abstractions, ap-
plications constantly reimplement these idioms, and im-
plement them poorly. Section 3.2 shows how DCAC sup-
ports them more naturally than current systems.

Privilege separation/Sandboxing. Suppose Alice wish-
es to run a photo management program. By default, her
program will run with the same privileges as her user
account. However, routines for interpreting file formats
are often subject to exploitable bugs (such as in the zlib
library used to decompress .png files [1]). If Alice re-
ceives photos from untrusted sources, or even if Alice
makes a mistake, all of her potentially sensitive files are
endangered, rather than just those that should be man-
aged by her photo management application. Running
untrusted or partially-trusted applications has become
commonplace, as users frequently download applications
from less than trusted sources, or run applications that are
often exploitable, such as pdf viewers.

In order to separate her application into a separate
privilege domain, Alice must contact an administrator to
create a new user (e.g. alice-photos), potentially create a
new group containing both her and alice-photos so that
she may easily share files, and install support for running
her desired application as the new user, such as via a
setuid binary. While it is possible to enforce privilege
restriction without superuser support, solutions that do so
require complex application-level support (such as in the
Chromium web browser [6]) that are easy to get wrong,
with disastrous results (e.g., the frequent exploits enabled
by bugs in the Java VM’s sandboxing mechanism [2, 3]).

This scenario is an example of privilege separation,
a well-known technique for building secure applica-
tions [20], where each component has only the minimal
set of privileges necessary to operate. Privilege separa-
tion with OS support is coarse-grained, such as user-
controlled namespaces [13] (e.g., namespaces can con-
trol access to mount points, but not files or directories).

Ad hoc sharing. Existing systems provide limited fa-
cilities for sharing between users. Suppose Alice wishes
to share a file or directory with Bob. She can directly
send the relevant data to Bob, but if both users wish to be
able to update the data they must manually communicate
each change. She might change file or directory permis-
sions to allow read/write access to a group that contains
both Alice and Bob. Unless this specific group already
exists, Alice must rely on a system administrator to cre-
ate a new group containing both users. If she wishes to
add or remove users, she must also rely on a superuser.
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modify = ...

UID-bit: 0

...

Figure 1: Overview of processes, objects and attribute gateways in
DCAC.

If the need to share files expires, an administrator must
clean up stale groups.

Facilities such as POSIX ACLs [4] allow users to
create more expressive access control lists, by specifying
multiple users and groups who may read and write a
file. If Alice wishes to share with many users, however,
she must either add each user to an ACL for each file
to be shared, or again use a group whose membership
may only be modified by the superuser. Users should be
able to define new groups of users without administrator
support, and use those groups in access control on their
files.

Managing users. Server applications often have ac-
cess control requirements similar to those of operating
systems, with multiple users having different privileges.
However, such applications usually implement access
control with manual checks in their own code. Custom
security code is a common source of security bugs: a
single missed access check can expose sensitive data to
unprivileged users. However, most non-trivial applica-
tions leveraging OS access control for application se-
curity must execute as different OS-level principals and
hence require superuser privilege. Such an application
must reserve user or group identifiers for its use during
installation and possibly during maintenance.

3. Design
In DCAC, the OS enforces simple rules about hierar-
chical strings (called attributes) that are stored in OS-
managed process and file metadata. Applications define
conventions for what attributes mean to them, allowing
them to create access control abstractions that are en-
forced by the OS.

Hierarchical strings are a self-describing mechanism
to express decentralized privilege, where any extension
of an existing string represents a subset of the par-
ent’s privileges. DCAC attributes have components sep-
arated by a “.” character: .u.alice is a parent attribute

of .u.alice.photo. The hierarchy allows regular users
to manage principals and policies without requiring a
system administrator. For example, Alice may define a
new principal for running her photo application (e.g.,
.u.alice.photo) because she owns and controls .u.alice.

Each process carries an attribute set, which is inher-
ited across process control events such as fork() and
exec(). A process also maintains a default ACL. Simi-
lar to Linux’s umask, files created by the process have
their access control lists set to the process’ default ACL.

Each object (such as a file or shared memory seg-
ment) has an access control list containing rules that al-
low processes to access the object based on attributes in
the processes’ attribute sets. An access control list spec-
ifies four access modes: read, write, execute, and mod-
ify. Each mode has an attribute expression, and a pro-
cess may access a file in a given mode if the process’ at-
tribute set satisfies the attribute expression for that access
mode. For example, the read access mode might specify
.u.alice∨ .g.student which provides read access to user
Alice and members of group student (see the read access
mode of the object in Figure 1).

Read, write and execute access modes represent the
rwx permission bits in UNIX-like file systems. The mod-
ify mode specifies the permission to modify the file’s ac-
cess control list. In UNIX-like systems, the file’s owner
implicitly has the right to modify a file’s access control.

In DCAC, each access mode has an attribute expres-
sion in disjunctive normal form (DNF) without nega-
tions. For example, a jpg file may have the following
access modes:

read = (.u.alice.photo) ∨ (.u.bob.photo)

write = (.u.alice.photo ∧ .u.alice.edit)

exec = ∅
modify = (.u.alice)

If a process has attribute set {u.bob.photo}, it can read
this jpg file, but cannot write to it or modify its ACL.

Broadly, DCAC defines rules similar to existing dis-
cretionary access control (DAC) in Linux and other sys-
tems. A process’ attribute set specifies the acting prin-
cipal, similar to a process’ UID and GID. A file’s access
control list specifies which principals may access the file,
similar to permission bits, which in conjunction with a
file’s owner and group specify access rights for a UID
and GID. However, DCAC is significantly more flexible
and decentralized. A process can have many attributes
in its attribute set without differentiating between users
and groups, files can specify formulae for allowing pro-
cesses access, and there is no central mapping between
string identifiers understandable by the user and integers
understandable by the system.

Note that although we use .u.〈user〉 and .g.〈group〉
throughout the paper to couch our discussion in terms of
users and groups, DCAC does not enforce any attribute
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naming scheme. Users and groups in DCAC exist only
by convention.

3.1 Adding and dropping attributes

DCAC allows a process to change its access control state
by modifying its attribute set. Attribute set modification
allows users and applications to run different processes
with different privileges. A process p can always drop an
attribute from its attribute set, but to add an attribute, it
must satisfy one of the following rules:
• p has the parent of the requested attribute (e.g. .u.alice

is the parent of .u.alice.photo).
• p has permission to use an attribute gateway (dis-

cussed later in this section).
A process can add attributes to its attribute set in

one of two modes, read or modify, depending on its at-
tribute set and the configuration of attribute gateways.
Read mode enables a process to use an attribute. Mod-
ify mode adds control over granting the attribute to other
processes. A process with an attribute in modify mode
can always downgrade that attribute to read mode. A pro-
cess cannot upgrade an attribute to modify mode without
a gateway or a parent attribute in modify mode. When
extending an attribute by adding a new component, the
extended attribute has the same mode as the parent.

Allowing a process to create and add attributes based
on hierarchy permits regular users to create new prin-
cipals without requiring administrator privileges. To en-
able flexible, application-defined resource sharing, pro-
cesses use attribute gateways to acquire attributes based
on user-defined rules.

Decentralized policy via attribute gateways. A pri-
mary design goal for DCAC is decentralization. Instead
of centralized credentials (e.g., /etc/group) or cen-
tralized access policy (e.g., SELinux’s policy.conf),
DCAC distributes credentials and access policy using at-
tribute gateways, which are a new type of file (in our
Linux implementation, they are empty regular files with
specific extended attributes). An attribute gateway al-
lows a process to add new attributes to its attribute set
based on its current attribute set. An attribute gateway is
a rights amplification mechanism, like a setuid binary,
but more flexible.

An attribute gateway has only two access modes, read
and modify (execute and write are not used). If a pro-
cess’ attributes fulfill an access mode for a gateway,
then the process may add the attribute to its set in that
mode. For example, Alice might tell her colleagues that
she is starting a group with attribute .u.alice.g.atc for
documents related to a submission to USENIX ATC.
She sends email to the members of the group explain-
ing that there is a gateway for the group in a file called
˜alice/groups/atc.gate. Her collaborators modify
their login scripts to open that attribute gateway as part

of their login process. The gateway’s read access mode
consists of a disjunction listing the user attributes for the
group’s members (e.g., read = (.u.alice)∨(.u.bob) . . .).

Gateways decentralize credentials and access policy.
Multiple gateways (or no gateways) may exist for any
attribute, with the location of the gateways and their
access controlled by users and convention. DCAC does
not force use of a central repository of credentials or
access policy, though users may choose to create and use
centralized repositories.

Having an attribute in modify mode allows a process
to decide which other principals can obtain the attribute,
just as having modify access to a file allows a process to
control which principals can access the file. Specifically,
having an attribute in modify mode allows a process to
change the access control list for any gateway for the
attribute, or to create new gateways for the attribute.

Access policies should incur performance penalties
only for features they actually use [26]. With a hierarchi-
cal attribute namespace and decentralized attribute gate-
ways, different users and applications can perform ad-
ministration in their own domains without contention;
in contrast, any administrative operations on UIDs and
/etc/passwd (for example) require central coordina-
tion across the system.

Gateway management. Gateway management is up
to users and their applications. Since DCAC is a generic
kernel-level mechanism, it does not impose requirements
for gateway locations; however, specific system deploy-
ments or applications can follow conventions such as
a central repository of gateways. (Similarly, the Linux
kernel does not enforce the use of the /etc/passwd

file, making it general enough to support Android’s
application-based access control.) While users can harm
themselves with incorrectly set gateway permissions,
gateways do not add problems beyond those of current
systems as there are already opportunities for self-harm
with standard file permissions. For example, a user can
make his or her ssh private key file world readable.

DCAC allows gateways to be in any location, which
could result in a less regulated environment than in cen-
tralized systems. With current file permissions it is rela-
tively easy (modulo perhaps setuid binaries) to determine
exactly which users and groups may (transitively) access
a file. Attribute gateways require an exhaustive search
of the filesystem to find all attributes that might allow a
given process access to a file. On the other hand, because
it is easier to run processes with reduced privilege, a user
could restrict her programs to only create gateways in
specific, relevant directories.

Summary. We believe DCAC achieves a new balance
of expressivity and simplicity due to the features:
• The attribute abstraction is generic. An attribute can

represent a user, a group, a capability, an application
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or a category of files, depending on the user or the
application’s need.

• Attributes are hierarchically named, making privilege
delegation possible by extending existing attributes.

• Decentralized attribute gateways allow processes to
acquire attributes that they would otherwise not be
able to acquire strictly from attribute hierarchy. Cre-
ation of and policy for gateways is controlled by users
and applications.

• Attributes are self-explaining strings. There is no
need to map attributes to other OS-level identifiers
like UIDs. Identical strings from different machines
refer to the same attribute, making attributes directly
sharable. This enables DCAC to support NFS (§6.3)
with minimal development effort.

• There is no rigid distinction between “trusted” and
“untrusted” processes. Instead, process access bound-
aries can be flexibly defined and flexibly delegated.

3.2 DCAC supports modern access control idioms

Here, we describe how DCAC supports the modern ac-
cess control idioms described in §2.

Privilege separation/Sandboxing. Suppose Alice wishes
to run her photo manager in a separate, restricted envi-
ronment. Alice invokes her photo manager with a simple
wrapper that does the following:
1. Adds a .u.alice.photo attribute (allowed because Al-

ice’s process runs with the .u.alice attribute).
2. Drops the .u.alice attribute.
3. Executes her photo application.
She may similarly run her PDF reader in a separate, re-
stricted environment by following the same steps with
a .u.alice.pdf attribute. Alice then sets up ACLs to al-
low processes running with .u.alice.photo to access her
photo manager’s files, and .u.alice.pdf to access her pdf
reader’s files. Each application may now access only its
own set of files. In §6.2, we show how DCAC helps to
sandbox an application (Evince) with vulnerabilities.

A DCAC-aware application may also enable finer
privilege separation between different components. Sup-
pose Alice’s photo application wishes to isolate its file
decoding routines. It may run those routines in a sep-
arate process which carries the .u.alice.photo.reader
attribute, and drops the .u.alice.photo attribute. The pro-
gram can grant .u.alice.photo.reader read-only access
to the photo files but nothing else, to prevent an exploit
from reading other files or writing any file.

Ad hoc sharing. Hierarchical attributes combined with
policies for adding attributes to a process’ attribute set
allow regular users to customize how they share files.
Suppose that Alice (whose processes carry the .u.alice
attribute) wishes to share a file or set of files with a
group of users including Bob (see Figure 2). Rather than

gateway ACL
Files to share

attribute name

.u.alice.g.mygrpwrite = ...

read= 
.u.alice.g.mygrp

exec = ...
modify = ...

read = .u.bob
modify = 

Figure 2: Ad hoc sharing with DCAC. Alice shares files by allowing
.u.alice.g.mygrp read access. She then creates an attribute gateway
allowing .u.bob to add the attribute.

updating each file every time she wants to share with a
new user, like Bob, Alice instead does the following:
1. She creates a new attribute .u.alice.g.mygrp.
2. Alice creates a new attribute gateway for .u.alice.g.-

mygrp (e.g., ˜alice/groups/mygrp.gate) and
sets its attribute formula for the read access mode to
(.u.bob). Bob must learn the location of this file.

3. Processes running as Bob can use Alice’s new group
by locating the attribute gateway, and using it to add
the attribute .u.alice.g.mygrp to their attribute set.
These processes will be allowed the relevant access to
any file with an ACL that matches .u.alice.g.mygrp.

Alice can change membership of her group via ACLs
on the attribute gateway. Note that the ad hoc group is
a set of attributes; besides OS users, they may also repre-
sent any application-defined principals. Ad hoc sharing
is used in our modified DokuWiki server in §6.1.

Managing users. Consider a server application that
runs processes for multiple users, and stores user data
in files. The server can use DCAC to implement ac-
cess control by assigning different attributes to different
users’ processes, allowing application-level security re-
quirements to be easily expressed as string attributes. For
example, Linux user Alice runs myserver. A user on the
server, webuser, is assigned an attribute set that has only
.u.alice.myserver.u.webuser. A server process serving
webuser’s requests can only access files which allow ac-
cess to .u.alice.myserver.u.webuser. If the processes
need to share some common files, the server can add a
common attribute .u.alice.myserver.common to their
attribute sets, and add the attribute to the files’ ACLs.
Our modified DokuWiki server (§6.1) manages user and
group permissions this way.

If a server application executes on multiple machines,
it only needs to synchronize on relevant policies under
its management, instead of updating them for the whole
system. Server applications do not need to synchronize
on a map between application-level users and OS-level
access control state.

We apply DCAC to NFS (see §6.3). While different
machines still share a set of OS users and groups that
are already under centralized management, application-
defined principals and policies do not require centraliza-
tion.
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Sub-principals delegating to sub-principals. DCAC
allows flexible delegation to sub-principles, address-
ing one of the most vexing problems created by many
application-specific user management systems (such as
sshd and apache).

Consider the following: Professor X and Professor Y
wish to collaborate. Y sends a credential (like a public
key) to X and X uses it to add Y as a sub-principal. Y can
now access resources shared by X, such as a subversion
repository holding a joint publication. However, Profes-
sor Y recruits graduate student Z to actually do the work.
Most sub-principal systems are not flexible enough to al-
low Y to delegate to Z without giving Z his credential.
Therefore, Y must talk to X and make him aware of Z.
X’s list is a centrally administered bottleneck.

DCAC allows principals in a service to define and
manage their sub-principals, without registering them
with the service in a centralized way. Using DCAC, Pro-
fessor Y can provide Z a login without involving Profes-
sor X and without revealing his credential to Z.

We let a local user, X, have his own program, sub-auth,
to authenticate his sub-users. The program is located at a
known per-user location in the system, such as ˜X/sub-
users/sub-auth. X’s sub-auth program can define
where the credentials of his sub-users are stored, and
how to authenticate sub-sub-users. For example, it may
use a file to store sub-users’ credentials, and delegate
authentication to the sub-user. Thus, Y, a sub-user of X,
would have his own sub-auth program to authenticate
Y’s sub-users. §6.4 shows a detailed example of delega-
tion for sub-users using sshd.

DCAC does not require sub-auth programs, nor
does it require particular naming conventions for them.
A user may authenticate sub-users with a chain of cer-
tificates provided during login. A sub-user would require
a certificate chain of length one: a local user vouching
for the sub-user. A sub-sub-user must provide a chain of
length two, and so on. Such a scheme does not require lo-
cal storage for credentials and each user must only vouch
for (and know about) their direct sub-users.

4. Harmonious coexistence of DCAC and
DAC

DCAC is designed to work harmoniously with Linux’s
existing discretionary access control system (DAC), but
it has mandatory access control (MAC) mechanisms to
express policies more nuanced than what can be ex-
pressed by DAC alone. DCAC can augment a process’
rights (e.g., allow Alice’s calendar process to read a file
Bob’s process wrote and shared with Alice), but it can
also restrict rights (e.g., limit Alice’s photo reader from
reading her email).

Augmenting Linux DAC. A DCAC system is permis-
sive by default, allowing access if DAC or DCAC checks

succeed. By default, files have empty ACLs, so access
checks reduce to DAC checks. As a result, all valid Linux
disk images are valid DCAC disk images. By preserv-
ing DAC permissions, DCAC can be deployed incremen-
tally.

Allowing access if DAC or DCAC checks succeed
makes sharing easy. For example, Alice may share a file
with Bob by simply adding .u.bob to the file’s ACL.
If instead we required DAC and DCAC access checks
to succeed, Alice would have to adjust permissions on
many of her files to start using DCAC (e.g., she would
have to make her authorized keys readable by sshd).

Restricting Linux DAC. Using DCAC for restricting
Linux DAC permissions requires two additional pieces of
state, a pmask (permissions mask), and a UID-bit. Each
process has a pmask and a UID-bit that are inherited
by child processes after a fork(), and are maintained
across exec(). A process can only change its pmask by
making it more restrictive (i.e., by clearing bits), and it
can only clear the UID-bit.

The permissions mask is intended to prevent a process
from reading or writing resources that Linux’s DAC per-
missions allow (e.g., because the UID of a process and
file owner match, and the file owner has read access). The
permissions mask is ANDed with standard DAC permis-
sions bits before each permissions check. So a DCAC
system will check (perms & pmask) instead of perms.
Therefore, pmask = 0777 does not restrict Linux DAC,
while pmask = 0755 restricts write access to other users’
files, and pmask = 0 causes all DAC permission checks
to fail.

Each process has a UID-bit which is intended to
limit the ambient authority granted to a process when
its UID matches the UID of a resource. For example,
currently in Linux, a process may change the permissions
on a file or directory with matching UID even if it has
no permissions on the file or its containing directory.
If the UID-bit is clear, the process is restricted in the
following ways:
1. It can only change the DAC permissions and DCAC

ACLs of files with matching UID if it satisfies the
modify access mode.

2. kill and ptrace are restricted to child processes.
3. It cannot remove an IPC object, change permissions

on it, or lock/unlock a shared memory segment, un-
less the DCAC check for the object’s modify access
mode succeeds.
A process with the UID-bit set may modify DAC

permissions and ACLs for files and directories with
matching UIDs. An unrestricted process (e.g., running
as root) with the UID-bit set can change DAC permis-
sions and DCAC ACLs on any file or directory. It can
also can send signals to any process.
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5. Prototype implementation
We implement a DCAC prototype by modifying Linux
3.5.4.

5.1 Programming interface

In DCAC, attributes are managed through file descrip-
tors. When a process successfully adds an attribute, it re-
ceives a file descriptor for that attribute. The correspond-
ing kernel file object is a wrapper for the attribute. We
use system calls open, openat and close to add and
drop attributes.

• int openat(int fd, char *suffix,

int flags):
If fd represents an attribute attr in the attribute set,
this call adds attr.〈suffix〉 and returns the asso-
ciated file descriptor. flags can be O RDONLY, or
O RDMOD, representing that the requested access mode
is read or modify (which subsumes read). If the par-
ent attribute has only read mode, requests for modify
access mode on the new attribute will be denied.

• int open(char *pathname, flags):
If the file at pathname is an attribute gateway, DCAC
will evaluate the access modes according to flags

(O RDONLY or O RDMOD). On success, the attribute
is added and the corresponding file descriptor is re-
turned. Note that this operation does not open the ac-
tual gateway file.

• int close(int fd):
If fd represents an attribute, that attribute is dropped.

A potential issue with using file descriptors is compat-
ibility with applications which are not aware of DCAC.
Sometimes applications close all open file descriptors as
a clean-up step (since file descriptors persist on fork and
exec), which results in unintended dropping of attributes.
To address this problem, we add a lock flag to each
process’ DCAC state. When the flag is set, the process’
DCAC state cannot be changed, until the flag is cleared.
One can set this flag in a wrapper and then invoke the
application (see §6.2). The lock flag is intended solely to
ease backward compatibility.

A related complication of using file descriptors to rep-
resent attributes is that programs may set the close on -

exec flag on their open file descriptors. For instance, if
bash is started as a login shell (where it needs to load the
user’s custom settings), it sets the close on exec flag
on all file descriptors except the standard I/O streams.
This can causes attributes to be dropped unintentionally.
DCAC ignores close on exec for attributes.

Besides open, openat, and close, all other opera-
tions are encoded into 4 new system calls. Table 1 shows
the DCAC API.

We additionally wrote a 274-line2 SWIG3 wrapper to
make DCAC functionality available in PHP.

5.2 Processes and Objects

The core functionality of DCAC is implemented as a
Linux security module (LSM [28]).

Processes. LSMs use a security field in the Linux
per kernel thread task struct structure to store the
security context of a process. The DCAC state for a
kernel thread includes the attribute set, default ACL,
pmask and the UID-bit, all of which are stored in a
structure pointed to by the security field (see §4).

In a multi-threaded application, each thread can have
its own DCAC state. Threads can thus run on behalf
of different principals, and access control decisions are
based on their individual DCAC state, which would be
useful for a trusted, uncompromised server application.
However, running untrusted code in a thread can lead to
loss of isolation between principals in case of a compro-
mise as threads share the same address space.

Files. For persistent file systems, DCAC requires sup-
port for extended attributes. File permission (read, write,
execute, and modify) ACLs are stored in files’ extended
attributes, with the entire ACL encoded in a single ex-
tended attribute. For attribute gateways, the attribute con-
trolled by the gateway and its ACLs (read and modify)
are encoded in a single extended attribute.

Permission checks happen only when files are opened
and not on subsequent reads/writes. The permission
check occurs in the inode permission LSM hook. The
inode permission hook is a restrictive hook, which
means it cannot grant access if a request is already denied
by the Linux DAC. However, DCAC allows access if ei-
ther DAC or DCAC is satisfied (§4). Therefore, in addi-
tion to LSM, we modify 4 lines of code in fs/namei.c

to achieve DCAC’s semantics.

ACL cache. DCAC keeps a generic, in-memory ACL
cache for each file in the VFS layer. There are two mo-
tivations for such a cache. First, it reduces performance
overhead for remote file systems (e.g. NFS). Second,
it makes DCAC usable for non-persistent file systems
(e.g. sysfs). The in-memory inode structure contains an
i security field, where DCAC stores the ACL cache.
The cache is initialized (from the file’s extended at-
tributes) when the ACL is first needed: when a DAC
permission check fails. The cache also records each file’s
change time (ctime) when the ACL is fetched. The cache
provides a mechanism for file systems to invalidate ACL
entries to enforce filesystem coherence semantics. The
ctime value in each cache entry can be used to deter-

2 All line counts: http://www.dwheeler.com/sloccount/
3 http://www.swig.org
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Sys call API Functionality

dcac add
int dcac add any attr

Add the the attribute attr, for root user only.
(const char *attr, int flags)

dcac acl

int dcac set def acl Set an access mode, specified by mode, in the
(const char *dnf, int mode) process’ default ACL to dnf.
int dcac set file acl(const char *file, Set one access mode in the file’s ACL to dnf.
const char *dnf, int mode)
int dcac set attr acl(int afd, int ffd, Create/change a gateway. afd and ffd are file
const char *read, const char *mod) descriptors of the attribute and the gateway file.

dcac info

int dcac get attr fd(const char *attr) Get the file descriptor of the attribute attr.
int dcac get attr name Get the string representation of the attribute
(int fd, char *buf, int bufsize) associated with fd.
int dcac get attr list Store the file descriptors of all the attributes of
(int *buf, int bufsize) the process to buf.

dcac mask

int dcac set pmask(short mask) Set pmask to (pmask & mask).
void dcac clear uid enable(void) Clear the UID-bit.
void dcac lock(void) Lock the process’ DCAC states.
void dcac unlock(void) Unlock the process’ DCAC states.

Table 1: DCAC API.

mine whether the entry needs to be invalidated, because
changing the extended attribute causes a ctime change.

IPC objects. The Linux kernel’s IPC object data struc-
tures share a common credential structure, kern ipc -

perm [28], where the DCAC ACL is stored. DCAC
checks permissions to access these objects in LSM multi-
ple hooks. We changed 6 lines in ipc/utils.c to allow
access if DAC or DCAC allows it.

5.3 Attribute management

Using the rules described in §3.1, a process can only add
new attributes based on existing attributes in its attribute
set. To initialize attribute state, our Linux DCAC imple-
mentation allows processes running as root to add any
attribute to their attribute sets with arbitrary modes (read
or modify). We then modify system binaries, such as
login, to initialize the attribute state for user processes.
login is already responsible for initializing a process’
UID and GID state by reading the /etc/passwd and
/etc/group files and invoking system calls such as
setuid and setgroups. We extend this responsibility
to include attributes.

Our examples use .u.alice to represent an attribute
corresponding to a specific Linux user. We encode this
convention in our prototype by changing login to
add the .u.〈username〉 attribute, with both read and
modify access modes, to user login shells. Similarly,
.g.〈grpname〉 attributes represent Linux groups, and
they are added with only read mode, since only root
has administrative control of them. Modifying login

required a 28 line change to the shadow 4.1.5.1 package.
We also modify sshd and the LightDM desktop man-

ager4 to set up the attribute state when the user logs in

4 http://wiki.gentoo.org/wiki/LightDM

remotely or via a graphical user interface. We changed
37 lines of code in OpenSSH 5.9 and 20 lines of code in
LightDM 1.2.1.

6. DCAC application implementation
We demonstrate several use cases of DCAC in real appli-
cations.

6.1 Application-defined permissions in DokuWiki

DokuWiki5 is a wiki written in PHP that stores individual
pages as separate files in the filesystem. As a result,
OS file-level permissions suffice for wiki access control.
In fact, access control only requires setting attributes
and default file ACLs on login. Then the OS ensures
that all ACL checks occur properly, without need for
application-level logic.

We add a 246-line DCAC module to DokuWiki’s
collection of authentication modules. DokuWiki with
DCAC executes in a webserver initialized with the
.apps.dokuwiki attribute. Upon user login, the web-
server process acquires a user-specific attribute .apps-
.dokuwiki.u.〈username〉 and drops .apps.dokuwiki.
Default ACLs on all created files are set to the user-
specific attribute. The server permits anonymous page
creation and access through a common attribute .apps-
.dokuwiki.common. DokuWiki runs as a CGI script to
ensure a new process with the .apps.dokuwiki attribute
handles each request, restricting the impact of a compro-
mise during a request to the logged in user. Otherwise,
a reused compromised process could affect other users
when it acquires their attributes during a new request.

DokuWiki has a built-in ACL system that is only
controllable by superusers. We modify DokuWiki to
support user-created groups. To do this, we create a

5 http://www.dokuwiki.org
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new directory to hold gateway files with a directory
per wiki user. When a user creates a group, she also
creates a gateway file to attribute .apps.dokuwiki-
.u.〈username〉.g.〈groupname〉 with the name of the
group in a per-user location defined by a DokuWiki nam-
ing convention. The gateway file has read permission
for the members of the group. Each user’s group direc-
tory is traversable (has execute permission) by all users.
When a user is informed (out of band) that she has been
added to a new group, she records the group name and
gateway path name in her groups file. We have a user
modify her own groups file to ensure that her groups are
not disclosed by arbitrary access to a common file. Dur-
ing login, the DCAC authentication module reads the
user’s groups file and attempts to access gateways and
add group attributes.

We add calls to DokuWiki’s XML RPC interface
to use this group functionality: setPerms(pageName,
perms) allows the DCAC permissions of wiki files to be
adjusted. setGroup(groupName, members) modifies
the membership of the group named groupName. Fi-
nally, getMyGroups and setMyGroups allow a user to
activate the additional privileges given to her by groups
by modifying her groups file.

6.2 Sandboxing Evince

We implement an application wrapper that sets up DCAC
state for an application such as the default ACL, UID-bit,
pmask and attribute set. The wrapper can perform user-
specified work (via scripts) before application execution
(e.g., granting a sandboxed application permissions to
a specific file) and after application termination. With
a wrapper, DCAC can sandbox unmodified applications
because DCAC state is inherited across fork and exec.

We port a simple stack-based buffer overflow target-
ing an old version of Evince (evince-0.6.1) to test the
sandboxing ability of DCAC. Since document viewers
generally do not need write permission, we can sand-
box Evince by clearing its UID-bit and setting its
pmask = 0115, by using the application wrapper. We
allow execute permission for directory traversal, and al-
low read for world-readable files so Evince can load its
shared libraries. Additionally, to allow evince to open
the target pdf file, the wrapper keeps .u.alice.evince in
the attribute set, and adds it to the pdf file’s ACL. The
wrapper can reset the file’s ACL after Evince terminates.
Upon triggering the exploit, the attacker only has access
to world readable files, and even a shell opened via an
exploit remains confined.

6.3 NFS

In a normal NFS environment, machines are within
the same trust domain, and share a common set of OS
users and groups, which usually requires centralized
management. By adopting an attribute naming conven-

tion for users and groups (such as .u.〈username〉 and
.g.〈grpname〉), DCAC eliminates centralized manage-
ment. A user can define her own sub-principals and man-
age them in her own way, on all machines.

The Linux NFS implementation does not support ex-
tended attributes, but we ported a patch for NFSv3 [18] to
add extended attribute support. In addition to the patch,
we also modified 326 lines of code for NFS in the Linux
kernel source.

The NFSv3 specification [24] does not define how a
server should check permissions. In the NFS implemen-
tation in Linux, a client OS checks permissions when a
file is opened, but the server does not check permission
for subsequent read calls, or for write calls on the files
that belong to the process’ user. It only checks permis-
sion for write calls on files that belong to a different
user. We remove this extra check in DCAC. We believe
that this change is sensible, since under this change NFS
files still obey the standard UNIX convention where per-
missions are checked only on open.

Clients must make DCAC access control decisions,
as they have access to a process’ attributes as well as
the resource’s (e.g., file’s) attributes. However, creating
or removing files and directories requires write access to
the parent directory and in Linux NFS the client simply
forwards these operations to the server without checking
permissions. In DCAC, if a client uses attributes to de-
termine that a create or remove operation is legal, it
appends a hash of the cached ACL for the parent direc-
tory in its RPC to the server. The server checks the hash
against the ACL, and if they match, it knows the client
has an up-to-date copy and can trust the client’s deci-
sion to allow the operation. While NFS servers trust their
clients, this check is to ensure that clients do not make
wrong decisions based on stale permissions. In addition,
DCAC appends the process’ default ACL to create and
mkdir calls, to initialize ACLs on newly created files and
directories.

For regular files, DCAC also uses the ACL cache to
determine permission when they are opened. To guaran-
tee close-to-open consistency [24], the cache is invali-
dated when a ctime change is observed.

6.4 Managing sub-users in SSHD

We modify 81 lines of sshd to support the access control
model described in Section 3.2.

Modern versions of sshd support a forced command
option, which allows unprivileged users to authenticate
sub-principals with public keys via the svnserve pro-
gram. Arguments to svnserve control details like the
user name for sub-principals (because sub-principals
do not have user names in /etc/passwd). However,
svnserve does not allow the kind of flexible delegation
described in the next example.



404 2014 USENIX Annual Technical Conference USENIX Association

Authentication example. When sshd receives a login
request for X.Y, it invokes X’s sub-auth program with
only X’s privilege, and passes to it the sub-user name “Y”
and the credentials the request provides. If the sub-auth
program returns successfully, sshd approves this request
and restricts X.Y’s privilege by properly setting the at-
tribute set, pmask and UID-bit.

For a more concrete example, consider a hierarchy of
users: X.Y.Z, described here and illustrated in Figure 3.

1. When X.Y.Z tries to login using ssh, he provides
username “X.Y.Z” and some credential.

2. sshd invokes X’s sub-auth program, passing sub-
username “Y.Z” and the credential to it, with UID set
to X’s and only .u.X in the attribute set.

(a) X’s sub-auth finds that it is one-level down, it
keeps only .u.X.Y in the attribute set, and restricts
pmask and UID-bit.

(b) It exec’s Y’s sub-auth, passing sub-username
“Z” and the credential to it. Y’s sub-auth verifies
the credential, and returns successfully.

3. Now sshd knows the request is authenticated. Before
exec’ing the shell, sshd keeps only .u.X.Y.Z in the
attribute set, and restricts pmask and UID-bit.

Note that another OS user, A, can have a completely
different sub-auth program. His sub-auth program
may be based on certificate chains, and does not need
further lower-layer sub-auth programs. For example,
A can sign a certificate for B’s public key as A.B, and B
can sign another certificate for C’s public key as A.B.C.
When A.B.C logs in, he needs to provide the two certifi-
cates to be verified by A’s sub-auth, as well as a proof
that he has C’s private key, such as a signature.

7. Evaluation
We measure the performance overhead of DCAC through
both targeted benchmark programs and representative
applications. Our benchmarking systems had quad-core
Intel Core2 2.66 GHz CPUs, 8 GB of RAM, and a 160
GB, 7200 RPM disk. All servers and clients were con-
nected by gigabit Ethernet.

7.1 Microbenchmarks

Filesystem. We run the Reimplemented Andrew Bench-
mark (RAB) [19], a version of the Andrew benchmark
scaled for modern systems, on both a local ext4 filesys-
tem and NFSv3.

RAB initially creates 100 files of 1 KB each and mea-
sures the time for the following operations: (1) creation
of a number of directories, (2) copying each of the 100
initial files to some of these directories, (3) executing the
du command to calculate disk usage of the files and di-
rectories, and (4) using grep to search all file copies for

Login request
Username: X.Y.Z
Password: ****

sshd

root privilege
fork and exec   

X's sub-auth

With X's UID

X.Y's sub-auth

With X's UID

Search in file
    ~X/subusers/Y/subusers/subusers.db:
for entry {username=Z, password=****}
password matches

exec

exec parameters:
Program:
 ~X/subusers/sub-auth
Username: Y.Z
Password: ****

exec parameters:
Program:
 ~X/subusers/Y/subusers/sub-auth
Username: Z
Password: ****

DCAC state:
Attributes: .u.X.Y
pmask = 0005
UID-bit = 0

DCAC state:
Attributes: .u.X
pmask = 0777
UID-bit = 1

sshd

root privilege

        exits  successfully        

bash

With X's UID

DCAC state:
Attributes: .u.X.Y.Z
pmask = 0005
UID-bit = 0

fork and exec   

wait

Figure 3: Authentication of sub-users in our modified sshd: support
for arbitrary nesting of sub-principals.
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Figure 4: RAB results on local ext4 and NFSv3. 20,000 directories are
created in the mkdir phase, and 100 files of 1 KB each are copied to 500
directories in the copy phase. The slowdown is relative to unmodified
Linux.

a short string and checksumming all the files. The exact
number of operations varied depending on category (ext4
or NFS) and is described with the corresponding figures.
Results are shown in Figure 4.

We compare the results for the following cases:
• The baseline, which uses an unmodified Linux kernel.
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FS
Time (µs)

chmod
Changing DCAC file ACL
32B ACL 256B ACL

ext4 1.24 2.19 4.27
NFSv3 224 228 238

Table 2: Time to change the ACL of a file, compared to chmod.

• DCAC kernel, where the default ACL is empty, and
ACLs on files are not checked. DCAC adds at most
1% overhead on local ext4 and NFS.

• DCAC kernel, where the default ACL only contains
the write access mode; DCAC ACL checks occur for
every write access. On local ext4, the overhead is 0%
to 4% for a 32B ACL, and 0% to 8% for a 256B ACL.
On NFS, the overhead is below 4%.

• DCAC kernel, like the prior case, but DCAC ACL
checks occur for both read and write accesses. On
local ext4, the overhead is 1% to 4% for a 32B ACL,
and 2% to 9% for a 256B ACL. On NFS, the overhead
is below 5%.
On ext4, the kernel stores extended attributes within

inodes if they are below a certain size threshold. With
256-byte inodes, 32 bytes is below this threshold; 256
bytes is not, so extra disk blocks must be allocated, re-
sulting in larger overhead in the mkdir and copy phases,
where new files are created. For the du phase and the
grep and sum phase, observed differences correspond to
whether read ACLs are being checked and differ little
for ACL sizes. This is likely because DCAC reads ACLs
from ACL caches for most of the time.

On NFS, the number of round trips per operation
dominates the performance; overhead for disk storage for
extended attributes on the server is negligible in compar-
ison. Most of the time, DCAC reads ACLs from the ACL
caches, which does not incur network communication.
On the creation of a file or directory, DCAC appends the
initial ACL to the create or mkdir RPC, instead of us-
ing a separate setxattr RPC. As a result, DCAC adds
very small overhead on NFS.

ACL manipulation. We compare the time it takes to
change the ACL of a file, to chmod in Linux. Table 2
shows that, on a local ext4, changing ACLs can be 1.7×
to 3.4× slower than chmod, depending on the size of
the ACL; on NFSv3, ACL size has a small impact on
performance, and the time spent for changing ACLs is
comparable to chmod (under 6.5%).

IPC. DAC and DCAC check permission for shared
memory segments and named pipes only when they
are attached to the process’ address space or opened;
however, every up or down operation on a System V
semaphore requires a permission check. We measure the
overhead induced on semaphore operations by DCAC
ACL checks. The baseline comes from the DCAC kernel

Setup Baseline DCAC
Time (ns) 279 355 (1.27×)

Table 3: Overhead for a semaphore operation.

FS Time (s)
baseline check wr check rd&wr

ext4 197.3 198.3 (1.01×) 201.2 (1.02×)
NFSv3 322.1 325.4 (1.01×) 325.7 (1.01×)

Table 4: Kernel compile time, averaged over 5 trials. “check wr”
means the DCAC write access modes on output files and directories
are checked; “check rd” means the DCAC read access modes on the
source files are checked. “baseline” means using unmodified kernel.
The size of each ACL is 256 bytes.

where DAC permission checks always succeed, so no
ACL checks ever occur. The DCAC measurement comes
from removing a process’s DAC permissions by setting
its pmask to 0 and giving it an attribute. The semaphore
is accessible to processes with this attribute. Thus, we
ensured that a DCAC ACL check is performed on ev-
ery semaphore operation. We measure the average time
per semaphore operation over a long sequence that al-
ternated between up and down (measuring the average
overhead of both), and set the initial semaphore value so
that no semaphore opertion blocks. Table 3 shows 27%
slowdown for a semaphore operation requiring a DCAC
permission check.

7.2 Macrobenchmarks

Kernel compile. We measure the time to compile the
Linux kernel (version 3.5.4, without modules). Table 4
shows the overhead is negligible for both an ext4 filesys-
tem and NFS. DCAC only performs additional permis-
sion checks on file open, creation, and deletion. The
amount of time spent on these operations is small enough
compared to the computation involved in a kernel com-
pile to cause low overhead.

DokuWiki. We benchmark DokuWiki by playing back
a set of modifications made to the DokuWiki website
(which is itself run using DokuWiki). This is a set of
6,430 revisions of 765 pages. We made a set of requests
to a wiki with a 90% read workload. Each write operation
replaces a page of the wiki with the next version in the
set of revisions that we have. We measured the total wall
clock time for 16 clients to perform 100 requests apiece
against the wiki. The baseline is the wiki running on
the same machine with the same kernel but no attributes
applied to any files and using standard authentication.
Results are in Table 5. DCAC authentication and plain
authentication results were within margin of error of each
other. This is expected, as DCAC merely adds a few
system calls to operations that otherwise have a lot of
computation and file I/O through running PHP scripts.
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Setup Baseline DCAC
Time (s) 45.5± 0.7 45.3± 0.7

Table 5: Wall clock times for 16 clients to complete 100 requests apiece
to DokuWiki. Standard deviations are determined from 10 trials.

Systems Relation to DCAC

Sandboxes Focus on isolation, DCAC also accommo-
dates fine-grained sharing

Flexible policy
specification

Focus on completeness rather than usabil-
ity, DCAC strives for balance

Application- and
user- defined
access control

DCAC provides fine-grained control, sup-
ports network filesystems

New security
models

DCAC concepts easier to understand:
closer to traditional users and groups

Table 6: Comparing DCAC with related systems.

8. Related work
DCAC is most directly inspired by two systems, Cap-
sicum [27] and UserFS [14]. Capsicum shows that pro-
grammers want and will use system abstractions that
make writing secure code easier. Capsicum implements
a fairly standard capability model for security; its in-
novation is in casting file descriptors, an abstraction fa-
miliar to Unix programmers, as a capability. DCAC ap-
plies this insight by representing attributes as file descrip-
tors. Capsicum’s capability mode is similar to DCAC’s
pmask and DCAC’s UID-bit, in that they are both used
to deprivilege a process and restrain its ambient author-
ity granted by legacy access control systems; however,
DCAC’s pmask and UID-bit are more fine-grained –
they can selectively restrict a process’ ability to perform
different operations on different files.

UserFS [14] leverages existing OS protection mecha-
nisms to increase application security by explicitly main-
taining a hierarchy of UIDs to represent principals. Un-
fortunately, system-wide UIDs are awkward for dynamic
principals. For example, independent server applications
would contend for UIDs even though their principals
are in logically separated domains. Moreover, in a dis-
tributed setting, groups of machines would need to syn-
chronize on what UIDs are currently in use. DCAC is
designed to work well where UserFS struggles—highly
dynamic, distributed deployments within a single admin-
istrative domain.

There are too many access control systems and pro-
posals to analyze them all, so we describe the novel com-
bination of features in DCAC by contrasting with entire
classes of access control systems, with modern exem-
plars. Table 6 summarizes our analysis.

Sandboxing. Many projects try to isolate (“sandbox”)
potentially malicious code from the rest of the system.
Android repurposes UIDs to isolate mutually distrusting

applications from one another. The Mac OS X Seatbelt
sandbox system can constrain processes according to
user-defined policies, which is used by Chromium [8].

User-level sandboxes are often specific to an applica-
tion, and are hard to get right because applications reg-
ularly change the files and directories they access. As a
result they suffer problems with usability and security
vulnerabilities [2, 3].

DCAC provides a single mechanism for all applica-
tions, usable by ordinary (non-administrator) users, that
can meet the varying data access requirements of appli-
cations. DCAC also meets access control requirements
that go beyond sandboxing, like user-controlled, fine-
grained sharing. A key contribution of DCAC is that it
combines the models used by users (file access control
and sharing) and administrators (creating sandboxes).

Capsicum has a daemon, Casper, which provides ser-
vices to sandboxed processes; in DarpaBrowser [25],
confined code can access resources in the system via
Powerboxes, which is controlled by user interface inter-
actions. These techniques are also applicable to DCAC,
providing confined processes an alternative path to reach
privileged resources without escalation.

Flexible policy specification. SELinux [16] and App-
Armor [7] aim to provide comprehensive policies for the
resources that applications can access. This comprehen-
siveness can lead to usability problems: SELinux is noto-
riously difficult to use [22]. Both of them are only man-
ageable by administrators and have difficulty accommo-
dating situations where policies for one application vary
per user. DCAC is configurable on a per-user basis.

eXtensible Access Control Markup Language (XA-
CML) [5] is an XML-based format for defining access
control. While flexible, it relies on XML manipulations
(e.g., XPath queries) that are unsuited for use in frequent
latency-sensitive operations within an OS.

POSIX ACLs [4] allow for users to define expressive
access control lists for permissions. However, these have
important limitations, like the inability to support user-
defined groups without explicitly putting all group mem-
bers in the ACL of every file that has group permission
(which in turn makes group membership updates diffi-
cult). DCAC can accommodate user-defined groups.

The Andrew File System [12] (AFS) supports flexible,
per-directory ACLs, and allows users to create groups
under their own administration. In comparison, DCAC is
not restricted to a specific file system or IPC mechanism,
and supports more general usage due to its attribute-
based model.

Application- and user-defined access control. Sev-
eral prior systems allow program-controlled subdivi-
sion of users into further users for finer-grained protec-
tion [10, 14, 23]. These systems still label processes by
one user, and as a result are less flexible than DCAC. Ad-
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ditionally, these systems do not store information about
the user hierarchy in a way that easily allows shared use
in a network filesystem: UserFS [14] requires synchro-
nization of unrelated applications on a global database
of all users. By contrast, DCAC attributes are strings that
self-describe where they belong in the attribute hierar-
chy.

DCAC is inspired by attribute-based access control,
proposed as part of InkTag [11]. DCAC generalizes the
approach to a trusted OS and makes it coexist with exist-
ing access control.

New security models. Decentralized Information
Flow Control (DIFC) [9, 15, 17, 21, 29] systems mod-
ify access privileges based on the information that ap-
plications have accessed. DIFC-enforcing systems may
provide stronger security guarantees than DCAC.

Systems that use radically different security models
require that developers adapt the logic of their code to
work in these models. While DCAC may require code
changes to applications, we expect they will be less sig-
nificant because DCAC’s core concept, the attribute, is
implemented as a file descriptor, and is easily mapped
onto users and groups, concepts that are familiar to de-
velopers and likely reflected in their code. Enforcing new
security models can require extensive global OS modifi-
cation, whereas DCAC’s changes fit mostly within the
existing LSM framework.

9. Conclusion
OS-level support for application-defined principals makes
DCAC usable and flexible enough to solve modern ac-
cess control problems. DCAC decentralizes privilege and
policy specification, improves application security, and
supports distributed operation.
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Abstract

This paper presents MiniBox, the first two-way sand-

box for x86 native code, that not only protects a benign

OS from a misbehaving application, but also protects an

application from a malicious OS. MiniBox can be ap-

plied in Platform-as-a-Service cloud computing to pro-

vide two-way protection between a customer’s applica-

tion and the cloud platform OS. We implement a Mini-

Box prototype running on recent x86 multi-core systems

from Intel or AMD, and we port several applications to

MiniBox. Evaluation results show that MiniBox is effi-

cient and practical.

1 Introduction

Platform-as-a-Service (PaaS) is one of the most widely

commercialized forms of cloud computing. In 2012, 1

million active applications were running on Google App

Engine [14]. On PaaS cloud computing, it is critical to

protect the cloud platform from the large number of un-

trusted applications sent by customers. Thus, a virtual-

ized infrastructure (e.g., Xen [7]) and sandbox (e.g., Java

sandbox [19]) are deployed to isolate customers’ appli-

cations and protect the guest OS. However, security on

PaaS is not only a concern for cloud providers but also

a concern for cloud customers. As shown in Figure 1-A,

current sandbox technology provides only one-way pro-

tection, which protects the OS from an untrusted appli-

cation. The security-sensitive Piece of Application Logic

(PAL) is completely exposed to malicious code on the

OS. Also, current sandboxes expose a large interface to

untrusted applications, and may have vulnerabilities that

malicious applications can exploit.

In this paper, we rethink the security model of PaaS

cloud computing and argue that a two-way sandbox is

desired. The two-way sandbox not only protects a be-

nign OS from a misbehaving application (OS protection)

but also protects an application from a malicious OS (ap-

plication protection). Researchers have explored sev-

eral approaches for either protecting the OS from an un-
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Figure 1: Sandbox architecture, TrustVisor or Intel SGX archi-

tecture, and combination options.

trusted application [16, 23, 25, 48] or protecting security-

sensitive applications (or security-sensitive PALs) from a

malicious OS [6, 10, 11, 12, 13, 15, 18, 21, 24, 31, 32, 38,

39, 40, 47]. Unfortunately, none of these schemes pro-

vides two-way protection, and many challenges remain

to design a two-way sandbox.

TrustVisor [31] and Intel Software Guard Extensions

(Intel SGX) [4, 17, 20] are examples of systems that

provide efficient memory space isolation mechanisms to

protect a security-sensitive PAL from a malicious OS

(Figure 1-B). On TrustVisor or Intel SGX, memory ac-

cess from the OS to the security-sensitive PAL or from

the security-sensitive PAL to the OS is disabled by an

isolation module, which is a hypervisor (on TrustVisor)

or CPU hardware extensions (on Intel SGX). However,

the non-sensitive PAL is not isolated from the OS, and

the non-sensitive PAL may contain malware that can

compromise the OS.
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Google Native Client (NaCl) [48] and Microsoft

Drawbridge [16, 36] are examples of application-layer

one-way sandboxes for native code. We found that

combining an application-layer sandbox and an efficient

memory space isolation mechanism is promising for the

two-way sandbox design. However, it it not straightfor-

ward. Figure 1-C and 1-D show two combination op-

tions. In option #1, the security-sensitive PAL runs in an

isolated memory space while a sandbox confines the non-

sensitive PAL. However, in this design application devel-

opers need to split the application into security-sensitive

and non-sensitive PALs, requiring substantial porting ef-

fort. In option #2, the sandbox is included inside the iso-

lated memory space to avoid porting. The isolation mod-

ule forwards system calls (from the sandbox) to the OS.

However, there are several issues with this option. First,

because the sandbox is complex and exposes a large in-

terface to the application, a malicious application may

exploit vulnerabilities in the sandbox and in turn subvert

the OS. Second, a malicious OS may be able to compro-

mise the application through Iago attacks [9]. In Iago

attacks, a malicious OS can subvert a protected process

by returning a carefully chosen sequence of return values

to system calls. For instance, if a malicious OS returns

a memory address that is in the application’s stack mem-

ory for an mmap system call, sensitive data (e.g., a return

address) in the stack may subsequently be overwritten

by the mapped data. Finally, because the OS is isolated

from the sandbox and the application, it is challenging to

support the application execution in an isolated memory

space. Thus, both options have obvious shortcomings

and we shall not choose them for the two-way sandbox

design.

In this paper, we present MiniBox, the first two-

way sandbox for x86 native applications. Leveraging

a hypervisor-based memory isolation mechanism (pro-

posed by TrustVisor) and a mature one-way sandbox

(NaCl), MiniBox offers efficient two-way protection.

MiniBox splits the NaCl sandbox into OS protection

modules (software modules performing OS protection)

and service runtime (software modules supporting appli-

cation execution), runs the service runtime and the appli-

cation in an isolated memory space (Section 4.1), and ex-

poses a minimized and secure communication interface

between the OS protection modules and the application

(Section 4.2). MiniBox also splits the system call inter-

face available to the isolated application as sensitive calls

(the calls that may cause Iago attacks) and non-sensitive

calls (the calls that cannot cause Iago attacks), and pro-

tects the application against Iago attacks by handling

sensitive calls inside the service runtime in the isolated

memory space (Section 4.3). MiniBox also provides se-

cure file I/O for the application (Section 4.3.4). Using

a special toolchain, application developers can concen-

trate on application development with small porting ef-

fort (Section 6). We implement a MiniBox prototype

based on the Google Native Client (NaCl) [48] open

source project and the TrustVisor hypervisor [31, 41]

(Section 5), and port several applications to MiniBox.

Evaluation results show that MiniBox is practical and

provides an efficient execution environment for isolated

applications (Section 6).

Contributions.

1. We design, implement, and evaluate MiniBox, the

first attempt toward a practical two-way sandbox for

x86 native applications.

2. MiniBox demonstrates it is possible to provide a min-

imized and secure communication interface between

OS protection modules and the application to protect

against each other.

3. MiniBox demonstrates it is possible to protect against

Iago attacks, and provide an efficient execution envi-

ronment with secure file I/O for the application.

2 Background

2.1 TrustVisor

TrustVisor [31] is a minimized hypervisor that isolates a

PAL from the rest of the system and offers efficient trust-

worthy computing abstractions (via a µTPM API) to the

isolated PAL with a small TCB. TrustVisor isolates the

memory pages containing itself and any registered PALs

from the guest OS and DMA-capable devices by config-

uring nested page tables and the IO Memory Manage-

ment Unit (IOMMU). TrustVisor exposes hypercall in-

terfaces for applications in the guest OS to register and

unregister a PAL. When a PAL is registered, informa-

tion including the memory pages of the PAL is passed to

TrustVisor. TrustVisor configures nested page tables to

isolate the memory pages of the PAL from the guest OS.

TrustVisor is booted using the Dynamic Root of Trust

for Measurement mechanism [5] available on commod-

ity x86 processors. The chipset computes an integrity

measurement (cryptographic hash) of the hypervisor and

extends the resulting hash into a Platform Configuration

Register (PCR) in the Trusted Platform Module (TPM).

TrustVisor computes an integrity measurement for each

registered PAL, and extends that measurement result into

the PAL’s µTPM instance. The TPM Quote from the

hardware TPM and the µTPM Quote from the PAL’s

µTPM instance comprise the complete chain of trust for

remote attestation.

2.2 Google Native Client

Google Native Client (NaCl) [48] is a sandbox for x86

native code (called Native Module) using Software Fault

Isolation (SFI) [30, 42]. To guarantee the absence of

privileged x86 instructions that can break out of the SFI
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sandbox in a Native Module, a validator in NaCl reliably

disassembles the Native Module and validates the disas-

sembled instructions as being safe to execute. NaCl pro-

vides a simple service runtime including a context switch

function and a system call dispatcher to support the ex-

ecution of a Native Module. On 32-bit x86, the service

runtime and the Native Module are isolating using the

CPU’s segmentation mechanism [22]. NaCl simulates

system calls for a Native Module using a Trampoline Ta-

ble and Springboard. There is a Trampoline Table in

each Native Module, and a 32-byte entry in the Tram-

poline Table for each supported system call. For each

system call, the Google NaCl toolchain ensures that con-

trol transits to one of the entries in the Trampoline Table,

instead of to a traditional system call. The Trampoline

Table entries switch the active data and code segments,

and jump to the context switch function in NaCl. The

context switch function transfers control to the system

call dispatcher in NaCl. The system call dispatcher ex-

poses only a subset of the OS system call interface to

the Native Module, sanitizes the system call parameters,

conducts access control to constrain the file access of the

Native Module, and finally calls the corresponding han-

dler in the OS. The Springboard performs the inverse of

the control transitions in the Trampoline Table entries.

3 Assumptions and Attacker Model

Assumptions. We assume that the attacker cannot con-

duct physical attacks against the hardware units (e.g.,

CPU and TPM). We assume that the attacker cannot

break standard cryptographic primitives and that the

TCB of MiniBox is free of vulnerabilities. For applica-

tion protection, we also assume that the application does

not have any memory safety bugs (e.g., buffer overflows)

or insecure designs. One example of the insecure de-

signs is that an application seeds a pseudo-random num-

ber generator by the return value of a system call handled

by the untrusted OS. It is the developer’s responsibility

to take measures to eliminate memory safety bugs or in-

secure designs. For OS protection, we assume that the

system call interface that the OS protection modules ex-

pose to the application (a subset of the OS system call

call interface) is free of vulnerabilities, and that the OS

does not have concurrency vulnerabilities [43] in system

call wrappers.

Attacker Model For Application Protection. We as-

sume that the attacker can execute arbitrary code on the

OS. For example, the attacker may compromise and con-

trol the OS, and then attempt to tamper with the pro-

tected application by accessing the application memory

contents or handling the system calls of the application

in malicious ways (Iago attacks). The attacker may at-

tempt to inject malicious code into the application bi-

nary or into the service runtime binary before the appli-

cation runs in an isolated memory space without being

detected. The attacker may subvert DMA-capable de-

vices on the platform in an attempt to modify memory

contents through DMA. The attacker may also attempt

to access security-sensitive files of the application. How-

ever, we do not prevent denial of service attacks. Finally

we do not prevent side-channel attacks [51].

Attacker Model For OS Protection. The untrusted ap-

plication may attempt to subvert the hypervisor or break

out of the hypervisor-based memory isolation. The appli-

cation may also attempt to read or modify sensitive files

that do not belong to the application on the system. The

application may attempt to subvert the OS by making ar-

bitrary system calls with carefully-chosen parameters.

4 System Design

4.1 MiniBox Architecture
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Figure 2: MiniBox System Architecture.

Figure 2 shows the MiniBox architecture. As shown

in this figure, a hypervisor underpins the system. The

hypervisor sets up the two-way memory space isola-

tion between the Mutually Isolated Execution Environ-

ment (MIEE) and the regular environment, and creates a

µTPM instance for the MIEE.

On MiniBox, the hypervisor and a service runtime in

the MIEE comprise the runtime TCB for application pro-

tection. In the MIEE, beyond the x86 native applica-

tion, a service runtime is included, containing: a con-

text switch module that stores and switches thread con-

texts between the application and the service runtime; a

system call dispatcher that distinguishes between non-

sensitive and sensitive calls, calls handlers in the MIEE

for sensitive calls, or invokes the parameter marshal-

ing module for non-sensitive calls; a parameter marshal-

ing module that prepares parameter information for non-

sensitive calls (for the hypervisor); system call handlers

for handling sensitive calls; and a thread scheduler that
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schedules the execution of multiple threads comprising

an application. In sensitive call handlers, the service run-

time supports dynamic memory management, thread lo-

cal storage management, multi-threading management,

secure file I/O, and µTPM API.

On MiniBox, the OS protection modules include a

user-level program loader, a context switch module, a

parameter unmarshaling module, and a system calls dis-

patcher in the regular environment. In the regular envi-

ronment, the user-level program loader sets up the MIEE

and loads the application into the MIEE; the context

switch module stores and restores the thread context of

the regular environment during environment switches be-

tween the regular environment and MIEE; the parame-

ter unmarshaling module unmarshals system call param-

eters; and the system call dispatcher confines the system

call interface exposed to the application (allowing only a

subset of the OS system calls), sanitizes the system call

parameters, conducts access control to constrain the file

access of the application, and forwards the non-sensitive

system calls to corresponding handlers in the regular en-

vironment.

Finally, MiniBox adopts TrustVisor’s integrity mea-

surement (recall Section 2.1) to enable a remote verifier

to verify the integrity of the hypervisor, the service run-

time, and the isolated application. In this way, MiniBox

prevents adversaries from injecting malicious code into

the hypervisor, the service runtime or the application be-

fore the memory isolation is established without being

detected. This is also the reason that the program loader

is not in the TCB for application protection.

4.2 Communication Interfaces

The MiniBox hypervisor exposes a small interface to the

rest of the system. MiniBox minimizes and secures the

communication interface between OS protection mod-

ules and the application to protect against each other.

Hypervisor Interface. Other than passing system call

information between the MIEE and the regular envi-

ronment, the hypervisor exposes a small interface (i.e.,

only several hypercalls) to the rest of the system. Thus,

assuming the small hypercall interface is free of vul-

nerabilities, malicious code in the rest of the system

cannot compromise the hypervisor or break out of the

hypervisor-based memory isolation.

Minimizing Communication Interface. On Mini-

Box, the communication interface between OS protec-

tion modules and the application consists of only the pro-

gram loader and the system call interface. Because priv-

ileged instructions cannot break out of the hypervisor-

based memory isolation, the NaCl validator (that vali-

dates that the application binary does not contain priv-

ileged instructions) is not included in MiniBox, which

significantly reduces the interface exposed to the ap-

plication. Without the validator, privileged instructions

in the application can break out of the segmentation-

based isolation and compromise the service runtime in

the MIEE. However, a malicious service runtime in the

MIEE cannot break out of the hypervisor-based memory

isolation.

Secure Communication. On MiniBox, the hypervisor

is the only communication channel between the regular

environment and the MIEE. Each non-sensitive system

call causes environment switches between the MIEE and

the regular environment. For each environment switch

from the MIEE out to the regular environment, the pa-

rameter marshaling module in the MIEE updates the pa-

rameter information of the system call that will be used

by the hypervisor for copying parameters between the

two environments. However, the parameter marshaling

module in the MIEE cannot specify where the parameters

will be stored in the regular environment. The hypervisor

copies the system call parameters to a parameter buffer

in the regular environment, and constrains the total data

size of system call parameters (to prevent buffer over-

flow attacks). In this way, malicious code in the MIEE

cannot overwrite critical data (e.g., stack contents) in the

regular environment. To prevent a misbehaving appli-

cation from sending arbitrary system call parameters to

the regular environment, the system call dispatcher in the

regular environment checks the system call parameters

before sending them to the OS. For example, the system

call dispatcher checks the value of every pointer param-

eter and guarantees that it is safe to access the memory

space the parameter points to. If a check fails, the system

call dispatcher returns an error code without calling the

corresponding system call handler.

After the system call is handled, the system call dis-

patcher copies return values to the parameter buffer in the

regular environment and triggers the environment switch

back to the MIEE. When MiniBox switches from the reg-

ular environment back to the MIEE, the hypervisor uses

the same parameter information specified by the MIEE

to copy parameters from the parameter buffer in regu-

lar environment to the MIEE. This prevents malware in

the regular environment from attempting to compromise

MIEEs by manipulating parameter information.

4.3 Service Runtime

4.3.1 Dynamic Memory Management

MiniBox supports three system calls (sysbrk, mmap, and

munmap) to provide dynamic memory management for

the application running inside the MIEE. To prevent the

OS from returning arbitrary memory addresses for the

sysbrk or mmap system calls (Iago attacks) or removing

arbitrary data memory pages from the MIEE, memory

management system calls are handled inside the MIEE.
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Design. One naive design is pre-allocating and register-

ing a large amount of data memory in the MIEE as data

memory for the application. This design has low execu-

tion time overhead, but it wastes memory and is inflexi-

ble. Another design is allowing the hypervisor to allocate

memory pages as the application’s data memory. How-

ever, the MiniBox hypervisor does not support swapping

of memory pages to disk, and cannot be sure that pages

marked as unused by the guest OS are actually present in

memory. To resolve this issue, we design the system call

handlers that request more data memory (i.e., sysbrk

and mmap) in two modules: one in each of the isolated

and regular environments. When the application requests

more data memory but the requested data memory is not

in the MIEE, the system call handler in the MIEE calls

the module in the regular environment that allocates the

memory page(s) and writes zero to them to ensure that

the new memory page(s) are loaded into physical mem-

ory, and then returns to the handler inside the MIEE. The

system call handler inside the MIEE then makes a hyper-

call to the hypervisor to add the new memory page(s) to

the MIEE. The munmap handler inside the MIEE makes

a hypercall to unregister memory from the MIEE.

Security Protection. To prevent Iago attacks caused by

mmap or sysbrk, the hypervisor checks that the newly

registered pages are not already registered to the MIEE

(so that the malicious OS cannot overwrite stack contents

of the application in the MIEE). To prevent leakage of

sensitive data in either direction, the MiniBox hypervisor

zeroes memory pages during registration and unregistra-

tion. To prevent a misbehaving or malicious application

from adding privileged data pages (e.g., kernel pages)

into MIEE, the hypervisor checks that the newly regis-

tered pages are user-level memory pages that are in ring

3, and correspond to the same OS process that originally

registered the MIEE. Presently MiniBox does not allow

additional memory to be mapped as executable, as this

represents a significant increase in attack surface. Thus,

the hypervisor checks that the requested memory pages

are data pages that are not executable. In data memory

page unregistration, the hypervisor checks that the un-

registered memory pages are data pages that are already

registered to the MIEE.

4.3.2 Thread Local Storage Management

Background. On 32-bit Linux, the native code on

vanilla NaCl stores the memory address of its Thread Lo-

cal Storage (TLS) as the base address of a segment de-

scriptor in the Local Descriptor Table (LDT) [22]. Dur-

ing program initialization or when a new thread is cre-

ated, tls init system call initializes the TLS base ad-

dress and updates the appropriate LDT entry. During ex-

ecution, the tls get system call is frequently called to

get the TLS base address.

Design. Because the TLS and LDT represent critical

configuration data, MiniBox handles the tls init and

tls get entirely within the MIEE. The MiniBox hy-

pervisor creates an LDT instance for each MIEE and

supports a hypercall interface to the MIEE to handle

tls init system call. MiniBox supports caching the

latest TLS address inside the MIEE, so that the tls get

handler can quickly return the latest TLS base address to

the application without calling the hypervisor.

4.3.3 Multi-threading

Background. NaCl applies a 1:1 thread model (i.e.,

creating a kernel thread for each Native Module user-

level thread) and uses the OS to handle thread-related

system calls (e.g., thread synchronization system calls)

and schedule the execution of Native Module threads.

Design. If MiniBox applies the same multi-threading

mechanism, the OS controls the thread context of the ap-

plication threads. A malicious OS could break the Con-

trol Flow Integrity (CFI) [1, 2, 3] of the isolated applica-

tion by changing the thread context. Also, when the OS

handles all thread synchronization system calls, a mali-

cious OS could break the application CFI by arbitrarily

changing application thread states. To protect the appli-

cation thread context from being accessed by the OS,

MiniBox can store the thread context in the MIEE and

never leak it out of the MIEE. Also, the service runtime

in the MIEE can verify the thread synchronization results

by duplicating all supported thread synchronization sys-

tem call handlers. In this design, all thread context and

the application CFI are protected from a malicious OS.

However, the complexity of this design is comparable to

implementing the multi-threading operations within the

MIEE. Also, if thread-related system calls are handled

by the OS, the environment switches caused by thread-

related system calls will increase the overhead of appli-

cation execution in the MIEE. Thus, to reduce execu-

tion overhead and avoid duplicated operations, Mini-

Box supports multi-threaded application execution via

a user-level multi-threading mechanism entirely within

the MIEE. System calls to create, exit and synchronize

threads are handled in the MIEE.

Thread Scheduler. MiniBox provides a thread sched-

uler to schedule the thread execution of the application

in the MIEE. The thread scheduler is invoked each time

there is a call from an entry of the Trampoline Table (re-

call Section 2). After the call is handled, control returns

to the thread scheduler inside the MIEE before the con-

text switch module is invoked. The scheduler checks

the state of each thread, and schedules the execution of

runnable threads using a round-robin algorithm. The

thread scheduler finally calls the context switch module,

which resumes the execution of the scheduled thread.
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4.3.4 Secure File I/O

On MiniBox, the application running in the MIEE still

needs to access the file system in the regular environ-

ment, so the file system calls are forwarded to the OS.

However, to protect the file contents and metadata of an

isolated application, MiniBox supports secure file I/O for

applications running in the MIEE through five system

calls: secure write, secure read, secure open,

secure close, create siokey. The five system calls

are handled in the MIEE.

Confidentiality and Integrity. secure write encrypts

the data written by the application (with a symmetric se-

cret key) and sends the encrypted data to the general file

I/O, while secure read decrypts the data and returns

the decrypted data to the application in the MIEE. In

secure write and secure read, the data is written or

read by a chain of blocks of a constant size. To protect

the integrity of file contents and file metadata, includ-

ing file name and path, a hash tree is constructed and

computed over the blocks of file contents and file meta-

data in the MIEE (this approach has been demonstrated

in the Trusted Database System [28], VPFS [45] and

jVPFS [46]). A HMAC of the master hash is computed

in the MIEE and stored at the end of the file (as file con-

tents). When a file created by secure file I/O is opened,

secure open reads the HMAC and verifies the integrity

of the file contents and metadata by reconstructing the

hash tree. secure open stores the hash tree in the

MIEE. When a data block is read, secure read verifies

the integrity of the data block based on the stored hash

tree. When file contents are modified, secure write

updates the hash tree stored in the MIEE. When a file is

closed, secure close recomputes the master hash and

the HMAC, and stores the updated HMAC at end of the

file. This allows the integrity of file contents and file

metadata to be verified. The attacker cannot remove, add,

or replace data blocks in the file because any changes will

invalidate the HMAC. The attacker cannot replace the

file with other files that are created by the same applica-

tion running in the MIEE either because file metadata is

also verified.

Rollback Prevention (Freshness). MiniBox adds a

counter in each HMAC computation to guarantee fresh-

ness of files stored through the secure file I/O. The

counter is sealed by the µTPM. Because the µTPM can-

not provide freshness for sealed contents, the integrity of

the counter is measured every time the same application

runs in the MIEE (the measurement result is extended

into µPCR for remote attestation). This allows a verifier

to verify the freshness during remote attestation.

Key Management. Before using secure file I/O, the ap-

plication running in the MIEE must call create siokey

to create the secret keys used in secure file I/O

(i.e., a symmetric encryption key and a HMAC key).

The application specifies the file name and file path

for storing the keys when calling create siokey.

Create siokey first checks if the file already exists. If

not, create siokey creates new secret keys, seals the

secret keys with the current µPCR values. Then it stores

the sealed secret keys in the file, and returns the key ID

to application. If the file already exists (i.e., keys are

already created), create siokey reads the sealed keys

from the untrusted file system, unseals the keys and re-

turns the key ID to the application.

Access Control and Migration. Because the secret

keys are sealed with the current µPCR (i.e., the in-

tegrity measurement of the application), the sealed keys

can only be unsealed by the µTPM when the same ap-

plication runs in the MIEE. Thus, any data encrypted

through secure File I/O can only be decrypted and ver-

ified when the same application runs in the MIEE. To

share the sensitive files with other applications running

in the MIEE (e.g., an updated version of the application),

the application can seal the secret keys with the integrity

measurement result of other applications, and share the

sealed keys to other applications. Then, other applica-

tions running in the MIEE can unseal the secret keys (us-

ing create siokey) and access the secret files.

Cache Buffer. On MiniBox, environment switches be-

tween the MIEE and the regular environment cause high

overhead in file I/O (Section 6). To reduce the number of

environment switches, MiniBox creates a cache buffer in

the MIEE for each opened file descriptor. Both general

file I/O and secure file I/O benefit from the cache buffer

because the number of environment switches is reduced.

4.4 MIEE Preemption and Scheduling

As described in Section 4.3.3, MiniBox does not preempt

an application thread running in the MIEE. However, if

an application thread is in an endless loop, the thread

will not freeze the entire system because the MIEE is

preemptive on MiniBox. When the system switches into

a MIEE, the hypervisor starts a timer for the MIEE and

preempts the code execution in the MIEE when the timer

expires. After preempting the MIEE, the hypervisor

stores the MIEE context and transfers control to the regu-

lar environment by simulating a special system call (i.e.,

MIEE sleep). The MIEE sleep handler sleeps for a while

and then calls the hypervisor to resume the code execu-

tion in the MIEE. In this way, the hypervisor transfers

the control to the OS, which can schedule the execution

of other processes. When multiple MIEEs are registered

(one MIEE in each process), the OS can implicitly sched-

ule the execution of multiple MIEEs by scheduling pro-

cess execution. However, the question is how much CPU

time should be assigned to each MIEE by the hypervi-

sor. One design is that the hypervisor exposes a hyper-
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call interface to the regular environment and the MIEE to

enable the OS and the isolated application in the MIEE

to configure the MIEE process priority. The hypervisor

assigns CPU time to each MIEE based on the MIEE pro-

cess priority.

4.5 Exceptions, Interrupts, and Debugging

Exceptions and Interrupts. While the code in a MIEE

is running, the processor cannot access exception and in-

terrupt handlers in the OS. Thus, the hypervisor is con-

figured to intercept exceptions (e.g., segmentation fault,

invalid opcode) and Non-Maskable Interrupts (NMIs)

when system runs in a MIEE. Maskable interrupts are

disabled when system runs in a MIEE. When NMIs hap-

pen, the hypervisor handles NMIs and resumes the code

execution in the MIEE. When an exception happens, the

hypervisor first checks whether the exception is because

the application in the MIEE needs more stack pages. If

so, the hypervisor calls a module in the regular environ-

ment to allocate more data pages as stack pages, adds

the stack pages into the MIEE, and resumes the code ex-

ecution in the MIEE. If not, the hypervisor terminates

the code execution in the MIEE by simulating an Exit

system call. The Exit call is forwarded to the program

loader, which unregisters the MIEE from the hypervisor

via hypercall.

Debugging. Though the MiniBox execution environ-

ment is compatible with NaCl’s, the NaCl debugging tool

for application development cannot be directly used on

MiniBox because on MiniBox the OS cannot access the

memory contents in the MIEE. However, MiniBox can

be configured in a debugging mode, in which the hy-

pervisor functionalities are disabled, and an application

layer module passes parameters between the two envi-

ronments. In debugging model, memory management

and TLS management calls are handled by the OS. In this

way, the memory isolation is disabled and application de-

velopers can use the NaCl debugging tool for MiniBox

application development. An alternative way is includ-

ing the NaCl debugging tool in the MIEE and supporting

an interface to access the debugging tool from the regular

environment. In this way, the developers can debug the

application when the memory isolation is enabled.

5 Implementation

We implement a MiniBox prototype running on recent

x86 multi-core systems from Intel or AMD, with 32-

bit Ubuntu 10.04 LTS as the guest OS. This section de-

scribes the MiniBox implementation in details.

5.1 Hypervisor

The implementation of the MiniBox hypervisor is based

on the public implementation of TrustVisor hypervisor

(version 0.1.2) [31, 41] with support for multi-core and

both AMD and Intel processors. We changed the pa-

rameter marshaling implementation [26] and added a

hypercall interface for handling sensitive system calls.

We added code to create new Global Descriptor Table

(GDT) [22] entries and instantiate an LDT for every

MIEE, and added code to handle GDT- and LDT-related

operations. The original implementation of TrustVisor

hypervisor has 14414 source lines of code (SLoC), com-

puted using the sloccount tool1. Our implementation

adds an additional 691 SLoC.

5.2 Program Loader and Service Runtime

We implement the user-level program loader, the service

runtime in the MIEE, the context module and the system

call dispatcher in the regular environment based on the

Google Native Client (NaCl) open source project (SVN

revision 7110). We have focused our work on the 32-bit

x86 architecture, though there are no fundamental barri-

ers to expanding to 64-bit. In the NaCl source code, we

implement code to conduct MIEE registration and unreg-

istration in 299 SLoC. We implement the service runtime

in the MIEE within the NaCl source code, adding 3550

SLoC. The secure file I/O module has a large code base

(1065 SLoC) because it contains cryptographic primi-

tives for AES and HMAC. The implemented service run-

time can be configured in debugging mode for applica-

tion development (recall Section 4.5).

5.3 System Calls

MiniBox adopts NaCl system call interface to expose a

subset of the OS system call interface to the isolated ap-

plication. MiniBox does not support dynamic code for

the application, so NaCl dynamic code system calls are

removed on MiniBox. MiniBox extends the NaCl sys-

tem call interface with µTPM API, network I/O system

calls, and secure file I/O calls, supporting a total of 75

system calls for the application (a list of supported sys-

tem calls is described in [26]). The network I/O system

calls are forwarded to the regular environment, because

they are treated as part of the untrusted communication

channel. Secure communication (e.g., SSL) can be im-

plemented in the application layer to protect the data in

network I/O. In the MIEE, the supported thread synchro-

nization system calls include semaphores, mutexes, and

condition variables, which have the same functionality as

the corresponding POSIX APIs. The secure file I/O calls

encrypt/decrypt the data using AES with a 128-bit key in

CBC mode and computes HMAC-SHA-1 using a 160-bit

key.

6 Evaluation

In this section, we present the evaluations including sys-

tem call overhead, file I/O overhead, network I/O, and

1http://www.dwheeler.com/sloccount/
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application performance in the MIEE on MiniBox. Ex-

periments were conducted on a Dell PowerEdge T105

server with a Quad-Core AMD Opteron Processor run-

ning at 2.3 GHz with 4 GB memory. The operating sys-

tem is Ubuntu 10.04 with 32-bit kernel Linux 2.6.32.27.

To obtain accurate timing results, the hypervisor does not

preempt the MIEE.

Performance Impact. MiniBox hypervisor extends

the TrustVisor with hypercall interface and modified pa-

rameter marshaling [26], neither of which affects the

guest OS performance. Thus, MiniBox hypervisor im-

poses similar guest overhead to the TrustVisor [41]. Yee

et al. [48, 49] presented that the NaCl toolchain can

cause significant increase in code size (2% to 57% on

SPEC2000 benchmarks), but non-significant impact on

performance (on average less than 5% on SPEC2000

benchmarks).

Porting Effort. MiniBox uses the NaCl toolchain with

extended API for application development and imposes

similar porting efforts to the NaCl. Yee et al. [48, 49]

presented that porting an internal implemented H.264 de-

coders (11K lines of C code) to NaCl requires adding

about twenty lines of C code, and porting Bullet2 to NaCl

took only a few hours. Compared to NaCl, MiniBox re-

quires additional porting effort for application protection.

For instance, application developers must understand the

MiniBox protection mechanisms and avoid insecure ap-

plication designs (recall Section 3). Application develop-

ers must understand the trustworthy computing abstrac-

tions exposed to every MIEE, and correctly use them.

6.1 MiniBox Microbenchmarks

System Call Overhead. In the MIEE, non-sensitive

system calls are handled in the OS with environment

switches while sensitive system calls are handled either

in the application layer inside the MIEE or by the hy-

pervisor. The system call overhead in the MIEE was

measured, and compared with the corresponding system

calls on vanilla NaCl, and MiniBox in debugging model

(recall Section 4.5). The evaluation results (Figure 3)

show that the non-sensitive system calls (e.g., file oper-

ation calls) that involve environment switches on Mini-

Box are slower than on vanilla NaCl. However, the cor-

responding system calls on MiniBox in debugging mode

have similar performance to those on vanilla NaCl. Thus

the overhead of these system calls on MiniBox is mainly

caused by environment switches. The sensitive system

calls that are handled within the MIEE without any envi-

ronment switch (e.g., thread synchronization calls) have

similar performance to those on vanilla NaCl. The sen-

sitive system calls that involve hypercall and environ-

ment switches (e.g., memory management system calls)

2http://www.bulletphysics.com

on MiniBox are slower than on vanilla NaCl.

File I/O. We evaluate the file I/O overhead on MiniBox

and compare it to the file I/O on vanilla NaCl and Mini-

Box in debugging mode. We measure reads & writes

of 32B for both general file I/O and secure file I/O. The

measurement results (Figure 4) show that when the data

is cached in the MIEE (cache-hit), the cache buffer sig-

nificantly reduces the file I/O overhead for both general

file I/O and secure file I/O.

Network I/O. We evaluate the network I/O throughput

on MiniBox and compare it to the network I/O through-

put on MiniBox in debugging mode and vanilla NaCl.

The server runs in the MIEE using MiniBox on the Dell

T105 while the client runs on plain Linux on a Dell Op-

tiplex 755 desktop with two Intel Core2 Duo proces-

sors running at 2.0 GHz with 2 GB memory. The op-

erating system on the Dell Optiplex machine is Ubuntu

8.04.4 LTS with a 32-bit Linux kernel 2.6.24.30. Both

the server and the client connect to a Netgear Gigabit

Ethernet Switch using a Gigabit Ethernet Adapter. Dur-

ing each connection, the client sends 16 KB data to the

server and we measure the network I/O throughput. The

results (Figure 5) show that network I/O on MiniBox is

about 10% slower than on vanilla NaCl. Thus, although

the environment switches impose a small overhead on

MiniBox, the network throughput remains high.

6.2 Application Benchmarks

CPU-bound application (AES key search and Bit-

Coin). We measure the performance of CPU-bound

applications on MiniBox and compare it to the perfor-

mance of equivalent applications on vanilla NaCl and

MiniBox in debugging mode. We first evaluate AES

key search, which encrypts a 128-Byte plain-text using

a 128-bit key in CBC mode 200,000 times, simulating

a AES key search operation. We port CBitCoin [33]),

an open source BitCoin implementation to run on Mini-

Box. We measure the time to construct a BitCoin block,

requiring 200,000 SHA-256 computations. The results

show that MiniBox does not add any noticeable over-

head (less than 1% [26]) for CPU-bound applications

over NaCl.

I/O-bound application (Zlib). We evaluate the per-

formance of I/O-intensive applications on MiniBox by

testing Zlib [27], an open source library used for data

compression. Zlib is already ported to run on NaCl as

part of the naclports project, and does not require addi-

tional porting efforts to run on MiniBox. We measure

the time elapsed to read 1 MB of file data from the file

system over the general file I/O, and then compress the

read data. The file data always misses the cache buffer,

so every read operation involves an environment switch.

The evaluation results (Figure 6) show that because of
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Figure 3: System call benchmarks in us. Average of 100 runs and standard deviation is

less than 5%. Calls with ∗ are sensitive calls handled inside the MIEE without environment

switches. Calls with # are sensitive calls that involve hypercall or environment switches.

Figure 4: File I/O benchmarks in us.

Average of 100 runs and standard de-

viation is less than 2%.

Figure 5: Network I/O bench-

marks in Mbps. Average of

100 runs and standard devia-

tion is less than 2%.

Figure 6: zlib file compression with

file I/O benchmarks in ms. Average of

10 runs and standard deviation is less

than 2%.

Figure 7: SSL connection

benchmarks in ms. Average

of 10 runs and standard de-

viation is less than 3%.

Figure 8: SSL throughput

benchmarks in Mbps. Aver-

age of 10 runs and standard

deviation is less than 1%.

environment switches, the zlib application on MiniBox

is slower than on vanilla NaCl. The slowdown is mainly

caused by the environment switches since MiniBox in

debugging mode has the same performance as vanilla

NaCl. We repeat the measurement on MiniBox while

storing the file data in the cache buffer in the MIEE. The

zlib application read file data with cache-hit without en-

vironment switches. The measurement result shows that

the overhead is significantly reduced. Thus, while file I/O

in MiniBox can be expensive in the worst case, we expect

that the cache buffer will significantly improve the appli-

cation performance in practice.

SSL Server. We port the entirety of OpenSSL [35] (ver-

sion 1.0.0.e) to run on MiniBox. We also run the SSL

server on NaCl by adding socket system call interface on

the NaCl. In this experiment, the Dell Optiplex machine

serves as the SSL client, and the Dell T105 acts as the

SSL server. The SSL client runs on plain Linux while

the SSL server runs inside the MIEE on MiniBox. We

recorded both the time required to create an SSL con-

nection and the overall SSL throughput. The SSL client

sends 16KB of data to the SSL server during each con-

nection. As in previous experiments, both machines con-

nect to a Netgear Gigabit Ethernet Switch via a Gigabit

Ethernet Adapter. The results show that MiniBox impose

about a 15% overhead to SSL connections (Figure 7) and

that SSL throughput on MiniBox has about a 10% slow-

down (Figure 8). The overhead is mainly caused by en-

vironment switches, since MiniBox in debugging mode

has the same performance as NaCl.

7 Related Work

Protecting Applications. Systems aspiring to protect

entire applications from a potentially compromised OS

have been proposed (e.g., [8, 11, 12, 13, 15, 21, 29, 34,

40, 47]). Most of these schemes mainly focus on pro-

tecting application data from malicious code on an op-

erating system and expose sensitive system calls to the

untrusted OS, thus making the protected application vul-

nerable to Iago attacks. InkTag [21] secures applications

running on an untrusted OS by verifying that the un-

trusted OS behaves correctly using a trustworthy hyper-

visor. It prevents mmap-based Iago attacks by verifying

memory address invariants. However, in InkTag some

other security-sensitive system calls (e.g., thread syn-

chronization and TLS-related calls) are still performed

by the untrusted OS without being verified. Proxos [40]

splits system calls and forwards sensitive system calls

to a trusted private OS to protect applications from an

untrusted OS. However, Proxos needs application devel-

opers to specify the splitting rule. Baumann et al. [8]

proposed to run entire legacy applications in the isolated

memory space provided by Intel SGX, and proposed to

include a library OS in the isolated memory space to pre-

vent Iago attacks. The proposed protection mechanisms

(for application protection) are similar to the mecha-

nisms on MiniBox. Mai et al. [29] proposed mecha-

nisms to prove that the OS implements the application
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security invariants (e.g., secure storage and memory iso-

lation) correctly. The proposed verification approach is

promising for application isolation.

Protecting Security-Sensitive Code. Researchers have

explored many systems for isolating sensitive code using

virtualization, microkernels, and other low-level mech-

anisms [6, 18, 31, 32, 38, 40], or by running the code

inside trusted hardware [10, 24, 39]. The virtualization-

based schemes contain a large TCB. Other schemes

either do not enjoy compatibility with a large set of

commodity systems or require significant porting effort.

TrustVisor [31] and Flicker [32] isolate a PAL from

an untrusted OS with a small TCB. However, porting

security-sensitive applications on TrustVisor or Flicker

requires significant efforts. Nizza [38] also requires de-

velopers to perform similar operations to port sensitive

applications to Nizza.

Sandbox for x86 Native Code. Google Native

Client [48] confines untrusted native code using SFI [30,

42] and enables developers to port native code as web

applications. Drawbridge [16, 36] isolates an applica-

tion in a picoprocess and provides a library OS to the

isolated application. However, Native Client and Draw-

bridge provide only one-way protection. TxBox [23]

confines an untrusted application by executing the ap-

plication in a system transaction and conducting secu-

rity check. MBox [25] protects the host file system from

an untrusted application by exposing a virtual file sys-

tem on top of the host file system for the application.

Capsicum [44] supports capability-sandbox for applica-

tions on UNIX-like OS (e.g., FreeBSD). It focuses on ap-

plication compartmentalization and fine-grained access

control. Systrace [37] improves the host OS security by

confining the program privilege using a configurable sys-

tem call policy. The protection mechanisms provided by

MBox, Capsicum and Systrace can be applied on Mini-

Box as part of the OS protection modules.

8 Limitations and Future Work

Application Interface. MiniBox includes the entire ap-

plication (the security-sensitive and non-sensitive PALs)

in the MIEE and does not prevent adversaries from com-

promising the application through malicious inputs. The

application can measure the integrity of critical inputs

(known inputs) and extend the results into the µTPM

PCR for remote attestation. However, the isolated appli-

cation may expose a large interface to unknown inputs.

Schemes that focus on protecting a security-sensitive

PAL [6, 18, 31, 32, 38, 40] can significantly reduce the

attack surface by exposing a constrained interface be-

tween the security-sensitive PAL and the untrusted OS.

On those schemes, the security-sensitive PAL remains

secure when the application is compromised by the OS.

Thus, for protecting the security-sensitive PAL, Mini-

Box may expose a larger attack surface to the untrusted

OS than schemes that focus on protecting the security-

sensitive PAL.

Thread Scheduling. Application developers must con-

sider that MiniBox does not make the scheduler work

preemptively (recall Section 4.3.3), and so must always

use supported system calls for thread synchronization

(e.g., avoid situations where a thread performs busy

waiting by watching a global variable in a loop in-

stead of calling a blocking system call). In addition,

the application-layer thread scheduler does not support

multi-thread parallel computation to improve the perfor-

mance of threaded applications on multi-core systems.

One design is to allow the hypervisor to conduct thread

scheduling and to manage the parallel computation on

multiple cores, which will significantly increase the hy-

pervisor complexity. As future work, we will investigate

how to support parallel computation for a threaded appli-

cation running inside the MIEE on multi-core systems.

However, security-sensitive applications more concerned

with a small TCB than performance may prefer not to in-

clude code for such complex operations in the hypervi-

sor. To solve this issue, MiniBox can allow the applica-

tion to configure the hypervisor functionality (e.g., dis-

able the support for multi-thread parallel computation)

at registration time, and can boot the hypervisor with the

application-preferred configurations.

System Call Interface. Exposing a large system call in-

terface to the application increases the attack surface for

OS protection; thus, MiniBox exposes a subset of the OS

system call interface to the application to confine the ap-

plication’s operations. However, it will be interesting to

investigate how to support the entire OS system call in-

terface on MiniBox. If the entire OS system call interface

is supported, statically linked legacy applications may be

able to run on MiniBox. As future work, we will exam-

ine the OS system call interface, obtain a comprehensive

list of sensitive calls, and investigate how to support the

entire OS system call interface on MiniBox.

Improving Performance. The hypervisor-based

isolation mechanism causes overhead in environment

switches. It is expected that the hardware-based isola-

tion mechanism provided by Intel SGX will decrease the

environment switch overhead. The VMFUNC instruc-

tion [22] released on the latest Intel 4th Generation Pro-

cessor enables software in a guest Virtual Machine to

switch nested page tables without a Virtual Machine exit.

It is expected that the VMFUNC instruction will decrease

the environment switch overhead. However, the VM-

FUNC instruction does not switch other critical system

configurations (e.g., the GDT or IDT). As future work

we will investigate how to perform secure environment
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switch using the VMFUNC instruction.

Supporting Multi-tenant Cloud Platform. The Mini-

Box hypervisor prototype supports only a single guest

OS. There is no fundamental barrier to port MiniBox

with a virtual machine monitor like Xen [7] that sup-

ports multiple tenants, though doing so increases the

TCB size. CloudVisor [50] demonstrates the approach

to minimize the TCB on multi-tenant cloud platforms by

leveraging nested virtualization technology. Nested vir-

tualization can be added in MiniBox to support multi-

tenant cloud platforms. On multi-tenant cloud platforms,

the virtual machine (VM) may be constructed, destruc-

ted, saved, restored, or migrated. It is critical to protect

the MIEE during VM management. The MiniBox hy-

pervisor can encrypt or decrypt the memory contents of

MIEEs in VM management, and verify the integrity of

the MiniBox hypervisor on other machines to guarantee

that MIEEs are only migrated to machines with a veri-

fied hypervisor. Also, the MiniBox hypervisor needs to

encrypt or decrypt the µTPM instance together with a

MIEE in VM management, to make the trustworthy com-

puting abstractions provided to the MIEE transparent to

the VM management.

9 Conclusion

MiniBox is a hypervisor-based sandbox that provides

two-way protection between x86 native applications and

the guest OS. MiniBox protects the guest OS through

hypervisor-based memory isolation and OS protection

modules. MiniBox significantly reduces the attack sur-

face for both OS protection and application protection by

minimizing and securing the interface between OS pro-

tection modules and the application, and protects against

Iago attacks on the application. The MiniBox design

and protection mechanisms are promising for establish-

ing two-way protection on commodity computer sys-

tems. In addition, MiniBox significantly decreases the

porting effort compared to previous systems for isolating

security-sensitive PALs, making MiniBox practical for

wide adoption. Thus, we anticipate that MiniBox will be

widely adopted on systems where two-way protection is

desired (e.g., the PaaS cloud computing platforms).
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Abstract
System software can be configured at compile time to
tailor it with respect to a broad range of supported hard-
ware architectures and application domains. The Linux
v3.2 kernel, for instance, provides more than 12,000
configurable features, which control the configuration-
dependent inclusion of 31,000 source files with 89,000
#ifdef blocks.

Tools for static analyses can greatly assist with ensur-
ing the quality of code-bases of this size. Unfortunately,
static configurability limits the success of automated soft-
ware testing and bug hunting. For proper type checking,
the tools need to be invoked on a concrete configuration,
so programmers have to manually derive many configu-
rations to ensure that the configuration-conditional parts
of their code are checked. This tedious and error-prone
process leaves many easy to find bugs undetected.

We propose an approach and tooling to systematically
increase the configuration coverage (CC) in compile-time
configurable system software. Our VAMPYR tool derives
the required configurations and can be combined with
existing static checkers to improve their results. With
GCC as static checker, we thereby have found hundreds of
issues in Linux v3.2, BUSYBOX, and L4/FIASCO, many
of which went unnoticed for several years and have to
be classified as serious bugs. Our resulting patches were
accepted by the respective upstream developers.

1 Introduction
System software typically employs compile-time config-
uration as a means to tailor it with respect to a broad
range of supported hardware architectures and applica-
tion domains. A prominent example is Linux, which
in v3.2 provides more than 12,000 configurable features
(KCONFIG options) that control the inclusion of 31,000
source files and 89,000 #ifdef blocks when building

∗This work was partly supprted by the German Research Council
(DFG) under grant no. LO 1719/3-1

the Linux kernel. The huge and growing amount of con-
figurability in modern system software implies quite some
challenges with respect to testing and maintenance.

Static configurability is mostly implemented by source-
code transformations [16, 17]: The build system and tex-
tual preprocessors, such as the C Preprocessor (CPP),
interpret configuration flags to (a) filter the set of compi-
lation units and (b) transform their actual content before
passing them to the compiler. Consider this example of a
variation point implemented with CPP in Linux:

#ifdef CONFIG_NUMA
Block1

#else
Block2

#endif

For any given configuration, depending on the configura-
tion switch CONFIG_NUMA, either Block1 or Block2 is
passed to the compiler (or any other static checker that
drops in as a compiler replacement). This means that
the responsible maintainer has to derive at least two con-
figurations to validate that each line of code does even
compile. This is not trivial: CONFIG_NUMA and the con-
taining translation unit are constrained by further rules
and configuration switches in the make files (KBUILD)
and the feature model (KCONFIG) that all have to be set
to the right values.

It is not hard to imagine that doing this manually does
not work in practice. Nevertheless, this is the state of
the art: Point 8 from the Linux Kernel patch submission
checklist1 requires, that all submitted code

has been carefully reviewed with respect to relevant
KCONFIG combinations. This is very hard to get
right with testing – brainpower pays off here.

Our approach replaces brainpower by tools:

$ git am bugfix.diff # Apply patch
$ vampyr -C gcc --commit HEAD # Examine

1cf.Documentation/SubmitChecklist in the source tree

1
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VAMPYR maximizes the configuration coverage (CC) by
automatically deriving a set of configurations that to-
gether cover all variation points (#ifdef blocks and
configuration-conditional files) in all files modified by the
patch. It then invokes the build-system for each configu-
ration, in this case with GCC as static checker.

1.1 Problem: Configuration Coverage
Many papers (e.g., [2, 4, 7, 18]) have been published about
applying static bug-finding approaches to Linux and other
pieces of system software. In all cases the authors could
find a significant number of bugs. It is remarkable that the
issues of configuration-conditional code and CC is not
mentioned at all in these papers – the authors do not even
state which configuration(s) they have analyzed. This
does not only raise strong issues with respect to scientific
reproducibility,2 but also potentially limits their success:
We have to assume that only a single configuration and
architecture was analyzed (as also reported by Palix and
colleagues [15]) – so how many bugs were missed that
could have been found with full coverage?

There also is a more practical side of CC: A Linux
developer, for instance, who has modified a bunch of
files for some maintaining task would probably want to
make sure that every edited line of code does actually
compile and has been tested before submitting a patch.
However, how to derive a set of configurations that covers
all configuration-conditional pieces?

Deriving a configuration that reliably selects a particu-
lar configuration-conditional part of the code is not trivial.
The problem is that for proper type checking the config-
uration needs to be sound and complete, as only then all
header include paths are available and all types are prop-
erly resolved. To derive such a configuration, not only the
C source code, but also the build system, feature model,
and architecture have to be examined.

In practice, this leads to the situation that only a single
architecture and configuration is checked. In the case
of Linux, this typically is Linux/x86 and – in the best
case – the predefined allyesconfig configuration,
which is supposed to be a maximum configuration. How-
ever, current versions of Linux support more than twenty
architectures and allyesconfig is by far not a full
configuration: Depending on the architecture, it covers
only 42–83 percent of all configuration-conditional parts
of the code. The result is that – despite extensive code
reviews and other quality measures performed by the com-
munity – Linux contains quite some code that does not
even compile.

2In their “Ten years later” paper, Palix and colleagues describe the
enormous difficulties to figure out the Linux v2.4.1 configuration used
by Chou et al. in [2] in order to reproduce the results. Eventually, they
had to apply source-code statistics to figure out the configuration “that
is closest to that of Chou et al.” [15].

1.2 Our Contributions
Our variability-aware driver VAMPYR mitigates these
problems. It maximizes the CC by automatically deriving
a set of configurations. By just employing the compiler
(GCC) as a static checker, we thereby already can find hun-
dreds of issues in Linux, L4/FIASCO, and BUSYBOX.
In particular, we claim the following contributions:

(a) We analyze the conceptual and technical issues of
configuration-dependent bugs (Section 2) and quantify
how many variation points of the Linux source base are
missed by the current state of the art (Section 4).

(b) We present an approach and tool implementation to
systematically increase the CC in compile-time config-
urable system software (Section 3). Our approach and
the resulting VAMPYR tool provide an easy and noninva-
sive integration into existing build systems and combina-
tion with existing code checkers, such as CLANG, GCC,
SPARSE or COCCINELLE [14].3 Besides Linux, we also
have applied our approach to the L4/FIASCO µ-kernel
and the BUSYBOX coreutils generator for embedded sys-
tems.

(c) Our experimental studies with GCC 4.7 as a
static checker have revealed hundreds of issues (Sec-
tion 5). For Linux/arm VAMPYR increases the CC (com-
pared to allyesconfig) from 59.9 to 84.4 percent,
which results in 199 additionally reported configuration-
conditional issues (compiler warnings and errors). 91 of
these issues have to be classified as serious bugs. We
proposed patches for seven bugs in Linux and one in
L4/FIASCO and BUSYBOX. All patches got accepted
and the responsible developers have confirmed the found
bugs. Some bugs went unnoticed for up to six years – just
because they do not show up in a standard configuration.

1.3 Previous Work
This paper builds on previous work, especially the open-
sourced variability extractors for KCONFIG, KBUILD, and
CPP we have presented in [3, 20]. Our work on vari-
ability defects in Linux [20] reveals bugs in #ifdef
expressions or KCONFIG constraints, such as typos in
the feature identifiers or presence conditions that are a
tautology/contradiction, so that the #ifdef statement
or the complete block can be removed. In essence [20]
finds faulty #ifdef statements, but does not look in-
side the thereby constrained blocks of code. This is what
VAMPYR does by maximizing the CC of existing static
checkers, so in this paper we look for a very different kind
of configurability-related bugs.

In a previous workshop paper [19], we have sketched
the issue of CC, the coverage of allyesconfig (re-

3VAMPYR and all related tools presented this paper are available for
download under GPLv3 at http://vamos.cs.fau.de/trac/
undertaker.
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stricted to Linux/x86), and the idea to improve the CC by
employing multiple configurations. However, we did not
find any bug; our results regarding CC later turned out to
be way too optimistic: The generated configurations were
not sound, as we did not consider the coarse-grained vari-
ability implemented by the build system. This led to the
development of our variability extractor for KBUILD [3],
which we have integrated into our VAMPYR tool for this
work. Only thereby, VAMPYR has become a practically
usable driver for static checkers that has already helped to
identify hundreds of issues in Linux, L4/FIASCO, and
BUSYBOX.

2 Configuration-Dependent Bugs
The goal of our approach is to increase the effectiveness
of existing static analysis tools so that they reveal also
configuration-dependent bugs. Those are bugs that man-
ifest only in configuration-conditional parts of the code,
such as #ifdef blocks or configuration-conditional
source files.

We classify a bug as a configuration-dependent bug,
iff there exists any configuration in which the bug is not
observed. In the following, we present some examples
of configuration-dependent bugs we have found by maxi-
mizing the CC of GCC with VAMPYR:

(1) Consider the following situation in the HAL
for the ARM architecture in Linux. In the file
arch/arm/mach-bcmring/core.c, the timer fre-
quency depends on the configured derivate:
#if defined(CONFIG_ARCH_FPGA11107)
/* fpga cpu/bus are currently 30 times slower so

scale frequency as well to slow down Linux’s
sense of time */

[...]
#define TIMER3_FREQUENCY_KHZ (tmrHw_HIGH_FREQUENCY_HZ

/1000 * 30)
#else
[...]
#define TIMER3_FREQUENCY_KHZ (tmrHw_HIGH_FREQUENCY_HZ

/1000)
#endif

The variable tmrHw_HIGH_FREQUENCY_MHZ is de-
fined in the header file tmrHw_reg.h with the value
150,000,000 to denote a frequency of 150 MHz. These
timer frequencies are used in the static C99 initialization
of the timer sp804_timer3_clk:
static struct clk sp804_timer3_clk = {

.name = "sp804-timer-3",

.type = CLK_TYPE_PRIMARY,

.mode = CLK_MODE_XTAL,

.rate_hz = TIMER3_FREQUENCY_KHZ * 1000,
};

The problem is that the member rate_hz, which has the
type unsigned long (i.e., 32 bits on this platform),
is too small to contain the resulting value of 30 times
150 Mhz in Hertz. We have reported this issue (unnoticed
for three years and detected by our tool) to the responsible

maintainer, who promptly acknowledged it as a new bug.4

The point, however, is: This is a configuration-conditional
bug that is easy to detect at compile time! The GCC
compiler correctly reports it (with an integer overflow
warning) iff (a) Linux is compiled for a 32-bit platform
and (b) the Linux configuration happens to include the
#ifdef block, which, however, is inserted by the CPP
only if the CONFIG_ARCH_FPGA11107 feature flag is
set – which in turn depends on several other features.

(2) BUSYBOX is a compile-time tailorable implementa-
tion of the UNIX core utilities for memory-constrained
environments. It is employed in many wireless routers
and DSL modems, but also in several Linux distributions.
With VAMPYR, we found several configurations of BUSY-
BOX, for which the GCC compiler warns about format-
string security problems in coreutils/stat.c. The
upstream developers have confirmed this issue as a new
security-relevant bug.5

(3) In the L4/FIASCO µ-kernel, the file
ux/main-ux.cpp revealed a compilation error,
as the instantiation of a Spin_lock type lacks a type
parameter. Again, this is a configuration-dependent
bug, which is reported by GCC iff the feature flags
CONFIG_UX (for choosing Linux user-mode as target
architecture) and CONFIG_MP (for multi-processor
support) are both enabled. We have reported this issue
(detected by our tool) to the L4/FIASCO developers,
who confirmed it as a new bug.

Summary All of the above bugs were caused by subtle
issues that are difficult to spot with code reviewing, but
easy to detect by a static checker (even the compiler in
our case) – if the respective lines of code are getting
compiled. However, the problematic lines of code are not
covered by a standard configuration, which probably is
the reason these bugs went unnoticed for up to three years.
By increasing the CC, we have found tens of such issues
in BUSYBOX and L4/FIASCO and hundreds in Linux
(see Section 5).

3 Our Approach
The goal of our approach is, ultimately, to find
configuration-conditional bugs by the systematic and au-
tomatic increasing of the configuration coverage (CC) of
static code checkers and other quality measures, such as
unit tests. Technically, this is achieved by automatically
deriving a (reasonably small) set of configurations that
together provide coverage of all configuration-conditional
parts of the code. The static checker or unit test driver
is then invoked individually for each element of this set.

4https://lkml.org/lkml/2012/4/23/229
5http://lists.busybox.net/pipermail/busybox/

2012-September/078360.html
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Hence, existing bug-hunting tools become configurability-
aware without changing them. For now, we aim for state-
ment coverage, that is, we want to make sure that every
line of code is checked at least once by the employed static
checker. We consider statement coverage as a significant
first step to increase CC with modest computational com-
plexity. While algorithms for higher coverage criteria
are technically easy to integrate with our approach, we
discuss their feasibility in Section 6.2.

The key idea is to extract configuration constraints and
use a SAT Checker to construct sets of configurations. The
challenge is that static variability is not only implemented
by means of the CPP, but by a multitude of languages
and tools that introduce and constrain variation points at
different stages of the build process. In the following,
we illustrate this on the example of the Linux generation
process.

3.1 Static Variability in Linux
Linux is configured and generated in a sequence of steps
that is depicted in Figure 1. Each of these steps effec-
tively constraints the set of static variation points in the
subsequent steps:

� The first decision is to choose a target architecture.
Technically, this is done by setting an environment vari-
able, which, if omitted, leads to native compilation; other-
wise KBUILD uses a cross-compiler to produce a kernel
for a nonnative architecture.

� Depending on the selected architecture, the KCON-
FIG configuration tool loads a set of Kconfig files that
together define the configuration space (features and con-
straints) of the chosen architecture. On Linux/x86, for
instance, the user can choose from more than 7,700 fea-
tures. KCONFIG saves the resulting feature selection to
a file (.config) that is used for storing, loading and
interchanging feature selections. The generated artifacts
(.config and auto.conf) control the compilation
process in the subsequent steps.

� MAKE is used to implement coarse-grained variabil-
ity on a per-file basis. Depending on the configured fea-
tures, the KBUILD tool selects the subset of all source
files that are actually passed to the compiler and linker.

� In this subset, the CPP representation is used to imple-
ment fine-grained variability on a sub-file basis. De-
pending on the configured features (configure.h),
#ifdef blocks are included or excluded by the CPP
from the token stream passed to the compiler.

� Finally, MAKE is also used to derive, depending on the
selected features, compiler options and binding units, and
thus, to drive the compilation and linking process. The
result is a bootable kernel image and the associated load-
able kernel modules (LKMs) for the chosen architecture
and KCONFIG selection.

Source files

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

CPP

autoconf.h

Root Feature
Kconfig

selection1

.config

4Build scripts

Makefile
arch/x86/init.c

arch/x86/...
arch/x86/entry32.S

lib/Makefile
kernel/sched.c
...

auto.conf

2

kbuildKbuild

kbuildKconfig

derives from

coarse-grained
variability

fine-grained
variability

drives and controls

derives from

$ ld numa.o <...> -o vmlinux

drivers.kovmlinuz
5

$ gcc -O2 -Wall -c numa.c -o numa.o

$ export ARCH=arm

Choose target architecture

3

Figure 1: Fine-Grained and Coarse-Grained Variability Imple-
mentation in Linux.

Variation points are not only specified on the CPP level,
but on different levels and in different languages. In fact,
each build step (�−�) in Figure 1 also constitutes a dis-
tinct level of variability implementation, which constrains
the effective number of variation points on subsequent
levels: The chosen architecture � constrains the possi-
ble KCONFIG selection �, which in turn constrains the
inclusion and exclusion of complete source files (coarse-
grained variability) �, which further constrains the in-
clusion and exclusion of #ifdef blocks (fine-grained
variability) �. To derive a concrete configuration that
selects a particular #ifdef block in some translation
unit, the developer basically has to go back all steps of
this hierarchy to make sure that all dependencies of the
translation unit and block are fulfilled.

The general lesson to be learned is that CC cannot be
achieved by looking at the source code alone – all levels
of static variability, including the constraints specified in
the build system (KBUILD), feature model (KCONFIG)
and architecture selection have to be taken into account.
This makes it so challenging for developers to manually
derive configurations that cover all parts of their code.

3.2 Maximizing Configuration Coverage
The goal of the approach is to find a set of configurations
for each source file that, when accumulated, selects all
configuration-conditional parts of the code. Analyzing
all configurations then maximizes the CC with respect to
statement coverage.

Configuration-conditional parts of the code are given
as complete files (level �, coarse-grained variability) and
#ifdef blocks (level �, fine-grained variability). The
resulting set of configurations has to cover both, but we
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conceptually operate on the most fine-grained level only:
variation points that represent the selection (or deselec-
tion) of #ifdef blocks. Conditionally compiled files
(level �) are treated as a single #ifdef block that (con-
ceptually) spans the whole file content. Without loss
of generality, in the following we therefore use block
or #ifdef block as a collective noun for any kind of
configuration-conditional variation point.

The reason why a single configuration is not the solu-
tion to this problem arises from the fact that blocks and
whole source files may be in conflict to each other and
can therefore not be enabled by the same configuration.
Such conflicts can stem from all variability levels �–� in
Figure 1, including the configuration model (KCONFIG)
and architecture.

The CPP-statements of a C program describe a meta-
program that is executed by the C Preprocessor before the
actual compilation by the C compiler takes place. In this
meta-program, the CPP expressions (such as #ifdef–
#else– #endif) correspond to the conditions in the
edges of a loop-free6 control flow graph (CFG); the
thereby controlled #ifdef blocks are the statement
nodes. On this CFG, established metrics, such as state-
ment coverage or path coverage, can be applied.

The structure of CPP blocks and the identifiers used
in their expressions translate into a propositional formula
such that each CPP identifier and each #ifdef block
is represented as a propositional variable. For the sake
of a uniform treatment of source files with CPP blocks,
we introduce an artificial CPP expression for the top-
level block to express the constraints that are imposed
by the build-system. For calculating the configurations,
the actual block contents, in this case C code, can be
ignored. We calculate the Presence Condition (PC) for
each #ifdef block, which here is influenced by three
factors (Figure 2): Firstly, by ϕCPP, which encodes the
structure and semantics of the CPP language (level �
variability). Secondly, by ϕKBUILD, the constraints that
are imposed in build-system rules in KBUILD (level �
variability). Thirdly, by ϕKCONFIG, the constraints that arise
from the feature dependencies declared in KCONFIG and
by the selected architecture (level � and � variability).

The algorithm to calculate the configurations basically
iterates over all blocks and employs a SAT solver to find
a configuration that selects the current block. To reduce
the number of SAT queries, blocks that are covered in
already found configurations are skipped. As a further
optimization, the algorithm tries to enable as many blocks
as possible simultaneously, which reduces the number
of resulting configurations. Our algorithm has a worst-
case complexity of n2 SAT calls for n blocks; however, in
practice the number of SAT calls remains in the order of

6Leaving aside “insane” CPP meta-programming techniques based
on recursive #include, which are not used within Linux.

φ
CPPLinux

source

Block 1

Block 2

#ifdef CONFIG_X86
 <...>

#elif CONFIG_ARM
 <...>

#endif

undertaker
establish PC
for Block 1

φ
CPP
∧ ∧

_______
_______
_______
_______

_______
_______
_______
_______

Kconfig
configurations

φ
Kconfig

φ
Kbuild

establish PC
for Block 2

φ
CPP
∧ ∧φ

Kconfig
φ

Kbuild

undertaker

Figure 2: Deriving configurations: For each configuration-
conditional block, we establish their PC to derive a set of con-
figurations that maximize the CC.

n for the vast majority of files. We discuss this algorithm
in earlier work [19] with more detail.

3.3 Implementation: The VAMPYR
We provide the VAMPYR tool as an easy-to-use variability-
aware driver that orchestrates the concepts and tools out-
lined in the previous sections. The general interaction
between the individual tools is depicted in Figure 3. First,
VAMPYR ensures that all variability constraints from CPP,
KBUILD and KCONFIG are available. This formula is
loaded (UNDERTAKER in Figure 3) and used to produce
the configurations, on which the tools for static analysis
are applied.

Note that the resulting configurations only cover vari-
ation points that are included in the source file, which
means that they cannot be loaded directly into the KCON-
FIG configuration tool. Conceptually, we can understand
this partial configuration as a set of variation points on
level � in Figure 1, for which we need to find a sound
configuration on level �. This means that a produced
configuration does not constrain the selection of the re-
maining thousands of configuration options that need to
be set in order to establish a full KCONFIG configuration
file that can be shared among developers. These remain-
ing unspecified configuration options can be set to any
value as long as they do not conflict with the constraints
imposed by the partial configuration.

To derive configurations that can be loaded by KCON-
FIG, we reuse the KCONFIG tool itself to set the remain-
ing unconstrained configuration options to values that
are not in conflict with ϕKCONFIG. With these full con-
figurations, we use the KBUILD build system to apply
the tools for static analysis on the examined file. So far,
we have integrated three different tools for static analy-
sis: GCC, SPARSE, and SPATCH from the COCCINELLE
tool-suite [14, 15].

3.4 Application Scenarios
(a) The Linux maintainer for the bcmring ARM de-
velopment board has received a contributed patch via
email. She first applies the patch to her local git tree, and
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Figure 3: Workflow of the VAMPYR configuration-aware static-analysis tool driver

then runs the VAMPYR tool on all files that the proposed
change modifies:
$ git am bugfix.diff # Integrate the patch

as new commit
$ vampyr -C gcc --commit HEAD # Examine files of

latest commit

VAMPYR derives a CC-maximizing set for each file modi-
fied by the patch. The resulting configurations are plain
text files in a syntax that is familiar to Linux develop-
ers, but only cover those variation points that are actually
related to the PCs contained in the affected source files.
VAMPYR utilizes the KCONFIG configuration tool to set
all remaining unspecified items to the default values. This
expanded configuration is activated in the source tree (i.e.,
KBUILD updates the force-included autoconf.h and
auto.make files), and GCC, or another static checker,
is called on the examined file.

The issued warnings and errors are collected and pre-
sented to the developer after VAMPYR has inspected all
configurations. The whole process takes less than a
minute to complete on a modest quadcore development
machine. In this case, VAMPYR reveals the integer over-
flow bug that has been presented in Section 2.

(b) The same maintainer implements a nightly quality-
assurance run. After having integrated the submissions of
various contributors, she calls it a day and lets VAMPYR
check the complete source code base on Linux/arm (a
worklist with 11,593 translation units) in a cronjob:
$ vampyr -C gcc -b worklist

In this case, VAMPYR calculates 14,222 configurations
(∼1.2 per file) in less than 4 minutes. The actual analysis,
which includes extracting the variability from KCONFIG
and KBUILD (cf. Section 3.1 and 3.2) and running the
compiler and Linux makefiles, takes about 4.5 hours. We
present and discuss the summarized findings of such a
run in the evaluation (Section 5, Table 2 and 3).

Both application examples show that the approach re-
sults in a straight-forward and easy to use tool that un-
burdens developers from the tedious task of finding (and
testing) the relevant configurations manually.

4 Configuration Coverage
As also reported by Palix and colleagues [15], we assume
that static checkers and bug-finding tools are generally
applied to a single configuration only. This raises the
question of how many conditional blocks are commonly
left uncovered. To be able to answer this question (and
eventually quantify in Section 5 how much VAMPYR can
improve on the situation), we first establish in Section 4.1
a metric for the effective CC achieved by a configuration
or a set of configurations. We then use this metric in
Section 4.2 to calculate the CC of the allyesconfig
standard configuration in Linux. This synthetic configura-
tion enables as many features as possible and is supposed
to cover the maximum amount of code. We use it here
to get an upper bound of the CC that can be achieved by
testing a single configuration only.

4.1 Calculating Configuration Coverage
The definition of the CC depends on the chosen coverage
criteria, including statement coverage (every block is in-
cluded at least once), decision coverage (every block is
included at least once and excluded at least once), and
path coverage (every possible combination of blocks is
included at least once). In this work, we go for statement
coverage and define the CC of a given configuration as
the fraction of the thereby selected blocks divided by the
number of available blocks:

CCS :=
selected blocks
available blocks

(1)

To calculate CCS , we need to determine the number of
selected blocks and the number of available blocks given
by a configuration. To determine the set of selected blocks,
we calculate the PC for each block b (as described in
Section 3.2) to check if the respective block gets enabled
by the configuration. For unconditional parts of the code
(such as the file fork.c, which is included in every
Linux configuration), the PC is a tautology.

Determining the set of available blocks is more com-
plex: Depending on (a) the taken perspective (such as

6



USENIX Association  2014 USENIX Annual Technical Conference 427

a concrete architecture) and (b) the constraints speci-
fied on each configuration level (�–�), many blocks
are only seemingly configurable. To illustrate this effect,
consider the following excerpt from drivers/net/
ethernet/broadcom/tg3.c:
static u32 __devinit tg3_calc_dma_bndry(struct tg3 *

tp, u32 val)
{

int goal;
[...]
#if defined(CONFIG_PPC64) || defined(CONFIG_IA64) ||

defined(CONFIG_PARISC)
goal = BOUNDARY_MULTI_CACHELINE;

#else
[...]
#endif

This code configures architecture-dependent parts of the
Broadcom TG3 network device driver with #ifdef
blocks. Given any concrete architecture (which is the
common perspective in Linux development), these blocks
are not variable: The PCs of the #ifdef blocks will
either result in a tautology (on Linux/IA64, respectively
Linux/PARISC) or a contradiction (on all other architec-
tures) for any KCONFIG selection.

So, on level � for Linux/ia64 and Linux/parisc the
#if part is always selected, whereas for all other archi-
tectures the #else part is chosen – but this only holds
under the assumption, that on level � the tg3.c file it-
self is selected. On Linux/s390, for instance, this file is
singled out by a MAKE-file constraint; hence, the PC of
each block is a contradiction. In line with our terminology
from [20], we call a block with a PC that is a contradic-
tion on the taken perspective, a dead block; a block with
a PC that is a tautology is called an undead block, respec-
tively. Both play an important role with respect to CC:
A dead block cannot be selected by any configuration,
whereas an undead block is implicitly selected by every
configuration.

The Linux/s390 example shows that it generally is not
obvious from the code if a block is dead/undead: Most
of the 12,000 Linux features (CONFIG_ flags) become
a tautology or contradiction because of the constraints
expressed on level � or �. On Linux/x86, for instance, 17
percent of all blocks are only seemingly variable, whereas
on Linux/s390, this holds for 67 percent. One reason for
this high rate is that s390 hardware does not feature the
PCI family of buses, so all PCI-related features, including
many device drivers, become contradictions.

The practical consequence is that dead and undead
blocks have to be singled out for calculating the configura-
tion coverage. We call this refined metric the normalized
configuration coverage (CCN):

CCN :=
selected blocks − undead blocks

all blocks − undead blocks − dead blocks
(2)

In Table 1, the CCN is normalized with respect to the

Architecture
Total
kLOC

in
CPP
blocks

# variation
points

(dead/undead rate)

allyes
CCS

allyes
CCN

x86 8,391 4.5% 30,368 (17%) 65.2% 78.6%
hardware 6,417 3.6% 22,152 (22%) 59.7% 76.8%
software 1,974 7.6% 8,216 (4%) 80.2% 82.7%

arm 8,568 4.6% 33,356 (18%) 49.2% 59.9%
hardware 6,629 3.9% 25,140 (20%) 40.8% 51.2%
software 1,938 6.9% 8,216 (11%) 74.8% 83.6%

mips 7,848 4.3% 30,094 (23%) 42.3% 54.5%
hardware 5,896 3.3% 21,878 (29%) 30.1% 42.1%
software 1,952 7.4% 8,216 (7%) 74.8% 79.8%

s390 2,783 5.7% 28,756 (67%) 24.2% 72.1%
hardware 1,034 2.8% 20,540 (86%) 5.1% 37.2%
software 1,748 7.3% 8,216 (18%) 71.8% 86.8%

. . . < 19 further architectures>

Mean µ 6,447 3.8% 29,180 (39%) 43.9% 71.9%
Std. Dev. σ ±1,652 ±1,159 ±11.8% ±12.2%

Table 1: Quantification over variation points across selected ar-
chitectures in Linux v3.2 and the corresponding CCS and CCN
of allyesconfig.

selected architecture in Linux, which impacts what blocks
have to be considered as dead or undead. For a platform
maintainer, for instance, ignoring blocks of a “foreign”
architecture makes perfect sense: Linux is generally com-
piled natively and code parts for other architectures are
likely to not compile anyway.

4.2 The Configuration Coverage
of ‘allyesconfig’ in Linux

Table 1 lists configurability-related source code met-
rics together with the resulting CCS and CCN of the
allyesconfig standard configuration. We have exam-
ined these metrics for 24 out of the 27 Linux architectures.
Table 1 lists an excerpt of this analysis: selected “typical”
architectures (for PCs, embedded systems, mainframes),
together with the mean µ and standard deviation σ over
all 24 analyzed architectures.7 We further discriminate
the numbers between “hardware related” (originated from
the subdirectories drivers, arch, and sound) and
“software related” (all others, especially kernel, mm,
net).

The average Linux architecture consists of 6,447 kLOC
distributed over 8,231 source files, with 3.8% of all code
lines in (real) #ifdef or #else blocks and 29,180 total
variation points (#ifdef blocks, #else blocks, and
configuration-dependent files). There is relatively little
variance between Linux architectures with respect to these

7We could not retrieve results for um, c6x, and tile, which
seem to be fundamentally broken. The complete data tables are
available as an online appendix: http://vamos.cs.fau.de/
usenix2014-annex.pdf
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simple source-code metrics, as all architectures share a
large amount of the source base (including the kernel and
device drivers).

For the three rightmost columns, however, the variance
is remarkable. The rate of dead/undead variation points
varies from 17 percent on Linux/x86 to up to 67 percent
on Linux/s390 (µ = 39%). It furthermore is reciprocally
correlated to the CCS of allyesconfig: These num-
bers underline the necessity to normalize the CCS with
respect to the actual viewpoint (here: the architecture).
The normalized configuration coverage CCN is generally
much higher (µ = 71.9, σ = 12.2) – here Linux/s390
(72.1%) is even above the average and close to Linux/x86
(78.6%).

The situation is different on typical embedded plat-
forms, where the CCN of allyesconfig is signifi-
cantly lower: On Linux/arm, the largest and most quickly
growing platform, only 59.9 percent are covered. These
numbers are especially influenced by the relatively low
CCN (51.2%) achieved in the hardware-related parts. We
find a similar situation for Linux/mips, for which only
54.5 percent are covered. We take this as an indicator
for the larger hardware variability typically found on em-
bedded platforms, which manifest in many alternative or
conflicting features on the KCONFIG level and in #else
blocks on the CPP level.

5 Evaluation
In the following, we evaluate the benefit of increasing
the CCN with VAMPYR. The working hypothesis is that
especially subsystems and architectures with a relatively
low CCN of allyesconfig are prone to bugs that in
principle are easy to find (reported by the compiler), but
remain undetected for several years – like the integer
overflow issue from Section 2.

We analyze this hypothesis (i.e., how many additional
bugs can be found with our approach) on two operating
systems, namely Linux version v3.2 and L4/FIASCO,
as well as on BUSYBOX, a versatile user-space imple-
mentation of important system level utilities targeted at
embedded systems. They all use sufficiently similar ver-
sions of KCONFIG, which allows reusing the variability
extractor for ϕKCONFIG for all projects.

In all cases, we calculate a set of configurations for each
file as described in Section 3.3, and apply GCC 4.7 as static
checker for each configuration on all files individually.
As an optimization, the initial starting set contains the
standard configuration allyesconfig.

5.1 Application on Linux
On Linux, we use VAMPYR to generate the configura-
tions for the 24 architectures examined in Section 4.2. In
comparison to allyesconfig, VAMPYR increases the

CCN for every architecture, on average from µ = 71.5
to µ = 84.6 percent. Our Quad-core workstation calcu-
lates all partial configurations for 9,300 source files in
less than 4 minutes. For the sake of comprehensibility,
we limit in the following the in-depth analysis with GCC
as static checker to three architectures. We choose, based
on the observations in Section 4.2, x86, arm, and mips:
We assume Linux/x86 to be the best tested architecture
– because of its maturity, wide-spread application, and
the fact that it has the lowest rate of dead/undead blocks
(see Table 1). Hence, we expect to find relatively fewer
configuration-dependent bugs than in Linux/arm, which
is the largest (in terms of files and code lines) and, driven
by Android, most quickly growing Linux architecture,
with a relatively low CCN . We analyze Linux/mips as
another embedded platform that is less in a state of flux
than Linux/arm, but shows an even lower CCN .

Table 2 depicts the results: Again we list the CCN and
found issues for both the hardware- and software-related
parts of Linux. For the three architectures, we notice an
increase of the CCN by 10 to 36 percent, paid by about
20 percent more GCC invocations compared to a regular
compilation with a single configuration. So on average, a
Linux translation unit requires 1.2 invocations of a static
checker to achieve CC with respect to statement coverage.

However, even though VAMPYR does increase the
CCN , it is not increased to 100 percent. We achieve
the best result for Linux/mips with 91 percent coverage
(allyesconfig: 55%); for the other two architectures
the results are slightly lower. This is caused by (a) defi-
ciencies in the current VAMPYR implementation as well
as (b) bugs in the Linux KCONFIG models. We further
discuss these issues in Section 6.1.

Nevertheless, VAMPYR reveals a high number of ad-
ditional GCC messages that are not found with the
allyesconfig configuration (last column of Table 2):
26 additional messages on Linux/x86, 199 on Linux/arm,
and 91 on Linux/mips.

We take the number of #ifdef blocks per reported is-
sue (bpi) as a normalization metric for code quality. This
confirms our working hypothesis from Section 5: The bpi
of Linux/x86 is 110 , which is the lowest among the ex-
amined architectures. It is about 2.4 times better than the
bpi of 46 revealed for Linux/arm, which is the highest.
Linux/mips is with an bpi of 85 in between. On all ar-
chitectures, the hardware-related parts of the source code
(arch, drivers, sound) contain significantly more
issues than the software-related parts (everything else,
especially kernel, mm, and net) – we can confirm the
frequent observation that hardware-related code contains
significantly more bugs than software-related code [2, 15]
also in the context of variability. This holds in particu-
lar for the quickly growing arm architecture, where the
hardware-related parts show 5.6 times more issues than
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Software Project
allyesconf
CCN

VAMPYR

CCN

Overhead:
increase of GCC

Invocations

GCC

#warnings
VAMPYR

(allyesconfig)

GCC

#errors
VAMPYR

(allyesconfig)

Σ
Issues

#ifdef
blocks per

reported issue
(bpi)

Result:
increase of

GCC messages

Linux/x86 78.6% 88.4% 21.5% 201 (176) 1 (0) 202 110 26 (+15%)
hardware 76.8% 86.5% 21.0% 180 (155) 1 (0) 181 82 26 (+17%)
software 82.7% 92.4% 22.7% 21 (21) 0 (0) 21 351 0 (+0%)

Linux/arm 59.9% 84.4% 22.7% 417 (294) 92 (15) 508 46 199 (+64%)
hardware 51.2% 80.1% 23.7% 380 (262) 92 (15) 471 34 194 (+70%)
software 83.6% 96.3% 19.5% 37 (32) 0 (0) 37 192 5 (+16%)

Linux/mips 54.5% 90.9% 22.0% 220 (157) 29 (1) 249 85 91 (+58%)
hardware 42.1% 88.2% 21.5% 174 (121) 17 (1) 191 72 69 (+57%)
software 79.8% 96.3% 23.2% 46 (36) 12 (0) 58 128 22 (+61%)

L4/FIASCO 99.1% 99.8% see text 20 (5) 1 (0) 21 see text 16 (+320%)

Busybox 74.2% 97.3% 60.3% 44 (35) 0 (0) 44 72 9 (+26%)

Table 2: Results of our VAMPYR tool with GCC 4.7 (-fno-inline-functions-called-once -Wno-unused) as static checker
on Linux v3.2, L4/FIASCO and BUSYBOX.

the software-related parts.
In Table 2 the reported issues are differentiated between

errors and warnings. However, this classification by the
compiler is only seemingly related to the severity of the
issue. While many developers consider warnings as more-
or-less cosmetic issues, they often point to critical bugs,
such as the integer overflow from Section 2. Nevertheless,
by the fact that a high number of warnings is also revealed
by allyesconfig, we have to conclude that at least
some warnings are considered as “false positives”.

To quantify the actual benefit of our approach in this
respect, we have reviewed all messages on Linux/arm
manually to discriminate less critical messages from real
bugs. The results of a conservative classification8 are
depicted in Table 3: 91 out of the 508 reported issues
for Linux/arm have to be considered as real bugs. For
seven bugs, including the issues from Section 2, we have
proposed a patch9 to the upstream developers, which all
got immediately confirmed or accepted. Six of these
seven bugs had been unnoticed for several years.

5.2 Application on L4/Fiasco
In order to show the general applicability, we apply the
VAMPYR tool also to the code base of the L4/FIASCO
µ-kernel. Compared to Linux, L4/FIASCO is relatively
small: It encompasses about 112 kLOC in 755 files (only
counting the core kernel, that is, without user-space pack-
ages). Nevertheless, we identify 1,255 variation points
(1,228 conditional code blocks and 16 conditionally com-
piled source files) in the code base.

8Only messages for which the manual source-code review provides
strong evidence of an actual bug are counted as such. Everything else
is considered to be less critical. We also count some errors (caused by
#error statements) that point to issues in the KCONFIG model and not
in the code as less critical.

9http://vamos.cs.fau.de/usenix2014-annex.pdf

Less critical GCC messages warnings errors
Σ Less critical messages 347 (223) 16 (0)

Manually validated bugs
Undeclared types/identifiers 46 (4)
Access to possibly uninitialized data 22 (20)
Out of bounds array accesses 11 (7) 2 (0)
Bad pointer casts 8 (0)
Format string warnings 1 (0)
Integer overflows 1 (0)
Σ Bugs found 43 (27) 48 (4)

Σ All reported issues 390 (250) 64 (4)

Table 3: Classification of GCC warnings and errors revealed
by the VAMPYR tool on Linux/arm. The numbers in parenthe-
ses indicate messages that are also found when compiling the
configuration allyesconfig

L4/FIASCO employs the KCONFIG infrastructure to
configure 157 features on 4 architectures. Unlike Linux,
the architectures are user-selectable KCONFIG options.
Also, L4/FIASCO does not only use the CPP, but also
uses a transformation process that allows programmers to
declare interface and implementation in the same source
file. This additional processing step produces traditional
header and implementation files, which are preprocessed
by CPP and compiled with GCC. We cope with this by
processing the resulting CPP #ifdef blocks for calculat-
ing the configurations. However, because of the additional
preprocessing step, the metrics of GCC invocations per
source file and bpi do not relate to the results of Linux
and BUSYBOX, so we leave them out in Table 2.

For L4/FIASCO, the VAMPYR tool produces 9 differ-
ent configurations that in total cover 1,228 out of 1,239
#ifdef blocks, which maps to a CCN of 99.8 percent.
Compared to allyesconfig, the number of compiler
messages thereby increased from 5 to 21, among them

9
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the compilation error in ux/main-ux.cpp we have il-
lustrated in Section 2. We have reported this issue to the
L4/FIASCO developers, who confirmed it as a bug.

5.3 Application on Busybox
Another popular software project that makes use of
KCONFIG is the BUSYBOX tool suite. The analyzed ver-
sion 1.20.1 exposes 879 features that allow users to
select exactly the amount of functionality that is neces-
sary for a given use case, implemented by 3,316 #ifdef
blocks and conditionally compiled source files.

For BUSYBOX, VAMPYR increases the number of re-
ported issues from 35 to 44; we have proposed a fix for
one of them to the upstream developers, who have con-
firmed it as a bug and accepted our patch.

6 Discussion
6.1 Threats to Validity – Quality of Results
Is it fair to compare to allyesconfig? In this pa-
per we argue that checking a single configuration is not
enough and evaluate this by comparing our configuration-
aware VAMPYR results against the allyesconfig stan-
dard configuration, which we assume to achieve the best
possible CC for a single configuration.

However, this is not guaranteed, as allyesconfig
is a synthetic configuration generated by the KCONFIG
tool with a simple algorithm: Traverse the feature tree
and select each feature that is not in conflict to an already
selected feature. The outcome is sensitive to the order of
features in the feature tree, hence, does not necessarily
include the possible maximum number of features. Also,
even if we assume a maximum number of features as
the outcome, this does not necessarily imply the largest
possible CC, as we might have missed a feature with a
highly crosscutting implementation (i.e., a feature that
contributes many #ifdef blocks) in favor of another
feature that contributes just a single variation point. How-
ever, features in Linux are generally not very cross cutting:
58 percent of all features in Linux v3.2 are implemented
by a single variation point; only 9 percent contribute more
than 10 variation points, most of which are architecture-
related features that anyway cannot be modified on the
KCONFIG level. So, despite these limitations, we con-
sider allyesconfig as a realistic upper bound of the
CC that could be achieved with a single configuration in
practice.

Why not hundred percent coverage? Even though
VAMPYR increases the CC significantly, we do not get
full coverage. In some cases, the expansion of a partial
configuration by KCONFIG results in a full configura-
tion that contradicts the partial configuration. In order to
achieve correct results (and in contrast to our in retrospect
naïve attempt in [19]), VAMPYR validates the soundness

of each configuration after the expansion process: Con-
figurations that no longer contain the relevant features of
interest are skipped; the thereby induced #ifdef blocks
or files are considered as not covered in Table 2, which
results in rates that are below hundred percent. We see
three major causes for this effect:

(1) One reason for failed expansions are bugs in the
Linux variability descriptions (KCONFIG models). Fea-
ture dependencies are notoriously hard to get right with
KCONFIG, as the KCONFIG tool does not validate the
soundness of the models: In feature dependency expres-
sions, the KCONFIG language provides (via the SELECT
statement) the option to select arbitrary other features;
in this case it is in the responsibility of the developer
to ensure that thereby the configuration remains valid.
In practice, this is not always the case and leads to user-
selectable configurations that are formally invalid (contain
a contradicting feature), but nevertheless “work” for the
user. However, as element of a partial configuration de-
rived by VAMPYR, such a contradicting feature usually
causes an incorrect expansion.

(2) Bugs in the KCONFIG descriptions can furthermore
cause missing of some dead/undead blocks. This directly
leads to a lower CCN , as dead/undead blocks are sub-
stracted in denominator of the CCN (see Equation 2).

(3) Another potential cause for expansion issues is that
the VAMPYR implementation, in particular the model ex-
tractor for ϕKCONFIG, is not yet feature complete. We cur-
rently do not correctly handle the situation when some
feature depends on the value (rather than the mere selec-
tion) of some other string or integer feature. Luckily, the
number of features that employ value tests in their PC is
low in Linux (mips:0.26%, arm:0.28% x86:0.31%;
µ = 0.4%, σ = 0.22). Nevertheless, this can make the
expansion fail, and thus, impact the achieved CC.

Are there false positives/negatives? The expansion is-
sues imply that there is a high probability of false nega-
tives – bugs we miss, because we do not achieve full CC.
Nevertheless, our results show that our approach helps
to discover a significant number of long-time overlooked
bugs in Linux, L4/FIASCO, and BUSYBOX. The point
is that VAMPYR is easy to use and does, by construction,
not produce any false positives. Hence, the “annoyance
factor” is low, which increases the chance of acceptance
by system software developers.

6.2 Higher Coverage Criteria
The chosen coverage criterion also implies the existence
of false negatives (i.e., undetected issues): The current
implementation of VAMPYR achieves statement coverage,
that is, every configuration-conditional block is included
at least once – at the price of 20 percent additional com-
piler invocations. Would using a higher coverage criterion
would reveal more issues?

10
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We are currently experimenting with a VAMPYR proto-
type that provides decision coverage, that is, every block
is included and excluded at least once. Technically, this is
realized by virtually adding an empty #else block to ev-
ery #if block without an #else part. Over the three an-
alyzed architectures (Linux/x86, Linux/arm, Linux/mips),
the shift from statement to decision coverage increases the
number of reported issues by an additional nine percent
at the price of fifteen percent more compiler invocations.
We consider this as still acceptable for most use-cases.

The next step will be path coverage: every possible
combination of blocks is included at least once. This has
exponential overhead: a source file with n CONFIG flags
requires up to 2n configurations (compiler invocations)
to achieve path coverage. However, we expect the con-
straints from the CPP, KBUILD, and KCONFIG levels to
considerably restrict the number of actually possible con-
figuration. Furthermore, more than 98 percent of all Linux
compilation units employ five or less CONFIG flags.10 So
in practice, also path coverage may be feasible for large
parts of Linux – at least for tasks such as checking a con-
tributed patch (application scenario (a) from Section 3.4),
which we consider as the major use case for VAMPYR.

Checking of a complete architecture with path coverage
is probably infeasible on the average developer’s machine.
Heuristic approaches, such as pairwise testing [13], may
be more promising candidates to achieve higher coverage
at acceptable run times. This is a topic of further research.
The point here is that we intend VAMPYR to be a tool that
developers can use in their regular development cycles, so
the run-time caused by algorithmic complexity (another
“annoyance factor”) has to be limited.

6.3 General Applicability of the Approach
We have evaluated our approach with Linux,
L4/FIASCO, and BUSYBOX and GCC as a static
checker. However, the approach is as well applicable
to other software families and static checkers. To apply
VAMPYR to some piece of configurable software, one
basically needs extractors for the configuration points
and constraints specified on all employed implementation
levels of variability. These levels are generally project-
specific: In Linux, we have the ARCH environment
variable, KCONFIG, KBUILD, and CPP; in L4/FIASCO
we additionally have the custom preprocess level.
Our approach, however, makes it easy to integrate such
custom variability extractors. We also expect a significant
amount of reusability: Almost every system software
project employs CPP to implement variability and the
KCONFIG language is adopted by more and more projects
as a means to describe the intended configurability.

Static checkers are not always warmly welcomed –
many developers are (initially) reluctant to accept their

10The extreme corner-cases of the remaining two percent are
sysctl.c with 59 flags and sched.c with 47 flags.

findings [1]. To convincingly illustrate the issue of confi-
guration-dependent bugs, we therefore have chosen GCC
as our static checker: The compiler is a “least common
denominator” of a bug-finding tool that has to be ac-
cepted by developers. Nevertheless, VAMPYR can be em-
ployed as variability-aware driver for any static checker
that drops in as a compiler replacement. We have also
tested it successfully with COCCINELLE [14, 15] and
SPARSE. With SPARSE, for instance, VAMPYR more than
doubles the issues reported for Linux/arm: from 9,484
(allyesconfig) to 23,964 (VAMPYR). The high num-
ber of issues already reported for allyesconfig, how-
ever, is a strong indicator that the “annoyance factor” of
SPARSE is too high to be accepted as a helpful static
checker by the Linux developers – even though “Check
cleanly with sparse” is an explicit requirement on the
Kernel patch submission checklist.

7 Related Work
Despite these apparent acceptance problems by kernel
developers, automated bug detection by examining the
source code has a long tradition in the systems community.
Many approaches have been suggested to extract rules,
invariants, specifications, or even misleading source-code
comments from the source code or execution traces from
Linux [2, 4, 7, 8, 11, 18]. However, it is remarkable that
all of these papers seem agnostic to the used configu-
ration and do not even mention what configuration has
been analyzed – even though the wide-ranged analysis
of feature implementations in system software by Liebig,
Kästner, and Apel [9] underlines the impressive amount
of CPP-based configurability in today’s system software.
The issue of CC is largely underestimated.

In the verification and validation community, the notion
of CC has been defined in a very similar way to this
work by Maximoff et al. [12] in the context of NASA
spacecrafts. Unlike our work, this work does not create
the configurations from the implementation. Instead, the
CC assesses the quality of a given set of test cases.

Liebig et al. [10] present a good overview over the
current state of the art for variability-aware analysis of
software systems, in which the authors identify two major
approaches to the problem: Either by making all tools
for static analysis configurability-aware, or by improving
the effectiveness of the existing tools by a configurability-
aware driver by applying the tools using a sample set, that
is, a subset of all possible configuration. Our VAMPYR
tool is the latter; there are, however, several research
groups that attempt the first approach: Kästner et al.
[6] propose a technique coined variability aware pars-
ing, which basically integrates the CPP variability into
tools for static analysis and allows variability aware type-
checking across all configurations. Gazzillo and Grimm

11



432 2014 USENIX Annual Technical Conference USENIX Association

[5] propose a generalized and much better performing
configurability-aware parser for C with CPP. Their SU-
PERC basically treats C and CPP together as a single
language and thereby could be used as front-end for the
implementation of variability-aware checkers. However,
for any practical use, both approaches also need further
assistance by a model of all variability constraints from
other implementation levels, otherwise, type-checking in-
valid configurations would cause a very high run time and
result in a tremendous number of false positives. The big
advantage of these approaches is that they achieve path
coverage over the CPP meta program. The disadvantages
are that they only work on the CPP level and that they
cannot be combined with other static checkers. Hence,
we consider our VAMPYR approach to be more flexible.

8 Conclusions
System software is typically configured at compile-time
to tailor it with respect to the supported application or
hardware platform. Linux, for instance, provides in v3.2
more than 12,000 configurable features. This enormous
variability imposes great challenges for software testing
with respect to configuration coverage (CC).

Existing tools for static analyses are configurability-
agnostic: Programmers have to manually derive concrete
configurations to ensure CC. For this, they do not only
have to consider the structure of #ifdef blocks in the
code, but also the thousands of constraints specified in
the build system and feature model. Hence, many easy-
to-find bugs are missed, just because they happen to be
not revealed by a standard configuration – Linux contains
surprisingly much source code that does not even compile.

With our VAMPYR approach and implementation, the
necessary configurations can be derived automatically.
VAMPYR is easy to integrate into existing tool chains
and provides configurability-awareness for arbitrary static
checkers. With GCC as a static checker, we have revealed
hundreds of configuration-dependent issues in Linux,
L4/FIASCO, and BUSYBOX. For Linux/arm, we have
found 60 new bugs, some of which went unnoticed for
six years. We have also found one bug in L4/FIASCO
and nine issues in BUSYBOX. For all three projects, the
upstream developers have confirmed the reported bugs
and accepted our resulting patches.

The tools VAMPYR and UNDERTAKER are available
under GPLv3 at http://vamos.cs.fau.de/. All
raw data is generated by automated experiments to
support scientific reproducibility, and can be exam-
ined at http://vamos.cs.fau.de/jenkins (lo-
gin: public/i4guest). The Linux data and a detailed
description of our patches is furthermore available as
an online-appendix at http://vamos.cs.fau.de/
usenix2014-annex.pdf.
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Abstract
This paper describes the design and implementation of
Yat. Yat is a hypervisor-based framework that sup-
ports testing of applications that use Persistent Memory
(PM)—byte-addressable, non-volatile memory attached
directly to the memory controller. PM has implications
on both system architecture and software. The PM ar-
chitecture extends the memory ordering model to add
software-visible support for durability of stores to PM.
By simulating the characteristics of PM, and integrat-
ing an application-specific checker in the framework, Yat
enables validation, correctness testing, and debugging
of PM software in the presence of power failures and
crashes. We discuss the use of Yat in development and
testing of the Persistent Memory File System (PMFS),
describing the effectiveness of Yat in catching and de-
bugging several hard-to-find bugs in PMFS.

1 Introduction
We are witnessing growing interest in Non-Volatile
DIMMs (NVDIMMs) that attach storage class memory
(e.g., PCM, MRAM, etc.) directly to the memory con-
troller [5]. We refer to any such byte-addressable, non-
volatile memory as Persistent Memory (PM).

PM has implications on system architecture and soft-
ware [2]. Since PM performance—both latency and
bandwidth—is within an order of magnitude of DRAM,
software can map PM as write-back cacheable for per-
formance reasons. Several studies [2, 6] have shown sig-
nificant performance gains from the use of in-place data
structures in write-back PM. These studies also show the
need for extensions to the existing memory model to al-
low PM software to control ordering and durability of
stores to write-back PM.

However, such extensions to the memory model intro-
duce the possibility of new types of programming errors.
For instance, consider a PM software flow as shown in
Figure 1. Starting at consistent state A, PM software per-
forms two writes to PM (set WA−>B), dirtying two cache-

A CB

WA->B = {W1, W2} WB->C = {W3, W4}

clflush (L1, L2)
pm_wbarrier

clflush (L3, L4)
pm_wbarrier

Figure 1: PM software flow

lines (L1,L2) in the process. For traditional block based
storage, software explicitly schedules IO to make these
cachelines persistent at block granularity. However, for
PM-based storage these cachelines can become persis-
tent in arbitrary order by cacheline evictions outside of
software control. Hence, extra care must be taken in en-
forcing ordering on updates to PM. Programmers today
are not used to explicitly tracking and flushing modified
cachelines in volatile memory. But, this is a critical re-
quirement of PM software, failing which could cause se-
rious consistency bugs and data corruption.

Testing for the correctness of PM software is challeng-
ing. One way is to simulate or induce failures (such
as from power loss or crashes) and use an application-
specific checker tool (similar to fsck for Linux filesys-
tems) to verify consistency of the data in PM. However,
this method tests only the actual ordering of writes to
PM in a single flow, even though many other orderings
are possible outside the control of the PM software (e.g.,
due to arbitrary cacheline evictions).

To overcome this challenge, we built Yat (meaning
“trial by fire” in Sanskrit), a hypervisor-based framework
for testing the correctness of PM. Yat uses a record and
replay method to simulate architectural failure conditions
that are specific to PM. We used Yat in validation and
correctness testing of PMFS [2], which is a reasonably
large and complex PM software module. Though we fo-
cus on PMFS as the only case study in this paper, the
principles of Yat are applicable to other PM software, in-
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cluding libraries and applications [6].
Contributions of this paper are as follows:
• Design and implementation of Yat, a hypervisor-

based framework for testing PM software.
• Evaluation of a Yat prototype, using PMFS as an

example PM software.
2 System Architecture
We assume the Intel64 based system architecture de-
scribed elsewhere [2], where software can access PM
directly using regular CPU load and store instructions.
Because PM is typically mapped write-back (for perfor-
mance reasons), PM data in CPU caches can be evicted
and made durable at any time. To give software the abil-
ity to control consistency, the architecture must provide
a software visible guarantee of ordering and durability of
stores to PM. The proposed architecture includes a sim-
ple hardware primitive, PM write barrier (pm wbarrier),
which guarantees durability of all stores to PM that have
been explicitly flushed from the CPU caches but might
still be be in a volatile buffer in the memory controller or
in the PM module.

In Figure 1, to effect WA−>B before WB−>C, PM soft-
ware must flush the dirty cachelines L1−2 and make those
writes durable using pm wbarrier, before proceeding to
writes in WB−>C. In complex software, it can be chal-
lenging to keep track of all the dirty cachelines that need
to be flushed before the use of pm wbarrier. We ex-
pect user-level libraries and programming models to hide
most of this programming complexity from PM applica-
tions [6].

Yat is designed to help validate that PM software cor-
rectly uses cache flushes (clflush), ordering instructions
(sfence and mfence), and the new hardware primitive
(pm wbarrier) to control durability and consistency in
PM, even in the face of arbitrary failures and cacheline
evictions. For any sequence of updates to PM, Yat cre-
ates all possible states in PM based storage and then runs
the PM application’s recovery tool to test recovery to a
consistent state. The possible orderings are determined
by the memory ordering model of the processor archi-
tecture. The proposed system (based on Intel64 architec-
ture) follows these rules:

1. When a write is executed, it may become durable
immediately or at any subsequent time up to the
point where it is known to have become durable by
rule 5.

2. When a write is executed that modifies a cache line
that has been modified by a prior write, the later
write is guaranteed to become durable no sooner
than the prior write to the same cache line. This
guarantee holds across cores based on Intel64 ar-
chitecture.

3. When a clflush is executed, it has no effect until it is
followed by a fence on the same processor.

4. When a fence is executed, prior clflushes on that
processor take effect. All writes performed by any
processor to the cache lines affected by the clflushes
are flushed.

5. When a pm wbarrier primitive is executed, all
writes that have been flushed by rule 4 are made
durable. Any writes that have not been clflushed—
or that were clflushed but where no subsequent
fence was executed on the same processor as the
clflush prior to the pm wbarrier—are not guaran-
teed to be durable.

3 Yat Design
Yat is a framework for testing PM software. We refer to
the PM software being tested as App.

The goals of Yat are:
1) to test App for bugs caused by improper reorder-

ing of write operations; e.g., due to missing or misplaced
ordering and durability instructions.

2) to exercise the PM recovery code in App in the con-
text of a large variety of failure scenarios, such as power
failures and software failures internal or external to App
that cause it to abort.

To test that App applies sufficient memory ordering
constraints to preserve consistency no matter when a fail-
ure occurs, Yat simulates reordering PM writes in every
allowed order in which they may become durable in the
PM hardware based on the rules in §2. Note that if App is
multithreaded, Yat records the actual sequence of opera-
tions executed by the various threads. However, Yat does
not model the non-determinism in the software as it has
no knowledge of synchronization done by the software.

The operation of Yat is shown in Figure 2. Yat op-
erates in two phases. The first phase, Yat-record, sim-
ply collects a trace (App-trace) while App is executing.
Yat-record logs write and clflush instructions within the
address range of PM, along with the explicit ordering in-
structions (sfence and mfence), and the new hardware
primitive pm wbarrier.

The second phase, Yat-replay, has the following steps:
Segment Yat-replay divides App-trace into segments,

separated by each pm wbarrier in the trace. For each
segment, there is a set of writes to PM that have been
executed but are not guaranteed to be durable. This set
of writes is called the active set for that segment.

Reorder For each segment, Yat-replay selects subsets
of writes in the active set that do not violate rule 2. Each
such selected subset of writes is called a combination.

Replay For each combination, Yat-replay starts with
an initial state (App-initial-state), applies all writes
that are guaranteed to have become durable as of the
pm wbarrier that precedes the current segment, and then
applies the writes contained in the current combination.
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START

Enable Yat monitor

Run App,
recording writes and CLFLUSH to PM,
SFENCE, MFENCE, and pm_wbarrier

Disable Yat monitor

App-trace

OUTPUT

INPUT

Generate next combination from the active 
set

Apply  the combination to PM initialized to 
App-initial-state

Verify App data consistency with App-Chk

Passed ? Output diagnostic 
information

No

Yes

Record

Find the next pm_wbarrier in App-trace,
 adding writes in the segment

 to the active set

DONEEnd of trace? Yes

No

Segment finished? Yes

No

Remove completed 
writes from active set;

Update App-initial-state

Initialize PM to App-initial-state

Figure 2: Yat flow diagram

Recover Yat-replay then runs App to restore the PM
state from the point of the simulated failure to a con-
sistent state. In the case of PMFS, this step consists of
simply mounting the file system. For other applications,
it may involve running an application-specific recovery
routine.

Verify Yat-replay then runs an application-specific
data integrity checker (App-chk), such as those used with
file systems (fsck) and databases, to verify consistency
of App’s persistent data. If the check fails, Yat-replay
reports the point in the trace where the failure occurred,
along with the combination of uncommited writes that
were applied.

The number of combinations grows exponentially
with the number of writes in the active set, and could
become prohibitively large. However, we found this is-

sue to be less of a problem than one might fear. Because
of rule 2, the number of cache lines modified by writes in
the active set is more significant than the total number of
writes. For instance, in PMFS, the number of cache lines
written per segment is typically between four and six, so
the number of combinations is typically manageable.

Before generating any combinations for a segment,
Yat can compute the maximum number of combinations
for the segment based on the number of write operations
and affected cache lines in the active set. If this number
is below a configurable threshold, Yat exhaustively tests
every combination; otherwise, it chooses combinations
at random. The decision on whether to do random or
exhaustive testing is made separately for each segment
of the trace. The threshold for combinations per seg-
ment must take into account both Yat performance and
desired test coverage for App. For testing PMFS, we
used a threshold of 250 combinations per segment.

4 Yat Implementation
Although the design of Yat is independent of the software
being tested, some of the implementation choices were
made with PMFS in mind. PMFS is a POSIX compliant
file system, designed and optimized for PM and our sys-
tem architecture. PMFS maintains both meta-data and
data as a B-tree in PM and uses a combination of atomic
in-place updates and fine-grained logging to ensure con-
sistent updates to the meta-data. PMFS is a reasonably
complex source base, with about 10K lines of code—
ideal for a realistic evaluation of Yat.

Since PMFS runs in kernel mode, we needed a layer
of software below the kernel to trap accesses to PM. Yat-
record is implemented using our internal Type-I research
hypervisor (similar to Xen [1]), called Hypersim. Like
other VMMs, Hypersim uses Intel64 VT-x [4] to place
itself between the hardware and the guest. Unlike a
VMM, Hypersim does not actually virtualize the plat-
form, but only provides a way to observe the behavior of
a single guest. Hypersim uses typical VMM memory-
management capabilities, such as Extended Page Ta-
bles [4], to cause VM exits on write accesses to PM, and
then logs these events. Hypersim also intercepts clflush
and fence instructions and pm wbarrier hardware prim-
itive and logs these events. Because these instructions
normally do not cause VM exits, the current implemen-
tation requires App to be recompiled, substituting illegal
instructions for the clflush and fence instructions and the
pm wbarrier hardware primitive. Hypersim intercepts
these illegal instruction faults and logs them. This modi-
fication is not difficult in practice because often these in-
structions and primitives are implemented as macros or
inline functions, requiring very few changes to App. Ide-
ally, however, Yat-record would accomplish this without
modifying App’s source code. We intend to explore this
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capability in future work, perhaps using binary transla-
tion techniques [3].

Yat-replay is implemented jointly between a shell
script and Hypersim. The shell script controls the steps
of replay operation, while Hypersim manages App’s PM
state and maintains the current segment and combination
being replayed.

When starting Yat-replay, the shell script loads App-
initial-state and App-trace into Hypersim’s memory. For
each test, the shell script calls Hypersim to apply the next
combination of writes to the PM. Hypersim applies the
writes in the current combination using Copy-on-Write
(CoW). The shell script then invokes App to perform re-
covery from the simulated failure, and App-chk to verify
App’s data consistency following the recovery.

Either App recovery code or App-chk may report a
failure or may, in fact, hang, crash, or abort, depend-
ing on the nature of the problem. Yat-replay reports any
of these types of failures, along with the segment of the
trace that is being replayed, and the combination.

Since Hypersim uses CoW both for writing the com-
bination and during recovery, it can easily restore PM to
App-initial-state after each test, before applying the next
combination.

After Yat-replay is done applying the last combination
of a segment, it automatically advances to the next seg-
ment. At the transition from each segment to the next,
Yat-replay removes from the active set any writes that are
known to have been made durable by the pm wbarrier
separating the two segments. To do this, Yat-replay mod-
ifies the PM state by applying these writes without using
CoW, so they are made permanent for subsequent tests,
thereby advancing App-initial-state. Yat then adds to the
active set the writes in the new segment.

Yat-record has the capability of recording additional
information in the trace, in the form of annotations, to
aid in diagnosing failures. In testing PMFS, for instance,
we used annotations to indicate what shell command was
being executed, and, within PMFS, what transaction type
was being performed. When Yat-replay reported a fail-
ure, these annotations allowed us to quickly determine
what part of the original test was being replayed and
what part of the PMFS code was involved. In a trace
with hundreds of thousands of entries, it would have been
very difficult to diagnose failures without such annota-
tions. Examining the traces (with annotations) collected
by Yat-record gave significant insight into the operation
of PMFS code, and in general was very helpful in debug-
ging and fixing several bugs.

Figure 3 shows two segments of a sample trace. The
columns are as follows:

id an identifier for the trace entry
entry an indication of whether the trace entry is a

write, clflush, fence, or pm wbarrier

entry
W
W
W
W
W
W
W
W
W
C
F
P
W
W
W
C
F
P

offset
401182
4011c0
201184
4011a0
4011cc
001080
00108f
00108e
00108c
001080

0010c0
0010ce
0010cc
0010c0

bytes
6

12
20
16
12
12
49
1
2

12
1
2

data
< 6 bytes >

< 12 bytes >
< 20 bytes >
< 16 bytes >
< 12 bytes >
< 12 bytes >
< 49 bytes >
< 1 byte >
< 2 bytes >

< 12 bytes >
< 1 byte >
< 2 bytes >

proc

1
1

1
1

id
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Figure 3: Excerpt of App-trace

offset the offset in the PM of the write or clflush oper-
ation

bytes the number of bytes written
data the data that was written
proc an indication of which processor executed a

clflush or fence
For the purposes of explanation, assume that the

pm wbarrier preceding this excerpt made all outstanding
writes durable, so the active set is empty at the beginning.

First, the 9 writes at lines 1 – 9 are added to the active
set. These writes modify 3 cache lines, 401180, 4011c0,
and, 001080. There are 3 writes to the first cache line,
2 writes to the second, and 4 to the third. A total of 59
combinations are generated for this segment: (3+ 1)×
(2+1)×(4+1)−1. After each of these 59 combinations
is tested, Yat-replay processes the pm wbarrier at line
12. The writes to cache line 001080 are made durable by
this pm wbarrier, because of the clflush at line 10, which
was fenced at line 11. So these writes (lines 6 – 9) are
removed from the active set. The other writes (lines 1 –
5) are retained in the active set. Yat-replay then proceeds
to the next segment, and adds the 3 writes at lines 13 – 15
to the active set. The active set for this segment contains
8 writes to 3 cache lines, and the number of combinations
is 47: (3+1)× (2+1)× (3+1)−1.

Optimizations As mentioned before, the number of
combinations in the Reorder phase grows exponentially
with the number of writes, and can easily become very
large. While a configurable threshold for the number
of combinations provides a reasonable (probabilistic)
compromise, Yat-replay performance is very important
for good coverage. We optimized Yat-replay in several
ways.

Even though App may be multi-threaded, the re-
play/test cycle is single-threaded. To increase the amount
of testing that can be completed, we run multiple in-
stances of Yat-replay in parallel. Each replay instance
has a separate copy of the PM state. All the instances of
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Test writes clflushes pm wbarriers Segments Combinations Time
Total Threshold Total Threshold Total Threshold

T1 506 372 131 131 12 15K 4K 55m 15m
T2 54K 14K 6K 6K 4K 789M 1M 5.2y 3d
T3 158K 53K 15K 14K 6K 3.7×1078 2M ∞ 5d

Table 1: Evaluation of PMFS test coverage with Yat

replay work from a single trace, but each is assigned a
different part of the trace to work on. This results in a
speed-up factor nearly equal to the number of hardware
threads available.

In many places in App, a large number of consecu-
tive writes are performed that have no temporal depen-
dency. For example, when PMFS uses strcpy to fill in a
file name, the order of the write of each character of the
file name is immaterial. It would be useless (and impos-
sible) for Yat to attempt to test every possible ordering
in such a situation. To avoid this, Yat-record detects ad-
jacent writes to a single cache line and coalesces them
into a single write entry in App-trace. This also makes
the trace more compact. A single write operation in the
trace can be up to a full cache line. Note that this opti-
mization can reduce the effectiveness of testing, because
it neglects to test some reorderings that might be signifi-
cant. An analysis of App might help determine whether
it contains sequences of writes where this optimization
would be unacceptable. Additional heuristics could be
applied to avoid doing this in such cases.

App optimizations App is executed during the replay
phase only to perform recovery. The normal, optimized
code paths in App are not used at all. Under normal con-
ditions, App recovery code would run rarely, if ever, so
it would not be a target for optimizations. However, Yat
runs App recovery code millions of times, so its perfor-
mance has a significant effect on the amount of testing
that can be completed. We found it worthwhile to track
down and eliminate some bottlenecks in App recovery
code, such as use of global locks.

5 Evaluation
In this section, we describe our experiences using Yat for
validating meta-data consistency in PMFS. PMFS recov-
ery is built into PMFS itself; it attempts to recover on the
next mount after an unclean unmount. We implemented
a separate consistency checker tool (fsck.pmfs) to check
for PMFS meta-data consistency after recovery.

Examples of bugs found in PMFS Yat helped us find
several bugs in PMFS journaling and recovering, and was
instrumental in testing the correctness of PMFS. The ear-
liest bugs we found using Yat were coding errors in the
recovery code. We were able to find these bugs due to
Yat’s ability to exercise App recovery code in scenarios
that are otherwise hard to create.

The second common type of bug that was easily de-

tected by Yat was a failure to log a particular modifica-
tion to the file system. In PMFS, creating a log entry
causes PMFS to track dirty cache lines and later perform
a clflush of the relevent cache line. If the log call is omit-
ted, the clflush is not done, which Yat easily detects. In
one case, the fields that were not logged were the access
and modification times of a file; an incorrectly updated
value in those fields would be difficult to detect in any
other way, because the outdated value is within the ex-
pected range for the field.

A more complex example of a bug detected by Yat
was a case where two inodes were being deleted on two
separate threads. PMFS uses a “truncate list” to free
the blocks used by a file when recovering from a fail-
ure that occurs during deletion. If a failure occurs after
the truncate-list transaction is committed, recovery will
process the truncate list and perform the steps to trun-
cate the file. Essentially, the truncate list acts as a redo
journal.

In the failure scenario, thread 1 starts transaction 1
and deletes inode 1, adding it to the truncate list. Be-
fore transaction 1 is committed, thread 2 starts transac-
tion 2 and deletes inode 2, adding it to the truncate list.
Transaction 2 completes and is committed, and then a
Yat-simulated failure occurs.

During recovery, uncommitted transaction 1 is re-
verted, including removing inode 1 from the truncate list.
However, because the truncate list is a linked list, remov-
ing inode 1 from the list also removes inode 2 from the
list, so the blocks that had been owned by inode 2 are
never freed.

This bug was detected by fsck because the link pointer
of inode 2 was not cleared, as it would have been if in-
ode 2 had been on the truncate list to be processed by
the recovery code. This link field is only cleared to al-
low detection of this sort of problem. The cause of the
bug was that the truncate list was unlocked before the
containing transaction was committed, allowing another
thread to modify the list. The solution was to commit the
transaction before unlocking the list.

This solution led to another bug, also detected by Yat.
If a failure occurs during recovery, some of the steps to
truncate the inode and free its blocks may be completed,
but the inode is still on the truncate list. During the next
attempt at recovery, the inode is in an unexpected state
and recovery fails. This bug was detected by Yat in mul-
tiple ways, depending on the point of failure during re-
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covery. In one case, the recovery code failed due to a
NULL pointer access; in another case, fsck found that
the size of the inode was incorrect after recovery. To
solve this, the code that processes the truncate list during
recovery must not assume anything about the state of the
inode and must be idempotent.

Yat performance For the performance evaluation of
Yat, we tested PMFS with Yat on a system with 3GHz
Intel third generation Core i5 processor and 8GB mem-
ory. The processor has 4 cores and 8 threads. The system
is running a Linux 3.3 kernel (with PMFS), booted as the
Hypersim guest OS.

Table 1 shows sample Yat performance when validat-
ing PMFS. The tests were performed using a threshold of
250 for the maximum number of combinations per seg-
ment. The Segments-Threshold column is the number
of segments where the number of combinations would
have exceeded 250. The Combinations-Total column is
the total number of combinations for the test if the num-
ber of combinations for each segment were unlimited.
The Time columns are the approximate times required
to run the number of combinations in the Combinations
columns. T1 runs 100 simple shell commands to make
directory, create a file, and append small amounts of text
data to the file. T2 runs 1200 commands in the same mix
as above. T3 runs 75 (more complex) commands that
copy large files to PMFS and tar the contents.

Replay performance is highly dependent on App and
App-chk, as most of the time is spent in the recovery
and checking steps. We observed that 5% of the total
replay time was spent setting up each test, 65% in App
recovery, and 30% in App-chk. Since Yat performance
scales almost linearly with available compute power, we
can further improve validation time by using more capa-
ble (even distributed) systems.

We were able to both detect and diagnose bugs by ex-
amining the trace manually. We believe that we can au-
tomate some of this. In other words, we can detect some
bugs automatically simply by using some fairly simple
heuristics to analyze the trace, without running the re-
play at all. One heuristic that is completely independent
of the design of App is that if a cache line has been writ-
ten to but not clflushed, and thus remains in the active set
across a number of segments (10 segments, perhaps), it
is likely that the clflush was omitted.

6 Related Work
Providing consistency and recovery in the face of failures
is challenging, therefore necessitates extensive testing.
In its goals, Yat is similar to previous efforts that used
a combination of model-based analysis, automation, and
knowledge of the application to achieve good test cover-
age in reasonable time [7].

The possible failure modes for storage software (such

as file systems and databases) depends on the character-
istics of the underlying storage medium and its interface
to the rest of the system. Prior work focused on testing
software built for block-based devices with a separate ad-
dress space [7]. In contrast, PM is a byte-addressable
storage medium that resides in the same address space
as regular volatile memory. Though the challenge posed
by evictions and reordering is similar for PM and block
based systems, implementing a permutation-based test-
ing framework for PM requires different techniques and
optimizations. To the best of our knowledge, this paper
is the first to define and address the challenges to testing
software posed by PM.

7 Conclusion and Future Work
Yat, a generic PM software validation framework, has
several key characteristics that make it effective for test-
ing and debugging PM software. After capturing a se-
quences of writes and fence operations by App, Yat tests
all permissible orderings of these operations, resulting in
extensive coverage of possible error conditions in App.
When it detects a failure, Yat reports the exact sequence
of operations that led up to the failure, aiding in the di-
agnosis of the failure. Furthermore, Yat is fast enough
that it is practical for use in testing real-world software,
as demonstrated in the testing of PMFS.

We are looking at ways to avoid having to modify the
PM application source code to cause VM exits for clflush
and fence instructions and pm wbarrier primitive. Bi-
nary translation tools potentially can address both these
goals. We are also planning to port Yat from a VMM
environment to a OS native environment to debug appli-
cation level PM code without needing a hypervisor. This
should greatly simplify the setup overhead for Yat.
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Abstract
Microcontroller systems are almost always concurrent,
event-driven systems. They monitor external events and
control actuators. Typically, these systems are writ-
ten in C with very little support from system software.
The concurrency in these applications is implemented
with hand-coded interrupt routines. Race conditions and
other classic pitfalls of implementing parallel systems in
shared-state programming languages have caused catas-
trophic, and sometimes lethal, failures in the past.

We have designed and implemented Medusa, a pro-
gramming environment for microcontrollers using the
actor model. This paper presents three key contribu-
tions. First, the Medusa language, which is derived from
Python and Erlang. Second, an implementation that runs
on systems several orders of magnitude smaller than any
other actor-model system previously described. Finally,
a novel bridging mechanism to extend the domain of the
actor-model to hardware. Combined, these innovations
make it far easier to build complex, reliable and safe em-
bedded systems.

1 Introduction

This paper presents the design, implementation, and
evaluation of Medusa, a high-level language for em-
bedded microcontrollers. Medusa integrates hardware
and software messaging to provide a robust, easy to use
concurrent programming environment ideally suited for
small microcontrollers.

Microcontrollers are fundamentally designed to be a
part of an event-driven system. They are connected to
sensors and actuators and operate in response to exter-
nal stimuli. Given that microcontrollers are used to con-
trol physical systems—such as microwave ovens, cars,
and industrial machinery—embedded software must be
robust and reliable. However, the event-driven nature
of these systems leads to concurrency and synchro-
nization issues that are notoriously difficult to manage,

even in large scale systems with system software sup-
port [10, 28, 29]. In embedded systems, the program-
mer is largely unaided in dealing with these complex is-
sues. Designing better programming systems for small
scale microcontrollers is becoming critically important
as these devices proliferate.

At best, embedded systems utilize a real-time op-
erating system (RTOS) to help manage concurrency.
These systems provide primitive, low-level mechanisms
for thread scheduling, synchronization, and communica-
tion [2, 5, 9, 18]. However, these systems do not directly
address the challenges of event-driven systems. Pro-
grammers are still responsible for allocating resources
to tasks, arbitrating access to peripherals, and synchro-
nizing access to shared data. This is difficult and error-
prone.

Medusa is a programming language and run-time
system for developing concurrent microcontroller-based
systems designed to address these issues. Medusa is
based on the actor model of concurrency [15, 1]. The
actor model solves the fragmented control flow and
shared state problems inherent in traditional approaches
to event-driven programming [10]. The Medusa pro-
gramming model and run-time system utilize and expand
upon these ideas for small embedded systems.

This paper presents three practical contributions. First,
it presents a new actor-based programming language
that is implemented as a small set of extensions to
Python, a popular and expressive programming lan-
guage. Medusa’s message passing system is based on
Erlang, which has been rigorously evaluated, both for-
mally and in practice. This combination makes Medusa
simple enough to be used by a novice and yet expressive
enough to build complex concurrent applications.

Second, we present an implementation of the Medusa
system as a set of extensions to Owl, our open-source
embedded Python implementation [4]. These extensions
are very small, less than 3KB of compiled code. This
allows Medusa to run on systems that have less than 1%
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of the minimum memory requirements of Scala or Er-
lang. An empty thread only consumes 130 bytes, and
there is no fixed limit to the number of threads in the
system. It is also fast: The time needed to prepare a
message, send it from one thread to another and finally
process it on the other end is less than the time required
for five function calls. The scheduler can both spawn
a new thread and perform a context switch in less than
the time required for a single function call. Even on a
microcontroller with 96 KB of RAM, Medusa can sup-
port hundreds of threads. We evaluate the complete sys-
tem with microbenchmarks and realistic embedded ap-
plications, demonstrating that modern language features
can be used on systems smaller than any that have been
previously demonstrated—or even proposed.

Finally, this paper presents a novel bridging mecha-
nism to extend the domain of the actor model to the hard-
ware. This mechanism is fast; accepting, converting and
storing an external event takes less than 4 microseconds.
Further, these bridges simplify one of the more difficult
challenges of embedded systems software development:
dealing with concurrent interrupts. By presenting the
exact same abstraction for communication both among
software threads and hardware, the programming model
is more uniform, making it easier to design and imple-
ment robust and reliable embedded systems.

The following section discusses background and re-
lated work. Section 3 describes the Medusa language it-
self. Sections 4 and 5 describe the implementation of the
messaging, bridging and toolchain systems of Medusa
in detail. Section 6 presents a quantitative analysis along
with real-life applications built with Medusa. Finally, we
conclude in Section 7.

2 Background and Related Work

Traditionally, microcontrollers are programmed in C. To
address the challenges inherent in C programming, a typ-
ical microcontroller tools vendor provides a suite of soft-
ware to help analyze and debug low-level C programs
running directly on the microcontroller or on top of a
thin RTOS. While these tools help the programmer find
problems, they do little to simplify the task of writing
and maintaining low-level embedded software.

These tools have evolved to perform static analysis to
detect specific, common bugs. One of the most com-
mon themes of these systems is the detection of data
races [17, 27]. We believe, however, that the best way
to prevent these common mistakes is to preclude them in
the programming environment. Recent research efforts
have started to move in this direction by introducing new,
higher-level programming languages and new program-
ming models to small systems. Medusa does exactly this.
It extends our open-source managed run-time to directly

support the actor model of event driven programming.
In the Medusa system, these static analysis tools become
unnecessary because it is impossible for a Medusa pro-
grammer to introduce any of these types of bugs.

2.1 Embedded managed run-time systems

Early commercial embedded run-time systems, such as
the BASIC Stamp [20], were quite primitive. As such,
they never moved far past educational uses. Similarly,
academic projects were largely focused on extremely
small 8-bit devices [22].

Since then, microcontrollers have grown in size and
capability, so they can support more capable run-time
systems. The Java Card environment allows a small sub-
set of Java to run on 16-bit microcontrollers [6]. The
recent availability of 32-bit microcontrollers has allowed
for the creation of much larger virtual machines, such as
Squawk for Java [26] and Owl for Python [4]. The open-
source Owl toolchain and virtual machine serves as the
base for the Medusa system. In total, the Medusa Virtual
Machine consists of 24,200 lines of C.

On high-end embedded systems like phones, managed
run-time systems are nearly ubiquitous. The Android
system runs on top of Dalvik, a bytecode virtual machine
and the iPhone runs on top of the Objective-C 2.0 auto-
matic garbage collection and reflection runtime.

The Erlang system itself has been used on embedded
systems such as phone switches and base stations. How-
ever, these devices are very different from those targeted
by Medusa. The Erlang website1 states, “People suc-
cessfully run the Ericsson implementation of Erlang on
systems with as little as 16MByte of RAM.” This is over
200 times the minimum requirements of Medusa.

2.2 Actors

The actor model [15, 1] is a mathematical framework that
directly represents event-driven systems. Actors repre-
sent distinct modules of computation, each responsible
for a logical task. They receive a message, send mes-
sages to other actors, then decide how to respond to fu-
ture messages. They do not, however, modify shared
state. This structure makes program control-flow much
easier to understand. The actor model cleanly separates
and isolates system function [10].

The actor model was first described in 1973 by He-
witt, Bishop and Steiger [15] as a framework for artificial
intelligence. Early work on actors established a strong
mathematical and theoretical basis for the proving and
verifying aspects of actor-based systems. These include
formal definitions of what an actor system is [7], laws for

1http://www.erlang.org/faq/implementations.html
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actor systems [14], commitment [13] and formal analysis
of divergence and deadlock [1].

Many programming languages have been constructed
to directly support the actor model, including Act [24],
Erlang [3], Scala [25] and Go.2 This work has col-
lectively built useful infrastructure for practical actor-
based systems, formal verification systems (enabled by
the strong theoretical background of functional and actor
programming) [16] and efficient systems for generating
and passing object references [12]. Many of these lan-
guages, most notably Go and Erlang, contain threading
implementations that are lighter than operating system
threads [3, 11] but are still more resource intensive than
Medusa. Go and Scala require more than an order of
magnitude more memory than Medusa.

TinyOS is another microcontroller programming envi-
ronment that proposes a new programming model. In this
split-phase model, programs are divided into blocks that
start long-running operations, but do not wait for them to
complete. Instead, they are notified that operations have
succeeded through callbacks [23]. This is a potentially
difficult-to-use programming model. In fact, more recent
research has provided a threading model that runs on top
of TinyOS’s split-phase model [19].

Scala and Erlang both provide a messaging layer that
is similar to Medusa’s software-to-software messages;
they can transport complex objects and have sophisti-
cated pattern matching abilities. Candygram, a Python
library, provides similar facilities. However, it does not
include new syntax for messaging and pattern match-
ing nor lightweight threads. On a desktop computer,
Candygram threads were measured to require 3.5 KB of
memory each, several hundred times what is required in
Medusa.3 The Go language provides a messaging layer
that is easy to access from low-level code but does not
provide composite object messaging or pattern matching.

3 Medusa language

The Medusa language is a backwards-compatible, ex-
tended version of Python that directly supports the actor
model. This is analogous to Scala, a similarly extended
version of Java. Medusa includes several key features
derived from Erlang: light-weight threads, messaging,
pattern matching, and atoms.

In Medusa, actors are implemented as light-weight
threads. A context switch takes roughly the same amount
of time as the execution of a Medusa function call. The
interface for creating a new thread in Medusa is ex-
tremely simple, using thread.spawn. Once the new
thread is running, it is also simple to send messages to

2http://golang.org/
3http://candygram.sourceforge.net/

recv:
case 1:

print "received 1"
case 2:

print "received 2"

Figure 1: Basic Receive Statement.

the spawned thread. Any immutable object can be sent
as a message. For example:

new_thread = thread.spawn(function)
new_thread.send (1)
new_thread.send((1, "foo", 2.1, True , None))
new_thread.send((1, "foo", 2.1, (1, 2, 3)))

Once the actor has been started, it receives a message
using the recv statement, shown in Figure 1. The in-
terpreter matches against each case block sequentially.
If the message matches the first case, the message will
be consumed, the print statement will be executed and
the recv block will finish. Note that code does not “fall
through” into other case blocks. If the message fails to
match any block, the message will be deferred for later
handling, and the system will wait for a new message.

Often, the programmer will not know the exact mes-
sage an actor is expected to receive. Medusa allows this
through pattern matching, where a portion of the mes-
sage is specified and other parts are stored as variables:

recv:
case ("fire!", 1, temperature ):

print "engine one on fire!"

case ("fire!", 2, temperature ):
print "engine two on fire!"

A pattern can contain immutable values plus any num-
ber of variable names. If a variable is already bound, the
message will only match if the value in the message is
the same as the value bound to the variable.

When a message is received, each element in the mes-
sage is compared against the first pattern. For example,
assume the above actor is sent the message ("fire!",

1, 1205). The first two elements of the message match
the pattern. The system then assigns the values from
the message to the unbound variable names. In this case
temperature is assigned the value 1205. If the pattern
does not match all of the bound elements of the mes-
sage, all unbound variables remain unbound. Literal val-
ues, bound variables and unbound variables can appear
in any order in a pattern. Additionally, patterns and mes-
sages can be arbitrarily complex; patterns are matched
with a deep comparison. Finally, the keyword Any acts
as a wildcard and can be used in a pattern to match any
value. This is useful when a part of a message does not
need to be saved.

In addition to recv blocks, Medusa allows pattern
matching with the new match operator (<-):
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import thread

def start ():
EchoThd <- thread.spawn(echo)
EchoThd.send(( mytid(), "hello"))
recv:

case (EchoThd.tid(), Msg):
print Msg

EchoThd.send(‘stop ‘)

def echo ():
recv:

case (FromTid , Msg):
FromThd <- thread.get_thd(FromTid)
FromThd.send(mytid(), Msg)
return echo()

case ‘stop ‘:
print "Stopping", mytid()

Figure 2: Medusa echo program.

data = ("baz", 42)
("baz", number) <- data

In this example, the pattern ("baz", number)

matches against data. The value 42 is stored to the vari-
able number. If the pattern matching had failed, how-
ever, an exception would have been thrown, stopping the
execution of this thread with an error.

In addition to complex patterns, as shown above, the
match operator can be used with the trivial pattern: a <-

32, pronounced “a gets thirty-two”. This enables sin-
gle assignment, guaranteeing that a variable will never
change value, providing support for functional program-
ming.

In the examples so far, strings have been used to dis-
tinguish message types. Statically typed languages, such
as Scala, use actual object types instead. Dynamically
typed languages, such as Erlang, use “atoms”. Internally,
atoms are handled more efficiently than strings, as they
are merely textual representations of a unique identifier.
Medusa supports atoms using the backtick delimiter:
case (‘fire ‘, ‘apu -one ‘, temperature ):

Finally, Figure 2 shows an example that combines all
of these elements. A main thread spawns an actor that
echoes messages back to the sender. The main thread
then sends a message to the echo server, waits for the
proper response, then stops the server with the ‘stop‘

atom. After receiving a message, the echo actor re-
cursively calls itself to handle the next message. The
Medusa compiler automatically optimizes this tail-call so
no stack space is used.

4 Implementation

The Medusa system is implemented as a set of extensions
to our previously-published embedded Python system,
Owl [4]. Specifically, it is built using a small number

of new bytecodes, object types, and a modified Python
compiler. These extensions are completely backwards
compatible. Existing code runs unmodified. Python and
Medusa code can even run at the same time on the same
device. They consume 3KB of compiled code, less than
10% of the overall size of our virtual machine. While
our implementation was designed around the existing
Owl system, our design should be generalizable to im-
plementing lightweight messaging and pattern matching
in any bytecode virtual machine.

4.1 Pattern Matching
Pattern matching is integral to the Medusa messaging
system. It allows threads to concisely specify the mes-
sages that they are ready to receive. Pattern matching is
implemented by combining Python’s existing compari-
son support with a new “unbound variable” object. For
example, consider this pattern match operation:
(12, a, b) <- (12, 3, 4)

The Medusa compiler compiles this almost exactly as
if it were a standard comparison:

Offset Bytecode Argument

0 LOAD_CONST (12)
3 LOAD_NAME_UNBOUND (a)
6 LOAD_NAME_UNBOUND (b)
9 BUILD_TUPLE 3

12 LOAD_CONST (12)
15 LOAD_CONST (3)
18 LOAD_CONST (4)
21 BUILD_TUPLE (3)

24 COMPARE_OP (<-)

For variable loads on the left hand side of the pat-
tern match, the compiler emits LOAD NAME UNBOUND

instead of LOAD NAME. When the program executes
LOAD NAME UNBOUND on the name a, it looks up the vari-
able a to see if it is bound. If it is, it loads its value and
pushes it onto the stack, exactly as LOAD NAME would
do. If it is not, instead of raising a name error exception,
it creates a new UnboundLocal object as a placeholder
for the future value for the variable named a. Similarly,
the variable b is looked up, and either its value or a new
UnboundLocal is pushed on the stack. For the sake of
this example, assume that a was previously bound to 3
and b is unbound.

When execution reaches COMPARE OP, the virtual ma-
chine will compare the top two objects on the stack:

(12, 3, [UnboundLocal for name "b"])

(12, 3, 4)

COMPARE OP for the bind operator starts by creating an
empty dictionary to store unbound objects with their new
values. Then, it performs a nested comparison on the two
tuples just as it would in standard Python.
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It starts with the first element, compares it, then moves
on. Finally, with the last element, it compares the literal
value 4 with the unbound object [UnboundLocal for

name "b"]. This comparison always succeeds, since b

does not yet have a value. The virtual machine adds an
entry to the dictionary associating the name of the un-
bound local with the value it was compared with. If the
value is not going to be used, a special Any object can
be used, instead of an unbound variable, to match any-
thing. If every element in the comparison matches, this
means that the pattern has matched. At this point, each
of the entries in the unbound objects dictionary can be
committed into actual variables.

A receive statement consists of a sequence of these
patterns. As a message arrives, an attempted match is
made against each pattern in the receive statement. If a
match fails, the next pattern is tried. If a match succeeds,
the variables are bound and the code block associated
with that pattern is executed.

4.2 Mailboxes

In Medusa, each thread has a pair of queues to support
message passing: one for incoming messages (the mail-
box queue) and one for deferred messages (the deferred
queue). When a thread sends a message, it appends a ref-
erence to the message object in the destination thread’s
mailbox. Messages cannot contain mutable objects, so
they do not need to be copied. When a thread executes
the recv statement, the virtual machine first moves any
messages from the deferred queue into the front of the
mailbox, using the UNDEFER MSG bytecode. Then, it
removes the first message from the mailbox, using the
RECV MSG bytecode, and attempts to match it against
each pattern, in order.

If none of the patterns match, the message is appended
to the end of the deferred queue, using the DEFER MSG

bytecode. The next message is removed from the mail-
box, and the process repeats. Finally, if the mailbox is
empty (either because the thread had no pending mes-
sages or because all the pending messages were de-
ferred), the thread blocks, waiting for another message.
This allows the scheduler to execute other threads.

The key to this process is that when messages from the
deferred queue are moved back into the mailbox, they
remain in the order of their arrival. If a given message
cannot be handled by an actor in its current state, a later
message may reconfigure the actor to be able to handle
the older message. It can then be handled and removed
from the mailbox. This prevents deadlock.

The implementation of the receive process is illus-
trated in Figures 1 and 3. Figure 1 shows a simple re-
ceive block with more than one case. Figure 3 shows the
compiled bytecode for this basic receive statement.

Offset Bytecode Argument

0 UNDEFER_MSG
1 RECV_MSG

2 DUP_TOP
3 LOAD_CONST (1)
6 ROT_TWO
7 COMPARE_OP (<-)

10 POP_JUMP_IF_FALSE 21

13 LOAD_CONST ("received 1")
16 PRINT_ITEM
17 PRINT_NEWLINE
18 JUMP_ABSOLUTE 44

21 DUP_TOP
22 LOAD_CONST (2)
25 ROT_TWO
26 COMPARE_OP (<-)
29 POP_JUMP_IF_FALSE 40

32 LOAD_CONST ("received 2")
35 PRINT_ITEM
36 PRINT_NEWLINE
37 JUMP_ABSOLUTE 44

40 DEFER_MSG
41 JUMP_ABSOLUTE 1

44 POP_TOP

Figure 3: Bytecodes for code in Figure 1.

The first two bytecodes move all the messages that
might have previously been deferred back into the mail-
box queue (at the front, and in the order that they ar-
rived) and then receives the first message from the mail-
box and places it on the stack. The next block of code
(bytecode offsets 2–10) performs the first pattern match
against the pattern “1”. The message is duplicated, the
constant 1 is placed on the stack, and they are swapped
(because the message must be on the top of the stack).
The COMPARE OP bytecode then actually does the match-
ing and places True or False on the stack depending on
whether the match was successful or not.

If the first match fails, the POP JUMP IF FALSE byte-
code skips to the next pattern match (bytecode offsets
21–29), which is nearly identical in this case. If the
match succeeded, the pop jump bytecode will simply pop
True off the stack and fall through. The associated code
(bytecode offsets 13–18) will execute, printing the string
“received 1” and jumping to the end of the block (byte-
code offset 44) which simply pops the original message
off the stack.

If both matches fail, the message will be deferred
(bytecode offset 40) and the code will jump back to
the receive (bytecode offset 1). If there is another mes-
sage, it will try to match that message again. If not, the
RECV MSG bytecode will block waiting for the next mes-
sage to arrive and the thread will yield the processor.

Notice that the bulk of the work here is done by the
compiler with only a few specialized bytecodes. This
provides significant flexibility to use these mechanisms
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def monitor1(controller ):
# wait for event 1 to occur
controller.send(me(). tid(), "alert!")
monitor1(controller)

def monitor2(controller ):
# wait for event 2 to occur
controller.send(me(). tid(), "alert!")
monitor2(controller)

def init ():
# spawn two monitors to send me alerts
m1 <- thread.spawn(monitor1 , me())
m2 <- thread.spawn(monitor2 , me())

# process events
event_loop(m1.tid(), m2.tid())

def event_loop(m1tid , m2tid ):
recv:

case (m1tid , msg):
# process alert from m1

case (m2tid , msg):
# process alert from m2

case Any:
print "Unexpected message!"

# Always return to the event loop
event_loop(m1tid , m2tid)

Figure 4: Simple Messaging Example.

and ample opportunity for compiler optimization for spe-
cial cases.

4.3 Example

Figure 4 shows a simple example of how messaging
works. In this example, two monitor threads are spawned
which wait for arbitrary events. When they receive a
message, they send a message back to the main con-
trol thread. Here, the messages are simple strings, but
they could be arbitrary data. The main control thread
runs an event loop waiting for messages from the moni-
tor threads.

When the main control thread receives a message, pat-
tern matching is used to determine what to do. The
incoming message is first matched against the pattern
(m1tid, msg). In this tuple, the first variable, m1tid, is
already bound, whereas the second, msg, is not. So, this
pattern will match any incoming message that is a tuple
of two elements with the thread ID of the m1 thread. If
this match fails, the next pattern, (m2tid, msg), will be
tried. If either of these matches succeed, the msg variable
will be bound to the data from the second element of the
tuple in the message. The last case with the pattern Any

will match any other message, ensuring the mailbox does
not fill with unexpected messages. If information about
the unexpected message is desired, the pattern could be
a single unbound variable which will match any object
(including a tuple). This structure frees the programmer
from worrying about the order of message arrival. The

def event_loop(m1tid , m2tid ):
recv:

case (m1tid , msg):
# process alert from m1

recv:
case (m2tid , msg):

# process alert from m2
case Any:

print "Unexpected message!"

# Always return to the event loop
event_loop(m1tid , m2tid)

Figure 5: Prioritizing Messages.

loop will process messages as they arrive, and there is a
clear and easy way in which to specify how to process
each message. Finally, event loop is reinvoked to pro-
cess the next message. The Medusa compiler optimizes
this tail call.

While this example shows the elegance of the mes-
saging system, mailboxes are designed to provide further
control over message receipt to the programmer. Imag-
ine, instead, that it is only useful to process messages
from the second monitor after receiving a message from
the first monitor. The out-of-order delivery mechanism
of the mailbox makes this possible. Consider the revised
event loop in Figure 5. In this case, no matter what mes-
sage arrives first, the main control thread will wait for a
message from the first monitor. All other messages, ei-
ther from the second monitor or unexpected messages,
will be deferred.

Once a message from the first monitor is received, it
will be processed. The next recv block will then be ex-
ecuted. In that case, the first thing that happens is that all
received messages that were previously deferred waiting
for a message from the first monitor will be “undeferred”.
So, if a message from the second monitor had arrived
first, it will now be received and processed immediately.

These simple examples demonstrate how the messag-
ing implementation enables flexibility for the program-
mer. Further, note that the mailbox maintains messages
in the order that they arrived. The programmer can
reorder these messages only by the structure of recv

blocks and patterns.

4.4 Deadlock and finite message bounds
The actor model in general is resilient to deadlock. Tra-
ditional notions of deadlock, where two threads wait on
one another to free locks, are impossible in Medusa since
there are no locks. However, it is possible for the system
to fail if a large number of messages of one type are sent
to a thread that is only receiving a message of a different
type. This is true of any actor system with finite mes-
sage queues [8]. In Medusa, the system will stop with an
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out-of-memory exception.
The Medusa environment has tools to help diagnose

and fix these potential issues. The virtual machine keeps
track of the largest number of pending messages that are
ever held at once in each thread’s mailbox. Additionally,
it tracks the average number of pending messages in the
mailbox each time the thread receives a message. The
programmer can view these values for any threads at any
time. If either value is particularly large, there is the po-
tential for mailbox overflow. In that case, the application
should probably be restructured.

5 Bridge architecture

Current embedded run-time systems, such as the Owl
system that Medusa is based upon, require polling to
detect hardware events. Applications must repeatedly
check to see if an event has occurred inside peripheral
hardware. In contrast, C programs often use interrupts,
which requires the use of shared, mutable state.

Medusa introduces a novel third option by bridging
the domain of the actor model to hardware. Bridges
allow interrupt service routines (ISRs) to communicate
with software threads. ISRs written using bridges are ex-
tremely simple, often just a few dozen lines of C, and all
interaction with the virtual machine happens through a
safe, secure interface. This interface makes it impossi-
ble to introduce a synchronization bug or race condition.
With bridges, hardware modules and software threads
communicate using the same message passing system.

5.1 Programming with Interrupts

Inside the microcontroller, there are hardware agents that
monitor the state of peripherals constantly, even when
the core is busy with other work or is sleeping. These
agents detect external events that can be selected by the
programmer. A user may want to detect level changes on
a particular general-purpose I/O (GPIO) port, incoming
serial data or a completed analog to digital conversion.
When a selected event occurs, the hardware interrupts
normal program execution and calls a user function.

Systems written in C use hand-coded interrupt service
routines (ISRs) to respond to these events. In effect, this
creates a multi-threaded program: one interrupt handler
thread and one program thread. The interrupt handler
thread must send data back to the program thread so that
the program can respond to the event. This must be
done by writing to and from shared locations in mem-
ory. Since the program thread may be reading or writing
from those shared locations, the interrupt and program
threads must communicate using thread-safe techniques.
These are difficult and error-prone to use, which can lead
to catastrophic synchronization bugs. These bugs are

unpredictable, only occurring under very specific situa-
tions, and can often be virtually impossible to reproduce.

5.2 Interrupt Bridging

Medusa solves these two problems with a technique
called bridging. It avoids shared state between inter-
rupt handlers and the main program exactly as Medusa
solves this problems between multiple software threads:
message passing. In effect, bridging makes the hard-
ware agents that monitor for events into actors them-
selves. These actors run all the time, do not interfere with
threads running on the core and send messages when
events occur instead of modifying shared state.

Bridges replace the manual process of sharing data
with an ISR with a standard, thread-safe interface. With
bridging, ISRs are extremely simple and all communica-
tion happens through a single function call. Further, the
programmer cannot introduce a synchronization bug or
race condition. Messages from bridges are indistinguish-
able from other messages and can be received through
the recv statement, like any other message.

Additionally, the bridge interface used by ISRs is ex-
tremely fast. It does not allocate memory off the heap, so
it never has to run the garbage collector. The ISR to de-
liver general-purpose I/O (GPIO) events through a bridge
deterministically completes in 187 cycles on our system,
less than 4 microseconds. This minimizes the possibil-
ity that events will be lost. Overall, bridges eliminate
the two biggest challenges of one of the hardest parts of
embedded programs: dealing with interrupts.

5.3 Implementation

At its core, a bridge is a producer-consumer ring sup-
porting safe asynchronous communication between two
endpoints. In between the endpoints, the virtual machine
converts Python or Medusa types to and from C types.
With an inbound ring, an ISR calls the bridge code to
produce one or more bytes of data. Later, the virtual
machine automatically consumes data from this ring and
delivers the data to a subscriber. Alternatively, data in
an outbound ring is produced by a user thread, then con-
sumed by C code and an interrupt routine.

Each peripheral that will need to either send or receive
data from a Medusa thread will have a bridge, denoted by
a bridge number, assigned at VM compile time. For each
bridge, the user specifies how many bytes each message
will contain and how many messages should the ring
should hold. For example, consider a bridge to deliver
GPIO messages to a Medusa thread. Each event can be
described in five bytes, four to represent the 32-bit port
number and one to represent the status of all eight bits
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# d e f i n e ALL PINS 0 x f f
# d e f i n e MSG SIZE s i z e o f ( unsigned long ) + 1

void G P I O I n t e r r u p t H a n d l e r ( unsigned long p o r t )
{

u i n t 8 t v a l u e s ;
u i n t 8 t message [ MSG SIZE ] ;

/∗ c l e a r a l l t h e i n t e r r u p t s f o r t h i s p o r t ∗ /
G P I O P i n I n t C l e a r ( p o r t , ALL PINS ) ;

/∗ read t h e v a l u e o f t h e p o r t ∗ /
v a l u e s = GPIOPinRead ( p o r t , ALL PINS ) ;

/∗ pack t h e da ta i n t o a f i v e b y t e message ∗ /
memcpy ( message , &p o r t , s i z e o f ( unsigned long ) ) ;
message [ s i z e o f ( unsigned long ) ] = v a l u e s ;

/∗ send i t t o t h e s u b s c r i b e r s ∗ /
b r i d g e p r o d u c e ( GPIO BRIDGE , &message , MSG SIZE ) ;

}

Figure 6: The GPIO interrupt service routine.

on any given port. Therefore, the bridge is set up to send
five byte messages:
b <- bridge.create(GPIO , # bridge number

32, # number of messages
5) # size of each entry

The programmer then sets up the underlying hardware
to trigger interrupts on GPIO level transition. Then, the
user sets a tag to be included with every message. In this
case, the tag is the atom ‘gpio‘ which can be matched
by a pattern. Finally, the user specifies the subscriber to
the bridge, which will receive any data sent to it. In this
case, the subscriber is the current thread:
# init the hardware interrupts
interrupt.IntEnable(interrupt.INT_GPIOD)
gpio.GPIOIntTypeSet(button.port ,

button.pin ,
gpio.GPIO_BOTH_EDGES)

gpio.GPIOPinIntEnable(button.port ,
button.pin)

# set the tag and subscriber
b.setTag(‘gpio ‘)
b.subscribe(me())

The GPIO interrupt handler (Figure 6) constructs these
five byte messages and passes them on to the virtual ma-
chine for handling. First, it clears the pending inter-
rupt, then reads the GPIO port. It concatenates these
values into a single block of size MSG SIZE, then calls
bridge produce. This function takes the bridge num-
ber, a pointer to the message and the message size.

On the VM side, the system checks that the bridge
is initialized and is not full. It then copies the message
into the ring. At this point, the interrupt handler returns
and the processor resumes executing whatever bytecode
it was interpreting when the interrupt occurred.

When that bytecode completes, the virtual machine
will consume any new messages out of the bridges by
copying them into a Python/Medusa string. The tag spec-

ified by the user is combined with the string into a tu-
ple, and that tuple is sent to the subscribing thread. The
thread scheduler then marks the subscriber as runnable,
and bytecode execution continues. It is critical to realize
that this portion of the bridge code is not running inside
an ISR, so does not delay or interfere with the execution
of other interrupts.

Once the bridge is set up, this process is entirely trans-
parent to the subscriber. That thread simply receives
messages, tagged with the specified tag, and acts upon
them, just as it would had it received a message from
another thread.

5.4 Chronograph
A central timer, or “chronograph”, can also be imple-
mented using bridging. A thread can request that a mes-
sage be sent to it at some later time. The chronograph
then determines which thread will get the next timer
wakeup, configures a hardware timer, and waits to re-
ceive the message from it. The scheduler automatically
suspends the chronograph thread and any threads waiting
on a message from it. When the hardware timer goes off,
the scheduler wakes up the chronograph, which in turn
wakes up and sends a message to the subscribing thread.

The chronograph also provides a sleep(time) func-
tion that stops the current thread for time milliseconds.
Internally, this function uses the same hardware timer
and bridge as the rest of the chronograph. Using this fa-
cility, a thread that is sleeping is automatically suspended
until it is time to wake up.

6 Evaluation

To evaluate the Medusa system, we constructed and mea-
sured the performance of several microbenchmarks and
several embedded applications. We compare applica-
tions that use the Medusa systems of messaging and
bridging with procedural, polling-based applications that
run on the standard Owl system. These experiments were
run on the Texas Instruments Stellaris LM3S9B92, an
ARM Cortex-M3 microcontroller operating at 50 MHz,
with 96 KB of SRAM and has 256 KB of flash.

6.1 Threads
In Medusa, thread state is all stored within the heap.
A thread consists of a thread id, message queues, the
thread’s activation records, and the thread state (active,
blocked, etc.). There is no stack in the system, so all ac-
tivation records are allocated on the heap and contain a
“back” pointer to the previous record. This architecture
allows for extremely lightweight thread creation, dele-
tion, and scheduling. On average, it takes about 59us to
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1 2 3 1 2 3

chainbroadcast/collect

Figure 7: The two message benchmarks: broadcast/col-
lect and chain. The number of workers (3 in the figure)
is configurable.

create a thread on a 50 MHz Cortex-M3 processor. It also
makes context switches quickly: about 129us on average
to context switch while running 100 threads.

6.2 Messaging performance
To measure the speed of message passing, two simple
benchmarks were constructed, shown in Figure 7. Both
spawn a configurable number of worker nodes that re-
ceive a message, then forward it on to a specified node.
In the broadcast/collect benchmark, a broadcaster node
transmits one message to each worker node. They then
forward their message to a single collector node. In the
chain benchmark, the head node transmits only to the
first worker node. That node forwards it on to the sec-
ond worker node and so on. Finally, the last worker node
forwards the message to the collector node.

For both benchmarks, the time between the first and
last message sent is timed. These results are shown in
Figure 8, normalized to the number of messages sent in
each benchmark. At light load, the time required to pre-
pare and send a message, switch contexts to the recipient
and finally receive the message is around 600 microsec-
onds for both benchmarks. This is less than the time re-
quired for five function calls. As memory pressure in-
creases with more threads, this time increases to around
1000 microseconds. The additional threads create more
garbage to be collected, slowing overall progress through
the program. The broadcast/collect benchmark is more
complex in implementation, so it runs into memory pres-
sure somewhat earlier.

6.3 I/O Latency
The simplest I/O benchmark for Medusa monitors an in-
put pin for a signal and raises an output pin in response.
The baseline for this test uses polling. It spins in a loop,
reading the input line, writing its state to the output line
and yielding back to the scheduler. The other version of
this program uses bridges and interrupts. When the pin
changes state, an interrupt triggers the bridge interrupt
handler described in Section 5.3. It sends a message to a
thread, which then raises the output pin. This experiment

was run using both standard and priority bridges. These
use a modified version of the scheduler that executes a
blocked thread immediately when it receives a message
from a bridge. To compete for time, the microcontroller
runs a heapsort benchmark repeatedly in a background
thread. I/O latency was measured using another Stellaris
microcontroller and confirmed with a factory-calibrated
Tektronix TDS 220 digital oscilloscope. Both bench-
marks were tested 500 times each. The distribution of
these response times are plotted in Figure 9.

In the polling implementation, the thread reading the
input must wait until it is scheduled before it can detect
a change. The probability that the GPIO will happen
across the 10 ms that the background thread is running is
uniform. However, approximately 25% of the time, the
background thread triggers the garbage collector, which
can last upwards of 85 ms. Once the garbage collector
has finished, the polling thread will run and can respond
to the input.

The behavior is similar with the standard bridge
benchmark. The bridge delivers a message to the I/O
thread, which will receive the I/O message once it is
scheduled. Again, the garbage collector may interrupt
the background thread, slowing response. Note, how-
ever, that the bridge implementation will not lose events
unless its buffer fills. The bridge interrupt handler will
still run during garbage collection, queueing messages.
Compare this to polling, which can miss short events dur-
ing garbage collection. This effect becomes more dra-
matic as more threads are active in the system competing
for processor resources. The best performance comes
with the priority bridge. Here, the I/O thread does not
have to wait for the background thread to complete its
timeslice, so latency is less than 2 ms 80% of the time.

6.4 Streaming data

Many peripherals such as GPS receivers and ultrasonic
rangefinders send periodic updates as bursts of data over
a serial port. In a GPS unit, update messages are sent
once per second in messages ranging from twenty to
eighty bytes in size. This presents a problem for ap-
plications that use polling to monitor events. While the
hardware serial port (UART) on the microcontroller does
have a buffer, it too small to hold a complete message. If
a program is not polling when a message is sent, the hard-
ware buffer will overflow and the user will not receive the
complete message. Additionally, the user program must
be able to pull bytes out of the UART buffer at least as
fast as they are being received.

Figure 10 shows this behavior. A transmitter sends 50
byte bursts to a receiver. The receiver records the bytes
either using a polling loop or with bridges. The first ex-
periment (solid line) shows that even when the controller
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Figure 10: Data loss rates for dif-
ferent transmission rates.

is doing nothing but polling the UART, the software can-
not keep up with the transmission rate after 9600 bits/sec.
When the polling loop has to compete for time with a
background task, it loses data after 4800 bits/sec.

Compare this to an application that receives bytes us-
ing bridges and interrupt handlers. In this case, whenever
traffic is received, the interrupt handler places the data
in a bridge for the receiving thread. Then, that thread
is activated by the scheduler and can pull the data from
its message queue. In this case, the background task is
never interrupted when data is not being sent, and the
application can receive the complete 50 byte message at
any tested transmission rate.

Similar results are seen with real-life applications. We
constructed a simple example that receives and parses
data from a GPS receiver. An application using polling
could receive and interpret messages up to a transmission
rate of 9600 baud. When the GPS transmitted any faster,
all messages received are incomplete, and therefore un-
usable. When the polling thread runs in competition with
another thread, no complete messages were received at
any data rate. However, with bridges, the GPS can run
at its full speed (57600 baud) even with a background
thread. Since the GPS thread only runs when it is ac-
tively processing a message, the background thread ran
at 93% of its native speed.

6.5 Event-driven Systems

The previous sections have shown the efficacy of the
Medusa mechanisms for communication and concur-
rency. The ultimate motivation for these mechanisms
is to build better structured event-driven systems. To
demonstrate that these mechanisms are both practical
and usable in such systems, we built several embedded
applications, including an autonomous car and a traffic-
light controller.

The autonomous car demonstrates that Medusa can
coordinate concurrent tasks and peripherals into a cohe-
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Figure 11: Diagram of Event-driven Autonomous Car.

sive embedded system. The electronics from an off-the-
shelf RC car (an Exceed RC Electric SunFire Off-Road
Buggy) were replaced with a 9B92 microcontroller and
associated peripherals. The car is controlled entirely by
the microcontroller. An ultrasonic range finder, GPS re-
ceiver, and three-axis gyroscope connected to the micro-
controller transmit feedback from the car’s surroundings,
while connections to the car’s motor and steering servo
provide control of the car’s movements.

Figure 11 shows the design of the car application.
Each box in the figure represents an actor (Medusa
thread). Each oval represents an actor state (Medusa
function). Dotted arrows represent state transitions
within an actor. Solid arrows represent messages being
sent from one actor to another.

The GPS connects to the microcontroller over a
UART. Every second, the GPS sends a packet of data
that contains control information and its current position.
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After each byte of the packet is sent, the microcontroller
triggers an interrupt. This signal is caught by the specific
UART’s bridge interrupt controller, converting the byte
from the GPS into a software message. A GPS driver
thread subscribes to these messages being sent from the
GPS via the UART bridge. When it has received an entire
message, it converts the message from a string of bytes
into a Medusa message with numeric longitude and lati-
tude. These messages are sent to a navigation controller.
This thread maintains a list of waypoints and sends turn
commands to the master thread described below.

The motor controller and rangefinder also connect to
the microcontroller via UARTs, using a similar combi-
nation of bridges and driver threads. The gyroscope con-
nects over the I2C bus, also through a bridge to its own
driver module. Finally, the application uses the chrono-
graph to wait for an exact period of time without spinning
to read the clock.

The car is controlled by a master thread that collects
messages from the GPS, rangefinder and gyro and sends
messages to the servo and motor controller threads. This
master module runs a two-term, PI feedback controller
that makes sure the car drives straight, even over varying
terrain (or the author’s foot). Meanwhile, it receives turn
commands from the navigation thread. Finally, it moni-
tors the rangefinder to avoid hitting obstacles.

Note that the nine threads in this system have no
shared state whatsoever. All communication is done
through messages. Furthermore, all communication
from the hardware takes place through bridges. This
means that none of the peripherals are polled. Each
driver thread waits to receive a message from its inter-
rupt bridge and is descheduled when there is no data to
process. When new data is available, it is rescheduled
and execution continues.

During execution, this application sends an average
of 315 messages per second, 243 of which come from
interrupt bridges and 72 that come from other software
threads. The system is idle 52.4% of the time, i.e. all
threads are waiting on data from external sources. This
allows all messages to be dealt with promptly. On aver-
age, there are less than 1.1 messages queued whenever
a thread receives a message. The maximum number of
messages queued in a thread’s mailbox at one time was
40, in the thread that receives bytes from the GPS re-
ceiver. These 40 bytes correspond to a single GPS sen-
tence which was likely received while the VM was busy
with an uninterruptable task like garbage collection. As
soon as that task finished, the GPS driver thread resumed
and read the entire message.

This example was originally written as a single-
threaded, event-loop based program in Python. While
conceptually simple, the concurrent nature of the periph-
erals proved to be very difficult. The event-loop has to

run very slowly and be tuned very carefully to ensure
that the control loop has consistently updated data and
that input events are not missed. Adding a feature be-
comes harder as the program grows more complex. Sup-
pose the programmer wants to trigger a periodic event.
On program start, a global variable is set storing the next
time the event needs to happen. Each time through the
control loop, the clock is polled and compared against
that global variable. If it is time, the programmer exe-
cutes the event and resets the global variable. Each fea-
ture like this slows down the event loop, degrading per-
formance of everything else in the system. Moreover, if
anything else in the event loop takes a long time, the pe-
riodic event will be triggered late. Writing the program
in C using interrupts and locks would be even more dif-
ficult and extremely error-prone due to the large number
of events coming from both hardware and software com-
ponents that need to be synchronized.

The Medusa program is comparatively simple. A pe-
riodic task can be implemented by calling the chrono-
graph’s sleep function (see Section 5.4), performing the
task, and repeating:

def periodic ():

chrono.sleep (5000)

do_task ()

return periodic ()

thread.spawn(periodic)

Since the chronograph uses hardware timers that do
not need to be polled, this task does not impact others
while it it waiting to run. The many components in a
large program just wait for data to be available, process
it, and send it on to other components. The bridge, mes-
saging and scheduling systems synchronize everything
automatically.

Other demonstration applications have also been built
using Medusa such as a distributed traffic-light controller
that runs on a microcontroller and a multi-threaded web
server that runs on a port of Medusa to a standard x86
Linux system. These examples show that the Medusa
system is flexible and easily programmable.

7 Conclusions

Building reliable embedded systems has long been a
challenging endeavor. In the 1980s, the Therac-25, a ra-
diation therapy device, suffered several failures due to a
race condition between the main program and a hand-
coded interrupt service routine. As a result, at least
six patients were overdosed and three died. [21] Unfor-
tunately, not much has changed since then. Program-
mers and industry regulators have been more careful with
safety-critical systems, but accidents continue. A race
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condition in a GE Energy power control system4 caused
widespread blackouts in 2005. More recently, the sus-
pect systems in the Toyota unintended acceleration case
used shared-state and hand-coded interrupt handlers. 5

Medusa is designed specifically to advance the state-
of-the-art in this area. Pure functional programming with
an efficient messaging system leads to much simpler con-
current programming. That is why such systems are
used everywhere from telephone switches to the Face-
book messaging platform. Medusa demonstrates that it is
possible to take the best ideas from these systems and im-
plement them on resource-constrained systems. Further,
Medusa is the first embedded language run-time system
capable of integrating hardware interrupts into the soft-
ware messaging system in a seamless manner.
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Abstract
Modern data centers are increasingly using shared

storage solutions for ease of management. Data is cached
on the client side on inexpensive and high-capacity flash
devices, helping improve performance and reduce con-
tention on the storage side. Currently, write-through
caching is used because it ensures consistency and dura-
bility under client failures, but it offers poor performance
for write-heavy workloads.

In this work, we propose two write-back based
caching policies, called write-back flush and write-back
persist, that provide strong reliability guarantees, under
two different client failure models. These policies rely on
storage applications, such as file systems and databases,
issuing write barriers to persist their data reliably on stor-
age media. Our evaluation shows that these policies per-
form close to write-back caching, significantly outper-
forming write-through caching, for both read-heavy and
write-heavy workloads.

1 Introduction

Enterprise computing and modern data centers are in-
creasingly deploying shared storage solutions, either as
network attached storage (NAS) or storage area networks
(SAN), because they offer centralized management and
better scalability over directly attached storage. Shared
storage allows unified data protection and backup poli-
cies, dynamic allocation, and deduplication for better
storage efficiency [2, 8, 16, 20].

Shared storage can however suffer from resource con-
tention issues, providing low throughput when serving
many clients [12, 20]. Fortunately, servers with flash-
based solid state devices (SSD) have become commonly
available. These devices offer much higher throughput
and lower latency than traditional disks, although at a
higher price point than disks [13]. Thus many hybrid
storage solutions have been proposed that use the flash
devices as a high capacity caching layer to help reduce
contention on shared storage [6, 7, 19].

While server-side flash caches improve storage perfor-
mance, clients accessing shared storage may still observe
high I/O latencies due to network accesses (at the link

level and the protocol level, such as iSCSI) compared to
clients accessing direct-attached storage. Attaching flash
devices as a caching layer on the client side provides the
performance benefits of direct-attached storage while re-
taining the benefits of shared storage [2, 4]. Current sys-
tems use write-through caching because it simplifies the
consistency model. All writes are sent to shared storage
and cached on flash devices before being acknowledged
to the client. Thus, a failure at the client or the flash de-
vice does not affect data consistency on the storage side.

While write-through caching works well for read-
heavy workloads, write-heavy workloads observe net-
work latencies and contention on the storage side. In
these commonly deployed workloads [8, 18], the write
traffic contends with read traffic, and thus small changes
in the cache hit rate may have significant impact on read
performance [7]. Alternatively, with write-back caching,
writes are cached on the flash device and then acknowl-
edged to the client. Dirty cached data is then flushed to
storage when it needs to be replaced. However, write-
back caching can flush data blocks in any order, causing
data inconsistency on the storage side if a client crashes
or if the flash device fails for any reason.

Koller et al. [7] propose a write-back based policy,
called ordered write-back, for providing storage consis-
tency. Ordered write-back flushes data blocks to the
shared storage system in the same order in which the
blocks were written to the flash cache. This write order-
ing guarantees that storage will be consistent until some
time in the past, but it does not ensure durability because
a write that is acknowledged to the client may not make
it to storage on a client failure.

Furthermore, the consistency guarantee provided by
the ordered write-back policy depends on failure-free op-
eration of the shared storage system. The problem is that
the write ordering semantics are not guaranteed by the
block layer of the operating system [1], or by physical
devices on the storage system [9], because the physical
devices themselves have disk caches and use write-back
caching. On a power failure, dirty data in the disk cache
may be lost and the storage media can become inconsis-
tent. To overcome this problem, physical disks provide
a cache flush command to flush dirty buffers from the
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disk cache. This command enables implementing bar-
rier semantics for writes [22], because it waits until all
dirty data is stored durably on media. The ordered write-
back policy would need to issue an expensive barrier op-
eration on each ordered write to ensure consistency. In
essence, simple write ordering provides neither durabil-
ity, nor consistency without the correct use of barriers.

We propose two write-back caching policies, called
write-back flush and write-back persist, that take advan-
tage of write barriers to provide both durability and con-
sistency guarantees in the presence of client failures and
power failure at the storage system. These policies rely
on storage applications (e.g., file systems, applications
on file systems, databases running on raw storage, etc.)
issuing write barriers to persist their data, because these
barriers are the only reliable method for storing data
durably on storage media. For example, journaling file
systems issue a barrier before committing a transaction,
and applications invoke the fsync(fd) system call to
flush all file data associated with the fd file descriptor.
Write-back caching policies only need to enforce relia-
bility guarantees at these barriers, since applications re-
ceive no stronger guarantees from the storage system.
Our caching polices target files that are read and writ-
ten on a single client, such as files accessed by a virtual
machine (VM) running on the client. Thus, we do not
consider coherence between client-side caches.

Our two caching policies are designed to handle two
different client failure models that we call destructive
and recoverable failure. Destructive failure assumes that
the cached data on the flash device is unrecoverable, be-
cause either it is destroyed or there is insufficient time
for recovering data from the device. This type of fail-
ure can occur, for example, due to flash failure or a fire
at the client. Recoverable failure is a weaker model that
assumes that the client is unavailable either temporarily
or permanently, but the cached data on the flash device
is still accessible and can be used for recovery. This type
of failure can occur due to a power outage at the client.

The write-back flush caching policy is designed to
handle destructive failure. When a storage application is-
sues a barrier request, this policy flushes all dirty blocks
cached on the client-side flash device to the shared stor-
age system and then acknowledges the barrier. This pol-
icy provides durability and consistency because appli-
cations are already expected to handle any storage in-
consistency caused by out-of-order writes that may have
reached storage between barriers (e.g., undo or ignore the
effect of these writes). The main overhead of the write-
back flush policy, as compared to write-back caching, is
that barrier requests may by delayed for a long time, thus
affecting sync-heavy workloads.

The write-back persist caching policy is designed to
handle recoverable failure. When an application issues a

barrier request, this policy persists the in-memory cache
metadata to the client-side flash device atomically. The
cache metadata consists of mappings from storage block
locations to flash block locations; it is needed to locate
blocks on the flash device. Durability and consistency
are provided by this policy, assuming that the flash device
is still available on a failure, because the cache metadata
on the device enables accessing a consistent snapshot of
data at the last barrier. This policy has minimal overhead
on a barrier because persisting the cache metadata to the
flash device is a fast operation.

Our evaluation of the two caching policies shows the
following results: 1) both policies perform as well as
write-back for read-heavy workloads, 2) the write-back
flush policy performs significantly better than write-
through for write-heavy workloads, even though it pro-
vides the same reliability guarantees, 3) the write-back
persist policy performs as well as write-back for write-
heavy workloads, even though it provides much stronger
reliability guarantees, 4) the write-back persist policy
has significant benefits as compared to write-through or
write-back flush for sync-heavy workloads.

We make the following contributions: 1) we take ad-
vantage of the write barrier interface to greatly simplify
the design of client-side flash caching policies, providing
both durability and consistency guarantees in the pres-
ence of destructive and recoverable failure, 2) we discuss
various design optimizations that help improve the per-
formance of these policies, and 3) we implement these
policies and show that they provide good performance.

The rest of this paper is organized as follows. We dis-
cuss prior work on write-back flash caching in Section 2,
providing motivation for our work. Section 3 describes
our caching policies and Section 4 describes the design
of our caching system and the optimizations that improve
the performance of our policies. Section 5 shows the re-
sults of our evaluation. Section 6 describes related work
and Section 7 presents our conclusions and future work.

2 Motivation

Current client-side flash caches use write-through
caching [2, 4] because the client and the client-attached
flash are considered more failure prone. This caching
method also simplifies using existing virtual machine
technology since guest state is not tied to a particular
client. Write-through caching trivially provides durabil-
ity and consistency on destructive client failures because
storage is always up-to-date and consistent. However,
write-through caching by itself doesn’t provide any guar-
antees on storage failures, unless application-issued bar-
riers are honored on the storage side. The main drawback
of write-through caching is that it has high overhead for
write-heavy workloads.
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Next, we discuss two write-back policies that aim to
reduce this overhead.

Ordered Write-back Caching Ordered write-back
caching flushes data blocks to storage in the same or-
der in which the blocks were written to the flash cache,
thus ensuring point-in-time consistency on a destructive
failure [7]. This approach does not provide durability be-
cause a write that is acknowledged to an application may
never reach storage on a destructive failure.

However, durability is a critical concern in many en-
vironments. Consider a simple ordering system in which
customers place an order and the system stores the order
in a file. After confirming the order with the customer,
the system persists the contents of the file by invoking
the fdatasync() system call, and then notifies the cus-
tomer that the order has been received.
int fd = open(...);
...
write(fd, your_order);
fdatasync(fd);
printf("We have received your order.");

The fdatasync() system call requires writing file
contents to storage media durably and thus the file sys-
tem issues a write barrier. However, with ordered write-
back caching, fdatasync() is ignored, and data cached
on the flash device may not be available on storage after
destructive failure. As a result, recent writes may be lost
even though the customer is informed otherwise.

Another serious issue with ignoring barriers is that
point-in-time consistency can only be guaranteed under
failure-free storage operation, since the storage can cache
writes and issue them out of order. To avoid this prob-
lem, a barrier needs to be issued on every write on the
storage side. Thus simple write ordering for ensuring
consistency is both expensive, and unnecessary, as de-
scribed later.

Journaled Write-Back Caching Koller et al. present
a second caching policy called journaled write-back that
improves performance over ordered write-back by coa-
lescing writes in the cache [7]. Journaled write-back pro-
vides point-in-time consistency guarantees at a system-
defined epoch granularity. Within an epoch, writes to the
same location can be coalesced on the client. All writes
within an epoch are written to a write-ahead log (jour-
nal) on the storage side, so that data can be committed
atomically to storage at epoch granularity.

Although the paper does not mention it, this approach
also requires issuing barriers at commit. The system-
defined epoch granularity presents a trade-off, with fre-
quent commits affecting performance, and infrequent
commits risking more data loss. Furthermore, the sys-
tem assumes that sufficient NVRAM is available on the
storage side to avoid the overheads of journaling.

Unlike either ordered or journaled write-back caching,
our write-back policies ensure durability by taking ad-
vantage of application-specified barriers. Also, we do not
require any journaling on the storage side because appli-
cations have no reliability expectations between barriers.

3 Caching Using Barriers

Storage applications that require consistency and dura-
bility already implement their own atomicity scheme
(e.g., atomic rename, write-ahead logging, copy-on-
write, etc.) or durability scheme (e.g., using fsync) via
write barriers. Our key insight is that write-back caching
policies can efficiently provide both durability and con-
sistency by leveraging these application-specified barri-
ers. Since applications have no storage reliability expec-
tations between barriers, the caching policies also only
need to enforce these properties at barriers.

We assume that the client flash cache operates at the
block layer (i.e., it is below the client buffer cache and
independent of it) and caches data for the underlying
shared storage system. We now describe the semantics
of write barriers, and then describe our caching policies.

3.1 Write Barriers
The block-level IO interface is typically assumed to con-
sist of read and write operations. However, a write opera-
tion to storage does not guarantee durability. In addition,
multiple write operations are not guaranteed to reach me-
dia in order. All levels of the storage stack, including
the block layer of the client or the storage-side operating
system, the RAID controller, and the disk controller, can
reorder write requests. Modern storage systems compli-
cate the block interface further by allowing IO operations
to be issued asynchronously and queued [21].

Durability and write ordering are guaranteed only af-
ter a cache flush command is issued by a storage appli-
cation, making this command a critical component of the
block IO interface. The cache flush command is sup-
ported by most commonly used storage protocols, such
as ATA and SCSI, and is widely used by storage-sensitive
applications, such as file systems, databases, source code
control systems, mail servers, etc.

The cache flush command ensures that any write re-
quest that has been acknowledged by the device before a
cache flush command is issued is durable by the time the
flush command is acknowledged. The status of any write
request acknowledged after the flush command is issued
is unspecified, i.e., it may or may not be durable after
the flush. However, the durability of this acknowledged
write will be guaranteed by the next flush command.

The flush command enables the implementation of
write barriers to ensure ordering and durability [22].
In particular, applications can issue writes concurrently
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Policy Recoverable Destructive Storage Latency
Client Cache Failure Client Cache Failure Failure

Consistency Durability Consistency Durability Consistency & Write Barrier
Durability

Write-through Yes Yes Yes Yes Yes1 High Low
Write-back flush Yes Yes Yes Yes Yes Low High
Ordered write-back2 Yes No Yes No No Low Low3

Write-back persist Yes Yes No No Yes Low Low
Write-back No No No No No Low Low

Yes1: The write-through policy handles storage failure when barriers are supported.
Ordered write-back2: Ordered and journaled write-back (proposed in previous work [7]) have the same properties.
Low3: Barriers are ignored and hence they don’t introduce any additional latency.

Table 1: Comparison of Different Caching Policies

when no ordering is needed. To ensure these writes are
all durable, the application waits for these writes to be
acknowledged and then issues the cache flush command.
When this command is acknowledged, further writes can
be issued with the guarantee that they will be ordered af-
ter the previous writes.

3.2 Caching Policies
Our caching design is motivated by a simple princi-
ple: the caching device should provide exactly the same
semantics as the physical device, as described in Sec-
tion 3.1. This approach has two advantages. First, ap-
plications running above the caching device get the same
reliability guarantees as they expect from the physical
device, without requiring any modifications. Second, the
caching policies can be simpler and more efficient, be-
cause they need to make the minimal guarantees pro-
vided by the physical device.

In this section, we present our write-back flush and
write-back persist policies. Both policies essentially im-
plement the semantics of the write barrier. The flush pol-
icy handles destructive failures in which the flash device
may not be available after a client failure, while the per-
sist policy handles recoverable failures in which the flash
device is available after a client failure. The choice of
these policies in a given environment depends on the type
of failure that the storage administrator is anticipating.

3.2.1 Write-Back Flush

The write-back flush policy implements barrier seman-
tics on a cache flush request by flushing dirty data on the
flash device to storage. The flush process sends these
blocks to storage, issues a write barrier on the storage
side, and then acknowledges the command to the client.

Similar to write-through, the write-back flush policy
does not require any recovery after failure. Any dirty
data cached either on flash or storage since the last barrier
may be lost, but it is not expected to be durable anyway.
As a result, this policy is resilient to destructive failure.

The main advantage of this approach over write-
through caching is that writes have lower latency because
dirty blocks can be flushed to storage asynchronously.
Moreover, it provides stronger guarantees than vanilla
write-through caching because it handles storage failures
as well (see Section 2). Compared to write-back caching,
barrier requests will take longer with this policy, which
primarily affects sync-heavy workloads.

3.2.2 Write-back Persist

The write-back persist policy implements barrier seman-
tics on a cache flush request by atomically flushing dirty
cache metadata to the flash device. The dirty file-system
blocks are already cached on the flash device, but we
also need to atomically persist the cache metadata in
client memory to flash, to ensure that blocks can be
found on the flash device after a client or storage failure.
This metadata contains mappings from block locations
on storage to block locations on the flash device, helping
to find blocks that are cached on the device.

The write-back persist policy assumes that the flash
device is available after failure. During recovery, the
cache metadata is read from flash into client memory.
The atomic flush operation at each barrier ensures that
the metadata provides a consistent state of data in the
cache, at the time the last barrier was issued.

The main advantage of write-back persist is that its
performance is close to that of ordinary write-back
caching. Some latency is added to barrier requests, but
persisting the cache metadata to the flash device has
low overhead, given the fairly small amount of meta-
data needed for typical cache sizes. The drawback is
that destructive failure cannot be tolerated because large
amounts of dirty data may be cached on the flash de-
vice, similar to write-back caching. Furthermore, if the
client fails permanently, then recovery time may be sig-
nificant because it will involve moving data from flash
using either an out-of-band channel (e.g., live CD), or by
physically moving the device to another client.
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Operation Description
find_mapping find a mapping entry in either the clean or the dirty map
insert_mapping, remove_mapping insert or remove mapping in the clean or dirty map
persist_map atomically persist the dirty map to flash
alloc_block, free_block allocate or free a block on flash
evict_clean_block evict a clean block by freeing the block and removing its mapping

Table 2: Mapping and Allocation Operations

Table 1 provides a comparison of the different caching
policies. The caching policies are shown in increasing
order of performance, with write-through being the slow-
est and write-back being the fastest caching policy. The
write-back flush policy provides the same guarantees as
write-through, with low write latency, but with increased
barrier latency. The write-back persist policy provides
performance close to write-back, but unlike the write-
back flush policy, it doesn’t handle destructive failure.

4 Design of the Caching System

We now describe the design of our caching system that
supports the write-back flush and persist policies. We
first present the basic operation of our system, followed
by our design for storing the cache metadata and the allo-
cation information. Last, we describe our flushing policy.

4.1 Basic Operation
Our block-level caching system maintains mapping in-
formation for each block that is cached on the flash de-
vice. This map takes a storage block number as key, and
helps find the corresponding block in the cache. We also
maintain block allocation and eviction information for
all blocks on the flash device. In addition, we use a flush
thread to write dirty data blocks on the flash device back
to storage. The mapping and allocation operations are
shown in Table 2. As we discuss in Section 4.2.2, we
separate the mappings for clean and dirty blocks into two
maps, called the clean and dirty maps.

Table 3 shows the pseudocode for processing IO re-
quests in our system, using the mapping and allocation
operations. On a read request, we use the IO request
block number (bnr) to find the cached block. On a cache
miss, we read the block from storage, allocate a block
on flash, write the block contents there, and then insert
a mapping entry for the newly cached block in the clean
map. On a write request, instead of overwriting a cached
block, we allocate a block on flash, write the block con-
tents there, and insert a mapping entry in the dirty map.
This no-overwrite approach allows writes to occur con-
currently with flushing – a write is not blocked while a
previous block version is being flushed. Mappings are
updated only after writes are acknowledged to maintain
barrier semantics (see Section 3.1).

We avoid delaying read and write requests when the
cache is full (which it will be, after it is warm) by only
evicting clean blocks from the cache, using the standard
LRU replacement policy. The clean blocks are main-
tained in a separate clean LRU list to speed up evic-
tion. We ensure that clean blocks are always available
by limiting the number of dirty blocks in the cache to
a max_dirty_blocks threshold value. Once the cache
hits this threshold, we fall back to write-through caching.

The flush thread writes dirty blocks to storage in the
background. It uses asynchronous IO to batch blocks,
and writes them proactively so that write requests avoid
hitting the max_dirty_blocks threshold. The dirty
map always refers to the latest version of a block, so only
the last version is flushed when a block has been written
multiple times. After a block is flushed, it is moved from
the dirty map to the clean map. The flush thread waits
when the number of dirty blocks reaches a low threshold
value, unless it is signaled by the write-back flush policy
to flush all dirty blocks (not shown in Table 3).

The write-back flush and write-back persist policies
are implemented on a barrier request. The flush policy
writes the dirty blocks to storage and waits for them to be
durable by issuing a barrier request to storage. The per-
sist policy makes the current blocks on storage durable
and persists the dirty map on the flash device, perform-
ing the two operations concurrently and atomically.

These policies share much of the caching functional-
ity. Next, we describe key differences in the mapping
and allocation operations for the two policies.

4.2 Mapping Information
The mapping information allows translating the storage
block numbers in IO requests to the blocks numbers for
the cached blocks on flash. We store this mapping infor-
mation in a BTree structure in memory because it enables
fast lookup, and it can be persisted efficiently on flash.

4.2.1 Write-back Flush

The mapping information is kept solely in client memory
for the write-back flush policy, because the cache con-
tents are not needed after a client failure, as explained in
Section 3.2.1. On a client restart, the flash cache is empty
and the mapping information is repopulated on IO re-
quests. Cache warming can help reduce this impact [23].
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Read Request Write Request

entry = find_mapping(bnr)
if (entry):
# cache hit
return read(flash, entry->flash_bnr)

else:
# cache miss
data = read(storage, bnr)
if (flash_is_full):
evict_clean_block()

flash_bnr = alloc_block()
write(flash, flash_bnr, data)
insert_mapping(clean_map, bnr, flash_bnr)
return data

entry = find_mapping(bnr)
if (entry):
free_block(entry->flash_bnr);
remove_mapping(entry->mapping, bnr);

if (flash_is_full):
evict_clean_block()
if nr_dirty_blocks > max_dirty_blocks:
# fallback to write_through
write_through();
return

flash_bnr = alloc_block()
write(flash, flash_bnr, data)
insert_mapping(dirty_map, bnr, flash_bnr)

Flush Thread Barrier Request

foreach entry in dirty_map:
# read dirty block from flash
# and write to storage
data = read(flash, entry->flash_bnr)
write(storage, bnr, data)
# move dirty block to clean state
remove_mapping(dirty_map, bnr)
insert_mapping(clean_map, bnr,

entry->flash_bnr)

if (policy == FLUSH):
signal(flush_thread)
wait(all_dirty_blocks_flushed)
barrier()

else if (policy == PERSIST):
barrier()
persist_map(dirty_map, flash)

Table 3: IO Request Processing

4.2.2 Write-back Persist

The mapping information needs to be persisted atom-
ically for the write-back persist policy, as explained
in Section 3.2.2. This persist_map operation is per-
formed on a barrier, as shown in Table 3. We implement
atomic persist by using a copy-on-write BTree, similar to
the approach used in the Btrfs file system [17].

Only the dirty mappings need to be persisted to ensure
consistency and durability, since the clean blocks are al-
ready safe and can be retrieved from storage following a
client restart. This option reduces barrier latency because
the clean mappings do not have to be persisted. How-
ever, persisting all mappings may be beneficial because
a client can restart with a warm cache.

We have chosen to persist only the dirty mapping in-
formation. To do so, we keep two separate BTrees, called
the clean map and the dirty map, for the clean and dirty
mappings. The dirty map is persisted on a barrier re-
quest; we call this the persisted dirty map. Compared
to persisting all mappings using a single map, this sepa-
ration benefits both read-heavy and random write work-
loads. In both cases, the dirty map will remain relatively
small compared to the single map, which would either be
large due to many clean mappings, or would have dirty
mappings spread across the map, requiring many blocks
to be persisted. An additional benefit is that recovery,
which needs to read the persisted dirty map, is sped up.

When the flush thread writes a dirty block to storage,
we move its mapping from the dirty map to the clean
map, as shown in Table 3. This in-memory operation up-
dates the dirty map, which is persisted at the next barrier.

4.3 Allocation Information

We use a bitmap to record block allocation information
on the flash device. The bitmap indicates the blocks that
are currently in use, either for the mapping metadata or
the cached data blocks.

We do not persist the allocation bitmap to flash for
several reasons. First, the bitmap does not need to be
persisted at all for the write-back flush policy since the
cache starts empty after client failure, as discussed in
Section 4.2.1. Second, we separate the clean and dirty
mapping information and only persist the dirty map for
the write-back persist policy. As a result, we would also
need to separate the clean and dirty allocation informa-
tion and only persist the dirty allocation information to
ensure consistency of the mapping and allocation infor-
mation during recovery. Since we read in the dirty map
during recovery anyway, which allows us to rebuild the
allocation bitmap, this added complexity is not needed.

In the write-back persist policy, the cache blocks
that are referenced in the persisted dirty map cannot be
evicted even if they are clean, or else corruption may
occur after recovery. For example, suppose that Block
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A is updated and cached on flash Block F, and then the
dirty map is persisted on a barrier. Now suppose Block
B is updated and we evict Block A and overwrite flash
Block F with the contents of Block B. On a failure, the
dirty map would be reconstructed from the persisted dirty
map, and so Block A would now map to Block F, which
actually contains Block B. We solve this issue by main-
taining a second in-memory bitmap, called the persist
bitmap. This bitmap is updated on a barrier, and tracks
the cache blocks in the persisted dirty map. A block is
allocated only when it is free in both the allocation and
the persist bitmaps, thus avoiding eviction of blocks ref-
erenced in the persisted dirty map.

4.4 Flushing Policies
Section 4.1 describes the basic operation of the flush
thread. In this section, we describe two optimizations,
flushing order and epoch-based flushing, that we have
implemented for flushing dirty blocks.

4.4.1 Flushing Order

Our system supports flushing dirty blocks in two dif-
ferent orders, LRU order and ascending order. For the
LRU order, the dirty blocks are maintained in a separate
dirty LRU list. After the least-recently used dirty block is
flushed, it is moved from the dirty LRU list to the clean
LRU list. We use the last access timestamp to ensure
that the flushed block is inserted in the clean LRU list in
the correct order. As a result, after a cold dirty block is
flushed, it is likely to be evicted soon.

We also support flushing dirty blocks in ascending or-
der of storage block numbers. To do so, we use the dirty
map (which stores its mappings in this sort order), as
shown in the flush thread code in Table 3. Since the
flash device can cache large amounts of data, we expect
that flushing blocks in ascending order will significantly
reduce seeks on the storage side compared to flushing
blocks in LRU order. However, flushing in ascending or-
der may have an affect on the cache hit rate because the
flushed blocks may not be the least-recently used dirty
blocks. As a result, warm clean blocks may be evicted
before cold dirty blocks are flushed and evicted.

4.4.2 Epoch-Based Flushing

In the write-back flush policy, barrier request processing
is a slow operation because all the dirty blocks need to be
flushed to storage. Suppose an application thread has is-
sued a barrier, e.g., by calling fdatasync(), but before
the barrier finishes, another thread issues new writes. If
barrier processing accepts these writes, it will take even
longer to finish the barrier request, and with a high rate of
incoming writes, barrier processing may never complete.
Alternatively, new writes could be delayed until the com-
pletion of the barrier request. However, these writes may

also incur high barrier latency, which defeats the goal of
using a write-back policy to reduce write latencies.

We can take advantage of the barrier semantics, de-
scribed in Section 3.1, to minimize delaying new writes,
with epoch-based flushing. Each cache flush request
starts a new epoch, and only the writes acknowledged
within the epoch must become durable when the next
flush request completes. This flushing of dirty blocks
within an epoch requires two changes to the default
write-back flush policy. First, the dirty mappings need
to be split by epoch. Second, instead of waiting for all
dirty blocks in the dirty map to be flushed (as shown
in Table 3), the barrier request only waits until all the
blocks associated with the dirty mappings in the current
epoch are flushed. Since each barrier request starts a
new epoch, and barrier processing can take time, mul-
tiple epochs may exist concurrently. To maintain data
consistency, an epoch must be flushed before starting to
flush the next epoch.

We maintain a separate BTree for all concurrent
epochs in the dirty map. While epoch-based flushing
increases concurrency because writes can be cached on
the flash device while blocks are being flushed to storage
on a barrier, it also increases the cost of the find and re-
move mapping operations because they need to search all
BTrees. As a result, we have chosen a maximum limit of
four concurrent epochs. If new writes are issued beyond
this limit, then the writes are delayed.

5 Evaluation

To evaluate our caching policies, we have implemented
a prototype caching system using the Linux device map-
per framework. This framework enables the creation of
virtual block devices that are transparent to the client, so
minimal configuration is required to use the system.

Our implementation uses two Linux workqueues, ser-
viced by two worker threads, for issuing asynchronous
IO requests to the block layer. The first thread lies in the
IO critical path and (i) issues read requests to the flash
device on a cache hit or to storage on a cache miss, (ii)
issues write requests to flash, and (iii) performs barrier
processing, as shown in Table 3. The second thread is
only used to issue write requests to flash to insert blocks
into the cache following a read miss. We also use a flush
thread to write dirty blocks to storage in the background.
This thread issues read requests to flash, and write re-
quests to storage. It uses asynchronous IO to batch re-
quests, which helps hide network and storage latencies,
thus improving flushing throughput.

Inspired by the journaled write-back policy [7], we im-
plemented a variant of write-back flush called write-back
consistent that flushes dirty data in each barrier epoch
asynchronously. Similar to the flush policy, the consis-
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tent policy ensures that data in each epoch is flushed to
storage before data in the next epoch. However, the con-
sistent policy acknowledges the barrier operation imme-
diately, without waiting for the flush operation, so it pro-
vides consistency but no durability on destructive failure.

We evaluate our write-back flush and persist caching
policies by comparing them with four baseline policies,
no caching (no flash used), write-through, write-back
consistent and write-back caching. Of these, only the
persist policy issues barrier requests to the flash device
because it needs to persist its mapping atomically to the
device. All the policies issue barriers to storage when the
application makes a barrier request (see Table 3), with
the exception of the write-back policy, which provides
no reliability guarantees. Next, we present our experi-
mental methodology and then the performance results.

5.1 Experimental Methodology
Our experimental setup consists of a storage server con-
nected to a client machine with a flash device over 1
Gb Ethernet. The storage server runs Linux 3.11.2, has
4 Intel E7-4830 processors (32 cores in total), 256GB
memory and a software RAID-6 volume consisting of 13
Hitachi HDS721010 SATA2 7200 RPM disks. Storage
is served as an iSCSI target, using the in-kernel Linux-
IO implementation. We disable the buffer cache on the
server so that we can directly measure RAID perfor-
mance, and also because our Linux-IO implementation
ignores barriers when the buffer cache is enabled.

The client has 2 Xeon(R) E5-2650 processors and a
120GB Intel 510 Series SATA SSD. We use 8GB of the
flash device as the client cache, with 2M mapping entries
(1 per 4KB page). Each entry is 16 bytes, which together
with the BTree structure, leads to a memory overhead of
about 40MB for the mapping information.

We limit the memory on the client to 2GB so that our
test data set will not completely fit in the client’s buffer
cache. In this setup, the ratio of the memory size and
flash device capacity is similar to a mid-end, real-world
storage server. For example, the NetApp FAS3270 stor-
age system has 32GB RAM and a 100GB SSD when at-
tached to a DS4243 disk shelf [14]. The client runs Linux
3.6.10 and mounts an Ext4 file system in ordered jour-
nal mode using the iSCSI target provided by the storage
server. Ext4 initiates journal commits (leading to barriers
issued to the block layer) every five seconds.

5.1.1 Workloads

We use Filebench 1.4.9.1 [5] to generate read-heavy,
write-heavy and sync-heavy workloads on the client. For
the read- and write-heavy workloads, barriers are initi-
ated due to Ext4’s commit interval. More frequent barri-
ers occur due to application-level sync operations in the
sync-heavy workload.

Read-heavy: webserver and webserver-large Web-
server consists of several worker threads, each of which
reads several whole files sequentially and then appends
a small chunk of data to a log file. Files are selected us-
ing a uniform random distribution. Overall, webserver
mostly performs sequential reads and some writes. We
use two versions of this workload: webserver is a smaller
version with 4GB of data, which can fit entirely on flash;
webserver-large is a larger version, with 14GB of data,
which causes cache capacity misses in our experiments.

Write-heavy: ms_nfs and ms_nfs-small ms_nfs is a
metadata-heavy workload that emulates the behavior of
a network file server. It includes a mix of file create,
read, write and delete operations. The directory width,
directory depth, and file size distributions in the data set
are based on a recent metadata study by Microsoft Re-
search [11]. Similar to webserver, we also use a compact
version of ms_nfs, consisting of 6.5GB of data, while the
original ms_nfs has 22GB.

Sync-heavy: varmail Varmail simulates a mail server
application that issues frequent sync operations to ensure
write ordering. For varmail, we use a single, default con-
figuration with 4GB of data, which fits on flash, because
a mail server typically does not have a large working set.

5.1.2 Metric

Filebench starts with a setup phase in which it populates
a file system before running the workload. During setup,
data is cached on flash and flushed in the background.
We pause Filebench after setup finishes until the flush
thread has stopped flushing data, to avoid interference
between the setup phase and the workload. Then, we run
each workload for 20 minutes.

Filebench reports the average IO operations/second
(IOPS) for a workload at the end of the run. We mod-
ified it to report average IOPS every 30 seconds during
the run. We found that this IOPS value varies in the first
10 minutes and then stabilizes, due to cache warming ef-
fects at both the buffer cache and the flash cache. We
present steady-state IOPS results, by averaging the 20
IOPS readings taken in the last 10 minutes of the run.

5.2 Experimental Results
We first present the overall performance results for all the
caching policies. We have enabled all flushing optimiza-
tions for our write-back policies. We flush in ascending
order for both policies, and we use epoch-based flush-
ing with 4 epochs for the write-back flush and write-back
consistent policies. Finally, we show the impact of these
flushing optimizations.

Figure 1 shows the average IOPS for the different
caching policies for the three types of workload. As ex-
pected, all write caching policies perform comparably
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Figure 1: IOPS for different caching policies

for read-heavy workloads. For webserver, the caching
policies increase IOPS by more than 2X compared to
no-cache because the workload fits in the cache. We
found that webserver saturates the flash bandwidth and
hence write-back persist performs slightly worse because
it needs to persist its mapping table to flash on barri-
ers. In contrast, webserver-large has a low cache hit rate.
Thus, it issues many reads to storage, making the storage
a bottleneck, and so the no-cache policy performs as well
as any caching policy.

The ms_nfs workloads create many dirty blocks and
then free them, causing cache pollution and many cache
misses, because the caching layer is unaware of freed
blocks. Nonetheless, our write-back policies perform
well, with write-back persist performing comparably
to vanilla write-back because the workloads are write-
heavy (84% and 58% write requests in ms_nfs-small and
ms_nfs, respectively). With ms_nfs-small, write-through
caching performs slightly worse than no-caching be-
cause the cache misses require filling the cache, however
the difference is within the error bars. With the larger
ms_nfs, storage becomes a bottleneck, and hence perfor-
mance decreases for all workloads. However, this work-
load has a smaller ratio of write requests than ms_nfs-
small and so the performance benefits of write-back
caching over write-through caching are smaller.

In ms_nfs-small, the cache hit rate for write-back flush
is 52%, while the hit rate for write-back persist is 79%,
accounting for the difference in their performance. For
write-back flush, the high barrier latency (due to flushing
dirty blocks back to storage) causes filesystem journal
commits to be delayed since the next transaction can-
not commit until the previous one has completed. For
ms_nfs-small, only 13 transactions were committed dur-
ing the 20 minute run. This delay increases the epoch
size (we observed a maximum of 4.6GB, with 2GB on
average), which leads to dirty blocks occupying a large

fraction of the flash cache. Read requests tend to be for
clean blocks however, since recently written dirty blocks
are more likely to be in the buffer cache, and the reduced
number of clean blocks in the flash cache leads to a lower
hit rate. We see a similar effect in the ms_nfs workload,
although the hit rates are lower in both cases (45% for
write-back flush vs. 60% for write-back persist).

Varmail is the most demanding workload for our poli-
cies. It issues fsync() calls frequently and waits for
them to finish, making the workload sensitive to barrier
latency. Write-back persist issues synchronous writes
to flash and hence has significant overheads compared
to the write-back policy. However, persist still per-
forms much better than the other policies that issue syn-
chronous writes to storage. The write-back flush pol-
icy performs worse than the write-through policy by 7%,
because in our current implementation, the flush thread
always performs an additional block read from flash to
flush the block to storage.

Contrary to our expectation, the write-back consistent
policy, which doesn’t provide durability, performs worse
than the write-back flush policy for the ms_nfs work-
loads. These workloads quickly consume all available
epochs because each file-system commit issues a barrier
that starts a new epoch, but the barriers themselves are
not held up by flushing. When no epochs are available,
all writes are blocked. We observed that epochs do not
become large (as with write-back flush) but writes are
frequently blocked due to having no available epochs.
Increasing the number of epochs did not significantly im-
prove performance. In contrast, the write-back flush pol-
icy delays barriers, but due to this delay it does not run
out of epochs. This result suggests that the delay intro-
duced by barrier-based flushing provides a natural con-
trol mechanism for avoiding other limits due to cache
size, number of epochs, etc.
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Figure 2: Effect of flushing order in the flush policy

Figure 3: Effect of flushing order in the persist policy

5.2.1 Flushing Order Optimization

In this section, we evaluate the performance of flush-
ing in two different orders, LRU order and ascending
order, as described in Section 4.4.1. LRU order is ex-
pected to improve cache hit rate, while ascending order
is expected to improve flushing throughput. For the read-
heavy workloads, flushing is not a bottleneck and hence
the flushing order does not affect performance.

Figure 2 shows the effect of flushing order for the write
and sync-heavy workloads with the write-back flush pol-
icy. In this policy, the flushing operation can become a
bottleneck because all the blocks dirtied in the last epoch
need to be flushed on a barrier. Compared to LRU or-
der, flushing in ascending order improves performance
for the write-heavy workloads, by 19% for ms_nfs-small
and 39% for ms_nfs. This result indicates that flushing
is the bottleneck for write-heavy workloads and flushing
in ascending order reduces disk seeks on storage. The
varmail performance is not affected by the flushing order
because there are few writes between barriers.

Figure 3 shows the effect of flushing order with the
write-back persist policy. We measured the flushing
throughput and found that flushing in ascending order
performs significantly better than LRU order for both
write and sync-heavy workloads. However, ms_nfs-

Figure 4: Effect of number of epochs in the flush policy

small fits in the flash cache, making flash bandwidth the
bottleneck, and hence the flushing order has minimal im-
pact on performance. For ms_nfs, ascending order im-
proves performance due to fewer seeks on storage.

With varmail, flushing in ascending order helps mi-
grate mapping entries from the dirty map to the clean
map much more rapidly due to higher flushing through-
put. Since varmail is very sensitive to barrier latency,
and there are fewer entries in the dirty map to persist to
flash at barriers, ascending order improves performance
by 45% over LRU order.

We found that the hit rate did not change significantly
when flushing in ascending order versus LRU order for
write-back persist. We observed that the flushing oper-
ation is relatively efficient for these workloads, and as a
result, cold blocks do not remain in the dirty LRU queue
for long periods when flushing in ascending order. Once
these blocks are flushed, they are moved to the clean
queue, and then evicted. To assess the impact on the re-
placement policy, we logically combined the clean and
the dirty mapping queues in timestamp order, and found
that the tail of the clean queue is at most 8.5% from the
tail of the combined queue in the worst case. As a result,
ascending order flushing does not significantly affect the
eviction decision and outperforms or is comparable to
LRU flushing in all cases.

5.2.2 Epoch-Based Flushing Optimization

The write-back flush policy delays barrier requests be-
cause it needs to flush all dirty blocks back to storage.
We implemented epoch-based flushing, described in Sec-
tion 4.4.2, for the write-back flush policy to reduce this
impact. We did not implement this optimization for the
write-back persist policy because the dirty map can be
persisted to the flash device efficiently on a barrier.

Figure 4 shows the benefits of using multiple epochs
for flushing data. For both the write and sync heavy
both workloads, using a maximum of two epochs im-
proves performance significantly over using a single
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epoch. However, performance does not necessarily im-
prove any further with four epochs because there may not
be enough write concurrency in the workloads. Also, we
keep a separate BTree for each epoch and need to search
all the BTrees for the mapping operations, which may
have a small impact on performance.

6 Related Work

There have been many recent proposals for using flash
devices to improve IO performance, as we discuss here.

Koller et al. [7] present a client-side flash-based
caching system that provides consistency on both recov-
erable and destructive failures. They present ordered
write-back and journaled write-back policies, and their
evaluation shows that journaled write-back performs bet-
ter because it allows coalescing writes in an epoch. Un-
like our write-back policies, both ordered and journaled
write-back do not provide durability because they ignore
barrier-related operations, such as fsync(). They also
ignore disk cache flush commands, and thus do not guar-
antee consistency on storage failure.

Holland et al. [6] present a detailed trace-driven sim-
ulation study of client-side flash caching. They explore
a large number of design decisions, including write poli-
cies in both the buffer and flash caches, unification of the
two caches, cost of cache persistence, etc. They showed
that write-back policies do not significantly improve per-
formance. Write-through is sufficient because the caches
are able to flush the dirty blocks to storage in time, and
thus all application writes are asynchronous. However,
their traces do not contain barrier requests (only reads
and writes), thus they do not consider synchronous IO
operations. Also, their simulation does not consider
batching or reordering requests, which offers significant
performance benefits, as we have shown.

Mercury [2] provides client-side flash caching that fo-
cuses on virtualization clusters in data centers. It uses
the write-through policy for two reasons. First, their cus-
tomers cannot handle losing any recent updates after a
failure. Second, a virtual machine accessing storage can
be migrated from one client machine to another at any
time. With write-through caching, the caches are trans-
parent to the migration mechanism. Mercury can per-
sist cache metadata on flash, similar to the write-back
persist policy. However, their motivation for persisting
cache metadata is to reduce cache warm up times on a
client reboot. Thus the cache metadata is only persisted
on scheduled shutdown or reboot on the storage client.

FlashTier [19] presents an interface for caching on
raw flash memory chips, rather than on flash storage
with a flash translation layer (i.e., an SSD). Their ap-
proach benefits from integrating wear-level management
and garbage collection with cache eviction, and using the

out-of-band area on the raw flash chip to store the map-
ping tables. FlashTier complements our work because it
allows using the flash device more efficiently.

Bcache [15] is a Linux-based caching system that sup-
ports caching on flash devices, similar to our system. It
implements write-through caching and allows persisting
metadata to flash. A comparison of our write-back poli-
cies against Bcache would be interesting. Bcache, how-
ever, does not support barrier requests in the kernel ver-
sion that we used for our implementation, so the results
would not be comparable.

Previous work on flash caching [6, 7] suggests that
the flash cache hit rate, and thus the replacement pol-
icy, is crucial to performance. The Adaptive Replace-
ment Cache (ARC) [10] algorithm is effective because it
takes access frequency and recency into account, which
makes ARC scan-resistant (i.e., it resists cache pollution
on full table scans) and helps it adapt to the workload to
improve cache hit rates. We have focused on the write-
back policy and reliability, and have used only a simple
LRU replacement policy.

Bonfire [23] shows that on-demand cache warm up
(after system reboot) is slow because of growing flash
caches. They warm the cache by monitoring I/O traces
and loading hot data in bulk, which speeds up warm up
time by 59% to 100% compared to on-demand warm up.
We could use a similar approach for warming our cache.

7 Conclusions and Future Work

We have shown that a high-performance write-back
caching system can support strong reliability guarantees.
The key insight is that storage applications that require
reliability already implement their own atomicity and
durability schemes using write barriers, which provide
the only reliable method for storing data durably on stor-
age media. By leveraging these barriers, the caching sys-
tem can provide both consistency and durability, and it
can be implemented efficiently because applications have
no reliability expectations between barriers.

We designed two flash-based caching policies called
write-back flush and write-back persist. The write-back
flush policy provides the same reliability guarantees as
the write-through policy. The write-back persist policy
assumes failure-free flash operation, and provides im-
proved performance by flushing data to the flash cache
rather than to storage on barrier requests, thereby reduc-
ing the latency of the barrier request.

Our evaluation showed three results. First, for read-
heavy workloads, all caching policies, write-through or
write-back, perform comparably. Second, our write-back
policies provide higher performance than write-through
caching for bursty and write-heavy workloads because
IO requests can be batched and reordered. The dirty
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blocks in the flash cache can be batched and flushed
asynchronously. They can also be reordered to improve
the write access pattern and thus the flushing throughput
on the storage side. Third, write-back persist performs
comparably to write-back for all workloads, other than
sync-heavy workloads, for which it still offers significant
performance improvements over write-through caching.

In the future, we plan to use the trim command [3]
to reduce cache pollution caused by freed, dirty blocks.
We also plan to optimize the flush thread to avoid read-
ing blocks from flash when they are available in the
buffer cache. Finally, we plan to evaluate our write-back
caching policies in virtualized environments [2].
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Abstract

Modern applications and virtualization require fast and
predictable storage. Hard-drives have low and un-
predictable performance, while keeping everything in
DRAM is still prohibitively expensive or unnecessary
in many cases. Solid-state drives offer a balance be-
tween performance and cost and are becoming increas-
ingly popular in storage systems, playing the role of large
caches and permanent storage. Although their read per-
formance is high and predictable, SSDs frequently block
in the presence of writes, exceeding hard-drive latency
and leading to unpredictable performance.

Many systems with mixed workloads have low la-
tency requirements or require predictable performance
and guarantees. In such cases the performance variance
of SSDs becomes a problem for both predictability and
raw performance. In this paper, we propose Rails, a de-
sign based on redundancy, which provides predictable
performance and low latency for reads under read/write
workloads by physically separating reads from writes.
More specifically, reads achieve read-only performance
while writes perform at least as well as before. We
evaluate our design using micro-benchmarks and real
traces, illustrating the performance benefits of Rails and
read/write separation in solid-state drives.

1 Introduction

Virtualization and many other applications such as online
analytics and transaction processing often require access
to predictable, low-latency storage. Cost-effectively sat-
isfying such performance requirements is hard due to the
low and unpredictable performance of hard-drives, while
storing all data in DRAM, in many cases, is still pro-
hibitively expensive and often unnecessary. In addition,
offering high performance storage in a virtualized cloud
environment is more challenging due to the loss of pre-
dictability, throughput, and latency incurred by mixed

workloads in a shared storage system. Given the pop-
ularity of cloud systems and virtualization, and the stor-
age performance demands of modern applications, there
is a clear need for scalable storage systems that provide
high and predictable performance efficiently, under any
mixture of workloads.

Solid-state drives and more generally flash memory
have become an important component of many enter-
prise storage systems towards the goal of improving per-
formance and predictability. They are commonly used
as large caches and as permanent storage, often on top
of hard-drives operating as long-term storage. A main
advantage over hard-drives is their fast random access.
One would like SSDs to be the answer to predictabil-
ity, throughput, latency, and performance isolation for
consolidated storage in cloud environments. Unfortu-
nately, though, SSD performance is heavily workload
dependent. Depending on the drive and the workload la-
tencies as high as 100ms can occur frequently (for both
writes and reads), making SSDs multiple times slower
than hard-drives in such cases. In particular, we could
only find a single SSD with predictable performance
which, however, is multiple times more expensive than
commodity drives, possibly due to additional hardware it
employs (e.g., extra DRAM).

Such read-write interference results in unpredictable
performance and creates significant challenges, espe-
cially in consolidated environments, where different
types of workloads are mixed and clients require high
throughput and low latency consistently, often in the
form of reservations. Similar behavior has been observed
in previous work [5, 6, 14, 17] for various device models
and is well-known in the industry. Even so, most SSDs
continue to exhibit unpredictability.

Although there is a continuing spread of solid-state
drives in storage systems, research on providing effi-
cient and predictable performance for SSDs is limited.
In particular, most related work focuses on performance
characteristics [5, 6, 4], while other work, including
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Figure 1: The sliding window moves along the drives.
Drives inside the sliding window only perform reads and
temporarily store writes in memory.

[1, 3, 8] is related to topics on the design of drives, such
as wear-leveling, parallelism and the Flash Translation
Layer (FTL). Instead, we use such performance observa-
tions to provide consistent performance. With regards to
scheduling, FIOS [17] provides fair-sharing while trying
to improve the drive efficiency. To mitigate performance
variance, current flash-based solutions for the enterprise
are often aggressively over provisioned, costing many
times more than commodity solid-state drives, or offer
lower write throughput. Given the fast spread of SSDs,
we believe that providing predictable performance and
low latency efficiently is important for many systems.

In this paper we propose and evaluate a method for
achieving consistent performance and low latency under
arbitrary read/write workloads by exploiting redundancy.
Specifically, using our method read requests experience
read-only throughput and latency, while write requests
experience performance at least as well as before. To
achieve this we physically separate reads from writes by
placing the drives on a ring and using redundancy, e.g.,
replication. On this ring consider a sliding window (Fig-
ure 1), whose size depends on the desired data redun-
dancy and read-to-write throughput ratio. The window
moves along the ring one location at a time at a con-
stant speed, transitioning between successive locations
“instantaneously”. Drives inside the sliding window do
not perform any writes, hence bringing read-latency to
read-only levels. All write requests received while inside
the window are stored in memory (local cache/DRAM)
and optionally to a log, and are actually written to the
drive while outside the window.

2 Overview

The contribution of this paper is a design based on re-
dundancy that provides read-only performance for reads
under arbitrary read/write workloads. In other words, we
provide consistent performance and minimal latency for
reads while performing at least as well for writes as be-

fore. In addition, as we will see, there is opportunity
to improve the write throughput through batch writing,
however, this is out of the scope of this paper. Instead,
we focus on achieving predictable and efficient read per-
formance under read/write workloads. We present our
results in three parts. In Section 3, we study the perfor-
mance of multiple SSD models. We observe that in most
cases their performance can become significantly un-
predictable and that instantaneous performance depends
heavily on past history of the workload. As we coarsen
the measurement granularity we see, as expected, that at
some point the worst-case throughput increases and sta-
bilizes. This point, though, is quite significant, in the
order of multiple seconds. Note that we illustrate spe-
cific drive performance characteristics to motivate our
design for Rails rather than present a thorough study of
the performance of each drive. Based on the above, in
Section 4 we present Rails. In particular, we first show
how to provide read/write separation using two drives
and replication. Then we generalize our design to SSD
arrays performing replication or erasure coding. Finally,
we evaluate our method using replication under micro-
benchmarks and real workload traces.

2.1 System Notes
As described in Section 4.3, the design of Rails supports
both replication and erasure coding. To this date we have
implemented a prototype of the described design under
replication rather than erasure coding. We believe that a
thorough study of Rails under erasure coding requires a
more extensive evaluation and is left as future work.

For our experiments we perform direct I/O to bypass
the OS cache and use Kernel AIO to asynchronously dis-
patch requests to the raw device. To make our results
easier to interpret, we do not use a filesystem. Limited
experiments on top of ext3 and ext4 suggest our method
would work in those cases. Moreover, our experiments
were performed with both our queue and NCQ (Na-
tive Command Queueing) depth set to 31. Other queue
depths had similar effects to what is presented in [6], that
is throughput increased with the queue size. Finally, the
SATA connector used was of 3.0Gb/s. For all our exper-
iments we used the following SSD models:

Model Capacity Cache Year
A Intel X-25E 65GB 16MB 2008
B Intel 510 250GB 128MB 2011
C Intel DC3700 400GB 512MB 2012
D Samsung 840EVO 120GB 256MB 2013

We chose the above drive models to develop a method,
which unlike heuristics (Section 3.2), works under differ-
ent types of drives, and especially commodity drives. A
small number of recent data-center oriented models and

2
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in particular model C have placed a greater emphasis on
performance stability. For the drives we are aware of, the
stability either comes at a cost that is multiple times that
of commodity drives (as with model C), or is achieved by
lowering the random write throughput significantly com-
pared to other models. In particular, commodity SSDs
typically have a price between $0.5 and $1/GB while
model C has a cost close to $2.5/GB. Most importantly,
we are interested in a versatile, open solution support-
ing replication and erasure coding, which can be applied
on existing systems by taking advantage of commodity
hardware, rather than expensive black-box solutions.

3 Performance and Stability

Solid-state drives have orders-of-magnitude faster ran-
dom access than hard-drives. On the other hand, SSDs
are stateful and their performance depends heavily on
the past history of the workload. The influence of writes
on reads has been noted in prior work [5, 6, 14, 17] for
various drive models, and is widely known in the indus-
try. We first verify the behavior of reads and writes on
drive B. By running a simple read workload with re-
quests of 256KB over the first 200GB of drive B, we see
from Figure 2(a) that the throughput is high and virtually
variance-free. We noticed a similar behavior for smaller
request sizes and for drive A. On the other hand, perform-
ing the same experiment but with random writes gives
stable throughput up to a certain moment, after which the
performance degrades and becomes unpredictable (Fig-
ure 2(b)), due to write-induced drive operations.

To illustrate the interference of writes on reads, we run
the following two experiments on drive B. Consider two
streams performing reads (one sequential and one ran-
dom), and two streams performing writes (one sequential
and one random). Each read stream has a dispatch rate
of 0.4 while each write stream has a dispatch rate of 0.1,
i.e., for each write we send four reads. In the first exper-
iment, all streams perform operations on the same logi-
cal range of 100MB. Figure 3(a) shows the CDF of the
throughput in IOPS (input/output per second) achieved
by each stream over time. We note that the performance
behavior is predictable. In the second experiment, we
consider the same set of streams and dispatch rates, with
the difference that the requests span the first 200GB, in-
stead of only 100MB. Figure 3(b) illustrates the drive
performance unpredictability under such conditions. We
attribute this to the garbage collector not being able to
keep up, which turns background operations into block-
ing ones.

Different SSD models can exhibit different through-
put variance for the same workload. Performing random
writes over the first 50GB of drive A, which has a capac-
ity of 65GB, initially gives a throughput variance close

(a) The read-only workload performance has virtually no variance.

(b) When the drive has limited free space, random writes trigger the
garbage collector resulting in unpredictable performance.

Figure 2: Under random writes the performance eventu-
ally drops and becomes unpredictable. (Drive B; 256KB)

to that of reads (figure skipped). Still, the average per-
formance eventually degrades to that of B, with the total
blocking time corresponding to more than 60% of the de-
vice time (Figure 4). Finally, although there is ongoing
work, even newly released commodity SSDs (e.g., drive
D) can have write latency that is 10 times that of reads, in
addition to the significant write variance (figure skipped).

Throughout our experiments we found that model C
was the only drive with high and consistent performance
under mixed read/write workloads. More specifically, af-
ter filling the drive multiple times by performing random
writes, we presented it with a workload having a decreas-
ing rate of (random) writes, from 90% down to 10%.
To stress the device, we performed those writes over
the whole drive’s logical space. From Figure 5, we see
that the read performance remains relatively predictable
throughout the whole experiment. As mentioned earlier,
a disadvantage of this device is its cost, part of which
could be attributed to extra components it employs to

3
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(a) Reads and writes over a range of 100MB lead to predictable write
performance and the effect of writes on reads is small.

(b) Performing writes over 200GB leads to unpredictable read
throughput due to write-induced blocking events.

Figure 3: The performance varies according to the writ-
ing range. (Drive B; 256KB)

achieve this level of performance. As mentioned earlier,
we are interested in an open, extensible and cheaper so-
lution using existing commodity hardware. In addition,
Rails, unlike model C, requires an amount of DRAM that
is not proportional to the drive capacity. Finally, although
we only tested drive C with a 3Gb/s SATA controller, we
expect it to provide comparably predictable performance
under 6Gb/s.

3.1 Performance over long periods
As mentioned in Section 1, writes targeting drives in
read mode are accumulated and performed only when
the drives start writing, which may be after multiple sec-
onds. To that end, we are interested in the write through-
put and predictability of drives over various time periods.
For certain workloads and depending on the drive, the
worst-case throughput can reach zero. A simple example

Figure 4: The drive blocks for over 600ms/sec, leading to
high latencies for all queued requests. (Drive A; 256KB)

Figure 5: Random reads/writes at a decreasing write rate.
Writes have little effect on reads. (Drive C; 256KB)

of such workload on drive A consists of 4KB sequential
writes. We noted that when the sequential writes enter a
randomly written area, the throughput oscillates between
0 and 40,000 writes/sec. To illustrate how the through-
put variance depends on the length of observation pe-
riod, we computed the achieved throughput over differ-
ent averaging window sizes, and for each window size
we computed the corresponding CDF of throughputs. In
Figure 6, we plot the 5%-ile of these throughput mea-
surements as we increase the window size. We see that
increasing the window size to about 5 seconds improves
the 5%-ile, and that the increase is fast but then flattens
out. That is, the throughput of SSDs over a window size
of a few seconds becomes as predictable as the through-
put over large window sizes. Drive B exhibits similar be-
havior. Finally, we found that the SSD write cache con-
tributes to the throughput variance and although in our
experiments we keep it enabled by default, disabling it

4
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improves stability but often at the cost of lower through-
put, especially for small writes.

Figure 6: The bottom 5% throughput against the averag-
ing window size. (Drive A; 4KB)

3.2 Heuristic Improvements
By studying drive models A and B, we found the behav-
ior of A, which has a small cache, to be more easily af-
fected by the workload type. First, writing sequentially
over blocks that were previously written with a random
pattern has low and unstable behavior, while writing se-
quentially over sequentially written blocks has high and
stable performance. Although such patterns may appear
under certain workloads and could be a filesystem op-
timization for certain drives, we cannot assume that in
general. Moreover, switching from random to sequential
writes on drive A, adds significant variance.

To reduce that variance we tried to disaggregate se-
quential from random writes (e.g., in 10-second batches).
Doing so doubled the throughput and reduced the vari-
ance significantly (to 10% of the average). On the other
hand, we should emphasize that the above heuristic does
not improve the read variance of drive B unless the ran-
dom writes happen over a small range. This strengthens
the position of not relying on heuristics due to differences
between SSDs. In contrast to the above, we next present
a generic method for achieving efficient and predictable
read performance under mixed workloads that is virtu-
ally independent of drive model and workload history.

4 Efficient and Predictable Performance

In the previous section, we observed that high la-
tency events become common under read/write work-
loads leading to unpredictable performance, which is
prohibitive for many applications. We now present a

















Figure 7: At any given time each of the two drives is
either performing reads or writes. While one drive is
reading the other drive is performing the writes of the
previous period.

generic design based on redundancy that when applied
on SSDs provides predictable performance and low la-
tency for reads, by physically isolating them from writes.
We expect this design to be significantly less prone to dif-
ferences between drives than heuristics, and demonstrate
its benefits under models A and B. In what follows, we
first present a minimal version of our design, where we
have two drives and perform replication. In Section 4.3,
we generalize that to support more than two drives, era-
sure codes, and describe its achievable throughput.

4.1 Basic Design

Solid-state drives have fast random access and can ex-
hibit high performance. However, as shown in Section
3, depending on the current and past workloads, perfor-
mance can degrade quickly. For example, performing
random writes over a wide logical range of a drive can
lead to high latencies for all queued requests due to write-
induced blocking events (Figure 2(b)). Such events can
last up to 100ms and account for a significant proportion
of the device’s time, e.g., 60% (Figure 4). Therefore,
when mixing read and write workloads, reads also block
considerably, which can be prohibitive.

We want a solution that provides read-only perfor-
mance for reads under mixed workloads. SSD models
differ from each other and a heuristic solution working
on one model may not work well on another (Section
3.2). We are interested in an approach that works across
various models. We propose a new design based on re-
dundancy that achieves those goals by physically isolat-
ing reads from writes. By doing so, we nearly eliminate
the latency that reads have to pay due to writes, which is
crucial for many low-latency applications, such as online
analytics. Moreover, we have the opportunity to further
optimize reads and writes separately. Note that using a
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single drive and dispatching reads and writes in small
time-based batches and prioritizing reads as in [17], may
improve the performance under certain workloads and
SSDs. However, it cannot eliminate the frequent block-
ing due to garbage collection under a generic workload.

The basic design, illustrated in Figure 7, works as fol-
lows: given two drives D1 and D2, we separate reads
from writes by sending reads to D1 and writes to D2. Af-
ter a variable amount of time T ≥ Tmin, the drives switch
roles with D1 performing writes and D2 reads. When the
switch takes place, D1 performs all the writes D2 com-
pleted that D1 has not, so that the drives are in sync. We
call those two consecutive time windows a period. If
D1 completes syncing and the window is not yet over
(t < Tmin), D1 continues with new writes until t ≥ Tmin.
In order to achieve the above, we place a cache on top of
the drives. While the writing drive Dw performs the old
writes all new writes are written to the cache. In terms
of the write performance, by default, the user perceives
write performance as perfectly stable and half that of a
drive dedicated to writes. As will be discussed in Section
4.2.3, the above may be modified to allow new writes
to be performed directly on the write drive, in addition
to the cache, leading to a smaller memory footprint. In
what follows we present certain properties of the above
design and in Section 4.3 a generalization supporting an
arbitrary number of drives, allowing us to trade read and
write throughput, as well as erasure codes.

4.2 Properties and Challenges

4.2.1 Data consistency & fault-tolerance

All data is always accessible. In particular, by the above
design, reads always have access to the latest data, possi-
bly through the cache, independently of which drive is in
read mode. This is because the union of the cache with
any of the two drives always contains exactly the same
(and latest) data. By the same argument, if any of the
two drives fail at any point in time, there is no data loss
and we continue having access to the latest data. While
the system operates with one drive, the performance will
be degraded until the replacement drive syncs up.

4.2.2 Cache size

Assuming we switch drive modes every T seconds and
the write throughput of each drive is w MB/s, the cache
size has to be at least 2T ×w. This is because a total
of T ×w new writes are accepted while performing the
previous T ×w writes to each drive. We may lower that
value to an average of 3/2× T ×w by removing from
memory a write that is performed to both drives. As an
example, if we switch every 10 seconds and the write

throughput per drive is 200MB/s, then we need a cache
of T ×2w = 4000MB.

The above requires that the drives have the same
throughput on average (over T seconds), which is rea-
sonable to assume if T is not small (Figure 6). In general
though, the write throughput of an SSD can vary in time
depending on past workloads. This implies that even
drives of the same model may not always have identical
performance, It follows that a drive in our system may
not manage to flush all its data while in write mode.

In a typical storage system an array of replica drives
has the performance of its slowest drive. We want to
retain that property while providing read/write separa-
tion to prevent the accumulated data of each drive from
growing unbounded. To that end we ensure that the sys-
tem accepts writes at the rate of its slowest drive through
throttling. In particular, in the above 2-drive design, we
ensure that the rate at which writes are accepted is w/2,
i.e., half the write throughput of a drive. That condition is
necessary to hold over large periods since replication im-
plies that the write throughput, as perceived by the client,
has to be half the drive throughput. Of course, extra
cache may be added to handle bursts. Finally, the cache
factor can become w×T by sacrificing up to half the read
throughput if the syncing drive retrieves the required data
from Dr instead of the cache. However, that would also
sacrifice fault-tolerance and given the low cost of mem-
ory it may be an inferior choice.

4.2.3 Power failure

In an event of a power failure our design as described
so far will result in a data loss of T × w MBs, which
is less than 2GB in the above example. Shorter switch-
ing periods have a smaller possible data loss. Given the
advantages of the original design, limited data loss may
be tolerable by certain applications, such as applications
streaming data that is not sensitive to small, bounded
losses. However, other applications may not tolerate a
potential data loss. To prevent data loss, non-volatile
memory can be used to keep the design and implemen-
tation simple while retaining the option of predictable
write throughput. As NVRAM becomes more popular
and easily available, we expect that future implementa-
tions of Rails will assume its availability in the system.

In the absence of NVRAM, an approach to solve the
power-failure problem is to turn incoming writes into
synchronous ones. Assuming we split the bandwidth
fairly between cached and incoming writes, the incom-
ing T ×w/2 MBs of data is then written to Dw in addition
to the cache. In that case, the amount of cache required
reduces to an average of T ×w/2. In the above approach
we first perform the writes of the previous period, and
then any incoming writes. In practice, to avoid write star-
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vation for the incoming writes, we can coalesce writes
while sharing the bandwidth between the writes of the
previous period and the incoming ones. As in write-back
caches, and especially large flash caches, a challenge
with the above is preserving write-ordering. Preserving
the write order is required by a proportion of writes in
certain applications (e.g., most file systems). To achieve
this efficiently, a method such as ordered write-back [13]
may be used, which preserves the original order during
eviction by using dependency graphs. On the other hand,
not all applications require write order preservation, in-
cluding NoFS [7]. Note that other approaches such as
performing writes to a permanent journal may be pos-
sible, especially in distributed storage systems where a
separate journal drive often exists on each node. Fi-
nally, after the power is restored, we need to know which
drive has the latest data, which can be achieved by stor-
ing metadata on Dw. The implementation details of the
above are out of the scope of this paper.

4.2.4 Capacity and cost

Doubling the capacity required to store the same amount
of data appears as doubling the storage cost. However,
there are reasons why this is not entirely true. First,
cheaper SSDs may be used in our design because we
are taking away responsibility from the SSD controller
by not mixing reads and writes. In other words, any
reasonable SSD has high and stable read-only perfor-
mance, and stable average write performance over large
time intervals (Figure 6). Second, in practice, signifi-
cant over-provisioning is already present to handle the
unpredictable performance of mixed workloads. Third,
providing a drive with a write-only load for multiple sec-
onds instead of interleaving reads and writes is expected
to improve its lifetime. Finally, and most importantly,
Rails can take advantage of the redundancy that local and
distributed systems often employ for fault-tolerance. In
such cases, the hardware is already available. In partic-
ular, we next generalize the above design to more than
two drives and reduce the storage space penalty through
erasure codes while providing read/write separation.

4.3 Design Generalization

We now describe the generalization of the previous de-
sign to support an arbitrary number of identical SSDs
and reader-to-writer drive ratios through erasure coding.

Imagine that we want to build a fault-tolerant storage
system by using N identical solid-state drives connected
over the network to a single controller. We will model re-
dundancy as follows. Each object O stored will occupy
q|O| space, for some q > 1. Having fixed q, the best we
can hope in terms of fault-tolerance and load-balancing





 

     

 







Figure 8: Each object is obfuscated and its chunks are
spread across all drives. Reading drives store their chunk
in memory until they become writers.

is that the q|O| bits used to represent O are distributed
(evenly) among the N drives in such a way that O can
be reconstituted from any set of N/q drives. A natural
way to achieve load-balancing is the following. To han-
dle a write request for an object O, each of the N drives
receives a write request of size |O| × q/N. To handle a
read request for an object O, each of N/q randomly se-
lected drives receives a read request of size |O|×q/N.

In the simple system above, writes are load-balanced
deterministically since each write request places exactly
the same load on each drive. Reads, on the other hand,
are load-balanced via randomization. Each drive receives
a stream of read and write requests whose interleaving
mirrors the interleaving of read/write requests coming
from the external world (more precisely, each external-
world write request generates a write on each drive, while
each external-world read request generates a read with
probability 1/q on each drive.)

As discussed in Section 3, in the presence of read/write
interleaving the write latency “pollutes” the variance of
reads. We would like to avoid this latency contamination
and bring read latency down to the levels that would be
experienced if each drive was read-only. To this effect,
we propose making the load-balancing of reads partially
deterministic, as follows. Place the N drives on a ring.
On this ring consider a sliding window of size s, such that
N/q ≤ s ≤ N. The window moves along the ring one lo-
cation at a time at a constant speed, transitioning between
successive locations “instantaneously”. The time it takes
the window to complete a rotation is called the period P.
The amount of time, P/N, that the window stays in each
location is called a frame.

To handle a write request for an object O, each of the N
drives receives one write request of size |O|×q/N (Fig-
ure 8, with N = 6 and q = 3/2). To handle a read request
for an object O, out of the s drives in the window N/q
drives are selected at random and each receives one read
request of size |O|×q/N. In other words, the only differ-
ence between the two systems is that reads are not han-
dled by a random subset of nodes per read request, but by
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Figure 9: Each node m accumulates the incoming writes
across frames f . . . f ′ in memory, D(m)

f ... f ′ . While outside
the reading window nodes flush their data.

random nodes from a coordinated subset which changes
only after handling a large number of read requests.

In the new system, drives inside the sliding window do
not perform any writes, hence bringing read-latency to
read-only levels. Instead, while inside the window, each
drive stores all write requests received in memory (local
cache/DRAM) and optionally to a log. While outside the
window, each drive empties all information in memory,
i.e., it performs the actual writes (Figure 9). Thus, each
drive is a read-only drive for P/N × s ≥ P/q successive
time units and a write-only drive for at most P(1−1/q)
successive time units.

Clearly, there is a tradeoff regarding P. The bigger P
is, the longer the stretches for which each drive will only
serve requests of one type and, therefore, the better the
read performance predictability and latency. On the other
hand, the smaller P is, the smaller the amount of memory
needed for each drive.

4.3.1 Throughput Performance

Let us now look at the throughput difference between
the two systems. The first system can accommodate
any ratio of read and write loads, as long as the total
demand placed on the system does not exceed capac-
ity. Specifically, if r is the read-rate of each drive and
w is the write-rate of each drive, then any load such that
R/r+Wq/w ≤ N can be supported, where R and W are
the read and write loads, respectively. In this system read
and write workloads are mixed.

In the second system, s can be readily adjusted on the
fly to any value in [N/q,N], thus allowing the system to
handle any read load up to the maximum possible rN.
For each such choice of s, the other N − s drives pro-
vide write throughput, which thus ranges between 0 and
Wsep = w× (N −N/q)/q = w×N(q− 1)/q2 ≤ wN/4.
(Note that taking s = 0 creates a write-only system with

optimal write-throughput wN/q.) We see that as long as
the write load W ≤ Wsep, by adjusting s the system per-
forms perfect read/write separation and offers the read
latency and predictability of a read-only system. We ex-
pect that in many shared storage systems, the reads-to-
writes ratio and the redundancy are such that the above
restriction is satisfied in the typical mode of operation.
For example, for all q ∈ [3/2,3], having R > 4W suffices.

When W > Wsep some of the dedicated read nodes
must become read/write nodes to handle the write load.
As a result, read/write separation is only partial. Nev-
ertheless, by construction, in every such case the sec-
ond system performs at least as well as the first system
in terms of read-latency. On the other hand, when per-
forming replication (q = N) we have complete flexibility
with respect to trading between read and write drives (or
throughput) so we never have to mix reads and writes at
a steady state.

Depending on the workload, ensuring that we ad-
just fast enough may require that drives switch modes
quickly. In practice, to maintain low latency drives
should not be changing mode quickly, otherwise reads
could be blocked by write-induced background opera-
tions on the drive. Those operations could be triggered
by previous writes. For example, we found that model
B can switch between reads and writes every 5 seconds
almost perfectly (Figure 10) while model A exhibits few
blocking events that affect the system predictability (Fig-
ure 13(a)) when switching every 10 seconds.

We conclude that part of the performance predictabil-
ity provided by Rails may have to be traded for the full
utilization of every drive under fast-changing workloads.
The strategy for managing that trade-off is out of the
scope of this paper. Having said that, we expect that
if the number of workloads seen by a shared storage is
large enough, then the aggregate behavior will be stable
enough and Rails would only see minor disruptions.

4.3.2 Feasibility and Efficiency

Consider the following four dimensions: storage space,
reliability, computation and read performance variance.
Systems performing replication have high space require-
ments. On the other hand, they offer reliability, and no
computation costs for reconstruction. Moreover, apply-
ing our method improves their variance without affecting
the other quantities. In other words, the system becomes
strictly better.

Systems performing erasure coding have smaller stor-
age space requirements and offer reliability, but add com-
putation cost due to the reconstruction when there is a
failure. Adding our method to such systems improves
the performance variance. The price is that reading en-
tails reconstruction, i.e., computation.

8
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Figure 10: Switching modes as frequent as every 5 sec-
onds creates little variance on reads. (Drive B; 256KB)

Nevertheless, reconstruction speed has improved [18]
while optimizing degraded read performance is a pos-
sibility, as has been done for a single failure [12]. In
practice, there are SSD systems performing reconstruc-
tion frequently to separate reads from writes, illustrating
that reconstruction costs are tolerable for small N (e.g.,
6). We are interested in the behavior of such systems un-
der various codes as N grows, and identifying the value
of N after which read/write separation becomes ineffi-
cient due to excessive computation or other bottlenecks.

4.4 Experimental Evaluation

We built a prototype of Rails as presented in Sections
4.1 and 4.3 using replication and verified that it provides
predictable and efficient performance, and low latency
for reads under read/write workloads using two and three
drives. For simplicity, we ignored the possibility of cache
hits or overwriting data still in the cache and focused on
the worst-case performance. In what follows, we con-
sider two drives that switch roles every Tmin = 10 sec-
onds. For the first experiment we used two instances of
drive B. The workload consists of four streams, each
sending requests of 256KB as fast as possible. From Fig-
ure 11(a), we see that reads happen at a total constant
rate of 1100 reads/sec. and are not affected by writes.
Writes however have a variable behavior as in earlier ex-
periments, e.g., Figure 2(b). Without Rails reads have
unstable performance due to the writes (Figure 3(b)).

Increasing the number of drives to three, and using the
sliding window technique (Section 4.3), provides sim-
ilar results. In particular, we set the number of read
drives (window size) to two and therefore had a single
write drive at a time. Figure 12(a) shows the perfor-
mance without Rails is inconsistent when mixing reads

(a) The read streams throughput remains constant at the maximum
possible while writes perform as before. (Drive B; 256KB)

(b) The read throughput remains stable at its maximum performance.
(Drive B; 4KB)

Figure 11: Using Rails to physically separate reads from
writes leads to a stable and high read performance.

and writes. In particular, in the first figure, the reads are
being blocked by writes until writes complete. On the
other hand, when using Rails the read performance is un-
affected by the writes, and both the read and write work-
load finish earlier (Figure 12(b)). Note that when the
reads complete, all three drives start performing writes.

Although we physically separate reads from writes, in
the worst-case there can still be interference due to re-
maining background work right after a window shift. In
the previous experiment we noticed little interference,
which was partly due to the drive itself. Specifically,
from Figure 13(b) we see that reads have predictable per-
formance around 95% of the time, which is significantly
more predictable than without Rails (Figure 3(b)). More-
over, in Figure 13(a) we see that drive A has predictable
read performance when using Rails, though reads do not
appear as a perfect line, possibly due to its small cache.
Since that may also happen with other drives we propose

9
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(a) Mixing reads and writes on all 3 drives leads to slow performance
for reads until writes complete.

(b) Using Rails to separate reads from writes across drives nearly
eliminates the interference of writes on reads.

Figure 12: Client throughput under 3-replication, (a)
without Rails, (b) with Rails. (Drive B; 256KB)

letting the write drive idle before each shift in order to
reduce any remaining background work. That way, we
found that the interference becomes minimal and 99% of
the time the throughput is stable. If providing QoS, that
idle time can be charged to the write streams, since they
are responsible for the blocking. Small amounts of inter-
ference may be acceptable, however, certain users may
prefer to sacrifice part of the write throughput to further
reduce the chance of high read latency.

The random write throughput achieved by the com-
modity drives we used (models A, B, and D) drops sig-
nificantly after some number of operations (Figure 2(b)).
Instead, model C, which is more expensive as discussed
earlier, retains its write performance. We believe there is
an opportunity to increase the write throughput in Rails
for commodity drives through batch writing, or through
a version of SFS [14] adapted to redundancy. That is
because many writes in Rails happen in the background.

(a) Using Rails, the read throughput of drive A is mostly predictable,
with a small variance due to writes after each drive switch.

(b) Using Rails, on drive B we can provide predictable performance
for reads more than 95% of the time without any heuristics.

Figure 13: IOPS CDF using Rails on (a) drive A, (b)
drive B. (256KB)

4.5 Evaluation with Traces
We next evaluate Rails with two drives (of model B) and
replication using the Stg dataset from the MSR Cam-
bridge Traces [16], OLTP traces from a financial institu-
tion and traces from a popular search engine [26]. Other
combinations of MSRC traces gave us similar results
with respect to read/write isolation and skip them. For
the following experiments we performed large writes to
fill the drive cache before running the traces. Evaluat-
ing results using traces can be more challenging to inter-
pret due to request size differences leading to a variable
throughput even under a storage system capable of deliv-
ering perfectly predictable performance.

In terms of read/write isolation, Figure 14(a) shows
the high variance of the read throughput when mixing
reads and writes under a single device. The write plots
for both cases are skipped as they are as unstable as Fig-
ure 14(a). Under the same workload our method pro-
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(a) Withour Rails, reads are blocked by writes (not shown) making
read performance unpredictable.

(b) With Rails, reads are not affected by writes (not shown).

Figure 14: Read throughput (a) without Rails, (b) with
Rails, under a mixture of real workloads. (Drive B)

vides predictable performance (Figure 14(b)) in the sense
that high-latency events become rare. To clearly see that,
Figure 15(a) focuses on twenty arbitrary seconds of the
same experiment and illustrates that without Rails there
are multiple response times in the range of 100ms. Look-
ing more closely, we see that about 25% of the time reads
are blocked due to the write operations. On the other
hand, from Figure 15(b) we see that Rails nearly elim-
inates the high latencies, therefore providing read-only
response time that is low and predictable, almost always.

5 Related Work

Multiple papers study the performance characteristics of
SSDs. uFlip [4] presents a benchmark and illustrates
flash performance patterns, while the authors in [6] study
the effect of parallelism on performance. The work in [5]
includes a set of experiments on the effect of reads/writes

(a) Without Rails, the garbage collector blocks reads for tens of mil-
liseconds, or for 25% of the device time.

(b) With Rails, reads are virtually unaffected by writes - they are
blocked for less than %1 of the time.

Figure 15: High-latency events (a) without Rails, (b)
with Rails, using traces of real workloads. (Drive B)

and access patterns on performance. In addition, Ra-
jimwale et al. present system-level assumptions that need
to be revisited in the context of SSDs [20]. Other work
focuses on design improvements, and touches on a num-
ber of aspects of performance such as parallelism and
write ordering [1]. The authors in [8] propose a solution
for write amplification, while [3] focuses on write en-
durance and its implications on disk scheduling. More-
over, Grupp et al. focus on the future of flash and the
relation between its density and performance [9].

In the context of hard-drive storage, DCD [10] pro-
poses adding a log drive to cache small writes and
destage them to the data drive. Fahrrad [19] treats se-
quential and random requests differently to provide pre-
dictable performance, while QBox [24] takes a similar
approach for black-box storage. Gecko [23] is a log-
structured design for reducing workload interference in
hard-drive storage. In particular, it spreads the log across
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multiple hard-drives, therefore decreasing the effect of
garbage collection on the incoming workload.

There is little work taking advantage of performance
results in the context of scheduling and QoS. A fair
scheduler optimized for flash is FIOS [17] (and its suc-
cessor FlashFQ [22]). Part of FIOS gives priority to
reads over writes, which provides improvements for cer-
tain drive models. However, FIOS is designed as an effi-
cient flash scheduler rather than a method for guarantee-
ing low latency. Instead, we use a drive-agnostic method
to achieve minimal latency. In another direction, SFS
[14] presents a filesystem designed to improve write per-
formance by turning random writes to sequential ones.
SSDs are often used as a high performance tier (a large
cache) on top of hard-drives [2, 15]. Our solution may
be simplified and applied in such cases. Finally, there
is recent work on the applications of erasure coding on
large-scale storage [11, 21]. We expect our method to be
applicable in practice on storage systems using erasure
coding to separate reads from writes.

6 Conclusion

The performance of SSDs degrades and becomes
significantly unpredictable under demanding read/write
workloads. In this paper, we introduced Rails, an
approach based on redundancy that physically separates
reads from writes to achieve read-only performance
in the presence of writes. Through experiments, we
demonstrated that under replication, Rails enables
efficient and predictable performance for reads under
read/write workloads. A direction for future work is
studying the implementation details of Rails regarding
write order preservation in the lack of NVRAM. Finally,
we plan to study the scalability of Rails using erasure
codes, as well as its application on peta-scale distributed
flash-only storage systems, as proposed in [25].
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Abstract

Microsecond latencies and access times will soon domi-
nate most datacenter I/O workloads, thanks to improve-
ments in both storage and networking technologies. Cur-
rent techniques for dealing with I/O latency are targeted
for either very fast (nanosecond) or slow (millisecond)
devices. These techniques are suboptimal for microsec-
ond devices - they either block the processor for tens
of microseconds or yield the processor only to be ready
again microseconds later. Speculation is an alternative
technique that resolves the issues of yielding and block-
ing by enabling an application to continue running un-
til the application produces an externally visible side ef-
fect. State-of-the-art techniques for speculating on I/O
requests involve checkpointing, which can take up to a
millisecond, squandering any of the performance bene-
fits microsecond scale devices have to offer. In this paper,
we survey how speculation can address the challenges
that microsecond scale devices will bring. We mea-
sure applications for the potential benefit to be gained
from speculation and examine several classes of specu-
lation techniques. In addition, we propose two new tech-
niques, hardware checkpoint and checkpoint-free spec-
ulation. Our exploration suggests that speculation will
enable systems to extract the maximum performance of
I/O devices in the microsecond era.

1 Introduction

We are at the dawn of the microsecond era: current
state-of-the-art NAND-based Solid State Disks (SSDs)
offer latencies in the sub-100µs range at reasonable
cost [16, 14]. At the same time, improvements in net-
work software and hardware have brought network laten-
cies closer to their physical limits, enabling sub-100µs
communication latencies. The net result of these devel-

Device Read Write
Millisecond Scale
10G Intercontinental RPC 100 ms 100 ms
10G Intracontinental RPC 20 ms 20 ms
Hard Disk 10 ms 10 ms
10G Interregional RPC 1 ms 1 ms
Microsecond Scale
10G Intraregional RPC 300 µs 300 µs
SATA NAND SSD 200 µs 50 µs
PCIe/NVMe NAND SSD 60 µs 15 µs
10Ge Inter-Datacenter RPC 10 µs 10 µs
40Ge Inter-Datacenter RPC 5 µs 5 µs
PCM SSD 5 µs 5 µs
Nanosecond Scale
40 Gb Intra-Rack RPC 100 ns 100 ns
DRAM 10 ns 10 ns
STT-RAM <10 ns <10 ns

Table 1: I/O device latencies. Typical random read and
write latencies for a variety of I/O devices. The major-
ity of I/Os in the datacenter will be in the microsecond
range.

opments is that the datacenter will soon be dominated by
microsecond-scale I/O requests.

Today, an operating system uses one of two options
when an application makes an I/O request: either it can
block and poll for the I/O to complete, or it can com-
plete the I/O asynchronously by placing the request in
a queue and yielding the processor to another thread
or application until the I/O completes. Polling is an
effective strategy for devices with submicrosecond la-
tency [2, 20], while programmers have used yielding
and asynchronous I/O completion for decades on devices
with millisecond latencies, such as disk. Neither of these
strategies, however, is a perfect fit for microsecond-scale
I/O requests: blocking will prevent the processor from
doing work for tens of microseconds, while yielding may
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reduce performance by increasing the overhead of each
I/O operation.

A third option exists as a solution for dispatching I/O
requests, speculation. Under the speculation strategy, the
operating system completes I/O operations speculatively,
returning control to the application without yielding. The
operating system monitors the application: in the case of
a write operation, the operating system blocks the appli-
cation if it makes a side-effect, and in the case of a read
operation, the operating system blocks the application if
it attempts to use data that the OS has not read yet. In
addition, the operating system may have a mechanism to
rollback if the I/O operation does not complete success-
fully. By speculating, an application can continue to do
useful work even if the I/O has not completed. In the
context of microsecond-scale I/O, speculation can be ex-
tremely valuable since, as we discuss in the next section,
there is often enough work available to hide microsecond
latencies. We expect that storage class memories, such
as phase-change memory (PCM), will especially benefit
from speculation since their access latencies are unpre-
dictable and variable [12].

Any performance benefit to be gained from specu-
lation is dependent upon the performance overhead of
speculating. Previous work in I/O speculation [9, 10]
has relied on checkpointing to enable rollback in case
of write failure. Even lightweight checkpointing, which
utilizes copy-on-write techniques, has a significant over-
head which can exceed the access latency of microsec-
ond devices.

In this paper, we survey speculation in the context
of microsecond-scale I/O devices, and attempt to quan-
tify the performance gains that speculation has to of-
fer. We then explore several techniques for speculation,
which includes exploring existing software-based check-
pointing techniques. We also propose new techniques
which exploit the semantics of the traditional I/O inter-
face. We find that while speculation could allow us to
maximize the performance of microsecond scale devices,
current techniques for speculation cannot deliver the per-
formance which microsecond scale devices require.

2 Background

Past research has shown that current systems have built-
in the assumption that I/O is dominated by millisecond
scale requests [17, 2]. These assumptions have impacted
the core design of the applications and operating systems
we use today, and may not be valid in a world where
I/O is an order of magnitude faster. In this Section, we
discuss the two major strategies for handling I/O and
show that they do not adequately address the needs of
microsecond-scale devices, and we give an overview of
I/O speculation.

2.1 Interfaces versus Strategies
When an application issues a request for an I/O, it uses an
interface to make that request. A common example is the
POSIX write/read interface, where applications make
I/O requests by issuing blocking calls. Another example
is the POSIX asynchronous I/O interface, in which ap-
plications enqueue requests to complete asynchronously
and retrieve the status of their completion at some later
time.

Contrast interfaces with strategies, which refers to
how the operating system actually handles I/O requests.
For example, even though the write interface is block-
ing, the operating system may choose to handle the I/O
asynchronously, yielding the processor to some other
thread.

In this work, we primarily discuss operating system
strategies for handling I/O requests, and assume that ap-
plication developers are free to choose interfaces.

2.2 Asynchronous I/O - Yielding
Yielding, or the asynchronous I/O strategy, follows the
traditional pattern for handling I/O requests within the
operating system: when a userspace thread issues an I/O
request, the I/O subsystem issues the request and the
scheduler places the thread in an I/O wait state. Once
the I/O device completes the request, it informs the oper-
ating system, usually by means of a hardware interrupt,
and the operating system then places the thread into a
ready state, which enables the thread to resume when it
is rescheduled.

Yielding has the advantage of allowing other tasks to
utilize the CPU while the I/O is being processed. How-
ever, yielding introduces significant overhead, which is
particularly relevant for fast I/O devices [2, 20]. For ex-
ample, yielding introduces contexts switches, cache and
TLB pollution as well as interrupt overhead that may ex-
ceed the cost of doing the I/O itself. These overheads
are typically in the microsecond range, which makes the
cost of yielding minimal when dealing with millisecond
latencies as with disks and slow WANs, but high when
dealing with nanosecond devices, such as fast NVMs.

2.3 Synchronous I/O - Blocking
Blocking, or the synchronous I/O strategy, is a solution
for dealing with devices like fast NVMs. Instead of
yielding the CPU in order for I/O to complete, block-
ing prevents unnecessary context switches by having the
application poll for I/O completions, keeping the entire
context of execution within the executing thread. Typi-
cally, the application stays in a spin-wait loop until the
I/O completes, and resumes execution once the device
flags the I/O as complete.
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Blocking prevents the CPU from incurring the cost of
context switches, cache and TLB pollution as well as in-
terrupt overhead that the yielding strategy incurs. How-
ever, the CPU is stalled for the amount of time the I/O
takes to complete. If the I/O is fast, then this strategy is
optimal since the amount of time spent waiting is much
shorter than the amount of CPU time lost due to soft-
ware overheads. However, if the I/O is in the millisec-
onds range, this strategy wastes many CPU cycles in the
spin-wait loop.

2.4 Addressing Microsecond-Scale Devices

Microsecond-scale devices do not fit perfectly into either
strategy: blocking may cause the processor to block for a
significant amount of time, preventing useful work from
being done, and yielding may introduce overheads that
may not have been significant with millisecond-scale de-
vices, but may exceed the time to access a microsecond
scale device. Current literature [2, 20] typically recom-
mends that devices with microsecond (≥ 5µs) latencies
use the yielding strategy.

2.5 I/O Speculation

Speculation is a widely employed technique in which a
execution occurs before it is known whether it is needed
or correct. Most modern processors use speculation: for
example, branch predictors resolve branches before the
branch path has been calculated [15]. Optimistic con-
currency control in database systems enables multiple
transactions to proceed before conflicts are resolved [5].
Prefetching systems attempt to make data available be-
fore it is known to be needed [8]. In all these speculative
systems, speculation has no effect on correctness – if a
misspeculation occurs either it has no effect on correct-
ness or the system can rollback state as if no speculation
had occurred in the first place.

I/O requests are a good speculation candidate for sev-
eral reasons. The results of an I/O request are simple
and predictable. In the case of a write, the write either
succeeds or fails. For a read, the request usually returns
success or failure immediately, and a buffer with the re-
quested data is filled. In the common case, I/Os typically
succeed – failures such as a disk error or an unreachable
host are usually exceptional conditions that do not occur
in a typical application run.

We depict the basic process of speculation in Fig-
ure 1. In order to speculate, a speculative context is cre-
ated first. Creating a speculative context incurs a per-
formance penalty (tspeculate), but once the context is cre-
ated, the task can speculatively execute for some time
(tspec execute), doing useful work until it is no longer safe
to speculate (twait ). In the meantime, the kernel can dis-

Yielding

tio_start

tio_start

tdevice

tio_comp

tio_comp

tsched tsched

tapp2

tpolling

tdevice

tdevice

tspeculate

Blocking

Speculating
twait

User Time

Kernel / Wait Time

Device Time

tspec_execute

Figure 1: Cost breakdown by strategy. These dia-
grams show the relative costs for the yielding, blocking
and speculating strategies.

patch the I/O request asynchronously (tio start ). Once
the I/O request completes (tio comp), the kernel commits
the speculative execution if the request is successful, or
aborts the speculative execution if it is not.

In contrast to the blocking strategy, where the appli-
cation cannot do useful work while the kernel is polling
for the device to complete, speculation allows the appli-
cation to perform useful work while the I/O is being dis-
patched. Compared to the yielding strategy, speculation
avoids the overhead incurred by context switches.

This breakdown indicates that the performance ben-
efits from speculation hinges upon the time to create a
speculative context and the amount of the system can
safely speculate. If the cost is zero, and the device
time (tdevice) is short, then it is almost always better to
speculate because the CPU can do useful work while
the I/O is in progress, instead of spinning or paying the
overhead of context switches. However, when tdevice is
long compared to the time the system can safely specu-
late (tspec execute), then yielding will perform better, since
it can at least allow another application to do useful
work where the speculation strategy would have to block.
When the time to create a context (tspeculate) is high com-
pared to tdevice, then the blocking strategy would be better
since it does not waste cycles creating a speculative con-
text which will be committed before any work is done.

For millisecond devices, yielding is optimal because
tdevice is long, so the costs of scheduling and context
switches are minimal compared to the time it takes to
dispatch the I/O. For nanosecond devices, blocking is op-
timal since tdevice is short, so overhead incurred by either
speculation or yielding will be wasteful. For microsec-
ond devices, we believe speculation could be optimal if



478 2014 USENIX Annual Technical Conference USENIX Association

Application Description
bzip2 bzip2 on the Linux kernel source.
dc NPB Arithmetic data cube.
dd The Unix dd utility.
git clone Clone of the Linux git repository.
make Build of the Linux 3.11.1 kernel.
mongoDB A 50% read, 50% write workload.
OLTP An OLTP benchmark using MySQL.
postmark E-mail server simulation benchmark.
tar Tarball of the Linux kernel.
TPCC-Uva TPC-C running on postgresql.

Table 3: Applications. A wide array of applications
which we analyzed for speculation potential.

there are microseconds of work to speculate across, and
the cost of speculating is low.

3 The Potential for Speculation

In order for speculation to be worthwhile, tspec execute
must be significantly large compared to the cost of spec-
ulation and the device time. In order to measure this po-
tential, we instrumented applications with Pin [13], a dy-
namic binary instrumentation tool, to measure the num-
ber of instructions between I/O requests and the point
speculation must block. For writes, we measured the
number of instructions between a write system call and
side effects-causing system calls (for example, kill(2)
but not getpid(2)), as well as writes to shared mem-
ory. For reads, we measure the number of instructions
between a read system call and the actual use of the re-
sulting buffer (for example, as a result of a read instruc-
tion to the buffer), or other system call, as with a write.
Our estimate of the opportunity for speculation is an ex-
tremely conservative one: we expect that we will have to
block on a large number of system calls that many sys-
tems we discuss in section 4 speculate through. However,
by limiting the scope of speculation, our findings reflect
targets for speculation that produce a minimal amount of
speculative state.

We instrumented a wide variety of applications (Ta-
ble 3), and summarize the results in Table 2. In gen-
eral, we found applications fell into one of three cate-
gories: pure I/O applications, I/O intensive applications,
and compute intensive applications. We briefly discuss
each class below:

Pure I/O applications such as dd and postmark per-
formed very little work between side-effects. For exam-
ple, dd performs a read on the input file to a buffer, fol-
lowed by write to the output file repeatedly. On average,
these applications perform on the order of 100 instruc-
tions between I/O requests and side effects.

We also looked at database applications including
TPCC-Uva, MongoDB and OLTP. These applications are

I/O intensive, but perform a significant amount of com-
pute between side effects. On average, we found that
these applications perform on the order of 10,000 in-
structions between read and write requests. These work-
loads provide an ample instruction load for microsecond
devices to speculate through.

Compute intensive applications such as bzip2 and dc

performed hundreds of thousands to millions of instruc-
tions between side-effects. However, these applications
made I/O calls less often than other application types,
potentially minimizing the benefit to be had from specu-
lation.

Many of the applications we tested used the buffer
following a read system call immediately: most appli-
cations waited less than 100 instructions before using a
buffer that was read. For many applications, this was due
to buffering inside libc, and for many other applications,
internal buffering (especially for the database workloads,
which often employ their own buffer cache) may have
been a factor.

4 Speculation Techniques

In the next section, we examine several techniques for
speculation in the context of the microsecond era. We
review past work and propose new design directions in
the context of microsecond scale I/O.

4.1 Asynchronous I/O Interfaces
While asynchronous I/O interfaces [1] are not strictly
a speculation technique, we mention asynchronous I/O
since it provides similar speedups as speculation. Indeed,
just as in speculation, program execution will continue
without waiting for the I/O to complete. However, asyn-
chronous I/O requires the programmer to explicitly use
and reason about asynchrony, which increases program
complexity. In practice, while modern Linux kernels
support asynchronous I/O, applications use synchronous
I/O unless they require high performance.

4.2 Software Checkpoint Speculation
In order to perform speculation, software checkpointing
techniques generate a checkpoint, which is a copy of an
application’s state. To generate a checkpoint, we call
clone(2), which creates a copy-on-write clone of the
calling process. After the checkpoint has been created,
the system may allow an application to speculatively
continue through a synchronous I/O call before it com-
pletes (by returning control to the application as if the
I/O had completed successfully). The system then mon-
itors the application and stops it if it performs an action
which produces an external output (for example, writing
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Writes Reads
Application Instructions Calls/s Stop Reason Instructions Calls/s Stop Reason
Pure I/O Applications
postmark 74±107 518 close 15±11 123 buffer
make (ld) 115±6 55 lseek 8,790±73,087 180 lseek (31%)

buffer (68%)
dd 161±552 697 write 69±20 698 write

tar 248±1,090 1,001 write (90%)
close (9%)

144±11 1,141 write

git clone 1,940±11,033 2,833 write (73%)
close (26%)

14±10 1,820 buffer

I/O Intensive Applications
MongoDB 10,112±662,117 13,155 pwrite (94%) 62±196 <1 buffer
TPCC-Uva 11,390±256,018 115 write (49%)

sendto (22%)
37±8 22 buffer

OLTP 22,641±342,110 141 pwrite (79%)
sendto (7%)

31±21 19 buffer

Compute Intensive Applications
dc 1,216,281±13,604,751 225 write 8,677±66,273 156 buffer
make (cc1) 1,649,322±819,258 12 write 165±21 431 buffer
bzip2 43,492,452±155,858,431 7 write 1,472±345,827 18 buffer

Table 2: Speculation Potential. Potential for speculation in the read/write path of profiled applications. We list only
the stop reasons that occur in >5% of all calls. Error numbers are standard deviations, and “buffer” indicates that
speculation was stopped due to a read from the read buffer.
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Figure 2: Cloning Cost. The cost of copy-on-write
cloning for applications of various virtual memory sizes.
Note that the axes are in log scale.

a message to a screen or sending a network packet) and
waits for the speculated I/O to complete. If the I/O fails,
the system uses the checkpoint created earlier to restore
the application state, which allows the application to con-
tinue as if the (mis)speculation never occurred in the first
place.

Software-based checkpointing techniques are at the
heart of a number of systems which employ speculation,
such as Speculator [9] and Xsyncfs [10]. These systems
enabled speculative execution in both disks and over dis-
tributed file systems. These systems are particularly at-
tractive because they offer increased performance with-
out sacrificing correctness. Checkpoint-based specula-

tion techniques hide misspeculations from the program-
mer, enabling applications to run on these systems un-
modified.

However, providing the illusion of synchrony using
checkpoints has a cost. We examined the cost of the
clone operation, which is used for checkpointing (Fig-
ure 2). We found that for small applications, the cost was
about 50µs, but this cost increased significantly as the
virtual memory (vm) size of the application grew. As the
application approached a vm size of 1GB, the cloning
cost approached 1ms. While these cloning latencies may
have been a small price to pay for slower storage tech-
nologies, such as disk and wide area networks, the cost of
cloning even the smallest application can quickly eclipse
the latency of a microsecond era device. In order for
checkpoint-based speculation to be effective, the cost of
taking a checkpoint must be minimized.

4.3 Hardware Checkpoint Speculation

Since we found checkpointing to be an attractive tech-
nique for enabling speculation given its correctness prop-
erties, creating checkpoints via hardware appeared to be
a reasonable approach to accelerating checkpointing. In-
tel’s transactional memory instructions, introduced with
the Haswell microarchitecture [21] seemed to be a good
match. Hardware transactional memory support has the
potential of significantly reducing the cost of speculation,
since speculative execution is similar to transactions. We
can wrap speculative contexts into transactions which are
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committed only when the I/O succeeds. Checkpoints
would then be automatically created and tracked by hard-
ware, which buffers away modifications until they are
ready to be committed.

We examined the performance of TSX and found that
the cost of entering a transactional section is very low
(<20 ns). Recent work [18, 21] suggests that TSX trans-
action working sets can write up to 16KB and <1 ms
with low abort rates (<10%). While TSX shows much
promise in enabling fast, hardware-assisted checkpoint-
ing, many operations including some I/O operations,
cause a TSX transaction to abort. If an abort happens
for any reason, all the work must be repeated again,
significantly hampering performance. While hardware
checkpoint speculation is promising, finer-grained soft-
ware control is necessary. For example, allowing soft-
ware to control which conditions cause an abort as well
as what happens after an abort would enable speculation
with TSX.

4.4 Checkpoint-Free Speculation

During our exploration of checkpoint-based speculation,
we observed that the created checkpoints were rarely, if
ever used. Checkpoints are only used to ensure correct-
ness when a write fails. In a system with local I/O, a
write failure is a rare event. Typically, such as in the
case of a disk failure, there is little the application de-
veloper will do to recover from the failure other than re-
porting it to the user. Checkpoint-free speculation makes
the observation that taking the performance overhead of
checkpointing to protect against a rare event is ineffi-
cient. Instead of checkpointing, checkpoint-free specu-
lation makes the assumption that every I/O will succeed,
and that only external effects need to be prevented from
appearing before the I/O completes. If a failure does oc-
cur, then the application is interrupted via a signal (in-
stead of being rolled back) to do any final error handling
before exiting.

Unfortunately, by deferring synchronous write I/Os to
after a system call, the kernel must buffer the I/Os until
they are written to disk. This increases memory pressure
and requires an expensive memory copy for each I/O.
We continue to believe that checkpoint-free speculation,
if implemented together with kernel and user-space pro-
cesses to allow omitting the memory copy, will result in
a significant performance increase for microsecond-scale
devices.

4.5 Prefetching

While the previous techniques are targeted towards spec-
ulating writes, prefetching is a technique for speculating
across reads. In our characterization of speculation po-

tential, we found that speculating across read calls would
be ineffective because applications are likely to immedi-
ately use the results of that read. This result suggests
that prefetching would be an excellent technique for mi-
crosecond devices since the latency of fetching data early
is much lower with microsecond era devices, reducing
the window of time that a prefetcher needs to account
for. We note that the profitability of prefetching also
decreases with latency – it is much more profitable to
prefetch from a microsecond device that a nanosecond
device.

Prefetching already exists in many storage systems.
For example, the Linux buffer cache can prefetch data
sequentially in a file. However, we believe that more
aggressive forms of prefetching are worth revisiting for
microsecond scale devices. For example, SpecHint and
TIP [3, 11] used a combination of static and dynamic
binary translation to speculatively generate I/O hints,
which they extended into the operating system [4] to im-
prove performance. Mowry [7] proposed a similar sys-
tem which inserted I/O prefetching at compile time to
hide I/O latency. Since microsecond devices expose or-
ders of magnitude more operations per second than disk,
these aggressive techniques will be much more lucrative
in the microsecond era.

4.6 Parallelism
Other work on speculation focuses on using speculation
to extract parallelism out of serial applications. For ex-
ample, Wester [19] introduced a speculative system call
API which exposes speculation to programmers, and Fast
Track [6] implemented a runtime environment for spec-
ulation. This work will likely be very relevant since mi-
crosecond devices expose much more parallelism than
disk.

5 Discussion

As we have seen, a variety of different techniques exist
for speculating on storage I/O, however, in their current
state, no technique yet completely fulfills the needs of
microsecond scale I/O.

Our study suggests that future work is needed in two
areas. First, more work is needed to design appropri-
ate hardware for checkpointing solutions. Second, the
opportunity for checkpoint-free speculation needs to be
studied in depth for both compute intensive and I/O in-
tensive database applications.

6 Conclusion

This paper argues for the use of speculation for
microsecond-scale I/O. Microsecond-scale I/O will soon
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dominate datacenter workloads, and current strategies
are suboptimal for dealing with the I/O latencies that fu-
ture devices will deliver. Speculation can serve to bridge
that gap, providing a strategy that enables I/O intensive
applications to perform useful work while waiting for I/O
to complete. Our results show that the performance of
microsecond-scale I/Os can greatly benefit from specu-
lation, but our analysis of speculation techniques shows
that the cost of speculation must be minimized in order
to derive any benefit.
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Abstract
In this paper, we present OS I/O path optimizations
for NAND flash solid-state drives, aimed to minimize
scheduling delays caused by additional contexts such
as interrupt bottom halves and background queue runs.
With our optimizations, these contexts are eliminated
and merged into hardware interrupts or I/O participat-
ing threads without introducing side effects. This was
achieved by pipelining fine grained host controller oper-
ations with the cooperation of I/O participating threads.
To safely expose fine grained host controller operations
to upper layers, we present a low level hardware abstrac-
tion layer interface. Evaluations with micro-benchmarks
showed that our optimizations were capable of accom-
modating up to five, AHCI controller attached, SATA 3.0
SSD devices at 671k IOPS, while current Linux SCSI
based I/O path was limited at 354k IOPS failing to ac-
commodate more than three devices. Evaluation on an
SSD backed key value system also showed IOPS im-
provement using our I/O optimizations.

1 Introduction

In recent years, solid-state drives (SSDs) have become
more viable. Decrease in cost per GB and increase in per-
formance made SSDs appealing to replace or reduce the
usage of hard disk drives and even DRAM in the datacen-
ter. Recent advances with the hardware interfaces such
as SATA 3.0, SAS HD and PCI-Express 3.0 made these
devices capable of even handling workloads which could
only be served in main memory. However, the advance
in SSD technology is not directly translated into user per-
ceived performance. Software overhead is magnified as
the performance of SSDs is enhanced [10, 7, 13, 14].

With the rise of faster memory technologies, such as
DRAM or PCM, several studies were conducted on opti-
mized I/O paths to mitigate these overheads [13, 6, 5, 14].
However, it is unclear how the enhancements would be-

Figure 1: I/O performance of parallel 512-byte small ran-
dom reads (Six SATA 3.0 SSDs attached to a desktop I/O
chipset integrated AHCI controller)

have with the latencies of flash SSDs, which are orders
of magnitude higher (vs DRAM or PCM) and highly un-
predictable. Little work has been done with current gen-
eration of flash SSDs, especially in the I/O completion
path.

In the I/O completion path, software delays caused by
multiple context switches are considered harmful. These
context switches are caused by additional I/O processing
contexts such as interrupt bottom halves and background
queue runs. In several studies for high performance stor-
age, poll based synchronous I/O was used to eliminate
these software delays [15, 6].
However, it is not trivial to apply this technique to

NAND flash based SSDs. Flash SSD access latency is
lower than hard disk drives, but it fails to go under ranges
(under 20us) where poll can be beneficial. This even ap-
plies to high-end PCI-e flash devices [2].

In this paper, we present OS I/O path optimizations
for flash SSDs, focused on minimizing software delays
caused by the additional I/O processing contexts. With
our optimizations, bottom half contexts and background
queue running contexts are eliminated without introduc-
ing side effects. This is done by placing I/O opera-
tions in hardware interrupts or I/O participating paral-
lel threads. Side effects of longer I/O processing delays
are addressed by adopting a cooperative I/O processing
model. All participating I/O threads actively share the

1
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burden of detecting I/O completions, performing I/O post
processing and issuing new commands.

These I/O operations are exposed at a hardware
abstraction layer which provides abstractions such as
queues, tags and notifications commonly found in mod-
ern host controllers. The interface of the layer allows
I/O threads to make synchronous decisions on whether
to process pending I/O commands or not.

For evaluation, we implemented an I/O path based on
our optimizations for an AHCI controller which can be
considered as a worst case scenario for SSDs. We built a
low cost system using six commodity SATA 3.0 SSDs
connected to a single AHCI controller. With parallel
512-byte small random reads, our optimized I/O path
was capable of accommodating up to five devices at 671k
IOPS, while current Linux SCSI based I/O path was lim-
ited at 354k IOPS (Figure 1). Evaluation on an SSD
backed key value system showed IOPS improvement us-
ing our I/O optimizations. Performance gain of our I/O
path was 7% with the highest throughput (32 clients) and
108% under the highest load (256 clients).

2 Motivation

Whenever a new context (interrupt or thread) is intro-
duced in the I/O path, scheduling delays, which can be
significant on a busy CPU, are added to the I/O path (Fig-
ure 2). We were motivated to minimize these scheduling
delays, which can be significant for SSDs, within the I/O
path (Figure 3). However, it is not trivial to remove these
contexts since these contexts are employed to maintain
system responsiveness and system throughput. In the
following, we state our motivations to remove these ad-
ditional contexts and examine how they are employed in
I/O paths for SSDs.

High IOPS, Smaller I/O: Software overheads, such
as scheduling delays, can be minimized by issuing larger
requests. However, bandwidth waste can be significant
when the workload is oriented with high rates of small
random requests. This motivated our work to remove
these contexts. Parallel small random reads are gaining
interest in the context of SSD backed key value stor-
age which is considered as a good use case of SSDs
[9, 1]. In this type of workload, a 30:1 GET():SET()

ratio (read:write ratio) is observed, with 90% of values
less than 500 bytes [3].

Conventional SCSI I/O Path: In many modern
OSes, interrupt service handler routines (ISRs) are split
into two parts to minimize system lockdown caused by
heavy ISRs. This leads to at least two scheduling points
during I/O completions. We show this in Figure 2. I/O
thread 1 ((a) to (f) in Figure 2) shows the I/O completion
path of Linux which is the I/O path for current SATA or
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S/W IRQ
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Figure 2: Scheduling delays in the I/O completion path
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Figure 3: Minimizing scheduling delays within the I/O
completion path

SAS SSDs attached to AHCI controllers and SCSI based
SAS controllers.

Software interrupts (d) are scheduled to relieve the
main hardware interrupt handler (b) from I/O post pro-
cessing tasks such as unmapping multiple DMA buffers
and de-allocating I/O descriptors. To enhance CPU
cache utilization of I/O post processing, software in-
terrupts (d) are steered using inter processor interrupts
(IPIs) [4] (c). In this case, an IPI to CPU core 1 is made
to have I/O thread 1 (a) and the software interrupt (d) run
on the same CPU. The background queue run context (f)
is used to issue I/O requests which could not be issued
immediately (i.e., a busy device).

Advanced Block Driver I/O Path: Recent NVM-
Express standard [11] can simplify the I/O path with
deeper (64k) queues and many (64k) queues. It is pos-
sible to eliminate queue runs and IPIs, but multiple
scheduling delays within the completion path still exist.

In Linux, NVM-Express proposes a device driver [12]
which bypasses the block layer (request queue) and the
SCSI I/O subsystem. I/O Thread 2 ((g) to (j) in Figure 2)
shows the I/O completion path of this driver. This driver
performs direct issues to a deeper hardware queue, up to
64k in depth, which removes the necessity of the back-
ground queue run context (f). Also, it is possible to re-
move the use of IPIs for IRQ steering by having dedi-
cated queue pairs (issue and completion) and interrupts
(MSI/MSI-x) on CPU cores. IRQ handling is natively
steered to designated CPU cores. Here, threaded inter-
rupts are used, so software interrupts (d) are removed,
but there are still delays of scheduling the IRQ thread (i)
and scheduling the completion side of I/O thread 2 (j).

2
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3 Design and Implementation

Our work was done to achieve the following goals: 1)
Minimize scheduling delay by removing additional con-
texts, 2) Preserve the semantics of previous optimiza-
tions such as H/W IRQ relieving and IRQ steering, and
3) Generalize the optimizations to be applied to various
host controllers.

To achieve these goals, we adopted a cooperative I/O
processing model based on a set of fine grained opera-
tions exposed at a low level hardware abstraction layer
(HAL). This HAL was introduced to generalize our opti-
mizations to various host controllers.

3.1 HIOPS Hardware Abstraction Layer

The HAL, HIOPS-HAL (High IOPS - Hardware Ab-
straction Layer), has a role of exposing access and con-
trol of necessary H/W abstractions such as queues, tags
and notifications implemented in the underlying H/W in-
terface. These abstractions are commonly found in mod-
ern host controllers used for SSDs such as AHCI, NVM-
Express, SCSI-Express and various SAS adaptors. Fig-
ure 4 shows the architectural role of the HAL which pro-
vides a generic interface to upper layers. The role is sim-
ilar to the SCSI middle layer of Linux, though our HAL
gives more access and control to upper layers.

Low Level Drivers: Similar to the VFS layer and the
SCSI middle layer in Linux, the interface is implemented
as a template of standard function pointers. Each entry
of the template defines an operation, later invoked by an
API call to the HAL. These API calls are implemented
in Low Level Drivers (LLDs). Additionally, upper layer
specific handlers are registered to LLDs for an upcall,
and the upcall is done by LLDs at the point of notifica-
tion. In this way, LLDs are capable of exposing execu-
tion contexts such as interrupts to upper layers. Details
of the API calls and the upcalls are described in Section
3.2.

Interactions with Upper Layers: Beyond the HAL,
an I/O strategy layer is responsible of mediating I/O re-
quests from the upper layers to the HAL. In this work,
we implemented an I/O strategy based on a cooperative
I/O model. The I/O strategy is essentially a Linux block
driver which provides a block interface to the rest of the
system. While I/O strategies are not limited to expose
block interfaces, the block interface was intended to limit
upper layer modifications. Except for a few additional
functions exposed for a modified VFS layer (Figure 4),
all other block interface functions remain the same. At
the top layer, ordinary read() and write() system calls
are used to perform I/O, so applications can benefit from
the I/O strategy optimizations without any modifications.
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Figure 4: Comparison of our I/O path (left) and the orig-
inal Linux SCSI I/O path (right)
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3.2 HAL API Operations
Figure 5 describes interactions between the upper layers
and low level drivers (LLDs). The interactions consist of
both issue side and completion side operations.

Issue Side Operations: In an I/O strategy, upper
layer I/O requests are first converted to a low level com-
mand. Then a free tag (get free tags) is requested to
be bound to the command (bind tag cmd). An implicit
begin cmd is called to timestamp the command (i.e.,
tracking I/O timeouts). Tags bound with commands are
issued to the device by issue tags calls. Note that tag
related operations are named with plurals because they
can be batched.
This interface gives flexibility to the I/O strategy so

that it can synchronously determine whether the device
is able to issue more I/O or not. If a get free tags call
fails, then the device is busy.

Completion Side Operations: I/O strategies can de-
cide whether to rely on interrupts. For interrupts, I/O
strategies register a function pointer to gain synchronous
access to the notification context. There, I/O strategies
can check the I/O event status with check event calls.
Whenever there is an event, fetch event is used to re-
trieve and process the command. If the I/O strategy does
not rely on interrupts, it can synchronously check for

3
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Figure 6: OS I/O path optimizations

events with the same process described above. In this
case, the status check context is provided by the I/O strat-
egy itself.

Completions are processed beginning with a
detach tag cmd call to detach commands and
tags. Detached tags are released to the controller with
release tags and the I/O strategy post processing
contexts are initiated by end cmd calls.

3.3 OS I/O Path Optimizations
In this Section, we describe OS I/O path optimizations
based on a cooperative I/O model. These optimizations
are implemented as a HIOPS-HAL I/O strategy which is
mainly implemented as a Linux block driver.

Non-blocking I/O: No I/O contexts are blocked to ac-
quire resources such as I/O tags without introducing ad-
ditional background queue runs. In the issue path, all
I/O commands are first enqueued into a simple software
FIFO queue. If tags are available, a command is de-
queued to be issued. Otherwise, the actual issue is de-
ferred to other parallel issue paths or asynchronous con-
texts such as interrupts (Figure 6-(b)).

Here, the hardware interrupt context is used to issue
remaining commands in the software FIFO queue. Since
free I/O tags are generated in the hardware interrupt con-
text, new I/O commands can be issued immediately using
these free I/O tags without being blocked.

Lazy I/O Processing: Lazy I/O processing offloads

I/O processing to the actual threads waiting for I/O
completions (Figure 6-(c)). This eliminates additional
context switches introduced by deferred I/O processing
schemes such as bottom halves and threaded interrupts.
This was done by exposing an alternative I/O-wait func-
tion from the I/O strategy to be called instead of the
original io schedule(). Here, a modified VFS layer
calls this I/O-wait function to provide the contexts of I/O
threads calling read() and write() system calls wait-
ing for an I/O to complete. These I/O threads are blocked
inside the provided I/O-wait function. Upon completion,
these I/O threads are used for I/O post-processing in-
stead of introducing additional contexts such as bottom
halves and threaded contexts. I/O post processing is done
by having HIOPS-HAL API calls after the I/O thread
wakeup and before the I/O-wait function exits. After the
I/O post processing, I/O threads return from the I/O-wait
function and go back to the VFS layer and the userspace
without any scheduling delays.
To enhance CPU cache hits during I/O post process-

ing, waiters are awaken on CPUs where they issued the
I/O and went to sleep. This is achieved by temporar-
ily limiting the CPU affinity mask of a waiter thread to
the current CPU before going to sleep. After the thread
wakes up, the CPU affinity mask is restored.

Cooperative I/O Processing: Cooperative contexts
are introduced by having HAL API calls from both the
I/O issue path and the completion path (Figure 6-(d)) in-
side the I/O strategy. These are helper contexts which
perform I/O tasks of other threads. All I/O threads vol-
untarily enter this cooperative context for every I/O re-
quest being frequently scheduled on the CPU. Here, I/O
tasks can be carried out in a timely manner, even if the
I/O owner thread is not being scheduled on the CPU. In a
multi-core machine, the parallelism of I/O threads enter-
ing cooperative contexts increases overall I/O processing
throughput of the system.
For cooperation, completion contexts make

fetch event calls to steal I/O processing work
from post processing handlers. Issue threads performing
non-blocking I/O issues for other I/O threads play
another form of cooperation (Figure 6-(b)).

Poll Based I/O: Under higher loads, interrupts can be
disabled. With interrupts disabled, a poll thread is intro-
duced to poll for new I/O completions. Additionally, co-
operative contexts are set to perform opportunistic poll
(Figure 6-(e)). Note that polling is for the whole con-
troller, not for individual I/O tags. Under high loads,
the processing times of individual I/O commands are un-
predictable, but the interval between multiple I/O com-
mands completing in parallel is predictable (0us to 20us).
After a single poll cycle, the poll thread releases the CPU
and relies on high resolution timers to schedule the next
poll. Poll thread introduces the overhead of timer inter-
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Figure 7: IOPS and bandwidth with increasing I/O block
size (fio, Direct I/O, 128 threads, six SATA 3.0 SSDs,
Software RAID0, 128kB stripe, ext4, noop sched-
uler(SCSI))

rupts, but the use of additional cooperative contexts lets
us perform a rather coarse poll (16us to 32us).

It is possible to implement a hybrid mechanism to
switch between the use of interrupts and poll methods,
however the complication of determining mode switch
leaves this implementation for our future work. Our ex-
periments showed that indicators such as the current level
of parallelism (occupied queue depth) combined with the
current level IOPS can be a candidate to permit such
tasks.

4 Evaluation

The impact of our optimizations was evaluated using a
micro-benchmark application and a key value storage.
fio 2.1.4 was used for our micro-benchmark evalua-
tions, and Aerospike 2 was used as the key value system
[1]. YCSB [8] was used to load the key value system.

Implementation: Our optimizations were applied to a
Linux 3.2.40 kernel as dynamic loadable modules. These
modules include the HAL itself, HAL I/O strategy, mod-
ified VFS and our custom AHCI HAL LLD (Figure 4).
Here, the HAL consists of 6,187 lines of original code
and the HAL I/O strategy with 1,766 lines of original
code. The AHCI HAL low level driver was based on the
AHCI SCSI libata device driver of Linux 3.2.40 but was
modified to be a HIOPS-HAL LLD. Total 2,424 lines
were original for HIOPS, and 2,632 lines were adopted
from Linux 3.2.40. Modifications on the VFS layer was
as small as 44 lines.

Experimental Setup: We conducted our evaluations
on a PC with an Intel i7-4770 3.40Ghz hyper-threaded
quad core CPU and 16GB DRAM. The system was
equipped with six Samsung 840 Pro 256GB SATA 3.0
SSDs connected to a single AHCI controller which sup-
ports up to six SATA 3.0 ports.

I/O Throughput: Figure 7 shows the performance of
our I/O paths with varying I/O blocksize. IRQ I/O was
the hardware interrupt based I/O path presented in Sec-
tion 3.3 and Poll I/O was the I/O path with interrupts dis-

Figure 8: Effect of I/O processing optimizations

Figure 9: Poll interval impact

abled. With Poll I/O, the poll thread and the cooperative
contexts performed poll altogether. All other optimiza-
tions were applied in both I/O paths described in Section
3.3.
Our I/O paths achieve from 32% (4kB I/O) up to 89%

(0.5kB I/O) IOPS gain over the original SCSI I/O path.
IRQ I/O achieved 671k IOPS at maximum, while SCSI
led 354k IOPS. However, there was no significant differ-
ence in IOPS between IRQ I/O and Poll I/O.
For requests larger than 8kB, there was no gain since

the bandwidth was limited by the DMI 2.0 uplink band-
width and the internal interconnects within the PCH.
Our I/O paths with 4kB I/O were also limited by the
the DMI 2.0 uplink bandwidth. The bandwidth con-
verged to approximately 1.5GB/s which was similar to
the bandwidth achievable from x4 PCI-Express 2.0 chan-
nels. This bandwidth was smaller than the DMI 2.0
25Gbps (2.5GB/s) uplink to the CPU.

I/O Post-processing Schemes: Figure 8 shows the ef-
fect of applying I/O post-processing schemes by show-
ing the maximum latency of interrupt handlers. Under
high loads (128 threads), basic Non-blocking I/O shows
over 100us interrupt handling latency while the original
SCSI I/O path shows up to 18us. This is because all I/O
processing and next I/O issue had to be done in the hard-
ware interrupt handler. When Lazy I/O is applied (+Lazy
I/O), the latency diminishes to 50us. With both Lazy I/O
and Coop I/O applied (+Coop I/O), the maximum latency
drops to 20us which is similar to the original SCSI I/O
path.

Polling: Figure 9 shows the impact of the poll interval.
The load was 128 threads performing 512-byte direct I/O
(O DIRECT) read()s. ‘Async poll’ was with a single poll
thread polling, and ‘w/ Coop Poll’ was with opportunis-
tic completion checks in both issue and completion paths
helping the poll thread. The results show that coopera-
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Figure 10: Key value storage performance (YCSB 100%
get() performance)

tive poll was capable of over 600k IOPS even if the poll
interval increased up to 128us.

Key Value Storage: We evaluated our I/O paths under
an SSD backed key value storage. For this evaluation, an-
other identical Intel i7 quad core CPU system was linked
back to back through a pair of 1Gbps NICs. To minimize
the storage latency, this key value storage did not use file
systems when it performed storage I/O. Also, all I/O was
performed with direct I/O (O DIRECT) to eliminate page
cache incurred overheads. In our evaluation, six SSDs
were used by the key value storage.
Figure 10 shows key value throughput with increas-

ing YCSB client threads. While performance with SCSI
I/O degrades beyond 128 clients, our optimizations were
able to mitigate the collapse. The highest throughput
was 119kops/sec achieved with IRQ I/O while SCSI I/O
showed 110kops/sec and Poll I/O showed 101kops/sec.
Poll I/O showed lower performance than SCSI I/O, be-
cause the storage throughput was not high enough rela-
tive to the storage throughput seen in Figure 7. This mo-
tivates a poll & IRQ hybrid I/O scheme. The key value
storage could only load the storage up to 150k IOPS at its
peak. Performance gain of IRQ I/O over SCSI was 7%
with the highest throughput (32 clients) and 108% under
the highest load (256 clients).

5 Conclusion

Previous I/O completion schemes for fast storage are
not sufficient to support current flash SSDs. With faster
memory technologies, the software delays of multiple
context switches can be mitigated with techniques such
as polling; however, the noncommittal latencies of flash
SSDs, not like DRAM nor like hard disks, require the use
of different approaches in addition to such a technique.

In this paper, we have presented a low latency I/O
completion scheme based on a cooperative I/O process-
ing model. Additional I/O contexts such as bottom
halves and background queue runs are eliminated, and
their absence is compensated with the opportunistic help
of I/O participating threads under parallel high IOPS
workloads. I/O workloads with low parallelism can en-

joy the lower latency of the our simplified hardware in-
terrupt based I/O post processing. Our evaluation on an
SSD backed key value storage suggests that workloads of
high I/O parallelism will benefit from our I/O completion
scheme.
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Abstract

The ever-growing capacity and continuously-dropping
price have enabled flash-based MLC SSDs to be widely
deployed as large non-volatile cache for storage systems.
As MLC SSDs become increasingly denser and larger-
capacity, more complex and complicated Error Correc-
tion Code (ECC) schemes are required to fight against
the decreasing raw reliability associated with shrinking
cells. However, sophisticated ECCs could impose ex-
cessive overhead on page decoding latency and thus hurt
performance. In fact, we could avoid employing expen-
sive ECC schemes inside SSDs which are utilized at the
cache layer. We propose FlexECC, a specifically de-
signed MLC SSD architecture for the purpose of better
cache performance without compromising system relia-
bility and consistency. With the help of an upper-layer
cache manager classifying and passing down block ac-
cess hints, FlexECC chooses to apply either regular ECC
or lightweight Error Detection Code (EDC) for blocks.
To reduce performance penalty caused by retrieving
backend copies for corrupted blocks from the next-level
store, FlexECC periodically schedules a scrubbing pro-
cess to verify the integrity of blocks protected by EDC
and replenish corrupted ones into the cache in advance.
Experimental results of a proof-of-concept FlexECC im-
plementation show that compared to SSDs armed with
regular ECC schemes, FlexECC improves cache perfor-
mance by up to 30.8% for representative workloads and
63.5% for read-intensive workloads due to reduced read
latency and garbage collection overhead. In addition,
FlexECC also retains its performance advantages even
under various faulty conditions without sacrificing sys-
tem resiliency.

1 Introduction

As system architects have always been pursuing to
build and/or optimize storage systems in both high-

performance and cost-effective ways, NAND flash-based
Solid State Drives (SSD) have been intensively re-
searched to be efficiently utilized in various storage sys-
tems during the past decade due to their highly desirable
characteristics (e.g., high performance and low power
consumption) [5, 35, 34, 39]. Compared to rotating hard
disk drives (HDD), SSDs provide one order of magnitude
higher performance while consuming much less power to
finish running the same workloads[13, 20].

However, because of the relatively high cost per
GB [30, 12] and limited lifetime concerns [2, 26, 19],
NAND flash-based SSDs are nowadays particularly
widely utilized as a cache in front of storage systems
comprised of HDDs, aiming to exploit their comple-
mentary advantages [36, 4, 18]. For instance, SSDs
have already been utilized as front-end caches in storage
products, including EMC’s VFCache [1], Apple’s Fu-
sion Drive and Fusion’s ioControlT M Hybrid Storage and
deployed in various scenarios including networked envi-
ronment [22], cloud infrastructures [27, 4].

The enabling factors of SSD’s wide deployment as a
large non-volatile cache are primarily attributed to their
steadily-expanding capacity and the resultant affordable
cost, which in turn are essentially driven by technology
scaling and the employment of Multi Level Cell (MLC),
i.e, scientists have pushed two or even more bits into
each diminishingly-sized flash memory cell. Researchers
have suggested a variety of ways to improve SSD cache
performance according to flash peculiarities, including
dividing the cache space into read and write caches [21]
and designing effective cache algorithms [42]. However,
technology scaling has also caused many concerns [15].
For example, recent research findings have revealed that
increasing an additional bit in a storing cell would re-
duce chip’s lifetime by 5-10%, and shrink throughput
and increase latency by 55% and 2.3x on average, re-
spectively [16]. These problems could become an imped-
iment to further improving their performance as a cache
which is supposed to provide high performance.
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Each NAND flash memory cell is a floating gate
transistor that is able to preserve electrons. Bits in-
formation stored in each flash memory cell are repre-
sented and differentiated by the different voltage lev-
els of the trapped charges. The reliability-impacting
factors such as programming inaccuracy, electron de-
trapping, cell-to-cell interference [33, 32] are becom-
ing increasingly severe when cells are pushed to store
more bits, causing flash memory to exhibit an climb-
ing high raw bit error rate (RBER) [15, 16], which ren-
ders them not suitable for practical usage. For example,
the RBER of MLC flash memory is around 10−6, while
manufacturers usually rate the uncorrectable bit error
rate (UBER) in their data sheets to be 10−11 [29, 10]. To
bridge the reliability gap, sector-level or page-level Er-
ror Correcting Codes are synergistically implemented in
flash memory controllers to achieve a practically accept-
able UBER. However, as flash storage gets denser, we
have witnessed the deployed ECCs are becoming more
and more advanced and complicated [7], from Ham-
ming Code to Bose-Chaudhuri-Hocquenghem (BCH)
and Reed-Solomon codes [10] to Low Density Parity-
check (LDPC) [49]. Therefore, the ECC implementation
complexity has correspondingly increased significantly,
causing prolonged encoding and decoding latencies. For
instance, the decoding latency of a BCH tolerating 12
bit errors for an 8KB page are around 180µs and 17µs
in contrast to 90µs and 10µs in a BCH tolerating 6 bit
errors, with software [21] and hardware [41] implemen-
tation respectively, which accounts for a significant per-
centage of the page access latency.

Fortunately, in cache-oriented MLC flash-based SSDs,
the need for expensive error correcting codes could be
obviated. The reason is that in occurrences of errors,
accesses to corrupted blocks can be serviced by their
backup copies in the next layer and most of the time ac-
cesses can be completed faster because of the absence of
excessive decoding overhead. Based on this observation,
in this paper, we advocate a novel cache-oriented SSD ar-
chitecture called FlexECC, a cross-layer design targeting
specifically for MLC SSDs exhibiting high RBER and
employing expensive ECC schemes. FlexECC achieves
better cache performance by flexibly and selectively ap-
plying either regular ECC or light EDC [21] to flash
pages according to their consistency and reliability re-
quirements. Specifically, taking advantage of the in-
formation conveyed by the frontend cache manager via
proposed interfaces (Section 3.3), FlexECC can eas-
ily identify the storage requirements of different pages
and accordingly apply the appropriate protection or cor-
rection schemes via programmable flash memory con-
troller. When writing fresh data which have no backup
copies in the next storage layer, FlexECC adopts nor-
mal error correction code (specifically, BCH in our de-

sign), otherwise it applies simple and fast error detec-
tion code (EDC) (specifically, cyclic redundancy code
or CRC in our design). Due to the differences in de-
coding latencies between BCH and CRC (Section 2.2),
read accesses to CRC-protected pages would be signif-
icantly speeded up, enhancing the cache performance.
The more CRC-protected pages in the cache device, the
greater cache performance FlexECC provides. Further-
more, in order to mitigate the performance impacts of
fetching data from the underlying layer for corrupted
pages in the critical path, FlexECC schedules a scrub-
bing process to verify the integrity of CRC-protected
pages and populates corrupted pages in advance. Evalua-
tion results with both representative and synthetic work-
loads have shown that FlexECC is able to improve cache
performance by an impressive degree without sacrificing
consistency and reliability relative to normal ECC-armed
MLC flash-based SSD.

Our main contributions in this work are two-fold.
First, to the best of our knowledge, the proposed Flex-
ECC is the first work to selectively replace ECC with
EDC to improve SSD cache performance without com-
promising cache consistency and reliability. This bears
important implications for future-generation MLC SSDs
which require more advanced error correction codes and
incur high decoding latencies to read operations. We
are not making trade-offs between performance and re-
liability or consistency [25, 32], instead, we aim to im-
prove performance while maintaining the same level of
resilience by leveraging the characteristics of cache sys-
tems. Second, we have implemented a proof-of-concept
prototype of FlexECC and conducted extensive evalua-
tions to show that FlexECC is able to improve perfor-
mance over conventional SSDs for a variety of work-
loads, even under various faulty conditions.

The remainder of this paper proceeds as follows. We
discuss the background and our motivation in Section 2.
Following that, we elaborate on the details of FlexECC
in Section 3. We conduct experiments to evaluate Flex-
ECC in Section 4, followed by a discussion of related
work in Section 5. Conclusions of this work are given in
Section 6.

2 Background and Motivation

2.1 Flash Memory Reliability
Flash memory cells are floating gate transistors which
hold electrons to represent information. Each flash mem-
ory cell can be designated to represent one bit infor-
mation (SLC), two bits (MLC) or three bit (TLC). The
represented storage state is differentiated by the volt-
age level of trapped charges. Programming or writing
flash memory cell is the process of injecting electrons
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into the cell to the level corresponding to the desired
state, and reading is the process of sensing out the rep-
resented voltage level and comparing it with preset ref-
erence levels to determine its value. By its very nature,
the trapped charges are constantly in a moving state and
can shift to their neighboring cells (i.e., current leakage)
over time, causing voltage shifting [32, 25] and therefore
data corruption. Moreover, as flash memory cells expe-
rience more program and erase operations, their charge-
trapping ability degrades and as a result are more prone
to errors [33]. The occurring probability of these errors
are called raw bit error rate (RBER). SLC flash memory
typically exhibits two orders of magnitude better RBER
than MLC [14, 10], because MLC flash memory has
much shorter differential voltage window between adja-
cent voltage thresholds than SLC, which causes it more
difficult for MLC to differentiate the statuses.

In design practice, flash-based SSDs typically imple-
ment ECCs in memory controllers [21] to meet reliabil-
ity and endurance requirements, causing a performance-
reliability trade-off in the design space. ECC is a kind of
information encoding scheme which can tolerate a spec-
ified number of bit errors (called error correction capa-
bility t) by augmenting a certain amount of redundant in-
formation to the original message of length k, which typ-
ically equals to the page size in flash memory. Corrupted
message can be reconstructed via decoding as long as the
number of bit corruptions are within the ECC correction
capability. Considering the wide adoption of BCH code
in commercial SSDs, we base our discussions on BCH in
the remaining sections. The bit error rate after applying
ECC is called uncorrectable bit error rate (UBER). As-
sume an ECC scheme has an error corruption capability
of t and the length of an encoded message is N, then the
relationship between UBER (PUBER) and RBER (PRBER)
is given by Equation 1.

PUBER =
∑

N
n=t+1

(N
n

)
∗(PRBER)

n∗(1−PRBER)
N−n

N
(1)

Intuitively, to guarantee the same level of UBER (e.g.,
10−11), we can either increase ECC correction capabil-
ity or decrease RBER. For example, more precise In-
cremental Step Pulse Programming control (i.e., using
smaller �Vpp [44, 43]) produces smaller RBER and us-
ing more powerful ECC schemes also guarantees tar-
get reliability [6, 9]. However, as flash geometries be-
come increasingly smaller (3x- and 2x-nm regimes) and
denser [11], those techniques are no longer necessarily as
effective as before, which is evidenced by the continuous
increases in error correction requirements, program time
and read time observed between different flash process
generations [7]. When flash storage becomes denser,
the noise margin narrows, necessitating very small �Vpp

to program pages and thus causing prolonged program-
ming process and imposing significant overhead on per-
formance [33, 32]. On the other end, implementing more
powerful ECC schemes on denser flash memory could be
prohibitively expensive or even unrealistic for the follow-
ing reasons. First, correction logic becomes complex,
costly and occupies more silicon area and the resultant
decoding latency increases correspondingly. Second, it
increases power dissipation, whose side effects counter-
act ECC’s efforts to improve reliability. Third, the page
spare area may no longer have enough space for the ex-
panding redundant information.

2.2 Replacing ECC with EDC for Cache

It has been observed in previous research [33, 25] that
most of the occurred errors in flash memory are retention
errors, i.e., errors caused by loss of charges over time,
and flash memory exhibits reasonably high reliability at
its early usage. In contrast to permanent storage, cached
data are transient and live for a short lifespan, typically
ranging from seconds or hours to days rather than months
or years [48]. Therefore, the corruption probability of
cached data is comparatively low. Moreover, even if cor-
ruptions do occur to cached data, corrupted data blocks
can still be serviced by back-end storage as long as the
blocks have been flushed down beforehand, at the cost of
accessing disk or RAID storage systems.

Based on the above analysis, we are motivated to se-
lectively relax ECC correction capability of certain cache
blocks (i.e., the blocks which have consistent backup
copies) to avoid decoding overhead for better perfor-
mance. We only reserve error detection capability us-
ing lightweight EDC for ECC-relaxed blocks. Given the
low corruption probability of short-living cached data
and the significant discrepancy between ECC decoding
latency and EDC verification overhead (to be discussed
shortly), it is reasonable to expect performance improve-
ment coming out of ECC-relaxed cache architectures
while maintaining system reliability.

In the remainder of this section, we conduct theoretical
performance analysis on ECC and EDC to demonstrate
the potential performance gains that could be obtained by
replacing ECC with EDC. Due to their popularity, we use
primitive binary BCH [40, 41] for default ECC and CRC
for default EDC. CRC, short for cyclic redundancy code,
is an error-detecting code commonly used in digital net-
works and storage devices to detect accidental changes
to raw data. The detection capability of CRC is charac-
terized by how many concurrent bit errors it is able to
detect. Binary BCH code has a form of (n,k, t), where
n is the codeword length equal to 2m − 1 for some pos-
itive integer m, t is the correction capability indicating
the maximum bit errors BCH is able to tolerate, and k is
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the length of the original message. The BCH arithmetic
operations are based on Galois field GF(2m) [24]. For
fairness, we configure BCH to be able to tolerate t bit
errors and CRC to detect t bit errors for each flash page1.

Encoding: Encoding operation is associated with ev-
ery write operation in flash to calculate redundant bits
which are then written to the flash page’s spare area to-
gether with page data. CRC and BCH share the same
simple encoding procedure. To encode a page message
M(x), both CRC and BCH divide the original message
by a polynomial generator G(x) whose degree is depen-
dent on t. The resultant remainder R(x) is the redundant
information. Equation 2 gives the encoding calculation.
Therefore, the encoding latencies of both CRC and BCH
are approximately the same and equal to the time taken
by a polynomial multiplication [8]. In other words, CRC
and BCH incur the same additional latency to write op-
erations.

M(x)
G(x)

= Q(x)+
R(x)
G(x)

(2)

Decoding/Detecting: A decoding/detecting process
accompanies every flash page read operation. After read-
ing out each page content, the flash memory controller
verifies the integrity of the page content according to the
adopted protection scheme. In contrast to the similar en-
coding procedure, BCH decoding is far different from
CRC detection. CRC detection process is quite straight-
forward. Suppose the read page content is M(x)′. CRC
performs the same arithmetic operation as in Equation 2
and checks whether the new remainder is identical to the
previous one or not. Essentially, it is equivalent to ver-
ifying Equation 3. If Equation 3 holds true, then it is
assumed no error occurs, otherwise the message is con-
sidered corrupted, so CRC detection process consumes
the same time as CRC encoding.

M(x)′ −R(x)
G(x)

−Q(x) = 0 (3)

BCH decoding is much more complicated and in-
volves three steps, syndrome computations, finding
error-location polynomial and error correction. The
first step is to compute 2t syndrome components
S1,S2, · · · ,S2t , each of which is essentially a polynomial
calculation. Then, based on the 2t syndromes, the second
step uses Berlekamp-Massey algorithm to calculate the
error-location polynomial σ(x) = 1+σ1(x)+σ2(x2)+
· · ·+ σt(xt). Finally, the third step solves the roots of
σ(x) = 0 by using exhaustive Chien Search algorithm
and outputs an error vector indicating the error positions.
It should be noted that after obtaining the 2t syndromes,
if all of them are evaluated to zeros, the message is con-
sidered error-free and the decoding process terminates

immediately. Specific details about BCH code can be
found in [24].

According to [24], a polynomial calculation takes
(n− 1) additions and (n− 1) multiplications, syndrome
computations take (n− 1)t additions and nt multiplica-
tions, finding error-location polynomial takes 2t2 addi-
tions and 2t2 multiplications, and error correction takes
nt additions and nt multiplication. Suppose Ta and Tm are
the time needed by per addition and per multiplication,
respectively. Then the achievable speedups of replacing
BCH with CRC for decoding a correct message (Scorrect )
and a corrupted message (Serror) are given by Equation 4
and Equation 5, respectively.

Scorrect =
(n−1)× t ×Ta +n× t ×Tm

(n−1)× (Ta +Tm)
(4)

Serror =
(2t2 +2nt − t)×Ta +(2t2 +2nt)×Tm

(n−1)× (Ta +Tm)
(5)

Suppose Tm = Ta, i.e., the time taken to perform an
addition is equal to that of a multiplication2, typically
one clock cycle, then Scorrect and Serror become (2n−1)t

2(n−1)

and 4nt+4t2−t
2(n−1) , which in turn approximately approach t

and 2t, respectively, when n � t.
In summary, we have demonstrated that by using CRC

instead of BCH, we are able to reduce the latencies of
decoding uncorrupted and corrupted message by t and
2t times, respectively. Given the increasing value of t
and the associated decoding latency in MLC SSDs, the
extent of decoding latency reduction will increase corre-
spondingly and potentially translate to more significant
performance improvement.

In real implementations, BCH can be either realized
in software or hardware. In this paper, we assume hard-
ware implementation, since typically the memory con-
troller inside SSDs employs electrical circuit to perform
BCH encoding and decoding for high performance pur-
pose. BCH hardware implementation presents trade-offs
among chip area, cost and latency [41, 40]. Different
implementation configurations would cause different la-
tencies. The more circuits are deployed, the less latency
it incurs, but the more energy it consumes. In our evalua-
tions, according to the hardware implementation in [41],
we use 10µs as the decoding latency of a BCH tolerating
6 bit errors out of a flash page. Based on this latency,
we use the above analysis to derive other parameters as
shown in Table 2 in Section 4.1.

3 FlexECC Design and Implementation

In this section, we elaborate on the design and imple-
mentation details of FlexECC. We first give an overview
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of FlexECC, followed by a basic description of the cache
manager in which we collect and pass down the block
access information. Then we present the proposed ex-
tended interfaces via which access information is passed
down to facilitate the underlying device’s internal man-
agement. Following that, we describe the scrubbing pro-
cess which is a precautional technique to suppress the
performance overhead associated with accesses to erro-
neous pages. Moving on, we briefly discuss the garbage
collection process in FlexECC with a focus on the dif-
ferences relative to conventional SSDs. Finally, we give
a holistic discussion on how the incoming requests are
handled by FlexECC.

3.1 System Overview

As discussed previously, the idea of FlexECC is quite
simple. It essentially comes down to two critical prob-
lems. The first problem is how to characterize block
access behaviors and relay the collected information to
the underlying device. The second problem is how the
cache device can take advantage of the collected infor-
mation to improve its performance. For the first prob-
lem, FlexECC augments a cache monitor into an ordi-
nary cache manager. The monitor observes the cache be-
haviors and infers the storage requirements of the corre-
sponding blocks which are are supposed to be stored in
the cache layer. For the second problem, FlexECC em-
ploys a Programmable Memory Controller (PMC) inside
the cache device to dynamically allocate CRC-protected
or BCH-encoded pages to accommodate the incoming
page writes according to their storage requirements.

Figure 1 shows a holistically architectural view of
FlexECC. As depicted in the picture, the upper part is
a modified cache manager which is able to collect block
access information and send the information down to the
SSD cache device to facilitate its internal management.
In the middle is the SSD cache device with two added
components including a hardware PMC and a software
scrubber. In the bottom is the underlying storage sys-
tem comprised of HDDs. In addition to constructing a
basic hybrid storage system, the cache manager is aug-
mented with the functionality of tracking and tagging
block accesses to SSD. The collected information can
be passed down to SSD via extending cross-layer inter-
faces, which has been proposed and evidenced by the
techniques employed in previous researches including
Shepherding I/O [17], DSS [28] and FlashTier [37]. The
SSD cache device internally employs a Programmable
Memory Controller (PMC) [21] which is able to program
pages3to be either BCH-encoded or CRC-protected and
allocate different types of pages to accommodate incom-
ing requests according to their respective requirements,
which is in spirit similar to the fast and slow pages allo-

cation policy described in [16]. The PMC divides the
entire cache space into two different regions, namely,
CRC-region and BCH-region. Moreover, FlexECC ac-
tively initiates a scrubber process to verify the integrity of
CRC-protected pages and prepares to populate corrupted
ones from underlying storage before they are accessed.
In addition, the SSD FTL is slightly modified, with each
FTL entry having several added tags to provide auxiliary
information, for example, in what code scheme (BCH or
CRC) the page is protected, etc.

PMC FTL

scrubber

Cache Manager
Host side

SSD Cache Layer

Disk Storage SystemDisk 1

BCH CRC

Dirty Write
Host Read

Flush Read
Clean Write

Disk 2 Disk n

Figure 1: System Architecture.

3.2 Cache Manager
In our context, a cache manager interposes above the
disk device driver in the operating system to send re-
quests to either the flash device or the disk system di-
rectly, as it is with FlashTier [37]. It transparently con-
structs and manages an SSD-HDD hybrid storage sys-
tem in which SSD acts as an inclusive cache layer above
the disk system. The cache manager dictates which
data blocks are written to the SSD cache through the
adopted cache replacement policy, like Least-Recently-
Used (LRU) or First-In-First-Out (FIFO). It supports two
cache modes: Write-through and Write-back. In Write-
through mode, on every write to the SSD cache, the
cache manager also persists the data to the disk system
before it reports write completion, which guarantees con-
sistence at any time. In Write-back mode, the cache man-
ager may write to the SSD cache without updating the
disk system, causing dirty data in the cache. Cached
blocks are flushed to the disk system for persistence at
a configurable rate, e.g., every 5 minutes. For a write re-
quest, when there is no enough space, the cache manager
evicts a victim block according to the replacement policy
to make room for the incoming write. For a read request,
the cache manager first consults the SSD. If it is not
present in the cache, the cache manager fetches the data
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from the underlying disk system and populates it into the
cache. By default, we assume Write-back mode in the
discussion of FlexECC, because Write-through is an ex-
treme scenario in which the whole cache space could be
safely CRC-protected. We implement the cache man-
ager based on FlashCache [37]. Specifically, we monitor
every triggering event that causes read or write operation
to the SSD cache, and forward the information to SSD
via extended access interfaces.

3.3 Extended Interfaces

Extending existing interfaces between neighboring lay-
ers to communicate useful information for various pur-
poses has been proposed in previous literature [28, 38].
Such extensions can be conveniently realized via lever-
aging the reserved or unused bits in the communication
protocols, e.g., SCSI protocol. In FlexECC, we use a
similar approach to pass information about cache behav-
iors to SSD to help its internal management. We propose
four extended access interfaces to capture different rea-
sons that cause accesses to the SSD, namely Dirty Write,
Host Read, Clean Write and Flush Read, which are indi-
cated in Figure 1. These interfaces are defined from the
perspective of the SSD cache device. We discuss each of
them as follows:

Dirty Write: a request to write a fresh data block
which has no backup copy in the disk system and thus re-
quires high reliability guarantee. New content generated
by upper-level applications are written into the cache de-
vice using this interface. In response to this operation,
the programmable memory controller designates BCH-
encoded pages to store the content.

Clean Write: a write request to write a clean data
block which has consistent backup copy in the back-end
storage. Block migrations originating from disk to cache,
e.g., due to a miss or populating corrupted pages, are ac-
complished through this interface. In response to this op-
eration, the programmable memory controller designates
CRC-protected pages to store the content.

Host Read: This interface is used to satisfy data reads
issued by applications. It corresponds to cache read hit.
Host Read data can be either BCH-encoded or CRC-
encoded, depending on its state when it is requested.

Flush Read: a read caused by flushing dirty data back
to the disk system due to releasing cache space or period-
ical time-out flushing down. Internally, FlexECC moni-
tors this operation and marks associated flash pages as
eligible to be free from BCH-encoded. During garbage
collection, the marked pages contained in victim blocks
are relocated to clean blocks using Clean Write interface.

In FlexECC, a data block could be in four states,
which are named HOST, BCH, CRC, and HDD, indicat-
ing when the block is in host memory, in a BCH-encoded

Host

BCH CRC

HDD

host read flush read
dirty write clean write
GC write

SSD Cache Device

Figure 2: Page Content State Transition Diagram. The
page content can be in the host memory (HOST), pro-
tected by BCH code (BCH), protected by CRC code
(CRC) or in the back-end storage (HDD). Read and write
are defined in respect to the cache device.

page, in a CRC-protected page and in back-end storage,
respectively. However, it should be noted that these four
states are not necessarily exclusive to one another. For
example, the same block can be in HDD and CRC states
simultaneously. The data block changes its state in re-
sponse to the operations applied to it. Figure 2 shows
the page state transition diagram with respect to the in-
terface operations. The GC write represented by dashed
arrow denotes the state transition of marked data pages
(by Flush Read) from BCH to CRC during garbage col-
lection.

3.4 Disk Scrubber

While CRC can guarantee the minimum reliability, due
to CRC’s inability to correct errors, corruptions occurred
to CRC-encoded pages may incur extraordinarily large
overhead, since accesses to corrupted pages have to be
satisfied by the back-end storage whose performance is
typically one order of magnitude slower than that of
the cache. To prevent such overhead severely impact-
ing performance, FlexECC regularly schedules a Scrub-
ber [31] process to verify the integrity of CRC-encoded
pages. The Scrubber is a two-step process. The first step
is a lightweight step which iteratively scans the CRC-
protected pages to verify their checksums. If any incon-
sistency is detected, the corresponding page is marked as
corrupted. The second step is to initiate a data migra-
tion process to replenish those corrupted pages found in
the first step. Depending on when the corrupted pages
are accessed, they could be forced to be fetched from
back-end storage on the access path to them, which could
cause significant performance overhead, or they could be
prefetched by Scrubber into the cache before they are
actually accessed. To minimize performance impacts,
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we leverage the idleness in the workloads to launch the
scrubber process. Specifically, when the observed inter-
request interval Tinter is longer than a configured multiple
m of the time Tcrc taken by CRC verification, the Scrub-
ber performs the first step; when Tinter is longer than
the estimated time Tdisk taken by fetching a block from
the underlying disk system, the Scrubber performs the
second step to prefetch �Tinter/Tdisk� blocks. Migrated
blocks are written to the SSD cache via Clean Write in-
terface. In our evaluation, we set m to be 10, Tcrc equal
to the CRC encoding latency and Tdisk to be the average
disk access latency 1.5ms [37].

3.5 Garbage Collection
In SSDs, garbage collection (GC) process is executed to
reclaim flash space by erasing victim blocks and may
bring about significant performance impacts because of
its interference with normal activities [16, 37]. The GC
overhead mainly comes from consolidating valid pages
from victim blocks to clean blocks and erasing victim
blocks. FlexECC employs a slightly modified greedy al-
gorithm to perform GC. As it is with the normal greedy
algorithm [2], FlexECC also selects the block which
has the highest cleaning efficiency, i.e, the block con-
tains the most invalid pages within it, as the victim
block. When migrating the valid pages, CRC-protected
pages are relocated to CRC-protected pages, while BCH-
encoded pages which have been previously marked out
by Flush Read are rewritten to elsewhere using Clean
Write (the “GC write” operation in Figure 2) and the
remaining BCH-encoded pages are again relocated to
BCH-encoded pages. Due to the discrepancies in de-
coding latency between CRC-protected pages and BCH-
encoded pages, the GC process in FlexECC consumes
less time than that in conventional SSD. The more CRC-
protected pages there are in the victim block, the shorter
the GC process would be. The shortened GC process
helps improving the overall performance.

3.6 Putting Them All Together
Summarizing the above discussions, we are able to ar-
rive at the conclusion of how a request is handled by
FlexECC. First, FlexECC determines the type (read or
write) of the arriving request, and then determines which
code scheme is applied to the target page. Reading un-
corrupted CRC-protected page is straightforward, while
reading corrupted CRC-protected page has to be satis-
fied by visiting the underlying disk if the page has not
been brought in the cache beforehand by the Scrubber.
A clean write is destinated to a CRC-protected page,
and a dirty write is destinated to a BCH-encoded page.
Equation 6 and Equation 7 give the estimated read la-

tency Tr and write latency Tw, respectively. In the equa-
tions, Rcrc, Rbch and Rdisk denote the latencies of read-
ing a CRC-protected page, reading a BCH-encoded page
and reading a block from disk, respectively. Similarly,
Wcrc and Wbch denote the write latencies of writing a
CRC-protected page and writing a BCH-encoded page,
respectively. ξ is the corruption probability of a flash
page which is relevant to the flash memory RBER, soft-
ware errors, etc. η is the probability of reading a CRC-
protected page and γ is the probability of writing a CRC-
protected page. The values of η and γ are dependent on
the cache manager configuration (e.g., replacement pol-
icy, flushing interval, etc.) and the features of workloads.

Tr = (1−ξ )(ηRcrc +(1−η)Rbch)+ξ Rdisk (6)

Tw = γWcrc +(1− γ)Wbch (7)

4 Experimental Evaluation

4.1 Evaluation Methodology

To verify the effectiveness of FlexECC, we have imple-
mented a prototype and conducted comprehensive eval-
uations. The evaluations consist of two steps. First,
we add a monitor into the Flashcache [37] to track the
cache block behaviors. The monitor outputs block ac-
cess traces having the interface operations defined in
Section 3.3. Then we use those traces to drive Flex-
ECC which is implemented based on an SSD simula-
tor [2]. We use Filebench [23] to generate four repre-
sentative workloads, Fileserver, Webserver, Mailserver,
OLTP and two micro-workloads, R 75 and R 90, both
of which are read-intensive workloads having 75% and
90% reads, respectively. Each of the workloads runs for
30 minutes on a Flashcache-created hybrid storage sys-
tem comprising of a 1TB disk as the back-end storage
and a 250GB PCI-e SSD as a cache. The cache space
and working set sizes are set to 30GB and 360GB, re-
spectively. The write-back cache mode and LRU re-
placement algorithm are used. Table 1 summarizes the
traces characteristics.4 We assume protection granular-
ity is page-based and the ECC redundancy information
is stored in the spare region of each page. Table 2 lists
the main relevant operational latencies. We simulate an
8-chip 60GB SSD with 15% overprovisioning space and
set ioscale to 100 to slow down replaying those too-
intensive traces(they are collected on a PCI-E SSD). In
addition, we enable the copy-back operation when per-
forming garbage collection within the SSD.
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Table 1: Trace Characteristics
File Web Mail OLTP R 75 R 90

READ 15.2% 17.8% 21.9% 8.6% 75% 90%
WRITE 84.8% 82.2% 78.1% 91.4% 25% 10%

Table 2: Operational Latencies
Page Read 25µs CRC Encoding 0.8µs
Page Write 200µs CRC Decoding 0.8µs
Block Erase 1.5ms BCH Encoding 0.8µs

BCH Correct Dec. 5µs BCH Corrupted Dec. 10µs

4.2 Performance Comparison
In this section, we report the workloads average request
response time to demonstrate the overall performance
improvement of FlexECC over conventional SSD which
is armed with regular BCH schemes. In the figures, these
two kinds of devices are denoted as FlexECC and BCH-
SSD, respectively. Figure 3 shows the comparison re-
sults. As it is clearly shown in Figure 3, FlexECC con-
sistently improves the performance across all the tested
workloads relative to the traditional SSD armed with reg-
ular BCH scheme. Specifically, FlexECC improves per-
formance by 30.2%, 30.1%, 30.8%, 28.5%, 49% and
63.5% for FileServer, MailServer, WebServer, OLTP,
R 75 and R 90, respectively. Generally, read-intensive
workloads benefit more from FlexECC than other work-
loads primarily due to the reduced page decoding latency
associated with every CRC-encoded page reading, which
is evidenced by the fact that the average read response
time has been reduced by averagely around 35% and the
shortened garbage collection process, which is further
investigated in the next subsection. Unsurprisingly, the
write response time exhibits only marginal improvement
because the CRC encoding overhead is equal to that of
BCH encoding. Figure 4 shows the response time CDF
comparisons for workloads FileServer, MailServer, Web-
Server, OLTP. It is observed from the figures that each
workload has a certain percentage of requests (covered
by the visible red line ) that have smaller response time
in FlexECC than in BCH-SSD. Those percentages are
nearly equal to the read percentages of the workloads
(see Table 1), demonstrating the read requests serving
have been speeded up.

It is worth noting that the overall performance im-
provement is a combined outcome, which means even
though we are only able to achieve about 25% perfor-
mance gain for individual page decoding by replacing
BCH with CRC, we have seen more than 30% perfor-
mance improvement for the workloads. The reason is
that the shortened page reading and reduced garbage col-
lection can also alleviate resource contention (e.g., re-
duce request queuing time) and thus further improves

performance.
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Figure 3: Workloads Average Response Time.

4.3 Garbage Collection
Garbage collection (GC) in SSDs affects performance
because it may interfere with ongoing workloads. It
spends time in reading out validate pages in victims
blocks, writing them to clean blocks and erasing victim
blocks. Generally, The shorter time the garbage collec-
tion process takes, the less negative impacts it imposes on
performance. In our current FlexECC implementation,
we use the greedy algorithm for selecting victim blocks.
The victim blocks may contain CRC-protected pages and
BCH-encoded pages. The more CRC-encoded blocks
FlexECC garbage collects, the faster it migrates valid
pages to clean blocks. Figure 5 shows the total clean-
ing time comparison. From the figure, we notice that
compared to BCH-SSD, FlexECC reduces an impres-
sive amount of total cleaning time, up to 21.8%, 21.8%,
21.7%, 21.7% and 17.8% for FileServer, MailServer,
WebServer, OLTP, and R 75, respectively, even though
they have recycled the same number of victim blocks,
which are 208829, 215556, 218868, 197455 and 36189,
respectively. It is worth noting that the workload R 90 is
not shown in that figure because its total cleaning time
is 0. Unlike the average response time, read-intensive
workloads do not exhibit the most cleaning time sav-
ings because there are fewer page migrations due to the
lack of workload writes and associated erasures. Table 3
gives more explanations on the performance gains and
garbage collection time reduction, by listing the number
of reading BCH-encoded pages (BCH READ), reading
CRC-protected pages (CRC READ) from the requests
and moving CRC-protected pages (CRC MOVED),
transforming BCH-encoded to CRC-protected pages
(BCH2CRC) during GC. From the table, we note that
read-intensive workloads’ performance gains are mainly
attributed to the reduced decoding latency rather than
saved cleaning time.
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Figure 4: Workloads Response Time Cumulative Distribution Function (CDF) Comparison.

Table 3: FlexECC Page Statistics
File Mail Web OLTP R 75 R 90

BCH READ 1,517,326 2,420,758 1,899,771 760,480 272,948 8,874,561
CRC READ 5,191 12,303 6,435 1,265 7,247,563 146,982

CRC MOVED 3,720,833 3,741,430 3,725,016 3,716,391 1,420,582 0
BCH2CRC 48,501 93,955 57,188 46,688 726 0
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Figure 5: Total Cleaning Time Comparison.

4.4 Performance Under Faulty Conditions

In this section, we compare the performance under faulty
conditions. For simplicity but without loss of generality,
we introduce errors to flash pages according to specific
raw bit error rates (RBER). In more detail, given a spe-
cific RBER, we assume that the every 1

RBER th bit is cor-
rupted and the page contains this corrupted bit is consid-
ered erroneous. Corruptions could occur to both CRC-
pages and BCH-pages. We also assume faulty pages only
impact reads, because writes are inherently indirected at
the FTL layer and thus bypass faulty pages. If the cor-
rupted pages is CRC-protected, then reading it must be
serviced by accessing the underlying disk, otherwise it is
assumed to be corrected via BCH decoding.

Figure 6 shows the normalized average response
time relative to BCH-SSD without errors for Fileserver
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Figure 6: File Performance Under Faulty Conditions.

workload. As demonstrated in the figure, even un-
der faulty conditions, FlexECC still outperforms BCH-
SSD in error-free conditions, achieving an average 20%
improvement. This is because the performance gains
brought by partially replacing BCH-encoded with CRC-
protected pages and the Scrubber prefetching dwarf the
overhead associated with handling accesses to corrupted
pages. The statistics in Table 4 gives an in-depth expla-
nation regarding the behind reasons. It lists the statistics
for FileServer, R 75 and R 90 workloads. We can make
the following observations. First, for write-intensive
workloads (i.e., Fileserver) there is almost no disk ac-
cesses. That’s because write requests postpone the vis-
its to corrupted pages and thus increase their probabil-
ity of being prefetched by Scrubber. For read-intensive
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Table 4: Corruption Related Statistics When RBER=10−7

Workloads File R 75 R 90 Notes
Corruptions 4107 4107 4107 # of corruptions introduced during running
Disk Access 0 8 7 # of disk accesses

Prefetched 2720 3917 4024 # of corrupted pages prefetched by scrubber
BCH Decoded 195 34 10 # of corrected pages via BCH decoding

workloads, there are disk accesses happening, because
the corrupted pages would be visited with a high proba-
bility. Second, the number of disk access is rather small,
because most corrupted pages have been prefetched in
advance, which illustrates the Scrubber is efficient in
leveraging workload idleness. Third, the high numbers
of prefetched pages of R 75 and R 90 are attributed to
the fact that they contain a high percentage of CRC-
pages, which is also evidenced by the dominance of
CRC READ and CRC MOVED in Table 3. It should be
noted that the sum of Disk Access, Prefetched and BCH
Decoded is not equal to Corruptions, since there could
be corrupted pages that have not yet been prefetched or
corrected.

5 Related Work

Flash-based SSDs have been extensively researched as a
cache due to their widespread deployment in HDD-SSD
hybrid storage systems. Kgil et al. [21] propose to par-
tition the NAND flash cache space into read and write
caches and employ a programmable flash memory con-
troller to improve performance and reliability. They also
utilize CRC within the cache device, but in a comple-
mentary way to reduce BCH’s false positives, as opposed
to our replacement of BCH for clean pages. Yang et
al. [45] propose to improve SSD cache endurance via re-
ducing media writes and erases. Koller et al. [22] present
a study discussing write policies and consistency prob-
lems of SSD cache deployed in networked environment.
More recently, Holland et al. [18] explore the design
space of flash as a cache in the storage client side instead
of server side and make several interesting findings. Al-
brecht et al. [4] present Janus, a cloud-scale distributed
file system that is actively-used in Google Inc. In their
paper, they formulate and solve an optimization problem
to determine the flash cache allocation to workloads ac-
cording to their respective cacheability and conclude that
flash storage is a cost-effective complement to disks in
data centers. These works all use flash-based SSD as a
cache without taking into account synergistic optimiza-
tions. Our proposed FlexECC expands the design space
from a new dimension and could be integrated into these
systems to further improve the cache performance.

As flash technology scales, the reliability issue associ-

ated with increasing flash memory bit error rate and the
required error correction code have specially received re-
search interests. Mielke et al. [29] conduct a comprehen-
sive study of bit error rate of MLC SSDs from different
manufacturers. Grupp et al. [15] observe a trend of de-
creasing performance and reliability. Observing ECC is
under-utilized most of the time, especially when SSDs
are in their early usage stage, Pan et al. [33] propose
to speed up writes and tolerate more defective cells by
fully exploiting ECC’s capability. Taking advantage of
the retention time gap between specification and actual
requirements, Liu el al. [25] propose to improve write
performance and/or reduce ECC overhead by relaxing
retention time. Wu et al. [44] propose to adaptively use
different ECCs according to workloads to avoid consis-
tently using strong ECC. Similarly, Cai et al. [6] suggest
a technique called Correct and Refresh to avoid using
strong ECC. Their idea is to periodically refresh charges
in memory cells to reduce the dominant retention errors
due to loss of charges. The prolonged ECC decoding la-
tency problem associated with advanced ECC schemes in
modern SSDs has recently been observed by Zhao [49].
In their work, they suggest effective methods to reduce
the decoding latency of LDPC codes. While each of
these works tries to make a preferential trade-off toward
performance, reliability, or cost when designing ECC
schemes for flash memory, our work differs from them
in that FlexECC is cache-oriented and can safely get rid
of ECC for clean flash pages.

Relaxing ECC for performance and/or energy pur-
poses has also been explored in the memory systems.
Yoon et al. [46, 47] suggest a two-tiered error protec-
tion mechanism for last-level cache. The tier-1 code is
located with the protected cache line and only provides
error detection, while the tier-2 code is stored on off-chip
DRAM. In this scheme, the ECC consumes limited on-
chip SRAM resource, but is able to provide arbitrarily
strong tier-2 protection. Based on the observations that
in low-power operating mode different cache lines ex-
hibit different reliability characteristics, Alameldeen et
al. [3] propose a variable-strength ECC scheme, in which
cache lines having zero or single error are protected by
fast and simple ECC, while cache lines having multiple
errors are protected by stronger ECC.

The most relevant work to FlexECC is SSC [37] in
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that SSC also proposes a cache-oriented SSD architec-
ture and extends interfaces between applications and the
device. However, the performance improvement of SSC
mainly comes from the elimination of page migrations
during garbage collection, while FlexECC benefits from
reduced decoding latency. A potential shortcoming of
SSC is that it might exhibit a high miss rate if the silently
evicted pages are requested again in the future. By con-
trast, FlexECC only directs accesses to corrupted blocks
to beneath storage system. Moreover, in FlexECC, every
page read benefits from the reduced decoding latency. It
should be interesting to quantitatively compare FlexECC
with SSC, as planned in our future work.

6 Conclusions and Future Work

This paper presents FlexECC, a novel high-performance
cache-oriented MLC SSD. It flexibly applies BCH or
CRC to incoming page writes according to their stor-
age requirement information which is conveyed down by
an upper-level cache manager. We have given a theo-
retic analysis on the decoding latency of BCH and CRC
and found the gap in their decoding latencies. Experi-
mental results with a variety of workloads have shown
that FlexECC is capable of improving the overall cache
performance by an impressive extent and save the total
amount of cleaning time, without compromising relia-
bility and consistency. As part of the future work, we
plan to further improve FlexECC’s cache performance
by leveraging the space that is otherwise consumed by
ECC redundant information as additional effective cache
space. In addition, we also plan to investigate the en-
ergy savings by replacing off-the-shelf SSD caches with
FlexECC, especially in a cloud environment. We believe
in light of the trend of increasing flash memory RBER
and widespread use of MLC SSD as caches, it could be
significantly beneficial to deploy FlexECC in practical
systems.
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Notes
1In context of cache, single bit detection capability of EDC can

typically fulfill the purpose, so our analyzed speedup is conservative.
2We have investigated Tm = λTa with varying λ (λ > 1) as well and

have reached the similar conclusion.
3In reality, it is more common to use a block as the granularity. For

simplicity, we assume page granularity.
4The characteristics are different from [23], because Flashcache has

bypassed non-4KB and large (more than 128KB) sequential requests
directly to HDD. All trace requests are 4KB in size.
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Abstract
For many primary storage customers, storage must bal-
ance the requirements for large capacity, high perfor-
mance, and low cost. A well studied technique is to place
a solid state drive (SSD) cache in front of hard disk drive
(HDD) storage, which can achieve much of the perfor-
mance benefit of SSDs and the cost per gigabyte effi-
ciency of HDDs. To further lower the cost of SSD caches
and increase effective capacity, we propose the addition
of data reduction techniques.

Our cache architecture, called Nitro, has three main
contributions: (1) an SSD cache design with adjustable
deduplication, compression, and large replacement units,
(2) an evaluation of the trade-offs between data re-
duction, RAM requirements, SSD writes (reduced up
to 53%, which improves lifespan), and storage perfor-
mance, and (3) acceleration of two prototype storage sys-
tems with an increase in IOPS (up to 120%) and reduc-
tion of read response time (up to 55%) compared to an
SSD cache without Nitro. Additional benefits of Nitro
include improved random read performance, faster snap-
shot restore, and reduced writes to SSDs.

1 Introduction
IT administrators have struggled with the complexity,
cost, and overheads of a primary storage architecture
as performance and capacity requirements continue to
grow. While high IOPS, high throughput, and low la-
tency are necessary for primary workloads, many cus-
tomers have budget limitations. Therefore, they also
want to maximize capacity and management simplicity
for a given investment. Balancing these requirements is
an ongoing area of storage research.

Fundamentally though, the goals of high performance
and cost-efficient storage are in conflict. Solid state
drives (SSDs) can support high IOPS with low latency,
but their cost will be higher than hard disk drives (HDDs)
for the foreseeable future [24]. In contrast, HDDs have
high capacity at relatively low cost, but IOPS and latency
are limited by the mechanical movements of the drive.
Previous work has explored SSDs as a cache in front of
HDDs to address performance concerns [1, 7, 30], and
the SSD interface has been modified for caching pur-
poses [26], but the cost of SSDs continues to be a large
fraction of total storage cost.

Our solution, called Nitro, applies advanced data re-
duction techniques to SSD caches, increasing the effec-
tive cache size and reducing SSD costs for a given sys-
tem. Deduplication (replacing a repeated data block with
a reference) and compression (e.g. LZ) of storage have
become the primary strategies to achieve high space and
energy efficiency, with most research performed on HDD
systems. We refer to the combination of deduplication
and compression for storage as capacity-optimized stor-
age (COS), which we contrast with traditional primary
storage (TPS) without such features.

Though deduplicating SSDs [4, 13] and compressing
SSDs [10, 19, 31] has been studied independently, us-
ing both techniques in combination for caching intro-
duces new complexities. Unlike the variable-sized output
of compression, the Flash Translation Layer (FTL) sup-
ports page reads (e.g. 8KB). The multiple references in-
troduced with deduplication conflicts with SSD erasures
that take place at the block level (a group of pages, e.g.
2MB), because individual pages of data may be refer-
enced while the rest of a block could otherwise be re-
claimed. Given the high churn of a cache and the lim-
ited erase cycles of SSDs, our technique must balance
performance concerns with the limited lifespan of SSDs.
We believe this is the first study combining deduplication
and compression to achieve capacity-optimized SSDs.

Our design is motivated by an analysis of dedup-
lication patterns of primary storage traces and properties
of local compression. Primary storage workloads vary
in how frequently similar content is accessed, and we
wish to minimize deduplication overheads such as in-
memory indices. For example, related virtual machines
(VMs) have high deduplication whereas database logs
tend to have lower deduplication, so Nitro supports tar-
geting deduplication where it can have the most bene-
fit. Since compression creates variable-length data, Nitro
packs compressed data into larger units, called Write-
Evict Units (WEUs), which align with SSD internal
blocks. To extend SSD lifespan, we chose a cache re-
placement policy that tracks the status of WEUs instead
of compressed data, which reduces SSD erasures. An im-
portant finding is that replacing WEUs instead of small
data blocks maintains nearly the same cache hit ratio and
performance of finer-grained replacement, while extend-
ing SSD lifespan.
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To evaluate Nitro, we developed and validated a sim-
ulator and two prototypes. The prototypes place Nitro
in front of commercially available storage products. The
first prototype uses a COS system with deduplication and
compression. The system is typically targeted for stor-
ing highly redundant, sequential backups. Therefore, it
has lower random I/O performance, but it becomes a
plausible primary storage system with Nitro acceleration.
The second prototype uses a TPS system without dedup-
lication or compression, which Nitro also accelerates.

Because of the limited computational power and mem-
ory of SSDs [13] and to facilitate the use of off-the-shelf
SSDs, our prototype implements deduplication and com-
pression in a layer above the SSD FTL. Our evaluation
demonstrates that Nitro improves I/O performance be-
cause it can service a large fraction of read requests from
an SSD cache with low overheads. It also illustrates the
trade-offs between performance, RAM, and SSD lifes-
pan. Experiments with prototype systems demonstrate
additional benefits including improved random read per-
formance in aged systems, faster snapshot restore when
snapshots overlap with primary versions in a cache, and
reduced writes to SSDs because of duplicate content. In
summary, our contributions are:
• We propose Nitro, an SSD cache that utilizes

deduplication, compression, and large replacement
units to accelerate primary I/O.

• We investigate the trade-offs between dedup-
lication, compression, RAM requirements, perfor-
mance, and SSD lifespan.

• We experiment with both COS and TPS prototypes
to validate Nitro’s performance improvements.

2 Background and Discussion
In this section, we discuss the potential benefits of adding
deduplication and compression to an SSD cache and then
discuss the appropriate storage layer to add a cache.
Leveraging duplicate content in a cache. I/O rates for
primary storage can be accelerated if data regions with
different addresses but duplicate content can be reused
in a cache. While previous work focused on memory
caching and replicating commonly used data to minimize
disk seek times [14], we focus on SSD caching.

We analyzed storage traces (described in §5) to under-
stand opportunities to identify repeated content. Figure 1
shows the deduplication ratio (defined in §5.1) for 4KB
blocks for various cache sizes. The deduplication ratios
increase slowly for small caches and then grow rapidly
to ∼ 2.0X when the cache is sufficiently large to hold the
working set of unique content. This result confirms that
a cache has the potential to capture a significant fraction
of potential deduplication [13].

This result motivates our efforts to build a dedupli-
cated SSD cache to accelerate primary storage. Adding
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Figure 1: Caching tens of thousand of blocks will
achieve most of the potential deduplication.

deduplication to a storage system increases complexity,
though, since infrastructure is needed to track the live-
ness of blocks. In contrast, caching requires less com-
plexity, since cache misses do not cause a data loss for
write-through caching, though performance is affected.
Also, the overhead of calculating and managing secure
fingerprints must not degrade overall performance.
Leveraging compression in a cache. Compression, like
deduplication, has the potential to increase cache capac-
ity. Previous studies [5, 10, 29, 31] have shown that lo-
cal compression saves from 10-60% of capacity, with
an approximate mean of 50% using a fast compressor
such as LZ. Potentially doubling our cache size is desir-
able, as long as compression and decompression over-
heads do not significantly increase latency. Using an
LZ-style compressor is promising for a cache, as com-
pared to a HDD system that might use a slower compres-
sor that achieves higher compression. Decompression
speed is also critical to achieve low latency storage, so
we compress individual data blocks instead of concate-
nating multiple data blocks before compression. Our im-
plementation has multiple compression/decompression
threads, which can leverage future advances in multi-
core systems.

A complexity of using compression is that it trans-
forms fixed-sized blocks into variable-sized blocks,
which is at odds with the properties of SSDs. Simi-
lar to previous work [10, 19, 31], we pack compressed
data together into larger units (WEUs). Our contribu-
tion focuses on exploring the caching impact of these
large units, which achieves compression benefits while
decreasing SSD erasures.
Appropriate storage layer for Nitro. Caches have been
added at nearly every layer of storage systems: from
client-side caches to the server-side, and from the proto-
col layer (e.g. NFS) down to caching within hard drives.
For a deduplicated and compressed cache, we believe
there are two main locations for a server-side cache. The
first is at the highest layer of the storage stack, right after
processing the storage protocol. This is the server’s first
opportunity to cache data, and it is as close to the client
as possible, which minimizes latency.

2
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Figure 2: SSD cache and disk storage.

The second location to consider is post-deduplication
(and compression) within the system. The advantage
of the post-deduplication layer is that currently existing
functionality can be reused. Of course, deduplication and
compression have not yet achieved wide-spread imple-
mentation in storage systems. An issue with adding a
cache at the post-deduplication layer is that some mech-
anism must provide the file recipe, a structure mapping
from file and offset to fingerprint (e.g. SHA-1 hash of
data), for every cache read. Loading file recipes adds ad-
ditional I/O and latency to the system, depending on the
implementation. While we added Nitro at the protocol
layer, for COS systems, we evaluate the impact of using
file recipes to accelerate duplicate reads (§3.1). We then
compare to TPS systems that do not typically have file
recipes, but do benefit from caching at the protocol layer.

3 Nitro Architecture
This section presents the design of our Nitro architecture.
Starting at the bottom of Figure 2, we use either COS or
TPS HDD systems for large capacity. The middle of the
figure shows SSDs used to accelerate performance, and
the upper layer shows in-memory structures for manag-
ing the SSD and memory caches.

Nitro is conceptually divided into two halves shown
in Figure 2 and in more detail in Figure 3 (steps 1-
6 are described in §3.2). The top half is called the
CacheManager, which manages the cache infrastructure
(indices), and a lower half that implements SSD caching.
The CacheManager maintains a file index that maps the
file system interface (<filehandle, offset>) to internal
SSD locations; a fingerprint index that detects duplicate
content before it is written to SSD; and a dirty list that
tracks dirty data for write-back mode. While our descrip-
tion focuses on file systems, other storage abstractions
such as volumes or devices are supported. The Cache-
Manager is the same for our simulator and prototype im-
plementations, while the layers below differ to either use
simulated or physical SSDs and HDDs (§4).

We place a small amount of NVRAM in front of our
cache to buffer pending writes and to support write-back
caching: check-pointing and journaling of the dirty list.

The CacheManager implements a dynamic prefetching
scheme that detects sequential accesses when the consec-
utive bytes accessed metric (M11 in [17]) is higher than
a threshold across multiple-streams. Our cache is scan-
resistant because prefetched data that is accessed only
once in memory will not be cached. We currently do
not cache file system metadata because we do not expect
it to deduplicate or compress well, and we leave further
analysis to future work.

3.1 Nitro Components

Extent. An extent is the basic unit of data from a file
that is stored in the cache, and the cache indices refer-
ence extents that are compressed and stored in the SSDs.
We performed a large number of experiments to size our
extents, and there are trade-offs in terms of read-hit ra-
tio, SSD erasures, deduplication ratio, and RAM over-
heads. As one example, smaller extents capture finer-
grained changes, which typically results in higher dedup-
lication ratios, but smaller extents require more RAM to
index. We use the median I/O size of the traces we stud-
ied (8KB) as the default extent size. For workloads that
have differing deduplication and I/O patterns than what
we have studied, a different extent size (or dynamic siz-
ing) may be more appropriate.
Write-Evict Unit (WEU). The Write-Evict Unit is our
unit of replacement (writing and evicting) for SSD. File
extents are compressed and packed together into one
WEU in RAM, which is written to an SSD when it is
full. Extents never span WEUs. We set the WEU size
equal to one or multiple SSD block(s) (the unit for SSD
erase operation) depending on internal SSD properties,
to maximize parallelism and reduce internal fragmenta-
tion. We store multiple file extents in a WEU. Each WEU
has a header section describing its contents, which is
used to accelerate rebuilding the RAM indices at start-up.
The granularity of cache replacement is an entire WEU,
thus eliminating copy forward of live-data to other phys-
ical blocks during SSD garbage collection (GC). This re-
placement strategy has the property of reducing erasures
within an SSD, but this decision impacts performance, as
we discuss extensively in §6.1. WEUs have generation
numbers indicating how often they have been replaced,
which are used for consistency checks as described later.
File index. The file index contains a mapping from
filehandle and offset to an extent’s location in a WEU.
The location consists of the WEU ID number, the offset
within the WEU, and the amount of compressed data to
read. Multiple file index entries may reference the same
extent due to deduplication. Entries may also be marked
as dirty if write-back mode is supported (shown in gray
in Figure 3).
Fingerprint index. To implement deduplication within
the SSDs, we use a fingerprint index that maps from ex-

3
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tent fingerprint to an extent’s location within the SSD.
The fingerprint index allows us to find duplicate entries
and effectively increase the cache capacity. Since pri-
mary workloads may have a wide range of content re-
dundancy, the fingerprint index size can be limited to
any arbitrary level, which allows us to make trade-offs
between RAM requirements and how much potential
deduplication is discovered. We refer to this as the fin-
gerprint index ratio, which creates a partial fingerprint
index. For a partial fingerprint index, a policy is needed
to decide which extents should be inserted into/evicted
from the fingerprint index. User-specified configura-
tions, folder/file properties, or access patterns could be
used in future work. We currently use LRU eviction,
which performed as well as more complicated policies.
Recipe cache. To reduce misses on the read-path, we
create a cache of file recipes (Figure 2), which repre-
sent a file as a sequence of fingerprints referencing ex-
tents. This allows us to check the fingerprint index for
already cached, duplicate extents. File recipes are a stan-
dard component of COS systems and can be prefetched
to our cache, though this requires support from the COS
system. Since fingerprints are small (20 bytes) relative
to the extent size (KBs), prefetching large lists of fin-
gerprints in the background can be efficient compared to
reading the corresponding data from HDD storage. A
recipe cache can be an add-on for TPS to opportunisti-
cally improve read performance. We do not include a
recipe cache in our current TPS implementation because
we want to isolate the impact of Nitro without changing
other properties of the underlying systems. Its impact on
performance is discussed in §6.2.
Dirty list. The CacheManager supports both write-
through and write-back mode. Write-through mode as-
sumes all data in the cache are clean because writes to
the system are acknowledged when they are stable both
in SSD and the underlying storage system. In contrast,

write-back mode treats writes as complete when data
are cached either in the NVRAM or SSD. In write-back
mode, a dirty list tracks dirty extents, which have not
yet propagated to the underlying disk system. The dirty
list can be maintained in NVRAM (or SSD) for consis-
tent logging since it is a compact list of extent locations.
Dirty extents are written to the underlying storage system
either when they are evicted from the SSD or when the
dirty list reaches a size watermark. When a dirty file in-
dex entry is evicted (base or duplicate), the file recipe is
also updated. The CacheManager then marks the corre-
sponding file index entries as clean and removes the dirty
list entries.

3.2 Nitro Functionality

File read path. Read requests check the file index based
on filehandle and offset. If there is a hit in the file in-
dex, the CacheManager will read the compressed extent
from a WEU and decompress it. The LRU status for the
WEU is updated accordingly. For base entries found in
the file index, reading the extent’s header from SSD can
confirm the validity of the extent. When reading a dupli-
cate entry, the CacheManager confirms the validity with
WEU generation numbers. An auxiliary structure tracks
whether each WEU is currently in memory or in SSD.

If there is a file index miss and the underlying stor-
age system supports file recipes (i.e. COS), the Cache-
Manager prefeteches the file recipe into the recipe cache.
Subsequent read requests reference the recipe cache to
access fingerprints, which are checked against the cache
fingerprint index. If the fingerprint is found to be a du-
plicate, then cached data can be returned, thus avoid-
ing a substantial fraction of potential disk accesses. The
CacheManager updates the LRU status for the fingerprint
index if there is a hit. If a read request misses in both the
file and fingerprint indices, then the read is serviced from
the underlying HDD system, returned to the client, and
passed to the cache insertion path.
File write path. On a write, extents are buffered in
NVRAM and passed to the CacheManager for asyn-
chronous SSD caching.
Cache insertion path. To demonstrate the process of in-
serting an extent into the cache and deduplication, con-
sider the following 6-step walk-through example in Fig-
ure 3: (1) Hash a new extent (either from caching a read
miss or from the file write path) to create a fingerprint.
(2) Check the fingerprint against the fingerprint index.
If the fingerprint is in the index, update the appropriate
LRU status and go to step 5. Otherwise continue with
step 3. (3) Compress and append the extent to a WEU
that is in-memory, and update the WEU header. (4) Up-
date the fingerprint index to map from a fingerprint to
WEU location. (5) Update the file index to map from
file handle and offset to WEU. The first entry for the

4
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cached extent is marked as a “Base” entry. Note that
the WEU header only tracks the base entry. (6) When
an in-memory WEU becomes full, increment the gen-
eration number and write it to the SSD. In write-back
mode, dirty extents and clean extents are segregated into
separate WEUs to simplify eviction, and the dirty-list is
updated when a WEU is migrated to SSD.

Handling of duplicate entries is slightly more compli-
cated. Once a WEU is stored in SSD, we do not update
its header because of the erase penalty involved. When
a write consists of duplicate content, as determined by
the fingerprint index, a duplicate entry is created in the
file index (marked as “Dup”) which points to the extent’s
location in SSD WEU. Note that when a file extent is
over-written, the file index entry is updated to refer to
the newest version. Previous version(s) in the SSD may
still be referenced by duplicate entries in the file index.
SSD cache replacement policy. Our cache replace-
ment policy selects a WEU from the SSD to evict before
reusing that space for a newly packed WEU. The Cache-
Manager initiates cache replacement by migrating dirty
data from the selected WEU to disk storage and remov-
ing corresponding invalid entries from the file and finger-
print indices. To understand the interaction of WEU and
SSDs, we experimented with moving the cache replace-
ment decisions to the SSD, on the premise that the SSD
FTL has more internal knowledge. In our co-designed
SSD version (§4), the CacheManager will query the SSD
to determine which WEU should be replaced based on
recency. If the WEU contains dirty data, the Cache-
Manager will read the WEU and write dirty extents to
underlying disk storage.
Cleaning the file index. When evicting a WEU from
SSD, our in-memory indices must also be updated. The
WEU metadata allows us to remove many file index en-
tries. It is impractical, though, to record back pointers
for all duplicate entries in the SSD, because these dupli-
cates may be read/written hours or days after the extent
is first written to a WEU. Updating a WEU header with
a back pointer would increase SSD churn. Instead, we
use asynchronous cleaning to remove invalid, duplicate
file index entries. A background cleaning thread checks
all duplicate entries and determines whether their gener-
ation number matches the WEU generation number. If
a stale entry is accessed by a client before it is cleaned,
then a generation number mismatch indicates that the en-
try can be removed. All of the WEU generation numbers
can be kept in memory, so these checks are quick, and
rollover cases are handled.
Faster snapshot restore/access. Nitro not only accel-
erates random I/Os but also enables faster restore and/or
access of snapshots. The SSD can cache snapshot data
as well as primary data for COS storage, distinguished by
separate snapshot file handles.

We use the standard snapshot functionality of the stor-
age system in combination with file recipes for COS.
When reading a snapshot, its recipe will be prefetched
from disk into a recipe cache. Using the fingerprint in-
dex, duplicate reads will access extents already in the
cache, so any shared extents between the primary and
snapshot versions can be reused, without additional disk
I/O. To accelerate snapshot restores for TPS, integration
with differential snapshot tracking is needed.
System restart. Our cache contains numerous extents
used to accelerate I/O, and warming up a cache after a
system outage (planned or unplanned) could take many
hours. To accelerate cache warming, we implemented a
system restart/crash recovery technique [26]. A journal
tracks the dirty and invalid status of extents. When recov-
ering from a crash, the CacheManager reads the journal,
the WEU headers from SSD (faster than reading all ex-
tent headers), and recreates indices. Note that our restart
algorithm only handles base entries and duplicate entries
that reference dirty extents (in write-back mode). Dupli-
cate entries for clean extents are not explicitly referenced
from WEU headers, but they can be recovered efficiently
by fingerprint lookup when accessed by a client, with
only minimal disk I/O to load file recipes.

4 Nitro Implementation
To evaluate Nitro, we developed a simulator and two pro-
totypes. The CacheManager is shared between imple-
mentations, while the storage components differ. Our
simulator measures read-hit ratios and SSD churn, and
its disk stub generates synthetic content based on finger-
print. Our prototypes measure performance and use real
SSDs and HDDs.
Potential SSD customization. Most of our experi-
ments use standard SSDs without any modifications, but
it is important to validate our design choices against
alternatives that modify SSD functionality. Previous
projects [1, 3, 13] showed that the design space of the
FTL can lead to diverse SSD characteristics, so we would
like to understand how Nitro would be affected by poten-
tial SSD changes. Interestingly, we found through simu-
lation that Nitro performs nearly as well with a commer-
cial SSD as with a customized SSD.

We explored two FTL modifications, as well as
changes to the standard GC algorithm. First, the FTL
needs to support aligned allocation of contiguous physi-
cal pages for a WEU across multiple planes in aligned
blocks, similar to vertical and horizontal super-page
striping [3]. Second, to quantify the best-case of using
SSD as a cache, we push the cache replacement func-
tionality to the FTL, since the FTL has perfect informa-
tion about page state. Thus, a new interface allows the
CacheManager to update indices and implement write-
back mode before eviction. We experimented with mul-
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tiple variants and present WEU-LRU, an update to the
greedy SSD GC algorithm that replaces WEUs.

We also added the SATA TRIM command [28] in
our simulator, which invalidates a range of SSD logi-
cal addresses. When the CacheManager issues TRIM
commands, the SSD performs GC without copying for-
ward data. Our SSD simulator is based on well-studied
simulators [1, 3] with a hybrid mapping scheme [15]
where blocks are categorized into data and log blocks.
Page-mapped log blocks will be consolidated into block-
mapped data blocks through merge operations. Log
blocks are further segregated into sequential regions and
random areas to reduce expensive merge operations.
Prototype system. We have implemented a prototype
Nitro system in user space, leveraging multi-threading
and asynchronous I/O to increase parallelism and with
support for replaying storage traces. We use real SSDs
for our cache, and either a COS or TPS system with hard
drives for storage (§ 5). We confirmed the cache hit ra-
tios are the same between the simulator and prototypes.
When evicting dirty extents from SSD, they are moved
to a write queue and written to disk storage before their
corresponding WEU is replaced.

5 Experimental Methodology
In this section, we first describe our analysis metrics.
Second, we describe several storage traces used in our
experiments. Third, we discuss the range of parameters
explored in our evaluation. Fourth, we present the plat-
form for our simulator and prototype systems.

5.1 Metrics

Our results present overall system IOPS, including both
reads and writes. Because writes are handled asyn-
chronously and are protected by NVRAM, we further
focus on read-hit ratio and read response time to validate
Nitro. The principal evaluation metrics are:
IOPS: Input/Output operations per second.
Read-hit ratio: The ratio of read I/O requests satisfied
by Nitro over total read requests.
Read response time (RRT): The average elapsed time
from the dispatch of one read request to when it finishes,
characterizing the user-perceivable latency.
SSD erasures: The number of SSD blocks erased, which
counts against SSD lifespan.
Deduplication and compression ratios: Ratio of the
data size versus the size after deduplication or compres-
sion (≥ 1X). Higher values indicate more space savings.

5.2 Experimental Traces

Most of our experiments are with real-world traces, but
we also use synthetic traces to study specific topics.
FIU traces: Florida International University (FIU) col-
lected storage traces across multiple weeks, including
WebVM (a VM running two web-servers), Mail (an

email server with small I/Os), and Homes (a file server
with a large fraction of random writes). The FIU traces
contain content fingerprint information with small gran-
ularity (4KB or 512B), suitable for various extent size
studies. The FIU storage systems were reasonably sized,
but only a small region of the file systems was accessed
during the trace period. For example, WebVM, Homes
and Mail have file system sizes of 70GB, 470GB and
500GB in size, respectively, but we measured that the
traces only accessed 5.3%, 5.8% and 11.5% of the stor-
age space, respectively [14]. The traces have more writes
than reads, with write-to-read ratios of 3.6, 4.2, and 4.3,
respectively. To our knowledge, the FIU traces are the
only publicly available traces with content.

Boot-storm trace: A “boot-storm” trace refers to many
VMs booting up within a short time frame from the same
storage system [8]. We first collected a trace while boot-
ing up one 18MB VM kernel in Xen hypervisor. The
trace consisted of 99% read requests, 14% random I/O,
and 1.2X deduplication ratio. With this template, we syn-
thetically produced multiple VM traces in a controlled
manner representing a large number of cloned VMs with
light changes. Content overlap was set at 90% between
VMs, and the addresses of duplicates were shifted by 0-
15% of the address space.

Restore trace: To study snapshot restore, we collected
100 daily snapshots of a 38GB workstation VM with
a median over-write rate of 2.3%. Large read I/Os
(512KB) were issued while restoring the entire VM.

Fingerprint generation. The FIU traces only contain
fingerprints for one block size (e.g. 4KB), and we want
to vary the extent size for experiments (4-128KB), so it is
necessary to process the traces to generate extent finger-
prints. We use a multi-pass algorithm, which we briefly
describe. The first pass records the fingerprints for each
block read in the trace, which is the initial state of the file
system. The second pass replays the trace and creates
extent fingerprints. An extent fingerprint is generated
by calculating a SHA-1 hash of the concatenated block
fingerprints within an extent, filling in unspecified block
fingerprints with unique values as necessary. Write I/Os
within the trace cause an update to block fingerprints and
corresponding extent fingerprints. A final pass replays
the modified trace for a given experiment.

Synthetic compression information. Since the FIU
traces do not have compression information, we synthet-
ically generate content with intermingled unique and re-
peated data based on a compression ratio parameter. Un-
less noted, the compression ratio is set for each extent
using a normal distribution with mean of 2 and variance
of 0.25, representing a typical compression ratio for pri-
mary workloads [29]. We used LZ4 [9] for compression
and decompression in the prototype.
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Variable Values
Fingerprint index ratio (%) 100, 75, 50, 25, 0 (off)
Compression on, off
Extent size (KB) 4, 8, 16, 32, 64, 128
Write/Evict granularity WEU, extent
Cache size (% of volume) 0.5, 1, 2, 5
WEU size (MB) 0.5, 1, 2, 4
Co-design standard SSD, modified SSD
Write-mode write-through, write-back
Prefetching dynamic up to 128KB
Backend storage COS, TPS

Table 1: Parameters for Nitro with default values in bold.

5.3 Parameter Space

Table 1 lists the configuration space for Nitro, with de-
fault values in bold. Due to space constraints, we in-
terleave parameter discussion with experiments in the
evaluation section. While we would like to compare the
impact of compression using WEU-caching versus plain
extent-based caching, it is unclear how to efficiently store
compressed (variable-sized) extents to SSDs without us-
ing WEUs or an equivalent structure [10, 19, 31]. For
that reason, we show extent caching without compres-
sion, but with or without deduplication, depending on
the experiment. The cache is sized as a fraction of the
storage system size. For the FIU traces, a 2% cache
corresponds to 1.4GB, 9.4GB, and 10GB for WebVM,
Homes and Mail traces respectively. Most evaluations
are with the standard SSD interface except for a co-
design evaluation. We use the notation Deduplicated
(D), Non-deduplicated (ND), Compressed (C) and Non-
compressed (NC). Nitro uses the WEU (D, C) configura-
tion by default.

5.4 Experimental Platform

Our prototype with a COS system is a server equipped
with 2.33GHz Xeon CPUs (two sockets, each with two
cores supporting two hardware threads). The system has
36GB of DRAM, 960MB of NVRAM, and two shelves
of hard drives. One shelf has 12 1TB 7200RPM SATA
hard drives, and the other shelf has 15 7200RPM 2TB
drives. Each shelf has a RAID-6 configuration includ-
ing two spare disks. For comparison, the TPS system
is a server equipped with four 1.6GHz Xeon CPUs and
8GB DRAM with battery protection. There are 11 1TB
7200RPM disk drives in a RAID-5 configuration. Before
each run, we reset the initial state of the HDD storage
based on our traces.

Both prototypes use a Samsung 256GB SSD, though
our experiments use a small fraction of the available
SSD, as controlled by the cache capacity parameter. Ac-
cording to specifications, the SSD supports >100K ran-
dom read IOPS and >90K random write IOPS. Using a
SATA-2 controller (3.0 Gbps), we measured 8KB SSD
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Figure 4: Read-hit ratio of WEU-based vs. Extent-based for
all workloads. Y-axis starts at 50%.

random reads and writes at 18.7K and 4.2K IOPS, re-
spectively. We cleared the SSD between experiments.

We set the SSD simulation parameters based on the
Micron MLC SSD specification [23]. We vary the size
of each block or flash chip to control the SSD capacity.
Note that a larger SSD block size has longer erase time
(e.g., 2ms for 128KB and 3.8ms for 2MB). For the un-
modified SSD simulation, we over-provision the SSD ca-
pacity by 7% for garbage collection, and we reserve 10%
for log blocks for the hybrid mapping scheme. No space
reservation is used for the modified SSD WEU variants.

6 Evaluation
This section presents our experimental results. We first
measure the impact of deduplication and compression on
caching as well as techniques to reduce in-memory in-
dices and to extend SSD lifespan. Second, we evaluate
Nitro performance on both COS and TPS prototype sys-
tems and perform sensitivity and overhead analysis. Fi-
nally, we study Nitro’s additional advantages.

6.1 Simulation Results

We start with simulation results, which demonstrate
caching improvements with deduplication and compres-
sion and compare a standard SSD against a co-design
that modifies an SSD to specifically support caching.
Read-hit ratio. We begin by showing Nitro’s effective-
ness at improving the read-hit ratio, which is shown in
Figure 4 for all three FIU traces. The trend for all traces
is that adding deduplication and compression increases
the read-hit ratio.

WEU (D, C) with deduplication (fingerprint index ra-
tio set to 100% of available SSD extent entries) and com-
pression represents the best scenario with improvements
of 25%, 14% and 20% across all FIU traces as compared
to a version without deduplication or compression (WEU
(ND, NC)). Adding compression increases the read-hit
ratio for WEU by 5-9%, and adding deduplication in-
creases the read-hit ratio for WEU by 8-19% and extents
by 6-17%. Adding deduplication consistently offers a
greater improvement than adding compression, suggest-
ing deduplication is capable of increasing the read-hit ra-
tio for primary workloads that contain many duplicates
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Figure 5: Fingerprint index ratio impact on read-hit ratio and
deduplication for WEU (D, NC).

like the FIU traces. Comparing WEU and extent-based
caching with deduplication, but without compression (D,
NC), extent-based caching has a slightly higher hit-ratio
by 1-4% due to finer-grained evictions. However, the ad-
vantages of extent-based caching are offset by increased
SSD erasures, which are presented later. In an experi-
ment that increased the cache size up to 5% of the file
system size, the combination of deduplication and com-
pression (D, C) showed the largest improvement. These
results suggest Nitro can extend the caching benefits of
SSDs to much larger disk storage systems.
Impact of fingerprint index ratio. To study the impact
of deduplication, we adjust the fingerprint index ratio for
WEU (D, NC). 100% means that all potential duplicates
are represented in the index, while 0% means dedup-
lication is turned off. Decreasing the fingerprint index
ratio directly reduces the RAM footprint (29 bytes per
entry) but also likely decreases the read-hit ratio as the
deduplication ratio drops.

Figure 5(a) shows the read-hit ratio drops gradually as
the fingerprint index ratio decreases. Figure 5(b) shows
that the deduplication ratio also slowly decreases with
the fingerprint index ratio. Homes and Mail have higher
deduplication ratios (≥1.5X) than WebVM, as shown in
Figure 1. Interestingly, higher deduplication ratios in the
Homes and Mail traces do not directly translate to higher
read-hit ratios because there are more writes than reads
(∼4 W/R ratio), but do increase IOPS (§6.2). Nitro users
could limit their RAM footprint by setting the fingerprint
index ratio to 75% or 50%, which results in a 16-22%
RAM savings respectively and a decrease in read-hit ra-
tio of 5-11%. For example, when reducing the finger-
print index from 100% to 50% for the Mail trace (10GB
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cache size), ≥131,000 duplicate extents are not cached
by Nitro, on average.
WEU vs. SSD co-design. So far, we considered sce-
narios where the SSD is unmodified. Next we compare
our current design to an alternative that modifies an SSD
to directly support WEU caching. In this experiment,
we study the impact of silent eviction and the WEU-
LRU eviction policy (discussed in §4) on SSD erasures.
Our co-design specifically aligns WEUs to SSD blocks
(WEU-LRU-mod). We also compare our co-design to
variants using the TRIM command (WEU/extent-LRU-
TRIM), which alerts the FTL that a range of logical ad-
dresses can be released. Figure 6 plots SSD erasures
normalized relative to WEU-LRU without SSD modi-
fications (1.0 on the vertical axis) and compares WEU
versus extent caching.

SSD erasures are 2-4X higher for the extent-LRU-mod
approach (i.e. FlashTier [26] extended to use an LRU
policy) and extent-LRU-TRIM approach as compared to
both WEU versions. This is because the CacheManager
lacks SSD layout information so that extent-based evic-
tion cannot completely avoid copying forward live SSD
data. Interestingly, utilizing TRIM with the WEU-LRU-
TRIM approach has similar results to WEU-LRU-mod,
which indicates the CacheManager could issue TRIM
commands before overwriting WEUs instead of modi-
fying the SSD interface. We also analyzed the impact
of eviction policy on read-hit ratio. WEU-LRU-mod
achieves a 5-8% improvement in read-hit ratio compared
to an unmodified version across the FIU traces.

Depending on the data set, the number of SSD era-
sures varied for the FTL and TRIM alternatives, with
results between 9% fewer and 20% more erasures than
using WEUs. So, using WEUs for caching is a strong
alternative when it is impractical to modify the SSD or
when the TRIM command is unsupported. Though not
shown, caching extents without SSD modifications or
TRIM (naive caching) resulted in several orders of mag-
nitude more erasures than using WEUs.

6.2 Prototype System Results

Next, we report the performance of Nitro for primary
workloads on both COS and TPS systems. We then

8
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Metric Trace Extent Nitro WEU Variants
(%) ND, NC ND, NC ND, C D, NC D, C

COS system

IOPS
WebVM 251 307 393 532 661
Homes 259 341 432 556 673
Mail 213 254 292 320 450

RRT
WebVM 52 54 63 72 78
Homes 46 49 55 57 62
Mail 50 53 61 67 72

TPS system

IOPS
WebVM 93 113 148 198 264
Homes 90 130 175 233 287
Mail 56 75 115 122 165

RRT
WebVM 39 41 49 58 64
Homes 39 42 47 49 54
Mail 41 44 51 57 61

Table 2: Performance evaluation of Nitro and its variants. We
report IOPS improvement and read response time (RRT) re-
duction percentage relative to COS and TPS systems without an
SSD cache. The standard deviation is ≤7.5%.

present sensitivity and overheads analysis of Nitro. Note
that the cache size for each workload is 2% of the file
system size for each dataset unless otherwise stated.
Performance in COS system. We first show how a high
read-hit ratio in our Nitro prototype translates to an over-
all performance boost. We replayed the FIU traces at an
accelerated speed to use ∼95% of the system resources,
(reserving 5% for background tasks), representing a sus-
tainable high load that Nitro can handle. We setup a
warm cache scenario where we use the first 16 days to
warm the cache and then measure the performance for
the following 5 days.

Table 2 lists the improvement of total IOPS (reads and
writes), and read response time reduction relative to a
system without an SSD cache for all FIU traces. For ex-
ample, a decrease in read response time from 4ms to 1ms
implies a 75% reduction. For all traces, IOPS improve-
ment is ≥254%, and the read response time reduction is
≥49% for Nitro WEU variants. In contrast, the Extent
(ND, NC) column shows a baseline SSD caching sys-
tem without the benefit of deduplication, compression,
or WEU. The read-hit ratio is consistent with Figure 4.

We observe that with deduplication enabled (D, NC),
our system achieves consistently higher IOPS compared
to the compression-only version (ND, C). This is be-
cause finding duplicates in the SSD prevents expen-
sive disk storage accesses, which have a larger impact
than caching more data due to compression. Nitro (D,
C) achieves the highest IOPS improvement (673%) in
Homes using COS. As explained before, a high dedup-
lication ratio indicates that duplicate writes are canceled,
which contributes to the improved IOPS. For Mail, the
increase of deduplication relative to compression-only
version is smaller because small I/Os (29% of I/Os are

≤ the 8KB extent size) can cause more reads from disk
on the write path, thus negating some of the benefits of
duplicate hits in the SSDs.

Compared to extent-based caching, WEU (D, C) im-
proves non-normalized IOPS up to 120% and reduces
read response time up to 55%. Compared to WEU (ND,
NC), extent-based caching decreases IOPS 13-22% and
increases read response time 4-7%. This is partially
because extent-based caching increases the SSD write
penalty due to small SSD overwrites. From SSD ran-
dom write benchmarks, we found that 2MB writes (WEU
size) have ∼60% higher throughput than 8KB writes (ex-
tent size), demonstrating the value of large writes to SSD.

We also performed cold cache experiments that replay
the trace from the last 5 days without warming up Nitro.
Nitro still improves IOPS up to 520% because of sequen-
tial WEU writes to the SSD. Read response time reduc-
tions are 2-29% for Nitro variants across all traces be-
cause fewer duplicated extents are cached in the SSD.
Performance in TPS system. Nitro also can benefit a
TPS system (Table 2). Note that Nitro needs to com-
pute extent fingerprints before performing deduplication,
which is computation that can be reused in COS but not
TPS. In addition, Nitro cannot leverage a recipe cache for
TPS to accelerate read requests, which causes 5-14% loss
in read hit-ratio for our WEU variants.

For all traces, the improvement of total IOPS (reads
and writes) is ≥75%, and the read response time reduc-
tion is ≥41% for Nitro WEU variants. While dedup-
lication and compression improve performance, the im-
provement across Nitro variants is lower relatively than
for our COS system because storage systems without
capacity-optimized techniques (e.g. deduplication and
compression) have shorter processing paths, thus bet-
ter baseline performance. For example, overwrites in
existing deduplication systems can cause performance
degradation because metadata updates need to propagate
changes to an entire file recipe structure. For these rea-
sons, the absolute IOPS is higher than COS with faster
read response times. Cold cache results are consistent
with warm cache results.
Sensitivity analysis. To further understand the impact of
deduplication and compression on caching, we use syn-
thetic traces to investigate the impact on random read
performance, which represents the worst-case scenario
for Nitro. Note that adding non-duplicate writes to the
traces would equivalently decrease the cache size (e.g.
multi-stream random reads and non-duplicate writes).
Two parameters control the synthetic traces: (1) The ra-
tio of working set size versus the cache size and (2) the
deduplication ratio. We vary both parameters from 1 to
10, representing a large range of possible scenarios.

Figure 7 shows projected 2D contour graphs from a
3D plot for (D, NC) and (D, C). The metric is read re-
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Figure 7: Sensitivity analysis of (D, NC) and (D, C).

sponse time in COS with Nitro normalized against that of
fitting the entire data set in SSD (lower values are better).
The horizontal axis is the ratio of working set size versus
cache size, and the vertical axis is the deduplication ra-
tio. The bottom left corner (1, 1) is a working set that is
the same size as the cache with no deduplication. We can
derive the effective cache size from the compression and
deduplication ratio. For example, the effective cache size
for a 16GB cache in this experiment expands to 32GB
with a 2X deduplication ratio configuration, and further
to 64GB when adding 2X compression.

First, both deduplication and compression are effec-
tive techniques to improve read response time. For ex-
ample, when the deduplication ratio is high (e.g. ≥5X
such as for multiple, similar VMs), Nitro can achieve re-
sponse times close to SSD even when the working set
size is 5X larger than the cache size. The combina-
tion of deduplication and compression can support an
even larger working set size. Second, when the dedup-
lication ratio is low (e.g.≤2X), performance degrades
when the working set size is greater than twice the cache
size. Compression has limited ability to improve re-
sponse time, and only a highly deduplicated scenario
(e.g. VM boot-storm) can counter a large working set
situation. Third, there is a sharp transition from high re-
sponse time to low response time for both (D, NC) and
(D, C) configurations (values jump from 1 to > 8), which
indicates that (slower) disk storage has a greater impact
on response time than (faster) SSDs. As discussed be-
fore, the performance for Nitro in the TPS system is al-
ways better than the COS system.
Nitro overheads. Figure 8 illustrates the performance
overheads of Nitro with low and high hit-ratios. We per-
formed a boot-storm experiment using a real VM boot
trace (§5) synthetically modified to create 60 VM traces.
For the 59 synthetic versions, we set the content over-
lap ratio to 90%. We set the cache size to achieve 0%
(0GB) and 100% (1.2GB) hit-ratios in the SSD cache.
With these settings, we expect Nitro’s performance to ap-
proach the performance of disk storage and SSD storage.

In both COS and TPS 0% hit-ratio configurations,
we normalized against corresponding systems without
SSDs. All WEU variants impose ≤7% overhead in re-
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Figure 8: Overheads of Nitro prototypes with the cache
sized to have 0% and 100% hit-ratios. Y-axis starts at
0.8. The standard dev. is ≤3.8% in all cases.

sponse time because extent compression and fingerprint
calculation are performed off the critical path. In the
100% hit-ratio scenario, we normalize against a sys-
tem with all data fitting in SSD without WEUs. WEU
(ND, NC) imposes a 2% increase in response time.
Compression-only (ND, C) and deduplication-only (D,
NC) impose 11% and 6.2% overhead on response time
respectively. WEU (D, C) overhead (≤18%) mainly
comes from decompression, which requires additional
time when reading compressed extents from SSD. Al-
though we are not focused on comparing compression
algorithms, we did quantify that gzip achieves 23-47%
more compression than LZ4 (our default), which im-
proves the read-hit ratio, though decompression is 380%
slower for gzip.

6.3 Nitro Advantages

There are additional benefits because Nitro effectively
expands a cache: improved random read performance in
aged COS, faster snapshot restore performance, and write
reductions to SSD.
Random read performance in aged COS system. For
HDD storage systems, unfortunately, deduplication can
lead to storage fragmentation because a file’s content
may be scattered across the storage system. A previ-
ous study considered sequential reads from large backup
files [18], while we study the primary storage case with
random reads across a range of I/O sizes.

Specifically, we wrote 100 daily snapshots of a 38GB
desktop VM to a standard COS system, a system aug-
mented with the addition of a Nitro cache, and a TPS
system. To age the system, we implemented a retention
policy of 12 weeks to create a pattern of file writes and
deletions. After writing each VM, we measured the time
to perform 100 random reads for I/O sizes of 4KB to
1MB. The Nitro cache was sized to achieve a 50% hit ra-
tio (19GB). Figure 9 shows timing results for the 1st gen-
eration (low-gen) and 100th generation (high-gen) nor-
malized to the response time for COS low-gen at 4KB.
For the TPS system, we only plot the high-gen numbers,
which were similar to the low-gen results, since there
was no deduplication-related fragmentation.
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As the read size grows from 4KB to around 128KB,
the response times are stable and the low-gen and high-
gen results are close to each other for all systems. How-
ever, for larger read sizes in the COS high-gen system,
the response time grows rapidly. The COS system’s logs
indicate that the number of internal I/Os for the COS sys-
tem is consistent with the high response times. In com-
parison to the COS system, the performance gap between
low-gen and high-gen is smaller for Nitro. For 1MB ran-
dom reads, Nitro COS high-gen response times (76ms)
are slightly faster than COS low-gen, and Nitro COS low-
gen response times (39ms) are slightly faster than a TPS
high-gen system. By expanding an SSD cache, Nitro
can reduce performance differences across random read
sizes, though the impact of generational differences is
not entirely removed.

Snapshot restore. Nitro can also improve the perfor-
mance of restoring and accessing standard snapshots and
clones, because of shared content with a cached primary
version. Figure 10 plots the restore time for 100 daily
snapshots of a 38GB VM (same sequence of snapshots
as the previous test). The restore trace used 512KB read
I/Os, which generate random HDD I/Os in an aged, COS
system described above.

We reset the cache before each snapshot restore exper-
iment to the state when the 100th snapshot is created. We
evaluate the time for restoring each snapshot version and
report the average for groups of 25 snapshots with the
cache sized at either 2% or 5% of the 38GB volume. The
standard deviation for each group was ≤7s. Group 1-25
has the oldest snapshots, and group 76-100 has the most
recent. For all cache sizes, WEU (D, C) has consistently
faster restore performance than a compression-only ver-
sion (ND, C). For the oldest snapshot group (1-25) with
a 5% cache size, WEU (D, C) achieves a shorter restore
time (374s) when deduplication and compression are en-
abled as compared to the system with compression only
(513s). The recent snapshot group averages 80% content
overlap with the primary version, while the oldest group
averages 20% content overlap, as plotted against the right
axis. Clearly, deduplication assists Nitro in snapshot re-
store performance.
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Figure 10: Nitro improves snapshot restore performance.

Reducing writes to SSD. Another important issue is
how effective our techniques are at reducing SSD writes
compared to an SSD cache without Nitro. SSDs do
not support in-place update, so deduplication can pre-
vent churn for repeated content to the same, or a differ-
ent, address. For WebVM and Mail, deduplication-only
and compression-only reduces writes to SSD (≥22%),
in which compression produces more savings compared
to deduplication. In the Homes, deduplication reduces
writes to SSD by 39% because of shorter fingerprint
reuse distance. Deduplication and compression (D, C)
reduces writes by 53%. Reducing SSD writes directly
translates to extending the lifespan.

7 Related Work
SSD as storage or cache. Many studies have focused
on incorporating SSDs into the existing hierarchy of a
storage system [2, 7, 12, 16, 30]. In particular, several
works propose using flash as a cache to improve perfor-
mance. For example, Intel Turbo Memory [21] adds a
nonvolatile disk cache to the hierarchy of a storage sys-
tem to enable fast start-up. Kgil et al. [11] splits a flash
cache into separate read and write regions and uses a
programmable flash memory controller to improve both
performance and reliability. However, none of these sys-
tems combine deduplication and compression techniques
to increase the effective capacity of an SSD cache.

Several recent papers aim to maximize the perfor-
mance potential of flash devices by incorporating new
strategies into the established storage I/O stack. For
example, SDF [25] provides a hardware/software co-
designed storage to exploit flash performance potentials.
FlashTier [26] specifically redesigned SSD functionality
to support caching instead of storage and introduced the
idea of silent eviction. As part of Nitro, we explored
possible interface changes to the SSD including aligned
WEU writes and TRIM support, and we measured the
impact on SSD lifespan.
Deduplication and compression in SSD. Deduplication
has been applied to several primary storage systems. iD-
edup [27] selectively deduplicates primary workloads in-
line to strike a balance between performance and ca-
pacity savings. ChunkStash [6] designed a fingerprint
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index in flash, though the actual data resides on disk.
Dedupv1 [22] improves inline deduplication by leverag-
ing the high random read performance of SSDs. Unlike
these systems, Nitro performs deduplication and com-
pression within an SSD cache, which can enhance the
performance of many primary storage systems.

Deduplication has also been studied for SSD storage.
For example, CAFTL [4] is designed to achieve best-
effort deduplication using an SSD FTL. Kim et al. [13]
examined using the on-chip memory of an SSD to in-
crease the deduplication ratio. Unlike these systems,
Nitro performs deduplication at the logical level of file
caching with off-the-shelf SSDs. Feng and Schindler [8]
found that VDI and long-term CIFS workloads can be
deduplicated with a small SSD cache. Nitro leverages
this insight by allowing our partial fingerprint index to
point to a subset of cached entries. Another distinction
is that since previous deduplicated SSD projects worked
with fixed-size (non-compressed) blocks, they did not
have to maintain multiple references to variable-sized
data. Nitro packs compressed extents into WEUs to ac-
celerate writes and reduce fragmentation. SAR [20] stud-
ied selective caching schemes for restoring from dedu-
plicated storage. Our technique uses recency instead of
frequency for caching.

8 Conclusion
Nitro focuses on improving storage performance with a
capacity-optimized SSD cache with deduplication and
compression. To deduplicate our SSD cache, we present
a fingerprint index that can be tuned to maintain dedup-
lication while reducing RAM requirements. To support
the variable-sized extents that result from compression,
our architecture relies upon a Write-Evict Unit, which
packs extents together and maximizes the cache hit-ratio
while extending SSD lifespan. We analyze the impact
of various design trade-offs involving cache size, finger-
print index size, RAM usage, and SSD erasures on over-
all performance. Extensive evaluation shows that Nitro
can improve performance in both COS and TPS systems.
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