
The following paper was originally published in the
Proceedings of the USENIX Symposium on Internet Technologies and Systems

Monterey, California, December 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Using the Structure of HTML Documents to Improve Retrieval

Michal Cutler, Yungming Shih, Weiyi Meng
State University of New York at Binghamton

Using the Structure of HTML Documents to Improve Retrieval

Michal Cutler, Yungming Shih, Weiyi Meng

Department of Computer Science
State University of New York at Binghamton

Binghamton, NY 13902
{cutler, meng}@binghamton.edu

Abstract
The World Wide Web (WWW) is a gigantic

information resource, which is growing daily. As
more and more data are added to the WWW, it is
becoming increasingly difficult to effectively locate
useful information from this environment. In this
paper, we propose a method for making use of the
structures and hyperlinks of HTML documents to
improve the effectiveness of retrieving HTML
documents. Our study assigns the occurrences of
terms in a document collection into six classes
according to the tags in which a particular term
appears (such as Title, H1-H6, and Anchor). Based
on the assignment, we extend the weighting schemes
in traditional information retrieval by incorporating
different importance factors to terms in different
classes. The rationale is that terms appearing in
different places of a document may have different
significance in identifying the document. For this
research we have built a Web based search tool,
Webor, created a testbed, and conducted extensive
experiments to determine an optimal class
importance factor combination. Our study indicates
that substantial improvement of retrieval
effectiveness can be achieved using this technique.

1. Introduction
The World Wide Web has become an

important information resource today. The
popularity of the Web is primarily due to the
tremendous amount of information available, and the
ability to browse and publish information. At the
same time, as more and more data are added to the
WWW every day, it has become increasingly
difficult to effectively locate useful information from
this environment.

There are typically two different approaches
for finding information in the WWW. The first is
browsing. Browsing based systems organize
information in the WWW into category hierarchies.
Examples of this type of systems are Yahoo
[Yaho96] and Magellan [Mage97]. The second
approach is searching. When using a searching
based system (called a search tool), a user submits a
query and the system returns a list of web pages
(usually the URLs of these pages) that are potentially
useful to the user. Many search tools have been
employed and some examples are Alta Vista
[Alta96], WebCrawler [Pi94], Lycos [CMU95,
Mau97], OpenText [OTC96], WISE [YuLe96a,
YuLe96b] and Microsoft Index Server [Mi97]. Most
browsing based systems also provide a more general
searching capability.

A search tool is essentially a Web-based
information retrieval system. Such a system typically
consists of two components. One is a robot-based
indexing engine which recursively downloads web
pages, indexes the contents of downloaded
documents, extracts URLs from them and downloads
more web pages using these URLs. In the end, an
index database organized as an inverted file is
constructed. The second component is a search
engine, which compares each user query to the
downloaded pages through the index database and
returns a list of web pages, which are potentially
useful to the user. Usually, the returned web pages
are ranked based on some similarity function.

The work presented in this paper is based
on the vector space model [Salt83]. In traditional
vector space based information retrieval, each
document is represented as a vector
(w1 , w2 ,..., wk), where k is the number of distinct

terms in all documents in the system (usually after

stopwords such as `a’ and `of’ have been removed
and a stemming algorithm has been applied to
convert words to their stems), and wi is a real

number indicating the weight (or significance) of the
ith term in identifying the document. If a term does
not appear in a document, then its corresponding
weight in the document vector is zero. The weight of
a term t in document d is usually computed from two
factors. The first factor is the term occurrence
frequency, tf, which is the number of times t appears
in d. Intuitively, a larger tf should imply a larger
weight, so the weight of term t should be
proportional to tf. The second factor is the document
frequency, df, which is the number of documents in
the collection that contain t. Intuitively, the more
documents that contain t, the less significant the
term is in differentiating d from other documents.
Therefore, a larger df should imply a smaller term
weight. In other words, the weight of term t should
be proportional to the inverse document frequency,
idf, of t. A commonly used formula for computing
the weight of t in d is tf idf⋅ .

In the vector space information retrieval
model [Salt83, Salt89], each user query is also
represented as a vector (q1 , q2 , ..., qk), where qi is

the weight associated with the ith query term.
Usually, qi is either zero, indicating that the query

does not contain the ith term, or one, indicating that
the ith term is in the query. Sometimes tf idf⋅ is

also used for computing qi . The closeness (or

similarity) of a query and a document is often
computed based on the inner product of their vectors.
Similarities are often normalized to between 0 and 1
through the use of a normalization factor.

In this paper, we study extending traditional
approaches for information retrieval to the WWW
environment. There are two key differences between
the documents in this environment and those used in
traditional IR systems.

1. The structure of HTML documents is easily
available through HTML tags. For example, in
an HTML document, we can easily tell whether
a term appears in the title, one of the six
headings or whether it is emphasized by using
an underscore, italics or bold characters. Such
structures provide information about the content
of a document. Intuitively, terms that appear in
the title, header, or are emphasized in the text
are more important for retrieval than the rest of
the terms. So by storing the structure
information of HTML documents in the index

and assigning an appropriate importance value
to the appearance of the terms in each structure,
the structure and the importance information
can be used to improve the rank assigned to
retrieved documents.

Traditional IR systems typically disregard
information about the structure of a document.
The main reason for this is that commonly this
information is either not available, or is hard to
acquire.

It is well known that a search can be improved
by taking the structure of a document into
account. Several search engines already use tag
information to improve ranking. AltaVista
[Alta96], HotBot [HotBot], and Yahoo [Yaho96]
score a document higher if query words or
phrases are found in the title of a web page.
Lycos [Mau97] uses position information on
query term occurrence (title, body, header, one
of 100 most relevant words) in the rank
function. The insight into why some structure
information is used while other structure
information is ignored is not published. In
addition, the weights assigned to the various
structures in the similarity function, and the
information on how these weights were derived
are not available. This paper presents a
systematic investigation of HTML structure
information, explains how the importance
assigned to tagged terms was derived, and how
the similarity function was modified.

2. HTML collections contain additional
information about each document d that has
hyperlinks to it in other documents of the
collection. Typically, when authors add a
hyperlink to a document d, they include in the
Anchor tag, a description of d in addition to its
URL. These descriptions have the potential of
being very important for retrieval since they
include the perception of these authors about the
contents of d. In particular, they may provide
good synonymous and related terms which are
not included in the text of d, but may be
included in user queries. So by adding the
anchor information of HTML documents to the
index we may be able to retrieve documents that
could not be retrieved otherwise. In addition,
using an optimal importance value for anchor
terms may improve the rank assigned to
retrieved documents.

In traditional IR approach, only terms included
in a document are used to automatically index it

(unless a thesaurus is used). There have been
several approaches to combining hypertext with
information retrieval [Agost96]. For retrieval
from a hypertext medical handbook, Frisse took
into account the occurrence of query terms in
the descendants of a hypertext document
[Frisse88]. Dunlop [Dunlop93] used the cluster
of documents citing and cited by a document for
retrieval. Retrieval from hypertext was also
investigated by Croft [Croft93], and Frei
[Frei92].

Research was also conducted on how to take
advantage of the additional information
available in the hierarchical (or graph) structure
of Web collections to improve retrieval.
Yuwondo and Lee [YuLe96a, YuLe96b],
considered a number of alternative ranking
algorithms. The algorithms are based on the
idea that neighbors of a web page are related to
the page and that this information can be used to
improve ranking. Boolean spread activation
increased the belief in a document if query terms
appeared in its neighbors. Most-cited increased
the belief in a document if query terms appeared
in its parent pages. Vector spread activation
increased the belief in a document depending on
the similarity of its children to the query.
Hypursuit [Hypur96] combined document
similarity with hyperlink semantic similarity.
The hyperlink semantic similarity is based on
two documents having a path of links
connecting them, the number of ancestor
documents that refer to both, and the number of
descendant documents that both documents refer
to.

In this paper, we propose a systematic
method for extending retrieval techniques to include
HTML structures. We first group subsets of HTML
tags into a set of classes. Then when we index each
document d, we assign the occurrence of each term t
of d into one of these classes. In addition, the
occurrences of term t in the anchor structure of other
documents that have hyperlinks to d are assigned to
an additional class, called the Anchor class. Next,
we attempt to learn an optimal importance factor
combination for the classes, by conducting extensive
retrieval experiments. Finally, the best importance
factor combination found is used to adjust the
weights of terms and to compute the similarity of
queries to documents. The proposed method provides
us with the necessary flexibility to test the
effectiveness of making use of HTML tags and
hyperlinks to enhance retrieval. To carry out the

experiments, we created a testbed with a collection of
4,596 HTML documents and ten queries. For each
query, the set of relevant documents and the set of
irrelevant documents were identified manually.

This paper has the following contributions.
First, a testbed was created. The availability of such
a testbed is essential to carry out performance studies
in information retrieval. While there are standard
testbeds for traditional information retrieval (for
example the TREC collections), there is currently no
standard testbed for web documents. Creating a
testbed requires a lot of effort as relevant and
irrelevant documents for each query need to be
identified manually. Second, a systematic method
was proposed for studying the effectiveness of using
HTML tags and hyperlinks to enhance document
retrieval in the WWW environment. Third, our
experiments indicate that by storing structure
information in the index, assigning optimal class
importance values, and using the extended index and
importance values, retrieval effectiveness is
substantially improved.

The rest of the paper is organized as
follows. In Section 2, we present Webor, which is the
tool we built [Webor96] and used for this study. The
classes used by Webor, its indexing engine, and its
search engine are also briefly described. In Section
3, the testbed is described. More specifically, we
discuss the document collection and the queries of
the testbed, as well as the methodology for
determining the sets of relevant and irrelevant
documents for each query. In Section 4, we describes
the experiments, the results obtained, and how the
best importance factor combination is determined.
Section 5 provides some conclusions and discusses
future work.

2. Webor - A Search Tool Developed
for this Research

The tool we developed and used in this
research, Webor (Web-based search tool for
Organization Retrieval) [Webor96] is based on the
vector space model and uses the following Cosine
formula for calculating the similarity between a
query and a document [Salt83],

Sim (q, d)=

∑ ∑

∑

= =

=
k

i

k

i
ii

k

i
ii

wq

wq

1 1

22

1 (1)

where k is the dimension of the vector space, wi is

the weight of the ith term in the document vector d

and qi is the weight of the ith term in the query

vector q.

Webor contains an indexing engine and a
search engine. Before we can describe how Webor
works we must describe how and why some HTML
tags were grouped into classes.

2.1 The Classes
We have grouped HTML tags into the

following six classes: Plain Text, Title, H1-H2, H3-
H6, Strong, and Anchor. The terms in the Plain Text
class are terms that do not appear in the text
enclosed by the title, header, or emphasized
structures of an HTML document (see Table 1).

Table 1: The Six Classes and associated

 HTML tags

Class Name HTML tags

Anchor A
H1-H2 H1, H2
H3-H6 H3, H4, H5, H6
Strong STRONG, B, EM, I, U, DL, OL,

UL
Title TITLE
Plain Text None of the above

The reason that we grouped HTML tags
into six classes, instead of having a separate class for
each type of tag, was to reduce the size of the index,
the work needed to find an optimal importance factor
combination, and to improve the efficiency of
Webor. We will now explain how the six classes
were selected. At this point in the research there is
no guarantee that this grouping is optimal.

We have divided the HTML header tags
into three classes: Title, H1-H2 and H3-H6. The tags
in the Title, H1-H2 and H3-H6 classes are TITLE,
H1 and H2, and H3, H4, H5, and H6, respectively.
The reasoning behind using these three classes was
as follows: The terms in a document’s title provide
information on what a document is about, and thus
should belong to a single class. The terms in the H1
and H2 headers provide descriptions of the main
structure and topics of a document and thus should
be grouped into a second class. The terms in the H3,
H4, H5, and H6 headers provide information about
the more specific structure and topics of a document
and hence should be grouped into a third class.

We have grouped the HTML list tags, and
the strong, emphasized, bold, underscored, and italic

tags into a single class called the Strong class. The
idea here was that terms that are emphasized and
terms which appear inside lists, are terms that the
author perceived to be important to the contents of
the document and thus should be grouped together.

The Anchor class includes all the terms,
which occur in the anchor tag of hyperlinks to the
document. The justification for including this class
in the index is that this information provides
additional knowledge about the main subject of the
document and should be taken into consideration
when a query and a document are matched.

2.2 The Indexing Engine
The index built by Webor consists of a web

page index and a keyword index. The web page
index contains information concerning the web
pages, including their IDs and URLs. The keyword
index is organized into an inverted file for efficient
retrieval. For each collection term t Webor keeps the
total number of web pages that have t (df) and an
inverted list. The inverted list for t is a sequence of
pairs. The first element in each pair is the ID of
some web page d, and the second element is a Term
Frequency Vector, TFV. TFV contains the frequency
of occurrence of t in each class associated with d.
The term frequency vector is
TFV tfv tfv tfv tfv tfv tfv= (, , , , ,)1 2 3 4 5 6 where tfv1,

tfv2, tfv3, tfv4, tfv5, and tfv6 are the term frequencies
of t in the Plain Text, Strong, H3-H6, H1-H2,
Anchor, and Title classes, respectively.

Webor parses each word s of a document d,
checks that s is not a stop word, and stems it. The
result of the stemming process on a non stopword s
is the term t. When Webor encounters the term t for
the first time in document d, it generates a term
frequency vector TFV = (0, 0, 0, 0, 0, 0) for t, and
then determines a class assignment for t. To
determine the class assignment, Webor uses the
following precedence order: TITLE tag > H1&H2
tags > H3&H4&H5&H6 tags > Strong tags > None
of the above (see Table 1). This means that when a
word is enclosed in the TITLE tag it is assigned to
the Title class regardless of any other tag in which it
is enclosed, and only terms which are not enclosed
by any of the header or Strong tags are assigned to
the Plain Text class. Next, based on the assigned
class, Webor increments one of the counts: tfv1, tfv2,
tfv3, tfv4 , and tfv6.

Indexing the terms of the Anchor class is
the last process performed by Webor because it needs

to collect all the anchor text in the collection with
hyperlinks to document d. Webor uses another file to
keep this information about the anchor text
associated with d. After Webor visited and indexed
all web pages in the collection, it then indexes this
file for the Anchor class. Each occurrence of term t
in anchor descriptions of hyperlinks to d is used to
increment tfv5.

2.3 The Search Engine
The search engine is a CGI (Common

Gateway Interface) program, which takes a query
from a Web user via an HTML form and returns to
the user a ranked list of HTML hyperlinks. The
query can be an AND, or an OR Boolean query, or a
list of terms. The user can also input a weight for
each term. In addition, users can limit the number of
web pages returned to them.

To enable conducting retrieval experiments,
Webor requires the user to provide the six class
importance values, which will be used in the current
experiment. These values are stored by Webor in the
Class Importance Vector
CIV civ civ civ civ civ civ= (, , , , ,)1 2 3 4 5 6 , where

civi is the importance factor assigned to class i in the
current experiment.

The search engine parses the query and
uses the inverted file index built by the indexing
engine, and the CIV to retrieve all web pages whose
TFV values are not all 0 for at least one of the query
terms.

To take advantage of the TFV information
produced by the indexing engine, and to take into
account the CIV provided for the experiment, we
needed to modify the computation of the weight w of
term t in document d which Webor uses in the
computation of the Cosine similarity (see formula
(1)). Webor uses the formula

idfCIVTFVw ⋅=)(o where the inner product

of the two vectors, TFV and CIV, represents the
importance of term t to document d, and idf is the
inverse document frequency of the term in the
collection. For calculating idf, Webor uses the
commonly used formula idf = ln(N/df) [Salt83],
where N is the number of documents in the
collection, and df (document frequency) is the
number of documents that contain the term.

Finally the search engine sorts the retrieved
documents by nonincreasing similarity and produces
a ranked list of hyperlinks to WWW pages which the
user can access.

2.4 Normal Retrieval and Normal CIV
N ote that w hen the

CIV = (, , , , ,)1111 0 1 , the weight w of term t reduces

to:

idftf

idftfvtfvtfvtfvtfv

idfTFVw

⋅=

⋅++++=

⋅=

)(

))1,0,1,1,1,1((

64321

o

So with this CIV the weight calculated by
Webor for each term is w tf idf= ⋅ . In this case,

the retrieval results obtained by Webor are equal to
those obtained by any vector space based IR system
that ignores HTML tags, uses tf idf⋅ to calculate

term weights, and Cosine to calculate the similarity
between a query and a document. We call this CIV
the Normal CIV and the retrieval with Normal CIV,
the Normal Retrieval. The Normal retrieval results
are compared to the results of experiments with other
CIVs, and used to show the percentage of
improvement achieved by better CIVs.

3. The Testbed

3.1 The Document Collection and the
Queries

The document collection of the testbed
includes all WWW pages that belonged to
Binghamton University at the end of 1996. Webor’s
indexing robot was run with the domain seed
“binghamton.edu” and indexed 4,596 HTML
documents. The average number of words in an
HTML document was 309. Table 2 shows the total
number of term occurrences that were assigned to
each class, and the percentage of these term
occurrences. Note that the classes with the highest
percentages are Plain Text (79.8%), Strong (13.2%),
and Anchor (2.8%).

Table 2: The Distribution of term

 occurrences among the six classes

Class Terms Percentage

Anchor Class 39,840 2.8 %
H1-H2 Class 21,232 1.5 %
H3-H6 Class 27,266 1.9 %
Plain Text Class 1,131,376 79.8 %
Strong Class 187,094 13.2 %
Title Class 10,955 0.8 %
Total 1,417,763 100 %

The 10 queries used for the experiment (see
the left column of Table 3) are the typical short
queries used by faculty and students to find
information in a university environment. Some of
the queries relate to administrative issues, such as
“promotion guidelines”, while other queries relate to
subject matters such as “neural networks”.

3.2 Relevant Document Identification
To find the relevant set of documents for a

given query, we substituted the query with a set of
other queries (see column 2 of Table 3), and used
Webor to create an expanded set of retrieved
documents. This expanded set was checked manually
to determine the subset of relevant documents. New
queries were generated by using OR with synonyms,
adding AND queries, and by omitting less important
terms from the original query. For example, the
query, “handicapped student help”, was expanded
into the queries, “handicap OR disable” and
“physical AND challenge”. These two queries enable
Webor to retrieve all documents which refer to
anyone with a disability. Note that the words “help”
and “students” were omitted. This method enabled
our finding the subset of relevant documents in the
document collection for each of the ten queries.

We determined that a web page is relevant
to a query if the web page was about the topic of the
query, or was a resource (for example, a list of
hypertext links) for finding information on the topic
of the query. Column 3 of Table 3, shows the
number of documents relevant to each query.

4. The Experiments
A large number of experiments were

conducted to find an optimal CIV and compute the
improvement it provides. The evaluation is based on
the recall-precision metric widely used in
information retrieval. For a given query, when a set
of documents is returned from the IR system, the
recall is defined to be the ratio (number of relevant
documents retrieved)/(number of relevant documents
in the collection) and the precision is defined to be
the ratio (number of relevant documents
retrieved)/(number of retrieved documents). The best
retrieval effectiveness is achieved when both recall
and precision are equal to 1. However, in practice,
this is unlikely to occur. Usually, when higher recall
is achieved, the precision becomes lower.

For each experiment we conducted, the ten
testbed queries were used to retrieve documents from
the testbed document collection based on a given
CIV. For each query the retrieval results were
evaluated at 11 recall points, starting at 0, ending at
1, and using increments of 0.1 Then, the precision
results of the ten testbed queries were averaged at the
11 recall points. Finally the 11 precision values are
averaged into a single number which we call the 11-
point average precision. Traditionally, this number is
used to represent the effectiveness of an information
retrieval system. In this study, we have added the 5-
point average precision, computed by averaging the
testbed queries’ average precision at recall values of
0, 0.1, 0.2, 0.3, and 0.4 to provide additional
important information about the effectiveness of the
system. Because of the large and increasing number
of web documents, web search tools often return a

Table 3: The Queries

Original Queries Modified Queries # of Relevant Docs

web-based retrieval 1. web-based OR retrieval
2. web AND search

15

neural network neural AND network 26
master thesis in geology Geology 3
prerequisite of algorithm Algorithm 4
handicap student help 1. handicap OR disable

2. physical AND challenge
14

promotion guideline Promotion 4
grievance committee Grievance 17
laboratory in electrical engineering 1. electrical

2. laboratory
8

anthropology chairman anthropology OR chairman 3
computer workshop workshop OR seminar 16

very large number of retrieved documents.
Unfortunately only a relatively small percentage of
these documents are useful to the web searcher. To
locate some good documents a searcher has to
download and browse, or read a summary of a large
number of these documents. Since the results are
ranked the searcher usually starts with the first
document retrieved by the system and then proceeds
down the list until a sufficient number of good
documents have been located. This is a very time
consuming and frustrating process. Often web
searchers do not need all good documents for a given
query and are satisfied with finding a small number
of good documents. This makes high precision for
the top documents retrieved by the system very
important. In other words, high precision at a lower
level of recall is very useful in the WWW
environment.

4.1 Retrieval with a Single Class
Our first set of experiments were to

compare Normal Retrieval with retrieval based only
on terms appearing in a single class using an
importance factor of 1 (SC/1). As can be expected
the results are inferior to those of Normal Retrieval
(see Table 4). It is interesting to observe, however,
what happens when just the Anchor class is used for
retrieval. The 11-point average precision is only 5%
below the Normal Retrieval, and is 33% better than
the Normal Retrieval for the 5-point average
precision. These results indicate the usefulness of the
descriptions included in the Anchor class. It is also
interesting to observe that the 5-point average
precision is comparable to that of the 5-point Normal
Retrieval, for the Strong class only and the Title
class only experiments.

4.2 Finding a Good Importance Factor
for one Class of a Normal CIV

To determine the effect of increasing the
importance factor of a single class of a Normal CIV,
we conducted experiments where a number of
different importance factors were assigned to one
class, while the rest of the factors remained as those
of a Normal CIV. The importance factor of the plain
text class was fixed at 1, and the experiments
attempted to find a good (or optimal) value for each
of the other classes. In this paper we only include the
results obtained by 3 experiments conducted for the
Anchor class (the results for the other classes are in
[Shih97]).

The results of the experiments for assigning
importance factor values 2, 4, and 6 to the Anchor
class are shown in Table 5. Note that when the
factor is either 2 or 6 the results are almost identical
to those of the Normal Retrieval, but a factor of 4
gives a better average precision for both 5-point and
11-point average precisions. Compared to Normal
Retrieval the improvement is 9% for 5-point average
and 5% for 11-point average.

Table 6 shows the best results obtained by
experiments that vary a single factor in the Normal
CIV, for the Strong, H1-H2, Anchor and Title
classes. It shows that by using a factor of 8 for the
Strong class we get improvements of 10% and 7% in
retrieval results over Normal Retrieval. The table
does not include the H3-H6 class since in our
experiments a Normal CIV with factors larger than 1
for the class H3-H6 does not provide better results.

Table 4: Improvement over Normal using SC/1 for retrieval

Class CIV 5-Point
Average
Precision

11-Point
Average
Precision

5-Point
Improvement
over Normal

11-Point
Improvement
over Normal

Normal 111101 0.249 0.201
Anchor only 000010 0.332 0.191 33% -5%
H1-H2 only 000100 0.274 0.159 10% -21%
H3-H6 only 001000 0.097 0.047 -61% -76%
Plain Text only 100000 0.203 0.112 -19% -44%
Strong only 010000 0.255 0.156 2% -22%
Title only 000001 0.258 0.187 4% -7%

Table 5: Improvement over Normal using Anchor factors 2, 4, and 6.

Class/Factor CIV 5-Point
Average
Precision

11-Point
Average
Precision

5-Point
Improvement
Over Normal

11-Point
Improvement
over Normal

Normal 111101 0.249 0.201
Anchor/2 111121 0.245 0.200 -1% 0%
Anchor/4 111141 0.271 0.211 9% 5%
Anchor/6 111161 0.245 0.199 -2% -1%

Table 6: The Best Value of a Single Factor

Class CIV 5-Point
Average
Precision

11-Point
Average
Precision

5-Point
Improvement
Over Normal

11-Point
Improvement
over Normal

Normal 111101 0.249 0.201
Strong/8 181101 0.273 0.215 10% 7%
H1-H2/4 111401 0.274 0.213 10% 6%
Anchor/4 111141 0.271 0.211 9% 5%
Title/4 111104 0.272 0.213 9% 6%

4.3 Finding an Optimal CIV
Once a best factor value was determined for

each single class in an otherwise Normal CIV, we
tried the combination of all best pairs (with values
greater than 1, i.e., the best pairs from the Strong,
H1-H2, Anchor and Title classes) in an otherwise
Normal CIV. Table 7 shows the improvement over
Normal CIV achieved by using pairs of best factors
in an otherwise Normal CIV.

Note that by using CIVs with best factor
pairs for Strong&H1-H2, Strong&Anchor, and
Strong&Title, the improvements are comparable to
the sum of the improvements achieved with the best
factors for the two corresponding individual classes.
For example, when the single best factor for Strong
is used the improvements are 10% and 7%, when the
best factor for H1-H2 is used the improvements are
10% and 6%, and when both best factors for Strong
and H1-H2 are used the improvements are
21%~10%+10% and 13%=7%+6%. The results
indicate also that the Strong class is very important.
Note that the improvement for the single best factor
in the classes H1-H2, and Title are canceled when
using the best pair for H1-H2&Title.

Other experiments conducted by us resulted
in a better CIV = (181181) for the class pair
Strong&Anchor in which the value of the Anchor
factor was increased to 8. Additional experiments in

which a single factor was changed in this CIV have
not shown any further improvement.

We next experimented with changing the
factors of the H1-H2 and Title classes of the CIV =
(181181). The results are summarized in Table 8.

The best vector found was (181684), which
improved the average precision over normal by 26%
for the 11-point average precision, and by 44% for
the 5-point average precision. Experiments with the
effect of changing a single value in the CIV (181684)
showed no improvements in the results. This was the
best CIV that we have found.

4.4 Determining the Importance of
Each Class

Another way to determine the importance of
the terms in a given class, say C, is as follows. We
first fix the importance factor for C to that as in the
Normal CIV. Then we try to find the new best CIV
by adjusting the importance factors for the other
three classes (the importance factors for the plain
text class and H3-H6 class are fixed at 1). If the
retrieval effectiveness based on the new best CIV is
about the same as that based on the old best CIV
(i.e., (181684)), then this indicates that the terms in
C are not very important for enhancing retrieval
effectiveness. On the other hand, if the retrieval
effectiveness based on the new best CIV is

substantially lower than that based on the old best
CIV, then the terms in C are very important for
improving retrieval effectiveness as adjusting the
importance factors for the other classes alone can not
achieve the same level of improvement. The results
of this set of experiments are summarized in Table 9.
From this table, it is clear that the Strong class and
the Anchor class are very important while the H1-H2
class and Title class are less important.

5. Conclusions and Future Work
In this paper, we proposed a method for

making use of the structures and hyperlinks of

HTML documents to improve the effectiveness of
retrieving HTML documents. Our method partitions
the occurrences of terms into six classes (title, H1-
H2, H3-H6, anchor, strong and plain text) and
adjusts the traditional term weighting scheme by
incorporating different importance factors to term
occurrences in different classes. Through extensive
experiments, we showed that by using our method it
is possible to substantially improve the retrieval
effectiveness (see Table 8). In particular, we found

Table 7: Improvement by using CIVs with Best Factor Pairs

CIV 5-Point
Average
Precision

11-Point
Average
Precision

5-Point
Improvement
Over Normal

11-Point
Improvement
over Normal

Normal 111101 0.249 0.201
Strong&H1-H2 181401 0.300 0.228 21% 13%
Strong&Anchor 181141 0.300 0.226 21% 13%
Strong&Title 181104 0.296 0.226 19% 13%
H1-H2&Anchor 111441 0.274 0.213 10% 6%
H1-H2&Title 111404 0.248 0.202 0% 0%
Anchor&Title 111144 0.268 0.210 8% 4%

Table 8: Improvement over Normal with CIVs (181181) and (181684)

CIV 5-Point
Average
Precision

11-Point Average
Precision

5-Point
Improvement
over Normal

11-Point
Improvement
over Normal

Normal 0.249 0.201
181181 0.353 0.251 42% 25%
181684 0.357 0.254 44% 26%

Table 9: The Improvement by each factor of the best CIV

Class with
Factor
fixed to
Normal

CIV 5-Point
Improvement
Over Normal

11-Point
Improvement
Over Normal

Contribution
of factor in
best CIV for

5-point

Contribution of
factor in best

CIV for
11-point

Best CIV 181684 44% 26%
Strong to 1 111644 11% 7% 33% 19%
H1-H2 to 1 181181 42% 25% 2% 1%
Anchor to 0 181604 21% 14% 23% 12%
Title to 1 181681 42% 25% 2% 1%

that the terms in the Strong and Anchor classes are
the most useful for improving the retrieval
effectiveness.

We plan to conduct more experiments using
an expanded set of queries and possibly different web
page collections. We believe that substantially more
extensive experimental results need to be collected
and analyzed in order to assess accurately the
effectiveness of using HTML structures. Another
issue to investigate is the optimal assignment of
tagged information to classes. It is possible that
information in lists should be in a different class
from emphasized terms, or that all headers H1-H6
should be included in one class. In this study, the
similarity function used is Cosine, and the term
weight function is a modification of tf idf⋅ . Other

similarity and term weight functions have also been
used in traditional IR systems. We are interested in
examining how different similarity and weight
functions may affect the retrieval effectiveness.
Studying the feedback process in the WWW
environment is also of interest.

6. Availability
The information about Webor can be

accessed at

http://nexus.data.binghamton.edu/~yungming/webor
doc.html

It also includes links to download the testbed.

References

[Agost96] M. Agosti and A. Smeaton,
“Information Retrieval and
Hypertext” Kluwer Academic
Publishers, 1996.

[Alta96] Digital Equipment Corporation,
“ALTA VISTA: Main Page”,
http://altavista.digital.com/cgi-
bin/query/, 1996.

[CMU95] Carnegie Mellon University, “Lycos,
The Catalog of the Internet”,
http://lycos.cs.cmu.edu/, 1995.

[Croft93] W.B. Croft and H.R. Turtle,
“Retrieval strategies for hypertext”
Information Management and
Processing 29(3), 1993, 313-324.

[Dunlop93] M. D. Dunlop and C. J. Van
Rijsbergen “Hypermedia and free text

retrieval”, Information processing and
Management 29(3), 1993, 287-292.

[Frei92] H.P. Frei, D. Stieger , “Making Use
of Hypertext Links when Retrieving
Information”, Proceedings ACM
ECHT’92, Milan, Italy, 1992, 102-
111.

[Frisse88] M.E. Frisse, “Searching for
Information in a Hypertext Medical
Handbook” Communications of ACM
31(7) July 1988.

[HotBot] Inktomi, Inc., HotBot Home Page,
http://www.hotbot.com/.

[Hypur96] R. Weiss, B. Velez, M.A. Sheldon, C.
Nemprempre, P. Szilagyi, A. Duda,
and D.K. Gifford, "HyPursuit: A
Hierarchical Network Search Engine
that Exploits Content-Link Hypertext
Clustering", Proceedings of the
Seventh ACM Conference on
Hypertext, Washington, DC, March
1996.

[Mage97] The McKinley Group Inc., “Magellan
Internet Guide”,
http://www.mckinley.com/, 1997.

[Mau97] M.L. Mauldin, “Lycos: Design
choices in an Internet search
service”, IEEE Expert Online,
February 1997.

[Mi97] Microsoft Co., “microsoft.com Search
Wizard”,
http://www.microsoft.com/search/defa
ult.asp, 1997.

[OTC96] OpenText Corporation, “Search the
World Wild Web – Every word every
page”,
http://www.opentext.com:8080/,
1996.

[Pi94] B. Pinkerton, “Finding What People
Want: Experiences with the
WebCrawler”, Proceedings of the 2nd
Int'l World Wide Web Conf., Elsevier
Science,
http://www.ncsa.uiuc.edu/SDG/IT94/
Proceedings/WWW2_Proceedings.ht
ml, 1994.

[Salt83] G. Salton and M.J. McGill,
“Introduction to Modern Information
Retrieval”, McGraw-Hill, New York,

NY, 1983.

[Salt89]. G. Salton, “Automatic Text
Processing: The Transformation,
Analysis, and Retrieval of
Information by Computer”, Addison
Wesley, 1989.

[Shih97] Y. Shih, “A Study of the Usefulness
of the Structure of HTML Documents
on Retrieval Effectiveness”, MS
thesis, Dept. of Computer Science,
State of New York at Binghamton,
1997.

[Webor96] J. Lu, Y. Shih, W. Meng, and. M.
Cutler, “Web-based search tool for
Organization Retrieval”,
http://nexus.data.binghamton.edu/~yu
ngming/webor.html, 1996.

[Yaho96] Yahoo Inc., “Yahoo Search”,
http://www.yahoo.com/search.html,
1996.

[YuLe96a] B. Yuwono and D.L. Lee, “Search
and Ranking Algorithms for Locating
Resources on the World Wide Web”,
Proceedings of the 12th International
Conference on Data Engineering,
New Orleans, Louisiana, Feb. 26 -
March 1, 1996, 164-171.

[YuLe96b] B. Yuwono and D.L. Lee, “WISE: A
World Wide Web Resource Database
System” IEEE Transactions on
Knowledge and Data Engineering,
Special Section on Digital Library,
Vol. 8, No. 4, Aug 1996, 548-554.

