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Abstract

In this paper we describe the design and the
implementation of the Transparent Crypto-
graphic File System (TCFS). TCFS is a cryp-
tographic distributed �lesystem (�a la NFS).
It lets users access sensitive �les stored on a
remote server in a secure way. It combats
eavesdropping and data tampering both at the
server and over the network by using encryp-
tion and message digest. Applications access
data on a TCFS �lesystem using the regular
systems calls thus yielding complete transa-
parency to the users.
TCFS implementations for Linux,

NetBSD and OpenBSD are available at
http://www.tcfs.it

1 Introduction

Today's networking makes it feasible to share
resources over a network. Filesystems have
been historically one of the �rst services to
be distributed over a network (see Sun's NFS
[13]). Nowaday this services are even more
necessary. In facts the wide spread of mobile
equipments (such as PDA or lap top comput-
ers) strongly require the availability of a com-

mon �le repository accessible from any place
allover the world with di�erent network strate-
gies. Distributing applications and services
over a network o�ers obvious advantages but
creates several security problems: unautho-
rized users might gain access to restricted ser-
vices.

Within the context of distributed �lesys-
tems this phenomenon is easily seen. In a
distributed �lesystem, we have two types of
actors: servers which have direct access to a
local �lesystem and clients that wish to access
�les on �lesystems local to the server. Servers
and clients are connected through a commu-
nication network. Let us take NFS as an ex-
ample. NFS is very naive in its approach to
security. Roughly speaking, the server receives
requests for block of data from client and sends
the data block in clear over the network. It is
a simple task to eavesdrop over the conversa-
tion and thus read the data [9]. Moreover, the
access to the data is granted by the server on
the basis of the uid (and gid) communicated
by the client. Thus nothing prevents a pirate
client from giving the server \the right" infor-
mation and thus gaining access to the whole
�le system.

Users who wish to protect their �les should



adopt measures to prevent exposure of sensi-
ble data. This problem can be addressed at
several levels: user, application and system
level. In this paper we present the Trans-
parent Cryptographic FileSystem (TCFS, in
short) that addresses the problem of securing
data in a distributed �lesystem at the system
level. The TCFS project started in 1995 but
only in the last 12 months the experimental
analysis have demonstrated its eÆciency and
its robustness.

Before describing the features of TCFS, let
us present arguments in favor of a solution at
the system level as opposed to solutions at the
user or application level.

Several tools exist to encrypt the content of
�les and directories. However, we point out
that this approach su�ers of two main draw-
backs:

1. Ease of use. Data reside in encrypted
form on the �lesystem. Before accessing
the data, the user needs to decrypt it be-
fore and, after he has �nished, he needs
to re-encrypt the data. This is very cum-
bersome and users would tend to avoid
this step. In general, a well-know secu-
rity practice principle states that security
has to come to little or no operative cost
to the user.

2. Network. Encrypting and decrypting
data in a distributed �lesystem does not
guarantee that the data is not exposed to
an unauthorized party. Indeed, once the
user has decrypted the data, it is stored
unencrypted on the server. Thus data is
leaked to the �lesystem server. Moreover,
data is transferred between the server and
client in clear and thus can be read by
eavesdroppers.

Several widely used applications o�er an en-
crypting service: when data is saved to disk,
the user can choose whether to encrypt it or
not. This approach addresses the usability

problem but data is still vulnerable when it
travels on the network.

2 Related Work

Distributed �le systems have been the focus
of much research in the last decades starting
with the early proposals [3, 13].

Along this line of research, transparency
(the fact that the �lesystem is not local should
be hidden from applications and users) and se-
curity have been two main issues. Some sys-
tems, like Compaq's Cluster File System[4],
do guarantee transparency even in presence
of faults, but assume that con�dentiality of
data and authentication of the parties in-
volved is achieved through some other sys-
tem. The Andrew File System [6] and CODA
[14] instead provide mechanism to authenti-
cate servers over public lines and to ensure
that client-server communication could not be
eavesdropped. The serious key-management
issues arising in such �le systems is addressed
by the Self-certifying FileSystem [8] (more on
SFS in Section 2.3). We do point out that
both AFS and CODA assume the server to
be trusted and store the data in clear on the
server machine. TCFS instead stores the �les
in encrypted form thus denying the server ac-
cess to the data in clear.

In this section we review some of the work
present in the literature stressing the di�er-
ences with TCFS either in implementation or
in architectural design.

2.1 Cryptographic File System

Matt Blaze's Cryptographic File System
(CFS)[2] is probably the most widely used se-
cure �lesystem and it is the closest to TCFS in
terms of architecture. CFS encrypts the data
before it passes across untrusted components,
and decrypts it upon entering trusted compo-
nents. CFS users create directories associated
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with keys and each �le created in a protected
directory is automatically encrypted.
CFS simulates a remote NFS server which

exports on demand encrypted directories. All
operations performed in clear by the user on
a protected resource are mapped by CFS to
the source directory (created by cmkdir) en-
crypted. During (and after) the user session,
an intruder could not obtain clear data from
the source directory.
CFS, that was the primary motivation of

the work presented in this paper, presents the
following characteristics.

� CFS is not transparent to the user. En-
crypted directories have to be explictly at-
tached to a speci�c directory by the user
before they can be accessed.

� Cryptography granularity is at the level
of the directory. This implies that the
user must remember a password for each
encrypted directory she owns. Moreover,
all �les in an encrypted directory are en-
crypted as opposed to TCFS where the
user can choose which �les to keep in en-
crypted form and which to keep in clear.

� CFS has been implemented as a user ap-
plication. On the positive side, this ap-
proach makes it very easy to port CFS to
di�erent operating systems. On the nega-
tive side, this increases its vulnerability to
attacks to the client machine and reduces
its performance.

� CFS does not allow group sharing of pro-
tected resources nor it o�ers data authen-
tication.

2.2 CryptFS

CryptFS[18] is a cryptographic �le system im-
plemented at the virtual inode level using the
abstraction of Stackable File Systems [5] and
can be used on top of local or remote �le sys-
tems. Like TCFS it uses the cipher block

chaining encryption mode within a block (usu-
ally 4k o 8k long) and only provides Blowfish
as encryption algorithm.
CryptFS is part of the FiST (File System

Translator) [19] project developed by the same
authors. FiST is a system that uses a high-
level language to describe a �le system and
to generate the working implementation for
the target operating system, thus improving
portability.
We found no source code for CryptFS, so

we could not compare it with TCFS. A per-
formance comparison between CryptFS and
(an older version of) TCFS is found in [18].
CryptFS does not ensure data integrity and
does not allow unencrypted �les on an en-
crypted �le system. This has a non trivial
impact on the performance as, for example,
CryptFS needs not to check if the �le is clean
or encrypted, nor it needs to check the in-
tegrity of blocks upon reading. We also stress
that there is no support for threshold group
sharing of encrypted �les.

2.3 Self-certifying File System

The Self-certifying File System (SFS)[8] ad-
dresses the issue of key management in cryp-
tographic �lesystems and proposes separat-
ing key management from �le system security.
Servers have a public key and clients use the
server public key to authenticate the server
and establish a secure communication chan-
nel. To allow clients to authenticate servers
on the spot without even having heard of them
before, SFS introduces the concept of a \self-
certifying pathname." A self-certifying path-
name contains the hash of the public-key of
the server, so that the client can verify that
he is actually talking to the legitimate server.
Once the client has veri�ed the server a secure
channel is established and the actual �le access
takes place.
Remote SFS �le systems are accessed

through the /sfs mount point. An SFS
pathname obeys the following syntax:
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/sfs/location:hostid/real/pathname,
where \location" is the name (IP address or
DNS Name) of the server exporting the �le
system and \hostid" is the hash of a string
containing the server's public key and some
other information. SFS does not care on how
the pathname has been obtained by the user;
a user can eventually obtain hostid's using
an existing PKI (Public Key Infrastructure).
On the other hand, once a self-certifying
pathname for the �les he is interested in has
been obtained, users do not need to remember
any key.

3 The TCFS Architecture

TCFS relies on a very simple architecture.
Data is stored in encrypted form on the server
�lesystem. Each time an application running
on a client has to read data, the client kernel
requests the appropriate block of data from
the server. The server ships the block of data
in encrypted form to the client. The client de-
crypts the block of data before passing it to
the application. A write operation is accom-
plished in a similar way. Suppose a client ap-
plication wishes to write data on a �lesystem.
The application passes the data to the client
that encrypts the data and passes it to the
server. The server, upon receiving data from
the client over the network, stores the data on
the �lesystem.
This architecture has several advantages:

� Minimal trust model. The TCFS archi-
tecture does not rely on the the server
nor the network being trusted. In fact,
the server only sees encrypted data and
data travels over the network only in en-
crypted form. As we will see when we dis-
cuss the implementation details, the client
can detect any unauthorized modi�cation
of data. Of course, since clients can access
data only through the servers, TCFS can-
not prevent servers from erasing the data
or from denying access to the clients. All

the encryptions and decryptions are per-
formed by the client on which the appli-
cation is running. Thus the application
and the user have to trust the client ker-
nel used to access the �lesystem. This is
not a serious limitation for cases in which
users employ personal workstations to ac-
cess �les.

� Low system administration impact.
TCFS does not require any additional
duty to the system administrator of
the server. All �lesystem maintenance
operations on the servers need not to
know about TCFS. Actually, the system
administrator himself might ignore that
his local �lesystem is actually a TCFS
�lesystem.

� Low impact on client applications. TCFS
was designed to reduce the impact on the
applications. Client applications access
�les on a TCFS �lesystem through the
usual system calls and thus they need not
to be re-written or re-compiled to work
with TCFS. Client applications need not
to deal with key management.

� Low impact on the user. Besides issues re-
garding key management, TCFS has lit-
tle or no impact on the �nal user. She
can still access her �les using the same
applications and ignore completely that
the �les she is accessing are stored on a
remote server in encrypted form. TCFS
guarantees to the users and to the appli-
cations a level of transparency similar to
NFS. Nonetheless, TCFS provides users
needing a greater control on the encryp-
tion/decryption policy, the ability to con-
trol which �les are encrypted and which
are not.

3.1 Authenticating servers

TCFS assumes a very minimal trust model:
the user only needs to trust the client machine
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used to access the TCFS �lesystem. We point
out that this is a very minimal assumption as
it is very hard to conceive a system that pre-
serves security even in presence of untrusted
client machines.

On the contrary, a user needs not to trust
the server on which the �lesystem physically
resides. Indeed, the server only has access to
data in encrypted form which is of no use. Ob-
viously, the server can modify the data stored
and there is nothing that the user can do to
prevent that. However, since TCFS includes
authentication mechanisms for the data, if the
server modi�es the data, the user will imme-
diately notice that data has been altered.

Similarly, there is no need for the client to
authenticate the server. Suppose that a pirate
host has managed to impersonate the legiti-
mate TCFS server. We stress that, even in
this case, the privacy of the user is not compro-
mised. Indeed if the client tries to write, then
the private server only gets encrypted data.
On the other hand, if the client performs a
read operation, the data he/she will receive
from the server will not be authenticated and
thus immediately rejected by the client.

4 Key management

In the design of TCFS we have decided to keep
key management issues separated from the ac-
tual cryptographic �lesystem. In the two im-
plementations of TCFS for Linux and BSD-
like kernels, TCFS provides a simple interface
to pass key to the kernel (by ad-hoc ioctl

calls, or by upgrading the �lesystem mount-
ing). On top of this basic key-management
primitive more sophisticated key management
schemes can be built. As part of the TCFS
project we have implemented three key man-
agement schemes that we termed the Raw, the
Basic and the Kerberized Key Management
Scheme that we brie
y review in the rest of
the section. TCFS can perform key manage-
ment at di�erent levels: at the process level in

the sense that each process has its own key to
access the TCFS �lesystem; at the user level in
the sense that each user has its own key and all
processes with the same uid use the same key.
Moreover, TCFS provides a simple threshold
mechanism for sharing �les in a group of users.

4.1 Group Sharing

TCFS includes the possibility of threshold
sharing �les among users. Threshold shar-
ing consists in specifying a minimum number
of members (the threshold) that need to be
\active" for the �les owned by the group to
become available. TCFS enforces the thresh-
old sharing by generating an encryption key
for each group and giving each member of the
group a share using a Threshold Secret Shar-
ing Scheme [15]. The group encryption key can
be reconstructed by any set of at least thresh-
old keys.
A member of the group that intends to be-

come active does so by pushing her/his share
of the group key into the kernel. The TCFS
module checks if the number of shares avail-
able is above the threshold and, if it is so, it
attempts to reconstruct the group encryption
key. By the properties of the Threshold Se-
cret Sharing Scheme, it is guaranteed that, if
enough shares are available, the group encryp-
tion key is correctly reconstructed. Once the
group encryption key has been reconstructed,
the �les owned by the group become accessi-
ble. Each time a member decides to become
inactive, her share of the group encryption key
is removed. The TCFS module checks if the
number of shares available has gone under the
threshold. In this case, the group encryption
key is removed from the TCFS module and
�les owned by the group become unaccessible.
The current TCFS implementation of the

group sharing facility requires each member
to trust the kernel of the machine that re-
constructs the key to actually remove the key
once the number of active users goes below
the threshold. Future implementations will re-
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move this requirement by performing the re-
construction of the key in a distributed man-
ner.

4.2 Raw Key Management

Scheme

TCFS provides a simple interface for users ap-
plications to pass keys to the kernel which we
call the Raw Key Management Scheme (RKM,
in short). By using the RKM API, an applica-
tion can provide the key to the TCFS kernel.
Subsequently, the TCFS kernel will use the key
provided to perform encryptions and decryp-
tions. No check is performed by the TCFS
kernel on the key and the application has to
make sure that the right key is passed to the
kernel. The RKM scheme is not intended for
the end user but only as a basis on top of which
to build more sophisticated KM schemes.

4.3 The Basic Key Management

Scheme

This scheme allows users to generate their keys
and to store them in a database in encrypted
form using the login password as key. Thus,
TCFS users must not remember their mas-
ter key, but only their login password. To
bene�t of the BKMS a user must be regis-
tered with the key database (typically the �le
/etc/tcfspwdb) by the system administrator.
The usage of the BKM scheme follows the
phases below:

1. The system administrator registers a user
to the key database (Fig. 1) by issuing the
command tcfsadduser.

2. The user creates his master key by
running the tcfsgenkey command.
tcfsgenkey generates a random key,
encrypts it with the user's password, and
stores it in the entry of the key database
associated with the user.

3. When the user needs to access his en-
crypted �les, he must extract his mas-
ter key from the database (providing his
password), and give it to the TCFS layer.
This operation can be performed with the
tcfsputkey command(Fig. 2).

4. The user terminates his session by run-
ning the tcfsrmkey command which
erases the key from the kernel.

Setting up a TCFS group requires the follow-
ing steps:

1. The system administrator creates a nor-
mal UNIX group, then creates a TCFS
group by running the tcfsaddgroup com-
mand. This utility asks for the number of
group member, the threshold, the pass-
word, and the username of each member
of the new TCFS group. For each mem-
ber, a share is created, encrypted with
the password of the respective user and
then it is stored in the TCFS group keys
database (tcfsgpwdb).

2. To become active, a member of a TCFS
group pushes her share into the kernel.
This can be accomplished by executing
the command tcfsputkey with the -g

switch. Note that, user can get access
to shared �les only if the number of the
same group shares pushed to the kernel is
greater or equal to the group's threshold.

3. The tcfsrmkey -g command ends the
user's session.

The aim of the BKMS is to provide the user
with a simple to use management scheme. It
is not to be considered very secure as the user
master key is protected by the user login pass-
word that can be compromised in several ways.

4.4 The Kerberized Key Man-

agement Scheme

Kerberos is a distributed authentication ser-
vice developed in the late 80s at M.I.T. [17].
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root# tcfsadduser
Username to add to TCFS database: jack
Ok now jack has an empty entry in the key db

before to have his �rst TCFS session,
jack must run:

jack$ tcfsgenkey
Insert your password, please: give his login password
Press 10 random keys, please: ********** seed
Key succesfully generated. now jack's enty in the key db contains his

master key, ecrypted with his login password

whenever superuser must remove jack from
TCFS key database, he must run:

root# tcfsrmuser -u jack

Figure 1: Creating a TCFS user with the BKM Scheme

Kerberos requests as a trusted third-party au-
thority that provides authentication to all the
actors in a distributed environment. Kerberos
makes possible for a client and a server to au-
thenticate each other and to establish a pri-
vate communication channel. The Kerberized
Key Management(KKM) Scheme provides a
strong alternative to the BKM Scheme. We
introduce a new component: the TCFS key
server (TCFSKS) that maintains a database
of master keys. Clients (i.e., kerberized TCFS
utilities such as tcfsputkey, or TCFS-aware
applications) authenticate themselves on Ker-
beros, and obtaining a session key and a ticket,
send to TCFSKS the requests (for example:
get the user key or store a new key) over the
network. Administrative operations, such as
adding/removing users and group, can be per-
formed in the same way. Since no changes have
been made to the interface of front-end utili-
ties, an user does not feel any di�erence be-
tween Kerberized and Basic Key Management
procedures. The only substantial di�erence is
that now all Key Management operations are
performed over the network and thus several
TCFS clients can share the same TCFS key
database (in the BKMS the key db is local to

the client).
Communication among client and TCFSKS

follows these steps:

1. At the end of the Kerberos authentica-
tion, the client obtains the session key.

2. The client sends its request and its ticket
to the TCFSKS.

3. The server decrypts the message and
sends back the response and the ticket.

4. The client get the response and discards
the ticket.

5 Cryptographic Engine

TCFS does not employ a �xed encryption
scheme but for each �le a di�erent encryption
engine can be speci�ed. Encryption engines
need to conform to a speci�c interface and, in
the Linux implementation, can be kernel load-
able module. Modules for all the major en-
cryption scheme are provided with the imple-
mentations. Having modular encryption, al-
lows user to plug into TCFS its own encryp-
tion module for increased user security. Modu-
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jack$ tcfsputkey -m /mnt/tcfs Jack starts his session
Password: giving his login password

now, Jack can encrypt/decrypt and access
transparently to encrypted �les.

jack$ cd /mnt/tcfs
jack$ echo "Hello World!" > �rst the �le "�rst" is still in clear
jack$ tcfs
ag +X �rst toggles �rst's cryptographic 
ag

now it is stored encrypted
jack$ cat �rst all standard application can access
Hello World! encrypted �les

while Jack's key is available to the kernel

can be read,
jack$ cp �rst second copied and so on..

the �le "second" is stored in clear

jack$ tcfsrmkey -p /mnt/tcfs Jack removes his master key from the kernel
jack$ cat �rst
permission denied since the master key has been removed,

access to encrypted �les is not
allowed.

jack$ cat second
Hello World! second is still in clear, TCFS session

has no e�ect on clear �les

Figure 2: A simple TCFS session

lar encryption allows users and system admin-
istrator to pick their favorite block encryption
scheme. Thus, for this section we denote by
E(�; �) and D(�; �) the encryption and decryp-
tion algorithm associated with the encryption
scheme actually employed (see Figure 3). The
size of the block encrypted by the encryption
need not to be equal to the block size of the
�le. Each �le has a header that contains some
information about the �le itself (e.g., TCFS
version number, cipher id).

Each user A is associated with a master key
KA as described in Section 4. For each �le
f a �le key Kf is randomly chosen. The �le
key is encrypted using the master key of the
user and stored in the file-key �eld of the
header. Each block of a TCFS �le consists

of two parts: the data and the authentication
tag. Each block of an encrypted TCFS �le is
encrypted with the encryption algorithm E in
CBC mode using a di�erent block key. Block
of unencrypted TCFS �le are stored in clear.
The block key is computed by applying the
hash function to the concatenation of the �le
key and the block number. The authentication
tag of an authenticated TCFS �le is computed
by hashing the concatenation of the block data
and the block key. On the other hand, unau-
thenticated TCFS �les have an authentication
tag consisting of NULL bytes.
This way of encrypting and hashing the

blocks exhibits the following security charac-
teristics:

1. If a robust encryption scheme is used then
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encrypted �les cannot be read without
knowledge of the �le-key or of the user
master key.

2. Since each �le is encrypted using a dif-
ferent �le-key, it is not possible to check
whether two encrypted �les correspond to
the same cleartext.

3. Moreover, since each block is encrypted
using a di�erent block key, it is not pos-
sible to check whether two blocks of the
same �le correspond to the same cleart-
ext.

4. The authentication tag is to prevent that
data on the server is modi�ed. Obvi-
ously, since TCFS servers have physical
access to the �lesystem there is nothing
that could prevent the server from modi-
fying �les. Our goal is thus to guarantee
the user that no modi�cation will go un-
noticed. Our authentication mechanism
guarantees:

(a) Modi�cation of a block without re-
computing its authentication tag is
easily detected by the TCFS client.
However, recomputing the authenti-
cation tag of a block requires knowl-
edge of the block key which in turn
depends on the �le key which is en-
crypted using the user master key.

(b) Since each block authentication tag
also depends by the block o�set
without knowledge of the block key
it is not possible to insert foreign
blocks of data or to swap two blocks
of the same �les.

Moreover, since the authentication
tag depends also on the �le key, it
is not possible to import block from
other �les.

6 Implementations

TCFS is designed to work in kernel space as
an intermediate layer between the Virtual File
System (VFS) and the storage �le systems
(such as EXT2FS, UFS, NFS and so on). In
this way, user applications can perform all the
usual �le operations by means of system calls
interface, without being rewritten/recompiled.
Users can perform protection/encryption op-
erations with apposite utilities which interact
to the TCFS layer by the mount and ioctl

system calls.
The TCFS layer only touches application

data, and not �le system logical structures
(such as inodes, directory organization, etc.).
Hence, although protected �les result incom-
prehensible to the server's system adminis-
trator, all the disk maintenance tasks (check,
backup, recovery), can be performed as usual.
TCFS has been implemented on Linux, and

fNet,OpengBSD. The two versions are quite
di�erent, due to the di�erent characteristics
of the respective operating system.
All key management features (excepting

pushing/removing keys) have been imple-
mented at user level. To make easy the de-
velopment of tcfs-aware application, or fur-
ther key management schemes implementa-
tion, TCFS is provided of a development li-
brary that includes several functions which
allow to manage every aspects of interaction
among user and TCFS hiding any OS-speci�c
implementation details.

6.1 The Linux version

The Linux version of TCFS consists in an
extended NFS client with cryptographic fea-
tures; a remote NFS server acts as the storage
�le system.
The client host mounts the remote �lesys-

tem as a TCFS �lesystem (by means of a
patched version of mount). Client and server
communicate by means of NFS protocol. The
user provides the encryption key to the TCFS
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key (mk)
master

D

file header (fh)

file key

fk=D(mk,fh.file_key) Hash

block no. (bn)

bk=Hash(fk . bn)
block key key len

E

Hash
Hash(blk . bk)

. in clear (blk)
block data
1008 bytes

1024 bytes
block hash (e−blk)
encrypted block +

E(bk,blk)

Figure 3: Encryption of blocks in TCFS

client so to allow encryption and decryption of
�les. The TCFS server instead is a simple NFS
server: it needs not to know that the exported
�lesystem is indeed a TCFS �lesystem. This
has the advantage of making possible to use
TCFS on any host that runs an NFS server.

User-level applications passes keys and di-
rectives to TCFS by calling the system call
ioctl on the �lesystem's mount point; for this
pourpose, TCFS introduces some new ioctl

commands.

Since version 2.0, the Linux kernel features
Loadable Kernel Modules (LKM) (see [1] and
[11]). LKMs consist in some parts of the kernel
(usually device drivers or �lesystem switchs)
which can be loaded at runtime whenever they
are needed. Cryptographic services, in TCFS,
are implemented as kernel modules. Thus, ci-
phers can be selected at runtime by loading
the proper dynamic kernel module. Users can
choose di�erent ciphers to encrypt/decrypt
di�erent �les or directories. Each cipher mod-

ule is completely independent from the others
and it is possible to load, unload di�erent en-
gines or even to use simultaneousely several
cryptographic engines.

The Linux TCFS implementation allows to
have client and server running on the same
host. However, the communication between
the two takes place using the NFS protocol.
This has the drawback of slowing down the
communication.

6.2 The BSD version

An operating system based on 4.4BSD[10] pro-
vides to the kernel a generic interface to sev-
eral kinds of �le systems: the virtual-node (vn-
ode) layer. The vnode layer features an object-
oriented interface which abstracts the invoca-
tion to �lesystem-speci�c operations, imple-
mented at an underlying level. This makes
possible to mount and access di�erent kind
of �le system in the same way. 4.4BSD �le

10



system switch has been provided of a mech-
anism for stacking �lesystems on top of one
other (proposed by Rosenthal[12], and re�ned
by Heidemann and Popek[5]). The bottom of
a �lesystem stack is usually a storage �lesys-
tem (which directly interacts with the device
driver). The layers above, can implement on
their own any functions and/or redirect them
downstairs (with or without argument trans-
formations).
TCFS for BSD has been implemented as

a �le system layer. This approach presents
an important advantage: since the crypto-
graphic layer can be mounted upon any �lesys-
tem by mean of vnode interface, encryption
of local �lesystems (improving TCFS perfor-
mances on these ones) does not need the NFS
to introduce the cryptographic �le-operators.
Furthermore, TCFS for BSD has been devel-
oped by writing only those operators which
required the introduction of cryptographic ser-
vices whereas other calls have been redirected
to undelying �lesystems.
Users send their directives to TCFS by

updating the mount-point parameters. The
TCFS layer adds to the usual arguments of
the mount system call two new sets of data
that cointain directives and their arguments:

1. The data concerning the user's directive:
the command, the key, the key's owner,
etc.

2. A set of data which represents the status
of the �lesystem: number of active keys,
error codes, information about the cipher.

TCFS 
ags and optional attributes manage-
ment is performed by means of some ioctl

calls.

6.3 Process keys

The BSD implementation of TCFS makes pos-
sible to provide di�erent keys to di�erent pro-
cesses belonging to the same user. Thus users
can work with several keys simultaneously

and, moreover, he can setup batch jobs which
works on encrypted resources. User applica-
tions do not need to be rewritten/recompiled
and, the process keys management is com-
pletely transparent. To make easy to run ap-
plication with di�erent keys, we developed the
tcfsrun utility. This utility asks the user for
the process key, passes it to the kernel and
withdraws it when the user application ends.
All kinds of keys (user, group and process)
are managed independently, so, user can use
his masterkey and group-shares normally even
while any applications work with their own
key.

7 Performance

In this section we present the overall TCFS
performances analysis as a proof of concept.
We have employed a modi�ed version of the

Andrew benchmark [7]. The benchmark takes
as input a subtree containing the source code
of a UNIX application (in our case we used the
sources of the GNU make application). The
benchmark consists of �ve phases:

1. Directories creation: the source directory
hierarchy is reproduced several times into
a target directory on the tested �le sys-
tem.

2. File copy: all �les of the source directory
are recursively copied to a directory of the
target subtree.

3. Recursive directories stats: attributes of
each �le in the target subtree are recur-
sively scanned.

4. Recursive �les scan : recursive reading of
�les in the target subtree.

5. Compilation: �les on target subtree are
compiled and linked.

We have performed four suites of tests. The
�rst suite measured the performance of NFS.
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In the second suite of tests, we measured the
performance of TCFS on �les that are not en-
crypted. Thus, input/ouput is still performed
by TCFS but no encryption engine is invoked.
The last two suites deal with TCFS in which
encryptions is performed by the NULL module
(encryption using the indentity function) and
the 3DES module (encryption using Triple-
Des[16]). TCFS with the NULL module di�ers
from the second test suite as here an encryp-
tion engine, albeit a trivial one, is invoked.
All tests have been performed on a Pen-

tium II at 233MHz with 64Mb of memory.
We have performed two series of experiments.
In the �rst series the results obtained were
more in
uenced by the performance of write
operations as we had the the source tree on
a local �lesystem and the destination �les
on the remote �lesystem (TCFS with 3DES,
TCFS with Null, TCFS without encryption
and NFS). In the second series of experiments
we did the opposite: the source tree was on the
remote �lesystem and the destination �lesys-
tem was a local �lesystem. Thus, the measure-
ment were mainly a�ected by the performance
of a read operations.
The �gures reported are the average of 10

runs with the client and the server running on
the same machine so that network latency is
not an issue in the measurement.
As it is obvious from the experimental data,

reading is much faster than writing. This is
due to the fact that, unless a whole new block
is written, a write operation involves reading
a block, decrypting it, modifying it and re-
encrypting it. Moreover, TCFS does not per-
form very well at random accessing encrypted
�les. Since TCFS encrypts each block us-
ing CBC, reading one byte might involve de-
crypting a whole block considerably slowing
down the operation. This however does not
have to be considered an inherent limitation
of TCFS as it only depends on the speci�c
cryptographic engine employed. Much faster
random access can be obtained by encrypt-
ing in ECB (Electronic CodeBook) mode even

though in this case the con�dentiality of the
data is considerably weakened.

The overhead introduced by TCFS can be
seen by comparing the �rst column with the
second and the third column of Figure 4. As
it can be seen, TCFS NONE exhibits perfor-
mances very similar to NFS. More surprisingly,
TCFS NULL is much slower than NFS. This
is due to the folowing phenomenon. TCFS
forces the remote attribute checking before
each read/write operation whereas NFS does
not. We expect that removing this check
would have no impact on the security and keep
the performance of TCFS NULL test much
closer to NFS.

TCFS 3DES is the slowest of all and this
is mainly due to the time to perform encryp-
tion/decryption. Indeed the di�erence be-
tween TCFS 3DES and TCFS NULL is ex-
actly the overhead introduced by the crypto-
graphic engine. Reducing this gap calls for
a better cache management strategy, an issue
that at the moment has not been considered
yet. Also, we stress that when this test were
performed with client and \remote" �lesystem
residing on the same machine. On a loaded
Ethernet, the encryption/decryption overhead
is likely to be absorbed by the network latency.

We believe that TCFS still has room for im-
provement (we would like to see TCFS NULL
closer to TCFS NONE) but at the moment its
performances are acceptable.
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Exporting DATA to remote �lesystem
Phase NFS TCFS NONE TCFS NULL TCFS 3DES
Creating directories 0.109 0.178 0.648 0.698
Copying �les 1.385 2.777 9.047 15.924
Recursive directory stats 2.215 4.798 5.558 6.537
Scanning each �le 3.074 7.489 10.047 16.129
Compilation 36.802 57.791 1m3.874 1m27.929

Importing DATA from remote �lesystem
Phase NFS TCFS NONE TCFS NULL TCFS 3DES
Creating directories 0.052 0.065 0.081 0.093
Copying �les 0.282 1.545 2.548 5.462
Recursive directory stats 1.355 1.449 2.273 2.388
Scanning each �le 2.261 2.464 4.038 4.267
Compilation 34.634 36.653 35.448 48.364

Figure 4: Performance of the TCFS Linux implementation as measured with the Modi�ed
Andrew Benchmark
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