Decentralising Distributed
Systems Administration

Christine Hogan — Synopsys, Inc.
Aoife Cox — Lockheed-Martin, Inc.
Tim Hunter — Synopsys, Inc.

ABSTRACT

Nowadays, system administration most often involves maintaining a collection of
distributed, interoperating machines. The manner in which this task is carried out, however,
is usually more reminiscent of a centralised computing model, with a small number of
machines playing host to all of the critical system services, and constituting common failure
points for the entire distributed system.

In this paper, we argue that the adoption of a distributed approach to administration of
these systems is not only more natural, but can also be shown to have many practical benefits
for the system administrator. In particular, we show, by example, how distributed object
technology, as reflected in the CORBA (Common Object Request Broker Architecture)
standard, can be used to construct a distributed administration framework, tying together
services and servers on many different nodes, bringing some of the advantages of distributed

systems to the systems administrator.

Introduction

As we have progressed from the age of central-
ised computing to that of distributed computing, so
has the task of the systems administrator had to
evolve from maintaining a system with perhaps one
or two large servers to maintaining a large network
of smaller workstations, and a number of CPU and
disk servers. However the mode of operation used
by system administrators themselves still tends to be
that of the centralised model.

In many large sites there are one or two
machines on which the rest rely absolutely for a
number of services. For example, at Synopsys, a
single machine is the NIS master, the mail server, an
ntp time server, a boot server, the SecurlD server,
the console server, DNS master, NAC administrative
host, and runs pcnfsd. If something goes wrong with
this server it results in many and varying failures all
over the network. We believe that the primary rea-
son for the continued use of this centralised model
of administration is the lack of adequate software
support for decentralisation of the system administra-
tion task.

In this paper we examine the philosophies of
distributed computing [1] and, in particular, distri-
buted object technology [2] and see to what extent
they could be usefully applied in the development of
a systems administration toolkit. In particular, we
show how the infrastructure provided by a distri-
buted object technology, such as CORBA [3], could
be used to create a framework that ties together the
pieces of the existing system administrator’s toolset
to form a single decentralised distributed toolkit. In
addition, we relate our proposal to the ongoing

1995 LISA IX - September 17-22, 1995 — Monterey, CA

standards efforts, specifically the Object Manage-
ment Group’s proposals for the System Management
CORBAfacilities [4] in the set of Core Facilities for
CORBA-compliant platforms.

Background

In this section we introduce some terminology
that will be used in the paper and provide some
background on the research that is being performed
in the field of distributed object technology. Initially
we discuss each of the components, object technol-
ogy and distributed systems, separately, and then
examine the area that combines the two.

Object Technology

In object technology an object is frequently
defined as a representation of a real-world entity,
which has state, behaviour and identity. For exam-
ple, an object could be used to represent a user. The
structure of an object is generally specified using
classes, where a class can be viewed as a template
for a set of objects having a number of characteris-
tics in common. A class will define the data that
determines the state held by an object of that class,
together with the operations that can be performed
on that data.

There are many advantages in, and motivations
for, using object technology as a systems modeling
paradigm [5]. It offers a more natural way to model
real-world problems through describing the
behaviour of each entity in the system and the
interactions between those entities.

Object-oriented design paradigms encourage
modularity of code. Encapsulation of internal data

139

Decentralising Distributed Systems Administration

structures into objects provides the separation of
interface and function from implementation, making
code more maintainable and easier to enhance.
Modularity and encapsulation also yield flexibility
and extensibility due to the design and development
of independent modules that are combined together
to solve a problem. Object-oriented design allows
for incremental growth of a system without major
re-design, through the modularity and composibility
of the components, and the ability to extend the
components and the services provided by a class
through the use of inheritance and polymorphism.
System administration tools can also benefit from
these features of object-orientation.

Distributed Systems

In this paper, when we refer to a distributed
system, we mean a collection of loosely coupled
processors, such as a network of workstations [1].
Some of the key advantages of distributed systems
are that they provide the potential for incremental
growth, load balancing, fault tolerance, high availa-
bility and reliability through replication of services.
Other advantages of distributed systems include
resource sharing, and new possibilities in the area of
Computer Supported Co-operative Work (CSCW).

Incremental growth means that as new technol-
ogy and machines become available, they can be
added to the network, and obsolete machines can be
removed, without any great difficulty.

With a distributed system it is also possible to
distribute the load of service providing among a
number of machines, spreading the load between
them, and not relying on a single overloaded server.
Load-balancing in this way also facilitates the
replacement of servers with newer, faster machines,
since only one or two services need to be rolled over
to the new machine, rather than five or more. The
use of a distributed system makes the maintenance
of a set of distributed servers and the roll-over pro-

Hogan, Cox, & Hunter

Some system services, such NIS [6] and DNS
[7] already implement replication for the reasons that
were mentioned above. However, the replication is
built into each of them separately. They neither pro-
vide nor use an infrastructure which a system
administrator can conveniently utilise in order to
implement replication of other services.

Distributed systems also introduce problems of
their own, however, such as latency, security and the
traditional lack of software. Latency is inherent in
the nature of a loosely-coupled distributed system.
No networking hardware today is as fast as a bus
connecting two processors. Security issues include
authenticating access from remote machines [8] and
other people on the network eavesdropping on poten-
tially sensitive data [9]. There is a lot of research
being performed in the area of security, and some
distributed systems, such as OSF’s Distributed Com-
puting Environment (DCE) [10], have very strong
network security [11]. Similarly, there has been
considerable research in the area of distributed
operating systems over the past years, and the pro-
ducts that have traditionally been available do not
particularly simplify the task of distributed program-
ming. The lack of software to simplify the task of
distributed programming is a well recognised prob-
lem [12]. One of the most essential services that a
distributed system can supply is a location service
[13]. A location service can be used by server pro-
grams to advertise themselves, and by client pro-
grams to locate the services that they require.

Recent advances in application-level software
have mainly been in the area of distributed object
technology, which is reaching maturity and accep-
tance with the release of the CORBA 2 standard and
the development of the common facilities (COR-
BAfacilities) architecture [4]. Implementations of
the CORBA standard are among the first distributed
programming solutions that provide a programming
interface at a high enough level to be useful.

¥

o

b
I-ﬂ.%.:

.

R

4 [
ik

]

—

0
1]

[]
]

83

Networked Machine
Network
Server process
[Client process
@) Server object

Figure 1: A distributed object support system

140

1995 LISA IX — September 17-22, 1995 — Monterey, CA

Hogan, Cox, & Hunter

Distributed Object Technology

In this section we introduce the concepts
behind and motivation for distributed object technol-
ogy. We also mention the ways in which distributed
systems and object technology have been combined
in CORBA [3] and the Object-Oriented Distributed
Computing Environment (OODCE) [14]. Figure 1
illustrates a distributed object-support system. Com-
munication occurs between a client and zero or more
servers, by way of object invocations. The servers
with which a client communicates can reside on the
same machine as the client, or a remote machine.
With standard object-oriented languages, all of the
objects must reside in the same address space to be
able to access each other. A distributed object sup-
port system, such as those defined by the CORBA
standard, provides either an interface definition
language or language extensions that support the
notion of distributed objects. Object can be anything
from fine-grained language-level objects, to
processes, to physical components of the system,
such as printers. Objects should be uniformly acces-
sible by any component of the distributed system in
a transparent, location-independent manner.

In the section on distributed systems, we
described how services could be distributed
throughout the network using standard distributed
systems technologies like DNS [7] and NIS [6]. We
noted that a location service could provide a more
flexible environment. Standard distributed systems
architectures also lack the advantages inherent in the
use of object technology, as outlined in the section
‘‘Object Technology’’. A distributed object support
system, such as a CORBA-compliant system, com-
bines the advantages of object technology with a dis-
tributed environment. It also provides the flexibility
of a location service.

CORBA

In this section we provide a brief introduction
to CORBA. Initially we describe the evolution of
CORBA, and then provide an architectural overview.
Finally, we briefly answer the questions of language
support and availability.

Evolution

A number of different companies produced
software to aid in application interworking, such as
Sun’s Tooltalk, Microsoft’s OLE and Hewlett-
Packard’s SoftBench. In an effort to create a stan-
dard in high level application interworking, including
across multiple platforms and network architectures,
the Object Management Group (OMG) was formed,
and produced the Common Object Request Broker
Architecture (CORBA) specifications [3]. The
CORBA specifications describe a messaging facility
for a distributed object environment: a mechanism
whereby each object in the environment has a stan-
dard way of invoking services of other objects in
that environment.

1995 LISA IX - September 17-22, 1995 — Monterey, CA

Decentralising Distributed Systems Administration

Architectural Overview

The CORBA architecture, as specified by the
OMG, is comprised of three main elements. These
elements are an Object Request Broker (ORB), an
Interface Definition Language (IDL), and a Dynamic
Invocation Interface (DII).

The Object Request Broker (ORB) is a funda-
mental service that enables messaging between
objects in centralised or distributed systems. The
ORB handles the details of all communications
between clients and servers, irrespective of the
language in which they are written, or the platform
on which they reside. Conceptually, the ORB han-
dles the passing of requests from a client to a server
and passing the results back.! The Interface
Definition Language (IDL) is used to specify the
interface to a given object. If a client has a handle
to an object and knows the IDL interface that the
object supports, the client can invoke a method on
that object through the ORB. This form of invoca-
tion uses the object’s static invocation interface.

The Dynamic Invocation Interface (DII) is used
where the client does not know the interface to a
server object in advance. The DI can be used to
formulate requests at runtime. A server object will
not be aware that an incoming request was per-
formed using the dynamic interface, rather than the
static one.

Given this specification a number of implemen-
tations of the CORBA standard, and in particular the
ORB, are possible. For example, Orbix, from Iona
Technologies, implements the ORB through three
components. These components are a client library,
a server library and an Orbix daemon (orbixd).
This implementation is discussed in more detail in
the section ‘‘Using CORBA’’. An alternative imple-
mentation might not have a daemon process, but
rather implement everything in the client and server
libraries.

Languages

The IDL interface definitions are compiled into
a high-level language like C or C++. Other
language options are available, but their availability
depends on the CORBA implementation that you are
using. There is not, to the authors’ knowledge, an
IDL to Perl compiler available, nor any compiler
that will translate IDL into a high-level scripting
language, such as those that are commonly used by
system administrators.

However, scripts that implement the task that
the system administrator wishes to incorporate into a
distributed architecture, based on CORBA, can be
called from the C++, or equivalent, wrappers.

IThe handling of message passing may be implemented
in separate client and server libraries, but conceptually this
functionality is in the ORB.

141

Decentralising Distributed Systems Administration

Invoking the scripts in this manner is the way in
which we envisage the CORBA architecture being
utilised in the development of system administration
tools.

Availability

There are a number of different implementa-
tions of the CORBA specifications commercially
available. These packages include Orbix from Iona
Technologies, ObjectBroker from Digital Equipment
Corporation, and DOE from SunSoft. All examples
and implementation-dependent details in this paper
are based on Orbix.

To the authors’ knowledge, there are currently
no free implementations of CORBA on Unix.

Application to System Administration

In this section we address the practicalities of
how we can utilise the infrastructure provided by
CORBA to do the hard work of distribution. We
describe how you can link existing programs or
scripts into this infrastructure, with the gains being
simplicity, ease of operation, flexibility, and the
potential for higher reliability and availability.

Simplicity and ease of operation are due 1o
being able to run the front-end client code on any
machine, irrespective of the machine, or machines,
on which the server code is run. Thus all of the
tasks that are linked into the infrastructure provided
by CORBA can be accomplished without having to
log in to the servers themselves. This architecture
also provides the flexibility to move services without

Hogan, Cox, & Hunter

located by the CORBA location service, tran-
sparently, at run-time. Higher reliability and availa-
bility can be achieved through distribution of ser-
vices over a greater number of machines, and
through the potential for duplication of services.

Using CORBA

To develop a CORBA-based application, using,
for example, the Orbix software described previ-
ously, requires development of client and server pro-
grams. Machines that are going to host your Orbix
servers must be running an instance of the Orbix
daemon. Servers are registered with the daemon.
This registration communicates the presence of the
server, and the command line parameters needed to
launch it, to the daemon. At this point client appli-
cations can access the server by getting a handle to
it through the location service.

Server Implementation

A server interface is written in IDL. Some
sample IDL code is provided in Appendix 1. Skele-
ton C++ classes corresponding to the IDL
interface(s) are then generated using the IDL com-
piler that is supplied with the product. The
developer then supplies the method bodies for each
method in the interface. This process is depicted in
Figure 2.

The top-level routine of the server (i.e.,
main()) creates objects as required, and notifies
the Orbix daemon that it is ready to receive incom-
ing requests. The daemon listens for incoming
requests for any of its servers and launches the

having to alter the client code at all. The service is appropriate server. The server executes the
Server
library
IDL Compiler Developer make
IDL C++ Server Server
Specifications ———» | Classes — | code P program
Figure 2: The development process from IDL to server program
e ™\ 4 N
Invocation
from client Launch| O O
- - O
Read O
Client - Y @)
process Orbix Server
daemon process
Results of invocation

— / .

Client machine

Server machine

Figure 3: Launching a server

142 1995 LISA IX - September 17-22, 1995 — Monterey, CA

Hogan, Cox, & Hunter

invocation request and passes the results back to the
client. This process is depicted in Figure 3. The
Orbix daemon acts in a similar manner to the port-
mapper here. Note that when a server registers
itself, it registers a name for itself that the client can
use when it is trying to locate an object provided by
that server, and that a single server can register more
than one object. Servers can also choose one of two
different invocation methods. One of these invoca-
tion methods is to have a single instance of the
server handle all incoming invocation requests. The
other form of invocation of the server involves an
instance of the server being created for each incom-
ing method invocation, so that they are handled in
parallel in different processes. This decision is
made by the server when it registers itself the Orbix
daemon.

The server is linked with a server library that
implements the communication between the server
and the daemon, including this notification of readi-
ness. The server library also implements the com-
munications between the server and its clients. This
communication is over TCP/IP with XDR encoding.

Client Implementation

A client is linked with the client library, which
handles all communication between the client and
server, and between the client and the daemons.
The initial communication performed by a client
involves locating the server objects with which it
wants to interact. Server location is performed
through the Orbix bind operation. Some sample
client code is provided in Appendix 1.

When a client calls bind it supplies a number
of arguments to tell the ORB what kind of server
object it is looking for. For example, the client can
specify the name of the server process, the server
object name, the interface that the object provides
and the machine on which the server should reside.
In other words, the client can choose to bind 1o a
specific object associated with a named server on a
particular host. If the client either doesn’t know, or
doesn’t care about the host on which a server
resides, it can specify the server name and the object
interface. Equally, the client can omit the server
name. If the host name is left unspecified, Orbix
consults a number of its configuration files. These
configuration files specify what hosts have daemons
running, and the order in which to check them to
find an object supporting the specified interface.

Once a client has successfully bound to a
server object, it can perform method invocations on
that object as if the object was in the client’s own
local address space. The client actually has a proxy
[15] object in its address space, that represents the
remote object, and provides the same interface as the
remote object. Invocations on this object are tran-
sparently passed to the remote object in the remote

server process. The library software takes care of

1995 LISA IX - September 17-22, 1995 — Monterey, CA

Decentralising Distributed Systems Administration

the details of passing the invocation parameters to
the server and returning the results back to the
client.

Simple Operations

If the program, or script, that you want to link
in to CORBA is a simple program that is supplied a
series of arguments, and runs to completion, with
perhaps some output along the way, then linking it
into a CORBA system is simple.

The implementation involves writing a server
that calls the script with the arguments that are sup-
plied to the method call. The client program would
pass the arguments that are supplied on the com-
mand line as arguments to the method call on the
remote server object. In this simple case, there is
little gained by using CORBA rather than rsh,
except the ability to move the server transparently to
the application, and the ability to provide backup
servers that will transparently get called in the
absence of the primary server.

Complex Operations

A complex operation is one that involves
several servers on a number of different machines.
An example of a complex operation is the creation
of a new account.

In Synopsys, Human Resources generate an
incoming form for each new hire that tells each of
the departments the information they need to prepare
for the new hire. In particular, we in Network and
Computing Services (NCS), get the information
necessary to create the account and to order and
install equipment. The account creation is
automated through a Perl script that retrieves and
parses the incoming form.

At the moment, this script must be run on the
overloaded server mentioned in the Introduction, for
a variety of reasons, including our trust model. The
script goes through a series of steps. The incoming
notification, with all the details, has to be retrieved
from one server. An entry for the new user needs to
be created in the NIS maps on the NIS master. A
home directory must be created for the user on what-
ever server is appropriate for their group. They will
need to be added to a variety of email lists, which
may involve a series of files on different machines.
Also, there may be some special requirements, such
as a system administrator being added into the call
tracking system, or access to a database, which
requires an account on another machine.

To implement a complex operation, such as the
one described above, under CORBA, there is a
server process on each of the machines that can be
involved in the operation. Thus there would be a
server process on each of the home directory servers,
on the NAC administrative host, on the NIS master,
on the database machine, on the machine that con-
wrols the call tracking system, on the machines that

143

Decentralising Distributed Systems Administration

house email lists that may need changing, and on the
machine that supplies the incoming forms.

The servers should each represent one logical
service. If, for example, NIS and the call tracking
system reside on the same machine, they should be
implemented as two separate server objects on the
same machine, to facilitate moving one of the ser-
vices to another machine. There may be more than
one server on a single machine for a given complex
operation. The client will then bind to each server
object that it needs, and can invoke the operations in
the appropriate order, independent of where the
servers reside.

Implementing an operation like the one
described above under CORBA would be advanta-
geous in our environment, because it would obviate
the need to run a large, complex script on an over-
loaded server. Each component of the script would
be run on the relevant machine, and the script would
not have to be changed if any of the services are
migrated around the system. Nor would service
migration necessitate a change in our trust model.

Interactive Scripts

Interactive scripts present a greater challenge,
because a series of interactions between the client
and the server side need to happen, with information
being passed in both directions. In CORBA, com-
munication between the client and server takes place
when the client invokes a method on a server object,
or the server returns the results of a method invoca-
tion to the client.

Thus to implement an interactive script within
CORBA, the client needs to be more complex than a
simple call, or a series of simple calls to remote ser-
vices. Separate operations that return results must
be identified, and implemented as remote method
calls. The client contains the logic and the interac-
tion. Thus interactive scripts require a greater re-
design than non-interactive ones to be incorporated
into a distributed architecture.

Caveats

In this section we discuss two caveats in the
use of an infrastructure of this kind to provide sys-
tem administration facilities. The first of these
caveats relates to the use of persistent object support
when implementing a system administration task.
The other caveat relates to security issues involved
with providing servers that perform system adminis-
tration tasks in response to requests from the net-
work.

Persistence

Many distributed object support platforms pro-
vide persistent object support [16] [17]. A persistent
object is one that has a lifetime beyond that of the
programs that access it. In these systems,
application-level objects can be stored in persistent

144

Hogan, Cox, & Hunter

store, such as on a disk, when not in use and thus
maintain their state between invocations of an appli-
cation. They also survive system restarts. Per-
sistence is not a fundamental component of distri-
buted object support, nor of CORBA, but it can be a
useful feature for many applications. It may also
superficially appear to be useful for system adminis-
tration applications.

For example, the system could keep a persistent
database of what account(s), if any, each person had
on each machine in the distributed system, along
with all other electronic resources that the individual
used, including mailing lists, call tracking systems
and database access. This information would be
stored in the persistent object associated with that
individual. When the ‘‘remove user’” method was
invoked on that persistent object, all the information
would be immediately available, which would make
it simple to write the script to perform the deletion.

However, we believe that it would be a mistake
to use persistence to store system state. Consider
what happens when the state of the system is
modified either manually, or by a program or script
that does not update the persistent state of the
objects that represent the altered system state.
Worse still is a scenario in which the persistent state
of an object gets corrupted, but is still used to deter-
mine the behaviour of the machine in some way.

We came to the conclusion that it must be pos-
sible to fix the state of the persistent store so that it
reflects the state of the standard system files. It
should also be possible to do this without rebooting
the machine, since the introduction of a new technol-
ogy should not detrimentally affect the availability
of the system as a whole. Thus it must be possible
to re-initialise the persistent state of the distributed
object system at any time from the system files.
Given the need for that feature, and the possibility
for conflicting updates due to the state of the files
being changed without a corresponding change in the
persistent state, we came to the conclusion that per-
sistence was not useful for this application. We also
felt that it introduced extra points of failure into the
system, and thus was not only not useful, it would
be a mistake to employ persistence.

Security

The standard mode of operation of Orbix, and,
we believe, the other implementations of CORBA, is
not especially secure. If the Orbix daemon is not
run as root, all the servers are clearly launched with
the same user ID as the Orbix daemon. In this case,
the system administration utilities cannot operate. If
the Orbix daemon is running as root, the daemon
tries to launch a server with the user ID of the
remote user, if that user exists on the system on
which the server is to be run. The user ID of the
remote user is passed with the invocation request by
the client library. The security implications of the

1995 LISA IX - September 17-22, 1995 - Monterey, CA

Hogan, Cox, & Hunter

server naively believing information that comes in,
unauthenticated, off the network are obvious.

There are hooks for applying filters, including
an authentication filter, to servers on a case by case
basis. This authentication filter could require some
form of strong authentication before allowing a
server to be invoked. However, the overhead of
implementing such authentication may be sufficiently
large that it outweighs any advantages of implement-
ing the service over CORBA. Further work is being
performed in the area of security, including the pro-
vision of standard security services within the frame-
work of the CORBAfacilities, but it remains to be
seen what these will provide.

Related Work

The Object Request Broker, as defined by the
OMG, forms a part of an overall Object Manage-
ment Architecture (OMA), which specifies a model
for constructing distributed object applications. The
ORB is the key communications element of the
architecture. The architecture, in addition, defined
CORBAservices (formerly known as Common
Object Services) and CORBAfacilities [4] (formerly
called Common Facilities).

CORBAservices specify standard interfaces to
basic functions commonly required in building (dis-
tributed) applications. These basic services include
object naming, event notification and transactions.
CORBATfacilities specify standard interfaces to func-
tions that are required for building applications both
in specific domains and across domains. CORBAfa-
cilities include a proposal for a system management
facility. The CORBAfacilities for system manage-
ment will comprise a set of IDL interfaces, and
hence a standardised collection of servers providing
system management functionality. Guidelines for
possible facilities have been outlined by the OMG.
However, the actual interfaces for most facilities,
including those proposed for system management
have not yet been specified.

QOur work does not advocate any standard set of
facilities or interfaces. In this paper we merely out-
lined how we believe the infrastructure provided by
CORBA can be utilised as framework for providing
distribution for existing administrative scripts and
tools.

Conclusions

The infrastructure provided by a CORBA-
compliant systems is potentially useful for building a
decentralised system administration toolset. How-
ever, in the absence of an IDL to Perl? compiler, it
is unlikely to become a tool that is regularly
employed by system administrators. Equally, we
would expect the system administration community

20r other scripting language.

1995 LISA IX ~ September 17-22, 1995 — Mouterey, CA

Decentralising Distributed Systems Administration

to have reservations about using it, unless the secu-
rity issues are resolved, or the administrators indivi-
dually take the view that it’s not that much worse
than running NIS.

However, we do believe that the architecture
has potential, and that it may be something that is
worth watching for in the future. In particular the
proposed CORBA security services offer interesting
potential for deploying a standard security system
across all pertinent applications in an environment.
Implementations of these security services, when
available, will offer convenient access to the build-
ing blocks of security for applications developers
and system administrators alike. We believe that the
availability of these tools will help promote elec-
tronic security.

Acknowledgments

Paul E. provided encouragement, advice and
practical help from day one, right through to the end,
and for that, and for his tolerance we thank him.
Paul A. also deserves a special mention for advice,
and a push in the right direction at a crucial time,
along with much needed encouragement. Our many
proof-readers, and Jeff in particular, were of enor-
mous help in straightening the paper out - our thanks
to Beth, Arnold, Ted, Dave and Laura for their help.

Author Information

Christine Hogan is the security officer at
Synopsys, Inc., in Mountain View, California. She
holds a B.A. in Mathematics and an M.Sc. in Com-
puter Science, in the area of Distributed Systems,
from Trinity College Dublin, Ireland. She has
worked as a system administrator for six years, pri-
marily in Ireland and Italy. She can be reached via
electronic mail as chogan@maths.tcd.ie .

Aoife Cox is a research scientist at the
Lockheed Martin Artificial Intelligence Center in
Palo Alto, California, where she leads the object
management infrastructure team on Simulation
Based Design (SBD) - a major ARPA project aimed
at supporting distributed concurrent engineering.
She holds B.A. and M.Sc. degrees in Computer Sci-
ence from Trinity College Dublin, Ireland, where she
spent a number of years working with the Distri-
buted Systems Group in the Computer Science
Department. Her research interests include distri-
buted computing, software reusability and concurrent
engineering. She can be reached via electronic mail
as acox(@maths.tcd.ie .

Tim Hunter is a systems administrator at
Synopsys, Inc. His current focus is on remote sys-
tems administration. He previously worked as a
sysadmin for, and received his degree in Electrical
and Computer Engineering from, the University of
Colorado at Boulder. He can be reached via elec-
tronic mail at tim@synopsys.com .

145

Decentralising Distributed Systems Administration

[1] G.F. Coulouris and J. Dollimore. Distributed
Systems Concepts and Design. Addison-
Wesley, 1988.

[2] Rodger Lea and James Weightman. Supporting
Object-Oriented Languages in a Distributed
Environment: The COOL Approach. In
Proceedings of the Technology of Object
Oriented Languages and Systems Conference,
July 1991.

(3] OMG. Common Object Request Broker Archi-
tecture. Technical Report OMG Document
93.12.43, rev 1.2, Object Management Group,
Inc., December 1993.

[4] OMG. Common Facilities Architecture.
Technical Report OMG Document 95.1.2, rev
4.0, Object Management Group, Inc., January
1995.

[5] Bertrand Meyer. Object Oriented Software
Construction. Prentice Hall, 1991.

[6] Hal Stern. Managing NFS and NIS. Nutshell.
O’Reilly and Associates, Inc., 1991.

[7] Paul Albitz and Cricket Liu. DNS and BIND.
Nutshell. O’Reilly and Associates, Inc., 1992.

[8] Aviel D. Rubin. Independent One-Time Pass-
words. In Proceedings of the 5th UNIX Secu-
rity Symposium. USENIX, June 1995.

[9] Matt Blaze and Steven M. Bellovin. Session-
Layer Encryption. In Proceedings of the 5Sth
UNIX Security Symposium. USENIX, June
199s.

[10] Open Software Foundation. Introduction to
DCE, 1991. Part of licensed DCE documenta-
tion.

[11] Rich Salz. Dce. Bay LISA, April 1995. This
is the 2nd edition of his LISA VIII talk.

[12] Andrew S. Tanenbaum. Modern Operating Sys-
tems. Prentice Hall, 1992.

[13] Aoife Cox. An Exploration of the Application
of Software Reuse Techniques to the Location
of Services in a Distributed Computing
Environment. Master’s thesis, Distributed Sys-
tems Group, Dept. of Computer Science,
University of Dublin, Trinity College, Sep-
tember 1994.

[14] John Dilley. OODCE: A C++ Framework for
the OSF Distributed Computing Environment.
Technical report, Hewlett-Packard Laboratories,
1994,

[15] Marc Shapiro. Structure and Encapsulation in
Distributed Systems: the Proxy Principle. In
Proceedings of the 6th International Confer-
ence on Distributed Computing Systems, May
1986.

[16] Vinny Cahill, Sein Baker, Gradimir Starovic,
and Chris Horn. Generic Runtime Support for
Distributed Persistent Programming. In
OOPSLA (Object-Oriented Programming Sys-

146

Hogan, Cox, & Hunter

tems, Languages and Applications) 93 Confer-
ence Proceedings, 1993.

[17] Roy H. Campbell and Peter W. Madany. Con-
siderations of Persistence and Security in
Choices, an Object-Oriented Operating System.
In Proceedings of the International Workshop
on Computer Architectures to Support Security
and Persistence of Information, May 1990.

Appendix: IDL Definitions and Client Code
-—--- user_accounts.idl ----

//
// This file describes the classes
// associated with user accounts
//
module User_ Accounts ({
//
// If an exception is raised we use
// this class to return the reason
//
exception reject {
// The exception data
String reason;
}i
//
// This is the interface to the home
// directory class, with its visible
// attributes
//
interface Home {
attribute String path;
attribute long uid;
attribute long gid;
// The method -~ create home dir
void initialise() raises(reject);

}i

//

// Described the interface to the
// User class - operations and

// visible attributes

//

interface User {
attribute long uid;
attribute long gid;
attribute String username;
attribute String shell;
attribute String gecos;
attribute Home home;

void initialise() raises(reject);
void remove() raises(reject);
void disable() raises(reject);
void reactivate() raises(reject);

// Interface to the SystemUser class.

// It’'s a specialised case of the User
// class. Only the SystemUser object

// itself can modify the real user

1995 LISA IX - September 17-22, 1995 ~ Monterey, CA

Hogan, Cox, & Hunter

// attribute - clients can’t

//

interface SystemUser User {
// Inherits the interface from
// User and adds one read-only
// attribute to that interface.
readonly attribute User

real user;

//
// Interface to the UserDatabase cla
// An instance represents the passwd

file. Operations are called on
an instance of this class by User
objects to get the passwd file
modified. Some User objects may
call it twice - e.g. SystemUser
objects, to disable privileged
and unprivileged accounts, for
example.

interface UserDbase ({

readonly attribute String
passwd_file;

attribute String
default_encrypted passwd;

// Re-read the passwd file

void reinitialise()
raises(reject);

// Disable an account

void disable(in String username)
raises{(reject);

// Reactivate disabled account

void reactivate(in String
username) raises(reject);

// Delete a user entirely

void remove(in String username)
raises(reject);

// Add a new user

void add(in User user)
raises(reject);

}i
}i
-—--- client.cc ----

// This program runs on the client and
// requests the server to perform
// operations on a UserDatabase object.

#include <user accounts.hh>

main()
{
User Accounts::UserDbase *user_db;
//
// This is where the bind magic happens

Bind to a server object that has the
UserDbase class interface from the
User Accounts module, that lives in a
server called ‘‘user database_ server’

1995 LISA IX — September 17-22, 1995 - Monterey, CA

Decentralising Distributed Systems Administration

// on any machine.

//
user_db =
User_Accounts::UserDbase::_bind(
‘‘:user_database _server’’);
/7
// Standard C++ exception-handling
// syntax. TRY something, and CATCH the
// exceptions.
/!
ss TRY {
}
NONE {
}
CATCH(UserAccounts: :reject,
rej_except) {
cout << ‘‘reason: ‘'’
<< rej_ except->reason
<< ‘‘==>[ignored: n)<=='"';
}
CATCHANY {
}
ENDTRY
¥
147

