i

The following paper was originally presented at the
Seventh System Administration Conference (LISA '93)
Monterey, California, November, 1993

Local Disk Depot - Customizing
the Software Environment

Walter C. Wong
Carnegie Méllon University

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Local Disk Depot — Customizing
the Software Environment

Walter C. Wong — Carnegie Mellon University

ABSTRACT

The depot model, developed at Carnegie Mellon University, provides a method for
managing third-party and locally developed software. depot Uses an object-oriented approach
to managing software; each software package is managed as one or more logical objects. Yet,
from the perspective of a user, the multiple ** software objects’’ appear as a single, integrated,
software environment.

Local disk depot (1dd) is an extension to the depot framework. 1dd facilitates the
management of environments that ‘‘inherit’’ software from the ‘‘master’’ software
environments. The inherited software environment is formed by taking software and
configuration information from the master software environments, and integrating that with
local software and configuration information. The most common use of 1dd is to have an
inherited environment on the local disk of a workstation. This alows the workstation
administrator to locally cache software in order to improve performance and availability of
critical software in the event of server or network failure.

The inherited environments, however, can be used for more than saving local copies of
remote software. Workstation administrators can introduce customizations to the software
environment, as well as add additional software, even from other software environments.
Developers can easily test new or updated applications on their own machines in an

environment that is otherwise identical to the released environment.

Introduction

The software release management model
currently in use by the Andrew system at Carnegie
Mellon University is designed around a tool called
depot[Coly92B]. In the depot model, each com-
ponent of a software environment is separated into
logically managed software objects called collec-
tions. An example of a software environment would
be /usr/local, and a sample collection would be
all the files and directories that make up the applica-
tion gnu-emacs.

There is a separate directory for each collec-
tion. Each of these directories contain the files and
directories that make up the collection. The organi-
zation of these files and directories reflect how the
application should look when exported to the
environment. For example, the info files for gnu-
emacs would be stored in the info directory of the
gnu-emacs collection. Similarly, the binary for
gnu-emacs Wwould be in the bin directory, the
library filesin 1ib, etc.

The separation of software objects is primarily
for administrative purposes. The users do not see
separate pieces of software, rather they see the union
of al the individua software objects, the software
environment. Thus, even though the binary for gnu-
emacs iS located in a separate directory from the
x11 collection, the users would dtill access the
gnu-emacs binary in the environment's bin

1993 LISA — November 1-5, 1993 — Monterey, CA

directory, such as, /usr/local/bin, aong with the
x11 executables, and all the other executables in the
environment.

Up until very recently, the software environ-
ments supported by the Andrew system were
exported to client workstations via AFs, a distributed
file system [Saty85]. The /usr/local path was
just a symbolic link to the AFs path where the
software was stored and managed. The most obvious
benefit of this scheme was central maintenance of
the software environments. The administrative bur-
den of software instalation, customization, and
maintenance was removed from the local worksta-
tion owner. Local hard drive space was expensive
and it was more cost effective to buy larger hard
drives and place them on the servers. Finaly, there
wasn’t that much software available for UNIX sys-
tems.

Today, the administrative issue is till a strong
argument for central maintenance of software. How-
ever, disk space is cheap, and there are also many
compelling reasons to move software to a local
workstation’s disk:

e Local is faster than remote. Even with AFs, a
caching distributed file system, file access is
much faster locally than from the distributed
file system, even if the application is aready
cached [Stol92]. Additionally, the fileserver
and network are shared resources so your

49

Local Disk Depot — Customizing the Software Environment Wong

workstation is competing with al the other
workstations using those resources.

® Local has greater availability. In the case
where the applications resides on the local
workstation, the only fault that can prevent
software from being accessible is a failure on
the local machine (assuming there are no
license server or other similar dependencies).
However, when using a distributed file sys-
tem, not only will a local problem stop you
from getting to the software, you are now also
susceptible to network problems as well as
any problems that may occur on the servers
you are using.

e Local allows customization. Software that is
centrally maintained limits the options the
local workstation owner has in customizing
and configuring it to suit his needs. This does
not have to be the case, but as the user to
administrator ratio keeps increasing, there is
even less time that an administrator can allo-
cate to do something specifically for one user
or one machine.

depot, by itself, has the ability to create a
software environment on the local disk, based on a
software environment on a distributed file system.
What depot lacks the ability to merge local custom-
izations with those from the central services. Thisis
where local disk depot (1dd) comes in. 1dd alows
centra maintenance of the software environment to
co-exist with local configurations of the software
environment. In this manner, new software can be
introduced to the system, current software updated,
and old software removed by the central services
without direct intervention from the workstation
administrator. Furthermore, any configuration options
set by the local administrator will remain in effect
throughout any of the central changes.

Implementation

The implementation of loca disk depot,
comprises of three parts. The first is a preprocessor.
The second is the directory layout, or tree structure,
of the software environment. The final component is
a simple shell script wrapper that provides a simple
interface to updating the environment.

Rather than making depot a ‘‘kitchen sink’’
type tool, we have another program to perform the
preprocessing tasks. The preprocessor, dpp, takes
the loca environment configuration file,
custom.depot .proto, runs it through a macro
preprocessor, mpp, Which expands al the variables
and incorporates al of the specified library files.
Then, dpp merges the configuration information
from all the given environments produces and pro-
duces custom.depot, the configuration file used by
depot. For example, a minimal
custom.depot.proto for the /usr/local
environment, would contain the following lines:

50

$include /afs/andrew.cmu.edu/wsadmin/depot/src/depot.include

* . searchpath: ${local}

The $include directive is an mpp command which
incorporates the centrally maintained customization
information, including the definitions of various vari-
ables. For example, ${1ocal} gets trandated to the
proper AFS path for each supported architecture. On
a DECdation using the default released software,
${local} expands to the path
/afs/andrew.cmu.edu/pmax_ul4/local/depot.
The *.searchpath line is normally used by depot
to locate the software collections that will be
integrated into the environment. dpp aso uses this
option to locate and include configuration informa-
tion. In the event that multiple searchpath elements
are given, the custom.depot.proto has pre-
cedence for configuration information, and then the
precedence depends on the order in which the sear-
chpaths are listed. The earlier on the searchpath
list, the higher the precedence.

The second component is the tree structure.
The collections that are released for general use are
located under ${local}, When a new software
application is released, the old version is not
removed from the environment. Rather the new ver-
sion is placed in ${local} with a higher depot
version number.l Our choice for an ever-increasing
verson number is the uNIX time value, that is,
seconds since 1970. For example, for in the case of
the splus collection, under ${local} we have:

splus.714684343 splus.745275952
splus.746318854 splus.747006152

Thus, splus.747006152 contains the files that are
actually available in the environment.

Every 30 days, the environment is examined to
see what collections may be removed. The 30 days
is an arbitrary limit within which we expect that a
1dd update will occur on every workstation. At this
30 day interval, any version that is older than 30
days is removed, unless it is the only version out
there.

This organization is necessary because files on
the local disk of the client workstation may be
linked to files that exist on AFS. In order to ensure
that these symbolic links continue to point to valid
files, one either has to update every client worksta-
tion whenever the software environment changes, or
one needs to provide a way for the local environ-
ment to stay consistent until an update can occur.
Updating all the workstations at once did not seem
to be a scalable or reliable solution, so the tree
organization described above was developed. This
mechanism aso provides the local workstation
owner the ability to set the update time and

IWhen depot is run, if uses the collection with the
highest version number.

1993 LISA — November 1-5, 1993 — Monterey, CA

Wong Local Disk Depot — Customizing the Software Environment

frequency to best suit his needs, as long as it is
within the 30 day interval.

The third component is a front end. It has two
primary functions. The first is logging and
notification. It centrally records the configuration file
so that the central facilities have some idea of what
machines are out there and what their configuration
is. Additionally, this provides a backup of the
configuration information. The front end also
notifies both the local administrator and the centra
administrator in the event that an error occurred dur-
ing an update. The second purpose of the front end
is to simplify the interface to the 1dd system. For
example, the front end replaces the need for the
workstation administrator to know al the command
line arguments that have to be passed to both dpp
and depot. With this interface, all the user needs to
doistypein

/etc/dodepot

where <environments is the path to the environ-
ment that should be wupdated, for instance

/usr/local.

<environment>

Usage

Copying Files

The most common usage of 1dd is to move
applications that normally reside on the distributed
filesystem to the local drive of workstations, and
ensure that the applications do not get out of date.
A good deal of flexibility is provided for the works-
tation administrator. He can specify that files, direc-
tories or entire collections are to be copied. Alterna
tively, entire directory hierarchies can be marked as
"link only’ in order to conserve local disk space. For
example, the workstation owner can specify that all
the files (and directories) in bin and 1ib are to be
copied while all the files in include and man are to
be linked. Thus the workstation administrator can
have locally exactly what he wants locally. When
any of the software is updated or changed, new ver-
sions are automatically copied over.
Testing

1dd has proven to a convenient mechanism for
testing applications before they are released to the
environment. Developers can incorporate a new col-
lection to be tested by just adding the following line
to the custom.depot.proto in the appropriate
environment:

app.path:${destroot}/s{sys}/local/app/004

In this case, the files for the application app would
come from that path listed above, even if that collec-
tion already exists in any of the directories specified
by the searchpath. When the developer is done test-
ing, he can remove the line, run 1dd and the
software environment would be restored to the previ-
ous state.

1993 LISA — November 1-5, 1993 — Monterey, CA

Local Customization

With 144 it is possible to install departmental
or machine specific customizations to the software
environment. For example, we compile x11 as it is
distributed from the X Consortium. Any loca
changes are made in the collection called
xllconfig. The files in x11config overrides, or
replaces, the appropriate files in x11r4. If indivi-
dua workstation owners or departmental workstation
managers wanted to have a different x11config
collection, they could simply use 1dd to specify a
different path to x11config, and thereby tailor x11
without having to compile it themselves.

Another customization example would be the
installation of software packages that aren’t normally
avallable in the central software environment. The
primary benefit of installing software in the same
location as the central software is the users would
access the new software just as if they were access
software provided by the central services. No paths
or other configuration information would have to be
changed in the user’s home directory.

The only danger in customizing the software
environment is that the users may get confused.
Before 1ad was available, all Andrew workstations
shared the same software environment (eg.
/usr/local, and /usr/contributed). With 1ad
users may see different defaults and different
software depending on if they are using a ‘‘depart-
mental’’ Andrew workstation or a ‘‘public’’ Andrew
workstation. So far, this has not been a problem,
neither do we foresee it to be one.

Software Sharing

Software sharing under the depot model is
very straightforward due to the organization of the
software components. In the event a distributed file
system is not available, then one could simply tar
up the collection, transfer it to the remote machine,
and then extract it. If the remote machine did not
run depot, one could just extract the collection in
the appropriate directory (such as /usr/local).

A more sophisticated example would be to use
1dd to enhance the departmental software environ-
ment. Some departments on campus wish to minim-
ize the dependency on the central services. For
example, if the central fileservers or the network to
the central services went down, they want to still be
able to get their work done. As a result, packages
that are considered ‘‘critical’’ are compiled are
exported via NFS. AFs is still used but only for
“‘non-critical’’ applications, as such, /usr/local is
a symbolic link to the central software repository
and another directory is allocated for the mission
critical software. With 144 the software environment
could still be exported via NFS, if so desired, but the
mission critical software could be copied to the local
disk of the NFS fileserver, using the methods
described previously. This potentialy saves the

51

Local Disk Depot — Customizing the Software Environment Wong

departmental administrator a good deal of time com-
piling and installing software that has already been
compiled and installed. Software that isn't provided
by the central services, could, again, be installed
locally.

M obile Computing

1dd provides a simple way of supporting
mobile computing and disconnected operations via
the copying mechanism previously described.
Software used when disconnected can be copied to
the local disk and updated each time the workstation
is connected via a high bandwidth network, such as
Ethernet. At this time, al the linked software is also
avalable, as usual. When the workstation is discon-
nected, then only the copied applications are avail-
able. When the workstation is connected via a low
bandwidth network, like SLIP, then the other appli-
cations are still available, but access would be con-
siderably slower.

The component nature of 1dd aso facilities
mobile computing by making a simple GUI possible.
For example, there could be a ‘point and click’
options for what to copy and what to link as well as
buttons for ‘connect’ and *disconnect.’

Problems

The first problem is that there is a reasonable
amount of wasted resources between dpp and
depot. Both these programs contain code that per-
form virtually the same functions. This is being
addressed with the second major version of depot.
The new version of depot provides a programming
interface, so any action that depot performs can be
accessed internally from another program. Work on
rewriting dpp to use these libraries is about to com-
mence.

As with any system that automatically updates
software, there exists the problem of updating appli-
cations that are currently running. As with many
other systems, we ignore the issue. Traditionaly,
this problem is addressed by doing the update when
the machine reboots. In general, we have been able
to ignore this issue since it has not been a problem.

The use of version numbers to maintain local
disk consistency potentially wastes a significant
amount of disk space, especialy when you increase
the update window. The only way around this is to
force all the workstations to update when the central
environment is updated. Given those choices, we
decided to sacrifice the disk space.

Finally, version numbers tend to increase the
complexity of the system and give the administrator
more work to do. In small sites, it may not be worth
using the version numbers for this reason and
thereby sacrifice a degree of consistency. For larger
sites, this may not be acceptable and what we have
is a set of support tools that handle much of the

52

work. An overview of these tools can be found in
[Coly92A].

Future Directions

The work on the next major release of depot
is nearing completion. The two major changes in this
release of depot include significant performance
enhancements and a programming interface. As dis-
cussed previously, dpp Will be rewritten to use these
programming libraries, especialy since the file for-
mat for the configuration file has changed in the new
version of depot.

The most interesting work is the use of the
preprocessor mpp. 1dd takes a step forward in doing
workstation administration via libraries and via a
more modular/object oriented approach to managing
all the files on a workstation. For example, the local
administrator will be able to issue specific com-
mands to enable (or disable) specific functionality,
such as, a single command to enable anonymous
FTP, or a command to disable £ingerd from run-
ning. The end goa is to let the local workstation
owner manage as much of the software as he wants
in a simple and effective manner, and let the depart-
mental and/or central management services fill in the
gap in such a way to maximize the local, departmen-
tal, and central resources.

Conclusion

Originaly, 1dd was designed only to move
applications off of AFS and thus speed up day to day
work. However, as work progressed we saw that the
benefits were not limited to just that. It has proven
to be a a simple and easy method for testing, cus-
tomizing, and sharing software. 1dd has been in use
at our site for over a year now, and we foresee it as
tool to help us in our mobile computing plans as
well as in our general workstation management stra-

tegy.
Availability
dpp IS available from export.acs.cmu.edu
(128.2.35.69) in the /pub/depot directory. dpp iS

currently in use on HP/UX 9.x, Ultrix/RISC 4.2A,
SunOS 4.1.3 platforms. The code isin ANSI C.

An internet mailing list for depot and 1dd
exists. To subscribe, send email to info-cmu-depot-
request@andrew.cmu.edu.

References

[Coly92A] Colyer, Wallace; Held, Mark; Markley,
David, and Wong, Walter. ‘‘ Software Manage-
ment in the Andrew System.” AFS User's
Group Proceedings. Spring 1992.

[Coly92B] Colyer, Wallace, and Wong, Walter.
"Depot: A Tool for Managing Software
Environments." LISA VI Proceedings 1992. pp.
153-162.

1993 LISA — November 1-5, 1993 — Monterey, CA

Wong Local Disk Depot — Customizing the Software Environment

[Held92] Held, Mark, and Neuhart, Dawn. Software
Management in the Andrew Distributed UNIX
System at CMU. Computing Services, Carnegie
Mellon University. 1992.

[Saty85] Satyanarayanan, M.; Howard, J. H; Nichols,
D. A.; Sidebotham N., and Spector A. Z. “*The
ITC Distributed File System: Principles and
Design.”” Proceedings of the 10th ACM Sym+
posium on Operating System Principles. 1985.

[Stol92] Stolarchuk, Michael T. ‘‘Faster AFS’ AFS
User’s Group Proceedings. Spring 1992.

Author Information

Walter Wong graduated from Carnegie Mellon
University with a B.S. in Cognitive Science in 1991
and promptly joined the Andrew Systems Group per-
forming various programming and system adminis-
tration tasks. His current focus is on workstation
and software administration issues. Feel free to con-
tact him electronically at wew+@cmu.edu. Alterna-
tively, U.S. Mail can be addressed to: Computing
Services, Carnegie Mellon University; 5000 Forbes
Avenue; Pittsburgh, PA 15213-3890.

Appendix A: Sample custom.depot.proto

The following is an ‘‘interesting’’ custom.depot.proto from a DECstation 5000 client running AFS.

$define beta

This changes the ${local} variable to point to the

’'beta’ software tree (e.g.

/afs/andrew.cmu.edu/system/beta/pmax ul4/local/depot
$include /afs/andrew.cmu.edu/wsadmin/depot/src/depot.include

* searchpath:/afs/andrew.cmu.edu/usrl3/ww0r/devel /depot/local, ${local}

usemodtimes: true

use the modification time to determine whether or not a copied file

should be updated.

create a variable for my convenience

$define destlocal ${destroot}/${sys}/local

Software currently being tested. Use the software for these

collections located at the given path,

rather than the files

for the collections found in the searchpath

depot .path:${destlocal}/depot/020
dpp.path: ${destlocal}/dpp/021

symlink these files/directories under /usr/local
linktarget:root.client,root.server,man,lib/X11/XP

linktarget:bin/sas,lib/sas/sas

copy these all the files/directories under these directories
copytarget: bin/rlogin,bin/rsh, fonts/andrew, 1lib/X11
copytarget: lib/sas/sasexe/base,lib/sas/sasexe/graph,lib/sas/sasexe/stat

copytarget: bin/lpr

copy all of these collections
wcw.mapcommand: copy
graphon.mapcommand: copy
afs.mapcommand: copy
frame.mapcommand: copy
gnu-emacs.mapcommand: copy
x11lr4 .mapcommand: copy
x1lconfig.mapcommand: copy
perl.mapcommand: copy
telnet.mapcommand: copy
rlogin.mapcommand : copy
tools.mapcommand: copy

ignore these directories/files under /usr/local

specialfile: lost+found, tmp

1993 LISA — November 1-5, 1993 — Monterey, CA

53

1993 LISA — November 1-5, 1993 — Monterey, CA

