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ABSTRACT

Maintaining configurations in heterogeneous networks poses complex problems. We observe
that medium and large networks exhibit many contextual relationships, and argue that modeling
these relationships explicitly simplifies configuration management. This paper presents a
declarative data specification language, called Anomaly, that implements our ideas. Anomaly
models containment relationships and uses a data aggregation technique called environmental
acquisition to simplify system management. The interpreter for the language generates and
deploys configurations from a source code description of the network and its hosts.

Introduction

Configuration management is an important task
for system administrators, as it is often one of the
largest portions of their job. In the last decade, a num-
ber of configuration management systems have
emerged to help with this task. Some of this work is
summarized in a paper by Remy Evard [1].

Our paper presents an attempt to take some of
the best features of previous solutions and use them in
a framework based on environmental acquisition, an
abstraction mechanism borrowed from the object-ori-
ented systems community. The result is a declarative
language, called Anomaly. Anomaly is also intended
to be useful in practice as well as in theory. It has a
plug-in interface for adding extensions.

Previous Solutions

A survey of previous solutions to the problem of
generating and managing configurations reveals three
particularly important concepts: data aggregation tech-
niques such as inheritance and class systems; logic
programming techniques that reduce the complexity of
configuration statements; and database-driven systems
that store configuration data in a repository.

Cfengine [4] is one widely used solution. It is a
language-based host configuration tool that uses a
class system to aggregate configuration commands.
Cfengine’s class system allows an administrator to
apply configuration statements to a class of machines.
It uses techniques similar to logic programming to
make its statements more concise. Couch and Gilfix
demonstrated this in their 1999 paper, ‘‘It’s Elemen-
tary Dear Watson . . .’’ [5]. Cfengine is not perfect,
however. Its host-centricity does not lend itself well to
other components of the environment, especially
switches and routers.

Language-based configuration tools are an
important contribution, but for large networks, config-
uration data can become unwieldy when stored in

source code form. Database-driven approaches [2, 3]
solve this problem by providing a repository for con-
figuration data. This approach simplifies the mainte-
nance of configurations and reduces the rate of errors
by reducing the amount of source code that adminis-
trators have to deal with.

The paper by Couch, et al., [5] also presents an
approach that leverages convergent processes based on
logic programming (Prolog). The authors point out
that previous approaches, especially Cfengine, already
use convergent processes. An example of this is the
Cfengine link command, which looks like:
links:
/etc/sendmail.cf ->! mail/sendmail.cf

In Cfengine, the link command (like most other
commands) hides a great deal of housekeeping from
the administrator. The link command above takes care
of checking whether /etc/sendmail.cf already exists as a
link to mail/sendmail.cf, or if it already exists as a non-
link file, and takes appropriate actions to make
/etc/sendmail.cf a link to mail/sendmail.cf. To do the same
in Bourne shell might take a dozen lines.

This process is called a convergent process
because executing the link statement multiple times
does not have side-effects after the first execution (i.e.,
it is idempotent). Also, the link statement behaves
appropriately regardless of the initial state of the sys-
tem. Therefore, the state of the system converges to
the ideal state described by the source.

Environmental Acquisition

The fundamental insight of this paper is that all
network objects exist in contexts. The idea of context
dependency is both powerful and pervasive. Every
computer, every switch, every printer in a network
exists in a context that affects its desired behavior. In
other words, the physical and logical location of a net-
work object determines properties of that object. Here
are some concrete examples of network objects and
their context dependencies:
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• Access Controls. A host in a computing lab
must have less restrictive access controls than a
host in a data center. Here, the physical location
of the host is part of its context.

• IP Configuration. The netmask and default
route of a host depend on the subnet to which
the host belongs. Here, the subnet is the context
of the host.

• Switch Configuration. Individual ports on net-
work switches often require their VLAN mem-
bership to be set by an administrator. In net-
works where each subnet uses a separate
VLAN, a switch port may depend on its con-
text, i.e., the subnet to which it belongs, to
determine its VLAN membership.

• Printer selection. Each computer lab or office
in a building may have its own printer. This
printer then becomes part of the context of each
host in the room. Put simply, the most sensible
thing for a host to do by default is to use a
printer that has been assigned to the room in
which the host is located. This can be accom-
plished by looking for a default printer in the
physical context of each host.

System administrators use this contextual infor-
mation almost every time they configure a network
element such as a host, switch, or printer. To our
knowledge, no tool exists to model this contextual
information and automatically generate configurations
based on it.1 Therefore, the goal of Anomaly is
twofold. First, Anomaly should encourage administra-
tors to think actively about the contextual relationships
in their network. Second, Anomaly should be a tool
for modeling these relationships explicitly, in order to
simplify the maintenance of configurations.

One method of modeling contextual information
is to treat contexts as containers and construct a set of
containment relationships regarding network objects.
Using this idea, one notices relationships such as ‘‘the
machine chorf is in room 201,’’ and ‘‘the machine
ambler belongs to subnet 192.168.7.0/24.’’ From here,
it is easy to observe that objects acquire properties
from containers.

The name for this process is environmental
acquisition [8]. Environmental acquisition, or simply
acquisition, is an analogue of inheritance that operates
on object/container relationships, rather than
class/sub-class relationships.2 The following example,
paraphrased from the original paper on acquisition [8],
illustrates the idea perfectly.
1Cfengine does have a notion of context, in that it condi-

tions its actions based on probes of the filesystem and oper-
ating system. However, it does not emphasize modeling con-
textual relationships, nor does it propose a single method of
examining context, such as the construction of containment
graphs.
2The Zope application server (http://www.zope.org/), the

most prominent use of environmental acquisition, uses envi-
ronmental acquisition to build and manage web content.

Consider a red car. If someone asks you about
the color of the car’s hood, you will certainly tell
them that the hood is red, unless you know other-
wise. In this situation, the hood has acquired its
color from the car. However, it would be wrong
to model this relationship using inheritance,
because a hood is not a type of car. A hood is a
part of a car, that is, car and hood have an
object/container relationship across which prop-
erties are acquired.

Through the use of acquisition, administrators
can build models in which hosts acquire their access
restrictions from their physical location, and their
default routes from the subnet they reside in.

Many previous solutions use inheritance-like
mechanisms for data aggregation. Although inheri-
tance has worked well in previous approaches, it is not
the most natural or useful data aggregation mechanism
available.

First, the purpose of inheritance is not to aggre-
gate data. At best, it can be considered a feature (or
behavior) aggregation technique. Moreover, inheri-
tance is used to establish is-a relationships. In the
approaches discussed above, this rule is bent slightly
(to great benefit, of course). For example, Cfengine’s
class system uses boolean set operations (logical AND
and OR) to decide to which machines a given action
should be applied. The following statement says ‘‘link
/etc/passwd-link to /etc/passwd on all machines that are
in classes solaris and guest.’’
solaris.guest:: # logical AND

/etc/passwd-link -> /etc/passwd

This approach is loosely based around the idea of
inheritance. Objects are instances of specific classes,
and the class which an object belongs to determines its
behavior. However, inheritance is not an appropriate
technique for data aggregation in system management.
Acquisition is a better approach to data aggregation
for the following two reasons.

First, acquisition encourages system administrators
to think about containment and contextual relationships.
This is an improvement over inheritance, which encour-
ages thinking in terms of is-a relationships. While it may
be true that the host chorf is-a Solaris host, chorf also has
interesting relationships with its surroundings. It is in a
room, and it is part-of a subnet, but neither of these rela-
tionships lends itself to inheritance.

Second, acquisition has finer granularity than
inheritance. Inheritance demands that a child class
inherit all the features of its parent. A child class may
choose to override certain features that it inherits, but it
may not decline them outright. This is necessary because
inheritance imposes sub-type relationships. A child class
must have all the behavior of its parent, or else the is-a
relationship is nullified. Because acquisition does not
impose sub-typing, an object may pick and choose which
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features to acquire from its container.3 This prevents
objects from acquiring unexpected properties.

There is at least one other twist on inheritance
that bears mentioning, namely value inheritance.
Value inheritance is a data aggregation technique used
in prototype systems such as ARK [6]. It works by
making copies of a prototype object, and then making
tweaks to the values inherited from the prototype.
Most of the examples presented in this paper could
also be implemented using value inheritance. We
believe, however, that environmental acquisition is the
better choice for the reasons discussed above. It
encourages thinking in terms of contextual relation-
ships, and it provides better granularity than value
inheritance. David Ungar’s paper on SELF [10] dis-
cusses prototyping and value inheritance in depth.

Logic Programming

Anomaly does not have the power of a full logic
programming language such as Prolog. Cfengine’s
logic programming abilities also exceed that of
Anomaly’s. In Anomaly, the ability to specify the tar-
gets of configuration statements with ‘facts’ is
replaced by the approach of context modeling and
environmental acquisition. However, Anomaly keeps
what we believe is the most important contribution of
Cfengine, namely, the idea of convergent processes
specified by logical statements. Therefore, rather than
using imperative statements such as ‘‘add this user’’ or
‘‘put this interface in promiscuous mode,’’ Anomaly
uses logical assertions such as ‘‘this user must exist,’’
or ‘‘this interface must be in promiscuous mode.’’

Anomaly

Our language, Anomaly, combines important ele-
ments of prior approaches with environmental acquisi-
tion. Anomaly has constructs to model containment
relationships (i.e., which objects are contained in
which objects), and constructs for describing the ideal
state of individual objects.
Examples

The following examples illustrate the use of
Anomaly and highlight its strengths, by examining
several typical system administration scenarios. Sev-
eral different types of contextual relationships are pre-
sented, in order to demonstrate the benefits of explic-
itly modeling context.
Host Access Controls

Configuration of host access controls is the most
basic and obvious use of acquisition in system man-
agement. A system administrator can make access
3Acquisition comes in two flavors, implicit and explicit.

When using implicit acquisition, any attempt to access a
variable that is missing from an object results in an attempt
to acquire that variable. When using explicit acquisition, no
attempt is made to acquire variables unless they are listed
explicitly as candidates for acquisition. Anomaly uses ex-
plicit acquisition.

controls more maintainable by exploiting a contextual
relationship in the environment. In a university setting,
it may be appropriate to use the physical location of a
host as the context. In a corporate setting, the appro-
priate context may be the ownership of the machines
(e.g., departmental, individual). In this example, we
use the physical location as the context.

The first consideration is the containment graph.
It is specified in Figure 1. Figure 2 defines some of
these objects. The object CullinaneHall is defined as a
Building, and is given a default access policy that
allows only users in the systems netgroup to log in.
This means that any host in the building acquires a
restrictive access policy, unless otherwise specified.

CullinaneHall contains {
UnixLab;
DeansOffice;

}

UnixLab contains {
chorf;
wharf;
staypuff;

}

DeansOffice contains {
deans-laptop;

}

Building CullinaneHall {
AccessPolicy access;

access.allows(systems);
}

Room UnixLab {
AccessPolicy access;

access.allows(students);
}

SolarisHost chorf {
AccessPolicy access(’/etc/passwd’)

acquire access
}

Figure 1: Controlling access policies in object defini-
tions.

For the UnixLab object, that is exactly what is
done. Since the UnixLab object represents a public
computer lab, it must have an access policy that
allows users from the students netgroup to log in.
Therefore, any host placed in the UnixLab object
acquires a permissive access policy, specifically one
that allows students to use the computers.

From this example, it is easy to see the benefits
of using this method across an entire environment.
When every room in a building has a sensible access
policy assigned to it, administrators hardly have to
worry about individual hosts. This directly addresses
the recurring problem of hosts moving from faculty
desks to public labs (Or from similar restricted access
locations to similar public access locations). If no one

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 177



Environmental Acquisition in Network Management Logan, Felleisen, & Blank-Edelman

remembers to edit /etc/passwd, the result is that stu-
dents cannot log into the machine.

The most important benefit of this scheme is that
even if a forgetful administrator moves a machine
from one place to another without consideration for its
access policy, the machine acquires a sensible access
policy from its new environment. Modeling the con-
text of the machine has thus made the path of least
work more likely to be the correct path. In short, the
lazy way produces the best defaults.

SwitchPort zaphod-8-13 {
SwitchNum switchnum(switch =

’zaphod.ccs.neu.edu’);

switchnum.is(’8/13’);

acquire vlan;
acquire ether;

}

SolarisHost chorf {

MAC ether;

ether.is(’01:1C:ED:C0:FF:EE’);
}

Subnet UnixSubnet {

NetworkAddr net;
Netmask mask;
VLAN vlan;

net.is(’10.10.116’);
mask.is(’255.255.254.0’);
vlan.isnamed(’116’);

}

UnixSubnet contains {

chorf;
}

chorf contains {
zaphod-8-13;

}

Figure 2: Modeling a switch Port.

Switch Port Configuration

Switch port configuration often involves config-
uring VLAN membership and port security settings.
The contextual relationship is not quite as obvious as
in the previous example. Here, it is necessary to treat
the switch port as an object contained in the host that
is attached to it. From a physical standpoint, this
seems inappropriate. However, from a logical stand-
point it is easier to think of the host being part of the
port’s context. When using MAC-based port security,
it is necessary to know which host the switch port is
supposed to serve.

Figure 2 shows the containment and object dec-
larations for chorf and its switch port. When the con-
figuration in Figure 2 is built, the switch port acquires
two fields: vlan and ether. The vlan field allows the
switch port to set its VLAN membership properly, and

the ether field allows it to set its port security settings
properly. After the configuration is deployed, the
switch will be usable only by chorf.

This figure also raises a question about the dif-
ference between the ‘is’ assertion and the ‘isnamed’
assertion. The former is used when an assertion
describes the state of the variable. In this example, the
ether field is completely specified by a 48 bit address,
that is, the ether field is its address. The latter asser-
tion, isnamed, is used when referring only to the identi-
fier of a field. The vlan field in this example is only
concerned with the identifier of the VLAN, not with
configuration of that VLAN on the switch.

Beta-Test Environments

When upgrading subsystems such as daemons,
kernels, or user applications, it is best to test the new
software on a small subset of machines. It is possible
to test upgrades on a single machine near the adminis-
trators’ offices, but a single machine may not be repre-
sentative of the rest of the environment (especially if
host hardware is substantially varied throughout the
environment). Furthermore, a designated test machine
is not likely to have the same usage patterns as most
machines in the environment. Anomaly can assist with
this problem by providing a better method for organiz-
ing beta test systems, using environmental acquisition.

Platform Solaris {
Packages packages;
Patches patches;

patches.has(’sun-recommended’);
packages.has(’openssh-3.0.2p1’);
packages.has(’lprng-3.6.14’);

}

Platform Beta {
Packages packages;
Patches patches;

patches.has(’sun-recommended’);
patches.has(’108604-18’);
packages.has(’openssh-3.1p1’);

}

Figure 3: Platform objects.

The containment relationships described in Fig-
ures 3 and 4 simplify beta testing. In order to test a
new Solaris patch (108604-18), we add it to the Beta
container. This causes the patch to be installed on all
machines contained in Beta. When the patch is verified
to work properly on all Beta machines, the patch can
be moved from the Beta container up to the Solaris
container, which causes it to be installed on all
machines.

This approach offers several advantages:
• Because Beta is contained in Solaris, all other

fields in the Solaris container are acquired by
the machines in Beta. Therefore, the configura-
tions of these machines will stay as close as

178 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Logan, Felleisen, & Blank-Edelman Environmental Acquisition in Network Management

possible to the standard configuration being
used by the rest of the environment.

• Because all hosts for testing the new configura-
tion are aggregated into one container, it is easy
to keep track of which machines are being used
as test cases.

Solaris contains {
north-star;
dog-star;
# and many, many others

Beta;
}

Beta contains {
# machines of various
# hardware configurations
chorf;
emerald-city;

}

Figure 4: Beta test containment.

EthernetInterface Interface {

acquire mode; # declared in network
acquire ethaddr; # declared in hosts

}

SwitchPort switchport {
SwitchNum switchnum(switch =

’zaphod.ccs.neu.edu’);

switchnum.is(’8/13’);

acquire vlan;
acquire ether;
acquire smode;

}

Network CCSNetwork {
IfMode mode;
SwitchPortMode smode;
mode.is(’normal’);
smode.is(’normal’);

}

Figure 5: Interface declaration.

• The beta test containment relationship is
orthogonal to other containment relationships
such as physical location, network (logical)
location, and ownership. Therefore, the inclu-
sion of a machine into the beta test container
does not affect the usage patterns of the
machine.

• When no upgrades are being tested, the
machines in the beta container acquire exactly
the same settings that machines outside the beta
container acquire. Therefore, the addition of the
beta container does not affect the environment
in any way when it is not being used. In other
words, the container becomes completely trans-
parent when nothing is being tested.

While it might seem that the ‘has’ assertion in
this example must embody all of the functionality of

Cfengine, it is not nearly that complex. It uses a direc-
tory that contains all the Solaris patches currently in
use in the environment. In it there is a subdirectory
named ‘2.8_recommended.’ Other patches are listed
individually. The has assertion simply checks if a
patch is installed, and if it isn’t, runs the patch’s install
script. The packages field works similarly. This
method, of course, cannot handle all of the boundary
cases handled by Cfengine.
Reparenting

Modeling context through containment is the
central theme of Anomaly. The following example
demonstrates how changes in context and containment
result in appropriate changes in the network, with a
minimum of reconfiguration.

Consider the containment graph in Figure 6. The
object declarations for individual hosts and unman-
aged containers are not shown, but are similar to the
declarations used in Figures 8 and 1. The one unfamil-
iar object in this graph is Interface, which represents
Ethernet interfaces on Unix hosts. Its declaration is
shown in Figure 5; it is placed into its containers with
copy containment. Figure 5 also shows the declaration
of CCSNetwork, which specifies a mode (promiscuous
or normal) which is acquired by all interfaces.

Suppose that the administrator of this network
wishes to start running host-based IDS software. This
can be accomplished without modifying the declara-
tions of individual hosts or interfaces at all. The
administrator simply adds an IDS container and repar-
ents the appropriate objects as shown in Figure 7.
Now, all IDS-related settings are aggregated into a sin-
gle container. To make a machine an IDS machine, it
needs only to be added to the IDS container. By
acquiring settings from the IDS container, the machine
receives the IDS packages, the machine’s interface
becomes promiscuous, and the switch port attached to
the interface is put into spanning mode.

By modeling context through containment, we are
able to aggregate control of three network components
(host software, host interface, and switch port) into a
single point of control. Examples such as this one make
changes to configurations atomic (i.e., the desired
change can be effected by moving one machine into one
container), and thus more maintainable.
The Language

Anomaly is a simple object-oriented declarative
language. Its basic components are:

• Objects. Objects in Anomaly are used to model
components of a network. They can be divided
into two categories:
• Managed Objects. Managed objects repre-

sent elements of the network that are
directly managed by system administra-
tors, e.g., computers, switches, and print-
ers.

• Unmanaged Objects. Unmanaged objects
are components of the network that are not
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directly managed as part of the network,
e.g., buildings, rooms, and research
groups.

A simple Anomaly object appears in Figure 8.

# unix platform
Unix contains {

Linux;
Solaris;
OpenBSD;

}

Linux contains {
darkside;

}
OpenBSD contains {

runningboar;
}
Solaris contains {

chorf;
ambler;
north-star;

}

# a building
Cullinane contains {

UnixLab;
MrRoom; # machine room

}

CCSNetwork contains {
Subnet115;
Subnet116;
Subnet118;

}

Subnet115 contains {
runningboar; # a host

}

Subnet116 contains {
chorf;
ambler;
north-star;

}

Subnet118 contains {
darkside;

}

ContainmentTemplate (
QUERY = "SELECT hostname, \

switchport FROM hosts;"
NAME = hostname;

) contains {
copy Interface contains {

QUERY.switchport;
}

}

Figure 6: Containment relationships in a small net-
work.

• Fields. Fields store the configuration data for
objects. In Figure 8, fields include hostname, ip,
and accesspolicy.

• Parameters. Fields may be parameterized. In
Figure 8, the field accesspolicy specifies that

/etc/passwd is the location of the file it generates.
The purpose of parameters is to tell Anomaly
where data must go. Another example of a
parameter is the name of a network interface
object, e.g., hme0 or eth1.

• Assertions. In Figure 8, ip = ‘129.10.117.177’; is
an assertion about the value of the field ip. It
says: ‘‘The value of ip is 129.10.117.177.’’
Assertions are implemented by the fields that
use them, not by the core of Anomaly. There-
fore, two different types of fields (e.g.,
AccessPolicy, Packages) may have completely
different implementations of the ‘has’ assertion.

Platform IDS {
IfMode mode;
SwitchPortMode smode;

packages.has(’snort’);
packages.has(’acid’);
mode.is(’promiscuous’);
smode.is(’spanning’);

acquire packages;
}

CCSNetwork contains {
IDS;

}
OpenBSD contains {

IDS;
}

IDS contains {
runnnigbear;

}

Figure 7: IDS declarations.

SolarisHost chorf {
Fqdn hostname;
IPaddr ip;
Access accesspolicy(’/etc/passwd’)
ip = ’129.10.117.177’;
acquire resolv;
acquire accesspolicy;
acquire mounts;

}

Figure 8: Example object.

• Acquisitions. In Anomaly, the keyword acquire
signifies the acquisition of a field. Acquisitions
tell Anomaly to search for the value of that field
in the containers of an object. It is important to
note that accesspolicy is an acquired field, yet it
has a parameterized declaration. In this example,
accesspolicy acquires its value from its containers,
but retains the parameters specified by its object.
The other acquired fields in this example result in
the acquisition of the value and the parameters
from the containers, since no declaration is speci-
fied in the object.

• Containment declarations. A simple contain-
ment declaration appears in Figure 9. The three
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blocks in the example declare that chorf and
ambler are part of Subnet116, chorf is in
Room201, and ambler is in Room129.

• Database templates. While language-based
configuration approaches have many merits,
storing configurations for hundreds of machines
in source code form can be unwieldy. Database
templates are provided in order to integrate
Anomaly with configuration database back-ends,
by allowing for the creation of arbitrarily many
objects in only a few lines of code.

Subnet116 contains {
chorf;
ambler;

}

Room201 contains {
chorf;

}

Room129 contains {
ambler;

}

Figure 9: Example containers.

Semantics of Containment

Objects in Anomaly may have multiple, non-
nested containers. In fact, most do. For example, a
host usually belongs (at minimum) to both a room and
a subnet at the same time. Yet, the subnet is not in the
room, and the room is not in the subnet.

During the design process, we considered requir-
ing that the containment graph take the form of a for-
est whose trees meet only at the leaves. This decision
turned out to be unduly restrictive. Therefore, the only
requirement Anomaly places on the containment
graph is that it be directed and acyclic, that is, objects
may not contain themselves, directly or indirectly.
Users of Anomaly can construct complex containment
graphs using this rule.

When attempting to model certain containment
relationships in this way, there are situations in which
one would like to use the same object in many loca-
tions. For example, if network interfaces are repre-
sented by objects, they will most likely be identical
across a wide group of machines. However, we cannot
simply declare one interface object, and place it in
each host. Doing so would create a containment graph
like the one depicted in the left half of Figure 10,
where the objects in the top layer all contain the same
interface object. When the interface object attempts to
acquire its netmask, it finds a netmask field in each of
its parents, and compilation fails.

To remedy this situation, Anomaly offers copy
containment. Copy containment reduces the number of
duplicate object declarations by allowing a single dec-
laration to be used in any number of places. When a
containment relationship is declared as copy contain-
ment, the contained object is cloned, and the copy is

placed into the container. This results in the contain-
ment graph in the right half of Figure 10, where the
gray objects are all clones of an original object. This
approach was inspired by mixins, an alternative
approach to multiple inheritance [9].

Figure 10: A simple containment graph with and
without copy containment.

Semantics of Acquisition

Anomaly uses references to represent contain-
ment links between containee and container. When an
object explicitly acquires a field, using the acquire
statement, Anomaly searches for the field in the cur-
rent object. If the field is not found, the containers of
the object are searched recursively, until the field is
found.

Because objects may have multiple containers,
Anomaly must account for acquisition from multiple
containers. If the acquisition search reveals that a vari-
able can acquire its value from two different contain-
ers, Anomaly reports an error. This condition is called
an acquisition conflict, because two equally valid con-
texts have been found.

As Anomaly attempts to resolve an acquisition, it
may find that an object’s container has attempted to
acquire the same field. When this scenario occurs, the
acquisition in the container is resolved first, and then
the acquisition in the containee is resolved, using the
value that has now been inserted into the container.

While this intermediate step looks superfluous at
first glance, it is necessary to prevent ambiguities
about the origin of a field’s parameters. Recall that a
field may specify its parameters, but acquire its value
from the container. Consider three objects that are
contained one within the other, like Russian dolls.
Suppose that the outer object declares a field called
accesspolicy, and that the inner two objects acquire that
field. In the case where the outer object and the middle
object specify different parameters (e.g., /etc/passwd
and /etc/shadow), the semantics described in the above
paragraph force the innermost object to acquire its
parameters from the middle object rather than the
outer object. In other words, this rule resolves any
ambiguity about where a field’s parameters are
acquired from.

The Dependency Graph
In large configurations, it is both time consuming

and inconvenient to re-deploy every configuration on
the network when only a few objects have been modi-
fied. Therefore, Anomaly uses a simple strategy to
deploy configurations only to those objects that may
have changed since the last update. This strategy
exploits the structure of the containment graph.
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The containment graph, in addition to modeling
contextual relationships, also models dependency rela-
tionships. Using acquisition, a change to the configu-
ration of one object can affect only that object, and
any objects contained within. It is not possible for
changes in an object to have any effect on its contain-
ers. To exploit this invariant, Anomaly keeps track of
which objects have been altered since the last success-
ful attempt to deploy configurations. When another
attempt is made to deploy the configurations,
Anomaly discards all objects that have not been modi-
fied, and are not contained within objects that have
been modified.4

building
+Access Policy = Restricted

Public Lab
+Access Policy = General

Main Office
+Access Policy = Staff

chorf north-star kira ambassador

building
+Access Policy = Restricted

Public Lab
+Access Policy = Students

Main Office
+Access Policy = Staff

chorf north-star kira ambassador

Figure 11: Calculating dependencies after changing access policy for a lab.

Figure 11 illustrates a modification to the access
policy of a computing lab. The left half shows the net-
work before the change is made; the right half shows
the network after the change is made. Only objects in
the shaded area require re-deployments of their con-
figurations. The shaded area is computed by a simple
mark and sweep algorithm.
Checking Types

Anomaly enforces some type constraints during
compilation. In particular, it checks assertions for type
correctness in the obvious manner. For example, if we
declare that some variable represents an IP address
and make an assertion about the variable, then
Anomaly ensures that the assertion associates a well-
formed IP number with the variable. Anomaly does
not, however, attempt to enforce constraints at run-
time. That is, for all those actions for which it cannot
check type constraints during compilation, the config-
uration transport mechanisms must enforce the coher-
ence of the data access operations (e.g., file access,
SNMP set commands). In practice, this means that if a
type constraint is violated while Anomaly is generat-
ing configurations (i.e., after the source code has been
4It is also possible to construct an acquisition graph from

the containment graph, in which each edge represents the ac-
quisition of some value. Using this graph, the minimal set of
modified machines can be computed. Currently, Anomaly
does not compute this minimal modified set.

processed), the configuration will either fail or pro-
duce incorrect results. Making Anomaly truly type
safe – indeed, exploring what type safety precisely
means in this context – is future research.

Templates
Templates allow Anomaly to instantiate many

objects at once, using data from a configuration
database. Figure 12 shows an example template.

Template (
QUERY = "SELECT hostname FROM hosts \

WHERE os == ’solaris’";
NAME = hostname;

) {
Fqdn hostname;
hostname = QUERY.hostname;
acquire access;

}

Figure 12: Example template.

Templates consist of two parts. The first part is
the query declaration, which appears between the
parenthesis at the top of the template declaration. It
specifies a query to be issued to the database, and
specifies what the identifier (NAME) of each new
object will be. In this example, one object is instanti-
ated for each row returned by the specified SQL
query, and the object is given the name contained in
the ‘hostname’ column of that row.

The second part of the template declaration is the
object declaration. It follows all the same rules as a
regular object declaration, except that any column of
the query result can be referenced by the keyword
‘QUERY,’ as seen on line 8 of Figure 12.

There is also a second type of template, called a
containment template, which is used to declare con-
tainment relationships. An example of this appears at
the end of Figure 12. It follows the same rules as a
normal containment declaration, except that it can ref-
erence columns in the query result, just like the tem-
plate above.
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Practical System Administration with Anomaly
To see how Anomaly can fit into normal admin-

istrative practices, we list several sub-categories of
system management, describe them briefly, and show
how Anomaly can fit into each area.

Host management is the area of system manage-
ment embodied by Cfengine. Most of the examples in
this paper have focused on this area. Host manage-
ment tasks lend themselves well to a context-based
approach, so Anomaly is best suited to this area of
system management. For Anomaly to succeed, how-
ever, it must be able to conform itself to existing envi-
ronments, rather than expecting environments to be
built around its notions of containment and context.
Fortunately, typical computing environments are ripe
with contextual relationships that can be exploited by
Anomaly. Therefore, we believe that Anomaly has the
potential to be an appropriate addition to existing
environments, rather than a foundation for environ-
ments that are being rebuilt from the ground up.

Service management includes tasks such as the
generation of DNS zone files and DHCP configura-
tions, to name a few. Database driven approaches lend
themselves well to these tasks, because the configura-
tion files being produced are often nothing more than
a listing of the contents of the database in an obscure
format. Anomaly is not particularly well suited to this
area of system management, because it often requires
data about every object in the environment to be
brought together in a single location. A simple query
to a configuration database is the appropriate tool for
this job. To do the same with an acquisition-based tool
would be awkward and inefficient.

User management falls partially under the previ-
ous category, because it may involve services such as
NIS, LDAP, and Kerberos, but deserves its own cate-
gory because it also involves resource allocation,
specifically home directories and mail spools. User
accounts are laden with contextual information, such
as the account owner’s position within the organiza-
tion. Anomaly could be used with an existing user
management system as a means to model these con-
textual relationships. Doing so could simplify tasks
such as disk quota assignment and account expiration.

Software (or package) management is the area
embodied by systems such as Depot, Stow, and RPM.
If software packages are installed locally on individual
hosts, this category is partially subsumed by host man-
agement. However, software is often installed on glob-
ally accessible filesystems (e.g., NFS), so software
management must be considered separately.

Anomaly is not intended to be a software man-
agement system by itself, but it can interface with
existing software management tools. For example, an
RPM extension to Anomaly would need only to wrap
logical assertions around RPM’s query based inter-
face. The has operator, in this case, would issue a

query to see if a given package was installed on a tar-
get machine, and install it if necessary. Here we see
that Anomaly can coexist with other systems. There
would be no reason to stop using the existing system
and rely only on Anomaly. Anomaly would simply be
used to model and enforce the contextual relationships
affecting software installation (e.g., if a machine is
one of the mail servers for an environment, it must
have an MTA installed).

Another practical consideration is that of
Anomaly’s configuration transport mechanism. In
practice, Anomaly uses three types of configuration
mechanisms: configuration files (e.g., /etc/passwd and
/etc/resolv.conf), configuration scripts (e.g., a script that
executes link statements), and SNMP set commands.
The configuration files are transported to the appropri-
ate machines using ssh and a small helper script that
writes the file contents to the appropriate locations.
Configuration scripts are copied to a temporary direc-
tory and executed on the target machine. SNMP set
commands are executed as Anomaly interprets the
code. In this sense, Anomaly is primarily a ‘‘push’’
tool, that is, configurations represented in Anomaly
are generated on a single host, and then distributed to
the managed objects.
A Caveat

Acquisition is not a panacea for all system
administration tasks. In particular, an acquisition-
based approach does not provide any assistance with
unique information in a network. For example, when a
host is moved from one subnet to another, its IP
address must change,5 in addition to its netmask and
default route. A natural suggestion is that hosts
acquire their IP addresses from their subnet contain-
ers, which are responsible for ensuring the uniqueness
of each address.

Anomaly’s implementation of acquisition cannot
facilitate this design, and acquisition in general does
not lend itself to this approach. This is true for a num-
ber of reasons, the most important one being that to
implement such a system, containers would have to
retain state about the values that had been handed out
to sub-objects. Storing this state would make it impos-
sible to cull unmodified objects by constructing a
dependency graph.

We do not believe, however, that the inability to
manage unique information constitutes a genuine
weakness. The goal of Anomaly is to make it easier to
manage information that is common to a group of
objects. System administrators are already good at
managing unique information, but they do need sup-
port to keep common information consistent.

Some First Experiences

We have used Anomaly to manage a lab of Unix
workstations, and the switch ports to which they are
5Changing IP addresses via a remote configuration man-

agement system is problematic for other reasons. Nonethe-
less, this example illustrates a range of problems in which
unique information must be managed.
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connected. The workstations run Solaris 2.8, and the
switch is a Cisco Catalyst 5500. Using this experimen-
tal setup, we were able to construct real containment
graphs that effectively modeled our test network. By
moving machines to different positions in the contain-
ment graph, i.e., by changing their context, we were
able to verify how quickly an Anomaly-administered
network can be reconfigured when the components of
the network change.

The experiments also revealed some weaknesses
in Anomaly’s configuration transport mechanisms.
First, because Anomaly is intended to work with a
wide variety of hardware (not necessarily UNIX
machines), restricting all objects to an rsh transport
mechanism is not feasible. For Anomaly to be
extended to other operating systems, we need to
design a universal system for configuration transport.
Second, to overcome the difficulties of performing
changes to networking configurations (e.g., IP
addresses, netmasks), Anomaly should produce floppy
disks (or other removable media) to transport basic
configuration data. We hope to address these problems
with future research.

Project Status and Source Code Availability

As of this writing, Anomaly is not ready for
widespread use. Its most pressing need is for the
development of a large and portable suite of adminis-
trative modules. Currently, Anomaly has modules for
managing Solaris hosts in an NIS/NFS environment,
and a module for managing certain aspects of Cisco
Catalyst series switches (specifically, VLAN member-
ship and port security).

Some of the source code listings in this paper
show components of Anomaly that are not stable as of
this writing for illustrative purposes. Specifically,
database templates, the ‘packages’ field, and the
‘patches’ field are only partially implemented.

The latest source code, along with current infor-
mation about Anomaly, is available at http://www.
ccs.neu.edu/home/mlogan/anomaly/.
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