i

The following paper was originally published in the
Proceedings of the Third USENIX Conference on Object-Oriented Technologies and Systems
Portland, Oregon, June 1997

I nteractive-Group Object-Replication
Fault Tolerance for CORBA*

Brent E. Modzelewski, David Cyganski, Ph. D.
Electrical and Computer Engineering Dept., Worcester Polytechnic Institute
Marian V. Underwood
L ockheed Martin Corporation, Government Electronic Systems

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org



Interactive-Group Object-Replication Fault Tolerance for CORBA

Brent E. Modzelewski
Electrical and Computer Engineering Dept., Worcester Polytechnic Institute
David Cyganski, Ph. D.
Electrical and Computer Engineering Dept., Worcester Polytechnic Institute
Marian V. Underwood
Lockheed Martin Corporation, Government Electronic Systems

Abstract

As more and more computers and workstations enter
the workplace they are inevitably connected to a
network. Networks provide the interconnection nec-
essary for computers to share common data, periph-
erals and other system resources. Distributed com-
puting allows network applications to access func-
tions or processes on remote computers. Developing
network applications specifically to interact and draw
upon resources of multiple computers creates the
groundwork for a distributed system or distributed
computing environment (DCE).

An ideal distributed system is self monitoring and
resilient to failures. In the event of a failure the sys-
tem should dynamically reconfigure itself with auto-
matic fail-over for applications that fall victim to the
fault. Transparency of fault tolerant mechanisms is
desirable, especially when introducing legacy appli-
cations into the distributed system. The reduction of
application development efforts heavily relies on the
availability of portable, non-invasive, fault tolerance
providing extensions, which introduce mechanisms
for uninterruptible service by insertion into existing
distributed applications.

To test the potential for addressing some of these
desired capabilities for a distributed system imple-
mented within a CORBA distributed computing envi-
ronment, the Interactive-Group Object-Replication
(IGOR) system was developed. IGOR is a system of
objects that provides fault tolerance through object
replication by arranging replicas in fault tolerant
groups which interact to provide access to redundant
data and services. For purposes of portability, in-
teroperability and to evaluate the CORBA environ-
ment, IGOR was designed with the constraint of ly-

ing entirely within the CORBA architecture and us-

ing IIOP as the communication protocol. This

guarantees its portability over changes in platform
and network technologies. The IGOR system is re-
configurable and its fault tolerance mechanisms are
completely transparent to client applications.

1. Introduction

A plethora of computers and workstations enter the
workplace each year and play an increasingly im-
portant role as a digital tool used by people world-
wide. With the increase of the use of computers
comes the increase of stored information and multi-
client services. However experience has shown that
such information sources and services quickly be-
come decentralized, then isolated and as a result, not
interchangeable. Isolation is due to the disintegration
of applications segregated by disparate hardware and
operating systems, which lack the interoperability
and robustness necessary for seamless information
and service sharing.

A distributed computing environment (DCE) implies
an environment in which interoperation is not only
possible, but is fundamentally inherent and natural.
Distributed computing exploits the computational
power of many computers, integrating the entire
system into a single functional unit. Load balancing,
parallel processing and distributed objects are major
technologies that have evolved which aid in the im-
plementation of full fledged distributed systems.

An ideal DCE provides the programmer with auto-
mated tools that permit construction of distributed
applications (clients and servers). Distributed appli-
cations access functions on remote computers while
giving the appearance of locally executed functions.

" This research supported by Lockheed Martin Corporation, Government Electronic Systems

" Corresponding author: brentm@ece.wpi.edu



Furthermore, the user need not be aware of the re-
mote or local nature of the processes, nor the move-
ment and conversion of the data involved.

Usually the preconceived notion of a distributed sys-
tem is one in which a specific task is being carried
out by a small set of networked computers running
the same operating system. That may have been true
several years ago, but today a distributed system can
be much more diverse. Distributed systems can span
many computers and interoperate with virtually any
operating system or hardware platform available on
today's market. The magnitude of distributed sys-
tems varies greatly depending on the intended pur-
pose. A distributed system can contain a few in-
teroperating computers, or may span the entire Inter-
net.

2. Overview

A component or object based architecture can greatly
benefit a distributed system. Construction of a sys-
tem with objects vastly increases modularity; the
interchangeable nature of individual system compo-
nents translates into design and implementation
flexibility for the applications engineer. Ideally, up-
grades to the system can be done on a component
basis, while the system remains up and running.
Zero downtime is a very attractive feature of an ob-
ject based distributed system, especially for mission
critical applications. Providing uninterruptible sys-
tem-wide service is a difficult and complex task.
Many standards have been developed to aid in the
composition of such systems.

One of the distributed systems standards that has
been devised since the emergence of the object para-
digm is called the Common Object Request Broker
Architecture (CORBA) [2]. CORBA is one compo-
nent of the Object Management Architecture (OMA)
and was developed by the Object Management Group
(OMG) [1]. CORBA is a well defined robust stan-
dard that is component (object) based, is supported
on virtually all hardware platforms, and is fully in-
teroperable and portable.

On the surface, the CORBA standard for distributed
objects appears to be another type of Remote Proce-
dure Call (RPC) [3] implementation. On closer in-
spection, CORBA proves to offer much more than
just predefined procedure calls with static parame-
ters. Execution of remote objects, parameter mar-
shaling, multiplatform interoperation, interface port-

ability, dynamic interface invocation, variable pa-
rameters and platform independent data types are
some of the features of CORBA that do not exist in
standard RPC, OSF/DCE or message passing stan-
dards, such as Message Passing Interface (MPI) [5]
and the like.

While many aspects of CORBA are attractive for
large scale distributed system development, it does
not inherently support more than rudimentary levels
of fault tolerance. To implement basic fault tolerance
in CORBA without involving external mechanisms,
server applications can be cloned and distributed
throughout the network to provide high availability
of services to clients. Cloning merely creates redun-
dant copies of the server application, so services are
more readily available to client applications. Unfor-
tunately this does not take into account the mutable
state of the application at hand. Since no data syn-
chronization takes place between clones, this presents
a low level of fault tolerance and is unacceptable for
many fault critical applications.

During failures, certain CORBA Object Request
Brokers (ORBSs), such as Visigenic Software’s Visi-
Broker [6], can automatically fail-over to an applica-
tion that can provide a desired service. However
there is no guarantee of appropriate object state.
Fail-over occurs transparently to client applications,
thus providing a layer of isolation between the client
and the system's fault tolerant mechanisms.

Replicating server applications is another technique
similar to cloning that provides high availability of
services to clients. Object replication is meant to not
only provide availability of services, but also to
maintain strict data consistency between objects [4].

3. IGOR Architecture

In response to the need for a fault tolerant system and
our desire to test CORBA with respect to its support
for easily insertable object behavior extensions, we
have developed the IGOR (Interactive-Group Object-
Replication) system. Object replication was selected
as the basis for implementation of IGOR's fault toler-
ance mechanism. IGOR is a system of interacting
objects that provides mechanisms for the creation of
a reconfigurable fault tolerant system, with the addi-
tional and strategically important constraint of lying
entirely within the CORBA architecture. Layered on
CORBA, IGOR yields a portable, interoperable and
modular design, that will remain portable over



changes and improvements in the CORBA standard
and changes of platform, operating system and com-
munication technologies.

Much of our attention has been directed towards de-
velopment of a fault tolerant system which reduces
the invasiveness of the underlying fault tolerant

mechanisms with respect to implementation and op-
eration. Our aspiration for IGOR was to provide a

tool that would ease the development of fault tolerant
distributed applications, while simultaneously em-

bracing the introduction of legacy (CORBA and non-

CORBA) applications into the fault tolerant arena.

An object grouping scheme has been devised for the
IGOR system to facilitate fault tolerance by redun-

dancy (object replication). Distributed replica server

applications enroll themselves into fault tolerant

groups through an IGOR registration process. These
groups are actually logical representations that asso-
ciate like server applications that share a common
data set. Each fault tolerant group functions sepa-
rately as a single logical unit and group members
interact with each other to maintain intragroup data
consistency. Client applications benefit by the

group's high availability of services and redundant
data.

Fault tolerant groups in IGOR are resilient to partial
failures and provide these fault tolerant services
transparently to client applications. In fact, the client
object does not need to be aware that the server ap-
plication which it is accessing is a member of a fault
tolerant group. The client code is identical whether
the client object is connected to an IGOR fault toler-
ant object or a single non-fault tolerant object. Be-
cause of this flexibility, fault tolerance may be added
to the system even after client applications have al-
ready been deployed. This is done by simply re-
placing the non-fault tolerant server objects with their
IGOR fault tolerant counterparts. No code modifica-
tion or recompilation of the client application is re-
quired for the addition of IGOR fault tolerance.

A single IGOR Registry Service acts as the govern-
ing body for fault tolerant group enrollment. The

purpose of the registration process with the IGOR
Reqistry is to ensure that fault tolerant groups consist
of only objects of identical type. The IGOR Registry

is responsible for recording the logical arrangement
and association of all replica groups; of course this
information is persistently stored concurrently in a

redundant object database. To keep track of all the
fault tolerant replica groups the Registry constructs a

binary tree consisting of all groups, this binary tree
being called the Group Tree. A single Group Tree
represents active fault tolerant groups for the entire
IGOR system. The purpose of the Group Tree is
only to facilitate organizing replica groups in a
meaningful fashion to ease the Registry's task of
group management. To arrange group members,
each node on the Group Tree contains a balanced
binary sub-tree of replicas for the group; this sub-tree
is called the Object Tree. An Object Tree logically
represents the group membership of a single fault
tolerant group.

In the event of a Registry failure, a new Registry is
launched and retrieves fault tolerant group informa-
tion from the object database. To further protect the
system, each member of a fault tolerant group caches
a local copy of information regarding the current
status of the group memberships. This decouples the
fault tolerant groups from the Registry, therefore, the
system can continue to operate even in the absence of
the Registry.

A set of IGOR objects harboring methods for fault
tolerance are integrated into server applications, this
alleviates the burden which would otherwise be
placed on the server application to implement all
fault tolerance mechanisms. These IGOR objects
handle fault tolerant group membership related func-
tionality, object monitoring and perform intragroup
communication transparently from within the server
application. IGOR objects have their own CORBA
interfaces and converse amongst each other to per-
form maintenance tasks, such as reconfiguration and
message propagation. Intragroup propagation uses
the branches of the Object Tree (binary tree) as
communication paths to ensure a single and complete
group propagation of all messages. The Object Tree
evenly distributes the burden of messaging to all
group members. The responsibilities of transaction
processing is shared between the IGOR objects and
the server application. The Two-Phase Commit [3]
protocol was used for the transaction processing as-
sociated with object state transfer among replicas.

A system should not render itself inoperable because
of a partial network failures or a few downed com-
puters. Fortunately, IGOR's redundant component
design protects against such problems by automati-
cally reconfiguring itself when failures occur. This is
possible since the IGOR system is self monitoring
and can quickly detect problematic objects and adjust
accordingly.



4. Implementation Experience

Originally, the intention was to have the server appli-
cation inherit fault tolerance mechanisms through a
standard IGOR Object (C++ base class) with a
CORBA interface. The inheritance approach proved
to be infeasible due to some limiting constraints of
the CORBA standard. Inheriting the IGOR Object
class would entail inheriting both its IDL interface
and the code associated with its fault tolerant mecha-
nisms into a server application (which has its own
IDL interface and associated code). In its current
state, CORBA does not support multiple implemen-
tation interface inheritance within a single object.
CORBA does support multiple interface inheritance
within IDL, however, applications cannot inherit
from multiple implementations of interfaces.

Consequently, we decided to incorporate the IGOR
Object within the server application as a class mem-
ber. Although not the original intent, inclusion of the
IGOR Object as a class member yields a tightly cou-
pled link between the server application and the
IGOR Object. As a result, management of fault tol-
erant operations are largely performed by the IGOR
Object on behalf of the server application, despite the
inability to directly inherit such functionality. Cou-
pling of the IGOR and server objects fuse the two
objects together with interaction between them medi-
ated by standard C++ method invocations. On the
other hand, each object uses its own CORBA inter-
face for remote communications.

As much fault tolerant code as possible has been off-
loaded to the IGOR Object. Unfortunately all the
fault tolerant code cannot be handled by the IGOR
Object alone. Certain aspects of server specific in-
formation (server's mutable state) must be handled by
the server application in conjunction with the IGOR
Object's involvement. The server's object state type
cannot be known to the IGOR Object. Although the
IGOR Object plays an important role in maintaining
the data synchrony of the fault tolerant group, it does
it somewhat blindly with respect to the actual data
that is being transmitted. The IGOR Object knows
nothing of the server’s data, but it takes control of
moving the data by instructing the server with respect
to where to send or get state information. Again,
intragroup state exchanges follow the branches of the
Object Tree for communication.

Installing IGOR fault tolerance into a server applica-
tion requires inheritance of a transaction processing

class and creation of additional proxy methods to aid
the IGOR Object in intragroup data transfer and
transaction processing. Such proxy methods would
not be required if direct object implementation in-
heritance was possible. Also, an object state class
called StateKeeper is inherited, which contains meth-
ods for mutex locking and unlocking to protect the
object’s state from multiple thread access.

5. Conclusion

Conception of IGOR was a result of the need for fault
tolerance in a standard operating environment.
CORBA provides the means to realize fault tolerant
distributed systems; IGOR capitalizes on the power
and flexibility of CORBA to provide tools to aid in
the creation of a fault tolerant system.

We were successful in completely isolating the client
applications from all fault tolerance mechanisms by
embedding fault tolerance functionality into the

server applications, using pre-defined IGOR objects
to perform a majority of the work.

Hopefully, CORBA's evolution will encompass the
capabilities that make the design of fault tolerant
systems less complex and less performance costly.

References

[1] Robert Orfali, Dan Harkey and Jeri Edwaiiise
Essential Distributed Objects Survival Guide
John Wiley & Sons, Inc. 1996.

[2] Object Management Grouphe Common Object
Request Broker Architecture and Specification
Revision 2.0, July 1995.

[3] Jean BacorConcurrent Systems: An Integrated
Approach to Operating Systems, Database, and
Distributed System#\ddison-Wesley Publishing
Company, 1992.

[4] George Coulouris, Jean Dollimore and Tim
KindbergDistributed Systems, Concepts and De-
signs Second Edition. Addison-Wesley Pub-
lishing Company, 1994.

[5] University of TennesseeMPl: A Message-
Passing Interface Standgriflay 5, 1994.

[6] Visigenic Software, Inc.VisiBroker for C++
Programmer's GuideOctober 1996.



