
2007 USENIX Annual Technical
Conference 70

Andrew Baumann

Francis David

Peter J. Desnoyers

Xiaoning Ding

Rik Farrow

Minas Gjoka

Ramakrishna Kotla

Jan Stoess

Linux Symposium 2007 93
Rick Leir

70 ; L O G I N : V O L . 3 2 , N O . 5

conference reports

TH A N KS TO O U R S U M M A R I Z E R S

2007 USENIX Annual Technical Conference
Santa Clara, CA
June 17–22, 2007

K EY N OTE A D D R E S S

� The Impact of Virtualization on Computing
Systems
Mendel Rosenblum, Stanford University

Summarized by Francis David (fdavid@uiuc.edu)

Mendel Rosenblum began by describing what vir-
tualization means and identified several important
properties that can be attributed to a virtualization
system. Hardware is multiplexed or partitioned
among multiple virtual machines. Isolation and
encapsulation provided by a virtual machine de-
couple it from the hardware and allow for opera-
tions such as suspending and resuming a virtual
machine or migrating it from one physical com-
puter to another.

VMWare Workstation now supports some inter-
esting new functionality. It is possible to record
and play back execution events in a virtual ma-
chine with low overhead, something that may
prove invaluable for debugging systems. Virtual
Infrastructure is yet another product that supports
suspending, migrating, and resuming of virtual
machines. Virtualization fuels a changing view of
hardware in a data center. Compared to a tradi-
tional architecture with individual services tied to
individual machines, virtualization enables a vir-
tual server environment where all physical hard-
ware is pooled together, allowing for quick and
easy reconfiguration of resources available to a
service in response to the load experienced. High
availability is achieved because the loss of a physi-
cal server can be compensated by running virtual
servers on the remaining hardware. Consolidation
of virtual machines onto a minimal set of physical
machines results in significant energy savings, be-
cause the unused physical machines may be pow-
ered down. Most of these features are automati-
cally managed by VMware’s product and are ex-
tremely easy to configure, involving a single check
box in a GUI in most cases.

Modern operating systems have evolved to
achieve the goal of supporting as many applica-
tions as possible while simultaneously providing
security, reliability, manageability, and good per-
formance. These driving forces, together with the
need for innovation, have resulted in complex op-
erating systems. Virtualization technology has re-
sulted in a change in the view of the role of an op-
erating system. An operating system running in a
virtual machine doesn’t need complex hardware

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 71

management and does not have to support a broad range
of applications. The OS starts to look like a library that is
bundled together with an application, and these virtual
machines are termed virtual appliances. This concept is ex-
pected to have a big impact on the way software is distrib-
uted. Work on the Terra system at Stanford focuses on
using different operating systems to support different
classes of applications in a virtualized environment. Thus,
virtualization provides us with renewed opportunities to
improve the efficiency, reliability, and security of system
software.

In response to a question about increases in complexity of
the virtual machine monitor because of the need to add
more device drivers into it, Mendel stated that they expect
to build better systems now that they have learned from
past mistakes. Also, exploiting new hardware features such
as an IO-MMU allows VMWare to reduce the number of
drivers that affect the reliability of the system. Andrew
Tanenbaum argued that virtualization technology bears
significant similarity to microkernels. I asked Mendel
whether virtualization has a place in a desktop computer
and whether the need for sharing will result in the break-
down of the barriers erected between virtual machines. He
replied that the significant sharing among applications
today may have been a bad idea to begin with and starting
all over again using virtualization may be a reasonable ap-
proach going forward. Rik Farrow questioned whether
running applications within a VM really provided any ad-
ditional security to the application and whether using a
virtual appliance was the right granularity for a protection
domain. Mendel said that in many cases it is not.

TR I C KS W ITH V I RT UA L M AC H I N E S

Summarized by Francis David (fdavid@uiuc.edu)

Energy Management for Hypervisor-Based Virtual Machines

Jan Stoess, Christian Lang, and Frank Bellosa, University of
Karlsruhe, Germany

Jan Stoess started the presentation by highlighting the im-
portance of energy management in operating systems. Al-
though there are several existing approaches to OS-di-
rected energy management, modern virtual machine (VM)
environments present a unique challenge to energy man-
agement because of their distributed and multilayered soft-
ware stack. A distributed energy accounting scheme is pro-
posed that delegates energy management to a host-level
component and a guest-OS-level component.

The host-level energy manager collects energy usage infor-
mation from all device drivers and tracks energy usage for
individual VMs. The guest OS energy manager uses virtu-
alized energy accounting to provide fine-grained applica-
tion-level energy management. In a prototype implementa-
tion using L4 and paravirtualized Linux guests, energy ac-
counting was performed for the CPU and disk. CPU en-

ergy consumption was estimated by using processor per-
formance counters for various events. A weighted sum of
the various counted events is used to obtain the processor
energy consumption. Disk energy accounting uses a time-
based approach. Request transfer time is used to directly
compute energy usage. Both the CPU and disk energy
models also account for idle usage.

Recursive, request-based energy accounting is used to ac-
curately measure the energy spent by each virtual machine.
This is important because a virtual device may map to
multiple physical devices. For example, energy consump-
tion of a virtual disk is a combination of the energy con-
sumption of the physical disk and the CPU energy con-
sumption of the virtual disk driver. The hypervisor also
supports throttling of CPU allocation and shaping of disk
requests to regulate energy consumption of virtual ma-
chines.

Experiments show that the energy accounting models are
quite accurate and that host-level and guest-level enforce-
ment of energy constraints works well. In the future, Jan
hopes to support fully virtualized systems and multimodal
devices such as multispeed disks.

A member of the audience pointed out that the disk energy
accounting model does not consider spin-up and spin-
down costs. In response to a question about energy con-
straints not resulting in fair sharing of time, Jan stated that
it probably makes more sense to change scheduling algo-
rithms to provide fair and managed sharing of energy
rather than time.

Xenprobes, a Lightweight User-Space Probing Framework
for Xen Virtual Machine

Nguyen Anh Quynh and Kuniyasu Suzaki, National Institute of
Advanced Industrial Science and Technology, Japan

Nguyen Anh Quynh presented research on Xenprobes, a
framework for probing inside virtual machines. The prob-
ing framework is based on the Xen virtualization system
and allows users to register probe handlers for arbitrary in-
struction addresses in a Xen virtual machine. For example,
a handler can be registered for the mkdir system call on a
Linux virtual machine to intercept all such system calls on
the Linux VM.

Xenprobes exploits the debugging architecture of Xen to
inject software breakpoints into the probed VM. Unlike the
Kprobes framework, which is tied to Linux, Xenprobes can
work with any guest OS supported by Xen. Also, probe
handlers can be written in userspace instead of in kernel-
space as required by Kprobes. Two types of probes are sup-
ported. An XProbe is a pair of handlers that are called just
before and just after a probed instruction is executed. It is
possible to register null handlers. XrProbe handlers are in-
voked at the beginning of a function and when it returns.
XrProbes allow for examining function call arguments and
return values. All probes have full access to VM memory.

The probing process starts with probe registration, which
is managed by the framework. Multiple probes at the same
address are supported. Probes can be enabled and disabled
individually and also from within other probe handlers.
All probes are removed when the VM shuts down. Micro-
benchmarks show that injecting probes into a VM causes
a large overhead; the null syscall takes 400 times longer
when using an XrProbe and 180 times longer when using
an XProbe with one handler. A macrobenchmark that ex-
amined the time to decompress the Linux kernel with
probes placed in the mkdir, chmod, and open syscalls has
more reasonable performance. XProbe and XrProbe experi-
ence 6% and 39% increases in execution times, respec-
tively.

A member of the audience pointed out that the code-modi-
fying approach used by the probing framework for break-
points will not support OS code that checksums itself for
verifying integrity.

Virtual Machine Memory Access Tracing with Hypervisor
Exclusive Cache

Pin Lu and Kai Shen, University of Rochester

Pin Lu addressed the issue of estimating the optimal
amount of memory that should be allocated to virtual ma-
chines (VMs). The hypervisor does not normally have ac-
cess to information about memory usage inside a VM. In
order to obtain information about VM memory usage, Pin
advocates that part of the memory that would normally be
allocated to the VM be used as a hypervisor cache of VM
memory. The cache is designed to contain items that are
evicted from the VM memory (exclusive cache). It can be
shown that when using LRU for replacement, the hypervi-
sor cache approach does not incur any extra misses when
compared to the normal allocation of that memory directly
to the VM.

The use of the hypervisor cache enables the use of cache
miss ratio curves for direct memory allocation to virtual
machines. In particular, this scheme allows the determina-
tion of cache miss behavior when using memory sizes that
are less than the current allocation. The memory allocation
to individual VMs is dynamically adjusted, with the objec-
tives of minimizing the geometric mean of each VM’s miss
ratio and ensuring that there is a bounded performance
loss for each VM when being allocated less memory than
its baseline allocation.

The proposed design is not fully transparent, as it requires
that the OS notify the hypervisor when there is a page
eviction from VM memory. Also, there is some overhead
because of page copying and management of the cache. A
prototype system was constructed using the Xen virtual
machine. Experiments show that the throughput degrada-
tion for several non-CPU-bound workloads is less than
20%. Experiments also show that the miss ratio curve pre-
diction is reasonably accurate as well. In a multi-VM ex-
periment, the system correctly reallocates memory to sub-

stantially reduce the systemwide page-miss metric.

Pin compared his work with VMWare’s ESX server.
VMware’s ESX server only estimates the working set size
and uses that measurement to allocate memory. Experi-
ments show that accessing a large segment of memory se-
quentially without any reuse causes ESX server to allocate
large amounts of memory even though the extra memory
allocation does not reduce cache misses.

I N V ITE D TA L K

Life Is Not a State-Machine: The Long Road from Research
to Production

Werner Vogels, VP and CTO, Amazon.com

Summarized by Ramakrishna Kotla (kotla@cs.utexas.edu)

Werner Vogels started this talk by introducing himself as a
“recovering academic,” to emphasize his theme: Why it is
hard to take research ideas into production systems, and
what can be done about it? His talk mainly focused on is-
sues involved in building and deploying large-scale distrib-
uted systems while presenting examples in a wide range of
fields to draw analogies.

Werner noted that incremental scalability is the key to
building and deploying production-grade large-scale dis-
tributed systems such as the one that they have at Ama-
zon.com, which supports seven Web sites with 63 million
customers, 1.1 million active sellers, 240,000 Web service
developers, 14,000 employees, and 20 fulfillment centers.
He defined scalability of a system as the ability to: (1) pro-
vide increased performance with increasing resources;
(2) provide always-on service; (3) handle heterogeneity;
(4) be operationally efficient; (5) be resilient to failures;
and (6) be cost-effective as the system grows.

Werner stressed the point that it is very hard to take re-
search ideas into production, presenting many examples
and explaining the reasons for this problem. He noted that
it usually takes about 20 years before a research idea gets
adopted into mainstream systems—for instance, the
spreadsheet and the Web. He then explained how hyper-
links and markup languages were developed in the mid-
1960s, TCP/IP-based networks came to life in the 1970s,
and it wasn’t until the mid-1990s that the combination of
these three turned into the Internet and Web that we use
today.

He then pointed out several important reasons behind the
slow adoption of research ideas: (1) making unrealistic as-
sumptions about system characteristics and the environ-
ment; (2) not accounting for uncertainty in the real world;
(3) multiple differing research approaches in solving a
problem.

He pointed out that research in the academic world fo-
cuses on the details of the technology itself and is not very
focused on the application context of the technology,

72 ; L O G I N : V O L . 3 2 , N O . 5

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 73

which results in slow or no adoption of these ideas in pro-
duction systems. For example, many research approaches
assume failures are uncorrelated, whereas correlated fail-
ures do happen in reality. Next, he explained that many
systems fail to take into account the uncertainty that is
present in large-scale systems that are complex and nonde-
terministic in nature. Finally, he pointed out that having
differing and competing approaches in the research com-
munity makes it harder for system builders to choose the
right approach to solve their problems.

Werner suggested that systems should involve fewer as-
sumptions and explicitly account for uncertainty so that
they can be easily adopted and deployed in real-world ap-
plications. He suggested using Occam’s Razor to select the
approach with fewest assumptions when there are compet-
ing approaches.

Werner Vogels maintains his personal blog at http://www
.allthingsdistributed.com.

N E T WO R K M O N ITO R I N G A N D M A N AG E M E NT

Summarized by Andrew Baumann
(andrewb@cse.unsw.edu.au)

Hyperion: High Volume Stream Archival for Retrospective
Querying

Peter Desnoyers and Prashant Shenoy, University of Massa-
chusetts

Awarded Best Paper!

Peter Desnoyers presented this paper on Hyperion, a high-
performance packet monitor that keeps a packet history,
enabling new capabilities in network forensics and man-
agement. The primary challenge for the system was han-
dling high packet rates while supporting online querying
and indexing and running on commodity hardware.

To support the unusual workload, which required guaran-
teed write throughput but also included read activity, the
authors implemented a specialized filesystem named
StreamFS. StreamFS is log-structured but does not use a
cleaner; instead, it performs its own data aging simply by
overwriting old data as needed. It also interleaves slower
and faster tracks on the disk to achieve balanced write
speeds.

To support fast querying, Hyperion uses a multilevel index
structure based on signatures. Use of the Bloom filter signa-
ture ensures that signature queries have no false negatives.
Finally, a distributed index layer is provided to distribute
summaries of index data to other nodes, allowing for faster
queries in a multinode network monitoring system.

Benchmarks show that the full system runs on commodity
hardware with negligible packet loss up to 175,000 packets
per second, at which point it became CPU-bound. With
faster hardware, the authors expect to achieve even higher
throughput. The questions that were asked focused mainly
on possible optimizations to and uses for the system.

Load Shedding in Network Monitoring Applications

Pere Barlet-Ros, Technical University of Catalonia; Gianluca
Iannaccone, Intel Research Berkeley; Josep Sanjuàs-Cuxart,
Diego Amores-López, and Josep Solé-Pareta, Technical Univer-
sity of Catalonia

This paper, presented by Pere Barlet-Ros, covered the prob-
lem of how to manage overload in continuous network-
monitoring applications. These applications are difficult to
construct, owing to the unpredictable nature of network
traffic, the increasing processing requirements involved,
and the problem of efficiently handling extreme overload
situations, which is necessary because overprovisioning is
not feasible. The general approach is to shed load when
necessary, to get the best possible quality of query results.

The system they have developed extends Intel’s CoMo
(continuous monitoring), which is a modular passive
monitoring system. Modules may perform any amount of
processing work. The problem is to manage the CPU usage
of the whole system while treating modules as black boxes.
The load-shedding scheme automatically finds correlations
between network traffic features and the CPU usage of
query modules, uses those correlations to predict the CPU
load of future queries, and uses that prediction to guide
load shedding.

About 50 query-agnostic network traffic features are used;
they are lightweight and have a deterministic worst-case
computational cost. A linear regression is performed to
correlate features to observed CPU load. This regression is
expensive to compute, so a feature-selection algorithm is
used to remove irrelevant and redundant predictors, result-
ing in two or three relevant features per query.

Load shedding occurs when the total CPU load predicted
for all queries exceeds the available cycles; each query can
select packet- or hash-based flow sampling when load
shedding is required. Results show that the predictive
load-shedding mechanism is much better than the usual
reactive load-shedding. Future work includes developing
load-shedding techniques for queries that are not robust
against sampling, and applying similar techniques to man-
age memory and disk load. The source code is available
from http://loadshedding.ccaba.upc.edu/.

Configuration Management at Massive Scale: System Design
and Experience

William Enck and Patrick McDaniel, Pennsylvania State Uni-
versity; Subhabrata Sen, Panagiotis Sebos, and Sylke Spoerel,
AT&T Research; Albert Greenberg, Microsoft Research; Sanjay
Rao, Purdue University; William Aiello, University of British
Columbia

William Enck presented this work on managing complex
router configuration files at massive scale, such as at a
large ISP. Precise specifications for individual routers are
hard to create, and the level of complexity can be over-
whelming. This leads to cut-and-paste errors. Current au-
tomated solutions such as network management tools

don’t account for so-called dirty input data, which can re-
sult in a syntactically correct configuration but incorrect
operation. The proposed solution is to use a template lan-
guage to establish consistent device configurations and
to follow an iterative approach, where users validate the
data inputs. This has been implemented in a tool named
PRESTO.

In PRESTO, code snippets for router configuration scripts
are defined in active templates, which are close to the sys-
tem’s native configuration language. However, PRESTO is
also a framework for data modeling. The information used
to evaluate configuration templates is stored in an SQL
database; as well as simple value expansion, template code
can be repeated for multiple database rows, and database
values can also be used as conditions and arguments to
functions. The master template is constructed from a series
of “configlets,” allowing composition of configurations. To
manage the dirty data problem, a two-step architecture al-
lows users to first supply the input data and then validate
the output.

The PRESTO tool is now in use for many applications, and
anecdotal evidence suggests that the two-step process
helped to solve the dirty-data problem. Asked whether a
better router command language would obviate the need
for such a tool, William responded that centralized control
and a multistage process to avoid dirty data would both
still be necessary, and that the use of templates allowed
network architects to select specific optimizations for dif-
ferent situations.

I N V ITE D TA L K

Exploiting Online Games

Gary McGraw, Cigital

Summarized by Jan Stoess (stoess@ira.uka.de)

Gary McGraw described the difficulties of attaining secu-
rity for online games. Because online games are distributed
programs that rely on client-side software, securing them
remains a challenging problem. Gary referred to the prob-
lem as the “trinity of trouble”: online games usually have a
permanent connection to the Internet, they are complex
entities consisting of massively distributed code, and they
typically evolve on the fly in completely unexpected direc-
tions.

Gary emphasized, however, that online games act as a bell-
wether for other distributed systems, since they have a
large and growing user community, and since they have
become a considerable economic factor. World of Warcraft,
the most widely used online game, is typically being
played by hundreds of thousands of users simultaneously.
With eight million registered users worldwide, the revenue
from subscriptions alone already adds up to $1.3 billion,
let alone the price to purchase the game itself. There also
exists a significant middle market for selling transferable

game items such as game weapons or skills. As a result,
cheating and breaking online games has an economic as-
pect, since it allows traders to shortcut the tedious acquisi-
tion of valuable items.

Gary then asked whether discussing exploits publicly was
actually a bad idea, given that it may spread abusable
knowledge, and given that people may suffer from conse-
quences for publicizing exploits, such as Dan Farmer, who
was fired by SGI for releasing the SATAN suite. Gary ar-
gued that such discussion was still necessary, because oth-
erwise the mechanisms to secure online games would be
inefficient. To his own regret, the public is interested
mostly in the breaking of systems, less so in their securing.

Gary then explained that current legislation mostly aims at
counteracting privacy rather than preventing fraud. How-
ever, game-cracking used to be a serious problem and can
nowadays easily be prevented via online verification. The
current laws are therefore inappropriate to counter online
fraud; in fact, game cheating is not even considered illegal.
As a result, game companies typically use end-user license
agreements (EULAs) with special clauses against fraud.
But EULAs are problematic, since no one really reads
them, and since many companies use egregious types of
EULAs, whose conformity with the laws is more than
questionable: Sony’s EULA allows a rootkit to be installed
on the client; Blizzard allows monitoring by means of spy-
ware; Gator even disallows the removal of the software.

Gary then again illustrated the emerging economic impor-
tance of online games: The game market is expected to
grow from $6 billion in 2005 to $12 billion by 2010.
Games have become a field of study for economists, and
there exist exchange rates converting the virtual currency
of online games into real currencies. There also exist thriv-
ing secondary markets, where game items are sold for
prices up to $100,000, and where over half a million Chi-
nese people earn regular income as game item providers,
sleeping in cots near the computer between their work
shifts.

Gary then explained how game cheats work. There are ba-
sically two kinds of techniques, exploits and bots. Exploits
leverage game bugs to induce unintended game behavior
(e.g., teleporting). Bots perform legal inputs but in an au-
tomated fashion, to allow the acquisition of game items
that would otherwise require tedious human interaction.
Simple bots inject keystrokes and mouse movements to
repeatedly perform an action until a certain skill has been
achieved. More complex tools directly read or write mem-
ory locations, inject cheating functionality into system li-
braries, or hijack the game’s system thread to call internal
functions directly. Some state-of-the art tools rely on multi-
ple cores, transparently transferring control from an un-
modified game thread to a modified instance on a different
core.

Gary outlined the way to overcome the security problems
of online games. His approach is founded on three pillars

74 ; L O G I N : V O L . 3 2 , N O . 5

that should govern the design of secure software architec-
tures: a risk management framework, software security
touchpoints, and knowledge. Software security touch-
points denote the phases and points during the software
design process where developers should think how the
system may be exploited. For further reading, Gary re-
ferred to his book, Software Security, published by Addi-
son-Wesley.

In response to a question about why one would use a dual-
core system to exploit a game rather than a kernel debug-
ger, Gary said that programming at user level was less
complex than in-kernel development. Another questioner
wondered whether virtualization could help in preventing
hacking of online games. Gary responded that this may be
the case in the beginning, but eventually there will be ex-
ploits for virtual machine systems. Finally, Gary was asked
where the name “warden” came from in Blizzard. Gary
said that it was named like this in the EULA itself.

P RO G R A M M I N G A B STR AC TI O N S F O R N E T WO R K S E RV I C E S

Summarized by Peter J. Desnoyers (pjd@cs.umass.edu)

Events Can Make Sense

Maxwell Krohn, MIT CSAIL; Eddie Kohler, University of Cali-
fornia, Los Angeles; M. Frans Kaashoek, MIT CSAIL

Maxwell Krohn presented Tame, a new programming
model for event-based applications which attempts to
combine the (relative) ease of programming associated
with thread-based models of concurrency with the power
and responsiveness of events. The primary difficulty in
event-based programming has been termed “stack ripping”
by Adya et al. (USENIX Annual Tech ’02) and was illus-
trated with an example of a simple function with several
blocking operations; putting this in event-based form re-
quired splitting it into a separate function per blocking
point, turning a five-line function into half a screen of
code. Other common operations are difficult to express
with threads; however, an example of performing multiple
blocking operations in parallel was given (with the same
function) and required a full screen of bookkeeping code.

Tame is implemented as a source-to-source translator and
a set of C++ libraries, and it provides a simple set of primi-
tives for high-performance network programming that are
designed to provide the expressiveness and performance of
events, combined with the readability of threaded code.
The four primitive types are events (e = event<>;), wait
blocks (twait{..code..}), variable closures (tvars{..decls..}),
and rendezvous objects (rv = rendezvous<>;). An event can
be triggered (e.trigger();), and a twait block will execute all
the statements within the block and then wait until all
events that were created during block execution have been
triggered. tvar is used to declare heap-based local variables
that will survive across calls to twait. Finally, rendezvous
objects provide finer-grained control over waiting. The ex-

ample given was maintaining a window of outstanding op-
erations, which could be done in a straightforward fashion
using rendezvous.

Results compared Tame with Capriccio, a high-perform-
ance thread package, measuring threaded and Tamed ver-
sions of a small Web server. Throughput was equivalent,
and Tame memory consumption was much lower (3x
physical and 5x virtual), owing to its use of a single stack.
An informal user study of usability was performed by giv-
ing students an assignment where half used Tame and the
other half libasync; Tame users averaged 20% fewer lines
of source and 50% fewer lines of header files. Tame is in
production use in OKWS, an event-based server, and on
the okcupid.com commercial Web site.

Tame was described as continuing Adya et al.’s work on
threads and events and making practical some ideas from
Haskell and Concurrent ML. Other related work included
protothreads, Duff’s device, and the porch checkpointer.
Code is available at www.okws.org, and Eddie Kohler’s
fork can be found at www.read.cs.ucla.edu/tamer.

Greg Minshall asked about several sources of possible pro-
gramming errors (functions returning at wait points and
long twait blocks). The response was that the first was no
worse than the same logic in threads, and the second was
bad programming practice. Another question elicited the
advice that it is a good idea for caller functions always to
create new events to pass to callees. Finally, Oleg Kiselyov
pointed out that Tame events were first-class delimited
continuations, which was related to some issues prevent-
ing exceptions from being used in Tame.

MapJAX: Data Structure Abstractions for Asynchronous
Web Applications

Daniel S. Myers, Jennifer N. Carlisle, James A. Cowling, and
Barbara H. Liskov, MIT CSAIL

Daniel started by explaining how AJAX applications work,
and just how dreadful the programming environment is for
creating a Web application that responds quickly to user
input by fetching server-side data. He then presented Map-
JAX, a language for this purpose implemented as a small
set of Javascript extensions, with source-to-source transla-
tion producing pure Javascript. MapJAX provides threads,
locks, and a simple map object for accessing server-side
data. In addition, for performance MapJAX includes paral-
lel for loops and integrated caching and prefetching of map
data.

The core language object is a read-only key-value map as-
sociated with a server URL, which supplies values to pop-
ulate the map. Values are retrieved on demand and cached.
In addition a user-defined prefetch method can be associ-
ated with a map to provide a list of prefetch keys based on
request history.

After describing the parallel for primitive, pfor, Daniel
pointed out problems with results being returned in arbi-

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 75

trary order, and the difficulty of preventing this with locks
without eliminating parallelism. Instead, MapJAX provides
an RLU (reserve/lock/unlock) lock, where each loop of the
pfor can reserve a position in the lock queue and only take
the lock after the blocking call has returned. After a brief
implementation description, the remainder of the talk fo-
cused on two test applications that were implemented both
with MapJAX and manually with standard AJAX tech-
niques—a search/suggest application such as Google Sug-
gest and a map viewer modeled on Google Maps.

Network latency and several different bandwidth levels
(256 to 4096 kb) were provided by dummynet, and la-
tency results were presented. The request/response applica-
tion was very latency-sensitive, with small requests, and
AJAX and MapJAX performances without prefetching were
similar. However, prefetching gave the MapJAX implemen-
tation a significant benefit at higher bandwidths. The map
application was much more bandwidth-intensive (4.8K per
image tile). With prefetching, MapJAX performance was
similar to AJAX at low bandwidth and showed a slight im-
provement at 1 mb/s, but increased to a 20:1 difference in
latency at 4 mb/s.

Related work includes a number of libraries for AJAX de-
velopment, although none of these provides thread or
locking features. The RLU lock appears to be novel in this
work. TAME was also mentioned as being somewhat re-
lated. A number of future enhancements are planned: net-
work speed characterization and adaptive prefetching
based on this, persistent caching on the client, and muta-
ble server-side data structures.

Geoff Kuenning (Harvey Mudd) expressed the concern
that the intriguing RLU lock added another way for pro-
grammers to screw something up (locking) that was al-
ready hard enough. What if you never act on the reserva-
tion? The authors’ reply was that a wait/notify mechanism
might be possible. Mike Swift (University of Wisconsin)
asked whether they had found any painful limitations in
Javascript; they hadn’t, although there were weird imple-
mentation problems such as nested functions being exces-
sively slow.

Sprockets: Safe Extensions for Distributed File Systems

Daniel Peek, Edmund B. Nightingale, and Brett D. Higgins,
University of Michigan; Puspesh Kumar, IIT Kharagpur; Jason
Flinn, University of Michigan

Daniel Peek presented Sprockets, a system for implement-
ing extensions (such as loadable Apache modules) in a
safe fashion, unlike other user-space mechanisms, many of
which seem to require a tradeoff between performance
without safety (using dynamic loading and direct linkage
in the same address space) and safety without performance
(forking isolated processes).

Sprockets was developed to support extensions to the En-
semBlue distributed file system (e.g., to support camera

protocols and MP3 metadata). These can be implemented
by extending a user-space server, but safety was essential
to avoid corrupting the entire distributed file system. The
result is Sprockets, which uses binary rewriting to safely
run extensions within the address space of the invoking
application. Sprockets has three goals: safety, upgradability,
and speed. Extensions should only change state in the core
system via return values, and they cannot cause externally
visible effects. The system must be easy to add to, and ex-
tensions must be easy to implement. Because extensions in
EnsemBlue are often invoked very many times, the per-in-
vocation costs should be minimized.

Existing alternatives were contrasted: direct dynamic load-
ing (fast and totally unsafe), fork and exec (difficult to use
because of IPC, slow, and do not eliminate safety issues re-
sulting from system calls), and fork without exec (easier to
use, but still slow and with syscall safety issues). Sprockets
executes extensions in the invoking process address space,
with no OS intervention, using binary instrumentation. It
uses the Pin tool from Intel and the University of Colorado
(rogue.colorado.edu/pin), which dynamically rewrites code
and caches it. This allows extension code to safely call core
routines, as the core routines will be rewritten and cached
when executed as an extension.

Rewriting is used to validate system calls and their argu-
ments, and to trace memory writes to the core application
address space, keeping a log of these writes so that the
original contents can be restored. To speed up the logging
process, inline checks are added to avoid logging the
sprocket stack and other known safe areas. Sprockets
guards against the following extension bugs: memory
leaks/memory stomping (via log/restore), segfault (via sig-
nal handler), infinite loops (via timer and signal handler),
and mishandled file descriptors (a sprocket can only
read/close files it opened, which are automatically closed
when it finishes). To keep threads from seeing changes
caused by misbehaving sprockets, all application threads
are halted before entering a sprocket.

Evaluation was performed by developing and testing three
different sprockets, as well as some nonsprocket versions.
To test safety, different bugs were injected into the exten-
sions; procedural extensions caused application failure in
all cases, fork with no exec did not catch the bad system
call, and sprockets caught all of them. Measured execution
time for a single extension call was 500 to 750 ns for the
extensions tested, contrasted with 1.5–3 ms for the fork/no
exec versions of the same functionality. This was consid-
ered adequate performance for a system providing strong
safety guarantees.

The first question asked about extensions generating code.
Pin handles this and will happily rewrite and instrument
the generated code. Since Daniel mentioned that Sprockets
was not totally safe against malicious extensions, Andrew
Baumann (University of New South Wales) asked just

76 ; L O G I N : V O L . 3 2 , N O . 5

what they could do; they could try to undermine a mecha-
nism such as the undo log, and this might be preventable
with some additional checks. George Forman (HP) asked
whether a copy-on-write address space could be used for
multiple sprockets. The authors haven’t looked at this but
have considered transactional memory.

I N V ITE D TA L K

Second Life

Rob Lanphier and Mark Lentczner, Linden Lab

Summarized by Xiaoning Ding
(dingxn@cse.ohio-state.edu)

The two speakers introduced Second Life (SL) and demon-
strated its features using an SL avatar. Then the speakers
introduced the architectural changes of the distributed sys-
tem used by SL. Second Life is a metaverse or a virtual
world. The speakers emphasized that SL is not a game, al-
though users may play games in it. SL provides an engine
for users to create content in it.

SL is a big system and is still growing rapidly. To illustrate
how big the system is, the speakers gave the following
numbers. In the system, as many as 100 million SQL
queries are made each day, over 45 TB of data have been
created by the users, the peak bandwidth reaches 10 Gbps,
and 1 PB of traffic is generated each month. The big sys-
tem supports a tremendous number of activities of a large
population. SL has 7.2 million registered accounts, of
which about half a million are active residents. More than
60% of residents in SL participate in content creation. This
is very different from other platforms. For example, most
people read Web pages, but only about 10% of people cre-
ate Web content. People in SL build items, exchange items,
buy and sell items, and have a GDP of 40 million U.S. dol-
lars. SL has its own virtual currency, the Linden dollar
(L$), which is exchangeable for U.S. dollars. There are 1.9
billion Linden dollars in circulation. Some people even
make real money through the virtual world.

The primitive SL system consists of viewers, simulators, a
spaceserver, and a userserver. Viewers comprise client-side
software running on users’ computers. Simulators are
server processes running on machines called sim nodes.
Each simulator simulates one geographic region. When an
avatar moves to a new region, the sim node may be dy-
namically changed. In the architecture, spaceserver han-
dles message routings and userserver handles user logins
and instant messages. The primitive architecture was im-
proved by adopting a central mysql database and a data-
base server, which performs queries for the simulators.
The architecture also introduced an HTTP server and a
mail server to increase the functionality of SL. These two
servers, together with sim nodes and the userserver, were
connected to the central database.

The architecture currently used by SL is similar to the ar-
chitecture just described. The most important change is to
improve the scalability of the database system by cluster-
ing and partitioning. Other changes include the use of an
individual login server to handle user authentication, etc.
In the current architecture, all sim nodes are connected to
the databases. When the sim nodes are in remote physical
locations from the databases, accessing databases becomes
a performance bottleneck. Moreover, a database failure
may affect all sim nodes. In the future, the architecture
will be changed significantly, so that viewers are connected
directly to agent domains and region domains. An agent
domain includes the data storage system and computers
responsible for handling avatars, including their invento-
ries. A region domain includes the data storage system and
computers for simulating the environment and physics of
multiple regions. By using the domains, the data and com-
munications are localized and both scalability and avail-
ability may be increased.

D I STR I B UTE D STO R AG E

Summarized by Xiaoning Ding
(dingxn@cse.ohio-state.edu)

SafeStore: A Durable and Practical Storage System

Ramakrishna Kotla, Lorenzo Alvisi, and Mike Dahlin, The
University of Texas at Austin

Awarded Best Paper!

Ramakrishna presented a distributed storage system called
SafeStore, which is designed to maintain long-term data
durability practically despite a broad range of threats such
as hardware and software faults, operator errors, attacks,
and disasters. SafeStore maintains data durability by apply-
ing fault isolation aggressively. It spreads data redundantly
across multiple autonomous storage service providers
(SSPs) to prevent data loss caused by physical, geographi-
cal, and administrator faults. It restricts the interface be-
tween the data owner and the SSPs to guard data stored at
SSPs against faults at the data owner site. Outsourcing data
storage to SSPs also reduces hardware and administrative
costs by exploiting economies of scale. The challenge of
using SSPs is that the users have only limited or no control
over SSPs. To achieve high end-to-end durability practi-
cally, SafeStore uses the following techniques.

First, it spreads data efficiently across autonomous SSPs
with an informed hierarchical coding scheme. SafeStore
uses both inter-SSP and intra-SSP redundancy; that is, it
first stores data redundantly across different SSPs and then
each SSP replicates data internally. The informed hierarchi-
cal coding scheme deals with the problem of distributing
overall redundancy optimally between inter-SSP and intra-
SSP redundancies. Under the scheme it is assumed that
each SSP exposes a set of redundancy factors it supports
and the data owner can control intra-SSP redundancies by

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 77

choosing a factor. The scheme first maximizes inter-SSP re-
dundancy heuristically, by choosing minimal intra-SSP re-
dundancies. Then it distributes the remaining redundan-
cies uniformly across intra-SSP redundancies. The heuris-
tic is based on the intuition that the durability depends
mainly on maximizing inter-SSP redundancy and is only
slightly affected by intra-SSP redundancies. The informed
hierarchical coding scheme can achieve close to optimal
durability.

Second, SafeStore performs an efficient end-to-end audit
mechanism on SSPs. The audit mechanism quickly detects
data losses at SSPs, so that data can be recovered before
unrecoverable loss happens. In the audit mechanism, the
auditor sends the SSP a list of object IDs and a random
challenge. The SSP computes a cryptographic hash on
both the challenge and the data and then sends the infor-
mation back. The auditor randomly spot-checks a portion
of the objects by retrieving the corresponding data and
verifying the cryptographic hash. SafeStore classifies SSPs
into three groups: honest and active SSPs, which verify
data integrity proactively and notify data losses; honest
and passive SSPs, which rely on audit to check data in-
tegrity; and dishonest SSPs, which may lie even if data is
lost. Regular audits detect data losses quickly with passive
SSPs and spot-checks detect dishonest SSPs with high
probability. The audit mechanism is cost-effective because
most of the audit work is offloaded to SSPs and there are
only occasional spot-checks that need data transfers for a
small subset of objects. The audit mechanism provides two
9s or better durability.

The evaluation shows that SafeStore can provide high
durability practically and economically, with cost, avail-
ability, and performance competitive with traditional
systems. More information can be found at
http://www.cs.utexas.edu/~kotla/SafeStore.

POTSHARDS: Secure Long-Term Storage Without
Encryption

Mark W. Storer, Kevin M. Greenan, and Ethan L. Miller,
University of California, Santa Cruz; Kaladhar Voruganti,
Network Appliance

Mark W. Storer presented a secure, long-term storage sys-
tem called POTSHARDS. POTSHARDS provides security
by secret splitting, instead of encryption, which is unsuit-
able for long-term storage because of the difficulties of key
management and updating cryptosystems over long time
periods.

To store data, POTSHARDS breaks the data into n pieces,
called shards, in a way that m out of n shards must be ob-
tained to recover the data and any set of fewer than m
shards contains no information about the data. Then POT-
SHARDS returns the shard IDs to the user and spreads the
shards across multiple independently managed archives.
The user maintains a private index that maps the data to
shards for fast retrievals. Keeping the index private reduces

the threat of inside attackers. To retrieve data, the user
provides shard IDs and authentication information. POT-
SHARDS requests m shards from different archives and re-
builds the data from the shards. Thus the security is en-
forced by hiding shard locations and performing authenti-
cation on multiple independent archives.

POTSHARDS uses approximate pointers to recover data
even if all indices of a user’s data have been lost. Approxi-
mate pointers point to multiple “candidate” shards that
might be the next that can be used to reconstruct the data.
Approximate pointers provide sufficient clues for users to
recover their data by trying only candidates they own.
Meanwhile, the approximate pointers greatly increase the
workload of intruders, because the intruders have to try all
the candidates. POTSHARDS also uses a secure distributed
RAID technique to provide availability and data recovery.

The performance evaluation on a prototype implementa-
tion shows that POTSHARDS can write data at 3 MB/s and
can read data at 5 MB/s, which are acceptable rates for
archiving. The throughputs were tested with 12 clients.
With more clients, POTSHARDS can achieve higher
throughputs.

Dandelion: Cooperative Content Distribution with Robust
Incentives

Michael Sirivianos, Jong Han Park, Xiaowei Yang, and
Stanislaw Jarecki, University of California, Irvine

Michael Sirivianos presented the work of Dandelion, a sys-
tem designed to provide robust incentives for cooperation
in commercial P2P content distribution with sufficient
scalability. The speaker emphasized that Dandelion is not a
distributed storage system.

Although the popular BitTorrent protocol has incorporated
tit-for-tat incentives, it does not encourage seeding and
still allows modified clients to free-ride. With robust in-
centives, Dandelion increases the network’s aggregate up-
load bandwidth by motivating clients to upload even when
they are not interested in the network’s content and by
preventing free-riding.

Dandelion builds a virtual credit system, in which a client
honestly uploading to its peer is rewarded by virtual credit
and a client obtaining the correct content is charged the
same amount of credit. In the system, credit can be re-
deemed for rewards such as discounts or monetary awards;
thus, clients are always encouraged to upload. The system
prevents free-riding because the only way a client can ob-
tain valid content and can earn credit is by paying credit or
uploading valid content, respectively. To prevent client
cheating, Dandelion uses a cryptographic fair exchange
scheme based on symmetric key cryptography, in which
the server acts as the trusted third party mediating the
content exchanges. Thus, Dandelion trades scalability for
robust incentives. To prevent Sybil attacks, Dandelion
maintains only authenticated paid accounts.

78 ; L O G I N : V O L . 3 2 , N O . 5

Michael Sirivianos and his team implemented a prototype
of Dandelion and evaluated it on PlanetLab. With a server
running on normal commodity hardware (dual Pentium D
2.8-GHz CPU and 1 GB RAM) with a moderate network
bandwidth (1 to 5 Mbps), Dandelion can support about
3000 clients downloading 256KB chunks with a rate of
256KB/s. When the network bandwidth is low (less than 4
Mbps), the bandwidth is the bottleneck. When the band-
width is high (larger than 5 Mbps), CPU is the bottleneck.
The evaluation also shows that robust incentives for seed-
ing substantially improve downloading times, especially
for small files, and the performance of Dandelion clients is
comparable to those in BitTorrent.

One member of the audience asked what the differences
between Dandelion’s and eMule’s incentive schemes are.
The presenter responded that eMule peers maintain pair-
wise credit balances and give high service priority to peers
with high credit. This in essence is a tit-for-tat scheme and
has the same weaknesses as BitTorrent’s TFT, i.e., it pro-
vides no incentives for seeding, and it is susceptible to
free-riding.

I N V ITE D TA L K

Specializing General-Purpose Computing: A New Approach
to Designing Clusters for High-Performance Technical
Computing

Win Treese, SiCortex Inc.

Summarized by Jan Stoess (stoess@ira.uka.de)

Win Treese presented SiCortex’s new approach to design-
ing clusters for high-performance computing. Supercom-
puters are often based on specialized hardware and pro-
gramming environments, which are expensive and ob-
structive to rapid innovation. General-purpose computing,
in turn, uses standard software and commodity PCs and
shows an amazing technology curve. However, commodity
PCs are optimized for desktop and server systems rather
than for the specific demands of technical computing. The
challenge is therefore to unite the best of both worlds: to
build a supercomputer that uses general-purpose hardware
and a standard programming environment but that is also
specifically designed for technical supercomputing.

Win presented a brief sketch of the history of supercom-
puting: supercomputers such as Cray, CM1, or BlueGene
are all expensive machines, each with a different program-
ming environment. They place high demands on the skills
of their users and maintainers. Also, supercomputing com-
panies tend to have a hard time generating any income. An
alternative and cheaper model is therefore to take lots of
cheap PCs and cluster them using commodity interconnect
technology such as Ethernet—as was done in the Beowulf
project. Even with optimized interconnects such as Myr-
inet or Infiniband, PC clusters are still cheaper than their
big, specialized brothers.

Typical workloads of supercomputers are climate simula-
tions, mechanical design problems, or life science simula-
tions. The applications usually run for weeks and consume
every available cycle. They tend to operate on huge data
sets in a cache-unfriendly manner, and they place high de-
mands on the communication infrastructure. Programs are
usually written in Fortran, a language that permits many
optimizations to be made during compilation. More re-
cently, Java and Python have become popular as well,
mostly because of the benefits in programming productiv-
ity.

By now, HPTC computing on PC clusters has become a
mainstream phenomenon. Sales of Linux cluster hardware
have reached $6 billion in 2006. The advantages of PC
clusters are their cheap prices for hardware, software, and
interconnects; their support for emerging software stan-
dards such as Linux, MPI, or Fortran; finally, their amazing
technology curve.

However, many challenges remain for PC-based supercom-
puting. Because PCs were originally designed for personal
computing, PC clusters often show little computational ef-
ficiency, have high power consumption, and generate a lot
of heat. Also, the parts are likely to fail and the intercon-
nect is slow. However, software development and standards
play a significant role in the overall costs of a supercom-
puter. A potential way out is, therefore, the replacement of
commodity hardware with a specialized system that still
retains support for the standard cluster programming envi-
ronment.

Win then explained how SiCortex has built such a system.
They aimed to realize a 1,000-node cluster with near-mi-
crosecond communication delay in a cabinet-sized box.
Their main design principle was “logic of power.” Lower
power consumption results in less heat, which, in turn, al-
lows components to be located closer together and inter-
connect wires to be shorter. Reduced heat also increases
the reliability, and reduced power consumption saves en-
ergy during memory stalls. Win introduced two supercom-
puters presently manufactured by SiCortex. The big model,
the SC5832, has a floating-point capacity of 5832 giga-
flops, 972 6-core nodes at 500 MHz each, 7.8 GB of mem-
ory, and roughly 2,900 interconnects. It consumes about
18 KW and fits into a 5x5x6–foot cabinet. The smaller
model, with 648 gigaflops, 108 nodes, and 2 KW power
consumption, fits into a half-width standard 19-inch rack.
The software platform consists of a standard, open-source
Linux environment with support for GCC, Fortran, MPI,
and even Emacs. SiCortex also provides an integrated Lus-
tre file system that can be used for direct-connect storage,
for external storage servers, or even for RAM-based file
systems.

Win concluded with the observation that general comput-
ing techniques and specialized knowledge on supercom-
puting applications can be mixed very well to support

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 79

powerful and usable high-performance technical super-
computing.

Someone asked about the price of the systems, and Win
gave ballpark numbers of $200,000 for the small box and
$1.5 to $2 million for the big one. Another question was
how nodes could be replaced on a failure. Win stated that
the hardware was hot-swappable, but the system still
lacked support for software hot-swapping. He noted, how-
ever, that software hot-swapping would be straightforward
to implement. Asked how software could be ported to the
supercomputers, Win responded that single-CPU programs
would need redevelopment to exploit parallelism; other
programs can simply be recompiled for MIPS targets. Win
was asked how the system deals with multicast or broad-
cast messages. He explained that the DMA engines provide
hardware commands to build up broadcast trees efficiently.
Finally, a questioner inquired how jobs are scheduled in
their system. Win said the system ships with a job sched-
uler developed by Lawrence Livermore National Labora-
tory.

DATA A N D I N D E X I N G

Summarized by Peter J. Desnoyers (pjd@cs.umass.edu)

Using Provenance to Aid in Personal File Search

Sam Shah, University of Michigan; Craig A.N. Soules, HP
Labs; Gregory R. Ganger, Carnegie Mellon University; Brian
D. Noble, University of Michigan

Sam Shah presented a system that tracks causal relation-
ships between files in a system to improve desktop search
results. In the first part of the talk he described the ap-
proach taken in this work, comparing it with previous
work; the rest of the talk focused on results from a rigor-
ous usability study with test subjects. Google Desktop and
others use static indexing based solely on file contents;
Soules and Ganger [SOSP ’05], however, have shown that
dynamic information (patterns of use) can be used to re-
order search results and give user-perceived improvement
in search performance. In particular, provenance informa-
tion—indications of which files were referenced to create
another file—can be used to infer relations between files.

The current state of the art for this uses temporal local-
ity—that is, if read(A) is followed by write(B) within a T-
second time window, then A and B are related. This cap-
tures reading an email and then copying it into a text doc-
ument; however, it fails in a number of cases. For example,
one test user kept a CAD application open all day; using
temporal locality inferred relationships between the CAD
files and all other user activities.

The authors instead use causal relationships—A and B are
associated if read(A) and write(B) occur in the same
process, or in two processes with an IPC path during the
intervening interval. Each approach handles some cases
better than others. These relationships are used to create a

DAG (Directed Acyclic Graph) with edges weighted by the
number of relationship events seen, and then a breadth-
first traversal method is used to redistribute relevance
weights returned by static search, resulting in a new
weighting used to order results for the user. Measurement
of both causal and temporal relationships was imple-
mented on win32, using binary rewriting to interpose be-
tween applications and the file system. The search applica-
tion was based on Google Desktop, using the GDI API
with provenance-based reordering of results.

Shah discussed why a typical corpus-based approach to
measuring precision and recall, as used in many informa-
tion retrieval studies, was not appropriate to this applica-
tion. Instead, a real user study over a period of time was
needed. A full randomized controlled trial would be best
but would require too many (300) subjects. Instead, four
techniques (content-only, temporal locality, causality, and
randomizing the results from content-only) were com-
pared against each other using a repeated measures experi-
ment. Twenty-seven non-CS undergraduate test subjects
used the search system for a month, and all queries were
recorded. In a single test session afterward, seven success-
ful queries were chosen (i.e., the user selected at least one
result). For each query the results of the four search algo-
rithms were presented side by side, and the user rated each
on a scale of 1–5.

Causal relationship–enhanced search was found to be rated
somewhat better (17%) than temporal-enhanced search,
temporal was statistically indistinguishable from content-
only search, and randomized results were 36% worse. Shah
speculated that the reason for the superiority of the causal
approach was its improved handling of noise—it added
fewer false relationships. Finally, some performance results
of the tracing overhead and search overhead were given;
they were not sizable but could use some tuning.

Sam closed by expressing the hope that this work would
inspire the OS community to consider user studies in their
own work. He stated that it really wasn’t that painful and
that there were many important insights to be gained.

The first question dealt with trace overhead; more efficient
methods evidently exist and could be used, with some ef-
fort. Another questioner asked about the similarity to Web
search and whether this algorithm would apply there or
page rank would apply here. Sam pointed out that page
rank is based on links that are deliberately created,
whereas this system infers links automatically. Terrence
Kelly asked why there aren’t many proper controlled user
studies; the perception is that it’s hard and that the IRB is a
barrier. Sam stated that it isn’t very painful, but that if you
can get work published with poor studies, there’s little in-
centive for good ones. Mike Abbot asked what happens if
you combine causality and temporal relationship; this is a
topic for future work.

80 ; L O G I N : V O L . 3 2 , N O . 5

Supporting Practical Content-Addressable Caching with
CZIP Compression

KyoungSoo Park and Sunghwan Ihm, Princeton University;
Mic Bowman, Intel Research; Vivek S. Pai, Princeton University

KyoungSoo Park presented CZIP, which uses a compres-
sion scheme based on content-based naming, where blocks
of data are referred to by hashes of their contents. This al-
lows for redundancy elimination, as the same block of data
may be incorporated by reference in multiple locations or
multiple files. It is used in a number of systems, including
LBFS, VBWC, Venti, and others. CZIP defines a format for
encoding and decoding files using content-based naming,
as well as components to easily add this functionality to
existing or new applications.

A number of uses for content-based naming were de-
scribed: file distribution (e.g., a Linux release, where the
contents of the CD ISOs are duplicated in the DVD ISO);
virtual machine (VM) images (e.g., migration), where the
base OS is identical across machines, and uncacheable Web
content, which typically changes slowly and in portions.

CZIP splits a file into chunks, using either a fixed chunk
size or Rabin’s fingerprint, hashing the chunks, and then
representing the file by the sequence of chunk hashes plus
the chunks (possibly compressed) themselves. In network
applications CZIP can be deployed on the server side, the
client side, or both. On the server side, CZIP can either be
used to compress files or for in-memory caching only; on
the client (or proxy) side a range request can be used to
read the header of a CZIP-encoded file, and then only
those chunks not already cached need be retrieved.

CZIP compressed the Fedora Core 6 release by a factor of
2; because of duplication between CD and DVD ISOs,
bzip2 achieved no compression. On data without duplica-
tion (the Wikipedia DB) CZIP gave no compression,
whereas bzip2 gave 4x compression. Apache and MySQL
server VM images showed high overlap (compressibility)
with most parameters, and five VMs used as engineering
desktops for three weeks showed very high (96%–99%)
overlap. Finally, samples taken every 30 minutes of a num-
ber of dynamic Web pages (Google News, CNN, others)
showed data savings of 37% to 90% with CZIP. A CZIP-
aware Apache server serving the Fedora Core 6 distribu-
tion to 100 clients achieved a memory savings of a factor
of 2, resulting in higher throughput as the compressed
working set fit within physical RAM. A content distribu-
tion network (CDN) based on Codeen was shown to de-
crease origin server bandwidth used to one-quarter that of
the non-CZIP version.

A CZIP release at http://codeen.cs.princeton.edu/czip
should be available soon.

Terrence Kelly asked why the authors claim that this tech-
nique can avoid a round-trip delay compared to duplicate
transfer detection (DTD); evidently DTD needs another
RTT to check the checksum, whereas CZIP can avoid the

delay if it expects and gets redundancy. Jason Flinn asked
how useful CZIP is for an individual client, and whether
there were any numbers for its effect on client latency. Al-
though the server gets more benefit, clients could still ben-
efit, and experiments to measure client latency haven’t
been performed yet.

Short Paper: Implementation and Performance Evaluation of
Fuzzy File Block Matching

Bo Han and Pete Keleher, University of Maryland, College
Park

Bo Han presented an evaluation of fuzzy file block match-
ing, an extension to content-addressable storage for effi-
ciently representing small updates to files. Instead of iden-
tifying each block by a single hash, and only substituting
exact matches, a hash vector that can be used to measure
block similarity is produced for each block; error-correct-
ing codes may then be used to “correct” a similar block to
create the desired block. This extends work by Tolia et al.
(USENIX ’03) by providing a replicatable implementation
and performance evaluation.

Files are chunked via Rabin’s fingerprint, and then each
block is described by a “shingleprint.” These are computed
by taking a sliding m-byte window within the block, start-
ing at each byte offset and hashing that window, and then
subsampling the resulting set of hashes by taking the S
hashes with the smallest numerical values. The fuzzy
matching algorithm declares two blocks to be similar if
their prints share T out of S values. An ECC code for each
block is then generated by using a 255/223 Reed-Solomon
code on small parts of the block. Finally, a possible archi-
tecture for using fuzzy matching to maintain and update a
cache was described.

Experiments were performed using the GNU Emacs source
tree versions 20.7 through 21.4, counting how many files
in version N+1 could be recovered from version N plus
ECC information for version N+1. These experiments were
performed for a number of different parameters, including
the sliding window size and the ECC organization.

Related work includes Venti, which uses hashes as block
IDs, REBL, which uses super-fingerprints, TAPER, which
uses Bloom filters, and LBFS. Bo concluded by saying that
the main advantage of fuzzy matching is the possible sav-
ings of network bandwidth and that more experiments
with expanded data sets, ECC codes, and parameter com-
binations were needed, as well as integration of fuzzy
matching into an existing distributed file system.

Terrence Kelly asked whether any evaluation of the effec-
tiveness of this proposal in the wide area would be difficult
because of the need for traces of both requests and replies.
Bo replied that they had only looked at the local version;
future work might examine this, and in that case it might
well be an issue. To a question about hash collisions and
security Bo replied that these may need consideration in
the future as well.

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 81

I N V ITE D TA L K

Live Malware Attack!

Paul Ducklin, Sophos

Summarized by Jan Stoess (stoess@ira.uka.de)

Paul Ducklin presented a demonstration of how typical
malware exploits a computer system, and how a malware
analyst can find out the nature and behavior of such mal-
ware. Since malware usually relies on Internet access, an
analyst must provide a “simulated Internet” environment
that causes the exploit to install and activate itself but also
allows monitoring and inspection of how the exploit pro-
ceeds.

Paul presented such a “deductive and analytical” inspec-
tion environment, which consisted of two virtual comput-
ers running within the QEMU simulator on his host lap-
top. The first virtual computer contained a Windows in-
stallation acting as the client, and the second hosted a
Linux instance establishing the “simulated Internet.” The
simulation consisted of a set of tools providing standard
services such as DNS, HTTP, and Mail in a way that client
requests could be monitored and transparently rerouted to
services or files in the control of the malware analyst.

Paul then installed a sample malware program in the Win-
dows client. The program exploits a bug in the library
code processing Windows Meta Files (WMF). The mal-
ware attack occurs via a WMF file embedded in a Web
page. Since the library routine does not check for over-
flows during retrieval, it also copies the malware program
on the stack; it then overwrites the stack return address to
activate the malware code.

Paul then proceeded to inspect the code within the file. It
turned out to be scrambled, and no additional knowledge
could be inferred without installing it into memory. Paul
therefore downloaded the malware again, but this time he
ran the browser within a debugger. In addition, he modi-
fied the malware’s source code to trap into the debugger
after activation. Paul could then single-step the code, to
observe that the next steps would be to download a Trojan
horse rootkit via a SOCKS proxy. Paul executed that root-
kit together with a file system call monitor; he could there-
by determine whether the rootkit had installed itself into
several new files but had also hidden itself from inspection
in the file system.

Paul ended his enjoyable presentation by demonstrating
how the rootkit actually stashed itself. For that purpose,
Paul attached WinDbg, a local kernel debugger, to the
client Windows installation. The malicious driver had
changed the Windows system call table to transparently
rewrite file system access calls in such a way that they
would ignore the newly generated files containing the
rootkit code.

SYSTE M S E C U R IT Y

Summarized by Francis David (fdavid@uiuc.edu)

From Trusted to Secure: Building and Executing Applications
That Enforce System Security

Boniface Hicks, Sandra Rueda, Trent Jaeger, and Patrick
McDaniel, Pennsylvania State University

Boniface Hicks started by pointing out that mandatory ac-
cess control (MAC) works well for naturally separated
processes. Several operating systems use MAC to restrict
the flow of information between processes based on secu-
rity levels. Unfortunately, there are several applications
that defy classification at a security level and are marked as
“trusted” and are allowed complete access to the system.
An example of such an application is a log rotation server
that needs to rotate logs for multiple applications at differ-
ent security levels. The goal of this research is to allow
MAC policies to be enforced within applications as well, in
order to prevent their circumvention by compromising a
trusted application.

To enforce system security policies within applications,
Boniface proposes the use of security-typed languages. An
operating system service called SIESTA has been designed
and built that can enforce SELinux security labels at com-
pile time within applications written in the Jif security-
typed language. The security labels used by the operating
system are tracked within the application and the language
ensures that information flows are in compliance with the
MAC policies. Declassification or downgrading the secu-
rity level of an information flow is also allowed if it is
specified in the policy.

A secure logrotate service and a secure email client were
written to demonstrate this concept. Experiments show
that the performance of these secure applications suffers
some deterioration when compared to native applications.
This overhead is close to 100% for logrotate. Boniface
mentioned that this may be because the Jif code was not
optimized. In his response to a question, he noted that the
system does not avoid covert channels.

From STEM to SEAD: Speculative Execution for Automated
Defense

Michael E. Locasto, Angelos Stavrou, Gabriela F. Cretu, and
Angelos D. Keromytis, Columbia University

Michael Locasto said that self-healing systems are needed
because typical computer defense systems crash the
process that is being protected during an attack. Self-heal-
ing systems provide a less drastic approach to recovering
from an attack. This work extends and addresses some
shortcomings of their previous system for self-healing,
which was called STEM. The new system provides self-
healing capabilities for unmodified binaries without the
need for source code. In STEM, every function is treated as
a transaction that is speculatively executed. Error codes are

82 ; L O G I N : V O L . 3 2 , N O . 5

returned when a problem is detected. The SEAD system
improves on this design by utilizing binary rewriting to
avoid source code modification and recompilation. It also
supports repair policies to customize an application’s re-
sponse to an attack. Virtual proxies are used to ameliorate
the output commit problem, and process behavior profiles
can be created on aspects of data and control flow.

Repair policies can be used to perform better error virtual-
ization and avoid returning incorrect return values. They
also support memory rollback for aborted transactions and
forced modifications to memory. Another advantage of
using repair policies instead of generating and deploying
new code is that a policy can easily be switched off if it
turns out to be incorrect.

Performance evaluations show that although the system
does not have a human-discernable impact when applied
to regular applications, there is a rather significant impact
on an application’s startup time. As part of future work,
Michael is looking at ways to automatically generate repair
policies.

Several members of the audience pointed out that software
vulnerabilities will still exist after the system self-heals and
suggested that it might be better just to fix the code than
to fix bad code with policies. Yet another limitation that
was pointed out was that it is not easy to decide upon the
meaning of return values when there is no access to source
code.

Dynamic Spyware Analysis

Manuel Egele, Christopher Kruegel, and Engin Kirda, Secure
Systems Lab, Technical University Vienna; Heng Yin, Carnegie
Mellon University and College of William and Mary; Dawn
Song, Carnegie Mellon University

Manuel Egele began his presentation by noting that spy-
ware is a growing threat to Internet users. Browser Helper
Objects (BHOs) are widely used to implement spyware and
are the focus of this work. Detection of such spyware
using signature-based techniques misses newer spyware,
and behavior-based techniques are required to detect them.
The system described in the presentation tracks the flow of
sensitive data through the system and observes the behav-
ior of BHOs. For example, URLs that are typed in are con-
sidered sensitive information; the system checks for BHOs
that misuse this information. The system provides compre-
hensive reports about file, network, IPC, and OS actions.

QEMU was modified to enable the tracking of data and
control dependencies. The control dependencies tracking
approach makes use of a control flow graph generated
from disassembled instructions. A browser session of a
user is prerecorded and this captured session is replayed
for analysis of spyware behavior. Experiments show that
the system is effective at detecting and presenting an
analysis of several spyware samples. It was also able to
detect a spyware sample that was not detected by several

commercial products. Manuel noted that running the
analysis using the QEMU emulator caused a factor-of-10
slowdown in execution.

I N V ITE D TA L K

LiveJournal’s Backend Technologies

Brad Fitzpatrick, LiveJournal

Summarized by Peter J. Desnoyers (pjd@cs.umass.edu)

Brad Fitzpatrick described the process of evolving the
LiveJournal implementation from the college hobby proj-
ect for college and high school friends in 1999 to the sys-
tem it is today, with over 10 million accounts. Slides for
this talk (or at least equivalent talks) are available at
http://www.danga.com/words.

LiveJournal combines blogging, forums, social networking,
and aggregation. In its current form it includes the follow-
ing open-source components, all of which evolved as the
system scaled: memcached, mogilefs, perlbal, gearman,
theschwarz, djabberd, and openid.

Brad started by discussing scaling, and in particular he said
that the absolute speed of a solution isn’t as important as
whether it scales linearly—does it run 2x or 10x as fast
when you use 2x or 10x as many servers? If not, you’ll
reach a point where you have to restructure the system to
grow, which they did several times.

LiveJournal started out on a single machine with Apache
and MySQL, and it worked fine until it got slow. The
Apache and MySQL servers were split onto two machines,
which created two points of failure and soon became CPU-
bound on the Apache machine. This was replaced by three
servers with load balancing—a number of solutions were
used, but none was completely satisfactory.

Then it became I/O-bound on the MySQL server, which
was split in two with MySQL replication. This scaled to
twelve mod_perl (application) machines and a MySQL
master with six slaves. Then database writes became the
bottleneck: Each read was handled on one MySQL ma-
chine, but writes were broadcast to the cluster, so all the
MySQL machines were spending all their time writing.

This problem was solved by partitioning the database.
Users map to one of a number of high-availability MySQL
clusters, with a single global master and slave for nonuser
metadata. Each cluster is a high-availability pair using the
DRBD network block driver for shared storage, plus slaves
to add more read capacity.

In the rest of the talk Brad described the components they
had developed.

Memcached is a single cache for everything, running
wherever there is spare memory. It presents a simple dic-
tionary data type with a network API, and the server for a
particular data item is determined by hashing. The main

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 83

problem is that you can’t add or remove servers at runtime
without rehashing everything, but this has been solved re-
cently by using consistent hashing.

Perlbal is a “fast, smart, manageable HTTP Web server/re-
verse proxy/load balancer.” It has two key features: inter-
nal redirects, allowing a backend to hand-work (e.g., serv-
ing a large file) back to perlbal without the user seeing a
redirect, and verification of backend connections.

Mogilefs is a simple read-mostly replicated file system,
which, like memcached, can be deployed wherever there
are resources.

Gearman is a distributed job/function call system. Workers
register functions they implement, and callers invoke with
function and arguments encoded as simple strings. Among
the uses mentioned were database connection pooling and
keeping large libraries (e.g., ImageMagick) out of the
mod_perl processes that needed to invoke them.

Theschwartz is sort of like gearman, but instead of being
lightweight and unreliable (i.e., the caller has to wait and
retry if necessary), theschwartz is reliable and can be used
to schedule something and forget it, such as sending email
after updating a page.

Djabberd is needed because the other XMPP servers
weren’t flexible enough to integrate closely with the rest of
LiveJournal (e.g., automatically use the existing LiveJour-
nal user picture as an avatar). It’s lightweight and just
about every function can be hooked.

Ted Ts’o asked several operations questions: Brad guesses
they have 150–200 machines, they still run memcached
anywhere there’s spare memory, and they put disks into
netbooting Web nodes for mogilefs, and both practices
drive operations batty (a recurring theme). They only have
a single data center, but they are expanding into another in
Oakland. In response to a question from Simson Garfinkel
about their multiday outage in 2005, Brad pointed out that
geographic redundancy is much harder and more expen-
sive than redundancy within the same facility.

Although the operations people are scared of it, they use
virtualization (Xen), especially to isolate applications that
might “explode” and use too much memory (ImageMagick
again). Configuration was originally generated from a sin-
gle YAML file; it is being migrated to cfengine. Failures
were discussed; a surprising number were due to other
customers at the same facility pressing the Big Red Button.
This brought up the issue that it’s hard to get a storage
stack to sync properly; for example, often even with bat-
tery-backed RAID cards the disks are running in write-
back mode, and data the DB thinks is committed will be
lost if power goes out.

C LO S E TO TH E H A R DWA R E

Summarized by Andrew Baumann
(andrewb@cse.unsw.edu.au)

Evaluating Block-level Optimization Through the IO Path

Alma Riska, Seagate Research; James Larkby-Lahet, University
of Pittsburgh; Erik Riedel, Seagate Research

Optimizations in the disk IO path are traditionally thought
to be more effective at high layers (such as the file system)
where more semantic information about requests is avail-
able. However, with advances in modern disk hardware al-
lowing implementation of complex optimizations such as
request reordering, this work presented by Alma Riska
evaluates the impact of performing optimizations at the
disk level. The approach used is based on measurements of
the Postmark benchmark and kernel compiles on Linux,
with variations in the file system, IO scheduler, and disk
drive (with each of the drives used supporting request re-
ordering).

Results show that higher in the IO path, at the file system
and IO scheduler, the focus should be on optimizing the
amount of disk traffic. The best-performing file systems
and IO scheduler algorithms were those that achieved bet-
ter rates in IO workloads. Lower in the IO path, the focus
is on reordering and coalescing requests, which is most ef-
ficiently performed at the disk level.

One particularly interesting result was that under write-
back caching, which is generally assumed to perform bet-
ter than write-through caching, increasing the queue depth
yields inconsistent performance. Under high load the disk
queue fills up, causing more requests to block at the device
driver, which is unaware of the disk’s queue. Write-
through caching with queuing and reordering performs as
well as write-back without queuing, and it doesn’t suffer
from reduced reliability in the case of power failures.

One audience member observed that an advantage of
write-back caches was the ability to merge repeated writes;
however, Alma noted that previous work at the 2006 con-
ference had shown that repeated writes were extremely
rare. She also acknowledged that the performance of write-
through and write-back caching was only equivalent in re-
gard to throughput and that the response time for write-
through caches would be higher.

DiskSeen: Exploiting Disk Layout and Access History to
Enhance I/O Prefetch

Xiaoning Ding, Ohio State University; Song Jiang, Wayne State
University; Feng Chen, Ohio State University; Kei Davis, Los
Alamos National Laboratory; Xiaodong Zhang, Ohio State
University

Xioning Ding presented this work on DiskSeen, a prefetch-
ing scheme that uses knowledge of the disk layout and ac-
cess history information to improve on the performance of

84 ; L O G I N : V O L . 3 2 , N O . 5

traditional file-level prefetching, which can incur nonse-
quential accesses and thus result in excessive seeking.

DiskSeen operates below the file-system level, maintaining
a disk block table storing the access history of logical
block numbers, which it uses to detect sequences for
prefetching. Two types of prefetching are supported: se-
quence-based prefetching, which occurs when eight or
more contiguous blocks are accessed, and history-aware
prefetching, which uses the disk block table to detect and
prefetch historic access trails that may not be contiguous.

A performance evaluation of DiskSeen in Linux shows that
it reduces the time taken for repeated runs of prefetching-
friendly applications by 20%–50%. The time for the first
run of each application is also improved, but not as much,
owing to the lack of history trails in the disk block table.
The performance improvement is greatest for applications,
such as CVS, that access multiple areas of the disk and
thus have the greatest seek overhead. One TPC benchmark
degraded by 10% with DiskSeen; however, the authors
plan to fix this problem with dynamic adjustment of the
timestamp threshold.

Short Paper: A Memory Soft Error Measurement on Produc-
tion Systems

Xin Li, Kai Shen, and Michael C. Huang, University of
Rochester; Lingkun Chu, Ask.com

This study, presented by Xin Li, looked at the frequency of
soft errors, which are transient hardware errors in memory
caused by environmental factors. Previous studies have
suggested error rates in the range of 200–5000 failures in
time (FIT) per megabit; however, there are no results for
modern hardware in a production environment.

This study used several data sources: a server farm at
Ask.com, a number of desktops at the University of
Rochester, and nodes on PlanetLab. Results for the
Ask.com servers were collected from ECC memory error
statistics; results from the other machines were collected
by a user-level application that attempted to detect mem-
ory errors by writing a pattern in memory and checking it
for errors. In total over 300 machines were used; however,
the 70 PlanetLab nodes were only able to allocate 1.5 MB
of free memory in which to look for errors.

The only transient errors found were two in the Ask.com
server farm. This corresponds to an error rate orders of
magnitude lower than previously reported. The study also
unintentionally found some permanent errors (nine errors
in the 212 Ask.com machines). The authors conclude that
the actual transient error rate is much lower than previ-
ously reported, and they speculate that this is due to
changes in hardware layout and a reduction in chip size.
Future work includes further data collection, identifying
error modes that can escape hardware protection, and
studying how real software systems will be affected by
such errors.

I N V ITE D TA L K

MapReduce and Other Building Blocks for Large-Scale Dis-
tributed Systems at Google

Jeffrey Dean, Google

Summarized by Jan Stoess (stoess@ira.uja.de)

Jeffrey Dean gave a presentation on how Google manages
access to the billions of documents available on the Web
and via other Google-provided services such as email, per-
sonal files, its closed database system, broadcast media,
and print services.

Jeffrey explained that his company faces an ever-increasing
computational need, which is driven mainly by three fac-
tors: (1) more queries, from more people using Google and
using them more frequently; (2) more data from the grow-
ing Web community and from new products; (3) the need
for better search results (finding the right information and
finding it faster). Jeffrey then presented three software
projects Google has developed to address the increasing
computational requirements: GFS, MapReduce, and
Bigtable. Following the hardware design philosophy of
Google, the software systems run on a very large number
of commodity machines, which offer a good price/perfor-
mance ratio.

The large number of nodes and the huge amount of data
lead to unique requirements for the file system. Google has
therefore developed its own distributed file system, named
GFS. Since Google has control over all applications, li-
braries, and the operating system running on its machines,
it can optimize access to the file system on all levels. A
GFS setup consists of a master server holding the metadata
and multiple chunk servers holding the actual data. Each
file is broken into chunks of 64 MB, each of which is
stored redundantly on multiple chunk servers. The chunk
servers use a standard Linux file system. Currently, Google
stores more than five petabytes of data using GFS.

For processing the data, Google has developed a special
programming environment called MapReduce. A MapRe-
duce program consists of a map function and a reduce
function. The map function extracts relevant information
from each input record and stores it as key/value pairs.
The reduce function then aggregates the intermediate val-
ues, for instance by means of a hash function. As a simple
example, Jeffrey explained how the word frequency of an
input text can be determined with MapReduce. In this case
the map function splits the input at spaces and has the
value “1” for each word. The reduce function sums all val-
ues that have the same key. The MapReduce environment
is implemented as a library that deals with most of the
technical aspects such as the highly parallel and distrib-
uted execution of the algorithm, or the reading and writ-
ing of data. It thus drastically reduces the programming ef-
fort and lets MapReduce users focus on their real goals.
The MapReduce implementation is optimized to be fast,

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 85

robust, and scalable; it has been used for many Google ap-
plications such as Google Ads, Froogle, Google Earth, and
Google News. As of June 2006, Google had developed
more than 6000 MapReduce programs.

Finally, commercial database management systems do not
perform well with the amount of data Google has to man-
age. Commercial systems also have high licensing costs.
Furthermore, the special nature of the stored data and the
way of processing it allow for several simplifications and
optimizations compared to full-featured database manage-
ment systems. Google has therefore implemented its own
database management system, called Bigtable. The basic
data model of Bigtable is a distributed multidimensional
sparse map. Each cell is identified by a (row, column, time-
stamp)-triple. A Bigtable for Web pages, for example, can
hold different properties (column) of a Web page located
at a specific URL (row), using multiple versions (time-
stamp). Bigtable is used for several Google products, such
as its Web search and Google Earth.

For more detailed information, Jeffrey referred to
http://labs.google.com/papers.html, a page featuring one
paper for each of the three presented technologies.

N E T WO R K E D SYSTE M S

Summarized by Xiaoning Ding (dingxn@cse.ohio-state.edu)

Addressing Email Loss with SureMail: Measurement,
Design, and Evaluation

Sharad Agarwal and Venkata N. Padmanabhan, Microsoft
Research; Dilip A. Joseph, University of California, Berkeley

The paper addresses the silent email loss problem. In the
paper, a silent email loss is defined as the case in which an
email is never received by the intended email recipient but
neither the sender nor the intended recipient is notified of
the loss. Sharad Agarwal first presented the results of their
measurements on email losses, and then presented their
design of SureMail. SureMail augments the existing SMTP-
based email system by notifying the intended email recipi-
ents about email losses.

Sharad Agarwal and his team performed an experiment to
understand how often legitimate user emails were lost. In
the experiment, many email accounts were used to send
and to receive emails over several months. Then the sent
emails and the received emails were matched to check
email losses. The measurements show a silent email loss
rate ranging from 0.71% to 1.02% and a total email loss
rate ranging from 1.82% to 3.36%. They also compared the
email loss rates for two normal msn.com accounts and two
msn.com accounts with content filters disabled and found
that the accounts with disabled content filters have much
lower loss rates. This indicates that the majority of losses
were from content filters.

Because the measurements show that the existing SMTP-
based email system works most of the time, SureMail is de-
signed, not to replace the existing system, but to augment
it with a separate notification mechanism. A notification is
a short, fixed-format fingerprint of an email. When an
email is sent, the notification is also delivered via an in-
band channel or an out-of-band channel. The in-band
channel uses email headers, and the out-of-band channel
uses separate services such as DHT, Amazon S3, or dedi-
cated notification servers. To prevent spoofing by spam-
mers, SureMail uses a reply-based shared-secret scheme.
The scheme sets up a shared secret based on an email and
its reply between two correspondents, and it uses the
shared secret to authenticate the notifications.

The evaluation on the out-of-band channel shows that
99.9976% of notifications can be delivered successfully at a
very low incremental cost.

Wresting Control from BGP: Scalable Fine-Grained Route
Control

Patrick Verkaik, University of California, San Diego; Dan Pei,
Tom Scholl, and Aman Shaikh, AT&T Labs—Research; Alex C.
Snoeren, University of California, San Diego; Jacobus E. van
der Merwe, AT&T Labs—Research

Patrick Verkaik presented the design and implementation
of IRSCP (Intelligent Route Service Control Point), which
is an architecture enabling flexible route control for inter-
domain traffic without changing existing ISP infrastruc-
ture. IRSCP is the follow-up work on RCP.

In the IRSCP architecture, a route control application uses
external information, such as network condition, to guide
the route selection process in IRSCP. IRSCP communicates
the selected routes to the routers in the ISP network and
in the neighboring ISP network. The route control applica-
tion works at relatively slow rate. To enable IRSCP to
failover instantly in case a route for egress link fails, the
route control application provides IRSCP with an explicit
ranking of egress links for each ISP router. To prevent for-
warding anomalies caused by inconsistent rankings, such
as deflection and looping, IRSCP enforces two simple con-
sistency constraints on the rankings. In a large ISP, IRSCP
communicates with many thousands of routers, and it is
responsible for route decision for each ISP router. There-
fore, IRSCP must be robust and scalable. The paper ad-
dresses the problems by partitioning and distributing the
IRSCP functionality across multiple IRSCP servers.

Patrick Verkaik and his team evaluated IRSCP by connect-
ing IRSCP to an emulated ISP. The results show that IRSCP
is capable of managing the routing load of a large ISP. In
response to a question about whether converging could be
a problem, Patrick Verkaik replied that IRSCP converges
quickly.

86 ; L O G I N : V O L . 3 2 , N O . 5

A Comparison of Structured and Unstructured P2P
Approaches to Heterogeneous Random Peer Selection

Vivek Vishnumurthy and Paul Francis, Cornell University

Vivek Vishnumurthy talked about the heterogeneous peer
selection problem in structured and unstructured P2P net-
works. Heterogeneous peer selection means that peers
with higher capacities should be selected proportionately
more often. To support heterogeneous peer selection,
Vivek and Paul implemented Swaplinks (published at Info-
com 2006) for unstructured P2P networks and adapted
Bamboo DHT, using their extensions to the Karger/Ruhl
load-balancing algorithm for structured P2P networks.
Then they compared the performance of Swaplinks and
the adapted Bamboo DHT (called KRB) in making hetero-
geneous selections based on capacities.

The basic idea of Swaplinks is to build a random graph, in
which each node tries to keep its degree proportional to its
specified capacity. Thus the unbiased fixed-length random
walks on the random graph result in the desired selection
probability. The basic idea of KRB is to adjust peers’ ID
spaces dynamically based on their loads and their capaci-
ties, so that all the peers have close relative loads. The rela-
tive load of a peer in KRB is its load divided by its capacity.

The authors tested Swaplinks by emulating a 1000-node
P2P network on 20 CPUs and evaluated KRB by simulat-
ing a same-scale P2P network. Three conclusions were
drawn from the comparison: (1) Swaplinks makes more
accurate selections than KRB does; (2) KRB’s performance
approaches Swaplinks only under low churn and moderate
capacity distribution; (3) KRB is sensitive to parameters,
and it is harder to set optimal values for the parameters in
KRB than in Swaplinks.

I N V ITE D TA L K

Perfect Data in an Imperfect World

Daniel V. Klein, Consultant

You can find a summary of Dan’s talk in the April 2007
issue of ;login:, in the summaries of LISA ’06.

K E R N E LS

Summarized by Rik Farrow (rik@usenix.org)

Transparent Checkpoint-Restart of Multiple Processes on
Commodity Operating Systems

Oren Laadan and Jason Nieh, Columbia University

Oren Laadan explained that modern applications consist of
multiple processes, so we need a method for capturing
global state. This mechanism should be transparent for
both applications and sysadmins to use, and it should also
not require kernel modifications. Current approaches use
modified libraries (an incomplete solution), modified ker-
nels (which is invasive and difficult to maintain), and the

use of hypervisors (which implies adding an OS layer and
more overheard).

Their approach uses a loadable kernel module that virtual-
izes just the set of processes to be checkpointed, called a
POD, or PrOcess Domain. A POD has a private virtual
namespace and is decoupled from the OS. Checkpointing
uses auxiliary processes with COW (Copy On Write) and
buffers that hold data until it can be committed. Check-
pointed processes can have their data filtered to compress
it, transform data for another OS version, or adjust data
structures. Quiescing a process can be done with SIGSTOP,
forcing a known state with minimal stack synchronization.
A Process Forest is the set of dependent processes, related
either via a parent process or through shared resources all
within the same process group.

Oren showed sample output of the DumpForest algorithm,
which includes information on dead processes as an arti-
fact of the design. He compared the performance of Check-
point to OpenVZ and XEN, showing that checkpoint and
restart times were 3 to 55 times faster than OpenVZ and 5
to 1100 times faster than Xen. Checkpoint times, at 100
ms, were fast enough not to be noticed by a human being.

Warner from Google said that he had worked with check-
point in the early 1990s and wondered about network con-
nections in flight, files, and the fact that some processes
expect to see the same PIDs after restoration. Oren an-
swered that PIDs are virtualized, isolated via POD, so they
don’t change. Filesystem issues are addressed using filesys-
tem snapshotting technology. Network connections that
are inside the POD are easy to handle. For those outside
the POD, we do have a way to move connections if the lag
time is short. We can even restart connections on the other
side transparently. Someone else asked why the perform-
ance is so different than that with the OpenVZ approach.
Oren said they were surprised and puzzled too. In restart,
OpenVZ was always 1 second longer in OpenVZ. For
checkpoint time, they think that teardown and freezing
takes longer. They can freeze a process in 1–3 ms. Phil
Pennock of Google asked what security analysis had been
done and the implications for SUID programs. Oren
replied that you have to trust the image that you are
restarting.

Reboots Are for Hardware: Challenges and Solutions to
Updating an Operating System on the Fly

Andrew Baumann, University of New South Wales and
National ICT Australia; Jonathan Appavoo, Robert W. Wis-
niewski, Dilma Da Silva, and Orran Krieger, IBM T.J. Watson
Research Center; Gernot Heiser, University of New South
Wales and National ICT Australia

Andrew Baumann presented this paper about dynamic up-
dates to the K42 operating system. Previous work exists
for applications but is unsuitable for an OS because of low-
level languages and concurrency issues in the kernel. They
enabled dynamic update by using modularity in the ker-

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 87

nel, in contrast to prior work (DynAMOS and LUCOS)
that applies patches by rewriting code on the fly, or Auto-
POD, which uses virtualization. This work fits somewhere
in the middle and uses modules to focus on maintenance
changes.

K42 is a scalable research OS that supports Linux API/ABI,
is object-oriented, and has each resource managed by a set
of object instances. All objects go through an object transla-
tion table (pointers) that allows substitution of objects on
the fly. A dynamic update is just a series of hot swaps, but
you need to replace every module affected. The previous
work on K42 would allow some updating via hot-swapping,
but not those that include changes to interfaces. A total of
58% of changes affect interfaces in K42. They looked at sta-
ble kernel releases of Linux kernels and saw that more than
half of the changes affected interfaces as well.

To support dynamic updates, you write an adaptor that can
rewrite calls via the old interface to support new function
parameters. In testing, the adaptor has 220 cycles of over-
head. First, you update the provider object with an adaptor,
then update the clients of that object so that they use the
new interface, then remove the adaptor. This only works
for backward-compatible changes and accounts for about
80% of the changes to the K42 kernel over its history.

Someone asked, What about the remaining 20% of the
changes? Andrew answered that outside of module code,
such as low-level exception handlers, you can’t use this
technique. But sometimes you can move the change to a
module instead of outside one. Applying a patch produced
a drop of 10% while running ReAIM throughput bench-
mark, with 170 files open. In summary, there is negligible
performance impact and 79% of maintenance changes can
be updated.

In response to Francis David’s question of when it is safe
to apply the patch, Andrew explained that the patch is ap-
plied as a series of hot-swap operations and must achieve
quiescence of the object first, and that makes it safe. Ter-
rence Kelly of HP Labs asked whether it was safe to apply
another patch when another lazy update is in process. If
you applied another patch, it would mark all the objects as
needing updates again, but not break anything.

Short Paper: Exploring Recovery from Operating System
Lockups

Francis M. David, Jeffrey C. Carlyle, and Roy H. Campbell,
University of Illinois at Urbana-Champaign

Francis David started by mentioning that Linux has a
lockup detector that works via a timer interrupt that
checks a timestamp for continual updates via a low-prior-
ity kernel thread. But this mechanism fails if a lockup oc-
curs when interrupts have been disabled. Watchdog timers
present an external alternative, as they can generate a non-
maskable interrupt (NMI) if they time out, forcing the sys-
tem to reboot. However, such reboots mean loss of state,
even though the contents of RAM may still be correct.

Francis pointed out that they did their work on ARM
CPUs that do not include support for NMI.

In their approach, they replace the interrupt handler for
the NMI with code that resets the processor, enables the
MMU, reinitializes the interrupt controller and interrupts,
and then modifies locked-up threads. In Linux, they sim-
ply kill off the offending threads, but in Choices, an ob-
ject-oriented OS, they patch in a call to an exception han-
dler and restart scheduling. If these threads hold locks, the
locks will be released when the threads die. Choices is
fully preemptable, and the patched-in recovery routine
pretends to be a thread that is locked up and calls die(), or
raises a C++ exception so programmers can decide what to
do at this point. For this scheme to work, there must be
valid context via the stack frame of the thread running be-
fore the NMI.

Francis summed up by saying that the best lockup detec-
tion uses both hardware and software detection: hardware
when software cannot work, and software for preemptible
kernel, where hardware cannot detect failure. Their ap-
proach improved recovery in Linux up to 9%, particularly
with preemptive kernels.

Someone from the University of Rochester asked whether
they explored using NMI at all. Francis said that they did,
and their code shows examples of this. They wrote the
code to actually recover from an NMI as well. Ben Leslie of
Open Kernel Labs pointed out that sometimes the state in
the OS has been corrupted. You get one watchdog reset,
and you keep on doing this. Do you need a meta-watch-
dog? Francis’s team didn’t explore corruption issues, or
whether the same issue happens twice. Daniel Peek of the
University of Michigan asked how much of the kernel mal-
function problem this will solve, for example, kernel pan-
ics. If you get a “blue screen,” the OS has detected the
problem. The authors are addressing the lockup problem
when the OS can’t recognize the error. Someone else asked
how often that happens. In the Linux kernel, the majority
of possible bugs were lockup bugs (30% or more bugs
could cause an infinite loop or other problem in Stanford
static code analysis).

I N V ITE D TA L K

Human Computation

Luis von Ahn, Carnegie Mellon University

Summarized by Minas Gjoka (mgjoka@uci.edu)

Luis von Ahn started by defining the term CAPTCHA
(completely automated public Turing test to tell computers
and humans apart) as a program that can distinguish hu-
mans from computers.

Luis gave a basic example of the usefulness of CAPTCHAs
based on a true story in 1999. Slashdot released an online
poll letting its users select the best CS grad school from a
list of six universities. The only safety measure to prevent

88 ; L O G I N : V O L . 3 2 , N O . 5

manipulation of the poll results was to allow one vote per
unique IP. However, in a matter of hours Carnegie Mellon
and MIT students managed to write programs that would
cast thousands of votes into the system. This example
demonstrated the need for a mechanism that will only
allow humans to participate.

Other applications of CAPTCHAs include free email ser-
vices, worms, data collection, prevention of comment
spam in blogs, and dictionary attacks. For example, in free
email services, spammers are prevented from signing up
millions of accounts automatically. One workaround for
spammers is the use of sweatshops, which hire people in
countries with very low wages to solve CAPTCHAs for
them. That incurs a minimum penalty per account cre-
ation for the spammers. Another workaround is to redirect
CAPTCHAs from email service companies to the spam-
mer’s own Web sites, which provide services that attract
many people (e.g., porn sites). In another example, email
addresses can be protected from Web crawlers by using
CAPTCHAs.

One of the main aspects of the presentation is the usage of
CAPTCHAs to perform human computations. A measure
of the amount of human effort produced daily: it is re-
ported that around 60 million CAPTCHAs are solved every
day, with each CAPTCHA taking 10 seconds of human
time. Three programs are presented to make good use of
these wasted “human cycles.”

CAPTCHAs can be used to help in the digitization of old
books. Every scanned image of a word not recognizable by
OCR is used as a CAPTCHA. To confirm the correctness of
the human input, every time a scanned image of a word is
fed into the system it is combined with a known word. If
the answer for the known word is correct then a correct
answer is assumed for the unknown word as well.

A very useful application of CAPTCHAs is to accurately
label images with words. Luis has developed an enjoyable
two-player online game, ESP, which was designed in such
a way that playing the game results in labeling images cor-
rectly, quickly, and for free. At the beginning of the game
the user is paired with another random player and the
same image is shown to the two players. The goal of the
game is to guess descriptions of the image that are identi-
cal for both players, excluding taboos. The two players
cannot communicate in any way with each other and an-
ticheating techniques are provisioned for potential collabo-
rators. Luis notes that this game alone could be used to
label all Google images within a few weeks. In fact Google
offers a similar “Google Image Labeler” service. Those who
liked using the game listed various reasons (e.g., it offers a
special connection with one’s partner, it helps one learn
English, and it gives one a sense of achievement).

PeekaBoom is another entertaining two-player online game
that takes as input labeled images and finds the objects
being labeled. The first player, called Boom, receives an
image and a tag assigned to the image. The second player,

called Peek, has an empty screen. The goal of the game is
to get Peek to guess the tag assigned to the image. Boom
can only reveal part of the picture. In addition to that,
Boom can give hints about what the tag is (e.g., noun,
verb, text in the image).

By combining the region selected for a given object from
different pairs of players in PeekaBoom it is possible to get
the whole outline of the object in 50% of the cases. This
allows the results to be highlighted with boxes inside the
search engine. Another advantage of this segmentation is
that the resulting training set could be used to advance
computer vision research.

In conclusion, the speaker presented a paradigm for deal-
ing with open problems in artificial intelligence. These can
be turned into either a test to differentiate between hu-
mans and computers or a simple game that people can
play online.

In response to a question Luis noted that, after 20 hours of
playing, the gender of a player can be guessed with 98%
accuracy, and the age with 85% accuracy.

S H O RT PA P E R S

Summarized by Andrew Baumann
(andrewb@cse.unsw.edu.au)

Short Paper: Supporting Multiple OSes with OS Switching

Jun Sun, Dong Zhou, and Steve Longerbeam, DoCoMo USA Labs

Dong Zhou presented this work on a mechanism to switch
between operating systems on shared hardware. Each OS is
assigned a unique range of physical memory and has ex-
clusive access to the hardware when it runs. The switch is
performed when a switch request signal is received; this
can be generated by user action or by events such as timer
expiration or incoming call. The OS in the background is
essentially suspended, it cannot receive interrupts, and
there is no regular time-slicing. The switch operation con-
sists of putting the hardware into a consistent state and
then passing control to the other OS.

OS switching is usually implemented as a modification of
the existing suspend-and-resume support, so relatively lit-
tle code is changed in the operating system. Furthermore,
because each OS runs with direct access to hardware, there
is no slowdown. Limitations of the approach include a lack
of concurrency and no security between the OS instances,
although the latter could be addressed with hardware sup-
port such as ARM TrustZone.

A prototype has been implemented on an ARM9 device,
and a video was shown of the device switching between
Linux and Windows CE in response to a special button
press. Around 100 lines of code were changed in either
OS, and all within the board support packages; most of the
modified code was in the bootloader. Switching from
Linux to Windows CE takes half a second; switching to
Linux takes a second longer, mainly because more devices

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 89

were enabled than under Windows CE. The speed of
switching could be improved by not suspending and re-
suming all devices; in the extreme case, a hot switch could
take less than 1 ms.

Short Paper: Cool Job Allocation: Measuring the Power Sav-
ings of Placing Jobs at Cooling-Efficient Locations in the
Data Center

Cullen Bash and George Forman, Hewlett-Packard Labs

The overall goal of this work, which was presented by
both authors, is to reduce the energy used for cooling a
data center. This could offer significant cost-savings, be-
cause the power used for cooling doesn’t scale linearly
with the power used to run the equipment (i.e., a rack
using twice the power may require much more than twice
the power to cool).

Within a data center, some servers can be more efficiently
cooled than others because of the varying recirculation of
hot air, so the overall cooling workload can be reduced by
moving long-running jobs to those servers that are more
efficient to cool and shutting down other servers when
they are idle. The approach of this work is to modify a
scheduler for batch jobs so that the longest-running jobs
are placed on the most cooling-efficient servers.

In this study, part of a data center was physically parti-
tioned, and the power consumed by both hosts and air-
conditioning units was monitored. The results showed that
controlling job placement alone helps, but the greatest
power savings come from combining job placement with
shutdown of idle servers. This reduced power consump-
tion by 33% and could save $1 million per year for HP
data centers. Future work involves incorporating these
techniques into adaptive enterprise software.

Short Paper: Passwords for Everyone: Secure Mnemonic-
based Accessible Authentication

Umut Topkara, Mercan Topkara, and Mikhail J. Atallah,
Purdue University

Umut Topkara presented this work, which aims to develop
a secure authentication mechanism in input-constrained
environments, such as for disabled users. The assumed
input device is a binary switch; in this scenario it is hard
for humans to remember long bit strings, and it should be
possible to initialize passwords with the same input device.
Furthermore, the technique should be secure against dic-
tionary, replay, shoulder-surfing, and phishing attacks.

These problems are solved by the PassWit system, which
also maps well to traditional plain-text passwords, and
thus is compatible with conventional password systems
and input devices. At password initialization time, the user
is given a random mnemonic sentence selected from a
number of word tables. At authentication time, the user is
asked a series of yes/no questions, based on the format
“Does your mnemonic contain one of these words?”

To avoid record/reply attacks, different questions are asked

each time, and to avoid inferring the mnemonic from the
questions that are asked, the questions must be deter-
mined at the beginning using combinatorial group testing.
To protect against spyware, images or CAPTCHA tech-
niques can be used, and the system inherently protects
against phishing, because the mnemonic itself is never en-
tered.

Short Paper: Virtually Shared Displays and User Input
Devices

Grant Wallace and Kai Li, Princeton University

The final paper of the conference, presented by Grant Wal-
lace, covered work on enabling collaboration on shared
displays with multiple input devices, for example, the
Princeton Plasma Physics Lab control room where a large
shared screen is used to allow multiple users to collabo-
rate. Traditional OSes and windowing systems are not ap-
propriate, because they assume the general model of one
user at one display with one set of input devices. The goal
for this new system is to allow multiple user workstations
to connect with each other and the shared display and to
allow the users to seamlessly move cursors and windows
between the workstation and the shared display.

Traditional collaboration systems (such as X and VNC) are
platform-specific, initialization-constrained, support only
one-to-many sharing, or share only at the granularity of an
entire desktop. To address these limitations the Fusion col-
laboration system was developed. It uses a modified VNC
server to allow sharing at the granularity of windows
rather than the desktop, a modified VNC viewer to simul-
taneously display windows from multiple users, a modified
window manager that supports multiple cursors by time-
slicing cursor activity to the system cursor, and a modified
X2X utility that captures input from multiple users.

The system has been deployed in two locations and has re-
ceived very positive user feedback. It enables users to
share and compare windows while providing better per-
formance and privacy than the desktop sharing of normal
VNC. Further details and source code are available at
http://shared-app-vnc.sourceforge.net and http://
multicursor-wm.sourceforge.net.

I N V ITE D TA L K

Warehouse-scale Computers

Luiz André Barroso, Google Inc.

Summarized by Minas Gjoka (mgjoka@uci.edu)

Luiz André Barroso said he intended to describe the char-
acteristics of warehouse-scale computing infrastructure at
Google from the hardware standpoint. Nowadays, ware-
houses are becoming more cost-effective for many compa-
nies, and in the near future new technology advancements
may produce machines that will have properties that need
to be tackled in today’s warehouse-sized computers, such
as thread concurrency, power saving, complexity manage-

90 ; L O G I N : V O L . 3 2 , N O . 5

ment, and fault handling. Thousands of programs in differ-
ent machines should work as a reliable platform running
different services.

The first topic discussed was the programming efficiency
for such systems. The need for parallelism to handle large
amounts of data, heterogeneity, and failure-prone compo-
nents complicates programming. A single programming
system or language may not be enough. Instead Luiz advo-
cated that the solution should be higher-level and use-spe-
cialized building blocks for large-scale distributed systems
such as MapReduce and BigTable.

When building fault-tolerant software, it is important to
guarantee that system interruption does not occur; other-
wise some of the worst performance problems may appear.
Service-level measurements that monitor performance pro-
vide only a partial view. Instead, Google has built a System
Health infrastructure that collects health signals from all
its servers and stores these signals perpetually in time se-
ries. Using this infrastructure, an analysis of hard disk fail-
ures was performed out of detailed signals collected during
a period of nine months from a five-year inventory data-
base. Understanding when such failures occur should, ide-
ally, give a prediction model for failures that would allow
preemptive action. (You can learn more about this project
by reading the Pinheiro et al. paper that appeared at FAST
’07 or the summary that appeared in the June 2007 issue
of ;login:.)

Grouping disks by age did not give conclusive results, be-
cause of the different hard drive model mixtures in the
data. An interesting finding is that temperature has little
impact on the average failure rate. In fact, higher failure
rates are observed at lower temperatures.

Signals were collected from the standard SMART interface
of hard disks, in an effort to build a predictive failure
model. The results showed that only a subset of the
SMART signals are strong indicators of future failures. For
example, drives with scan errors are ten times more likely
to fail. However, the predictive power of SMART signals
seems limited, since almost half of the failures appear un-
predictable when the set of strong indicators is used.

The cost of operation, in terms of energy and maximiza-
tion of utilization, needs to be taken into account for ware-
house building. The former becomes even more important
since, unlike hardware costs, energy prices are increasing.
Luiz mentioned that energy costs (excluding cooling) can
account for up to 20% of the company’s IT budget. Part of
the solution lies in improving the efficiency of power sup-
plies, which ranges from 55% to 70% nowadays, by reduc-
ing conversion losses. It is easy to see that with 55% effi-
ciency the power supply becomes the largest power con-
sumer inside a machine.

The goal of the maximization of utilization is to maximize
the facility usage without exceeding contractual capacity
limits. A six-month power monitoring study was con-

ducted at Google to examine opportunities in power sub-
scriptions. The study included three machine aggregation
levels (rack, power distribution unit, cluster), with each
almost an order of magnitude larger then the previous one.
The analysis showed that at the cluster level the normal-
ized power never exceeded 71%, which leaves room for
more servers to be packed in the warehouse.

Given that current machines usually consume around 50%
of their peak rate at idle mode, simulations for potential
improvements in power consumption behavior were per-
formed. The idea was to assume the availability of active
low-power modes (at most, 5% of peak power). The simu-
lation results showed remarkable improvements for both
peak power and energy at the cluster level. It was sug-
gested that power-saving features be implemented for
other components in addition to the CPU and that a wide
dynamic power range with low consumption at idle mode
be included.

In conclusion, Luiz reiterated the benefits of understand-
ing failures and emphasized the potential for power and
energy efficiency. Most questions wandered around the
issue of power savings.

Information for the climate savers computing initiative
referenced by the speaker can be found at http://www
.climatesaverscomputing.org/.

P L E N A RY C LO S I N G S E S S I O N

Crossing the Digital Divide: The Latest Efforts from One
Laptop per Child

Mary Lou Jepsen, CTO, One Laptop per Child

Summarized by Rik Farrow (rik@usenix.org)

Mary Lou Jepson said that because she has been traveling
so much, promoting One Laptop per Child (OLPC), it is
hard for her to keep track of what time zone she presently
inhabits. Some of her jetlag was apparent in her somewhat
rambling talk, but I still found what she had to say fasci-
nating. You can find transcripts of recent talks by Jepson
at http://www.olpctalks.com/mary_lou_jepsen/ and more
about the hardware of the current version of the laptop,
the XO rev C, at http://wiki.laptop.org/go/Hardware
_specification.

Jepson had been an engineer at Intel specializing in display
technologies. She went to work for OLPC as it was realized
that the single most expensive part of a PC that is designed
to be cheap would be the display. She explained two inno-
vative features of her display design which reduce cost and
power while increasing usability. The first innovation is the
creation of dual-mode display cells. Most LCD displays
rely on backlighting that shines through a color filter, then
through the liquid crystal cell, which is more or less trans-
parent. That means the display focuses on chrominance,
whereas the human eye is actually more sensitive to lumi-
nance. She designed a screen that has greater resolution in

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 91

reflective (black-and-white) mode, 200 dots per inch,
which makes the screen very easy to read. A significant
motivation for this design, besides the use of less power
than with backlighting, is that it can store and display
textbooks. Instead of buying textbooks for children, coun-
tries can buy XOs and upload textbooks, which will pay
for the laptop over its expected lifetime. When used with
backlight, the display goes from 1200x900 mono to
800x600 color, and it may use as much as ten times as
much power because of the backlighting.

The other innovation has to do with refreshing the screen
while the CPU is idle. Normally, the CPU must copy data
to refresh the display 30 times per second, but by replacing
the ordinary display controller chip with one that has
memory, the chip takes over refreshes for the CPU, allow-
ing the CPU to sleep until needed.

The XO has other energy-saving innovations, such as the
use of a Marvel WiFi chip that includes part of an ARM
CPU. That means that a laptop can function as part of a
mesh network even when it is otherwise idle, as the Mar-
vel chip handles the processing. The storage is a 1024-MB
NAND flash and 256 MB of RAM. Jepson also showed ex-
amples of robust servers designed to act as both additional
storage and connections to external networks.

The onetime symbol of the laptop, the handcrank, has
been replaced with swivel-up ears that contain the WiFi
antennas. When swiveled down, the ears cover external
connectors, such as USB ports. Power can come from solar
cells or generators, including a salad-spinner design for
hand-charging.

The display itself is gorgeous, and the system is certainly
sturdy. Jepson explained that laptops at a test site in Nige-
ria were breaking after only three months (but had been
expected to last five years). It turns out that the desktops
at the test site are slanted, and the laptops were falling off
the desks onto the concrete floors at the rate of several
times an hour (and continued to work for three months!).
The XO is designed so that it can be repaired locally by
swapping out parts, and extra case screws are included to
replace lost screws.

The laptop runs a version of Linux, and it uses Sugar as
the GUI framework. Software is designed so that the lap-
top can be used by children who cannot yet read. Jepson
told us of a project in India where children taught them-
selves how to read by having some access to computer dis-
plays.

The simple, rugged, low-power, and low-cost design makes
the XO not just an ideal textbook replacement but a desir-
able product in other worldwide markets. I commented to
Jepson that licensing the display and some of the other
technology might be one way of supporting further devel-
opment of the OLPC vision.

Other questioners had darker views of the project. Tristan
Lawrence said that he expected that the laptops will never
reach their intended recipients, suggesting that the govern-
ments will distribute the laptops to better-off city dwellers,
rather than the apparent targets of the project. Jepson an-
swered that they have focused on teaching and designing a
low-power laptop with mesh networking and a usable dis-
play, not on politics. She did mention Bitfrost, the security
used to help prevent theft of laptops. Laptops must be up-
dated with a signed key once every several weeks, or they
will stop working. The laptops can also be remotely dis-
abled if stolen. For more on Bitfrost and the security
model of OLPC, see http://lwn.net/Articles/221052/.

Aarjav Trivedi of Secure Computing said that he is from
India, a country that has so far decided not to buy the lap-
top. Trivedi declared that content is key and wondered if
they had found local content in India. Jepson said that
they have been working with local people to scan books.
Even though India and China have been cool to the proj-
ect so far, half the children in the world live in China and
India.

Quando Lee asked about textbook cost comparisons. Jep-
son answered that, for example, in Brazil, textbooks cost
$20/year, so over its expected five-year lifetime, the XO
pays for itself. Experience in China showed that kids al-
lowed to read anything they wanted learned five times as
many Chinese characters as other children with less to
read. The same person said that textbooks can last more
than five years and that he had used his older brother’s
books. Jepson responded by saying that textbooks cost
$643 per year in Massachusetts.

Marc Fuscinski said that he had visited some site in Sao
Paolo, Brazil, but the kids can’t take the laptops home. Jep-
son says that is certainly true. But in other places kids are
starting a “right to laptop” movement, and in Cambodia,
Thailand, and Nigeria they can take them home.

Someone wondered why the laptop couldn’t last more than
five years. Jepson replied that the LCD will last for half a
million hours in sunlight, but the flash memory has a lim-
ited number of write cycles (because of wear leveling). The
same person asked whether the laptop is recyclable, and
Jepson answered that if a laptop stops working, it can be
given to a post office, where it will be sent to a central
depot for repair or recycling. The entire device is green,
and it costs more to ship it than to recycle it.

George Herbert of Open Software Foundation asked
whether the OLPC planned on frontloading open content.
Jepson’s understanding is that the countries will choose
what content they want on the server. For example, they
ask the participating country to pick the top 100 books ap-
propriate for kids to read, while they provide a Mathemat-
ica lite version, along with reading and drawing tools. Kids
can also program the computers themselves, using Python
or Logo.

92 ; L O G I N : V O L . 3 2 , N O . 5

Warren Henson of Google asked about other plans for
long-term storage and backup. Jepson said that that
sounds like a great thing for Google to do. Right now they
are stuck with the server (a low-power device, sealed with
a hard disk) and aren’t currently addressing that problem,
although Google has provided gmail accounts. In response
to Henson’s mention of alternative projects from other or-
ganizations, Jepson said that they would like to work with
these groups and try every week. When these efforts fail,
the kids lose, in her opinion. Since Jepson spoke, Intel has
announced that they plan to work with OLPC, and Intel is
now listed as a supporter on the laptop.org site.

Linux Symposium 2007

Ottawa, Canada
June 27–30, 2007
Summarized by Rick Leir (rickleir@leirtech.com)

OLS is the conference for Linux kernel programmers,
across the spectrum from embedded to large SMP systems.
It also attracts application programmers and systems ad-
mins. Last year it was co-located with the Kernel Summit,
but not this year. Attendees came from around the world.
For me, travel arrangements were simple: The express city
bus is convenient to me!

There were three tracks concurrent with tutorials, and sev-
eral times I wanted to be in two places at a time. For a
complete schedule see www.linuxsymposium.org/2007/.
For a more detailed summary see www.linux.com/
feature/115608. The attendees included a few hobbyists
and academics, but most people were from companies in-
cluding IBM, Intel, Sony, Red Hat, and AMD.

Jon Corbet gave his yearly Kernel Report. The trend is to-
ward faster major releases. Where these used to be spaced
by years, now they are spaced by months. The release
cycle is more predictable than before, with a merge win-
dow of 2 weeks followed by 6 weeks for stabilization. This
quickly moves changes out to users. Also, distributors
(e.g., Red Hat, Ubuntu) are closer to the mainline. There is
excellent tracking and merging of patches considering the
volume (though some say quality was horrific for 2.6.21).
There is ongoing work on automated testing.

For kernel 2.6.22, there will be:

� A new mac80211 wireless stack
� UBI flash-aware volume management
� An IVTV video tuner driver
� A new CFQ (Complete Fair Queueing) IO sched-

uler
� A firewire stack
� A SLUB memory management allocator

(http://lwn.net/Articles/229984/)

In terms of scalability, SMP with 512 CPUs works well,
and work on locks and page management processes for
larger systems.

For filesystems, Jon observed that disks are getting larger
but not faster, so fsck time can be a problem. New filesys-
tems such as chunkfs and tilefs are more scalable and sub-
divide a disk so that only the active part needs to be fsck’d.
The btrfs filesystem is extent-based, with subvolumes. It
supports snapshot checksumming, online fsck, and faster
fsck. Jon talked about ext4 with its 48-bit block numbers
and use of extents. [Editor’s note: Also see the article in
the June 2007 issue of ;login: about ext4.]

Jon finds reiser4 interesting, but the project is unfortu-
nately stalled because Hans Reiser is no longer able to
work on it. It needs a new champion.

Jon talked about virtualization. It is getting more attention,
as shown by the many related presentations at this confer-
ence (e.g., KVM, lguest, Vserver).

The kernel is unlikely to go to GPL version 3 even if that
was desired, because it is currently licensed with GPL ver-
sion 2 and thousands of contributors would have to be
contacted to make the change.

Jon’s article has summaries of the Symposium and a sum-
mary of the work going into 2.6.22 (see http://lwn.net/
Articles/240402/).

Greg Kroah-Hartman (www.kroah.com) taped to the back
wall a 40-foot-long chart that linked together the people
who have contributed patches. Developers were invited to
sign the chart and about 100, of the 900 people who con-
tributed to the 2.6.22 kernel, did so.

Mike Mason presented SystemTap, a dynamic tracing tool
based on kprobes. Its simple scripting language provides a
safe and flexible way to instrument a Linux system with-
out modifying source code or rebooting.

There was considerable interest in embedded Linux. Robin
Getz (blackfin.uclinux.org/) presented a tutorial on how to
program for embedded systems with no MMU. I can’t do
uclinux justice here, but it seems to be the way to go.

Tim Chen talked about keeping kernel performance from
regressions. He does weekly performance tests on the latest
snapshot, and he occasionally sees large regressions. There
are about 7000 patches per week, so it is not surprising
that there would be problems. The 14 benchmarks include
OLTP, an industry-standard Java business benchmark,
cpu-int, cpu-fp, netperf, volanomark, lmbench, dbench,
iozone, interbench, and httperf. The project is at kernel-
perf.sourceforge.net/.

Arnaldo Carvalho de Melo talked about tools to help opti-
mize kernel data structures. By rearranging the fields in
structures you can avoid “holes” and thereby pack them
into less memory. At times when related fields are close
enough to be in the same cache line, performance im-
proves. The pahole tool analyzes a struct and suggests field
reordering.

; LO G I N : O C TO B E R 2 0 0 7 CO N F E R E N C E S U M M A R I E S 93

