The Board agreed that USENIX’s official policy in cases of plagiarism would be, at a minimum, to inform the next higher level at the person’s workplace.

FLAME AND STUG AWARDS

2007 FLAME AWARD WINNER: PETER HONEYMAN

The USENIX Lifetime Achievement Award (“The Flame”) recognizes and celebrates singular contributions to the UNIX community of both intellectual achievement and service that are not recognized in any other forum.

In the words of the presentation:

Dr. Peter Honeyman has had a profound and lasting impact on the field of computer science. While many know Peter for his seminal contributions to computing systems, such as Honey Dan Ber UUCP and Disconnected AFS, it is his efforts as a mentor that we wish to honor with the USENIX Lifetime Achievement Award. Peter’s often highly unconventional stewardship of the countless students, researchers, and advisees he has touched is the stuff of graduate student legend. His penetratingly insightful (and potentially hazardous) questions and comments, combined with a paradoxically unflinching loyalty, consistently have led those under his tutelage to the pinnacle of achievement in security, systems, and networking. Peter’s questioning during conferences and doctoral defenses, although sometimes frightening, always demanded better from those of us who attempt to advance science.

We also wish to honor Peter’s mentorship of the technology community: few people have so selflessly shared their time and counsel to ensure a lasting venue for high-quality discourse. In particular, his efforts as supporter and Board member have been instrumental in the birth, growth, and continuing success of USENIX.

2007 STUG AWARD WINNER: GUIDO VAN ROSSUM

The STUG award recognizes significant contributions to the community that reflect the spirit and character demonstrated by those who came together in the Software Tools User Group (STUG). Recipients of the annual STUG award conspicuously exhibit a contribution to the reusable code-base available to all and/or the provision of a significant enabling technology to users in a widely available form.

In the words of the presentation:

The Python programming language is known for many things. Most important, it pays homage to Monty Python’s Flying Circus. It is a dynamic, object-oriented language with simple, yet efficient, high-level data structures. Guido van Rossum, the originator of Python, emphasized readability and ease of use and reuse. Python’s elegance has made it an increasingly attractive tool for scripting, rapid application development, and general programming. We believe that developers are attracted to Python because such thought was put into making the syntax obvious and simple; for instance, Python, unlike most other dynamic languages, uses indentation to group statements.

In an article describing his first experiences with Python, Eric S. Raymond wrote, “The long-term usefulness of a language comes not in its ability to support clever hacks, but from how well and how unobtrusively its support for day-to-day work of programming” (quote from www.python.org/about/success/esr/).

Python is open source, free software. In fulfillment of van Rossum’s original goals, the community of Python programmers has spread across multiple operating systems and hardware platforms.

In light of his contributions in the STUG spirit and to the realization of a major enabling technology, USENIX recognizes Guido van Rossum with the 2007 STUG Award.

USACO UPDATE

Rob Kolstad, USACO Head Coach

USENIX is the Platinum sponsor of the USA Computing Olympiad, the premier pre-college computer programming competition. The USACO conducts half a dozen Internet-based programming contests through the year, hosting about 1,000 students in each one. The USACO contests are “open” in the sense that they encourage participation from students around the world. Each contest is typically offered not only in English but also in another half-dozen languages.
Surprising to some Americans, a huge percentage of non-USA students speaks English with enough skill to solve computer contest problems. Contests commonly garner students from 66 different countries.

Contests are complemented with 200 hours of online training. This training program offers instruction in the relatively esoteric area of algorithmic programming and requires students to solve sets of contest-like programming tasks before moving on to subsequent sections of training.

For USA students, the goal of the contests is to earn one of 16 berths at the USA Invitational Computing Olympiad (US-AICO), a nine-day competition, conducted this year at Colorado College in Colorado Springs, Colorado. While the arrival and departure days are relatively short (arrival mid-afternoon at the Denver airport, departure at 0730 to return to the airport), the intervening week is a busy one. Four three-hour programming contests and two five-hour contests keep the students on their toes as they vie for four positions on the USACO traveling team, which will represent the USA at the International Olympiad on Informatics. This year’s IOI will be held August 15–22 in Zagreb, Croatia.

The sixteen participants and six coaches hailed from around the country, with no school truly dominating the list:

**Seniors:** Zarathustra Brady, Magnolia Science Academy, Van Nuys, CA; Richard McCutchen, Montgomery Blair High School, Rockville, MD; John Pardon, Durham Academy Upper School, Chapel Hill, NC; Bohua Zhan, West Windsor-Plainsboro HS South, Plainsboro, NJ

**Juniors:** Artur Dmowski, Stuyvesant HS, Corona, NY; Boping Lai, The Roxbury Latin School, Lexington, MA; Kevin Lee, Bergen County Academies, Closter, NJ; Yongqian Li, Niskayuna High School, Niskayuna, NY; Spencer Liang, The Harker School, Cupertino, CA; Haitao Mao, Thomas Jefferson High School for Science and Technology, Vienna, VA; Jacob Steinhardt, Thomas Jefferson High School of Science & Technology, Vienna, VA; Ye Wang, Nicolet High School, River Hills, WI; Louis Wasserman, Montgomery Blair HS, Derwood, MD

**Sophomore:** David Benjamin, Harrison High School, West Lafayette, Indiana

**Freshmen:** Neal Wu, Baton Rouge Magnet High School, Baton Rouge, LA; Scott Zimmernann, Montgomery Blair High School, Gaithersburg, MD

Ye Wang is the first exchange student to qualify for the US-AICO competition. Although she attends high school in Wuhu, China, she spent her junior year in River Hills, Wisconsin, and thus was eligible to represent the USA in the national and international competitions.

Half a dozen coaches set problems and shepherded the students through the week. They included director Don Piele, recently retired from the University of Wisconsin; Rob Kolstad, aspiring consultant; Brian Dean, up-and-coming faculty member at Clemson University; Berkeley grad student Percy Liang; MIT student Alex Schwendner; and problem-setter extraordinaire Richard Peng, who has just completed his first year at Canada’s prestigious University of Waterloo in Toronto, Ontario.

The four contestants chosen to represent the USA were seniors Richard (Matt) McCutchen and John Pardon, junior Ye Wang, and sophomore David Benjamin (see photograph). This is the first time a woman has earned a berth on the extraordinarily competitive traveling team. These students solved extremely challenging problems like “Moving the Hay,” by Richard Peng:

“After he partitioned his farm into $R$ ($1 <= R <= 200$) rows and $C$ ($1 <= C <= 200$) squares conveniently labeled 1,1 through R,C, Farmer John spent days cutting the hay and stacking a huge amount of it in square 1,1. He then undertook the task of mapping out the N ($1 <= N <= 80,000$) haypaths through the farm so that he could deduce the maximum rate he could move hay from square 1,1 to square R,C.

“Each haypath uniquely connects the middle of two rectilinearly adjacent partitioned squares and has some capacity limit $L_i$ ($1 <= L_i <= 20,000,000$) that is the maximum amount of hay that can be transported in either direction across the haypath. He’s just positive that he can move hay at a reasonable rate to the other side of the farm but he doesn’t know what the fastest rate is. Help him learn it.”

As a heritage from the days of holding our training camp in Wisconsin, USACO problems tend to concern cows, farms, and Farmer John’s dilemmas. This
problem is challenging not only for its algorithmic difficulty but also because the time limit was 1.0 CPU seconds on a 700MHz processor used for automatic grading. Doesn’t look that hard, does it?