
USENIX Association

Proceedings of the
2nd Workshop on Industrial Experiences

with Systems Software

Boston, Massachusetts, USA
December 8, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Abstract
Sleepycat Software develops and supports the Open
Source software product Berkeley DB, the most widely
deployed embedded database software in the world.
Berkeley DB originated at the University of California,
Berkeley, and in this paper, we discuss the differences
between research software and a quality commercial
product. Over the past years we have acquired an educa-
tion in configuration, portability, and testing. The key
message is that code quality, a willingness to rewrite or
discard code when necessary, rigorous adherence to
internal standards, and constant policing of ourselves
are the key requirements of quality software.

1. Introduction
Many research and commercial software communities
struggle with technology transfer, converting a research
prototype into a commercial product. While the barriers
are occasionally political and cultural they are often
technical. Regardless, it is a problem research groups
must solve to maximize the impact of their research
ideas or to profit from their work.

Building software is analogous to building a house:
houses should be designed before construction starts,
there are building codes to follow, designs and finished
products should be reviewed and formally inspected,
and the finished product should be flexible enough to
accommodate different uses to which customers might
put it.

In this analogy, research prototypes are tree houses.
While looking like real houses with many of the fixtures
of real houses, they are built for a specific purpose: they
do not need to last for decades and they do not need to
accommodate a variety of uses. There exists a middle-
ground between tree houses and real houses that we will
call sheds. Sheds are simple, single-purpose structures
that must adhere to local building codes (for example,
wiring and location). In the rest of this paper, we will
use the analogy between house construction and soft-
ware creation to explore the process necessary to build
quality commercial software.

Sleepycat Software develops and supports Berkeley DB,
an Open Source database library. Berkeley DB has a
long history, starting in the early 1990s at the University
of California, Berkeley, where it began as an Open
Source replacement [5] for dbm [1] and ndbm [2]. Olson
and Bostic added a Btree implementation and a common
index-independent API, and the resulting package, Ber-
keley DB 1.85, was released as part of the 4.4BSD dis-
tribution. Using our analogy, Berkeley DB 1.85 was a
rather good shed that became widely adopted. It was rel-
atively well-engineered, had consistent interfaces and a
consistent coding style, but was lightly tested and sup-
ported only a single class of applications needing non-
concurrent, unrecoverable data storage.

Seltzer and Olson developed a prototype of a transac-
tional system based on Berkeley DB 1.85 in 1992 [6].
Using our house analogy, it was a tree house; although it
demonstrated that a transactional system could be built
on Berkeley DB, the system lacked coherent design,
shortcuts were taken to avoid solving hard problems,
and it was never stable enough to support mission-criti-
cal applications.

In 1996, Sleepycat Software was founded to transform
the DB 1.85 shed into a real house. While DB 1.85 was
in widespread use, it had many shortcomings. The code
reflected the multiple authors that had worked on it and
there was little consistency between the different access
methods. The package worked correctly on common
cases, but boundary conditions could fail. For example,
the hash package leaked pages in the database if all the
items in a bucket were deleted and that bucket had
exceeded a single page. There were no utilities to dump
and load data from/to the database. There was no way to
permit concurrent updates or even a single updater with
multiple readers. Even in the read-only case, each pro-
cess maintained its own cache of recently-used pages, so
the system consumed more memory than was necessary.
It was a typical shed: it was just great for storing things,
so long as nothing catastrophic happened if the things
were lost or even slightly damaged.

Tree Houses and Real Houses:
Research and Commercial Software

Susan LoVerso, Margo Seltzer
Sleepycat Software

{sue,margo}@sleepycat.com

Today, Sleepycat Software has ten engineers supporting
approximately 200,000 lines of code. Berkeley DB 4.X
supports Btree, Queue, Hash and Record-oriented
access methods, transactions, high levels of concur-
rency, recoverability, master-slave replication, distrib-
uted transaction management, and a wide variety of
APIs (C, C++, Java, Tcl, Perl, Ruby, RPC and many
more) on a wide variety of platforms (UNIX, Linux,
Windows, VxWorks, QNX and more). As Berkeley DB
is a library API, it is used exclusively by software devel-
opers, not end-users. Our typical sales opportunity is a
software engineer who is building an application with
data management needs. As we are an Open Source
product, we cannot hide our flaws and the engineers
who buy our code know exactly what they are getting.

Sleepycat is a small company with limited resources.
Generally one or two engineers have responsibility for a
project. Those engineers are responsible for all aspects
of the project: initial design, implementation, testing,
integration and at least a solid first draft of documenta-
tion.

Sleepycat is a distributed company. With no fixed office
space and engineers on both coasts of the US and in
Australia, we cannot walk down the hall and have a
spontaneous brainstorming session or a quick white-
board talk. Good communication is essential to our suc-
cess. Similarly, various, rigorous processes are impera-
tive. Due to our distributed nature, we have more
process than companies orders of magnitude larger.
However process is there for maintaining order, not to
get in the way of doing the job at hand. Our process
must be different from other team-based reviews, such
as the Team Software Process (TSP) [8] because we
cannot have review meetings other than those conducted
over email or the telephone.

Because mentoring is difficult in a distributed company,
Sleepycat hires only experienced engineers. Our engi-
neers have all solved difficult problems. We all know
how to read and understand someone else’s code, and
how to make our own code easily understood by others.
We understand that code consistency helps us all. We
understand that any untested line of code has a bug in it,
by definition, and we use any tools we can find to
increase our testing and test code coverage.

This paper describes the practices that have been suc-
cessful for us. Not all of the practices we follow will
scale to a large company. The processes we discuss may
work well for small teams. Fundamentally, the one
requirement necessary is that management must believe
that such processes are important and must make them

mandatory and part of the culture. For a large company
to succeed with these practices it may be necessary to
institute a more formal collection of processes and train-
ing such as those of the Software Engineering Institute
(SEI) [7]. Even with training, large organizations need
to incorporate these processes into the everyday work-
place constantly. As an organization grows larger, over-
coming an individual engineer’s resistance to change
becomes a bigger issue.

In the rest of this paper we take you through our process
of building software and compare it to the construction
process of surveying the land (design), offering building
choices (portability and configuration), building to code
(coding standards), inspections (testing), warranties
(customer support), expansion (rewriting), hitting bed-
rock (unexpected problems), failing inspections (diffi-
cult bugs), and preparing to build the next house
(lessons learned).

2. Surveying the Landscape
No one would ever let a builder begin construction of a
home based on his promise to, “Build you a great 4-bed-
room Colonial,” yet it is common for engineers to begin
coding without a detailed and explicit design. Any soft-
ware engineering book will tell you this is a mistake,
and it would be right. However, such books will often
also tell you to use a formal specification language and a
great deal of rigor to actually design something. We see
things slightly differently.

In the construction of a house, the design is comprised
of blueprints, plot plans, artistic renderings of the inte-
rior and exterior, an electricity plan, a plumbing plan,
etc. The goal is that one person could complete the
design and an entirely different team could (and usually
does) implement it. While the same should hold true in
the software world, it rarely does. Designs in our world
consist of a few basic components:

• A goal statement.

• What is the purpose of the design?
• What are we trying to achieve?
• Are there different categories of functionality (for

example, features the design must provide and
features that are nice but not essential)?

• A technical description of the software to be built.This
usually contains:

• a rough code breakdown,
• a detailed discussion of the effects on the rest of

the system and overall integration with the rest of
the product,

• a description of the algorithms (in our case, spe-
cial attention is paid to concurrency and recover-
ability).

• A test plan.

• How will we test this?
• Can we use or augment existing tests?
• Do we need a new testing infrastructure?
• Do we need to build testing hooks into the code?

• Documentation.

• UNIX-style manual pages.
• Reference Guide sections. In our product, the pro-

grammatic interface is what we sell, and so docu-
mentation is absolutely crucial.

Once the design is finished, the fun begins. Designs are
distributed to both engineering and marketing, and
while one or two engineers will have responsibility for
review, comments from everyone are encouraged. Obvi-
ously, sending designs to the entire company does not
scale, but having the design read by a group of people
with different perspectives is key. Typically, we ask the
following questions as we review each design:

• Does the design solve the customer’s problem?

• Does the interface share the same look and feel as the
rest of the system? An interface that is difficult to
learn or explain, or inappropriate for a particular lan-
guage will not be popular with our customers. (For
example, the same services are often provided in dif-
ferent ways in different languages such as C, Java and
Ruby).

• Does the interface match interfaces in similar prod-
ucts, and will it make sense to engineers experienced
in this area?

• Is the test plan sufficient?

• Does the design scale to next year’s hardware, thou-
sands of threads and terabytes of data, or are there per-
formance bottlenecks?

• Does the design affect data recoverability?

• Does the design affect existing customer’s software
and their existing databases? (Upgrading software
annoys customers, but they are usually willing to do
so. Upgrading databases is a serious problem for many
of our customers.)

• How pervasive is this change? Can we introduce this
change at this time in our release cycle and still reach
stability in time for the next release?

The design phase lasts until everyone’s concerns and
perspectives have been addressed. Coding will often

begin before the design has been finalized, but with the
understanding that sunk costs are irrelevant, and it is
better to be right than to be done quickly. Consensus is
almost always reached, but answers are occasionally
dictated by the product architect (and official arbiter of
good taste).

When the design phase is complete, we have a workable
design and schedule. Nonetheless, the development
engineer always needs to change things as the coding
proceeds. Just like code is audited before it is commit-
ted, design changes are propagated to the review engi-
neers for comment. In general, we have not had big
surprises when we follow our design protocol rigor-
ously. However, it has certainly been the case that when
we are sloppy during the design phase, we suffer for it
later.

3. Offering Building Choices
Just as a treehouse is usually built to fit the contours of
the particular tree that is in the yard, research prototypes
work only on the specific systems and configurations
for which they are built. Sheds are similarly built with
the confines of the particular yard in mind. They are
small enough to be nimble in their placement. A devel-
oper cannot hire an architect to design and build a brand
new and different house on every lot on which the
builder builds. Therefore, a developer has a selection of
house designs, each of which can be altered in limited
ways to suit the designs to a homeowner or site, such as
reversing or rotating rooms around the core or building
the garage at basement level. Commercial software must
have the flexibility to be configurable and portable to
many requirements and systems.

To the extent possible, projects should choose a devel-
opment language that minimizes the differences of the
underlying environments in which it will run. C or C++
projects can be made portable more easily than Fortran.
Java is preferable to C/C++, and a high-level scripting
language such as Python or Ruby is the best choice of
all. Berkeley DB was forced to use C: it was difficult
and time-consuming to make C++ run as quickly as
native C and when Berkeley DB was developed there
was no C++ standard and available C++ compilers var-
ied in major ways. Also, until quite recently, it was
impossible to make Java run as quickly as native C.

Portability code should be isolated to a single area and a
single set of files. For example, in Berkeley DB, there
are os source directories (currently os, os_win32 and
os_vxworks). Compiler, library and operating system
interfaces with portability issues are abstracted to files
in the os directory. This includes variables such as

errno, library interfaces such as malloc, and operat-
ing system interfaces such as mmap. The portability
layer of Berkeley DB is approximately 3000 lines of C.

There are two advantages in creating a portability layer.
First, it is easier to port to new platforms. It is often the
case that no member of the development team knows
the porting platform (for example, there are literally
hundreds of different embedded operating systems, and
nobody knows any significant fraction of them). By cre-
ating a separate portability layer it is possible for some-
one intimately familiar with the port platform to port
Berkeley DB without having to understand Berkeley
DB itself.

Second, software rarely needs the full functionality of
more complex system calls such as mmap, and program-
mers commonly configure such complex interfaces
incorrectly. A portability layer allows us to export only
the limited, necessary functionality from the system,
simplifying the code in Berkeley DB. For example, code
to use the UNIX stat system call to determine if a file
exists and its optimum block size for I/O is complex, as
the stat field which holds I/O block size information
is a relatively recent addition to UNIX. Also, the code to
use stat to determine if a file exists and is a directory
is complex, involving the manipulation of octal byte
masks on many historic systems. In the Berkeley DB
portability layer we have written that code, but exported
it to the Berkeley DB mainstream code as two functions:
__os_exists and __os_info, which only return
the specific information needed.

For C and C++, language types can also be a problem
(for example, using size_t and off_t portably can
be difficult). In Berkeley DB, we define internal types of
fixed size in our software and abstract them through the
portability layer APIs. For example, rather than deal
with the fact that an off_t may be 16, 32 or 64-bits on
a particular platform, we use “page number” and “page
size” variables in our software, both of which are
declared to be of type uint32_t to guarantee us 32
unsigned bits, and only convert to the platform-depen-
dent off_t when making the system call in the porta-
bility layer.

Portability code should always be selected based on a
feature, and never based on a platform. Trying to create
a separate portability layer for each supported platform
results in a multiple update maintenance nightmare. A
“platform” is always selected on at least two axes: the
compiler and the library/operating system release. In
some cases there are three axes, as when Linux vendors
select a C library independently of the operating system

release. With M vendors, N compilers and O operating
system releases, the number of “platforms” quickly
scales out of reach of any but the largest development
teams. By using standards such as the ISO/IEC C-lan-
guage standard[11] (ANSI C) and the ISO/IEC system
call API standard[12] (POSIX), the set of features is rel-
atively constrained.

Of course, the default portability code should implement
whatever “standard” is most widely available on sup-
ported platforms. For C-language applications this will
likely be the previously mentioned ANSI C and POSIX
standards, at least on platforms shipped in the past
decade. The kinds of problems we solve in the portabil-
ity layer are when systems fail to match the standardized
behavior, or differ from the standard for some other rea-
son. For example, the dosFS filesystem distributed with
VxWorks does not support the POSIX-mandated seman-
tic that software be able to open a file descriptor, remove
the underlying file, and then continue to write to the
open file descriptor. We solved this problem by adding a
flag to the Berkeley DB structure that contains file han-
dles (currently, either a POSIX file descriptor or a
Win32 HANDLE). The flag allows the portability layer
code that closes file handles to remove the file after the
last close of the file handle. As a result, only the porta-
bility layer code needs to handle this problem, and Ber-
keley DB programmers do not even know that it exists.

Portability choices can be made along either lines of
code or compiled files. We have not found any main-
tainability differences between using compile-time tests
to include alternate lines of code, or compile-time tests
to use one of a few different files. Generally, we have
moved portability code for different platforms into sepa-
rate files when the implementations diverged signifi-
cantly (shared memory mapping on UNIX vs.
Windows) and left it in a single file when the differences
were minimal (using gettimeofday,
clock_gettime, ftime or time to find out the
current time-of-day). When a platform has separate
files, we create a new directory but leave the file name
as close to the generic file name as possible. For exam-
ple, absolute path name resolution for all platforms
except VxWorks and Win32 is in os/os_abs.c,
while the VxWorks implementation is in
os_vxworks/os_vx_abs.c and the Win32 imple-
mentation is in os_win32/os_abs.c. The VxWorks
filename is different due to a workaround for a Wind
River build problem.

Configuration choices should be made at compile-time.
A significant advantage in distributing source code is
that it allows the package to adapt at compile-time to the

environment it finds. This is critical as it allows the
package to run on platforms its developers have never
seen, and it allows the software’s community of users to
do their own ports. Only the largest of development
teams can afford to buy all of the hardware and hire
enough employees to support even a limited number of
platforms.

Berkeley DB uses the GNU Autoconf software to do
compile-time configuration. Autoconf is a tool for pro-
ducing shell scripts that automatically configure soft-
ware source code packages to adapt to many kinds of
UNIX-like systems. The configuration scripts produced
by Autoconf are independent of Autoconf when they are
run, so their users do not need to have Autoconf. While
Autoconf scripts are difficult to write and difficult to
maintain, Berkeley DB does all its configuration testing
for UNIX and UNIX-like systems in around 1300 lines
of Autoconf script.

Regardless of your approach to configuration, do not
ask the user for system information. The user installing
the package does not know the answers to your ques-
tions, and this approach is doomed from the start. The
software must be able to determine for itself any infor-
mation that it may need at compile- or install-time.

Finally, portability and configuration issues are greatly
diminished by following good software practices in
other parts of your development:

• Having a good test suite allows the team to buy inex-
pensive hardware for testing and then easily run
regression tests before releases.

• Distributing the test suite allows the community of
users to test their ports before contributing them back
to the group.

• Never using the namespace of any other part of the
system, (including file names, error return values and
function names) ensures that you never collide with
another library. Where the namespace is shared, docu-
menting the namespaces you use is only courtesy.

• Encouraging developers to use a wide variety of plat-
forms as their desktop and test machines ensures that
the code is always being tested for portability flaws.

• Aggressively keeping the code base clean and the soft-
ware layers independent makes it less likely that porta-
bility problems will slip through.

4. Local Building Codes
As a builder must comply with local zoning and build-
ing codes, so must software developers observe com-

pany coding standards. When building a tree house,
there are rarely zoning laws or permits, and the tree
house takes whatever form the builder chooses. Simi-
larly, in a research prototype, the code is in whatever
language and form the developer prefers. With a shed,
there are some guidelines or local laws. Similarly, when
engineers cooperate on a project, they generally work
more closely together and use the coding standards, if
any, of the larger organization of which they are a part,
just as a shed might be painted to match a house. If those
standards are inconvenient for some reason, however,
they will often be ignored.

When building a real house, there are many participants.
The excavator must dig the foundation to match the
footprint of the house, the carpenters must build the
walls to match the blueprints, etc. There is typically a
general contractor overseeing the operation to make
sure the subcontractors do their particular jobs correctly
and match the specification. Similar processes and poli-
cies are necessary for building quality commercial soft-
ware as well.

The debate over the choice of coding standard could
probably go on forever. Regardless, it is simply too dif-
ficult and expensive to maintain software built using
multiple coding standards, and so some coding standard
must be chosen. However, a coding standard is useless
without enforcement. Consistency and cleanliness of the
code are of the highest priority; the details of the stan-
dard itself are a distant second. Not only does Sleepycat
have a single standard for coding, we adhere to it reli-
giously. Code audits frequently contain suggestions
about clarity, proper spelling and punctuation in com-
ments, points of line-splitting, choice of variable names,
and a host of other things that have little to do with the
technical correctness of the code, but everything to do
with the quality of the overall code base. Newly hired
engineers are usually taken aback by the rigor with
which we strive for consistency, but over time, they real-
ize that adherence to the local codes is not an option; it’s
the law.

Code consistency makes it easier to maintain cleanliness
in the code. Bug reports and user questions are assigned
to engineers not only on a knowledge-area basis, but
also on a time-available basis. As a result engineers
must quickly be able to understand code with which
they are not familiar. Fundamentally, reading another
engineer’s code is reverse engineering. Consistent use
of whitespace and punctuation makes it possible to con-
centrate on what the code does, rather than how it is for-
matted. Consistent variable naming (for example, across
our code base, a database handle is always a dbp)

makes it possible to immediately understand the set of
operations possible using a particular variable. Not only
is consistency and code cleanliness necessary for our
daily work, it is necessary for our success as an Open
Source company. If a builder built homes that did not
meet code or zoning laws, or if the walls were not verti-
cal and straight, that builder’s reputation would be tar-
nished, and business would go elsewhere. The quality of
the code matters a lot in an Open Source product. Good
code gains you credibility and respect. Putting thought
into organization and consistent structure leads people
to believe that the same care goes into the code itself,
which we believe to be true in our case.

Conversely, sloppy code, or code that produces warning
messages when it is compiled, or spelling errors in
README files or error messages, leads customers to
believe the engineering behind it is also haphazard and
sloppy. We regularly have customers comment on the
quality of our code: “I must say, your code is excellent,”
or, “It is a real pleasure to read.” That feedback not only
strokes engineering egos, it is every bit as important to a
software development organization as it is for a builder
to hear, “Your workmanship is excellent.”

Maintaining consistency at Sleepycat is easier than it is
at most organizations due to our size and our having an
experienced and disciplined engineering team. How-
ever, we have processes in place to catch mistakes: all
code changes are audited, and audits include checks for
stylistic violations. Before a release cycle, we make a
pass over the code looking specifically for coding stan-
dard and naming mistakes and spelling errors in quoted
strings. Compilers are run with “additional warning”
flags and any warnings found are cleaned up. We regu-
larly run code-cleaning tools such as lint and others. All
engineers are expected to fix violations they find when
reading code, regardless of why they were reviewing the
code in the first place.

5. The Home Inspection
Typically, completion of a tree house consists of the
builders declaring, “It’s done!” and 30 seconds later, the
children are using it. When a shed is completed, there
might be a quick inspection by the local housing author-
ity, and the homeowners can then move their lawn
mower inside. When a house is completed the process is
more involved. With a reputable builder, the process is
verified on a recurring basis so there are not any sur-
prises when the building inspector checks the finished
product. After receiving certificates of occupancy from
the local authorities, the builder does a formal walk-
through of the residence with the new homeowner. New
owners perform unit testing on the house: turning on

lights and water, flushing the plumbing, and so on. It is
the same way with commercial software. Research pro-
totypes rarely undergo rigorous testing, and need only
work in a limited setting. Larger software projects might
undergo some testing, but are still often expected to be
extensively fixed after release. A commercial software
product may not survive if it is filled with severe flaws
upon release. Maintaining buggy, released software
costs the industry billions of dollars every year [4], so
every bug found in testing translates into long-term sav-
ings.

Given our small support organization, the high level of
algorithmic complexity in our code, and the demands of
our customer base to never lose data, we live and die by
testing—we simply cannot afford to debug problems in
the field and must find them before release. We cur-
rently have over 40,000 lines of Tcl, testing Berkeley
DB’s functionality. Of course, we run code coverage
tools over test suite runs so we know what areas of the
code are not getting covered by our tests. Currently our
Tcl test suite covers about 70 percent of our code base
by lines of code (a good level, given the difficulty of
exercising error code paths in the typical application).
Our test suite is composed of hierarchical layers:

• At the lowest layer we have tests of a particular func-
tion in the system (for example, does the system han-
dle items that exceed the page size).

• At the next layer, we wrap the lowest layer tests in
drivers that run each access method through every test
with a variety of parameters (for example, page size,
encryption on or off, and so on).

• At the next layer, we test different system configura-
tion options: transactions, locking, replication, RPC.
For each configuration, we run all tests in the lower
layers.

• At the next layer, we invoke the different tests through
each of the high-level APIs (C, C++ and Java).

Not surprisingly, the test suite takes days to run. It is
modular enough that engineers can run pieces of it to
test code changes, but producing a release implies run-
ning the full test suite on a wide variety of compiler and
operating system combinations. However, every bug we
find in testing is a bug customers do not find, and in a
system as complex as ours, many of the bugs we find
simply could never be debugged in the field.

However, our test suite, written in Tcl, has limitations.
Standard Tcl is not multi-threaded and therefore our test
suite is serial as well. In addition, scripting languages
are still too slow to stress the library’s performance. For
these reasons, we have two large application server pro-

grams (intended to mimic customer application behav-
ior) that we run continuously on high-end test hardware.
The layers of unit testing described above test the
library’s functionality. The test applications test the
library’s performance and concurrency control, as well
as resistance to non-deterministic behavior, such as ran-
dom system failure. In an earlier release, our most seri-
ous mistake was failing to run our test applications
during the development cycle, resulting in an unex-
pected slip in the release. Tens of thousands of success-
ful iterations of our test applications is what gives us the
confidence that a new release is ready for real-world
workloads.

6. Warranties and the New Homeowner
When a general contractor builds a house, and the new
owners move in, there is a period of time during which
the builder will come back and fix anything that is not
working or is not quite right. In our business, this is
called customer support. Sleepycat has a support organi-
zation to track requests and direct them to the appropri-
ate people. However, once the request has been handed
off to an engineer, the customer and engineer are in
direct contact. This is for several reasons:

• Potential customers are likely evaluating our competi-
tors’ products while waiting for us to respond. We
need to respond quickly and correctly and not let sup-
port requests languish for too long.

• Engineers often select products based on the quality of
the support. If they believe the vendor organization
will support them as they learn a new API, they have a
strong incentive to buy from that vendor.

• We are selling engineering software to smart people. It
would be difficult to train support people that could
handle a significant fraction of our support questions
without being engineers.

• It is important that engineers understand who pays
their salary. Contact with customers is an important
source of feedback both on future features for the
product as well as how the software is perceived, that
is, how well the engineers are doing their job.

Sleepycat uses all of its engineers (including our chief
architect) in support tasks. For this reason the quality of
our support eclipses our competitors, and no single engi-
neer is tasked with the boring work of support. Engi-
neers cannot close support requests; the close must be
done by the support manager, who has responsibility for
tracking requests and ensuring that the customer is
happy at the end of the day. Our engineers behave like a
professional support organization with the directives:

• Be polite (no matter what).

• Respond as quickly as possible; support is more
important than new code.

• Answer the question as completely as possible.

• Never send out an untested patch to a supported cus-
tomer.

• Include a link to the appropriate web page if you give
them a documentation reference.

• Be grammatical, spell-check all email, and format it so
it is easy to read and easy to reply. Customers assume
that sloppy email reflects sloppy code.

Sleepycat also treats requests from unsupported users
similarly to requests from supported customers,
although at a somewhat lower priority. Often, unsup-
ported users find bugs and have good ideas for features.
We also believe that helping academic and other unsup-
ported users become comfortable with our product and
API will result in future commercial sales.

Sleepycat maintains a complete log of all interaction
with customers on every support request. We have had
cases of customers wondering what had happened with
their support request and our log has been useful in
helping them identify errant email forwarding and other
black holes into which email fell. In general, our guid-
ing principle is that customers desperately want to talk
to a technically competent human if they are reporting
and tracking a real bug, and it is our job to provide that
human being and a resolution as quickly as is possible.

7. Starting to Dig the Expansion
After you have lived in a house for a while, sometimes
your needs change. The family size grows, new room
uses are sought. Initially, for a growing family, one may
take the faster solution of, say, finishing part of the base-
ment and turning it into a playroom. However, depend-
ing on the growth, ages and needs of a family, more
drastic measures may be needed. Aging grandparents
may be moving in and their needs are different from a
toddler’s. It might be time to reconfigure some of the
existing rooms and add an addition for the changing
needs. So it is with software and rewriting particular
subsystems.

There has been much discussion in the community
about the pitfall of rewriting entire systems from scratch
[9], however there has been little discussion concerning
the trade-off between rewriting and maintaining sub-
systems that were written under different conditions
than currently exist. As one maintains a product over
time, one discovers parts of the code that have become

complex, brittle, and/or simply ugly. The code did not
start out that way, but as features were added, funda-
mental assumptions upon which the code is based
ceased to be valid. For example, when we built the por-
tion of our system that handled the recovery of file cre-
ation, the system observed the rule that every file
contained one and only one database. Sometime later,
we added subdatabase functionality that let us store
multiple databases in a single file. Suddenly all the
assumptions we made about the state of a file during an
open were no longer valid. Then we added replication to
our system which further changed the rules about open-
ing and creating files. With much painful debugging, we
were able to make the code pass our tests, but the result
was a largely unmaintainable codebase. We had a storm
brewing in the code; nobody admitted to really under-
standing the code, and engineers were loathe to touch it
for fear of breaking what seemed to work.

It was time to rethink our entire approach and rewrite
this part of the system based upon the new state of the
world. Since we were doing that, we had the luxury of
considering new functionality as well, and we decided
that we could extend our transactional support to pro-
vide the ability to group multiple file system level oper-
ations in a single transaction (e.g., begin, create file foo;
delete file bar). It is terrifying to contemplate rewriting
parts of the system that work, but even more terrifying
to contemplate leaving fragile code in your product. The
key enabler allowing us to rewrite this central compo-
nent of our software was our test suite and testing infra-
structure. Without the test suite, we could never have
considered this rewrite. We began the rewrite with a
new set of assumptions and designed it based upon a
simple set of four file system primitives dealing with
modification:

• create files

• remove files

• rename files

• write to files

The design phase lasted about a month with a single
engineer owning the design and the rest of the team
commenting on it and pointing out the problematic
cases. Each engineer brought their own set of biases,
assumptions, and knowledge about particular sub-
systems to the table and the end result was that we
debugged significant parts of the design before the first
piece of code was written.

The rewrite took about one staff-month of actual coding,
one staff-month of unit testing, and a final staff-month
of new testing, that is finding and fixing bugs that were

discovered as the test suite was enhanced to cover the
new functionality that was added. The end result of this
rewrite was increased functionality and cleaner code
that we no longer fear touching. It was neither easy,
painless, nor fun, but it was important and the end result
is enormously satisfying.

Perhaps the most educational aspect is the constant ten-
sion between doing it right from start to finish and hav-
ing to rewrite parts of the new code as you go. As the
development progressed, there were phases where cer-
tain functionality was working, but we would discover a
problem that required changing the working functional-
ity. The engineer on the project always resisted such
changes, and it took strong and persistent management
pressure to ensure the end result was not as brittle and
complex as the original code. In general, engineers
resist changing things they have written and debugged
with good reason; however, sunk costs are irrelevant if
the path you are on is headed for disaster. It is absolutely
essential to be willing to backtrack. The engineer
involved may not realize when it is time to backtrack,
which is why someone else must be close enough to
identify the need.

8. Hit Bedrock, Stop Digging
Suppose you decide to add an in-ground pool in your
backyard. Someone from the pool company comes to
your house and surveys the yard, determining where
various obstacles might be. Everyone agrees on the pool
design and area and the price to install it. Work merrily
commences. However, after digging down several feet,
the excavator hits bedrock. Work ceases and the options
must be considered. Should the bedrock be drilled and
blasted (with the unlimited expense paid for by the
homeowner) or should the pool be moved, or should the
pool just be shallower than originally planned?

Sometimes design flaws are only discovered during
implementation. It is important to be willing to admit, at
any time during the life of a project, that the wrong path
has been chosen and that it is time to step back and
rethink the entire design. The brute force alternative, of
hitting the round peg really, really hard until it goes in
the square hole, will be more expensive in the long term.

Sleepycat recently had one such experience when add-
ing checksum and encryption support to our database
product. All I/O in the product is done at a page-level
granularity, so we chose to checksum and
decrypt/encrypt each page as it was read/written. Cryp-
tography support requires we store 36 bytes of crypto
initialization vectors (IV) and checksum data on each
page of the database.

The design had to satisfy two additional criteria:

• We did not want to use 36 bytes of space per page
unless the user wanted checksums and encryption, as
36 unused bytes on a 512-byte page is a significant
overhead.

• We did not want to change the physical page layout
written to disk because customers using this release
would then have to upgrade their databases (even if
they did not need the checksum and encryption func-
tionality).

A Berkeley DB database page begins with a collection
of header information (25 bytes), and then has an array
of page indices referencing data items on the page,
growing forward. The actual page data begins at the end
of the page and grows backward. Much of the Berkeley
DB software manipulates page structures: getting a ref-
erence to bytes at a specific index, computing the first
free byte on the page, computing the last free byte on the
page, computing the remaining free space, and so on.

In the original design, the engineer decided to retain the
original page header. The idea was to put the checksum
and crypto information at the end of the page. That
would mean only the free space calculation code would
need to be adjusted, and code dealing with indices and
other parts of the page would remain unchanged. The
design did not modify the page header at all, so no
upgrade would be necessary. This design was simple,
clean, and passed review. Implementation was concep-
tually simple, as the bulk of the changes were in one
header file and one page-related file. After implementa-
tion, initial testing of both checksum/crypto pages and
standard pages passed. The code was committed into the
main source tree.

However, when full test suite runs were made, things
started breaking. The problem was that the page size
was used for many calculations that were not immedi-
ately obvious. Also, there was an assumption in the code
that the end of the page is the end of the page’s data
space. The immediate reaction was to begin bug-fixing
and bandaging the code, and adjusting the computations
using the page size. However, after some days of this
effort, the engineering group remembered the first rule
of holes: “If you find yourself in one, stop digging.” It
was time to climb out of the hole, revisit the design, and
change direction.

The alternative solution was to place the checksum and
IV at the end of the page header but before the array of
indices. The coding changes were larger than the origi-
nal solution as the location of the database page indices
was no longer fixed. However, the necessary code

changes were largely flagged by the compiler, and the
solution no longer broke in subtle ways: it either worked
or broke dramatically.

Coding the original paging scheme, testing it, attempt-
ing to fix it, discarding that change, and then repeating
the procedure with a new solution exceeded the original
schedule estimates. However, in the long term, the code
is far more maintainable, and that must be the primary
goal. The lesson is that even careful review is not
always sufficient, and engineers must know when to
withdraw, regroup and plot a new strategy, incorporating
the knowledge gained.

9. Failing Inspection
Just because a building inspector looks at a house and
grants a certificate of occupancy does not mean that all
of the work was performed perfectly. You may find that
although a gas line is installed correctly and up to code,
its placement is off when you actually attempt to hook
up the clothes dryer. Or that although the walls look
straight, they are noticeably crooked when furniture is
installed. So it is with software: even with testing,
reviews, checks and balances, bugs are found because
users use the software in unanticipated ways.

One customer reported a thread starvation problem
when several equal priority tasks performed database
operations and a lower priority task performed check-
points. The problem was that when the checkpoint task
wrote a dirty buffer, it set a flag in the buffer indicating
that I/O was in progress. However, the checkpoint task
was pre-empted by a higher priority database task. If the
database task needed to access the page in the buffer
being written by the checkpoint task, starvation
occurred. However, Sleepycat found and fixed exactly
this starvation issue five years ago, in 1997. In our fix,
the database task, seeing that I/O was in progress,
released all of its locks and relinquished the CPU, let-
ting the checkpoint thread continue. So, why was this
happening again?

Unfortunately, the original fix only worked on systems
where the competing tasks were of equal priority or the
system was lightly loaded. This report was on a true
real-time system, where all high priority database tasks
were given the opportunity to run when the one task
yielded the processor, and so the checkpoint task was
never able to run. Understanding the fundamental prob-
lem was challenging because the fix was already in the
code and we needed to expand our thinking to the real-
time space to understand why it still failed. The lesson is
that software is intimately related to its environment,
and reliable software must be both general in nature and

flexible, as the user’s environment will always differ
from the developer’s environment.

Another recent challenging problem occurred while run-
ning our test suite on an embedded system. A handful of
tests were taking an assertion while acquiring a self-
blocking mutex lock, because the locking code was
unexpectedly returning an EDEADLK error. This partic-
ular code is one of the few places where we use self-
blocking mutexes.

In DB, the code to allocate and initialize a mutex takes
an argument for flags. Some of the flags affect the
mutex, such as the one indicating that this is a self-
blocking mutex. Some affect the allocation code such as
one indicating whether the shared memory region
(where the mutex is allocated) needs locking or is
already locked by the calling function. Therefore, the
mutex code looked like this:

if (we need a new mutex){
__db_mutex_setup(..., &m,

(SELF_BLOCK |
is_locked ? NO_LOCK : 0));

MUTEX_LOCK(m);
}
MUTEX_LOCK(m);

It was the second call to MUTEX_LOCK that returned
the EDEADLK instead of blocking as expected. So,
why was this failing, and only on this one system and
nowhere else? The possibilities included:

1. This system used pthread mutexes. Most systems
we have use test-and-set mutexes. Perhaps there was a
bug in our Pthread mutex code.

2. Since self-blocking mutexes were not frequently
used, perhaps we were hitting a bug in the system’s
pthread implementation.

3. It was something else.

Given that the test suite was only failing on this system
and no other in this way, our tendency was to think
option #2 was the most likely cause. Option #1 was a
possibility but that code is extremely stable in DB and
has been virtually unchanged for years.

Fortunately, we have a multi-threaded mutex test appli-
cation that directly calls the DB mutex code. After eas-
ily porting that to the embedded system, and many
successful runs, we concluded that the mutex code
worked as expected (both DB’s and the system’s) and
the failure must be due to option #3 above and we were
almost back where we started. Additional, fairly painful,

debugging yielded the true bug, and it is in the code
snippet above. The bug was that the SELF_BLOCK flag
was never getting passed into the setup function, due to
a misplaced parenthesis and different precedence. The
correct code must read:

if (we need a new mutex){
__db_mutex_setup(..., &m,

 SELF_BLOCK |
 (is_locked ? NO_LOCK : 0));
MUTEX_LOCK(m);

}
MUTEX_LOCK(m);

Debugging on this particular embedded platform is not
very easy. So working through this problem was more
difficult than it would normally be. After working
through this problem a few questions needed to be
answered.

1. Why did this problem only show itself on this one
system and nowhere else? Almost all other systems use
test-and-set mutexes, which don’t use the pthread code.
The test-and-set code ignores the SELF_BLOCK flag.
The other system we have using pthread mutexes
used a different code path.

2. What did we learn? The lessons learned here are that
it is important to run the test suite on every system pos-
sible and follow up vigorously with all problems. A few
times during this debugging, which took a couple of
days, we were ready to simply assume it was a system
problem and move on. Thankfully we resisted that urge.

10. Preparing to Build the Next House
Just as builders should review their experiences after
completing developments, software developers must
also review their projects. If a builder built in a town
with strict codes and the builder successfully adapted to
those codes, s/he might consider retaining those prac-
tices even in the face of more lenient codes in another
town. Doing so will likely garner the builder a reputa-
tion for building a high-quality product, and it’s always
simpler to have one process in place than many. In soft-
ware, our lesson for coding standards is that high-qual-
ity, clean code is a matter of constant, diligent practice.
You cannot start sloppy and end clean. You need to
incorporate the cleanliness from the beginning.

A builder may find that of the handful of house designs,
several are never chosen by customers and new,
expanded designs are required. In our software, when
the subsystem no longer meets the needs and require-
ments of current problems, it is time to consider replac-
ing that subsystem, knowing the experience that went

into it in the first place. You can tell it is time to consider
such a measure if you are not making reasonable
progress on bug fixing or new features. If the subsystem
has gotten too complicated, requirements have changed,
or the design was wrong, you will usually find that nor-
mal maintenance becomes increasingly difficult. That is
a good sign that it is time to start over. A common life-
cycle for software is the gradual, constant addition of
code, until the software is so unmaintainable that it can
no longer be supported or developed except through the
efforts of armies of low-paid, brute-force testers. Even-
tually, everyone throws up their hands, retires the prod-
uct, and starts with a clean sheet of paper. This evolution
doesn’t have to happen: if the software has been well-
maintained and re-architected as needed, with old fea-
tures being discarded and removed from the code as
new ones are added, the code base may never have to be
rewritten from scratch [10]. Absolute compatibility will
not happen, of course, but necessary compatibility will.

11. How to Become a Builder
Someone who has built a treehouse or a shed might
decide they really want to become a builder and build a
house. While s/he may know how to make a hammer
meet a nail, there are larger issues to deal with in order
to be successful in that transition.

We have several suggestions for researchers who want
their code widely used. There should be no surprises in
this list; it simply summarizes the points that have been
made throughout the paper.

1. Write documentation. The source code is not self-
documenting and code written by a myriad of indepen-
dent students or researchers needs to be documented in a
traditional sense. Users attempting to use your software
need written guidance and specific instructions.

2. Choose and enforce a coding standard. It will teach
students an important lesson early on, and it will make
life easier for all students and others coming later. Also,
people using your code will be able to read it and navi-
gate through it, because the code is consistent and pre-
dictable.

3. Invest in release engineering so that a user can easily
download your code and run it, anywhere. That can
mean building binaries, using Autoconf, or building
your own configuration system.

4. Be willing to answer questions and help people get
over the initial hurdles of using your software. What is
obvious to you because you’ve thought about it for the
last several years may not be obvious to someone else

immediately. There is a tendency to become irritated
with trivial questions and assume that the “intelligent”
users wouldn’t ask such things. This is an enormous
mistake; while these trivial errors might indicate that the
user has not read the manual, more frequently, they indi-
cate that something is not documented or is docu-
mented, but confusing. Treat user questions as you
would paper reviews and ask yourself, “What informa-
tion does this person need that s/he was unable to get
from our documentation?” Being responsive to user
input and questions will require personnel who are
responsible for the task.

5. Clean up the code after you’ve finished writing a
paper. The act of publishing tends to leave the code lit-
tered with quick hacks that were necessary to run the
right tests at a particular time.

The constant tension in all this is that academia places
little value on these activities, so it is difficult for aca-
demic researchers to devote the time, energy, and
finances to this process. The tension might be somewhat
less in an industrial setting, but industrial research
groups do not always have the personnel or resources to
devote to the process either.

12. References
[1]. AT&T, DBM(3X), Unix Programmers Manual,
Seventh Edition, Volume 1, January 1979.

[2]. Berkeley Software Distribution, NDBM(3),
4.3BSD Unix Programmers Manual, University of Cali-
fornia, Berkeley, 1986.

[3]. Berkeley Software Distribution, DB(3), 4.4BSD
Unix Programmers Manual, University of California,
Berkeley, 1994.

[4]. RTI Health, Social, and Economics Research, The
Economic Impacts of Inadequate Infrastructure for Soft-
ware Testing, RTI Project Number 7007l.011, NIST
Planning Report-02-3, May, 2002, http://
www.nist.gov/director/prog-ofc/report02-
3.pdf.

[5]. Seltzer, M., Yigit, O., A New Hashing Package for
UNIX, Proceedings of the 1991 Winter USENIX Tech-
nical Conference, Dallas, TX, January 1991, 173–184.

[6]. Seltzer, M., Olson, M., LIBTP: Portable, Modular
Transactions for UNIX, Proceedings 1992 Winter
USENIX Conference, San Francisco, CA, January 1992,
9–26.

[7]. Software Engineering Institute, “Building High
Performance Teams using The Team Software Process
and Personal Software Process,” Carnegie Mellon Uni-

versity, http://www.sei.cmu.edu/tsp, January 20,
2002.

[8]. Software Engineering Institute, “The Team Soft-
ware Process,” Carnegie Mellon University, January 20,
2002, http://www.sei.cmu.edu/tsp/tsp.html.

[9]. Spolsky, J., Things You Should Never Do, Part I,
Joel on Software, Apr 6, 2000, http://www.joelon-
software.com/articles/fog0000000069.html.

[10]. Spolsky, J., Good Software Takes 10 Years, Get
Used to It, Joel on Software, July 21, 2001, http://
www.joelonsoftware.com/articles/
fog0000000017.html.

[11]. ISO/IEC 9899:1999: Programming languages — C

[12]. ISO/IEC 9945-1:1996: Information technology —
Portable Operating System Interface (POSIX) — Part 1:
System Application Program Interface (API) [C Lan-
guage].

