
The following paper was originally published in the
Proceedings of the USENIX Symposium on Internet Technologies and Systems

Monterey, California, December 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Study of Piggyback Cache Validation
for Proxy Caches in the World Wide Web

Balachander Krishnamurthy
AT&T Labs - Research

Craig E. Wills
Worcester Polytechnic Institute



Study of Piggyback Cache Validation for Proxy Caches in the

World Wide Web

Balachander Krishnamurthy Craig E. Wills

AT&T Labs{Research Worcester Polytechnic Institute

180 Park Ave 100 Institute Road

Florham Park, NJ 07932 USA Worcester, MA 01609 USA

bala@research.att.com cew@cs.wpi.edu

Abstract

This paper presents work on piggyback cache valida-

tion (PCV), which addresses the problem of main-

taining cache coherency for proxy caches. The novel

aspect of our approach is to capitalize on requests

sent from the proxy cache to the server to improve

coherency. In the simplest case, whenever a proxy

cache has a reason to communicate with a server

it piggybacks a list of cached, but potentially stale,

resources from that server for validation.

Trace-driven simulation of this mechanism on two

large, independent data sets shows that PCV both

provides stronger cache coherency and reduces the

request tra�c in comparison to the time-to-live

(TTL) based techniques currently used. Speci�cally,

in comparison to the best TTL-based policy, the

best PCV-based policy reduces the number of request

messages from a proxy cache to a server by 16-17%

and the average cost (considering response latency,

request messages and bandwidth) by 6-8%. More-

over, the best PCV policy reduces the staleness ra-

tio by 57-65% in comparison to the best TTL-based

policy. Additionally, the PCV policies can easily be

implemented within the HTTP 1.1 protocol.

1 Introduction

A proxy cache acts as an intermediary between po-
tentially hundreds of clients and remote web servers
by funneling requests from clients to various servers.
In the process, the proxy caches frequently re-
quested resources to avoid contacting the server re-
peatedly for the same resource if it knows, or heuris-
tically decides, that the information on the page has
not changed on the server.
A problem with caching resources at a proxy or
within a browser cache, is the issue of cache

coherency|how does the proxy know that the
cached resource is still current [6]? If the server
knows how long a resource is valid (e.g., a newspa-
per generated at 5:00am daily), the server can pro-
vide a precise expiration time. Cached copies are
always fresh until the expiration time. More com-
monly, the resource that is made available has no
clear expiration time. It may change in �ve minutes
or remain unchanged for a long time.

Our work addresses the problem of maintaining
cache coherency for proxy caches. The novel as-
pect of our approach is using requests sent from
the proxy cache to the server to obtain additional
coherency information. In the simplest approach,
whenever a proxy cache has a reason to communi-
cate with a server it piggybacks a list of cached,
but potentially stale, resources from that server for
which the expiration time is unknown. Compared
to other techniques, this piggyback cache validation
(PCV) approach has the potential of both ensuring
stronger cache coherency and reducing costs.

The paper is organized as follows: Section 2 dis-
cusses related work in the area of cache coherency
in the Web context. Section 3 describes piggyback
cache validation and presents two possible imple-
mentations on top of the Hypertext Transport Pro-
tocol (HTTP). Section 4 presents a study of two
variants of PCV and contrasts them with four other
cache coherency approaches. The study is based
on trace-driven simulation of two large logs using
evaluation criteria discussed in Section 5. Results
from these simulations are presented in Section 6.
Section 7 summarizes the work with a discussion of
ongoing work and future directions.



2 Related Work

Caching and the problem of cache coherency on the
World Wide Web are similar to the problems of
caching in distributed �le systems [10, 18]. How-
ever, as pointed out in [8], the Web is di�erent than
a distributed �le system in its access patterns, its
larger scale, and its single point of updates for Web
objects.

Cache coherency schemes providing two types of
consistency have been proposed and investigated for
caches on the World Wide Web. One type|strong
cache consistency, is maintained via one of two ap-
proaches. In the �rst approach, client validation,
the proxy treats cached resources as potentially out-
of-date on each access and sends a If-Modi�ed-Since
header with each access of the resource. This ap-
proach provides strong cache consistency, but can
lead to many 304 responses (HTTP response code
for \Not Modi�ed") by the server if the resource
does not actually change. The second approach is
server invalidation, where upon detecting a resource
change, the server sends invalidationmessages to all
clients that have recently accessed and potentially
cached the resource [14]. This approach requires a
server to keep track of lists of clients to use for in-
validating cached copies of changed resources and
can become unwieldy for a server when the number
of clients is large. In addition, the lists can become
out-of-date causing the server to send invalidation
messages to clients who are no longer caching the
resource.

In contrast, weak consistency approaches seek to
minimize the proxy validation and server invalida-
tion messages by using a heuristic or a pre-de�ned
value as an arti�cial expiration time on a cached re-
source. One such approach, based on the last mod-
i�ed time [8], is for the proxy to adopt an adap-
tive time-to-live (TTL) expiration time (also called
the Alex protocol [4]). The older the resource, the
longer the time period between validations. This
adaptive TTL heuristic is reasonable, but there can
be periods where the cached resource is potentially
stale. Related work in the WebExpress project for
mobile environments allows users to set a �xed co-
herency interval for objects with the capability to
change this interval for speci�c objects [9].

In terms of prior work using piggybacking to im-
prove cache coherency, Mogul [15] has proposed pig-
gybacking server invalidations for cached resources
as part of replies to client requests. This idea was
a motivation for our work on piggyback cache val-
idation, but not directly investigated in the results
reported here.

The concept of piggybacking additional information
to a Web request or reply has been proposed in lim-
ited forms for other uses. Previous work suggests
that server knowledge about access patterns for a
requested resource could be returned along with the
resource. This knowledge could be used by the client
to control prefetching [2, 19]. [22] extends this ap-
proach by using both client and server knowledge.
Mogul proposes \hit-metering" as a technique for a
cache to report reference count information back to
an origin server [16]. This information can be used
in predicting reference hit information, which can
be passed as hints to a cache whenever the server
sends a response to a cache. Finally, the WebEx-
press [9] work proposes a batch approach to per-
form a single check at the beginning of a session for
all cached objects older than the coherency interval.
This batching is related to our idea of a validation
list and could be carried out using a piggybacked
approach.

3 Piggyback Cache Validation

Our approach for maintaining cache coherency while
reducing the number of messages exchanged with a
server is to piggyback cache state information onto
HTTP requests to the server [12]. While individ-
ual browser clients could use our approach, it is
most bene�cial to proxy caches because the num-
ber of resources cached from a particular server is
small and likely short-lived in an individual browser
cache. Thus, we focus on the use of the piggyback
mechanism for a proxy cache.
In the simplest approach, whenever a proxy cache
has a reason to communicate with a server it
piggybacks a list of cached resources from that
server, for which the expiration time is unknown
and the heuristically-determined TTL has expired.
The server handles the request and indicates which
cached resources on the list are now stale allowing
the proxy to update its cache.
The proxy treats client requests for cached resources
with a validated age of less than the time to live
threshold as current. Requests for cached resources
that have not recently been validated cause an If-
Modi�ed-Since (IMS) Get request to be sent to the
server.
The performance of piggyback cache validation de-
pends on the number of resources cached at a proxy
for a particular server and the number of requests
that are sent by the proxy to the server. If there
are few such requests, meaning the cache contents
do not get validated with piggybacking, then the



approach performs similar to TTL-based policies
in generating a validation check when the time-to-
live expires. However, if there is tra�c between
the proxy and server, then the cache contents are
validated at the granularity of the expiration time
threshold without need for IMS requests. Results
from prior studies indicate such tra�c exists and
best case results have yielded a 30-50% proxy cache
hit rate [1]. We have found a similar hit rate in our
studies. The introduction of piggyback validation
allows relatively short expiration times to be used
resulting in close to strong cache coherency while re-
ducing the number of IMS requests sent to a server
in comparison to existing TTL-based policies.

The added cost of our mechanism is mainly in the
increased size of the regular request messages due
to piggybacking. However, there are no new con-
nections made between proxies and servers. The
number of piggybacked validations appended to a
single request can be controlled by the proxy cache.
The cost for the proxy cache is also slightly increased
as it must maintain a list of cached resources on a
per server basis. The additional cost for the server
is that it must validate the piggybacked resources in
addition to processing the regular request. However,
in the absence of piggybacking, such validationsmay
have to be done in the future by the server in sepa-
rate connections.

Implementation of piggyback cache validation can
be done independent of a particular cache replace-
ment policy [3, 21]. In our initial work we have used
a standard LRU cache replacement policy. However,
validation information provided by a server could be
used by such a replacement policy. For example, if
a proxy cache �nds that a cached resource is fre-
quently invalidated then this resource would be a
good candidate for cache replacement.

Two approaches could be used to implement the
PCV mechanism within HTTP. The �rst approach
is to implement the mechanism via a new HTTP
header type for validation list requests and replies.
In a request, the header �eld consists of a list of
resource and last modi�ed time pairs. On a reply,
the �eld would contain a list of invalid resources or
a value indicating that all resources in the request
list are valid. This approach is compact, but it could
require the server to validate the entire piggybacked
list before it replies to the request itself. Alternately,
invalid resources could be return as part of a footer
as allowed in HTTP/1.1 [11].

Another approach is to pipeline HEAD requests
trailing the resource request. The approach re-
quires more bandwidth, but it can be implemented
in HTTP 1.1 with no changes to the protocol. It

also separates the request from cache validation.
In either implementation, if a server does not im-
plement the mechanism, the proxy cache works �ne,
albeit without the piggybacked validation informa-
tion. In our testing we assume the �rst approach.

4 Testing

4.1 Proxy Cache Logs

We constructed a trace-driven simulation to test our
ideas and used two sets of logs:

� Digital Equipment Corporation proxy logs [5]
(Sept. 16{22, 1996) with 6.4 million Get
requests for an average rate of 40031 re-
quests/hour and 387.0 MByte/hour. 57832 dis-
tinct servers were contacted with the top 1% of
the servers being responsible for over 59% of
the resources accessed. 45% of the servers had
fewer than 10 resources accessed and over 89%
of the servers had fewer than 100 resources ac-
cessed. 3.4% of the servers (1943) accounted
for over half the 2083491 unique resources ac-
cessed.

� AT&T Labs{Research packet level trace [17]
(Nov. 8{25, 1996) with 1.1 million Get requests
for an average rate of 2805.63 requests/hour
and 18.4 MByte/hour. 18005 distinct servers
were contacted with the top 1% of the servers
being responsible for over 55% of the resources
accessed. 48% of the servers had fewer than 10
resources accessed and over 92% of the servers
had fewer than 100 resources accessed. 5.6% of
the servers (1019) accounted for over half the
521330 unique resources accessed.

4.2 Cache Coherency Policies

We tested six cache coherency policies with these
logs:

1. pcv�x|This policy implements the basic pig-
gyback cache idea with a �xed TTL (time to
live) expiration period. By default, a cached
resource is considered stale once a period of
one hour has elapsed. When the expiration
time is reached for this resource, a validation
check is piggybacked on a subsequent request
to its server. If the resource is accessed after
its expiration, but before validation, then a If-
Modi�ed-Since Get request is sent to the server
for this resource.



2. pcvadapt|This policy implements the basic
piggyback cache idea, but with an adaptive
TTL expiration time based on a fraction (adap-
tive threshold) of the age of the resource. As
in the Alex FTP protocol [4, 8], the motiva-
tion is that newer resources change more fre-
quently, while older resources change less often.
However, because we believe piggybacked vali-
dations are relatively inexpensive, the pcvadapt
policy uses a maximum expiration time equal
to the �xed TTL in e�ect. This policy allows
a relatively tight limit for all resources with an
even shorter expiration for newer resources.

3. ttl�x|This policy uses a �xed TTL expiration
period for all resources and does no piggyback-
ing. If a cached resource is accessed after its
expiration then a If-Modi�ed-Since Get request
is sent to the server for this resource.

4. ttladapt|This policy uses an adaptive TTL ex-
piration time based on resource age with no pig-
gybacking. The upper bound for a resource ex-
piration time is �xed at one day. The pcvadapt
policy has a tighter bound because piggyback
validation checks are less expensive than If-
Modi�ed-Since Get requests, which are the only
means of validation for the ttladapt approach.
The ttladapt policy is used in the Squid Inter-
net Object Cache [20], which allows the adap-
tive threshold and maximum age to be con�g-
urable.

5. alwaysvalidate|This policy generates a If-
Modi�ed-Since Get request for every access of
a cached resource. The policy ensures strong
coherency, but causes a request to the server
for every resource access. It is used to measure
other policies against.

6. nevervalidate|This policy has an in�nite expi-
ration time so that cached resources are never
validated. The policy minimizes costs by al-
ways using the cached copy of a resource, but
results in the most use of stale copies. It is
another policy against which other policies are
measured.

4.3 Parameters Used

The cache coherency policies were studied by vary-
ing four parameters: cache size, PCV size (the maxi-
mum size of a single piggyback list), the TTL value,
and the adaptive threshold. To focus the presen-
tation of results while still being able to vary all
parameters, we established a base set of parameters

from which we varied one parameter at a time. The
base values were established based on other pub-
lished work and after testing the policies under dif-
ferent conditions. The base parameter values (and
the range studied) were:

� cache size of 1GB (range 1MB to 8GB),

� maximum PCV size of 50 (range 10 to 1000),

� TTL of one hour (range 0.5 to 24 hours), and

� adaptive threshold of 0.1 (range 0.05 to 1.0).

We did not vary the cache replacement policy for
this study, but used LRU for all our tests. Variation
of replacement policy and its interaction with the
cache coherency policies is an area for future work.

5 Evaluation Criteria

There are three types of costs traditionally consid-
ered when evaluating the performance of Web re-
source retrieval:

� response latency|how long it takes to retrieve
the requested resource,

� bandwidth|how many bytes must be served
by the server and transmitted over the network,
and

� requests|how many requests must be handled
by the server and transmitted over the network.

In this context, the goal of a good cache coherency
policy, when combined with a cache replacement
policy, is to provide up-to-date (non-stale) resources
to clients while minimizing the above costs. How-
ever, translating the simulation results for a policy
on a set of data to their relative \goodness" can
be done in many ways. In the following, we de�ne
and justify how we determine the cost, staleness and
overall goodness metrics used in comparing di�erent
cache coherency policies.

5.1 Cost Evaluation

The typical measure for cache replacement policies
is the \hit rate," or the percentage of time that a re-
source request can be provided from cache. Because
this measure does not account for resource size, the
use of byte hit rate is also common in recent litera-
ture [3, 21]. These measures can be used to derive
cost savings for bandwidth and requests, but do not
reect on savings in response latency. Mogul also



points out that measuring cache hits does not mea-
sure the e�ect of caching mechanisms on the cost of
a cache miss [16].
In addition, the cache replacement policy studies
have ignored the cost for cache coherency and ra-
tio of stale resources. These studies do not distin-
guish between cache hits for resources that can be
used directly and hits for resources that are vali-
dated with the server. Previous studies on cache
coherency [8, 14] report statistics on stale cache hits
along with information on network, server, and in-
validation costs. However, these studies do not re-
port these values in the context of other cache ac-
tivity, speci�cally cache replacement.
Our approach is to use a comprehensive cost model
that accounts for the combined costs of cache re-
placement and coherency. The model incorporates
the costs for the three possible actions that can oc-
cur when a resource is requested by a client from a
proxy cache:

1. Serve from cache|the resource is currently
cached and returned to the client without con-
tacting the server. We de�ne the costs of such
action to be zero.

2. Validate|the resource is currently cached and
is returned to the client after the proxy vali-
dates the cached copy is current by contacting
the server. This action involves a request to the
server, along with a latency cost corresponding
to the distance to the server and a small band-
width cost.

3. Get|the resource is not in cache (or the cached
copy is invalid). The resource is returned to
the client after retrieval from the server. This
action involves a request to the server, along
with bandwidth and transfer latency costs cor-
responding to the size of the resource and the
distance from the server.

Considering these three actions, we use a normalized
cost model for each of the three evaluation criteria
and each of the actions where c[a; e] represents the
cost for action a and evaluation criterion e. We let
C denote the matrix representing all combinations
of proxy cache actions and evaluation criteria. In
our work, each c[a; e] is computed using the data
from our test logs. These costs are shown in Tables
1 and 2 and explained below.
For each evaluation criterion, the cost of an average
Get request with full resource reply (status 200) is
normalized to 1.00 based on the values in the log. In
the Digital logs, the actual values are 12279 bytes
of bandwidth (includes contents and headers), 3.5

Table 1: Normalized Cost Matrix C for Digital Logs

Evaluation Criterion (e)
Re- Band- Re-

Action (a) sponse width quest Avg.
Get 1.00 1.00 1.00 1.00
Validate 0.36 0.03 1.00 0.47
In Cache 0.00 0.00 0.00 0.00

Table 2: Normalized Cost Matrix C for AT&T Logs

Evaluation Criterion (e)
Re- Band- Re-

Action (a) sponse width quest Avg.
Get 1.00 1.00 1.00 1.00
Validate 0.12 0.04 1.00 0.39
In Cache 0.00 0.00 0.00 0.00

seconds of latency and one request for an average
retrieval. In the AT&T logs, the actual values are
8822 bytes of bandwidth, 2.5 seconds of latency and
one request.

The cost of using a resource from cache is de�ned
to be zero. This de�nition focuses on the exter-
nal costs for resource access, although internal net-
works, computers and even the proxy cache itself
contribute some latency [13].

The intermediate cost of a Validate request, which
returns a validation of the current cache copy (re-
sponse 304), is computed relative to the cost of a full
Get request. As shown in Tables 1 and 2, this action
is just as expensive as a full Get request in terms of
requests, of intermediate cost in terms of response
latency and of little cost in terms of bandwidth.

Tables 1 and 2 show a fourth evaluation criterion,
which is the average of the costs for the other three
criterion. This criterion is introduced as a compos-
ite criterion that assigns equal importance to each
of the standard criteria.

Given the matrix C, we can compute the total cost
for a cache coherency policy p by knowing the rela-
tive proportion of each cache action a for the policy.
We let w[p; a] represent the proportional weight for
the occurrence of action a while using policy p and
let W denote the matrix of all combinations of poli-
cies and actions. The matrix W varies depending
on the simulation parameters used, but for illustra-
tion, Tables 3 and 4 show W when using the base
set of parameters discussed in Section 4.3.

Using the matrices C and W , the total cost t[p; e]



Table 3: Representative Weight Matrix W for Dig-
ital Logs

Action (a)
Policy (p) Get Validate In Cache
pcv�x 0.5407 0.0070 0.4522
pcvadapt 0.5429 0.0079 0.4492
ttl�x 0.5457 0.0953 0.3590
ttladapt 0.5520 0.0296 0.4184
alwaysvalidate 0.5542 0.4458 0.0000
nevervalidate 0.5391 0.0000 0.4609

Table 4: Representative Weight Matrix W for
AT&T Logs

Action (a)
Policy (p) Get Validate In Cache
pcv�x 0.5183 0.0337 0.4480
pcvadapt 0.5221 0.0351 0.4428
ttl�x 0.5238 0.2188 0.2574
ttladapt 0.5279 0.1182 0.3539
alwaysvalidate 0.5308 0.4692 0.0000
nevervalidate 0.4980 0.0000 0.5020

for each policy p and evaluation criterion e is easily
computed with the matrix product T = W �C. The
resulting t[p; e] values are used in reporting costs for
cache coherency policies in this paper.

In analyzing Tables 3 and 4, the ratio of resources
causing a full Get request is relatively constant for
all cache coherence policies across the two logs. This
�gure is primarily dependent on the performance of
the cache replacement policy. As de�ned, the al-
waysvalidate policy never serves a resource directly
from the cache, while the nevervalidate policy never
generates a Validate request. Of more interest to
our overall performance study, the PCV policies
generate the least number of Validate requests.

In calculating the performance results reported in
this paper two adjustments are made. First, the
cost of a full Get request represents the costs for ac-
tual resources retrieved. Thus, if the average size or
latency for resources actually retrieved is larger than
the average for the entire log then c[Get;Bandwidth]
and c[Get;Response] are greater than one. This situ-
ation may occur if a cache replacement policy caches
smaller resources to increase the hit rate, but results
in higher costs for cache misses.

Second, it is not fair to measure the impact of PCV
policies without accounting for their increased costs.

Consequently the bandwidth and response costs are
increased for these policies based on the size in bytes
of a piggybacking validation, the response time for
the server to do the validation and the number of
piggyback validations per request. In the simula-
tion, 50 bytes are added to the request packet and
0.1ms is added to the response time for each piggy-
backed validation. The number of validations varies,
but for the pcvadapt policy using the standard pa-
rameters, the average number of piggybacked val-
idations requests is 1.1 for the Digital and 7.0 for
the AT&T logs. The di�erence between the two av-
erages seems to stem from the fact that there is a
higher degree of locality of reference in the AT&T
logs than in the Digital logs, possibly due to the
higher user population in the latter case.

5.2 Staleness Evaluation

The staleness ratio is the number of known stale
cache hits divided by the number of total requests
(both serviced from cache and retrieved from the
server). We chose not to measure staleness as the
more traditional ratio of stale cache hits divided by
number of cache hits because of di�erences in the
in-cache hit ratio (shown in Tables 3 and 4) caused
by di�erences in the validation and invalidation ap-
proaches of the policies. Using our staleness ratio
de�nition allows for a fairer comparison of the poli-
cies, although it deates the ratios in comparison to
measuring the ratio of stale cache hits.

5.3 Goodness Evaluation

We believe that the cost and staleness evaluations
provide fair and appropriate measures to compare
the various policies. However, a good cache co-
herency policy should minimize both cost (relative
to the cache replacement policy) and staleness. To
combine cost and staleness into a single metric, we
compute an overall \goodness" metric, which com-
bines the average cost and staleness relative to the
range de�ned by the alwaysvalidate and nevervali-
date policies for a given cache size. These two poli-
cies de�ne the minimum and maximum costs and
staleness relative to a cache replacement policy and
cache size. It is subjective as to whether minimizing
cost or staleness is more important. In the results
presented in this paper they are given equal weight
when computing the goodness metric.



6 Results

6.1 Variation of Cache Size Parameter

The following results are shown for variation in
cache size from 1MB to 8GB. Figures 1{4 show the
response time, bandwidth, request message and av-
erage costs for the respective policies using the Dig-
ital logs. As expected, the alwaysvalidate policy
performs the worst while nevervalidate performs the
best. In fact, Figure 3 shows that the alwaysvalidate
policy provides the worst possible performance (cost
of 1.0) for the request message cost because it gen-
erates a request (either Get or Validate) for each
requested resource.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cache Size (2^i MB)

Response Time Cost

pcvfix
pcvadapt

ttlfix
ttladapt

alwaysvalidate
nevervalidate

Figure 1: Response Time Cost versus Cache Size for
Digital Logs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cache Size (2^i MB)

Bandwidth Cost

pcvfix
pcvadapt

ttlfix
ttladapt

alwaysvalidate
nevervalidate

Figure 2: Bandwidth Cost versus Cache Size for
Digital Logs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cache Size (2^i MB)

Request Message Cost

pcvfix
pcvadapt

ttlfix
ttladapt

alwaysvalidate
nevervalidate

Figure 3: Request Message Cost versus Cache Size
for Digital Logs

The di�erences between policies in the �gures is pri-
marily a function of ratio of Validate requests that
each generates and the evaluation criterion cost for
such a request. Thus, there is little distinction be-
tween the policies in Figure 2 because the band-
width costs for a Validate request are minimal. On
the other hand, there is more di�erentiation between
the policies for the other evaluation criteria because
the Validate request costs for these criteria are non-
trivial.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cache Size (2^i MB)

Average Cost

pcvfix
pcvadapt

ttlfix
ttladapt

alwaysvalidate
nevervalidate

Figure 4: Average Cost versus Cache Size for Digital
Logs

In comparing the policies, the PCV policies are next
to the nevervalidate policy in incurring the least
cost. This result is because the PCV policies re-
duce the number of Validate requests (also see Table
3) in comparison to the TTL-only policies therefore
making better use of the cache contents. Specif-



ically, the pcvadapt policy reduces the number of
request messages by 16% and the average cost by
8% in comparison to the ttladapt policy for a 8GB
cache.
In reporting the results, we note that the costs for
the PCV policies are overstated. Due to the nature
of the simulation we do not discover the invalida-
tion of a cached resource until the next time that
resource is accessed. If a cached resource is invali-
dated and then removed by the cache replacement
policy before its next access then the invalidation
is not discovered at all in our simulation. The cost
results are pessimistic because the cache space for
these invalidated resources is not freed at the time
of invalidation as would be the case in an actual im-
plementation. With this limitation, we measure an
invalidation rate of 0.26 invalidations for every 100
resources accessed (not just those in cache) in the
Digital logs for the standard parameter set and the
pcvadapt policy.
Figure 5 shows the ratio of all requested resources
returned as stale from the cache relative to the cache
size. While nevervalidate has low staleness values
for small caches, it rises to 4% for a cache size of
8GB in the Digital logs. The alwaysvalidate pol-
icy results in no stale resources. The other poli-
cies all have relatively low staleness ratios (less than
1%) with the pcvadapt policy clearly providing the
strongest coherency. In comparison to the ttladapt
policy, the pcvadapt policy reduces the staleness ra-
tio by 65% for a 8GB cache.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cache Size (2^i MB)

Staleness Ratio

pcvfix
pcvadapt

ttlfix
ttladapt

alwaysvalidate
nevervalidate

Figure 5: Staleness Ratio versus Cache Size for Dig-
ital Logs

Figure 6 shows the goodness metric of combining av-
erage cost and staleness performance measures us-
ing a weighted sum with each performance metric
having equal weight. By de�nition, the alwaysval-

idate and nevervalidate policies have a value of 0.5
at all cache sizes because they de�ne the upper and
lower bounds for goodness. As shown, the pcvadapt
policy exhibits a high degree of goodness for large
cache sizes indicating it is an excellent policy in pro-
viding up-to-date resources at a low cost. The pcv-
�x policy is the second best. For larger cache sizes
the nevervalidate staleness ratio goes up (Figure 5),
which causes less di�erentiation in the relative pol-
icy staleness ratios. This e�ect causes the relative
di�erences in policy costs to be reected more in
the goodness metric and contributes to the dropo�
in the goodness metric for TTL-based policies.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cache Size (2^i MB)

Goodness Metric

pcvfix
pcvadapt

ttlfix
ttladapt

alwaysvalidate
nevervalidate

Figure 6: Goodness Metric versus Cache Size for
Digital Logs

Figures 7{10 show the response time, bandwidth,
request message and average costs for the respective
policies as the cache size is varied using the AT&T
logs. The relative ordering of the policies is the
same as for the Digital logs with the di�erences be-
tween the policies generally more pronounced. This
di�erentiation is a result of relatively more Vali-
date requests being generated for the AT&T data
as shown in Table 4. In comparison with the Digi-
tal data, the bandwidth costs can be di�erentiated
in Figure 8 with the PCV policies resulting in the
highest bandwidth costs. This result indicates that
the piggybacked validations for the AT&T data add
enough bytes to slightly increase the costs relative
to the other policies, although the PCV policies pro-
vide lowest response time, request and average costs.
Speci�c comparisons for a 8GB cache show the pc-
vadapt policy reduces message cost by 17% and the
average cost by 6% in comparison to the ttladapt
policy. The invalidation rate for the AT&T logs is
2.4 per 100 accesses, which is higher than for the
Digital logs due to more piggyback validations be-



ing generated.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cache Size (2^i MB)

Response Time Cost

pcvfix
pcvadapt

ttlfix
ttladapt

alwaysvalidate
nevervalidate

Figure 7: Response Time Cost versus Cache Size for
AT&T Logs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cache Size (2^i MB)

Bandwidth Cost

pcvfix
pcvadapt

ttlfix
ttladapt

alwaysvalidate
nevervalidate

Figure 8: Bandwidth Cost versus Cache Size for
AT&T Logs

Figure 11 shows similar staleness results for the
AT&T logs as for the Digital logs with the never-
validate policy returning nearly 7% stale resources
for large cache sizes. The other policies return
close to 1% stale resources with the pcvadapt policy
providing the most strongly coherent results (57%
improvement over the ttladapt policy for a 8GB
cache) next to the alwaysvalidate policy. The re-
sulting goodness metric results for the AT&T logs
are shown in Figure 12 with comparable results to
those shown for the Digital logs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cache Size (2^i MB)

Request Message Cost

pcvfix
pcvadapt

ttlfix
ttladapt

alwaysvalidate
nevervalidate

Figure 9: Request Message Cost versus Cache Size
for AT&T Logs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cache Size (2^i MB)

Average Cost

pcvfix
pcvadapt

ttlfix
ttladapt

alwaysvalidate
nevervalidate

Figure 10: Average Cost versus Cache Size for
AT&T Logs

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cache Size (2^i MB)

Staleness Ratio

pcvfix
pcvadapt

ttlfix
ttladapt

alwaysvalidate
nevervalidate

Figure 11: Staleness Ratio versus Cache Size for
AT&T Logs



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cache Size (2^i MB)

Goodness Metric

pcvfix
pcvadapt

ttlfix
ttladapt

alwaysvalidate
nevervalidate

Figure 12: Goodness Metric versus Cache Size for
AT&T Logs

6.2 Variation of Other Parameters

The remaining results summarize the e�ects on the
goodness metric of varying the maximum PCV list
size, time-to-live and adaptive threshold parameters
for the Digital and AT&T logs (the speci�c cost and
staleness results are not shown). These results re-
ect the output of simulations where the dependent
parameter was varied while the other parameters
were set to their base values where the base cache
size is 1GB. The goodness metric is again calcu-
lated relative to the alwaysvalidate and nevervali-
date policies for a cache of this size.

Figures 13 and 14 show there is little variation in re-
sults based on the maximumPCV list size. Smaller
maximums than the default of 50 result in slightly
degraded performance, but reect that there is gen-
erally enough tra�c between the client proxy and
the server to satisfy the piggybacking needs of the
proxy. Allowing larger PCV lists does not improve
the performance of the PCV policies.

Figures 15 and 16 show some variation between the
policies for smaller TTL parameters, but the per-
formance ordering of the policies remains the same.
As the TTL value is raised, the two adaptive poli-
cies perform similarly as do the two �xed TTL ap-
proaches. Use of a bigger TTL value reduces the
potential bene�t of the PCV policies.

Finally, Figures 17 and 18 show the expected that
the lower the adaptive threshold the better the rela-
tive results for the adaptive policies. The base value
of 0.1 is relatively good in the range.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000
Maximum PCV Size

 Goodness Metric

pcvfix
pcvadapt

Figure 13: Goodness Metric versus Maximum PCV
Size for Digital Logs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000
Maximum PCV Size

 Goodness Metric

pcvfix
pcvadapt

Figure 14: Goodness Metric versus Maximum PCV
Size for AT&T Logs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Time-To-Live (hr)

 Goodness Metric

pcvfix
pcvadapt

ttlfix
ttladapt

Figure 15: Goodness Metric versus Time-To-Live
for Digital Logs



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Time-To-Live (hr)

 Goodness Metric

pcvfix
pcvadapt

ttlfix
ttladapt

Figure 16: Goodness Metric versus Time-To-Live
for AT&T Logs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Adaptive Threshold

 Goodness Metric

pcvadapt
ttladapt

Figure 17: Goodness Metric versus Adaptive
Threshold for Digital Logs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Adaptive Threshold

Goodness Metric

pcvadapt
ttladapt

Figure 18: Goodness Metric versus Adaptive
Threshold for AT&T Logs

7 Summary and Future Work

We believe the similarity of results on two large, in-
dependent data sets clearly demonstrates the mer-
its of the piggyback cache validation approach. By
combining piggybacking with an adaptive threshold,
the pcvadapt policy is clearly the best at providing
close to strong coherency at a relatively low cost
when we consider response latency, request mes-
sages, bandwidth and average costs. In compari-
son to the ttladapt policy, the best TTL-based pol-
icy, the pcvadapt policy, the best PCV-based pol-
icy, reduces the number of messages to the server
by 16-17% and the average cost by 6-8%. The pc-
vadapt policy reduces the staleness ratio by 57-65%
in comparison to the ttladapt policy. Additionally,
the PCV policies can easily be implemented with
the HTTP 1.1 protocol.
Other directions for piggybacking of information in-
clude a server piggybacking resource invalidations
on replies to a client. These invalidations could be
for all the resources at its site or selected subsets of
resources [15]. Clients then use the list of invalida-
tions to remove stale copies. Piggybacking of such
information onto existing server replies does not in-
troduce new network tra�c and alleviates servers
having to maintain client lists in comparison to pre-
vious server invalidation work [14].
Although not studied in this work, cache coherency
is related to cache replacement as a proxy cache
works to provide up-to-date resources at the lowest
cost. Piggybacking has the potential to positively
a�ect cache replacement decisions. For example,
frequently invalidated resources would be good can-
didates for cache replacement. Proxy caches can
also use information about resource usage piggy-
backed on server replies in making replacement de-
cisions. Additionally, recent work [7] shows that re-
sources that change are accessed more often, there is
variation in the rate of change across content types,
and the most frequently referenced resources cluster
around speci�c periods of time|all of which can be
used while deciding what and when to piggyback.

8 Acknowledgments

We thank Digital Equipment Corporation for mak-
ing their proxy traces available to us. We thank
Anja Feldmann for help with the AT&T trace,
Steve Bellovin and Phong Vo for discussions, Je�rey
Mogul, Misha Rabinovich, Jennifer Rexford, Fred
Douglis, and the anonymous reviewers for making
comments on draft versions of the paper.



References

[1] Marc Abrams, Charles R. Standridge, Ghaleb Ab-

dulla, Stephen Williams, and Edward A. Fox.
Caching proxies: Limitations and potentials. In

Proceedings of the Fourth International World

Wide Web Conference, December 1995.
http://www.w3.org/pub/Conferences/

WWW4/Papers/155/.

[2] Azer Bestavros. Using speculation to reduce server

load and service time on the WWW. In Proceed-

ings of the 4th ACM International Conference on

Information and Knowledge Management, Novem-

ber 1995.

[3] Pei Cao and Sandy Irani. Cost-aware WWW proxy
caching algorithms. In Symposium on Internet

Technology and Systems. USENIX Association, De-

cember 1997.

[4] V. Cate. Alex { A global �lesystem. In Proceedings

of the USENIX File System Workshop, pages 1{12.
USENIX Association, May 1992.

[5] Digital Equipment Corporation. Proxy cache log

traces, September 1996.

ftp://ftp.digital.com/pub/DEC/traces/

proxy/webtraces.html.

[6] Adam Dingle and Tomas Partl. Web cache co-
herence. In Proceedings of the Fifth International

World Wide Web Conference, May 1996.

http://www5conf.inria.fr/fich_html/

papers/P2/Overview.html.

[7] Fred Douglis, Anja Feldmann, Balachander Krish-

namurthy, and Je� Mogul. Rate of change and

other metrics: a live study of the world wide web.
In Symposium on Internet Technology and Systems.

USENIX Association, December 1997.

[8] James Gwertzman and Margo Seltzer. World-

wide web cache consistency. In Proceedings

of the USENIX Technical Conference, pages
141{152. USENIX Association, January 1996.

http://www.usenix.org/publications/library/

proceedings/sd96/seltzer.html.

[9] Barron C. Housel and David B. Lindquist. We-
bexpress: A system for optimizing web browsing

in a wireless environment. In Proceedings of the

ACM/IEEE MOBICOM '96 Conference, October

1996.

http://www.networking.ibm.com/art/

artwewp.htm.

[10] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.

Nichols, M. Satyanarayanan, and R. N. Side-
botham. Scale and performance in a distributed

�le system. ACM Transactions on Computer Sys-

tems, 6(1):55{81, February 1988.

[11] Internet Engineering Task Force. Hypertext trans-
port protocol { HTTP/1.1, January 1997.

http://ds.internic.net/internet-drafts/.

[12] Balachander Krishnamurthy and Craig E. Wills.
Piggyback cache validation for proxy caches in the

world wide web. In Proceedings of the 2nd Web

Caching Workshop, Boulder, CO, June 1997. Na-

tional Laboratory for Applied Network Research.

http://ircache.nlanr.net/Cache/Workshop97/

Papers/Wills/wills.html.

[13] Thomas M. Kroeger, Darrel D.E. Long, and Jef-
frey C. Mogul. Exploring the bounds of web latency

reduction from caching and prefetching. In Sympo-

sium on Internet Technology and Systems. USENIX
Association, December 1997.

[14] Chengjie Liu and Pei Cao. Maintaining strong
cache consistency in the world-wide web. In Pro-

ceedings of the 17th IEEE International Conference

on Distributed Computing Systems, May 1997.

[15] Je�rey Mogul. An alternative to explicit revoca-

tion?, January 1996.
http://weeble.lut.ac.uk/lists/

http-caching/0045.html.

[16] Je�rey C. Mogul. Hinted caching in the web. In

Proceedings of the 1996 SIGOPS European Work-

shop, 1996.

http://mosquitonet.stanford.edu/sigops96/

papers/mogul.ps.

[17] Je�rey C. Mogul, Fred Douglis, Anja Feldmann,

and Balachander Krishnamurthy. Potential bene�ts
of delta-encoding and data compression for HTTP.

In ACM SIGCOMM'97 Conference, September

1997.
http://www.acm.org/sigcomm/sigcomm97/

papers/p156.html.

[18] Michael N. Nelson, Brent B. Welch, and John K.

Ousterhout. Caching in the Sprite network �le sys-

tem. ACM Transactions on Computer Systems,
6(1):134{154, February 1988.

[19] Venkata N. Padmanabhan and Je�rey C. Mogul.

Using predictive prefetching to improve world wide

web latency. Computer Communication Review,

26(3):22{36, 1996.

[20] Squid internet object cache.

http://squid.nlanr.net/Squid.

[21] Stephen Williams, Marc Abrams, Charles R.
Standbridge, Ghaleb Abdulla, and Edward A. Fox.

Removal policies in network caches for world-wide

web documents. In Proceedings of the ACM SIG-

COMM Conference, pages 293{305, August 1996.

http://www.acm.org/sigcomm/sigcomm96/

williams/p156.html.

[22] Craig E. Wills and Joel Sommers. Prefetching on

the web through merger of client and server pro�les,

June 1997.

http://www.cs.wpi.edu/~cew/papers/

webprofile.ps.


