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Abstract

We present a new lazy replication technique, suitable
for scaling the back-end database of a dynamic content
site using a cluster of commodity computers. Our tech-
nique, called conflict-aware scheduling, provides both
throughput scaling and 1-copy serializability. It has
generally been believed that this combination is hard
to achieve through replication because of the growth of
the number of conflicts. We take advantage of the pres-
ence in a database cluster of a scheduler through which
all incoming requests pass. We require that transac-
tions specify the tables that they access at the beginning
of the transaction. Using that information, a conflict-
aware scheduler relies on a sequence-numbering scheme
to implement 1-copy serializability, and directs incoming
queries in such a way that the number of conflicts is re-
duced.

We evaluate conflict-aware scheduling using the TPC-
W e-commerce benchmark. For small clusters of up
to eight database replicas, our evaluation is performed
through measurements of a web site implementing the
TPC-W specification. We use simulation to extend our
measurement results to larger clusters, faster database
engines, and lower conflict rates.

Our results show that conflict-awareness brings con-
siderable benefits compared to both eager and conflict-
oblivious lazy replication for a large range of cluster
sizes, database speeds, and conflict rates. Conflict-aware
scheduling provides near-linear throughput scaling up to
a large number of database replicas for the browsing and
shopping workloads of TPC-W. For the write-heavy or-
dering workload, throughput scales, but only to a smaller
number of replicas.

1 Introduction

This paper studies replication in database clusters [12,
17, 24] serving as back-ends in dynamic content sites.

Dynamic content sites commonly use a three-tier ar-
chitecture, consisting of a front-end web server, an appli-
cation server implementing the business logic of the site,
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Figure 1: Common Architecture for Dynamic Content Sites
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Figure 2: Clustering in a Dynamic Content Web Site

and a back-end database (see Figure 1). The (dynamic)
content of the site is stored in the database.

We focus in this paper on the case where the database
back-end is the bottleneck. Practical examples of such
situations may be found in e-commerce sites [1] or bul-
letin boards [19]. Bottlenecks in the web server tier are
easily addressed by replicating the web server. Since it
serves only static content, replication in this tier does
not introduce any consistency issues. Addressing bot-
tlenecks in the application server is a subject of further
study.

Rather than following the common approach of us-
ing a very expensive high-end database machine as the
back-end [6, 11], we investigate an alternative approach
using a cluster of low-cost commodity machines. As Fig-
ure 2 shows, a scheduler is interposed between the appli-
cation server(s) and the database cluster. The scheduler
virtualizes the database cluster and makes it look to the
application server as a single database. Therefore, no
changes are required in the application server. Similarly,
the methods presented in this paper do not require any
changes to the database engine.

Based on observing the workload imposed on the
database by dynamic content sites [1], and in particular



by TPC-W [22], we argue that the nature of e-commerce
workloads is such that lazy read-one, write-all replica-
tion [23] is the preferred way to distribute the data across
the cluster. Furthermore, we argue that strong consis-
tency (in technical terms, 1-copy serializability [4]) is
desirable between the database replicas. From the com-
bination of these two requirements – lazy replication and
1-copy serializability – stems the challenge addressed by
this paper.

Lazy replication algorithms asynchronously propa-
gate replica updates to other nodes, possibly even after
the updating transaction commits. They do not provide
1-copy serializability, since, for instance, writes may be
propagated in different orders to different replicas. Past
approaches have used reconciliation to achieve eventual
replica consistency. Predictions of the number of recon-
ciliations with a large number of replicas have, however,
been discouraging [8]. More recent work [12] suggests
that for small clusters, both 1-copy-serializability and ac-
ceptable performance can be achieved by aborting con-
flicting transactions.

Our goal is also to use lazy replication and achieve 1-
copy serializability, but instead of resolving conflicts by
aborting conflicting transactions, we augment the sched-
uler (see Figure 2) with a sequence numbering scheme to
guarantee 1-copy serializability.

To improve performance we also augment the sched-
uler to be conflict-aware. Intuitively, a scheduler is
conflict-aware if it directs incoming requests in such a
way that the time waiting for conflicts is reduced. For
instance, a write on a data item may have been sent to
all replicas, but it may have completed only at a sub-
set of them. A conflict-aware scheduler keeps track of
the completion status of each of the writes. Using this
knowledge, it sends a conflicting read that needs to hap-
pen after this write to a replica where it knows the write
has already completed.

A concern with a conflict-aware scheduler is the extra
state and the extra computation in the scheduler, raising
the possibility of it becoming the bottleneck or making it
an issue in terms of availability and fault tolerance of the
overall cluster. We present a lightweight implementation
of a conflict-aware scheduler, that allows a single sched-
uler to support a large number of databases. We also
demonstrate how to replicate the scheduler for availabil-
ity and increased scalability.

Our implementation uses common software platforms
such as the Apache Web server [3], the PHP scripting
language [16], and the MySQL relational database [14].
As we are most interested in e-commerce sites, we use
the TPC-W benchmark in our evaluation [22]. This
benchmark specifies three workloads (browsing, shop-
ping and ordering) with different percentages of writes
in the workload. Our evaluation uses measurement of the
implementation for small clusters (up to 8 database ma-
chines). We further use simulation to assess the perfor-
mance effects of larger clusters, more powerful database
machines, and varying conflict rates. Finally, in order

to provide a better understanding of the performance im-
provements achieved by a conflict-aware scheduler, we
have implemented a number of alternative schedulers
that include only some of the features of the strategy im-
plemented in conflict-aware scheduling.

Our results show that:

1. The browsing and shopping workloads scale very
well, with close to linear increases in throughput up
to 60 and 40 databases respectively. The ordering
workload scales only to 16 databases.

2. The benefits of conflict awareness in the scheduler
are substantial. Compared to a lazy protocol with-
out this optimization, the improvements are up to a
factor of 2 on our largest experimental platform, and
up to a factor of 3 in the simulations. Compared to
an eager protocol, the improvements are even higher
(up to a factor of 3.5 in the experiments, and up to a
factor of 4.4 in the simulations).

3. Simulations of more powerful database machines
and varying conflict rates validate the performance
advantages of conflict-aware scheduling on a range
of software/hardware environments.

4. One scheduler is enough to support scaling for up
to 60 MySQL engines for all workloads, assum-
ing equivalent nodes are used for the scheduler and
MySQL engine. Three schedulers are necessary if
the databases become four times faster.

5. The cost of maintaining the extra state in the sched-
uler is minimal in terms of scaling, availability and
fault tolerance.

6. Even with conflict avoidance, the eventual scaling
limitations stem from conflicts.

The outline of the rest of the paper is as follows. Sec-
tion 2 provides the necessary background on the char-
acteristics of dynamic content applications. Section 3
introduces our solution. Section 4 describes our proto-
type implementation. Section 5 describes the fault toler-
ance aspects of our solution. Section 6 describes other
scheduling techniques introduced for comparison with a
conflict-aware scheduler. Section 7 presents our bench-
mark and experimental platform. We investigate scaling
experimentally in Section 8, and by simulation in Sec-
tion 9. Section 10 discusses related work. Section 11
concludes the paper.

2 Background and Motivation

In this section we provide an intuitive motivation for
the methods used in this paper. This motivation is based
on observing the characteristics of the workloads im-
posed on the database of a dynamic content site by a
number of benchmarks [1], in particular by TPC-W [22].



First, there is a high degree of locality in the database
access patterns. At a particular point in time, a relatively
small working set captures a large fraction of the ac-
cesses. For instance, in an online bookstore, best-sellers
are accessed very frequently. Similarly, the stories of the
day on a bulletin board, or the active auctions on an auc-
tion site receive the most attention. With common appli-
cation sizes, much of the working set can be captured in
memory. As a result, disk I/O is limited. This charac-
teristic favors replication as a method for distributing the
data compared to alternative methods such as data parti-
tioning. Replication is suitable to relieve hot spots, while
data partitioning is more suitable for relieving high I/O
demands [5].

Replication brings with it the need to define a con-
sistency model for the replicated data. For e-commerce
sites, 1-copy serializability appears appropriate [4]. With
1-copy serializability conflicting operations of different
transactions appear in the same total order at all repli-
cas. Enforcing 1-copy serializability avoids, for instance,
a scenario produced by re-ordering of writes on differ-
ent replicas in which on one replica it appears that one
customer bought a particular item, while on a different
replica it appears that another customer bought the same
item.

Second, the computational cost of read queries is typ-
ically much larger than that of update queries. A typi-
cal update query consists of updating a single record se-
lected by an equality test on a customer name or a prod-
uct identifier. In contrast, read queries may involve com-
plex search criteria involving many records, for instance
”show me the ten most popular books on a particular
topic that have been published after a certain date”. This
characteristic favors read-one, write-all replication: the
expensive components of the workloads (reads) are exe-
cuted on a single machine, and only the inexpensive com-
ponents (writes) need to be executed on all machines.
The desirability of read-one, write-all over more com-
plex majority-based schemes has also been demonstrated
under other workloads [12, 24].

Third, while locality of access is beneficial in terms
of keeping data in memory, in a transactional setting it
has the potential drawback of generating frequent con-
flicts, with the attendant cost of waiting for conflicts to
be resolved. The long-running transactions present in
the typical workloads may cause conflicts to persist for a
long time. The frequency of conflicts also dramatically
increases as a result of replication [8]. Frequent con-
flicts favor lazy replication methods, that asynchronously
propagate updates [17, 21, 24]. Consider, for instance, a
single-write transaction followed by a single-read trans-
action. If the two conflict, then in a conventional syn-
chronous update protocol, the read needs to wait until
the write has completed at all replicas. In contrast, in a
lazy update protocol, the read can proceed as soon as the
write has executed at its replica. If the two do not con-
flict, the read can execute in parallel with the write, and
the benefits of asynchrony are much diminished.

Finally, frequent conflicts lead to increased potential
for deadlock. This suggests the choice of a concur-
rency control method that avoids deadlock. In particu-
lar, we use conservative two-phase locking [4], in which
all locks are acquired at the beginning of a transaction.
Locks are held until the end of the transaction.

In summary, we argue that lazy read-one, write-all
replication in combination with conservative two-phase
locking is suitable for distributing data across a cluster
of databases in a dynamic content site. In the next sec-
tion, we show that by augmenting the scheduler with a
sequence numbering scheme, lazy replication can be ex-
tended to provide 1-copy serializability. We also show
how the scheduler can be extended to include conflict
awareness, with superior performance as a result.

3 Design

3.1 Programming Model

A single (client) web interaction may include one or
more transactions, and a single transaction may include
one or more read or write queries. The application writer
specifies where in the application code transactions be-
gin and end. In the absence of transaction delimiters,
each single query is considered a transaction and is auto-
matically committed (so called ”auto-commit” mode).

At the beginning of each transaction consisting of
more than one query, the application writer inserts a lock
acquire specifying all tables accessed in the transaction
and their access types (read or write). This step is cur-
rently done by hand, but could be automated. Locks for
single-operation transactions do not need to be specified.

3.2 Cluster Design

We consider a cluster architecture for a dynamic con-
tent site, in which a scheduler distributes incoming re-
quests to a cluster of database replicas and delivers the
responses to the application servers (see Figure 2). The
scheduler may itself be replicated for performance or for
availability. The presence of the scheduler is transparent
to the application server and the database, both of which
are unmodified.

If there is more than one scheduler in a particular con-
figuration, the application server is assigned a particular
scheduler at the beginning of a client web interaction.
This assignment is currently done by round-robin. For
each operation in a particular client web interaction, the
application server only interacts with this single sched-
uler, unless the scheduler fails. These interactions are
synchronous: for each query, the execution of the busi-
ness logic for this particular client web interaction in the
application server waits until it receives a response from
the scheduler.

The application server sends the scheduler lock re-
quests for multiple-operation transactions, reads, writes,
commits and aborts.



3.3 Lazy Read-one, Write-all Replication

When the scheduler receives a lock request, a write
or a commit from the application server, it sends it to all
replicas and returns the response as soon as it receives a
response from any of the replicas. Reads are sent only
to a single replica, and the response is sent back to the
the application server as soon as it is received from that
replica.

3.4 1-Copy Serializability

The scheduler maintains 1-copy serializability by as-
signing a unique sequence number to each transaction.
This assignment is done at the beginning of the transac-
tion. For a multiple-operation transaction the sequence
number is assigned when that transaction’s lock request
arrives at the scheduler. For a single-operation trans-
action, sequence number assignment is done when the
transaction arrives at the scheduler. Lock requests are
sent to all replicas, executed in order of their assigned se-
quence numbers, and held until commit, thus forcing all
conflicting operations to execute in a total order identical
at all replicas, and thus enforcing 1-copy serializability.

Transactions consisting of a single read query are
treated differently. A single-read transaction holds locks
only on the single replica where it executes. This op-
timization results in a very substantial performance im-
provement without violating 1-copy serializability.

3.5 Conflict-Aware Scheduling

Due to the asynchrony of replication, at any given
point, some replicas may have fallen behind with the
application of writes. Furthermore, some replicas may
have not been able to acquire the locks for a particular
transaction, due to conflicts. For reads, other than reads
in single-read transactions, the scheduler first determines
the set of replicas where the locks for its enclosing trans-
action have been acquired and where all previous writes
in the transaction have completed. It then selects the least
loaded replica from this set as the replica to receive the
read query. The scheduler tries to find conflict-free repli-
cas for single-read transactions as well, but may not be
able to find one.

Conflict-aware scheduling requires that the scheduler
maintains the completion status of lock requests and
writes, for all database replicas.

4 Implementation

4.1 Overview

The implementation consists of three types of pro-
cesses: scheduler processes (one per scheduler machine),
a sequencer process (one for the entire cluster), and
database proxy processes (one for each database replica).

The sequencer assigns a unique sequence number to each
transaction and thereby implicitly to each of its locks. A
database proxy regulates access to its database server by
letting an operation proceed only if the database has al-
ready processed all conflicting operations that precede it
in sequence number order and all operations that precede
it in the same transaction. The schedulers form the core
of the implementation. They receive the various opera-
tions from the application servers, forward them to one
or more of the database proxies, and relay the responses
back to the application servers. The schedulers also in-
teract with the sequencer to obtain a sequence number
for each transaction.

In the following, we describe the state maintained
at the scheduler and at the database proxy to support
failure-free execution, and the protocol steps executed on
receipt of each type of operation and its response. Ad-
ditional state maintained for fault-tolerance purposes is
described in Section 5.

4.2 The Scheduler’s State

The scheduler maintains for each active transaction its
sequence number and the locks requested by that trans-
action. In addition, it maintains a record for each opera-
tion that is outstanding with one or more database prox-
ies. A record is created when an operation is received
from the application server, and updated when it is sent
to the database engines, or when a reply is received from
one of them. The record for a read operation is deleted
as soon as the response is received and delivered to the
application server. For every replicated operation (i.e.,
lock request, write, commit or abort), the corresponding
record is deleted only when all databases have returned a
response.

The scheduler records the current load of each
database (see section 4.10). This value is updated with
new information included in each reply from a database
proxy.

4.3 The Database Proxy’s State

The database proxy maintains a reader-writer
lock [23] queue for each table. These lock queues are
maintained in order of sequence numbers. Furthermore,
the database proxy maintains transaction queues, one per
transaction, and an out-of-order queue for all operations
that arrive out of sequence number order.

For each transaction queue, a head-of-queue record
maintains the current number of locks granted to that
transaction. Each transaction queue record maintains the
operation to be executed. Transaction queue records are
maintained in order of arrival.

4.4 Lock Request

For each lock request, the scheduler obtains a se-
quence number from the sequencer and stores this infor-



mation together with the locks requested for the length of
the transaction. The scheduler then tags the lock request
with its sequence number and sends it to all database
proxies. Each database proxy executes the lock request
locally and returns an answer to the scheduler when the
lock request is granted. The lock request is not forwarded
to the database engine.

A lock request that arrives at the database proxy in
sequence number order is split into separate requests for
each of the locks requested. When all locks for a partic-
ular transaction have been granted, the proxy responds
to the scheduler. The scheduler updates its record for
that transaction, and responds to the application server,
if this is the first response to the lock request for that
transaction. A lock request that arrives out-of-order (i.e.,
does not have a sequence number that is one more than
the last processed lock request) is put in the out-of-order
queue. Upon further lock request arrivals, the proxy
checks whether any request from the out-of-order queue
can now be processed. If so, that request is removed from
the out-of-order queue and processed as described above.

4.5 Reads and Writes

As the application executes the transaction, it sends
read and write operations to the scheduler. The scheduler
tags each operation with the sequence number that was
assigned to the transaction. It then sends write operations
to all database proxies, while reads are sent to only one
database proxy.

The scheduler sends each read query to one of the
replicas where the lock request and the previous writes of
the enclosing transaction have completed. If more than
one such replica exists, the scheduler picks the replica
with the lowest load.

The database proxy forwards a read or write opera-
tion to its database only when all previous operations in
the same transaction (including lock requests) have been
executed. If an operation is not ready to execute, it is
queued in the corresponding transaction queue.

4.6 Completion of Reads and Writes

On the completion of a read or a write at the database,
the database proxy receives the response and forwards it
to the scheduler. The proxy then submits the next opera-
tion waiting in the transaction queue, if any.

The scheduler returns the response to the application
server if this is the first response it received for a write
query or if it is the response to a read query. Upon re-
ceiving a response for a write from a database proxy, the
scheduler updates its corresponding record to reflect the
reply.

4.7 Commit/Abort

The scheduler tags the commit/abort received from
the application server with the sequence number and

locks requested at the start of the corresponding trans-
action, and forwards the commit/abort to all replicas.

If other operations from this transaction are pending
in the transaction queue, the commit/abort is inserted
at the tail of the queue. Otherwise, it is submitted to
the database. Upon completion of the operation at the
database, the database proxy releases each lock held by
the transaction, and checks whether any lock requests in
the queues can be granted as a result. Finally, it forwards
the response to the scheduler.

Upon receiving a response from a database proxy, the
scheduler updates the corresponding record to reflect the
reply. If this is the first reply, the scheduler forwards the
response to the application server.

4.8 Single-Read Transactions

The read is forwarded to a database proxy, where it
executes after previous conflicting transactions have fin-
ished. In particular, requests for individual locks are
queued in the corresponding lock queues, as with any
other transaction, and the transaction is executed when
all of its locks are available.

To choose a replica for the read, the scheduler first se-
lects the set of replicas where the earlier update transac-
tions in the same client web interaction, if any, have com-
pleted. It then determines the subset of this set at which
no conflicting locks are held. This set may be empty. It
selects a replica with the lowest load in the latter set, if it
is not empty, and otherwise from the former set.

4.9 Single-Update Transactions

Single-update transactions are logically equivalent to
multiple-operation transactions, but in the implementa-
tion they need to be treated a little differently; the nec-
essary locks are not specified by the application logic,
hence there is no explicit lock request. When the sched-
uler receives a single-update transaction, it computes the
necessary locks and obtains a sequence number for the
transaction. The transaction is then forwarded to all
replicas with that additional information. Thus, the lock
request is implicit rather than sent in a separate lock re-
quest message to the database proxy, but otherwise the
database proxy treats a single-update transaction in the
same way as any multiple-update transaction.

4.10 Load Balancing

We use the Shortest Execution Length First (SELF)
load balancing algorithm. We measure off-line the exe-
cution time of each query on an idle machine. At run-
time, the scheduler estimates the load on a replica as
the sum of the (apriori measured) execution times of
all queries outstanding on that back-end. SELF tries
to take into account the widely varying execution times
for different query types. The scheduler updates the



load estimate for each replica with feedback provided
by the database proxy in each reply. We have shown
elsewhere [2] that SELF outperforms round-robin and
shortest-queue-first algorithms for dynamic content ap-
plications.

5 Fault Tolerance and Data Availability

5.1 Fault Model

For ease of implementation, we assume a fail-stop
fault model. However, our fault tolerance algorithm
could be generalized to more complex fault models.

5.2 Fault Tolerance of the Sequencer

At the beginning of each transaction, a scheduler re-
quests a sequence number from the sequencer. After-
wards, the scheduler sends to all other schedulers a repli-
cate start transaction message containing the sequence
number for this transaction, and waits for an acknowl-
edgment from all of them. All other schedulers create
a record with the sequence number and the coordinating
scheduler of this transaction. No disk logging is done at
this point.

If the sequencer fails, replication of the sequence
numbers on all schedulers allows for restarting the se-
quencer with the last sequence number on another ma-
chine. In case all schedulers fail, the sequence numbers
are reset everywhere (sequencer, schedulers, database
proxies).

5.3 Atomicity and Durability of Writes

To ensure that all writes are eventually executed, re-
gardless of any sequence of failures in the schedulers and
the databases, each scheduler keeps a persistent log of all
write queries of committed transactions that it handled,
tagged with the transaction’s sequence number. The log
is kept per table in sequence number order, to facilitate
recovery (see below). To add data availability, the sched-
uler replicates this information in the memory of all other
schedulers. Each database proxy maintains the sequence
number for the last write it committed on each table. The
database proxy does not log its state to disk.

In more detail, before a commit query is issued to any
database, the scheduler sends a replicate end transaction
message to the other schedulers. This message contains
the write queries that have occurred during the transac-
tion, and the transaction’s sequence number. All other
schedulers record the writes, augment the corresponding
remote transaction record with the commit decision, and
respond with an acknowledgment. The originator of the
replicate end transaction message waits for the acknowl-
edgments, then logs the write queries to disk. After the
disk logging has completed, the commit is issued to the
database replicas. For read-only transactions, the com-
mit decision is replicated but not logged to disk.

5.3.1 Scheduler Failure

In the case of a single scheduler failure, all transactions
of the failed scheduler for which the live schedulers do
not have a commit decision are aborted. A transaction for
which a commit record exists, but for which a database
proxy has not yet received the commit decision is aborted
at that particular replica, and then its writes are replayed.
The latter case is, however, very rare.

In more detail, a fail-over scheduler contacts all avail-
able database proxies. The database proxy waits until all
queued operations finish at its database, including any
pending commits. The proxy returns to the scheduler the
sequence number for the last committed write on each
database table, and the highest sequence number of any
lock request received by the database proxy. The fail-
over scheduler determines all the failed scheduler’s trans-
actions for which a commit record exists and for which
a replica has not committed the transaction. The reason
that a replica has not committed a transaction may be ei-
ther that it did not receive the transaction’s lock request
or that it did not receive the commit request. The first
case is detected by the sequence number of the transac-
tion being larger than the highest lock sequence number
received by the proxy. In this case, all the transaction’s
writes and its commit are replayed to the proxy. In the
second case, the fail-over scheduler first aborts the trans-
action and then sends the writes and the commit. The
database proxy also advances its value of the highest lock
sequence number received and its value of the last se-
quence number of a committed write on a particular ta-
ble, as appropriate.

For all other transactions handled by the failed sched-
uler, the fail-over scheduler sends an abort to all database
proxies. The database proxies rollback the specified
transactions, and also fill the gap in lock sequence num-
bers in case the lock with the sequence number specified
in the abort was never received. The purpose of this, is
to let active transactions of live schedulers with higher
sequence numbered locks proceed.

Each scheduler needs to keep logs for committed
writes and records of assigned lock sequence numbers
until all replicas commit the corresponding transactions.
Afterwards, these records can be garbage-collected.

When a scheduler recovers, it contacts another sched-
uler and replicates its state. In the rare case where all
schedulers fail, the state is reconstructed from the disk
logs of all schedulers. All active transactions are aborted
on all database replicas, the missing writes are applied
on all databases, and all sequence numbers are reset ev-
erywhere.

5.3.2 Network Failure

To address temporary network connection failures, each
database proxy can send a “selective retransmission” re-
quest for transactions it has missed. Specifically, the
database proxy uses a timeout mechanism to detect gaps



in lock sequence that have not been filled in a given pe-
riod of time. It then contacts an available scheduler and
provides its current state. The scheduler rolls forward
the database proxy including updating its highest lock
sequence number.

5.3.3 Database Failure

When a database recovers from failure, its database
proxy contacts all available schedulers and selects one
scheduler to coordinate its recovery. The coordinating
scheduler instructs the recovering database to install a
current database snapshot from another replica, with its
current state. Each scheduler re-establishes its connec-
tions to the database proxy and adds the replica to its
set of available machines. The scheduler starts send-
ing to the newly incorporated replica at the beginning
of the next transaction. Afterwards, the database proxy
becomes up-to-date by means of the selective retransmis-
sion requests as described in the case of network failure.

In addition, each database proxy does periodic check-
points of its database together with the current state (in
terms of the last sequence numbers of its database ta-
bles). To make a checkpoint, the database proxy stops
all write operations going out to the database engine, and
when all pending write operations have finished, it takes
a snapshot of the database and writes the new state. If
any tables have not changed since the last checkpoint,
they do not need to be included in the new checkpoint.
Checkpointing is only necessary to support recovery in
the unlikely case where all database replicas fail. In this
case, each database proxy reinstalls the database from its
own checkpoint containing the database snapshot of the
last known clean state. Subsequently, recovery proceeds
as in the single database failure case above.

6 Algorithms Used for Comparison

In this section, we introduce a number of other
scheduling algorithms for comparison with conflict-
aware scheduling. By gradually introducing some of
the features of conflict-aware scheduling, we are able to
demonstrate what aspects of conflict-aware scheduling
contribute to its overall performance. Our first algorithm
is an eager replication scheme that allows us to show
the benefits of asynchrony. We then look at a number
of scheduling algorithms for lazy replication. Our sec-
ond algorithm is a conventional scheduler that chooses a
fixed replica based on load at the beginning of the trans-
action and executes all operations on that replica. Our
third algorithm is another fixed-replica approach, but it
introduces one feature of conflict-aware scheduling: it
chooses as the fixed replica the one that responds first to
the transaction’s lock request rather than the least loaded
one. We then move away from fixed-replica algorithms,
allowing different replicas to execute reads of the same
transaction, as in conflict-aware scheduling. Our fourth

and final scheduler chooses the replica with the low-
est load at the time of the read, allowing us to assess
the difference between this approach and conflict-aware
scheduling, where a read is directed to a replica without
conflicts.

We refer to these scheduler algorithms as Eager, FR-
L (Fixed Replica based on Load), FR-C (Fixed Replica
based on Conflict), and VR-L (Variable Replica based on
Load). Using this terminology, the conflict-aware sched-
uler would be labeled VR-C (Variable Replica based on
Conflict), but we continue to refer to it as the conflict-
aware scheduler.

In all algorithms, we use the same concurrency con-
trol mechanism, i.e., conservative two-phase locking, the
same sequence numbering method to maintain 1-copy
serializability, and the same load balancing algorithm
(see Section 4.10).

6.1 Eager Replication (Eager)

Eager follows the algorithm described by Weikum
et al. [23], which uses synchronous execution of lock
requests, writes and commits on all replicas. In other
words, the scheduler waits for completion of every lock,
write or commit operation on all replicas, before sending
a response back to the application server. The scheduler
directs a read to the replica with the lowest load.

6.2 Fixed Replica Based on Load (FR-L)

FR-L is a conventional scheduling algorithm, in
which the scheduler is essentially a load balancer. At
the beginning of the transaction, the scheduler selects the
replica with the lowest load. It just passes through oper-
ations tagged with their appropriate sequence numbers.
Lock requests, writes and commits are sent to all repli-
cas, and the reply is sent back to the application server
when the chosen replica replies to the scheduler. Reads
are sent to the chosen replica. The FR-L scheduler needs
to record only the chosen replica for the duration of each
transaction.

6.3 Fixed Replica Based on Conflict (FR-C)

FR-C is identical to FR-L, except that the scheduler
chooses the replica that first responds to the lock request
as the fixed replica for this transaction. As in FR-L, all
reads are sent to this replica, and a response is returned
to the application server when this replica responds to a
lock request, a write or a commit. The FR-C scheduler’s
state is also limited to the chosen replica for each trans-
action.

6.4 Variable Replica Based on Load (VR-L)

In the VR-L scheduler, the response to the application
server on a lock request, write, or commit is sent as soon



as the first response is received from any replica. A read
is sent to the replica with the lowest load at the time the
read arrives at the scheduler. This may result in the read
being sent to a replica where it needs to wait for the com-
pletion of conflicting operations in other transactions or
previous operations in its own transaction.

The VR-L scheduler needs to remember for the du-
ration of each replicated query whether it has already
forwarded the response and whether all machines have
responded, but, unlike a conflict-aware scheduler, it need
not remember which replicas have responded. In other
words, the size of the state maintained is O(1) not O(N)
in the number of replicas.

7 Experimental Platform

7.1 TPC-W Benchmark

The TPC-W benchmark from the Transaction Pro-
cessing Council (TPC) [22] is a transactional web bench-
mark for e-commerce systems. The benchmark simu-
lates a bookstore.

The database contains eight tables: customer, address,
orders, order line, credit info, item, author, and coun-
try. The most frequently used are order line, orders and
credit info, which contain information about the orders
placed, and item and author, which contain information
about the books. The database size is determined by the
number of items in the inventory and the size of the cus-
tomer population. We use 100,000 items and 2.8 mil-
lion customers which results in a database of about 4 GB.
The inventory images, totaling 1.8 GB, reside on the web
server.

We implemented the fourteen different interactions
specified in the TPC-W benchmark specification. Six
of the interactions are read-only, while eight cause the
database to be updated. The read-only interactions in-
clude access to the home page, listing of new products
and best-sellers, requests for product detail, and two in-
teractions involving searches. Update transactions in-
clude user registration, updates of the shopping cart, two
order-placement transactions, and two for administrative
tasks. The frequency of execution of each interaction is
specified by the TPC-W benchmark. The complexity of
the interactions varies widely, with interactions taking
between 20 and 700 milliseconds on an unloaded ma-
chine. The complexity of the queries varies widely as
well. In particular, the most heavyweight read queries are
50 times more expensive than the average write query.

TPC-W uses three different workload mixes, differing
in the ratio of read-only to read-write interactions. The
browsing mix contains 95% read-only interactions, the
shopping mix 80%, and the ordering mix 50%.

7.2 Client Emulation Software

We implemented a client-browser emulator that al-
lows us to vary the load on the web site by varying the

number of emulated clients. A client session is a se-
quence of interactions for the same client. For each client
session, the client emulator opens a persistent HTTP con-
nection to the web server and closes it at the end of the
session. Each emulated client waits for a certain think
time before initiating the next interaction. The next in-
teraction is determined by a state transition matrix that
specifies the probability to go from one interaction to
another. The client session time and the think time are
generated from a random distribution with a mean value
specified in TPC-W.

7.3 Software Environment

We use three popular open-source software pack-
ages: the Apache web server [3], the PHP scripting lan-
guage [16], and the MySQL database server [14]. Since
PHP is implemented as an Apache module, the web
server and application server co-exist on the same ma-
chine(s). We use Apache v.1.3.22 for the web server,
configured with the PHP v.4.0.1 module. We use
MySQL v.4.0.1 with InnoDB transactional extensions as
our database server.

The schedulers and database proxies are both imple-
mented with event-driven loops that multiplex requests
and responses between the web server and the database
replicas. We use FreeBSD’s scalable kevent primi-
tive [13] to efficiently handle thousands of connections
at a single scheduler.

7.4 Hardware Environment

We use the same hardware for all machines, includ-
ing those running the client emulation software, the web
servers, the schedulers and the database engines. Each
machine has an AMD Athlon 800Mhz processor running
FreeBSD 4.1.1, 256MB SDRAM, and a 30GB ATA-
66 disk drive. All machines are connected through a
switched 100Mbps Ethernet LAN.

8 Experimental Results

The experimental results are obtained on a cluster
with 1 to 8 database server machines. We use a number
of web server machines large enough to make sure that
the web server stage is not the bottleneck. The largest
number of web server machines used for any experiment
was 8. We use 2 schedulers to ensure data availability.

We measure throughput in terms of the number of
web interactions per second (WIPS), the standard TPC-
W performance metric. For a given number of machines
we report the peak throughput. In other words, we vary
the number of clients until we find the peak through-
put and we report the average throughput number over
several runs. We also report average response time at
this peak throughput. Next, we break down the aver-
age query time into query execution time, and waiting
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Figure 3: Throughput Comparison: The benefits of conflict
avoidance and fine-grained scheduling for the browsing mix.
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Figure 4: Throughput Comparison: The benefits of conflict
avoidance and fine-grained scheduling for the shopping mix.

time (for locks and previous writes in the same trans-
action). Finally, we compare the performance in terms
of throughput between the conflict-aware scheduler with
and without fault tolerance and data availability.

8.1 Throughput

Figures 3 through 5 show the throughput of the vari-
ous scheduling algorithms for each of the three workload
mixes. In the x-axis we have the number of database ma-
chines, and in the y-axis the number of web interactions
per second.

First, conflict-aware scheduling outperforms all other
algorithms, and increasingly so for workload mixes with
a large fraction of writes. Second, all asynchronous
schemes outperform the eager scheme, again increas-
ingly so as the fraction of writes increases. In particular,
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the conflict-aware protocol outperforms the eager proto-
col by factors of 1.7, 2.4 and 3.5 for browsing, shop-
ping, and ordering, respectively at eight replicas. Third,
for the fixed replica algorithms, choosing the replica by
conflict (FR-C) rather than by load (FR-L) provides sub-
stantial benefits, a factor of 1.4, 1.4, and 1.25 for the
largest configuration, for each of the three mixes, respec-
tively. Fourth, variable replica algorithms provide better
results than fixed replica algorithms, with the conflict-
aware scheduler showing a gain of a factor of 1.5, 1.6 and
2, for browsing, shopping, and ordering, respectively,
compared to FR-L, at 8 replicas. Finally, FR-C performs
better than VR-L for the browsing and the shopping mix,
but becomes worse for the ordering mix. Because of the
larger numbers of reads in the browsing and shopping
mixes, VR-L incurs a bigger penalty for these mixes by
not sending the reads to a conflict-free replica, possibly
causing them to have to wait. FR-C, in contrast, tries to
send the reads to conflict-free replicas. In the ordering
mix, reads are fewer. Therefore, this advantage for FR-C
becomes smaller. VR-L’s ability to shorten the write and
commit operations by using the first response becomes
the dominant factor.

8.2 Response Time

Figure 6 presents a comparison of the average web in-
teraction response time for the five scheduler algorithms
and the three workload mixes on an 8-database cluster
at peak throughput. For each workload mix, the results
are normalized to the average response time of the eager
scheduler for that workload mix.

These results show that the conflict-aware scheduler
provides better average response times than all other
schedulers. The performance benefits of reducing con-
flict waiting time are reflected in response time reduc-
tions as well, with the same relative ranking for the dif-
ferent protocols as in the throughput comparison.

8.3 Breakdown of Query Time

Figures 7, 8, and 9, show a breakdown of the query re-
sponse time into query execution time and waiting time.
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The waiting time is mostly due to conflicts; waiting for
previous writes in the same transaction is negligible. For
each workload mix, the results are normalized to the av-
erage query response time for the eager scheduler for that
workload mix.

These results further stress the importance of reduc-
ing conflict waiting time. For all protocols, and all work-
loads, conflict waiting time forms the largest fraction of
the query time. Therefore, the scheduler that reduces
the conflict waiting time the most performs the best in
terms of overall throughput and response time. The dif-
ferences in query execution time between the different
protocols are minor and do not significantly influence the
overall throughput and response time. One might, for
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Degrees of Availability for the Conflict-Aware Scheduler for
All Workload Mixes

instance, expect the conflict-aware scheduler to produce
worse query execution times than VR-L, because of the
latter’s potential for better load balancing. VR-L has the
opportunity to direct reads to all replicas in order to bal-
ance the load, while the conflict-aware scheduler directs
reads only to conflict-free replicas. In practice, however,
the positive effect of this extra degree of freedom is min-
imal and completely overwhelmed by the conflict-aware
scheduler’s reduced conflict waiting times.

8.4 Cost of Fault Tolerance and Availability

Figure 10 shows the throughput of conflict-aware
scheduling without fault tolerance (Unreliable), with the
overhead of logging to disk (Reliable), and with log-
ging to disk plus replicating the state using two and three
schedulers (Reliable-2 and Reliable-3, respectively). All
the measurements were done using the experimental
platform with 8 databases at the peak throughput. The
measurements from sections 8.1 through 8.3 correspond
to the Reliable-2 bar.

The overhead for fault tolerance and data availabil-
ity is negligible for the browsing and shopping mixes
and around 16% for the ordering mix. This overhead
is mainly due to logging, with no extra overhead when
replication of writes to remote schedulers is added to log-
ging (as seen by comparing the Reliable and Reliable-2
bars).

A full checkpoint currently takes 5 minutes to perform
for our 4 GB database. We did not include this overhead
in our above measurements, because well known tech-
niques for minimizing the time for taking file snapshots
exist [10].

9 Simulations

We use simulation to extrapolate from our experimen-
tal results in three different directions. First, we ex-
plore how throughput scales if a larger cluster of database
replicas is available. Second, we investigate the effect of
faster databases, either by using faster database software
or faster machines. Third, we show how the performance
differences between the various schedulers evolve as the
conflict rate is gradually reduced.



9.1 Simulator Design

We have developed two configurable simulators, one
for the web/application server front-ends and the other
for the database back-ends. We use these front-end
and back-end simulators to drive actual execution of the
schedulers and the database proxies. Our motivation for
running the actual scheduler code and the actual database
proxy code rather than simulating them is to measure
their overheads experimentally and determine whether
or not they may become a bottleneck for large clusters
or faster databases.

The web server simulator models a very fast web
server. It accepts client requests, and sends the corre-
sponding queries to the scheduler without executing any
application code. The scheduler and the database proxies
perform their normal functions, but the database proxy
sends each query to the database simulator rather than to
the database.

The database simulator models a cluster of database
replicas. It maintains a separate queue for each simulated
replica. Whenever a query is received from the sched-
uler for a particular replica, a record is placed on that
replica’s queue. The simulator estimates a completion
time for the query, using the same query execution time
estimates as used for load balancing. It polls the queues
of all replicas, and sends responses when the simulated
time reaches the completion time for each query. The
simulator does not model disk I/O. Based on profiling
of actual runs, we estimate that the disk access time is
mostly overlapped with computation, due to the locality
in database accesses and the lazy database commits.

Calibration of the simulated system against measure-
ment of the real 8-node database cluster shows that the
simulated throughput numbers are within 12% of the ex-
perimental numbers for all three mixes.

9.2 Large Database Clusters

9.2.1 Results

We simulate all five schedulers for all three workload
mixes for database cluster sizes up to 60 replicas. As
with the experimental results, for a given number of
replicas, we increase the number of clients until the sys-
tem achieves peak throughput, and we report those peak
throughput numbers. The results can be found in Fig-
ures 11, 12 and 13. In the x-axis we have the num-
ber of simulated database replicas, and in the y-axis the
throughput in web interactions per second.

The simulation results show that the experimental re-
sults obtained on small clusters can be extrapolated to
larger clusters. In particular, the conflict-aware sched-
uler outperforms all other schedulers, and the benefits of
conflict awareness grow as the cluster size grows, espe-
cially for the shopping and the ordering mix. Further-
more, the relative order of the different schedulers re-
mains the same, and, in particular, all lazy schemes out-
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Figure 12: Simulated Throughput Results for the Shopping
Mix

perform the eager scheduler (by up to a factor of 4.4 for
the conflict-aware scheduler). The results for the shop-
ping mix deserve particular attention, because they al-
low us to observe a flattening of the throughput of FR-
C and VR-L as the number of machines grows, a phe-
nomenon that we could not observe in the actual imple-
mentation. In contrast, throughput of the conflict-aware
protocol continues to increase, albeit at a slower pace.
With increasing cluster size, the number of conflicts in-
creases [8]. Hence, choosing the replica based on a sin-
gle criterion, either conflict (as in FR-C) or fine-grained

ordering�mix

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35

Database�engines

T
h

ro
u

g
h

p
u

t

ConflA

FR-C

VR-L

FR-L

Eager

Figure 13: Simulated Throughput Results for the Ordering
Mix
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load balancing (as in VR-L), is inferior to conflict-aware
scheduling that combines both.

9.2.2 Bottleneck Analysis

As the cluster scales to larger numbers of machines, the
following phenomena could limit throughput increases:
growth in the number of conflicts, each replica becom-
ing saturated with writes, or the scheduler becoming a
bottleneck. In this section we show that the flattening
of the throughput curves for the conflict-aware scheduler
in Figures 12 and 13 is due to conflicts among transac-
tions, even though the scheduler seeks to reduce conflict
waiting time. A fortiori, for the other schedulers, which
invest less effort in reducing conflicts, conflicts are even
more of an impediment to good performance at large
cluster sizes.

Using the conflict-aware scheduler, Figure 14 shows
the breakdown of the average database CPU time into
idle time, time processing reads, and time processing
writes. The breakdown is provided for each workload,
for one replica and for either the largest number of repli-
cas simulated for that workload or for a number of repli-
cas at which the throughput curve has flattened out.

For the browsing mix, which still scales at 60 repli-
cas, idle time remains low even at that cluster size. For
the shopping mix, which starts seeing some flattening out
at 60 machines, idle time has grown to 15%. For the
ordering mix, which does not see any improvement in
throughput beyond 16 replicas, idle time has grown con-
siderably, to 73%. The fraction of write (non-idle) time
grows from under 1% for browsing and shopping and 6%
for ordering on one replica, to 8% for the browsing mix
(at 60 replicas), 30% in the shopping mix (at 60 replicas),
and 16% for the ordering mix (at 16 replicas).

Idle time is entirely due to conflicts. Idle time due to
load imbalance is negligible. Most idle time occurs on a
particular replica when a transaction holds locks on the
database that conflict with all lock requests in the proxy’s
lock queues, and that transaction is in the process of exe-
cuting a read on a different replica. Additional idle time
occurs while waiting for the next operation from such a
transaction. The results in Figure 14 clearly show that
idle time, and thus conflicts, is the primary impediment
to scaling. Write saturation (a replica being fully occu-
pied with writes) does not occur.

CPU Memory Network Disk
(%) (MB) (MB/sec) (MB/sec)
58% 6.3 3.8 0.021

Table 1: Resource Usage at the Scheduler for the Shopping
Mix at 60 Replicas
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Figure 15: Simulated Throughput Results with Faster
Database Replicas for the Shopping Mix

For the sizes of clusters simulated, the scheduler is
not a bottleneck. While the scheduler CPU usage grows
linearly with increases in cluster size, one scheduler is
enough to sustain the maximum configuration for all
three mixes. Table 1 shows the CPU, memory, disk and
network usage at the scheduler for the shopping mix, in
a configuration with one scheduler and 60 replicas. The
CPU usage reaches about 58%, while all other resource
usage is very low. For all other mixes, the resource usage
is lower at their corresponding maximum configuration.

9.3 Faster Replicas

If the database is significantly faster, either by using
more powerful hardware or by using a high-performance
database engine, a conflict-aware scheduler continues
to provide good throughput scaling. In Figure 15 we
show throughput as a function of the number of repli-
cas for databases twice and four times faster than the
MySQL database we use in the experiments. 1 We sim-
ulate faster databases by reducing the estimated length
of each query in the simulation. Figure 15 shows that
the faster databases produce similar scaling curves with
correspondingly higher throughputs. Three schedulers
are necessary in the largest configuration with the fastest
database.

9.4 Varying Conflict Rates

Table-level conservative two-phase locking, as used in
our implementation, causes a high conflict rate. We in-
vestigate the benefits of conflict-aware scheduling under

1This is the highest speed of database for which we could simulate
a cluster with 60 replicas.
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conflict rates as low as 1% of that observed in the experi-
mental workload. Figures 16 and 17 compare throughput
as a function of cluster size between the conflict-aware
scheduler on one hand, and the eager and the conven-
tional lazy FR-L schedulers on the other hand. We vary
the conflict rate from 1% to 100% of the conflict rate
observed in the experimental workload. In particular, if
a table-level conflict occurs, we ignore the conflict with
the specified probability.

Obviously, the performance differences become
smaller as the number of conflicts decreases, but at a
1% conflict rate and at the maximum cluster size, the
conflict-aware protocol is still a factor of 1.8 better than
Eager, and a factor of 1.3 better than a lazy protocol
without any optimizations (FR-L). This result demon-
strates that conflict-awareness continues to offer benefits
for workloads with lower conflict rates or systems with
finer-grain concurrency control.

10 Related Work

Current high-volume web servers such as the official
web server used for the Olympic games [6] and real-
life e-commerce sites based on IBM’s WebSphere Com-
merce Edition [11], rely on expensive supercomputers
to satisfy the volume of requests. Nevertheless, perfor-
mance of such servers may become a problem during pe-
riods of peak load.

Neptune [18] adopts a primary-copy approach to pro-
viding consistency in a partitioned service cluster. Their
scalability study is limited to web applications with loose
consistency requirements, such as bulletin boards and
auction sites, for which scaling is easier to achieve. They
do not address e-commerce workloads or other web ap-
plications with stronger consistency requirements.

Zhang et al. [25] have previously attempted to scale
dynamic content sites by using clusters in their HACC
project. They extend a technique from clustered static-
content servers, locality-aware request distribution [15],
to work in dynamic content sites. Their study, however,
is limited to read-only workloads. In a more general
dynamic content server, replication implies the need for
consistency maintenance.

Replication has previously been used mainly for fault
tolerance and data availability [7]. Gray et al. [8] shows
that classic solutions based on eager replication which
provide serializability do not scale well. Lazy replica-
tion algorithms with asynchronous update propagation
used in wide-area applications [17, 21] scale well, but
also expose inconsistencies to the user.

More recently, asynchronous replication based on
group communication [12, 20, 24] has been proposed
to provide serializability and scaling at the same time.
This approach is implemented inside the database layer.
Each replica functions independently. A transaction ac-
quires locks locally. Prior to commit, the database sends
the other replicas the write-sets. Conflicts are solved
by each replica independently. This implies the need to
abort transactions when a write-set received from a re-
mote transaction conflicts with a local transaction. This
approach differs from ours in that we consider a cluster in
which a scheduler can direct operations to certain repli-
cas, while they consider a more conventional distributed
database setting in which a transaction normally executes
locally. Also, our approach is implemented outside of the
database.

TP-monitors, such as Tuxedo [9], are superficially
similar in functionality to our scheduler. They differ in
that they provide programming support for replicated ap-
plication servers and for accessing different databases us-
ing conventional two-phase commit, not transparent sup-
port for replicating a database for throughput scaling.

11 Conclusions

We have described conflict-aware scheduling, a lazy
replication technique for a cluster of database replicas
serving as a back-end to a dynamic content site. A
conflict-aware scheduler enforces 1-copy serializability
by assigning transaction sequence numbers, and it re-
duces conflict waiting time by directing reads to replicas
where no conflicts exist. This design matches well the
characteristics of the database workloads that we have
observed in dynamic content sites, namely high locality,
high cost of reads relative to the cost of writes, and high



conflict rates. No modifications are necessary in the ap-
plication server or in the database to take advantage of a
conflict-aware scheduler.

We have evaluated conflict-aware scheduling, both by
measurement of an implementation and by simulation.
We use software platforms in common use: the Apache
web server, the PHP scripting language, and the MySQL
database. We use the various workload mixes of the
TPC-W benchmark to evaluate overall scaling behavior
and the contribution of our scheduling algorithms. In an
8-node cluster, the conflict-aware scheduler brings fac-
tors of 1.5, 1.6 and 2 in throughput improvement, com-
pared to a conflict-oblivious lazy scheduler, and factors
of 1.7, 2.4 and 3.5, compared to an eager scheduler, for
the browsing, shopping and ordering mixes, respectively.

Furthermore, our simulations show that conflict-
aware schedulers scale well to larger clusters and faster
machines, and that they maintain an edge over eager and
conflict-oblivious schedulers even if the conflict rate is
much lower.
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