i

The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)
New Orleans, Louisiana, June 1998

The Safe-Tcl Security Model

Jacob Y. Levy and Laurent Demailly
Sun Microsystems Laboratories
John K. Ousterhout and Brent B. Welch

Scriptics Inc.

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

The Safe-Tcl Security Model

Jacob Y. Levy
Laurent Demailly
Sun Microsystems Laboratories
jyl or demailly@eng.sun.com
John K. Ousterhout
Brent B. Welch
Scriptics Inc.
bwelch or ouster@scriptics.com

Abstract The first trend is an increase in information sharing
Safe-Tcl is a mechanism for controlling the execu-between people, for example via the World Wide
tion of programs written in the Tcl scripting lan- ~ Web; in many cases, the creator of the information
guage. It allows untrusted scripts (applets) to be is unknown to the recipient of the information. The
executed while preventing damage to the environ-second trend is a blurring of the distinction between
ment or leakage of private information. Safe-Tcl programs and data, so that the act of retrieving and
uses a padded cell approach: each applet is isolatedtiewing information can cause a program associ-
in a safe interpreter where it cannot interact ated with the data to be executed. For example,
directly with the rest of the application. The execu-many systems allow a CD ROM disk to contain a
tion environment of an applet is controlled by a start-up program that is run silently whenever the
trusted script running in a master interpreter. Safe-disk is inserted into a drive. Another example is the
Tcl supports applets using multiple security poli- JavdM *language [1], which, when used in con-
cies within an application. These policies determingunction with web browsers, allows programs to be
what an applet can do, based on the degree to whiclownloaded and executed locally. When a page
the applet is trusted. Safe-Tcl separates security containing a Java applet is viewed, the applet is exe-
management into well-defined phases that are cuted locally to provide functionality that is not
geared towards the party responsible for each implemented by the browser itself. As a result of

aspect of security. these trends, it is becoming more difficult for users
to tell when they are running a program or who
1 Introduction wrote the program.

§afe-TcI makes it safe for people to run applets

Security issues arise whenever one person invokes ©. . o .
written in the Tcl scripting language [7][10] with-

a program written by another person. A program

usually executes with all the privileges of the user out necessarily knqwing their origin or trustworthi-
who invoked it, so the program can read and writeN€SS- Safe-Tcl avoids potential security problems

the user’s files, send electronic mail on behalf of th y restricting the p(_ahavior of applets so thaf[they
user, open network connections, and run other prd1a/e fewer capabilities than the users who invoke
grams. If a program is malicious, it can harm the them. The privileges granted to an applet can be

user in many ways, such as by modifying the user.Sadjulsted to match the gpplet’s trustworthiness.
files, leaking sensitive information, or crashing the”\PPI€ts of unknown origin should not be trusted at

user's computer.

The traditional “solution” to the security problem * Sun, Sun Microsystems, Java, and the Sun
has been for people to avoid programs written by |ogo are trademarks or registered trademarks of

people they don't trust. Unfortunately, two trends Sun Microsystems Inc. in the United States and
are making this approach less and less practical. pther countries.

all, so they run with very few privileges. If the Section 4 describes the basic mechanisms of the
author of an applet can be authenticated, and if thaafe-Tcl security model, including safe interpret-
author is partially or fully trusted, the applet can ers, aliases, and protected commands. Section 5
execute with greater privileges. The mechanisms discusses security policies and security packages.
for authentication and granting of privilege are ~ Section 6 explains how the master interpreter
automated, so applications such as Web browsersdecides whether to let an applet use a given policy.
can use Safe-Tcl without involving the user. Section 7 describes the overall Safe-Tcl security
In Safe-Tcl, untrusted applets are executed in sep _oqlel. 590“0'_" 8 dlscus§es how Safe-Tcl dfeals with
Jenial-of-service and privacy attacks. Section 9

rate environments that are isolated from the applica-. he imol) t Safe-Tcl. and
tion. The features available to an applet are selecteg'ves. the implementation status o ate-1ci, an
ection 10 compares Safe-Tcl with other security

by the trusted portions of the application. The

implementation of Safe-Tcl is based on two basic models.
facilities: safe interpreterswhich provide restricted .
virtual machines for executing applets, atidses 2 Overview of Tcl

which are used by applets to request services fronyc| is an interpreted scripting language [7][10]. Its
the trusted pOI‘tionS of the application in a con- Simple Syntax is based eaommandsnade up of

trolled fashion. The alias mechanism makes it posyords much like Unix shell programs suchsis.
sible to provide restricted access to features that argor example, the command

essentially unsafe, such as file or socket access. set a 45

Safe interpreters and aliases function much like theontains three words. The first word of each com-
kernel space/user space mechanism that has beemand, such aset in the example, selects ac6m-

used for protection in operating systems for severamand procedur¢hat will carry out the command,
decades. Safe interpreters correspond to the addreggd the other words are passed to the command pro-
spaces for user-level programs, and aliases corre-cedure as arguments. The Tcl language syntax con-

spond to kernel calls. sists only of a few simple substitution and quoting

The Safe-Tcl security model has three particular rules used to parse commands. Most of the behavior

strengths: of Tcl is defined by the command procedures,
which are free to interpret their arguments however

* Safe-Tcl separates untrusted code from trusted;

code, with clear and simple boundaries between - _ _
environments having different security proper- Tcl isembeddabl@ndextensibleThe Tcl inter-

ties. preter is a C library package that can be incorpo-

« Safe-Tcl does not prescribe any particular secyrated in a variety of applications. Several dozen

rity policy and supports varying levels of trust. Pasic commands are implemented in C as part of the
Instead, it provides a mechanism for imple- Tcl interpreter. Each application can define addi-

menting a variety of security policies and levels tional Tcl commands in C,C++, or Java to augment

of trust. Organizations can implement different {hq pasic facilities provided by Tel. Typically, an
policies based on their needs, and a single applgpplication will implement just a few Tcl com-

cation can use different security policies for dif- . o . .
ferent applets. mands that provide primitive access to its facilities;

more complex features are created by writing Tcl
Tl throughout as the scripting language. Al scripts that combine the application’s primitive fea-

configuration information is expressed as Tcl tures with the built-in commands.

scripts, and the mechanisms for verifying trust, |t is also possible to create packages containing use-

checking permissions and implementing poli- | sets of Tcl commands implemented in C, C++,

cies are al§o expre:.:,sed n TCI' or Java and then load these packages into any Tcl
The rest of this paper is organized as follows. gngjication on the fly. Tk is one such extension; it

Section 2 provides background information on the ,4yides a collection of commands for creating
Tcl scripting language. Section 3 introduces the graphical user interfaces.

security issues associated with executing applets.

hey like.

» Safe-Tcl gains power and flexibility by using

Tcl has four properties that make it attractive as a

vehicle for executing untrusted scripts:

* The language is interpreted. All actions are
already mediated, so this is a natural place to
add security controls.

* The language is safe with respect to memory
references: it has no pointers, array references

the host environment and transmit it to a con-
spirator outside the environment. Information
disclosed in this way may have direct value to
the recipient, such as business information that
could affect the price of a company’s stock, or
its disclosure could damage the party from
which it was taken, for example, if it describes

are bounds-checked, and storage is managed 2" individual's treatment for substance abuse.

automatically by the Tcl interpreter. * Impersonation Attacks: a malicious applet

might perform actions on behalf of the user of
the hosting application without his or her autho-
rization. For example, it may send e-mail in the
user's name containing damaging statements, or
it may make it appear that the user is attempting
to mount some form of attack against a remote
resource. The purpose of an impersonation
attack can be to damage the impersonated user’s
reputation.

* Interpreters are first-class objects. An inter-
preter consists of a set of Tcl commands, a set
of variable values, and an execution stack. An
application can contain several interpreters that
are disjoint from each other. This makes it pos-
sible to isolate scripts with different security
properties in different interpreters.

* The language is command-oriented; the facili-
ties available to a Tcl script are determined by
the set of commands defined in its interpreter.
Access to unsafe features is controlled by cur-
tailing access to specific commands in an inter-
preter executing an untrusted script.

Denial of Service Attacks: these attacks inter-
fere with the normal operation of the host sys-
tem. For example, an applet might consume all
the available file space, cover the screen with
windows so that the user cannot interact with
Our work addresses security issues in Tcl scripts any other applications, or exercise a bug to

and assumes that the implementation of the Tcl crash its hosting application.

interpreter is trustworthy. Extensions written in C, It is unlikely that any security policy can com-
C++, or Java are not available to untrusted scripts pletely eliminate all security threats. For example,
unless the extension writer provides a special ini- any bug in an application gives a malicious applet
tialization procedure that restricts access to unsafehe opportunity to deny service by crashing the
commands in the extension. application. In addition, there exist subtle tech-
nigues for signaling that make it nearly impossible
to protect the privacy of information once it has

3 Security Issues ‘ o s

o . . ., been given to an applet [4]. Attempts to completely
The sec_urlty |ssue_s_ asso_aated with ap_plets fall IntOeIiminate the risks would restrict applets to such a
four major groups: integrity attacks, privacy

. . ; ._degree that they would not be able to perform any
:’g:gtzz impersonation attacks and denial of SEIVICE « ot functions.

Thus, Safe-Tcl does not try to eliminate security
risks entirely. Instead, it attempts to reduce the risks
in unauthorized ways. For example, it might to a manageable level, so that the benefits provided

attempt to transfer funds from one account to PY @pplets are greater than the costs incurred by
another in a bank, or it might attempt to delete Security attacks. Safe-Tcl concentrates on prevent-
files on a user’s personal machine. In order to ing integrity attacks, privacy attacks and imperson-
prevent this kind of attack, applets mustbe ation attacks. It is not geared towards preventing all
denied almost all operations that modify the genja] of service attacks. Denial of service attacks

state of the host environment. Occasionally, it ;) :
may be desirable to permit the applet to m)éke generally do not permanently impact the user’s abil-
ity to perform useful work or the integrity of her

modifications; for example, if the appletis an ! _ . :
editor, it might be allowed to write to a file if ~ information, and thus, while annoying, are less

approved by a user through a file selection dia-damaging.
log.

* Privacy Attacks: these attacks try to steal or leak4 Safe Tcl

information belonging to the user. A malicious o
applet may try to read private information from Safe-Tcl uses padded celbpproach to security:

* Integrity Attacks: a malicious applet may try to
modify or delete information in the environment

Master Safe
Interpreter Interpreter

/ﬁ\

Protected
Commands

Aliases

N—rt

Figure 1. The basic Safe-Tcl mechanisms. Trusted scripts execute in the master
interpreter while untrusted applets execute in the safe interpreter. All unsafe
commands in the safe interpreter are protected so that they cannot be invoked
from the safe interpreter. Aliases provide a mechanism for the applet to request
mediated operations from the master. The master interpreter can invoke the
protected commands in the safe interpreter.

applets are executed in isolated environments whengerform useful activities, they must have restricted
their capabilities can be restricted. Padded cells araccess to unsafe functions. For example, it is not
implemented using three mechanisms that are safe to let an applet write arbitrary files, but it prob-
shown in Figure 1. First, Safe-Tcl ussde inter- ably is safe to let an applet create a single new file
pretersto isolate applets and prevent them from of limited size containing the results of its compu-
using any of the unsafe features of the language. tation.

Then it restores access to a restricted subset of theps separation of trusted code from untrusted code
unsafe features usirgiasesandprotected com- g similar to the separation in operating systems

mands between user-space code and kernel-space code.
If a Tcl application wishes to execute an applet, it Kernel-space code can write directly on every loca-
uses two interpreters: a master interpreter and a safen on the disk, but user-space code has no direct
interpreter. The master interpreter retains full func-access to the disk. Instead, it must use a system call
tionality, so only trusted scripts such as those writ-to write data to portions of the disk as permitted by
ten by the user or the application designer may checks enforced by code executing in kernel-space.

execute there. The safe interpreter is used for exeThe alias mechanism in Safe-Tcl is analogous to

cuting the applet. All of the unsafe commands gystem calls in operating systems. An alias is an
(those that could result in security compromises if 5ssociation between a command in the safe inter-
misused) are disabled in the safe interpreter. Thesﬁreter, called theource commantfir the alias, and
commands include those for accessing the file sys; command in the master interpreter, calledahe
tem, executing subprocesses, opening sockets, angy; \whenever the source command is invoked by a
many more. A script that tries to use the disabled geyipt in the safe interpreter, the target command is
features will get runtime errors. invoked instead. The target command is typically a
The set of commands left in the safe interpreter, Tcl procedure. It receives all of the arguments from
called thesafe basgallows the applet to perform the source command and its result is returned to the
only safe actions. With only this set of commands safe interpreter as the result of the source command.
an interpreter is indeed safe for executing applets,the master interpreter has complete control over
butin this state the interpreter is not very interestinge safe interpreter. It can initiate the execution of
because scripts running in it are completely iSo- g¢rints create and delete aliases, and control the
lated. If a script <_:annot access files, open sockets, Qf3mes of the source and target commands for each
communicate with other processes, then there gjiag The safe interpreter cannot create new aliases
aren’t many useful things that it can do. Infact, 4, jts own. During the execution of an alias, the
most useful programs involve activities that are a5ter can access the state of the safe interpreter
unsafe in the general case. In order for applets 0 54 inyoke additional scripts in the safe interpreter

Create an array in which the names of elements are host
names and the values are lists of acceptable port numbers.

set safeSockets(sage.eng) 1024

set safeSockets(sunlabs.eng) 80

set safeSockets(www.sun.com) {80 8015}

set safeSockets(bisque.eng) {3000 4000 5000}

Create an alias that causes the AliasSocket command to be
invoked in the master whenever socket is invoked in the safe
interpreter.
interp alias $safe socket {} AliasSocket $safe
Define the procedure that implements the alias.
proc AliasSocket {safe host port} {

global safeSockets

if {![info exists safeSockets($host)]} {

error "Unknown host: $host"

}
if {[lsearch -exact $safeSockets($host) $port] < 0} {
error "Bad port: $port"

return [interp invokehidden $safe socket $host $port]

Figure 2. When this code is executed in a master interpreter, it creates an alias that allows
a safe interpreter to open sockets to a restricted set of addresses. Whersaakethe
command is invoked in interpretsafe theAliasSocket = command will be invoked

in the master interpreter with the name of the safe interpreter as its first argument. Thus, if
the value offsafe ischild , and the commandbcket bisque.eng 4000 "is

invoked in the safe interpreter, then the commakith§Socket child

bisque.eng 4000 " will be invoked in the master. ThdiasSocket = procedure

checks to see if the host and port are among those that are allowed. If so, it invokes the
hiddensocket command in the safe interpreter to actually open the network connection.

to carry out the functions of the alias. socket command in the safe interpreter. To the

The commands that are disabled in the safe base a@@Plet thesocket command appears to work in

not actually removed from the safe interpreter; theytn€ normal fashion except that only certain network
areprotectedso that they can be invoked only by the addresses may be used. _Note that two versions of
master interpreter. This allows the master inter- socket exist in the §afe interpreter: the protected
preter to ensure that only a subset of the command$°mmand and the alias.

features are used. To use a protected command, d@rotected commands are needed because many Tcl
applet must use an alias which checks that the arggemmands implicitly modify the interpreter in

ments and intended usage are safe, and then the which they are invoked. For example, ket

alias invokes the protected command. Figure 2 command creates a new I/O channel for use in com-
shows an alias that allows sockets to be opened onlpunicating over the socket. The channel is created
to a pre-specified list of hosts and ports. The in the interpreter where tls®cket command exe-
socket command, which is used to create net- cutes, so if the alias invokesbcket in its own

work connections, is unsafe so it is protected in thénterpreter (the master) then the safe interpreter
safe interpreter; the code in the figure creates a newouldn't be able to use the resulting channel.
socket command that is an alias. The alias vali-

dates the host and port, then invokes the protected

5 Security Policies and Security to use the requested policy. If allowed, it installs the
Packages aliases specified by the requested policy and

))) _ records information that will be used later to control
In Safe-Tcl, aliases are grouped into security poli-hqy these aliases are used by the applet. An applet
cies. Each security policy has a name and containg, 5y ghtain at most a single security policy over its
one or more aliases that are known to be safe for |itetime: once it has successfully obtained one pol-
certain kinds of applets. An applet chooses which ey it may not obtain any other policy. Changing the
policy it uses, subject to the checks described in security policy for an applet or allowing it to use

Section 6; a single applet may only use one policyjiiple policies composes the features of the secu-
over its lifetime. Many different policies are possi- rity policies, which is not safe.

ble, each imposing a different set of restrictions on

applets controlled by the policy. Some policies areVe eﬁ)ect that rr?any pol_lézles_rwnl be similar in the ¢
safe for all applets to use, while other policies are set of features they provide. To encourage reuse o

only safe for applets that can be verified to originatethe impleme.ntation of aliases, Safe-Tcl has the con-
from a trusted source. We designed Safe-Tclto ~CEPtofsecurity packagesiamed sets of aliases that

encourage the development of many different poli-2€ installed asa unit. The aliases are _implemented
cies, and to allow the reuse of policies in many by one Tcl script and reused by name in multiple
applications policies.

Why is it important to allow multiple security poli- Policies are wrltten_ln Tcl_ using a style that is easily
cies? Wouldn't it be better to have just one policy parsed by the configuration management package

that includes all of the features that are safe for prowded V\gth S]?fe—T.cI. EaChdeI'C%’ IS organlzed .
applets? Multiple security policies are needed into a number of sections, and each section contains

because safe features do not compose: if feature Rermissions and restrictions referring to a set of fea-
is safe and feature B is safe, the combination of AUreS- Below is a snippet of the home policy which

and B is not necessarily safe. For example, it is saf ”0\;]"3 arfl applert]_tohgommlfmcdatg W'tr:j se;verrs] on b
for an applet to open network connections outsideNe Nostirom which it was loaded, and to fetch we

the firewall as long as the applet cannot Communipagestfrorp tTat host:
cate with hosts inside the firewall. It is also safe for ~ >Sc1On Te€alres

. . allow url
an applet to read local files, as long as this is the allox zetwork
only communication the applet makes outside its allow persist

interpreter. However, an applet that has access to
both of these features can transmit local files out- section urls
side the firewall, which is a breach of privacy. allow $originHomeDirURL*

Since safe features do not compose, no single secphe homepolicy enables thpersist networkand
rity policy can include all of the features that are url security packages in tlieaturessection. The

safe in isolation. Safe-Tcl encourages the developpersistsecurity package allows an applet to store a

ment of many security policies, each tailored to supimited amount of information persistently on the

. . user’s machinepetworkallows the applet to open
port a dn‘fer_e nt clas_s of applets. The S|mplest_ sockets to a restricted set of remote serversudnd
security policy consists of just the safe base with ngyjjows access to a limited set of web pages and

additional features enabled. Most security policiesremote web services. Thes section allows URLS
will probably enable a small set of additional fea- to be fetched from the subtree of the web site

tures. In an extreme case where the applet is comtooted at the directory containing the applet.
pletely trusted, it can be given a security policy thatTheoutsidepolicy is similar to thévomepolicy and
restores the full set of unsafe Tcl commands and reuses the persist, network and url security pack-
enables all the features provided by the hosting ages. Itsirl section allows URLS to be fetched from
application. the C|Net web site:

An applet obtains a security policy by invoking the ~ Section features

policy alias which is installed as part of the safe ~ allow persist

base. The alias checks whether the applet s allowed &loW url

allow network application and controls various other application
level resources. Each application using Safe-Tcl has

section urls its own trust map; here is part of the policies section
allow http://www.cnet.com/* in the trust map for the Tcl web browser plug-in:

Aliases installed into the safe interpreter housing section policies

the applet allow the applet mediated access to fea- disallow trusted

tures provided by the hosting application. The tar- allow home

get command checks the arguments according to ~ &llow javascript\

the restrictions imposed by the applet’s policy and 'fa”OW‘?O! JavascriptTrustedURLs

decides whether to allow the call. In the above $originURL _ _

example, if a URL fetch is requested, itis only ~ A frust map can contain statements that disable a

allowed if it refers to a web page on the C|Net webPolicy for all applets, as is the case for thested

site. If the operation is allowed, the call is for- policy, above. Similarly, a policy can be enabled for

warded to the actual implementation. all applets, as for theomepolicy. The trust map
also provides a place to insert authenticators that

The Tcl web browser plug-in comes with several decide to allow or disallow the use of a policy based

policies, mcludmghomea_ndou@dg menno_ngd on some property of the applet. We see an example
above. Each of these policies is fairly restrictive, yet

s a lar | f interestin lets. An of this in the statement allowing the use of jthe
supports a large class ot interesting applets. . ascriptpolicy if the URL from which the applet was
advantage of having more restrictive security poli-

AR . o loaded is allowed by the secti@vascriptTruste-
cies is simplicity. If a secu_rlty policy mc_lqded @ JURLs Authenticators can use attributes of the
o < PPl SUch 5 s DS checksum [, anatsched

yz | : ween | u signed certificate [5], or the URL from which it was
to uncover security loopholes. A policy that

. . loaded.
includes only a small number of features is more

amenable to analysis and increases our confidenc&his separation of trust and authentication from the
that it is really secure. actual policies is important, because otherwise pol-

icies can not be shared between applications.

goﬁgigtsm"'”g the Use of Security 7 Security Model and Security

Roles
Safe-Tcl is designed to support a large range of _ o
security policies. Some policies can be used by aliSafe-Tcl cleanly factors into three distinct parts that
applets, without requiring that the applet be trustedreflect the roles of thrge human participants in the
Other policies, especially those that provide acces§'anagement of security:

to features that can be used to mount security + gecurity packages encapsulate features pro-
attacks, require that the applet be trusted to some vided by applications and implement con-
degree before they can be used by that applet. Safe- strained access to these features. Security
Tcl checks whether an applet is allowed to use a ~ Packages are provided by the application’s
policy when the applet first requests to use the pol- author.

icy. If the applet is allowed to use the policy, the e« Security policies determine which security

security packages enabled by the requested policy packages an applet can use and what resources
are installed. it can access using the provided features. A

_ security expert designs each security policy.
Safe-Tcl provides the concept ofrast mapto

allow site and application administrators to control *
which applets can use each security policy. A trust

map is a Tcl script, organized into sections similarly .

. = . Much of the power and flexibility of Safe-Tcl stems
to a policy, that specifies under what C|rcumstance§rom its use F:)f Tel throughout t>(/) implement the
each policy can be used; the map also defines the

names of all security packages provided by the seCl_Jnty model. j’cl is used to implement the config-
uration mechanism that controls access to resources

The trust map determines whether an applet can
use a given security policy. Trust maps are
edited by site and application administrators.

by applets. Tcl scripts specify whether a policy canleakage through covert channels is prevented

be used by an applet and under what conditions. because applets by default cannot gain access to pri-
Finally, Tcl is used to implement the security pack-vate information stored on hosts on an Intranet.
ages and the aliases used by applets to access fea-

tures provided by security packages. O Status

. . . Safe-Tcl has been available in public Tcl releases
8 Denial-of-Service and Prlvacy since the Tcl 7.5 release in April 1996. Safe-Tcl
Attacks integration with Tk is implemented as part of a
Although Safe-Tcl was designed primarily to Tcl/Tk plug-in module for web browsers which was
address issues of integrity, impersonation and pri-released in July 1996 [6]. The plug-in allows Tcl/Tk
vacy, its mechanisms can also be used to prevent scripts to be included in Web pages with embedded
denial-of-service attacks. For example, an applet custom GUIs. The 2.0 plug-in release made in Jan-
can be prevented from consuming all the disk spacgary 1998 offers full support for safe interpreters,
by protecting theoputs command, which writes aliases, mechanisms for creating and installing
data to files. In its place an alias can be created tosecurity policies, and a trust map implementation.

count the bytes that are output and enforce a limitSafe-Tcl does not yet support a kill key, CPU usage

However, many denial-of-service attacks, particu- 'Mits. Or authentication.

larly those associated with graphical user inter-

faces, are hard to prevent. For example, an applet9-1 Performance

could attempt to create a window that covers the Table 1 shows a few measurements of the perfor-
whole screen and prevent the user from interactingnance of Safe-Tcl. Overall, Safe-Tcl does not add
with any other applications. Aliases and hidden substantially to the execution time of an applica-
commands could be used to restrict the sizes of wirtion. Our experience with the performance of the
dows, but the applet could then create several ~ Safe Tcl security model in Tcl 8.0 is that it does not
smaller windows that together cover the whole area@dd noticeable overhead. Table 1 shows a few mea-
of the screen. Furthermore, in some situations (suchurements that indicate the overhead of invoking an
as laptop computers with small screens) it may bealias is about twice that of calling a null Tcl proce-
desirable to let an applet use the entire screen. dure. The difference between calling a null alias and

Safe-Tcl currently does not prevent most denial-off’moI alias teid, Wh'Ch returns a value, shows the
service attacks. We will address this in the future COSt Of marshalling parameters and results between

with a combination of resource controls and a kill- ?nte.rpr('eters. For each be_nchmark we measur_ed call-
key that lets a user intervene when an applet misb&19 it directly Versus calling the same code via an
alias from another interpreter. The benchmarks are
o _ _ calling the built inpid procedire. a null procedure,
Lampson [4] shows thatit is generally impossible tog procedure taking ten arguments, a procedure that
prevent information from being communicated 5qqs its ten numeric arguments and a ten element

from one applet to another through covert channelgis; reversal procedure.Measurements were taken
such as manipulation of the scheduler or other finitg), 53 pentium 233 running Linux.

accessible resources. While the rate of communica-

tion is limited, it is still possible to leak a significant Table 1:

number of bits per second through this form of

attack. For example, if one applet has access to a file Command usec
stored on a server within a firewall, while another

applet has the ability to communicate over the nett call pid 5

work with a server outside the firewall, it is possible :)
for the two applets to collaborate and disclose infor+ call alias to pid 10
mation stored in these files to outside parties. Safe-, || proc 7
Tcl by default disallows untrusted applets to use
resources on an Intranet. Thus, largely, information call alias to null proc 11

Table 1:
Command usec

10arg procl 14
alias to 10arg proc 19
10add proc 26
alias to 10add proc 31
Ireverse proc 213
alias to Ireverse proc 228

10 Related Work

10.1 The Borenstein/Rose prototype

Nathaniel Borenstein and Marshall Rose imple-
mented a prototype of Safe-Tcl in 1992 that pio-
neered most of the ideas, including safe interpreter
and aliases [2]. The Borenstein/Rose prototype wa

stein/Rose prototype in several ways. The prototype
only allowed one safe interpreter, while our work
allows any number of safe interpreters. There was
no concept of security policies and security pack-
ages in the Borenstein/Rose prototype, and there
were no mechanisms to specify configuration infor-
mation. Their implementation was specific for one
problem domain, how to send scripts via electronic
mail messages safely, while our approach can be
applied to any problem domain. Finally, our work
introduces the concept of trust maps to allow or dis-
allow applets to use specific policies.

10.2 Object Oriented Systems.

Most other security models for executing untrusted
code, such as Java [12][13] and Telescript [11], are
based on object systems. These models are similar
to Safe-Tcl in that they use safe languages that con-
trol pointers and memory allocation. However, they
differ from Safe-Tcl in that they provide only a sin-
le virtual machine that contains all of the objects
nd classes. Security properties are associated with

used for active e-mail messages and later as part @ iiqual objects or classes; for example, one class

the First Virtual Holdings Internet payment system.
Our implementation generalizes the Boren-

FileOpen

G

‘ Security Check

O Trusted code/data

may be marked as coming from an untrusted source
while another may be marked as trusted. This infor-

(N\

9 m

(N\
FileOpen

. N J
‘ Alias

Untrusted code/data

Figure 1. With an object-oriented approach to security (left) security checks must
be done at a low level, guarding the call to the operating system, so they cannot be
by-passed. A low-level check makes it difficult to determine if trusted code called
by untrusted code should be allowed to perform the operation. With the padded
cell approach (left) security checks can be done at a high-level when control
transfers from code in a separate virtual machine. Edges in the graph represent
method or procedure calls, and boxes represent virtual machine boundaries.

mation is used when deciding whether or notto system and open various configuration files that
allow a particular operation. For example, before specify the directory location and limits on files.
allowing a file to be opened, Java checks to see if Eventually the alias will open a file for use by the
there are any untrusted classes on the current calluntrusted code. The alias is implemented in a
stack; if so, the open operation is denied. In con- trusted virtual machine that can do anything on
trast, Safe-Tcl's padded cell approach uses multiplé@ehalf of untrusted code. This provides a very flex-
virtual machines (interpreters) and the security ible environment for wrapping policy code around
properties are associated with the virtual machine dangerous operations, and the policies only add
not individual pieces of data or code. Security decioverhead to untrusted code that must use aliases.
sions are made based on the virtual machine that ighere are more advantages to the Safe-Tcl imple-
currently executing; thus, while executing in a safementation:

interpreter it is not possible to open a file, but it is

possible to open a file if control is first transferred * Adgressive security policies can hide more
to a trusted interpreter using an alias. commands from untrusted virtual machines,

such as those that gave clock and timing infor-
In Java the use of a single virtual machine for both mation. This only affects the untrusted virtual

trusted and untrusted code requires security checks machine, and it does not require modification of
at a low level within the system, and this make it the existing clock and timer implementations. In

difficult to implement sophisticated security poli- g%vcell(, gggg;%tg;er%%rgxe@ﬂggﬁiggggﬁko? the
cies. Security manager calls must be made at low {rysted code.

levels, right before a native method call into the . . . L
Tcl allows multiple virtual machines (i.e., inter-

operating systemz otherwise untrusted code c.ould preters) within the same application, and differ-
call the method directly and bypass the security ent interpreters can have different security

check. The security check can easily test if policies through different sets of aliases. This is
untrusted code is on the call stack and deny access. more awkward in Java because there is a single

However, it is more difficult to implement a policy ~ Security manager that would have to manage

that denies some accesses by untrusted code but ~ different policies for different kinds of untrusted
allows other accesses. For exampl i Id classes. Our understanding of Java development

: - PI€, a policy could s that they plan to support multiple security
provide a method that displays a file selection dia- managers in the future.

log and returns an open I/O channel. The goal is that
the file open operation is only done viathe user 10.3 Pure authentication: ActiveX

interface dialpg so the user knows What fileis beir_1gAn approach proposed by Microsoft authenticates
accessed. With one low-level check, itwould be dify,ni0aded applets and asks the user of the hosting
ficult to allow accesses from the trusted dialog Withy, 5 chine to assign trust to the identified principal.
out allowing other, more dlrect_acces_ses from thg ActiveX prevents untrusted programs from being
untrusted code. The use of a single virtual machingected. In this approach all security decisions are
makes it difficult to hide dangerous operations, je|agated to the user of the machine. This is the
which forces a low-level security check. The low- only approach that works for compiled programs,

level check limits the flexibility of policy code and o c51se there is no practical mechanism for restrict-
adds overhead to dangerous operations for both ing what machine code can do

trusted and untrusted code.] o)
_) But ActiveX only verifies identity, and trust
In contrast, in Safe-Tcl security checks are done af,,,yes more than just authentication. Authentica-

a very high-level, when an alias transfers control tq;q, jgentifies the principal (person or organization)
a trusted virtual machine, which leaves room for . '\ 0r 0 something, but it doesn't indicate

flexible policy implementations. (See Figure 1.) \yhather the principal is trustworthy. Trust can
Safe-Tcl can replace the open command with an really only be placed in principals you daeniliar

alias that displays a user interface dialog or uses i, "The authentication approach works well for
policy code that limits untrusted code to a private applets written by large companies that are known
directory and a limited number of files. The imple- to be trustworthy (or that can be sued if their soft-
mentation of these aliases may look through the filgy 4 e ig gefective). However, authentication doesn't

help when applets are written by individuals and *
smaller companies that are not well known. One of
the reasons for the popularity of the World Wide
Web is that it enables communication among large
numbers of individuals and small organizations thatO
have no prior knowledge of each other.

Authentication is important for secure systems
but it is not sufficient by itself to provide protec-
tion. The mechanisms of Safe-Tcl provide a
well defined way to constrain the capabilities of
code after its origin has been authenticated.
ur experiences with Safe-Tcl have taught us three
important lessons about security. The first is that
ActiveX is unsuitable for executing untrusted pro- gafe features do not necessarily compose. This
grams retrieved from the web, because it is basedmakes it difficult to provide a single security policy
only on authentication and does not provide any ith a large variety of features; instead, it encour-
restrictions on what a program can do once itis ages a large number of smaller, specialized security
trusted. This does not scale well to the web’s dis- pojicies. The second lesson is that it is important to
tributed and decentralized nature. In contrast, Sanake advantage of authentication mechanisms yet
Tcl enables safe execution of code trusted to varynot require them. If programs are to be intimately
ing degrees, ranging from completely untrusted totjed to information, and if information is to be freely
completely trusted. For some operations, no knowlgistributed among strangers, then it is important to
edge about an applet author’s identity is needed, sypport the execution of totally untrusted programs.
while other operations may require full authentica-at the same time, authentication can be used to
tion. boost the power of applets when they come from
known sources. The third lesson is that using a
scripting language to implement a security model is
both doable and adds unique value by allowing the
resulting system to be very flexible and config-
urable.

11 Conclusions

There is no silver bullet that will make security triv-
ial. Creating safe environments for executing
applets will always be difficult, and no security

model will ever be totally safe, since even a small
bug in programming can open a huge security holel2 ACKnowledgments

However, we think it is possible to create environ- This work would never have come about without
ments where applets with varying degrees of trustthe pioneering efforts of Nathaniel Borenstein and
can be executed with an acceptable level of risk. Marshall Rose, who designed and built the Safe-Tcl
Safe-Tcl has several properties that simplify the prototype. Nathaniel Borenstein, Wan-Teh Chang,
creation of such environments: Robert Drost, Clif Flynt, Li Gong, Mark Harrison,

« The padded cell model is simple. It generalizesRay Johnson, Anand Palaniswamy, Marshall Rose,
the user space-kernel space model that has bedtich Salz, Juergen Schoenwaelder, and Glenn
used successfully in operating systems for sev-Vanderburg provided useful comments that
eral decades. improved the presentation of this paper.

* Safe-Tcl groups data and code with similar
security properties together, which reduces the 13 References

amount of code that must be aware of security
issues. [

Safe-Tcl separates security management into
well-defined phases that are geared towards the
party that is responsible for each aspect of seci]
rity. It separates implementation of security pol-
icies, generally an activity for security experts,
from the implementation of security packages,
which is done by engineers creating an applica—[S]
tion, and from configuration management, an
activity reserved for site and system administra-
tors.

(4]

K. Arnold and J. GoslingThe Java
Programming Languageé\ddison-Wesley,
ISBN 0-201-63455-4, 1996.

N. Borenstein, “E-mail With A Mind of Its Own:
The Safe-Tcl Language for Enabled MalF1P
WG 6.5 Conferen¢®arcelona, May, 1994,
North Holland, Amsterdam, 1994,

D. Denning and P. Denning, “Data Security,”
Computing Surveysol. 11, No. 3, September
1979, pp. 227-249.

B. Lampson, “A Note on the Confinement
Problem,"Communications of the ACMol.

5]

[6]
[7]
(8]

9]

[10]

[11]

[12]

[13]

16, No. 10, October 1973, pp. 613-615.

B. Lampson, M. Abadi, M. Burrows, and E.
Wobber, “Authentication in Distributed Systems:
Theory and PracticeACM Transactions on
Computer Systemsol. 10, No. 4, November
1992, pp. 265-310.

J. Levy,Welcome to the Tcl Plugsin
http://sunscript.sun.com/plugin/

J. Ousterhout] ¢l and the Tk ToolkifAddison-
Wesley, ISBN 0-201-63337-X, 1994.

R. Rivest,The MD5 Message Digest
Algorithm RFC 1321, April 1992.

R. Wahbe, S. Lucco, T. Anderson, and S. Graham,
“Efficient Software-Based Fault Isolation,” Proc.
14th Symposium on Operating Systems
Principles,Operating Systems Reviewl. 27,

No. 5, December, 1993, pp. 203-216.

B. Welch,Practical Programming in Tcl and
Tk, Prentice-Hall, ISBN 0-13-616830-2, Second
edition, 1997.

J. White, Telescript Technology: The
Foundation for the Electronic Marketplace
white paper, General Magic, Inc., 1994.

F. Yellin, “Low Level Security in JavayVorld-
Wide Web ConferencBoston MA, December
1995. Also available as
http://www.javasoft.com/sfag/verifier.html.

Li Gong et al., “Going Beyond the Sandbox: an
Overview of the New Security Architecture in the
Java Development Kit 1.2”, USENIX Symposium
on Internet Technologies and Systems
Proceedings, Monterey, California, December 8-
11, 1997.

