
The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)

New Orleans, Louisiana, June 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

The Safe-Tcl Security Model

Jacob Y. Levy and Laurent Demailly
Sun Microsystems Laboratories

John K. Ousterhout and Brent B. Welch
Scriptics Inc.

Abstract
Safe-Tcl is a mechanism for controlling the execu-
tion of programs written in the Tcl scripting lan-
guage. It allows untrusted scripts (applets) to be
executed while preventing damage to the environ-
ment or leakage of private information. Safe-Tcl
uses a padded cell approach: each applet is isolated
in a safe interpreter where it cannot interact
directly with the rest of the application. The execu-
tion environment of an applet is controlled by a
trusted script running in a master interpreter. Safe-
Tcl supports applets using multiple security poli-
cies within an application. These policies determine
what an applet can do, based on the degree to which
the applet is trusted. Safe-Tcl separates security
management into well-defined phases that are
geared towards the party responsible for each
aspect of security.

1 Introduction
Security issues arise whenever one person invokes
a program written by another person. A program
usually executes with all the privileges of the user
who invoked it, so the program can read and write
the user’s files, send electronic mail on behalf of the
user, open network connections, and run other pro-
grams. If a program is malicious, it can harm the
user in many ways, such as by modifying the user’s
files, leaking sensitive information, or crashing the
user’s computer.

The traditional “solution” to the security problem
has been for people to avoid programs written by
people they don’t trust. Unfortunately, two trends
are making this approach less and less practical.

The first trend is an increase in information sharing
between people, for example via the World Wide
Web; in many cases, the creator of the information
is unknown to the recipient of the information. The
second trend is a blurring of the distinction between
programs and data, so that the act of retrieving and
viewing information can cause a program associ-
ated with the data to be executed. For example,
many systems allow a CD ROM disk to contain a
start-up program that is run silently whenever the
disk is inserted into a drive. Another example is the
JavaTM * language [1], which, when used in con-
junction with web browsers, allows programs to be
downloaded and executed locally. When a page
containing a Java applet is viewed, the applet is exe-
cuted locally to provide functionality that is not
implemented by the browser itself. As a result of
these trends, it is becoming more difficult for users
to tell when they are running a program or who
wrote the program.

Safe-Tcl makes it safe for people to run applets
written in the Tcl scripting language [7][10] with-
out necessarily knowing their origin or trustworthi-
ness. Safe-Tcl avoids potential security problems
by restricting the behavior of applets so that they
have fewer capabilities than the users who invoke
them. The privileges granted to an applet can be
adjusted to match the applet’s trustworthiness.
Applets of unknown origin should not be trusted at

*. Sun, Sun Microsystems, Java, and the Sun
logo are trademarks or registered trademarks of
Sun Microsystems Inc. in the United States and
other countries.

The Safe-Tcl Security Model

Jacob Y. Levy
Laurent Demailly

Sun Microsystems Laboratories
jyl or demailly@eng.sun.com

John K. Ousterhout
Brent B. Welch

Scriptics Inc.
bwelch or ouster@scriptics.com

\

all, so they run with very few privileges. If the
author of an applet can be authenticated, and if that
author is partially or fully trusted, the applet can
execute with greater privileges. The mechanisms
for authentication and granting of privilege are
automated, so applications such as Web browsers
can use Safe-Tcl without involving the user.

In Safe-Tcl, untrusted applets are executed in sepa-
rate environments that are isolated from the applica-
tion. The features available to an applet are selected
by the trusted portions of the application. The
implementation of Safe-Tcl is based on two basic
facilities:safe interpreters, which provide restricted
virtual machines for executing applets, andaliases,
which are used by applets to request services from
the trusted portions of the application in a con-
trolled fashion. The alias mechanism makes it pos-
sible to provide restricted access to features that are
essentially unsafe, such as file or socket access.

Safe interpreters and aliases function much like the
kernel space/user space mechanism that has been
used for protection in operating systems for several
decades. Safe interpreters correspond to the address
spaces for user-level programs, and aliases corre-
spond to kernel calls.

The Safe-Tcl security model has three particular
strengths:

• Safe-Tcl separates untrusted code from trusted
code, with clear and simple boundaries between
environments having different security proper-
ties.

• Safe-Tcl does not prescribe any particular secu-
rity policy and supports varying levels of trust.
Instead, it provides a mechanism for imple-
menting a variety of security policies and levels
of trust. Organizations can implement different
policies based on their needs, and a single appli-
cation can use different security policies for dif-
ferent applets.

• Safe-Tcl gains power and flexibility by using
Tcl throughout as the scripting language. All
configuration information is expressed as Tcl
scripts, and the mechanisms for verifying trust,
checking permissions and implementing poli-
cies are also expressed in Tcl.

The rest of this paper is organized as follows.
Section 2 provides background information on the
Tcl scripting language. Section 3 introduces the
security issues associated with executing applets.

Section 4 describes the basic mechanisms of the
Safe-Tcl security model, including safe interpret-
ers, aliases, and protected commands. Section 5
discusses security policies and security packages.
Section 6 explains how the master interpreter
decides whether to let an applet use a given policy.
Section 7 describes the overall Safe-Tcl security
model. Section 8 discusses how Safe-Tcl deals with
denial-of-service and privacy attacks. Section 9
gives the implementation status of Safe-Tcl, and
Section 10 compares Safe-Tcl with other security
models.

2 Overview of Tcl
Tcl is an interpreted scripting language [7][10]. Its
simple syntax is based oncommands made up of
words, much like Unix shell programs such assh .
For example, the command

set a 45

contains three words. The first word of each com-
mand, such asset in the example, selects a Ccom-
mand procedure that will carry out the command,
and the other words are passed to the command pro-
cedure as arguments. The Tcl language syntax con-
sists only of a few simple substitution and quoting
rules used to parse commands. Most of the behavior
of Tcl is defined by the command procedures,
which are free to interpret their arguments however
they like.

Tcl is embeddable andextensible. The Tcl inter-
preter is a C library package that can be incorpo-
rated in a variety of applications. Several dozen
basic commands are implemented in C as part of the
Tcl interpreter. Each application can define addi-
tional Tcl commands in C,C++, or Java to augment
the basic facilities provided by Tcl. Typically, an
application will implement just a few Tcl com-
mands that provide primitive access to its facilities;
more complex features are created by writing Tcl
scripts that combine the application’s primitive fea-
tures with the built-in commands.

It is also possible to create packages containing use-
ful sets of Tcl commands implemented in C, C++,
or Java and then load these packages into any Tcl
application on the fly. Tk is one such extension; it
provides a collection of commands for creating
graphical user interfaces.

Tcl has four properties that make it attractive as a

vehicle for executing untrusted scripts:

• The language is interpreted. All actions are
already mediated, so this is a natural place to
add security controls.

• The language is safe with respect to memory
references: it has no pointers, array references
are bounds-checked, and storage is managed
automatically by the Tcl interpreter.

• Interpreters are first-class objects. An inter-
preter consists of a set of Tcl commands, a set
of variable values, and an execution stack. An
application can contain several interpreters that
are disjoint from each other. This makes it pos-
sible to isolate scripts with different security
properties in different interpreters.

• The language is command-oriented; the facili-
ties available to a Tcl script are determined by
the set of commands defined in its interpreter.
Access to unsafe features is controlled by cur-
tailing access to specific commands in an inter-
preter executing an untrusted script.

Our work addresses security issues in Tcl scripts
and assumes that the implementation of the Tcl
interpreter is trustworthy. Extensions written in C,
C++, or Java are not available to untrusted scripts
unless the extension writer provides a special ini-
tialization procedure that restricts access to unsafe
commands in the extension.

3 Security Issues
The security issues associated with applets fall into
four major groups: integrity attacks, privacy
attacks, impersonation attacks and denial of service
attacks:

• Integrity Attacks: a malicious applet may try to
modify or delete information in the environment
in unauthorized ways. For example, it might
attempt to transfer funds from one account to
another in a bank, or it might attempt to delete
files on a user’s personal machine. In order to
prevent this kind of attack, applets must be
denied almost all operations that modify the
state of the host environment. Occasionally, it
may be desirable to permit the applet to make
modifications; for example, if the applet is an
editor, it might be allowed to write to a file if
approved by a user through a file selection dia-
log.

• Privacy Attacks: these attacks try to steal or leak
information belonging to the user. A malicious
applet may try to read private information from

the host environment and transmit it to a con-
spirator outside the environment. Information
disclosed in this way may have direct value to
the recipient, such as business information that
could affect the price of a company’s stock, or
its disclosure could damage the party from
which it was taken, for example, if it describes
an individual’s treatment for substance abuse.

• Impersonation Attacks: a malicious applet
might perform actions on behalf of the user of
the hosting application without his or her autho-
rization. For example, it may send e-mail in the
user’s name containing damaging statements, or
it may make it appear that the user is attempting
to mount some form of attack against a remote
resource. The purpose of an impersonation
attack can be to damage the impersonated user’s
reputation.

• Denial of Service Attacks: these attacks inter-
fere with the normal operation of the host sys-
tem. For example, an applet might consume all
the available file space, cover the screen with
windows so that the user cannot interact with
any other applications, or exercise a bug to
crash its hosting application.

It is unlikely that any security policy can com-
pletely eliminate all security threats. For example,
any bug in an application gives a malicious applet
the opportunity to deny service by crashing the
application. In addition, there exist subtle tech-
niques for signaling that make it nearly impossible
to protect the privacy of information once it has
been given to an applet [4]. Attempts to completely
eliminate the risks would restrict applets to such a
degree that they would not be able to perform any
useful functions.

Thus, Safe-Tcl does not try to eliminate security
risks entirely. Instead, it attempts to reduce the risks
to a manageable level, so that the benefits provided
by applets are greater than the costs incurred by
security attacks. Safe-Tcl concentrates on prevent-
ing integrity attacks, privacy attacks and imperson-
ation attacks. It is not geared towards preventing all
denial of service attacks. Denial of service attacks
generally do not permanently impact the user’s abil-
ity to perform useful work or the integrity of her
information, and thus, while annoying, are less
damaging.

4 Safe Tcl
Safe-Tcl uses apadded cell approach to security:

applets are executed in isolated environments where
their capabilities can be restricted. Padded cells are
implemented using three mechanisms that are
shown in Figure 1. First, Safe-Tcl usessafe inter-
preters to isolate applets and prevent them from
using any of the unsafe features of the language.
Then it restores access to a restricted subset of the
unsafe features usingaliases andprotected com-
mands.

If a Tcl application wishes to execute an applet, it
uses two interpreters: a master interpreter and a safe
interpreter. The master interpreter retains full func-
tionality, so only trusted scripts such as those writ-
ten by the user or the application designer may
execute there. The safe interpreter is used for exe-
cuting the applet. All of the unsafe commands
(those that could result in security compromises if
misused) are disabled in the safe interpreter. These
commands include those for accessing the file sys-
tem, executing subprocesses, opening sockets, and
many more. A script that tries to use the disabled
features will get runtime errors.

The set of commands left in the safe interpreter,
called thesafe base, allows the applet to perform
only safe actions. With only this set of commands
an interpreter is indeed safe for executing applets,
but in this state the interpreter is not very interesting
because scripts running in it are completely iso-
lated. If a script cannot access files, open sockets, or
communicate with other processes, then there
aren’t many useful things that it can do. In fact,
most useful programs involve activities that are
unsafe in the general case. In order for applets to

perform useful activities, they must have restricted
access to unsafe functions. For example, it is not
safe to let an applet write arbitrary files, but it prob-
ably is safe to let an applet create a single new file
of limited size containing the results of its compu-
tation.

This separation of trusted code from untrusted code
is similar to the separation in operating systems
between user-space code and kernel-space code.
Kernel-space code can write directly on every loca-
tion on the disk, but user-space code has no direct
access to the disk. Instead, it must use a system call
to write data to portions of the disk as permitted by
checks enforced by code executing in kernel-space.

The alias mechanism in Safe-Tcl is analogous to
system calls in operating systems. An alias is an
association between a command in the safe inter-
preter, called thesource command for the alias, and
a command in the master interpreter, called thetar-
get. Whenever the source command is invoked by a
script in the safe interpreter, the target command is
invoked instead. The target command is typically a
Tcl procedure. It receives all of the arguments from
the source command and its result is returned to the
safe interpreter as the result of the source command.

The master interpreter has complete control over
the safe interpreter. It can initiate the execution of
scripts, create and delete aliases, and control the
names of the source and target commands for each
alias. The safe interpreter cannot create new aliases
on its own. During the execution of an alias, the
master can access the state of the safe interpreter
and invoke additional scripts in the safe interpreter

Figure 1.The basic Safe-Tcl mechanisms. Trusted scripts execute in the master
interpreter while untrusted applets execute in the safe interpreter. All unsafe
commands in the safe interpreter are protected so that they cannot be invoked
from the safe interpreter. Aliases provide a mechanism for the applet to request
mediated operations from the master. The master interpreter can invoke the
protected commands in the safe interpreter.

Master
Interpreter

Safe
Interpreter

Aliases

Protected
Commands

to carry out the functions of the alias.

The commands that are disabled in the safe base are
not actually removed from the safe interpreter; they
areprotected so that they can be invoked only by the
master interpreter. This allows the master inter-
preter to ensure that only a subset of the command’s
features are used. To use a protected command, an
applet must use an alias which checks that the argu-
ments and intended usage are safe, and then the
alias invokes the protected command. Figure 2
shows an alias that allows sockets to be opened only
to a pre-specified list of hosts and ports. The
socket command, which is used to create net-
work connections, is unsafe so it is protected in the
safe interpreter; the code in the figure creates a new
socket command that is an alias. The alias vali-
dates the host and port, then invokes the protected

socket command in the safe interpreter. To the
applet thesocket command appears to work in
the normal fashion except that only certain network
addresses may be used. Note that two versions of
socket exist in the safe interpreter: the protected
command and the alias.

Protected commands are needed because many Tcl
commands implicitly modify the interpreter in
which they are invoked. For example, thesocket
command creates a new I/O channel for use in com-
municating over the socket. The channel is created
in the interpreter where thesocket command exe-
cutes, so if the alias invokedsocket in its own
interpreter (the master) then the safe interpreter
wouldn’t be able to use the resulting channel.

Create an array in which the names of elements are host
names and the values are lists of acceptable port numbers.

set safeSockets(sage.eng) 1024
set safeSockets(sunlabs.eng) 80
set safeSockets(www.sun.com) {80 8015}
set safeSockets(bisque.eng) {3000 4000 5000}

Create an alias that causes the AliasSocket command to be
invoked in the master whenever socket is invoked in the safe
interpreter.

interp alias $safe socket {} AliasSocket $safe

Define the procedure that implements the alias.

proc AliasSocket {safe host port} {
global safeSockets
if {![info exists safeSockets($host)]} {

error "Unknown host: $host"
}
if {[lsearch -exact $safeSockets($host) $port] < 0} {

error "Bad port: $port"
}
return [interp invokehidden $safe socket $host $port]

}

Figure 2.When this code is executed in a master interpreter, it creates an alias that allows
a safe interpreter to open sockets to a restricted set of addresses. Whenever thesocket
command is invoked in interpreter$safe theAliasSocket command will be invoked
in the master interpreter with the name of the safe interpreter as its first argument. Thus, if
the value of$safe is child , and the command “socket bisque.eng 4000 ” is
invoked in the safe interpreter, then the command “AliasSocket child
bisque.eng 4000 ” will be invoked in the master. TheAliasSocket procedure
checks to see if the host and port are among those that are allowed. If so, it invokes the
hiddensocket command in the safe interpreter to actually open the network connection.

5 Security Policies and Security
Packages
In Safe-Tcl, aliases are grouped into security poli-
cies. Each security policy has a name and contains
one or more aliases that are known to be safe for
certain kinds of applets. An applet chooses which
policy it uses, subject to the checks described in
Section 6; a single applet may only use one policy
over its lifetime. Many different policies are possi-
ble, each imposing a different set of restrictions on
applets controlled by the policy. Some policies are
safe for all applets to use, while other policies are
only safe for applets that can be verified to originate
from a trusted source. We designed Safe-Tcl to
encourage the development of many different poli-
cies, and to allow the reuse of policies in many
applications

Why is it important to allow multiple security poli-
cies? Wouldn’t it be better to have just one policy
that includes all of the features that are safe for
applets? Multiple security policies are needed
because safe features do not compose: if feature A
is safe and feature B is safe, the combination of A
and B is not necessarily safe. For example, it is safe
for an applet to open network connections outside
the firewall as long as the applet cannot communi-
cate with hosts inside the firewall. It is also safe for
an applet to read local files, as long as this is the
only communication the applet makes outside its
interpreter. However, an applet that has access to
both of these features can transmit local files out-
side the firewall, which is a breach of privacy.

Since safe features do not compose, no single secu-
rity policy can include all of the features that are
safe in isolation. Safe-Tcl encourages the develop-
ment of many security policies, each tailored to sup-
port a different class of applets. The simplest
security policy consists of just the safe base with no
additional features enabled. Most security policies
will probably enable a small set of additional fea-
tures. In an extreme case where the applet is com-
pletely trusted, it can be given a security policy that
restores the full set of unsafe Tcl commands and
enables all the features provided by the hosting
application.

An applet obtains a security policy by invoking the
policy alias which is installed as part of the safe
base. The alias checks whether the applet is allowed

to use the requested policy. If allowed, it installs the
aliases specified by the requested policy and
records information that will be used later to control
how these aliases are used by the applet. An applet
may obtain at most a single security policy over its
lifetime; once it has successfully obtained one pol-
icy it may not obtain any other policy. Changing the
security policy for an applet or allowing it to use
multiple policies composes the features of the secu-
rity policies, which is not safe.

We expect that many policies will be similar in the
set of features they provide. To encourage reuse of
the implementation of aliases, Safe-Tcl has the con-
cept ofsecurity packages, named sets of aliases that
are installed as a unit. The aliases are implemented
by one Tcl script and reused by name in multiple
policies.

Policies are written in Tcl using a style that is easily
parsed by the configuration management package
provided with Safe-Tcl. Each policy is organized
into a number of sections, and each section contains
permissions and restrictions referring to a set of fea-
tures. Below is a snippet of the home policy which
allows an applet to communicate with servers on
the host from which it was loaded, and to fetch web
pages from that host:

section features
allow url
allow network
allow persist

section urls
allow $originHomeDirURL*

Thehome policy enables thepersist, network and
url security packages in thefeatures section. The
persist security package allows an applet to store a
limited amount of information persistently on the
user’s machine,network allows the applet to open
sockets to a restricted set of remote servers, andurl
allows access to a limited set of web pages and
remote web services. Theurls section allows URLs
to be fetched from the subtree of the web site
rooted at the directory containing the applet.

Theoutsidepolicy is similar to thehome policy and
reuses the persist, network and url security pack-
ages. Itsurl section allows URLs to be fetched from
the C|Net web site:

section features
allow persist
allow url

allow network

section urls
allow http://www.cnet.com/*

Aliases installed into the safe interpreter housing
the applet allow the applet mediated access to fea-
tures provided by the hosting application. The tar-
get command checks the arguments according to
the restrictions imposed by the applet’s policy and
decides whether to allow the call. In the above
example, if a URL fetch is requested, it is only
allowed if it refers to a web page on the C|Net web
site. If the operation is allowed, the call is for-
warded to the actual implementation.

The Tcl web browser plug-in comes with several
policies, includinghome andoutside, mentioned
above. Each of these policies is fairly restrictive, yet
supports a large class of interesting applets. An
advantage of having more restrictive security poli-
cies is simplicity. If a security policy included a
large number of features, it would be difficult to
analyze all of the interactions between its features
to uncover security loopholes. A policy that
includes only a small number of features is more
amenable to analysis and increases our confidence
that it is really secure.

6 Controlling the Use of Security
Policies
Safe-Tcl is designed to support a large range of
security policies. Some policies can be used by all
applets, without requiring that the applet be trusted.
Other policies, especially those that provide access
to features that can be used to mount security
attacks, require that the applet be trusted to some
degree before they can be used by that applet. Safe-
Tcl checks whether an applet is allowed to use a
policy when the applet first requests to use the pol-
icy. If the applet is allowed to use the policy, the
security packages enabled by the requested policy
are installed.

Safe-Tcl provides the concept of atrust map to
allow site and application administrators to control
which applets can use each security policy. A trust
map is a Tcl script, organized into sections similarly
to a policy, that specifies under what circumstances
each policy can be used; the map also defines the
names of all security packages provided by the

application and controls various other application
level resources. Each application using Safe-Tcl has
its own trust map; here is part of the policies section
in the trust map for the Tcl web browser plug-in:

section policies
disallow trusted
allow home
allow javascript \
ifallowed javascriptTrustedURLs

$originURL

A trust map can contain statements that disable a
policy for all applets, as is the case for thetrusted
policy, above. Similarly, a policy can be enabled for
all applets, as for thehome policy. The trust map
also provides a place to insert authenticators that
decide to allow or disallow the use of a policy based
on some property of the applet. We see an example
of this in the statement allowing the use of thejav-
ascript policy if the URL from which the applet was
loaded is allowed by the sectionjavascriptTruste-
dURLs. Authenticators can use attributes of the
applet such as its MD5 checksum [9], an attached
signed certificate [5], or the URL from which it was
loaded.

This separation of trust and authentication from the
actual policies is important, because otherwise pol-
icies can not be shared between applications.

7 Security Model and Security
Roles
Safe-Tcl cleanly factors into three distinct parts that
reflect the roles of three human participants in the
management of security:

• Security packages encapsulate features pro-
vided by applications and implement con-
strained access to these features. Security
packages are provided by the application’s
author.

• Security policies determine which security
packages an applet can use and what resources
it can access using the provided features. A
security expert designs each security policy.

• The trust map determines whether an applet can
use a given security policy. Trust maps are
edited by site and application administrators.

Much of the power and flexibility of Safe-Tcl stems
from its use of Tcl throughout to implement the
security model. Tcl is used to implement the config-
uration mechanism that controls access to resources

by applets. Tcl scripts specify whether a policy can
be used by an applet and under what conditions.
Finally, Tcl is used to implement the security pack-
ages and the aliases used by applets to access fea-
tures provided by security packages.

8 Denial-of-Service and Privacy
Attacks
Although Safe-Tcl was designed primarily to
address issues of integrity, impersonation and pri-
vacy, its mechanisms can also be used to prevent
denial-of-service attacks. For example, an applet
can be prevented from consuming all the disk space
by protecting theputs command, which writes
data to files. In its place an alias can be created to
count the bytes that are output and enforce a limit.

However, many denial-of-service attacks, particu-
larly those associated with graphical user inter-
faces, are hard to prevent. For example, an applet
could attempt to create a window that covers the
whole screen and prevent the user from interacting
with any other applications. Aliases and hidden
commands could be used to restrict the sizes of win-
dows, but the applet could then create several
smaller windows that together cover the whole area
of the screen. Furthermore, in some situations (such
as laptop computers with small screens) it may be
desirable to let an applet use the entire screen.

Safe-Tcl currently does not prevent most denial-of-
service attacks. We will address this in the future
with a combination of resource controls and a kill-
key that lets a user intervene when an applet misbe-
haves.

Lampson [4] shows that it is generally impossible to
prevent information from being communicated
from one applet to another through covert channels
such as manipulation of the scheduler or other finite
accessible resources. While the rate of communica-
tion is limited, it is still possible to leak a significant
number of bits per second through this form of
attack. For example, if one applet has access to a file
stored on a server within a firewall, while another
applet has the ability to communicate over the net-
work with a server outside the firewall, it is possible
for the two applets to collaborate and disclose infor-
mation stored in these files to outside parties. Safe-
Tcl by default disallows untrusted applets to use
resources on an Intranet. Thus, largely, information

leakage through covert channels is prevented
because applets by default cannot gain access to pri-
vate information stored on hosts on an Intranet.

9 Status
Safe-Tcl has been available in public Tcl releases
since the Tcl 7.5 release in April 1996. Safe-Tcl
integration with Tk is implemented as part of a
Tcl/Tk plug-in module for web browsers which was
released in July 1996 [6]. The plug-in allows Tcl/Tk
scripts to be included in Web pages with embedded
custom GUIs. The 2.0 plug-in release made in Jan-
uary 1998 offers full support for safe interpreters,
aliases, mechanisms for creating and installing
security policies, and a trust map implementation.
Safe-Tcl does not yet support a kill key, CPU usage
limits, or authentication.

9.1 Performance
Table 1 shows a few measurements of the perfor-
mance of Safe-Tcl. Overall, Safe-Tcl does not add
substantially to the execution time of an applica-
tion. Our experience with the performance of the
Safe Tcl security model in Tcl 8.0 is that it does not
add noticeable overhead. Table 1 shows a few mea-
surements that indicate the overhead of invoking an
alias is about twice that of calling a null Tcl proce-
dure. The difference between calling a null alias and
and alias topid, which returns a value, shows the
cost of marshalling parameters and results between
interpreters. For each benchmark we measured call-
ing it directly versus calling the same code via an
alias from another interpreter. The benchmarks are
calling the built inpid procedire. a null procedure,
a procedure taking ten arguments, a procedure that
adds its ten numeric arguments and a ten element
list reversal procedure.Measurements were taken
on a Pentium 233 running Linux.

Table 1:

Command usec

call pid 5

call alias to pid 10

null proc 7

call alias to null proc 11

10 Related Work

10.1 The Borenstein/Rose prototype
Nathaniel Borenstein and Marshall Rose imple-
mented a prototype of Safe-Tcl in 1992 that pio-
neered most of the ideas, including safe interpreters
and aliases [2]. The Borenstein/Rose prototype was
used for active e-mail messages and later as part of
the First Virtual Holdings Internet payment system.

Our implementation generalizes the Boren-

10arg procl 14

alias to 10arg proc 19

10add proc 26

alias to 10add proc 31

lreverse proc 213

alias to lreverse proc 228

Table 1:

Command usec

stein/Rose prototype in several ways. The prototype
only allowed one safe interpreter, while our work
allows any number of safe interpreters. There was
no concept of security policies and security pack-
ages in the Borenstein/Rose prototype, and there
were no mechanisms to specify configuration infor-
mation. Their implementation was specific for one
problem domain, how to send scripts via electronic
mail messages safely, while our approach can be
applied to any problem domain. Finally, our work
introduces the concept of trust maps to allow or dis-
allow applets to use specific policies.

10.2 Object Oriented Systems.
Most other security models for executing untrusted
code, such as Java [12][13] and Telescript [11], are
based on object systems. These models are similar
to Safe-Tcl in that they use safe languages that con-
trol pointers and memory allocation. However, they
differ from Safe-Tcl in that they provide only a sin-
gle virtual machine that contains all of the objects
and classes. Security properties are associated with
individual objects or classes; for example, one class
may be marked as coming from an untrusted source
while another may be marked as trusted. This infor-

.

Figure 1.With an object-oriented approach to security (left) security checks must
be done at a low level, guarding the call to the operating system, so they cannot be
by-passed. A low-level check makes it difficult to determine if trusted code called
by untrusted code should be allowed to perform the operation. With the padded
cell approach (left) security checks can be done at a high-level when control
transfers from code in a separate virtual machine. Edges in the graph represent
method or procedure calls, and boxes represent virtual machine boundaries.

Trusted code/data Untrusted code/data

Alias

FileOpen

Security Check

FileOpen

mation is used when deciding whether or not to
allow a particular operation. For example, before
allowing a file to be opened, Java checks to see if
there are any untrusted classes on the current call
stack; if so, the open operation is denied. In con-
trast, Safe-Tcl’s padded cell approach uses multiple
virtual machines (interpreters) and the security
properties are associated with the virtual machine,
not individual pieces of data or code. Security deci-
sions are made based on the virtual machine that is
currently executing; thus, while executing in a safe
interpreter it is not possible to open a file, but it is
possible to open a file if control is first transferred
to a trusted interpreter using an alias.

In Java the use of a single virtual machine for both
trusted and untrusted code requires security checks
at a low level within the system, and this make it
difficult to implement sophisticated security poli-
cies. Security manager calls must be made at low
levels, right before a native method call into the
operating system, otherwise untrusted code could
call the method directly and bypass the security
check. The security check can easily test if
untrusted code is on the call stack and deny access.
However, it is more difficult to implement a policy
that denies some accesses by untrusted code but
allows other accesses. For example, a policy could
provide a method that displays a file selection dia-
log and returns an open I/O channel. The goal is that
the file open operation is only done via the user
interface dialog so the user knows what file is being
accessed. With one low-level check, it would be dif-
ficult to allow accesses from the trusted dialog with-
out allowing other, more direct accesses from the
untrusted code. The use of a single virtual machine
makes it difficult to hide dangerous operations,
which forces a low-level security check. The low-
level check limits the flexibility of policy code and
adds overhead to dangerous operations for both
trusted and untrusted code.

In contrast, in Safe-Tcl security checks are done at
a very high-level, when an alias transfers control to
a trusted virtual machine, which leaves room for
flexible policy implementations. (See Figure 1.)
Safe-Tcl can replace the open command with an
alias that displays a user interface dialog or uses
policy code that limits untrusted code to a private
directory and a limited number of files. The imple-
mentation of these aliases may look through the file

system and open various configuration files that
specify the directory location and limits on files.
Eventually the alias will open a file for use by the
untrusted code. The alias is implemented in a
trusted virtual machine that can do anything on
behalf of untrusted code. This provides a very flex-
ible environment for wrapping policy code around
dangerous operations, and the policies only add
overhead to untrusted code that must use aliases.

There are more advantages to the Safe-Tcl imple-
mentation:

• Aggressive security policies can hide more
commands from untrusted virtual machines,
such as those that gave clock and timing infor-
mation. This only affects the untrusted virtual
machine, and it does not require modification of
the existing clock and timer implementations. In
Java, adding a security manager check to the
clock subsystem requires modification of
trusted code.

• Tcl allows multiple virtual machines (i.e., inter-
preters) within the same application, and differ-
ent interpreters can have different security
policies through different sets of aliases. This is
more awkward in Java because there is a single
security manager that would have to manage
different policies for different kinds of untrusted
classes. Our understanding of Java development
is that they plan to support multiple security
managers in the future.

10.3 Pure authentication: ActiveX
An approach proposed by Microsoft authenticates
downloaded applets and asks the user of the hosting
machine to assign trust to the identified principal.
ActiveX prevents untrusted programs from being
executed. In this approach all security decisions are
delegated to the user of the machine. This is the
only approach that works for compiled programs,
because there is no practical mechanism for restrict-
ing what machine code can do.

But ActiveX only verifies identity, and trust
involves more than just authentication. Authentica-
tion identifies the principal (person or organization)
who wrote something, but it doesn’t indicate
whether the principal is trustworthy. Trust can
really only be placed in principals you arefamiliar
with. The authentication approach works well for
applets written by large companies that are known
to be trustworthy (or that can be sued if their soft-
ware is defective). However, authentication doesn’t

help when applets are written by individuals and
smaller companies that are not well known. One of
the reasons for the popularity of the World Wide
Web is that it enables communication among large
numbers of individuals and small organizations that
have no prior knowledge of each other.

ActiveX is unsuitable for executing untrusted pro-
grams retrieved from the web, because it is based
only on authentication and does not provide any
restrictions on what a program can do once it is
trusted. This does not scale well to the web’s dis-
tributed and decentralized nature. In contrast, Safe-
Tcl enables safe execution of code trusted to vary-
ing degrees, ranging from completely untrusted to
completely trusted. For some operations, no knowl-
edge about an applet author’s identity is needed,
while other operations may require full authentica-
tion.

11 Conclusions
There is no silver bullet that will make security triv-
ial. Creating safe environments for executing
applets will always be difficult, and no security
model will ever be totally safe, since even a small
bug in programming can open a huge security hole.
However, we think it is possible to create environ-
ments where applets with varying degrees of trust
can be executed with an acceptable level of risk.
Safe-Tcl has several properties that simplify the
creation of such environments:

• The padded cell model is simple. It generalizes
the user space-kernel space model that has been
used successfully in operating systems for sev-
eral decades.

• Safe-Tcl groups data and code with similar
security properties together, which reduces the
amount of code that must be aware of security
issues.

• Safe-Tcl separates security management into
well-defined phases that are geared towards the
party that is responsible for each aspect of secu-
rity. It separates implementation of security pol-
icies, generally an activity for security experts,
from the implementation of security packages,
which is done by engineers creating an applica-
tion, and from configuration management, an
activity reserved for site and system administra-
tors.

• Authentication is important for secure systems
but it is not sufficient by itself to provide protec-
tion. The mechanisms of Safe-Tcl provide a
well defined way to constrain the capabilities of
code after its origin has been authenticated.

Our experiences with Safe-Tcl have taught us three
important lessons about security. The first is that
safe features do not necessarily compose. This
makes it difficult to provide a single security policy
with a large variety of features; instead, it encour-
ages a large number of smaller, specialized security
policies. The second lesson is that it is important to
take advantage of authentication mechanisms yet
not require them. If programs are to be intimately
tied to information, and if information is to be freely
distributed among strangers, then it is important to
support the execution of totally untrusted programs.
At the same time, authentication can be used to
boost the power of applets when they come from
known sources. The third lesson is that using a
scripting language to implement a security model is
both doable and adds unique value by allowing the
resulting system to be very flexible and config-
urable.

12 Acknowledgments
This work would never have come about without
the pioneering efforts of Nathaniel Borenstein and
Marshall Rose, who designed and built the Safe-Tcl
prototype. Nathaniel Borenstein, Wan-Teh Chang,
Robert Drost, Clif Flynt, Li Gong, Mark Harrison,
Ray Johnson, Anand Palaniswamy, Marshall Rose,
Rich Salz, Juergen Schoenwaelder, and Glenn
Vanderburg provided useful comments that
improved the presentation of this paper.

13 References
[1] K. Arnold and J. Gosling,The Java

Programming Language, Addison-Wesley,
ISBN 0-201-63455-4, 1996.

[2] N. Borenstein, “E-mail With A Mind of Its Own:
The Safe-Tcl Language for Enabled Mail,”IFIP
WG 6.5 Conference, Barcelona, May, 1994,
North Holland, Amsterdam, 1994.

[3] D. Denning and P. Denning, “Data Security,”
Computing Surveys, Vol. 11, No. 3, September
1979, pp. 227-249.

[4] B. Lampson, “A Note on the Confinement
Problem,”Communications of the ACM, Vol.

16, No. 10, October 1973, pp. 613-615.

[5] B. Lampson, M. Abadi, M. Burrows, and E.
Wobber, “Authentication in Distributed Systems:
Theory and Practice,”ACM Transactions on
Computer Systems, Vol. 10, No. 4, November
1992, pp. 265-310.

[6] J. Levy,Welcome to the Tcl Plug-in,
http://sunscript.sun.com/plugin/ .

[7] J. Ousterhout,Tcl and the Tk Toolkit, Addison-
Wesley, ISBN 0-201-63337-X, 1994.

[8] R. Rivest,The MD5 Message Digest
Algorithm, RFC 1321, April 1992.

[9] R. Wahbe, S. Lucco, T. Anderson, and S. Graham,
“Efficient Software-Based Fault Isolation,” Proc.
14th Symposium on Operating Systems
Principles,Operating Systems Review, Vol. 27,
No. 5, December, 1993, pp. 203-216.

[10] B. Welch,Practical Programming in Tcl and
Tk, Prentice-Hall, ISBN 0-13-616830-2, Second
edition, 1997.

[11] J. White,Telescript Technology: The
Foundation for the Electronic Marketplace,
white paper, General Magic, Inc., 1994.

[12] F. Yellin, “Low Level Security in Java,”World-
Wide Web Conference, Boston MA, December
1995. Also available as
http://www.javasoft.com/sfaq/verifier.html.

[13] Li Gong et al., “Going Beyond the Sandbox: an
Overview of the New Security Architecture in the
Java Development Kit 1.2”, USENIX Symposium
on Internet Technologies and Systems
Proceedings, Monterey, California, December 8-
11, 1997.

