
Proceedings of 2000 USENIX Annual Technical Conference
San Diego, California, USA, June 18–23, 2000

L E X I C A L F I L E N A M E S I N P L A N 9
O R

G E T T I N G D O T - D O T R I G H T

Rob Pike

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Lexical File Names in Plan 9
or

Getting Dot-Dot Right
Rob Pike

Bell Laboratories
Murray Hill, New Jersey 07974

rob@plan9.bell-labs.com

Abstract: Symbolic links make the Unix file system
non-hierarchical, resulting in multiple valid path names
for a given file. This ambiguity is a source of confu-
sion, especially since some shells work overtime to pre-
sent a consistent view from programs such as pwd,
while other programs and the kernel itself do nothing
about the problem.

Plan 9 has no symbolic links but it does have other
mechanisms that produce the same difficulty. More-
over, Plan 9 is founded on the ability to control a
program’s environment by manipulating its name
space. Ambiguous names muddle the result of opera-
tions such as copying a name space across the network.

To address these problems, the Plan 9 kernel has been
modified to maintain an accurate path name for every
active file (open file, working directory, mount table
entry) in the system. The definition of ‘accurate’ is that
the path name for a file is guaranteed to be the rooted,
absolute name the program used to acquire it. These
names are maintained by an efficient method that com-
bines lexical processing—such as evaluating .. by
just removing the last path name element of a
directory—with local operations within the file system
to maintain a consistently, easily understood view of the
name system. Ambiguous situations are resolved by
examining the lexically maintained names themselves.

A new kernel call, fd2path, returns the file name
associated with an open file, permitting the use of reli-
able names to improve system services ranging from
pwd to debugging. Although this work was done in
Plan 9, Unix systems could also benefit from the addi-
tion of a method to recover the accurate name of an
open file or the current directory.

1. Motivation

Consider the following unedited transcript of a session
running the Bourne shell on a modern Unix system:

% echo $HOME
/home/rob
% cd $HOME
% pwd
/n/bopp/v7/rob
% cd /home/rob
% cd /home/ken
% cd ../rob
../rob: bad directory
%

(The same output results from running tcsh; we’ll dis-
cuss ksh in a moment.) To a neophyte being schooled
in the delights of a hierarchical file name space, this
behavior must be baffling. It is, of course, the conse-
quence of a series of symbolic links intended to give
users the illusion they share a disk, when in fact their
files are scattered over several devices:

% ls -ld /home/rob /home/ken
lrwxr-xr-x 1 root sys 14 Dec 26 1998

/home/ken -> /n/bopp/v6/ken
lrwxr-xr-x 1 root sys 14 Dec 23 1998

/home/rob -> /n/bopp/v7/rob
%

The introduction of symbolic links has changed the
Unix file system from a true hierarchy into a directed
graph, rendering .. ambiguous and sowing confusion.

Unix popularized hierarchical naming, but the introduc-
tion of symbolic links made its naming irregular.
Worse, the pwd command, through the underlying
getwd library routine, uses a tricky, expensive algo-
rithm that often delivers the wrong answer. Starting
from the current directory, getwd opens the parent,
.., and searches it for an entry whose i-number
matches the current directory; the matching entry is the
final path element of the ultimate result. Applying this
process iteratively, getwd works back towards the
root. Since getwd knows nothing about symbolic
links, it will recover surprising names for directories
reached by them, as illustrated by the example; the
backward paths getwd traverses will not backtrack
across the links.

Partly for efficiency and partly to make cd and pwd
more predictable, the Korn shell ksh [Korn94] imple-
ments pwd as a builtin. (The cd command must be a
builtin in any shell, since the current directory is unique
to each process.) Ksh maintains its own private view
of the file system to try to disguise symbolic links; in
particular, cd and pwd involve some lexical processing
(somewhat like the cleanname function discussed
later in this paper), augmented by heuristics such as
examining the environment for names like $HOME and
$PWD to assist initialization of the state of the private
view. [Korn00]

This transcript begins with a Bourne shell running:

% cd /home/rob
% pwd
/n/bopp/v7/rob
% ksh
$ pwd
/home/rob
$

This result is encouraging. Another example, again
starting from a Bourne shell:

% cd /home/rob
% cd ../ken
../ken: bad directory
% ksh
$ pwd
/home/rob
$ cd ../ken
$ pwd
/home/ken
$

By doing extra work, the Korn shell is providing more
sensible behavior, but it is easy to defeat:

% cd /home/rob
% pwd
/n/bopp/v7/rob
% cd bin
% pwd
/n/bopp/v7/rob/bin
% ksh
$ pwd
/n/bopp/v7/rob/bin
$ exit
% cd /home/ken
% pwd
/n/bopp/v6/ken
% ksh
$ pwd
/n/bopp/v6/ken
$

In these examples, ksh’s built-in pwd failed to produce
the results (/home/rob/bin and /home/ken) that
the previous example might have led us to expect. The
Korn shell is hiding the problem, not solving it, and in
fact is not even hiding it very well.

A deeper question is whether the shell should even be
trying to make pwd and cd do a better job. If it does,
then the getwd library call and every program that
uses it will behave differently from the shell, a situation
that is sure to confuse. Moreover, the ability to change
directory to ../ken with the Korn shell’s cd com-
mand but not with the chdir system call is a symptom
of a diseased system, not a healthy shell.

The operating system should provide names that work
and make sense. Symbolic links, though, are here to
stay, so we need a way to provide sensible, unambigu-
ous names in the face of a non-hierarchical name space.
This paper shows how the challenge was met on Plan 9,
an operating system with Unix-like naming.

2. Names in Plan 9

Except for some details involved with bootstrapping,
file names in Plan 9 have the same syntax as in Unix.
Plan 9 has no symbolic links, but its name space con-
struction operators, bind and mount, make it possible
to build the same sort of non-hierarchical structures cre-
ated by symbolically linking directories on Unix.

Plan 9’s mount system call takes a file descriptor and
attaches to the local name space the file system service
it represents:

mount(fd, "/dir", flags)

Here fd is a file descriptor to a communications port
such as a pipe or network connection; at the other end
of the port is a service, such as file server, that talks 9P,
the Plan 9 file system protocol. After the call succeeds,
the root directory of the service will be visible at the
mount point /dir, much as with the mount call of
Unix. The flag argument specifies the nature of the
attachment: MREPL says that the contents of the root
directory (appear to) replace the current contents of
/dir; MAFTER says that the current contents of dir
remain visible, with the mounted directory’s contents
appearing after any existing files; and MBEFORE says
that the contents remain visible, with the mounted
directory’s contents appearing before any existing files.
These multicomponent directories are called union
directories and are somewhat different from union
directories in 4.4BSD-Lite [PeMc95], because only the
top-level directory itself is unioned, not its descendents,
recursively. (Plan 9’s union directories are used differ-
ently from 4.4BSD-Lite’s, as will become apparent.)

For example, to bootstrap a diskless computer the sys-
tem builds a local name space containing only the root
directory, /, then uses the network to open a connection
to the main file server. It then executes

mount(rootfd, "/", MREPL);

After this call, the entire file server’s tree is visible,
starting from the root of the local machine.

While mount connects a new service to the local name
space, bind rearranges the existing name space:

bind("tofile", "fromfile", flags)

causes subsequent mention of the fromfile (which
may be a plain file or a directory) to behave as though
tofile had been mentioned instead, somewhat like a
symbolic link. (Note, however, that the arguments are
in the opposite order compared to ln -s). The flags
argument is the same as with mount.

As an example, a sequence something like the follow-
ing is done at bootstrap time to assemble, under the sin-
gle directory /bin, all of the binaries suitable for this
architecture, represented by (say) the string sparc:

bind("/sparc/bin", "/bin",
MREPL);

bind("/usr/rob/sparc/bin", "/bin",
MAFTER);

This sequence of binds causes /bin to contain first
the standard binaries, then the contents of rob’s private
SPARC binaries. The ability to build such union direc-
tories obviates the need for a shell $PATH variable
while providing opportunities for managing heterogene-
ity. If the system were a Power PC, the same sequence
would be run with power textually substituted for
sparc to place the Power PC binaries in /bin rather
than the SPARC binaries.

Trouble is already brewing. After these bindings are set
up, where does

% cd /bin
% cd ..

set the current working directory, to / or /sparc or
/usr/rob/sparc? We will return to this issue.

There are some important differences between binds
and symbolic links. First, symbolic links are a static
part of the file system, while Plan 9 bindings are created
at run time, are stored in the kernel, and endure only as
long as the system maintains them; they are temporary.
Since they are known to the kernel but not the file sys-
tem, they must be set up each time the kernel boots or a
user logs in; permanent bindings are created by editing
system initialization scripts and user profiles rather than
by building them in the file system itself.

The Plan 9 kernel records what bindings are active for a
process, whereas symbolic links, being held on the
Unix file server, may strike whenever the process evalu-
ates a file name. Also, symbolic links apply to all pro-
cesses that evaluate the affected file, whereas bind has

a local scope, applying only to the process that executes
it and possibly some of its peers, as discussed in the
next section. Symbolic links cannot construct the sort
of /bin directory built here; it is possible to have mul-
tiple directories point to /bin but not the other way
around.

Finally, symbolic links are symbolic, like macros: they
evaluate the associated names each time they are
accessed. Bindings, on the other hand, are evaluated
only once, when the bind is executed; after the binding
is set up, the kernel associates the underlying files,
rather than their names. In fact, the kernel’s representa-
tion of a bind is identical to its representation of a
mount; in effect, a bind is a mount of the tofile upon
the fromfile. The binds and mounts coexist in a sin-
gle mount table , the subject of the next section.

3. The Mount Table

Unix has a single global mount table for all processes in
the system, but Plan 9’s mount tables are local to each
process. By default it is inherited when a process forks,
so mounts and binds made by one process affect the
other, but a process may instead inherit a copy, so
modifications it makes will be invisible to other pro-
cesses. The convention is that related processes, such
as processes running in a single window, share a mount
table, while sets of processes in different windows have
distinct mount tables. In practice, the name spaces of
the two windows will appear largely the same, but the
possibility for different processes to see different files
(hence services) under the same name is fundamental to
the system, affecting the design of key programs such
as the window system [Pike91].

The Plan 9 mount table is little more than an ordered
list of pairs, mapping the fromfiles to the
tofiles. For mounts, the tofile will be an item
called a Channel, similar to a Unix vnode, pointing
to the root of the file service, while for a bind it will be
the Channel pointing to the tofile mentioned in
the bind call. In both cases, the fromfile entry in
the table will be a Channel pointing to the
fromfile itself.

The evaluation of a file name proceeds as follows. If
the name begins with a slash, start with the Channel
for the root; otherwise start with the Channel for the
current directory of the process. For each path element
in the name, such as usr in /usr/rob, try to ‘walk’
the Channel to that element [Pike93]. If the walk
succeeds, look to see if the resulting Channel is the
same as any fromfile in the mount table, and if so,
replace it by the corresponding tofile. Advance to
the next element and continue.

There are a couple of nuances. If the directory being
walked is a union directory, the walk is attempted in the
elements of the union, in order, until a walk succeeds.
If none succeed, the operation fails. Also, when the
destination of a walk is a directory for a purpose such as
the chdir system call or the fromfile in a bind,
once the final walk of the sequence has completed the
operation stops; the final check through the mount table
is not done. Among other things, this simplifies the
management of union directories; for example, subse-
quent bind calls will append to the union associated
with the underlying fromfile instead of what is
bound upon it.

4. A Definition of Dot-Dot

The ability to construct union directories and other
intricate naming structures introduces some thorny
problems: as with symbolic links, the name space is no
longer hierarchical, files and directories can have multi-
ple names, and the meaning of .., the parent directory,
can be ambiguous.

The meaning of .. is straightforward if the directory is
in a locally hierarchical part of the name space, but if
we ask what .. should identify when the current direc-
tory is a mount point or union directory or multiply
symlinked spot (which we will henceforth call just a
mount point, for brevity), there is no obvious answer.
Name spaces have been part of Plan 9 from the begin-
ning, but the definition of .. has changed several
times as we grappled with this issue. In fact, several
attempts to clarify the meaning of .. by clever coding
resulted in definitions that could charitably be summa-
rized as ‘what the implementation gives.’

Frustrated by this situation, and eager to have better-
defined names for some of the applications described
later in this paper, we recently proposed the following
definition for ..:

The parent of a directory X , X/.., is the same
directory that would obtain if we instead accessed
the directory named by stripping away the last
path name element of X .

For example, if we are in the directory /a/b/c and
chdir to .., the result is exactly as if we had exe-
cuted a chdir to /a/b.

This definition is easy to understand and seems natural.
It is, however, a purely lexical definition that flatly
ignores evaluated file names, mount tables, and other
kernel-resident data structures. Our challenge is to
implement it efficiently. One obvious (and correct)
implementation is to rewrite path names lexically to
fold out .., and then evaluate the file name forward
from the root, but this is expensive and unappealing.

We want to be able to use local operations to evaluate
file names, but maintain the global, lexical definition of
dot-dot. It isn’t too hard.

5. The Implementation

To operate lexically on file names, we associate a name
with each open file in the kernel, that is, with each
Channel data structure. The first step is therefore to
store a char* with each Channel in the system,
called its Cname, that records the absolute rooted file
name for the Channel. Cnames are stored as full text
strings, shared copy-on-write for efficiency. The task is
to maintain each Cname as an accurate absolute name
using only local operations.

When a file is opened, the file name argument in the
open (or chdir or bind or ...) call is recorded in the
Cname of the resulting Channel. When the file name
begins with a slash, the name is stored as is, subject to a
cleanup pass described in the next section. Otherwise,
it is a local name, and the file name must be made abso-
lute by prefixing it with the Cname of the current direc-
tory, followed by a slash. For example, if we are in
/home/rob and chdir to bin, the Cname of the
resulting Channel will be the string
/home/rob/bin.

This assumes, of course, that the local file name con-
tains no .. elements. If it does, instead of storing for
example /home/rob/.. we delete the last element
of the existing name and set the Cname to /home. To
maintain the lexical naming property we must guarantee
that the resulting Cname, if it were to be evaluated,
would yield the identical directory to the one we actu-
ally do get by the local .. operation.

If the current directory is not a mount point, it is easy to
maintain the lexical property. If it is a mount point,
though, it is still possible to maintain it on Plan 9
because the mount table, a kernel-resident data struc-
ture, contains all the information about the non-
hierarchical connectivity of the name space. (On Unix,
by contrast, symbolic links are stored on the file server
rather than in the kernel.) Moreover, the presence of a
full file name for each Channel in the mount table
provides the information necessary to resolve ambigui-
ties.

The mount table is examined in the from→to direc-
tion when evaluating a name, but .. points backwards
in the hierarchy, so to evaluate .. the table must be
examined in the to→from direction. (‘‘How did we
get here?’’)

The value of .. is ambiguous when there are multiple
bindings (mount points) that point to the directories
involved in the evaluation of ... For example, return

to our original script with /n/bopp/v6 (containing a
home directory for ken) and /n/bopp/v7 (contain-
ing a home directory for rob) unioned into /home.
This is represented by two entries in the mount table,
from=/home, to=/n/bopp/v6 and from=/home,
to=/n/bopp/v7. If we have set our current direc-
tory to /home/rob (which has landed us in the physi-
cal location /n/bopp/v7/rob) our current directory
is not a mount point but its parent is. The value of ..
is ambiguous: it could be /home, /n/bopp/v7, or
maybe even /n/bopp/v6, and the ambiguity is
caused by two tofiles bound to the same
fromfile. By our definition, if we now evaluate ..,
we should acquire the directory /home; otherwise
../ken could not possibly result in ken’s home direc-
tory, which it should. On the other hand, if we had
originally gone to /n/bopp/v7/rob, the name
../ken should not evaluate to ken’s home directory
because there is no directory /n/bopp/v7/ken
(ken’s home directory is on v6). The problem is that
by using local file operations, it is impossible to distin-
guish these cases: regardless of whether we got here
using the name /home/rob or /n/bopp/v7/rob,
the resulting directory is the same. Moreover, the
mount table does not itself have enough information to
disambiguate: when we do a local operation to evaluate
.. and land in /n/bopp/v7, we discover that the
directory is a tofile in the mount table; should we
step back through the table to /home or not?

The solution comes from the Cnames themselves.
Whether to step back through the mount point
from=/home, to=/n/bopp/v7 when evaluating
.. in rob’s directory is trivially resolved by asking
the question, Does the Cname for the directory begin
/home? If it does, then the path that was evaluated to
get us to the current directory must have gone through
this mount point, and we should back up through it to
evaluate ..; if not, then this mount table entry is irrele-
vant.

More precisely, both before and after each .. element
in the path name is evaluated, if the directory is a
tofile in the mount table, the corresponding
fromfile is taken instead, provided the Cname of
the corresponding fromfile is the prefix of the
Cname of the original directory. Since we always
know the full name of the directory we are evaluating,
we can always compare it against all the entries in the
mount table that point to it, thereby resolving ambigu-
ous situations and maintaining the lexical property of
... This check also guarantees we don’t follow a mis-
leading mount point, such as the entry pointing to
/home when we are really in /n/bopp/v7/rob.
Keeping the full names with the Channels makes it

easy to use the mount table to decide how we got here
and, therefore, how to get back.

In summary, the algorithm is as follows. Use the usual
file system operations to walk to ..; call the resulting
directory d . Lexically remove the last element of the
initial file name. Examine all entries in the mount table
whose tofile is d and whose fromfile has a
Cname identical to the truncated name. If one exists,
that fromfile is the correct result; by construction, it
also has the right Cname. In our example, evaluating
.. in /home/rob (really /n/bopp/v7/rob) will
set d to /n/bopp/v7; that is a tofile whose
fromfile is /home. Removing the /rob from the
original Cname, we find the name /home, which
matches that of the fromfile, so the result is the
fromfile, /home.

Since this implementation uses only local operations to
maintain its names, it is possible to confuse it by exter-
nal changes to the file system. Deleting or renaming
directories and files that are part of a Cname, or modi-
fying the mount table, can introduce errors. With more
implementation work, such mistakes could probably be
caught, but in a networked environment, with machines
sharing a remote file server, renamings and deletions
made by one machine may go unnoticed by others.
These problems, however, are minor, uncommon and,
most important, easy to understand. The method main-
tains the lexical property of file names unless an exter-
nal agent changes the name surreptitiously; within a sta-
ble file system, it is always maintained and pwd is
always right.

To recapitulate, maintaining the Channel’s absolute
file names lexically and using the names to disam-
biguate the mount table entries when evaluating .. at a
mount point combine to maintain the lexical definition
of .. efficiently.

6. Cleaning names

The lexical processing can generate names that are
messy or redundant, ones with extra slashes or embed-
ded ../ or ./ elements and other extraneous artifacts.
As part of the kernel’s implementation, we wrote a pro-
cedure, cleanname, that rewrites a name in place to
canonicalize its appearance. The procedure is useful
enough that it is now part of the Plan 9 C library and is
employed by many programs to make sure they always
present clean file names.

Cleanname is analogous to the URL-cleaning rules
defined in RFC 1808 [Field95], although the rules are
slightly different. Cleanname iteratively does the fol-
lowing until no further processing can be done:

1. Reduce multiple slashes to a single slash.

2. Eliminate . path name elements (the current
directory).

3. Eliminate .. path name elements (the parent
directory) and the non-. non-.., element that
precedes them.

4. Eliminate .. elements that begin a rooted
path, that is, replace /.. by / at the beginning
of a path.

5. Leave intact .. elements that begin a non-
rooted path.

If the result of this process is a null string, cleanname
returns the string ".", representing the current direc-
tory.

7. The fd2path system call

Plan 9 has a new system call, fd2path, to enable pro-
grams to extract the Cname associated with an open file
descriptor. It takes three arguments: a file descriptor, a
buffer, and the size of the buffer:

int fd2path(int fd, char *buf, int nbuf)

It returns an error if the file descriptor is invalid; other-
wise it fills the buffer with the name associated with
fd. (If the name is too long, it is truncated; perhaps
this condition should also draw an error.) The
fd2path system call is very cheap, since all it does is
copy the Cname string to user space.

The Plan 9 implementation of getwd uses fd2path
rather than the tricky algorithm necessary in Unix:

char*
getwd(char *buf, int nbuf)
{

int n, fd;

fd = open(".", OREAD);
if(fd < 0)

return NULL;
n = fd2path(fd, buf, nbuf);
close(fd);
if(n < 0)

return NULL;
return buf;

}

(The Unix specification of getwd does not include a
count argument.) This version of getwd is not only
straightforward, it is very efficient, reducing the perfor-
mance advantage of a built-in pwd command while
guaranteeing that all commands, not just pwd, see sen-
sible directory names.

Here is a routine that prints the file name associated
with each of its open file descriptors; it is useful for

tracking down file descriptors left open by network lis-
teners, text editors that spawn commands, and the like:

#define NBUF 256

void
openfiles(void)
{

int i;
char buf[NBUF];

for(i=0; i<NFD; i++)
if(fd2path(i, buf, NBUF) >= 0)

print("%d: %s\n", i, buf);
}

8. Uses of good names

Although pwd was the motivation for getting names
right, good file names are useful in many contexts and
have become a key part of the Plan 9 programming
environment. The compilers record in the symbol table
the full name of the source file, which makes it easy to
track down the source of buggy, old software and also
permits the implementation of a program, src, to auto-
mate tracking it down. Given the name of a program,
src reads its symbol table, extracts the file informa-
tion, and triggers the editor to open a window on the
program’s source for its main routine. No guesswork,
no heuristics.

The openfiles routine was the inspiration for a new
file in the /proc file system [Kill84]. For process n ,
the file /proc/n/fd is a list of all its open files,
including its working directory, with associated infor-
mation including its open status, I/O offset, unique id
(analogous to i-number) and file name. Figure 1 shows
the contents of the fd file for a process in the window
system on the machine being used to write this paper.
(The Linux implementation of /proc provides a
related service by giving a directory in which each file-
descriptor-numbered file is a symbolic link to the file
itself.) When debugging errant systems software, such
information can be valuable.

Another motivation for getting names right was the
need to extract from the system an accurate description
of the mount table, so that a process’s name space could
be recreated on another machine, in order to move (or
simulate) a computing environment across the network.
One program that does this is Plan 9’s cpu command,
which recreates the local name space on a remote
machine, typically a large fast multiprocessor. Without
accurate names, it was impossible to do the job right;
now /proc provides a description of the name space
of each process, /proc/n/ns:

% cat /proc/125099/fd
/usr/rob

0 r M 5141 00000001.00000000 0 /mnt/term/dev/cons
1 w M 5141 00000001.00000000 51 /mnt/term/dev/cons
2 w M 5141 00000001.00000000 51 /mnt/term/dev/cons
3 r M 5141 0000000b.00000000 1166 /dev/snarf
4 rw M 5141 0ffffffc.00000000 288 /dev/draw/new
5 rw M 5141 00000036.00000000 4266337 /dev/draw/3/data
6 r M 5141 00000037.00000000 0 /dev/draw/3/refresh
7 r c 0 00000004.00000000 6199848 /dev/bintime

%

Figure 1. The contents of the fd (open file descriptor) file.

% cat /proc/125099/ns
bind / /
mount -aC #s/boot /
bind #c /dev
bind #d /fd
bind -c #e /env
bind #p /proc
bind -c #s /srv
bind /386/bin /bin
bind -a /rc/bin /bin
bind /net /net
bind -a #l /net
mount -a #s/cs /net
mount -a #s/dns /net
bind -a #D /net
mount -c #s/boot /n/emelie
bind -c /n/emelie/mail /mail
mount -c /net/il/134/data /mnt/term
bind -a /usr/rob/bin/rc /bin
bind -a /usr/rob/bin/386 /bin
mount #s/boot /n/emelieother other
bind -c /n/emelieother/rob /tmp
mount #s/boot /n/dump dump
bind /mnt/term/dev/cons /dev/cons
...
cd /usr/rob
%

(The # notation identifies raw device drivers so they
may be attached to the name space.) The last line of the
file gives the working directory of the process. The for-
mat of this file is that used by a library routine, newns,
which reads a textual description like this and recon-
structs a name space. Except for the need to quote #
characters, the output is also a shell script that invokes
the user-level commands bind and mount, which are
just interfaces to the underlying system calls. However,
files like /net/il/134/data represent network
connections; to find out where they point, so that the
corresponding calls can be reestablished for another
process, they must be examined in more detail using the
network device files [PrWi93]. Another program, ns,
does this; it reads the /proc/n/ns file, decodes the
information, and interprets it, translating the network
addresses and quoting the names when required:

...
mount -a ’#s/dns’ /net
...
mount -c il!135.104.3.100!12884 /mnt/term
...

These tools make it possible to capture an accurate
description of a process’s name space and recreate it
elsewhere. And like the open file descriptor table, they
are a boon to debugging; it is always helpful to know
exactly what resources a program is using.

9. Adapting to Unix

This work was done for the Plan 9 operating system,
which has the advantage that the non-hierarchical
aspects of the name space are all known to the kernel.
It should be possible, though, to adapt it to a Unix sys-
tem. The problem is that Unix has nothing correspond-
ing precisely to a Channel, which in Plan 9 represents
the unique result of evaluating a name. The vnode
structure is a shared structure that may represent a file
known by several names, while the file structure
refers only to open files, but for example the current
working directory of a process is not open. Possibilities
to address this discrepancy include introducing a
Channel-like structure that connects a name and a
vnode, or maintaining a separate per-process table that
maps names to vnodes, disambiguating using the
techniques described here. If it could be done the result
would be an implementation of .. that reduces the
need for a built-in pwd in the shell and offers a consis-
tent, sensible interpretation of the ‘parent directory’.

We have not done this adaptation, but we recommend
that the Unix community try it.

10. Conclusions

It should be easy to discover a well-defined, absolute
path name for every open file and directory in the sys-
tem, even in the face of symbolic links and other non-
hierarchical elements of the file name space. In earlier
versions of Plan 9, and all current versions of Unix,
names can instead be inconsistent and confusing.

The Plan 9 operating system now maintains an accurate
name for each file, using inexpensive lexical operations
coupled with local file system actions. Ambiguities are
resolved by examining the names themselves; since
they reflect the path that was used to reach the file, they
also reflect the path back, permitting a dependable
answer to be recovered even when stepping backwards
through a multiply-named directory.

Names make sense again: they are sensible and consis-
tent. Now that dependable names are available, system
services can depend on them, and recent work in Plan 9
is doing just that. We—the community of Unix and
Unix-like systems—should have done this work a long
time ago.

11. Acknowledgements

Phil Winterbottom devised the ns command and the fd
and ns files in /proc, based on an earlier implementa-
tion of path name management that the work in this
paper replaces. Russ Cox wrote the final version of
cleanname and helped debug the code for reversing
the mount table. Ken Thompson, Dave Presotto, and
Jim McKie offered encouragement and consultation.

12. References

[Field95] R. Fielding, ‘‘Relative Uniform Resource
Locators’’, Network Working Group Request for Com-
ments: 1808 , June, 1995.

[Kill84] T. J. Killian, ‘‘Processes as Files’’, Proceed-
ings of the Summer 1984 USENIX Conference , Salt
Lake City, 1984, pp. 203-207.

[Korn94] David G. Korn, ‘‘ksh: An Extensible High
Level Language’’, Proceedings of the USENIX Very
High Level Languages Symposium , Santa Fe, 1994, pp.
129-146.

[Korn00] David G. Korn, personal communication.

[PeMc95] Jan-Simon Pendry and Marshall Kirk McKu-
sick, ‘‘Union Mounts in 4.4BSD-Lite’’, Proceedings of
the 1995 USENIX Conference , New Orleans, 1995.

[Pike91] Rob Pike, ‘‘81⁄2 , the Plan 9 Window System’’,
Proceedings of the Summer 1991 USENIX Conference ,
Nashville, 1991, pp. 257-265.

[Pike93] Rob Pike, Dave Presotto, Ken Thompson,
Howard Trickey, and Phil Winterbottom, ‘‘The Use of
Name Spaces in Plan 9’’, Operating Systems Review ,
27, 2, April 1993, pp. 72-76.

[PrWi93] Dave Presotto and Phil Winterbottom, ‘‘The
Organization of Networks in Plan 9’’, Proceedings of
the Winter 1993 USENIX Conference , San Diego, 1993,
pp. 43-50.

