
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 51

ASK: Active Spam Killer

Marco Paganini
paganini@paganini.net

www.paganini.net

Abstract

We present Active Spam Killer (ASK), a program that
attempts to validate unknown senders before allowing
delivery of their message. Validation occurs by means of
a challenge reply sent to senders who are not yet known
to the system. Messages are kept in a queue pending
confirmation until the sender replies to the challenge.
Further messages coming from confirmed senders are
delivered immediately. In a sample of 1000 spam mails,
ASK was 99.7% effective at blocking spam, resulting in
only 3 spam messages being delivered. Other programs’
best ratios were 97.8% or as many as 22 spam messages
delivered.

1 Introduction
Unsolicited Commercial Emails (UCEs), also com-
monly called “spam” represent a serious problem to
most Internet users, who are constantly bombarded with
all sorts of scams, promotions, and offensive material.
This situation has prompted the creation of many differ-
ent tools to eliminate the problem, with varying degrees
of success.

The most common way to deal with spam is to parse
incoming mails and decide whether they should be deliv-
ered or not based on their contents. Reasonable results
have been obtained with this technique, but the complex-
ity and diversity of human languages make it a difficult
task. Such content filtering tools propose to attack one
of the weak spots in spam: the message content itself.

The effectiveness of such tools can be drastically re-
duced when the incoming mail employs an unknown
language or even an unknown character set. Also, clev-
erly crafted emails may never be detectable as the differ-
ence between those and perfectly valid emails is subtle.

Active Spam Killer (ASK) proposes to attack a dif-
ferent weak spot in the spam chain: the validity of the
sender’s email address. When a message from an un-
known origin is received, a challenge (also known as
confirmation message) is sent back to the mail origi-
nator. This message contains brief instructions to the
sender on how to get authenticated into the system and
cause delivery of the original message. The confirma-

tion message is crafted in such a way that a simple re-
ply keeping the “Subject” line intact will suffice. The
confirmation message also contains a unique MD5 [16]
hash computed by combining the contents of the original
email with a secret key known only to the recipient. This
prevents false confirmation returns as the code is based
on the unique characteristics of the receiver.

The message remains stored in the pending mail
queue until a confirmation return is received (a reply
to the confirmation message with the MD5 hash in the
“Subject” header). When that happens, ASK checks the
pending mail queue for a message whose MD5 signa-
ture matches the one in the confirmation return. If found,
the original message is delivered from the pending mail
queue and the sender’s email address is automatically
added to the whitelist. This sender has now been vali-
dated and all future messages from this address will be
immediately delivered.

The sender’s address can also be added to two other
lists: the ignorelist and the blacklist. The first causes
emails to be silently ignored while the second not only
ignores the email but also sends a message back to the
originator explaining that future emails coming from this
address are blocked.

This challenge-authentication scheme guarantees that
delivered emails always come from valid senders. Un-
wanted (but technically valid) senders can be easily ig-
nored as they offer a simple key to their detection: their
own email addresses.

Although an auto-responder could be used to defeat
this method, this is unlikely as it would expose the
sender to legal complications, account and service can-
cellations, and a fairly large number of ”Invalid Ad-
dress” response messages during normal operation.

The rest of this paper is organized as follows: Sec-
tion 2 provides background information on popular anti-
spam techniques. Section 3 details ASK’s design and
operation. Section 4 compares the effectiveness of ASK
against other anti-spam tools. Section 5 surveys other
challenge-based solutions. Finally, Section 6 presents
our conclusions and future work.



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association52

2 Background
Compared to the traditional method of mailing printed
propaganda, spam costs almost nothing. No mailing in-
frastructure is needed except for an Internet account and
a personal computer. A one or two percent return on in-
vestment potential applied to millions of emails results
in a number large enough to justify the approach to a
number of people.

The first ingredient is a large number of email ad-
dresses, usually obtained by harvesting addresses off the
Internet. A study conducted by the Federal Trade Com-
mission concluded that 86% of all addresses posted to
Web pages and to the newsgroups received spam [5].
Anything resembling an email address is collected and
used. Those without the resources to mine the addresses
themselves can purchase CDs containing ready-to-use
lists of addresses.

Next, a Mass Emailer like DynamicMailer [3] is used
to deliver the message to the list of addresses. These
programs normally provide certain facilities like header
forging, sending emails directly from the user’s worksta-
tion (bypassing the need for an SMTP server) and others.

Spammers must always act as inconspicuously as pos-
sible to avoid account cancellation, revenge from angry
users, and legal problems. The sender’s email address
is often forged to an invalid address or to a throw-away
account from a free web-mail provider. These accounts
are rapidly filled with bounce messages as a result of
outdated and invalid emails in the list.

Instructions on how to obtain the product or service
offered are normally contained in the body of the mail,
with URLs pointing to the Web page of the seller.

Next, we outline the most common anti-spam tech-
niques in use today.

2.1 Realtime Blackhole Lists
Misconfigured mail servers will relay any incoming
message to any destination without control. These
servers can be used to deliver mail indiscriminately and
in many cases, anonymously.

Realtime Blackhole Lists (RBLs) are online databases
containing the IP address of such servers. These
databases are queried by Mail Transfer Agents (MTAs)
upon receipt of a new message. If the IP address origi-
nating the connection is listed in the database, the con-
nection will be terminated and the appropriate error code
will be sent. Some RBLs also keep dial-in IP addresses
in an attempt to detect messages sent directly from dial-
up workstations.

Many such databases exist today, with MAPS [9] be-
ing a well known provider of such services. Most MTAs
support this feature with minimal configuration effort.

RBLs are not very effective if used as the only spam
prevention method as they can only block mail (spam or

not) coming from spammers who use open relays to send
their messages. Even though some RBLs specifically list
dial-in lines, often it is not practical to use those as many
legitimate users send emails directly from their worksta-
tions over dialup lines.

Some RBL providers have complicated procedures
to remove entries from their databases, leading to a
substantial number of false positives (See Section 4.1).
Also, there are normally no whitelist mechanisms avail-
able to regular users, meaning that it is impossible to
grant access to a certain known valid email or IP with-
out supervisory privileges.

2.2 Content Filtering Tools
Tools in this category try to detect spam by investigating
the content of received emails.

Early attempts used simplistic keyword filters, nor-
mally implemented with generic mail processing tools.
Specific strings like “Dear Sir” in the body of the email
would flag the message as spam. This produced inaccu-
rate results and a fairly large number of false positives.

A more sophisticated approach to the problem em-
ploys scoring of certain keywords, sentences and char-
acteristics pertinent to spam mail. A simple “Dear Sir”
might indicate that we are dealing with spam, but “Dear
Sir,” “Click Here,” and “Call now” in the same email
message are a very clear indication. SpamAssassin [20]
utilizes this technique.

Usually, a complex set of rules exists with a positive
or negative numeric score assigned to each rule. Rules
that clearly indicate spam receive high values. Negative
values reduce the probability of the email being classi-
fied as spam (even in the presence of other clear indica-
tions). A rule to match a string like “Dear Sir/Madam”
will have a lower score than “Work from home” as the
latter is a clearer indication of the common home em-
ployment Internet scams. Expressions like “Usenix”
and “Algorithm” would receive a negative value as they
strongly suggest that this is not a spam mail. The mail
will be marked as spam if the sum of all matching scores
exceeds a user-defined threshold.

There are specific and distinct rules for the email
headers and body. The rules applied to the headers will
be equally effective, regardless of the language used to
send the email. Body analysis however is greatly af-
fected by language: a set of rules that perfectly detects
emails in the English language could completely miss
emails written in Italian or Korean.

A new variation of this technique, employing a naı̈ve
Bayes classifier to isolate junk mail has become quite
common [17]. Bogofilter [15] is a popular tool in this
category.

These tools can be trained to learn about good and
bad combinations of tokens and their probabilities of oc-



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 53

curring together in incoming mails. As they learn more
about what is spam and what is not, the chances of cor-
rectly detecting junk emails increase.

Bayesian classifiers suffer from the same problem as
the other content filtering approaches: a well-crafted
message body is likely to pass unharmed, as few iden-
tifiable elements are present. Messages without a text
body (for example, advertising as an attached image file)
might pose a problem too since very little textual content
is available for analysis [10].

To illustrate how difficult it is to classify e-mails as
spam based solely on content, consider the following
email:

From: abcd12345@domain.com
To: yourname@yourdomain.com
Subject: Check this out.

Hi,

I found a tool called ‘‘CleanUp’’ at
(http://www.example.com). It clears
the contents of the browser cache
and history lists so other users
won’t know the websites you have
been browsing. Very useful!

This could represent either a perfectly valid email (if
coming from a known sender) or a clear indication of
spam (if coming from an unknown sender). Analysis
based solely on content is very difficult in this case, spe-
cially for someone without the knowledge about any pre-
vious association between the recipient and the sender.

2.3 Distributed Anti-Spam Networks
Spam messages are typically sent unaltered to a large
number of recipients. Distributed Anti-Spam Networks
attempt to curb spam by preventing its propagation.
Vipul’s Razor [14] and the Distributed Checksum Clear-
inghouse (DCC) [18] are examples of programs using
this technique.

Agents installed on the user’s workstation will gen-
erate fuzzy signatures of every incoming mail. These
signatures ignore small changes in the text so that slight
variations in the spam body or headers will still generate
similar signatures.

Next, a centralized database is queried looking for the
signature computed from the incoming mail. If a match
is found, the email is assumed to be spam and is dis-
carded.

Users are responsible for reporting spam to the
database (normally by means of a special account where
the spam mail should be forwarded). Once spam has
been reported by one user, all others will be protected
against that specific spam mail or similar ones.

Under normal circumstances, the chances of false
positives is very small, as actual users report spam to
the system. Also, the chances of catching spam that is
already in the database is quite good.

This approach, however, can only identify spam once
a previous (or similar) case exists, meaning that newly
sent spam will not be detected. A reasonable number of
spam reporters is required to make the system work re-
liably and the quality of the database is largely dictated
by the quality of the reports. Invalid or incorrect reports
could poison the database, causing valid emails to be re-
ported as spam. There is also a scalability concern, given
the centralized nature of the database servers containing
the signatures.

Another point to note is that an extra TCP connec-
tion is needed to contact the database servers, making
this a non-viable alternative for users behind restrictive
firewalls.

2.4 Challenge-Based Authentication

Challenge-authentication agents work on the premise
that mail should only be delivered after senders iden-
tify themselves. ASK, TMDA [11], and QConfirm [13]
are examples of programs that employ such a technique
(with variations). When a new mail is received, the
sender is checked against a database of known addresses.
If the sender is known, the email is delivered immedi-
ately. Otherwise, a challenge mail will be sent back to
the originator requesting confirmation. Once the sender
becomes known to the system, further messages coming
from the same address will be immediately accepted.

This method exploits the fact that most spammers use
invalid return addresses in their messages. Since no (or
limited) text analysis is performed, it is impossible to
force delivery of the message by crafting the message
body to look like an innocent message.

Unlike the previous alternatives, in challenge-
response systems, subsequent action is required from the
sender to deliver the email. Spammers utilizing valid
email accounts could reply to the challenge and get au-
thenticated to the system. Special provisions exist to
avoid mail-loops or sending challenges to mailing-lists.

3 Design

We designed ASK to be simple to install and read-
ily available to the widest possible audience. Supervi-
sory rights or re-configuration of the mail server is not
needed, allowing regular users to install the program un-
der their home directories.

ASK was developed in Python [7], an easy to read and
portable language that has been gaining a lot of popular-
ity lately. Python is available for most Unix variants,
making ASK portable across many platforms.



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association54

ASK works by reading emails from the standard in-
put. After processing, emails can be directly stored into
the user’s mailbox or sent to the standard output for post-
processing by other mail filters. This makes the program
compatible with a number of Mail Transfer Agents and
Mail Filters, like Sendmail [6], Qmail [4], Exim [12],
Postfix [21] and others. Support for Procmail [19] is
also embedded in the program, as well as direct delivery
to “mbox” and “Maildir” style mailboxes.

Emails pending confirmation (those for which no con-
firmation return has been received) are stored as individ-
ual text files. The file names contain the MD5 hash sent
in the confirmation, minimizing CPU utilization when
matching ordinary confirmation returns. The pending
mail queue can also optionally follow the Maildir for-
mat, allowing Qmail users to access and manage their
queues remotely via IMAP.

ASK is normally invoked by the user’s ˜/.forward
file mechanism or by procmail. Configuration is stored
in the ˜/.askrc file and all the control files and spool
directories are created by default under the ˜/.ask di-
rectory.

A flowchart of the program’s operation can be seen
on Figure 1. In the following paragraphs, numbers en-
closed in squares represent references to the correspond-
ing boxes in the flowchart.

Incoming mails are always checked against the
whitelist 1 , blacklist 2 , and ignorelist 3 (in this or-
der). The lists are implemented as text files containing a
set of regular expressions. Emails can be authenticated
based on the sender’s email address, the recipient’s email
address or the message subject. Plain substring compar-
ison is also available for simple matches.

A match in the whitelist will cause instant delivery of
the email 16 . If a match is not found in the whitelist,
the program tries to match the email on the blacklist and
then on the ignorelist. In either case, the original email is
discarded 19 , but matching the blacklist means a warn-
ing message will be sent back to the sender indicating
that further emails are blocked and ignored 11 .

The next step is to check for mail bounces, or error
messages sent by other MTAs 4 . Special processing
takes place to prevent the delivery of every bounce sent
to an invalid sender. This is discussed in more detail in
Section 3.1.

ASK provides a remote queue and list management
control by email. To use this feature, users must send
themselves an email containing certain commands in the
“Subject” header. ASK checks for remote commands 5
and executes the commands if appropriate. The com-
plete set of remote commands with examples is dis-
cussed in Section 3.2.

The next step is to check for confirmation returns 6 .

These messages contain a specific string in the “Subject”
field, followed by the MD5 hash that uniquely identifies
the message inside the pending queue. The MD5 hash is
extracted from the incoming mail and used to form a file
name that contains the original message. If such a file-
name exists 14 , the sender’s email in the confirmation
message and the one in the queued message are added
to the whitelist 17 . The original message is removed

from the queue and delivered 18 .
If ASK detects an invalid confirmation (for which no

files exist in the pending queue) the message will be
labeled as “Invalid Confirmation” and delivered. This
measure prevents loops with other ASK users.

A special case that deserves attention is that of spam
messages with the sender’s address forged to be the same
as the recipient. In this case, a confirmation message
cannot be sent as it would in turn be sent to the ASK
user. To avoid this, ASK implements the concept of a
mailkey: a string or short phrase that must be present
in every outgoing mail sent by the ASK user. Common
choices are words or short phrases from the user’s signa-
ture. ASK will first check for the presence of the mailkey
in incoming mails 7 . If it is found, the email is imme-

diately delivered 16 and processing ends. If not, ASK
compares the sender’s address to the ASK user’s address
(configured at installation time) 8 . The message will be

queued with a status of “Junk” if a match is found 15 .
The mailkey serves a second purpose: to minimize

the number of confirmations sent to replies. Ordinarily,
ASK has no means of knowing if a certain message is a
reply to an email sent by the ASK user or not. Most
MUAs, however, quote the entire original message in
a reply. This gives ASK an opportunity to detect the
mailkey in replies and deliver the message without a
confirmation. ASK can also be configured to automati-
cally add the sender’s email to the whitelist if a message
contains the mailkey.

Sending confirmation messages to mailing-lists would
be undesirable. For this reason, ASK tries to determine
if a message came from a mailing-list 9 before a con-
firmation is sent. Mailing-list messages will be immedi-
ately queued 15 and no confirmation will be generated.
The set of heuristics used to detect mailing-list and other
machine-generated emails is described in Section 3.3.

At this point 10 the message has passed all the tests
that could cause its delivery or dismissal:

• The message is not in the whitelist.
• The message is not in the ignorelist.
• The message is not in the blacklist.
• The message is not a bounce of any kind.
• The message is not a remote command request.
• The message is not a confirmation return.



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 55

END

START

Sender in
Whitelist?

Sender in
Blacklist?

Sender in
Ignorelist?

Remote
Command
Request?

Confirmation
Return?

Sent from
our email?

Mailing−list
Message?

MD5 in queue?

Deliver Mail

Send Nastygram

Process
Remote

Commands

Discard Mail

Deliver Queued
Message

Add Sender to
Whitelist

X−ASK−Version
Header?

Mailkey?

Mail
Contains our

Queue Message

Mail Bounce?

Y

Y

N

Y

Y

Y

N

N

N

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

N

to sender
Mail Confirmation

1

2

3

4

5

6

7

8

9

10

12

13

14

17

18

15

15

16 19

(Optional: Add sender to whitelist)

11

Figure 1: ASK Mail Processing Flowchart



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association56

• The message does not contain our mailkey.
• The message does not come from one of our own

emails.

The final step is to compute the MD5 hash and send
the confirmation message to the sender. This is dis-
cussed in detail in Section 3.4.

Next, we discuss special cases and features of ASK.

3.1 Bounce Treatment
A Mail Bounce is a message sent by the MTA when the
email cannot be delivered for any reason.

For ASK’s purposes, bounces can be broken down
into three distinct types: regular bounces, forged
bounces, and confirmation bounces.

Regular bounces occur due to a legitimate failure in
the process of sending mails whereas forged bounces
are actually spam messages with the sender set to
“MAILER-DAEMON.”

There is no way to distinguish between forged
bounces and regular bounces without integrating ASK
with the MTA, so both bounces are immediately deliv-
ered.

Confirmation bounces are generated when an error
happens during the delivery of a confirmation message.
These are very common as most spammers forge their
emails to contain invalid sender addresses. Confirmation
bounces are of no interest to the user and are discarded.
To that effect, ASK adds the X-ASK-Version header to
all confirmation messages it sends. Since most MTAs
quote the headers of the original message in their replies,
ASK can use this to discard these bounces as invalid
senders 12 . This is a workaround for those users who
cannot access their MTA configuration to make them-
selves trusted to the system. Trusted users can config-
ure ASK to send confirmations with an empty “Return
Path” which instructs the receiving MTA that no bounces
should be sent in case of an error.

3.2 Remote Commands
Remote commands are special strings embedded in the
“Subject” header that instruct ASK to perform certain
operations. Common tasks are supported, allowing reg-
ular maintenance to be performed by users without shell
access. Supported operations include:

• Requesting an email containing a brief help screen
on the other commands.

• Forcing the delivery of emails in the pending queue.
• Removing emails from the pending queue.
• Adding the sender of an email in the pending queue

to the whitelist, ignorelist, or blacklist.
• Editing any of the lists.

ASK offers two flavors of remote commands: text
mode, which causes an editable template to be gener-

ated and delivered to the user’s account or HTML mode
where clickable “mailto” links are used in the body of
the email to generate further individual emails contain-
ing commands to execute specific actions.

To avoid problems with forged email addresses, ASK
never replies back to the sender when dealing with re-
mote commands. Instead, a reply will be delivered to
the user’s email, set in the configuration file 13 . This
reply contains an editable (or clickable if operating in
HTML mode) template and some authentication tokens.
Upon receipt of this second email, the requested actions
will be executed.

As an example, let us suppose that user
user@domain wants to request a listing of the
queue by means of the ASK PROCESS QUEUE remote
command. The sequence of events would be:

1. The user sends an email from user@domain to
user@domain with “ASK PROCESS QUEUE”
in the subject.

2. ASK detects the “ASK PROCESS QUEUE” sub-
ject 5 and delivers an email containing the list
of queued files (including their MD5 hashes) to
user@domain 12 . As a security measure, the
email is not delivered to the sender but rather to
the owner’s email that was set at configuration time.
This guarantees that only the account owner will be
able to execute remote commands.

3. The user receives the email containing the “ASK
QUEUE REPORT” subject and the list of queued
files and hashes. The email is edited by the user
with the appropriate commands and sent back to
user@domain.

4. ASK receives the email, this time with the correct
MD5 hashes. The commands in the email are exe-
cuted 12 .

The supported remote commands can be found in Ta-
ble 1.

3.3 Mailing-List Handling
ASK implements a generic test that is able to match
most machine-generated mails including mailing-lists
and other challenge-based programs.

A common approach in mailing-lists is to rewrite the
sender’s address or add a “Reply-To” header pointing to
the list distribution address. Without special treatment,
confirmation messages would end up being sent to the
list’s distribution address, causing considerable confu-
sion.

Even though there is no official way of telling whether
a message was automatically generated or not, most
mailing-list managers today follow some guidelines.
ASK will not send a confirmation to a message if at least
one of the following criteria is met:



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 57

Command Description
ASK HELP Produces a list of available commands.
ASK PROCESS QUEUE Process the messages in the queue. Individual messages can be delivered or

erased. It is also possible to directly add the sender of a given message to any
of the lists (white/ignore/black).

ASK EDIT WHITELIST Sends back the contents of the whitelist to be edited by the user.
ASK EDIT IGNORELIST Sends back the contents of the ignorelist to be edited by the user.
ASK EDIT BLACKLIST Sends back the contents of the blacklist to be edited by the user.

Table 1: Supported Remote Commands

• If the message contains at least one of the following
headers: “Mailing-List,” “List-Id,” “List-Help,” or
“List-Post.”

• If the message contains the “Precedence” header set
to “bulk” or “list.”

• If the message contains the “Return-Path” header
set to null. This header is used to indicate where
error messages should be returned. If set to null, no
error messages should be returned [8].

• If the username part of the sender’s email con-
tain one of the following words: “majordomo,”
“listserv,” “listproc,” “netserv,” “owner,” “bounce,”
“mmgr,” “autoanswer,” “noreply,” or “nobody.”
Those are very common names in mailing-lists and
auto-responder return addresses.

Messages that match one of the conditions above and
are not in the whitelist will still remain in the pending
queue, where they can be manipulated with remote com-
mands. No confirmation message will be sent though.

3.4 Sending the Confirmation Message
Sending the confirmation is the last step when process-
ing a message from an unknown sender. Before the
confirmation is sent, ASK performs two final steps in
order to avoid mail loops with badly configured auto-
responders and other auto-reply services:

1. ASK verifies if the current email is already queued
by means of the MD5 hash (same hash, same
email). This offers a basic degree of protection
against services that send exactly the same message
multiple times.

2. A circular list is kept with the last N addresses used
when sending out a confirmation message. If the
current sender’s email address appears more than
X times in the list, no confirmation is sent. This
guarantees that no more than X messages will ever
be sent to the same sender in a given period of
time. Incoming mails that generate confirmations
will push the old ones out of the list, giving the
sender a chance for more confirmations after some
time. The values of both X and N are user config-
urable.

The confirmation message itself is a simple ASCII
text email containing brief instructions to the sender and
the MD5 hash in the “Subject” field. The confirmation
has to be brief and simple or else some senders might
just skip it altogether.

A typical confirmation message is presented on Fig-
ure 2.

The MD5 hash is generated by concatenating the mes-
sage text to a user configurable secret, making it impos-
sible for a spammer to get added to the whitelist by craft-
ing a fake confirmation.

The text is easily configurable by the user and more
than one language may be present in the confirmation at
the same time (normally English and the user’s mother
language). Ready to use templates are available in En-
glish, Spanish, French, German, Brazilian Portuguese,
Dutch, Italian, and Finnish.

4 Evaluation
In this section we compare the effectiveness of ASK and
other popular anti-spam alternatives.

4.1 Filtering Effectiveness
We selected five sets, from a total of 7000 emails, to
evaluate the tools. We used sets spam1 and non-spam1,
containing 1000 messages each, to test the content-
filtering and RBL tools. We used sets spam2 and non-
spam2, containing 2000 messages each, to train the
bayesian classifier. We used a larger sample during the
training phase as it improved the effectiveness of Bo-
gofilter considerably. We used set spam3 to test the ef-
fectiveness of a challenge-based approach.

Sets spam1, non-spam1, spam2, and non-spam2 were
donated by ASK users. We collected set spam3 from
SpamArchive [2]. Set spam3 contains no messages pre-
viously queued by ASK as those are by definition un-
confirmed.

Table 2 compares the effectiveness of different tools
when dealing with spam. nFN represents the number of
false negatives (known spam classified as a valid mail).
nFP represents the number of false positives (valid mail
classified as spam). %FN and %FP represent the per-



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association58

From: "Marco Paganini" <paganini@paganini.net>
Date: 23 Feb 2003 16:24:45 -0000
To: evil_spammer@example.com
Subject: Please confirm (conf#bbdff2f4fded51313511b83120a7b37e)

<< IMPORTANT INFORMATION! >>

This is an automated message.

The message you sent (attached below) requires confirmation
before it can be delivered. To confirm that you sent the
message below, just hit the "R"eply button and send this
message back (you don’t need to edit anything). Once this is
done, no more confirmations will be necessary.

This email account is protected by:
Active Spam Killer (ASK) - (C) 2001-2003 by Marco Paganini
For more information visit http://www.paganini.net/ask

--- Original Message Follows ---

Date: Sun, 23 Feb 2003 08:24:34 -0800 (PST)
From: evil_spammer@example>
Subject: SPAM TEST!
To: paganini@paganini.net

Hello.
This could be spam.

Figure 2: A Typical Confirmation Message

centage of false negatives and false positives, respec-
tively.

We distributed RBL providers in three groups, named
“RBL Group 1,” “RBL Group 2,” and “RBL Group 3.”
The first group contains only one RBL provider and rep-
resents the minimum protection case. The second group
contains a more reasonable mix with three distinct RBL
providers. Group 3 represents an extreme case with
nine RBL providers. The composition of these groups
is listed in Appendix A.

We tested DCC using two different thresholds (num-
ber of reports for a message to be considered spam). In
the first test, we considered one report enough to mark
the message as spam. The second test used a more con-
servative approach where five reports are needed as op-
posed to one.

Program nFN nFP %FN %FP
Bogofilter 22 16 2.2 1.6
DCC (Threshold 1) 799 0 79.9 0.0
DCC (Threshold 5) 925 0 92.5 0.0
RBL Group 1 997 10 99.7 1.0
RBL Group 2 652 16 65.2 1.6
RBL Group 3 420 308 42.0 30.8
SpamAssassin 118 20 11.8 2.0

Table 2: Compared Effectiveness of anti-spam tools

Bogofilter proved to be the most effective content-
filtering tool in its category, followed by SpamAssassin.
The percentage of false positives is very close for these

two tools. DCC had a considerable percentage of false
negatives but presents no false positives.

Using one RBL proved to be almost 100% ineffec-
tive in our tests, with only three spam emails detected
correctly. Raising the number of RBLs checked to three
resulted in a 65.2% rate of false negatives, but also raised
the percentage of false positives to 1.6%. Group 3 rep-
resents an extreme case, with nine RBLs being checked.
Even under these circumstances, a high mark of 42%
false negatives was verified, with a non-viable mark of
30.8% false positives. Of all solutions tested, RBLs were
visibly the worst performers.

4.1.1 ASK Filtering Effectiveness
To test ASK’s effectiveness, we sent 1000 confirmations
with a specially crafted envelope address and sender (to
catch bounces and replies). We waited for one week for
confirmations to return. The results can be seen on Ta-
ble 3.

Description Number of messages
Invalid Address (Bounced) 637
No response 259
Malformed emails 86
Responses received 18
Total 1000

Table 3: ASK Effectiveness Test

Of the 18 responses received, 14 were from one spe-
cific online marketing company and obviously unso-
licited. The remaining four came from bargain notifica-



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 59

tion services, apparently sent after the user susbcribed to
their services. Only three replies kept the original confir-
mation code in the message subject (without which, no
message delivery takes place), bringing the rate of false
negatives to 0.3%. Even if we assume that all spammers
could keep the “Subject” header intact, we will still have
a rate of false negatives of only 1.8%.

False positives in a challenge-authentication system
occur when valid senders do not reply to confirmation
messages. Systematic determination of the false positive
rate in a challenge-based authentication tool is a difficult
task. A confirmation message would have to be re-sent
to known valid senders, causing all sorts of problems.
Also, some senders who replied to the first confirmation
could get confused by the second confirmation request
and ignore it completely.

In an effort to understand other users’ experiences
with spam and how ASK performs in their environ-
ments, we submitted a simple survey [1] to the main
ASK mailing-list during March of 2003. A total of 32
users responded. The results can be seen in Table 4.

The results indicate that most users have been us-
ing ASK from 6 months to one year, with a substantial
amount of new users in the last three months.

Most ASK users received 10 to 20 spam messages a
day (33%), with a sizable part receiving 20 to 50 (28%)
spam messages a day. It is interesting to note that the
distribution is fairly even across the categories, indicat-
ing that ASK caters to all classes of users when it comes
to amount of spam received.

After beginning to use ASK, 61% of the users re-
port that practically no spam is present, and 21% report
that only 1 to 5 spam messages are received per month.
This brings the total users with a substantial reduction of
spam to 82%.

One important aspect of the survey is to verify
whether spammers reply to confirmation messages or
not. 35% reported no cases of spam delivered due to this
reason while 28% reported one or two cases. This brings
the total percentage of users with less than three cases of
spammers replying to confirmations to 63%. Another
28% reported between two and ten cases since ASK was
installed, which still can be considered a good mark con-
sidering that most users seem to be using ASK for more
than six months.

Another point we tried to clarify is the possibility of
valid users not responding to the confirmations (false
positives). Most users (42%) reported very few cases
of false positives (1 to 2). 31% reported no cases at all.
These results combined indicate that 73% of those who
responded to the survey had no significant problems with
false positives. This seems to indicate that, as a rule,
valid senders tend to reply to confirmation messages.

4.2 Compatibility

ASK requires a Unix/Linux compatible operating sys-
tem. ASK was written in Python and should run with no
or few modifications under most Unix variants.

ASK is compatible with most major MTAs available
today, including Sendmail, Qmail, Postfix, and Exim.
Procmail support is also available. Any MTA capable
of delivering to a pipe should work without problems.
ASK natively supports mbox and Maildir mailbox for-
mats, with MH planned.

Incoming mails are read on the standard input, mak-
ing it possible to cascade ASK with other anti-spam so-
lutions like SpamAssassin or a multitude of Bayesian fil-
ters and RBLs.

4.3 Performance

To evaluate ASK’s performance, we selected a set of
1000 spam messages contributed by ASK users, total-
ing 14MB of data. On the average, each message has
14KB and 457 lines of text. Text lines have an average
length of 31 bytes.

We configured ASK to send a confirmation to each
message. ASK took 524 seconds (on a Pentium
III/500MHz workstation) to process all messages, bring-
ing the average processing overhead to 0.52 seconds per
email received.

During this test, we tried different logging levels (0,
1, 10) and different list sizes (5, 100, 500 lines). No
significant variation was detected in the results.

To measure the network overhead, we configured
ASK to keep the first 50 lines of each message in the
confirmation. This resulted in an average size of 3.3KB
per confirmation message, with two languages selected,
totaling 3.3MB of extra network traffic. We estimate the
overhead of confirmation bounces to be around 2MB,
but it can be avoided by configuring the system to send
confirmation messages with a null “Return-Path.”

Another area of interest is the overhead in process-
ing remote commands. ASK took 30 seconds to process
a queue with 1000 messages. This is the most expen-
sive remote command, as every file in the queue has to
be opened and investigated. Proper queue maintenance
should keep the number of queued files well under 1000,
reducing considerably the time for this operation.

The CPU overhead is acceptable for most sites, but
something to be considered for high volume servers. The
network traffic overhead should be of no concern unless
network service is paid by volume. If this is the case,
a few bandwidth reduction measures can be taken, such
as reducing the number of lines quoted from the origi-
nal message in the confirmation or limiting confirmation
messages to only one language.



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association60

Question Answers Percentage
Total time using ASK Less than a month 12%

1 to 3 months 28%
3 to 6 months 9%
6 months to one year 42%
More than one year 9%

Number of spam messages received per day before ASK 1 to 10 33%
11 to 20 18%
20 to 50 28%
More Than 50 21%

Number of spam messages received per month after ASK Practically none 61%
1 to 5 21%
Between 5 and 10 9%
More than 10 9%

Number of times a spammer replied to the confirmation 0 35%
1 to 2 28%
2 to 10 28%
10 to 20 6%
More than 20 3%

Number of times a valid sender failed to reply to a confirmation 0 31%
1 to 2 42%
2 to 10 15%
10 to 20 6%
More than 20 6%

Table 4: ASK User Survey Results

5 Related Work
In this section we discuss other challenge-based authen-
tications and compare some of their key features to ASK.

5.1 Tagged Message Delivery Agent
Tagged Message Delivery Agent (TMDA) is a spam-
reduction solution by Jason R. Mastaler. TMDA is also
written in Python and integrates well with most MTAs
and MUAs.

One of the key problems in challenge-authentication
tools is how to match the confirmation return to the
stored message, as very few headers from the original
message are kept in the reply. ASK sends the MD5 hash
that identifies the message (the cookie) in the “Subject”
header, knowing that most MUAs quote the original sub-
ject in replies.

TMDA takes another approach to this problem. In-
stead of relying on the contents of the “Subject” header,
the sender’s own email is rewritten to contain the cookie
in it. This is possible due to the use of extension ad-
dresses, a configurable MTA feature that allows one ac-
count to receive emails with differentiated recipient ad-
dresses. Under this scheme, emails going to foo@bar
and foo-extension@bar will both be delivered
to user foo at the host bar. TMDA uses use the
“-extension” part to include all sorts of control messages

and cookies that need to be present in the reply.

A typical message exchange between a TMDA user
called tmda@domain and a non-TMDA user called
user@domain is something as follows:

1. User user@domain sends tmda@domain a
message.

2. TMDA intercepts the message for tmda@domain
and generates a confirmation to user@domain.
The confirmation’s sender address is rewrit-
ten to something like tmda-confirm-
cookie@domain where the cookie is an
alphanumeric sequence that identifies the original
message.

3. The user sees the confirmation and replies.
The reply is sent to tmda-confirm-
cookie@domain.

4. TMDA receives the confirmation return and ex-
tracts the cookie from the recipient’s email address.
The message is dequeued and delivered.

TMDA also presents the concept of tagged messages
(hence its name): outgoing emails may have the sender’s
address rewritten to contain special tags that bind that
email to that recipient (future emails from that recipient
will only be accepted on the special, tagged email), dated
addresses (emails that are valid only throughout a date



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 61

range) and keyword addresses, temporary addresses that
work indefinitely until manually revoked (for Web-based
services).

The utilization of extension addresses adds robustness
to the system and the possibility of tagged messages.
However, it requires complete control over the MTA
configuration files at the ISP level (or an ISP with ex-
tension addresses enabled, a rather uncommon feature).
Furthermore, some integration issues exist with Send-
mail, which does not provide envelope information to
programs invoked from the user’s ˜./forward file.
In these cases, procmail must be configured as the lo-
cal mailer in order to make all the required information
available to TMDA.

5.2 Qconfirm

Qconfirm is a challenge-authentication system written in
the C Language by Gerrit Pape for Qmail users.

Unlike ASK, Qconfirm is not a single program but
rather a group of smaller programs with specific tasks
(following Qmail’s style). Incoming messages are
checked by the qconfirm-check program which is
also responsible for sending confirmation messages to
unknown senders.

Pending messages are held in the qmail queue.
qconfirm-check will send confirmation messages
with an empty envelope sender and the “From” header
set to “user-qconfirm-key@host,” and create a file
named .qmail-qconfirm-key under the user’s
home directory.

Confirmation returns have the recipient set to
user-qconfirm-key@host. This will trigger the
.qmail-confirm-key file previously created and
invoke qconfirm-accept to deliver the queued mes-
sage and add the sender’s address to the .qcon-
firm/ok directory (Qconfirm’s whitelist).

Common queue and list maintenance tasks are per-
formed by means of a command line utility called
qconfirm. This program can also be executed re-
motely by creating special Qmail control files to invoke
qconfirm-control. This provides an interface sim-
ilar to ASK’s remote commands.

Qconfirm is lightweight and fast but relies heavily on
the infrastructure offered by Qmail. This leaves Qcon-
firm as an option for Qmail users only.

6 Conclusions

We presented ASK, a challenge-authentication system
that authenticates senders before their emails are deliv-
ered. In our tests with 1000 spam messages, ASK was
able to block 99.7% of all spam messages, meaning that
only 3 spam messages got through.

6.1 Future Work

Currently, ASK is not directly integrated with the MUA
or the MTA, meaning that it has no knowledge about out-
going emails sent directly by the user. This design deci-
sion was taken to allows users without supervisory rights
to install and use the program. Unfortunately, it cre-
ates certain situations that could be used by spammers
like sending emails that appear to be confirmation mes-
sages from other ASK users or forging email bounces.
MTA and MUA integration will be offered by means of
an SMTP proxy agent and an MTA wrapper. Both ap-
proaches offer ASK the opportunity to pre-process out-
going messages before the actual delivery takes place.
Extension addresses can be used to rewrite the outgoing
envelope address so that invalid confirmation returns and
MTA bounces can be correctly tracked.

The problem of emails coming from unknown sources
will be addressed with the introduction of two new
concepts: Bounded addresses and user confirmation
mode. Bounded addresses create a temporary address
that whitelists the first sender who sends an email to
it. That sender will be forever tied to that particular
email. This is similar in concept to TMDA’s “Keyword
addresses,” with the difference that they become bound
to one particular sender after the first use. This creates a
“throw-away” email address that can easily be revoked
in case of abuse.

User confirmation mode will be available to those
who cannot change their MTA configurations or do not
desire to make use of extension addresses. Under this
mode, confirmation messages are sent to the account
owner instead of the sender. This allows the owner to
perform a reply and whitelist an email coming from an
unknown account. Once the first reply is received, ASK
can resume the normal mode of operation.

Other smaller features are also planned, like MH
style mailbox support, automatic queue cleanup, and
augmented pattern matching for the lists, including
full header and body regular expression matching and
boolean NOT qualifiers among others.

6.2 Availability

ASK is Open Source Software released under the GNU
GPL Software License. The program’s home page, in-
cluding download and documentation links is located at
www.paganini.net/ask

7 Acknowledgments

We would like to thank Daniel Bastos, Durval Menezes,
Charles P. Wright and all others who contributed with
their mailboxes, making the effectiveness test possible.
We thank Jason Mastaler and Gerrit Pape for their help
reviewing the “Related Work” Section. Thanks go to



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association62

the anonymous Usenix reviewers and specially our shep-
herd, Erez Zadok, for his guidance and support.

A Realtime Blackhole Lists
Here we list the RBL providers used for the tests per-
formed on Section 4.1.

• Group 1:

1. Open Relay Database (ORDB),
www.ordb.org

• Group 2:

1. Spamhaus,
www.spamhaus.org

2. Blitzed Open Proxy Monitor List,
http://opm.blitzed.org

3. Relays.Osirusoft.com,
http://relays.osirusoft.com

• Group 3:

1. Spamhaus,
www.spamhaus.org

2. Blitzed Open Proxy Monitor List,
http://opm.blitzed.org

3. Relays.Osirusoft.com,
http://relays.osirusoft.com

4. Open Relay Database (ORDB),
www.ordb.org

5. Not Just Another Bogus List,
http://dnsbl.njabl.org/

6. Extreme Spam Blocking List (xbl),
http://xbl.selwerd.cx/

7. Fiveten,
www.five-ten-sg.com/blackhole.
php

8. Spamcop Blocking List,
http://spamcop.net/bl.shtml

9. Distributed Server Boycott List (DSBL),
http://dsbl.org/main

References
[1] Ask user survey. www.paganini.net/ask/

cgi-bin/survey.cgi, March 2003.

[2] Spamarchive. www.spamarchive.org, 2003.

[3] SohoAny Associates. Dynamicmailer. www.
sohoany.com/Dynamicmailer.html,
2003.

[4] Dan J Bernstein. Qmail. www.qmail.org, 2003.

[5] Federal Trade Comission. Email address
harvesting: How spammers reap what you
sow. www.ftc.gov/bcp/conline/pubs/
alerts/spamalrt.pdf, November 2002.

[6] The Sendmail Consortium. Sendmail. www.
sendmail.org, 2003.

[7] The Python Software Foundation. Python. www.
python.org, 2003.

[8] J. Klensin. Simple mail transfer protocol. Tech-
nical Report RFC 2821, AT&T Laboratories, April
2001.

[9] Mail Abuse Prevention System LLC. Mail abuse
prevention system rbl. http://mail-abuse.
org/rbl/, 2003.

[10] Sharon Machlis. Spam’s getting more so-
phisticated. www.computerworld.
com/softwaretopics/software/
groupware/story/0,10801,7%7704,
00.html, January 2003.

[11] Jason R. Mastaler. Tagged message delivery agent.
http://tmda.net, 2003.

[12] University of Cambridge. Exim. www.exim.
org, 2003.

[13] Gerrit Pape. Qconfirm - request delivery con-
firmation for mail. http://smarden.org/
qconfirm/, 2003.

[14] Vipul Ved Prakash. Vipul’s razor. http://
razor.sourceforge.net/, 2003.

[15] Eric S Raymond. Bogofilter. http://
bogofilter.sourceforge.net/, 2003.

[16] R. Rivest. Simple mail transfer protocol. Technical
Report RFC 1321, MIT Laboratory for Computer
Science and RSA Data Security, Inc., April 1992.

[17] Mehran Sahami, Susan Dumais, David Hecker-
man, and Eric Horvitz. A bayesian approach to
filtering junk E-mail. In Learning for Text Catego-
rization: Papers from the 1998 Workshop, Madi-
son, Wisconsin, 1998. AAAI Technical Report
WS-98-05.

[18] Rhyolite Software. Dcc. www.rhyolite.com/
anti-spam/dcc/, 2003.

[19] Philip Guenther Stephen R. van den Berg. Proc-
mail. www.procmail.org, 2003.

[20] The SpamAssassin Development Team. Spamas-
sassin. www.spamassassin.org, 2003.

[21] Wietse Venema. Postfix. www.postfix.org,
2003.


