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Abstract 
The growing popularity of thin-client systems makes it important to determine the factors that govern the 
performance of these thin-client architectures. To assess the viability of the thin-client computing model, we 
measured the performance of six popular thin-client platforms—Citrix MetaFrame, Microsoft Terminal Services, 
Sun Ray, Tarantella, VNC, and X—running over a wide range of network access bandwidths. We find that thin-
client systems can perform well on web and multimedia applications in LAN environments, but the efficiency of the 
thin-client protocols varies widely. We analyze the differences in the various approaches and explain the impact of 
the underlying remote display protocols on overall performance. Our results quantify the impact of different 
approaches in display encoding primitives, display update policies, and display caching and compression techniques 
across a broad range of thin-client systems. 

 

1. Introduction 
In the last two decades, the centralized computing 

model of mainframe computing has shifted to the more 
distributed model of desktop computing. But as these 
personal desktop computers become ubiquitous in 
today's large corporate and academic organizations, the 
total cost of owning and maintaining them can become 
unmanageable. In response to this challenge, there is a 
growing movement to return to a more centralized and 
easier-to-manage computing strategy. The thin-client 
computing model is the embodiment of that movement.  

The goal of the thin-client model is to centralize 
computing resources, with all the attendant benefits of 
easier maintenance and cheaper upgrades, while 
maintaining the same quality of service for the end user 
that could be provided by a dedicated workstation. In a 
thin-client computing environment, end users move 
from full-featured computers to thin clients, lightweight 
machines primarily used for display and input and 
which require less maintenance and less frequent 
upgrades. Organizations then provide computing 
services to their end users' thin clients from high-
powered servers over a network connection. Server 
resources can be shared across many users, resulting in 
more effective utilization of computing hardware.  

 While thin-client computing is reminiscent of the 
days of mainframe computing, today's users can no 
longer be satisfied by dumb terminals that only input 
and output ASCII text. Thin clients must be able to 
support graphical computing environments effectively 
to meet the users’ demands. The key mechanism for 
achieving this is a remote display protocol that enables 

graphical displays to be served across a network to a 
client device, while all application logic is executed on 
the server. Using such a protocol, the client transmits 
user input to the server, and the server returns screen 
updates to the client. For some thin-client systems, no 
unrecoverable state is stored on the client at all. 

Because of the potential cost benefits of thin-
client computing, a wide range of thin-client platforms 
have been developed. Some are designed specifically 
for use over high-bandwidth local area networks, while 
others attempt to provide quality service over slow 
network connections. Some application service 
providers (ASPs) are even offering thin-client service 
over wide area networks such as the Internet [3, 21]. 
The growing popularity of thin-client systems makes it 
important to analyze their performance, to assess the 
general feasibility of the thin-client computing model, 
and to compare various thin-client platforms and 
determine the factors that govern their performance. 
However, while many thin-client platforms and 
protocols have been developed, most of these systems 
and their protocols are proprietary, and few of the 
vendors have provided detailed performance 
measurements for their own products or a cross-
platform analysis against other vendors’ products.  

To assess the viability of the thin-client computing 
model, we have measured the performance of thin-
client computing platforms running over a wide range 
of network access bandwidths. We have characterized 
the design choices of underlying remote display 
technologies and quantified the performance impact of 
these choices. We considered a range of design choices 
as exhibited by six of the most popular thin-client 



platforms in use today: Citrix MetaFrame [5, 14], 
Microsoft Windows 2000 Terminal Services [6], AT&T 
Virtual Network Computing (VNC) [22, 32], Tarantella 
[24, 27], Sun Ray [26, 30], and X [25]. These platforms 
were chosen for their popularity, performance, and 
diverse design approaches.  

We report the first quantitative measurements to 
examine the performance of such a broad range of thin-
client architectures in various network environments. 
Because many thin-client systems are closed-source and 
proprietary, we employed slow-motion benchmarking 
[37], a novel non-intrusive measurement technique that 
addresses some of the fundamental difficulties in 
previous studies of thin-client performance. Our results 
show that thin-client computing can deliver good 
performance for web and multimedia applications, but 
performance varies widely among different thin-client 
platform designs. Our results show that a simple pixel-
based remote display approach can deliver superior 
performance to more complex thin-client systems that 
are currently popular. We analyze the differences in the 
underlying mechanisms of various thin-client platforms 
and explain their impact on overall performance.  

This paper is organized as follows. Section 2 
details the experimental testbed and methodology we 
used for our study. Section 3 describes our 
measurements and performance results. Section 4 
discusses some related work. Finally, we present some 
concluding remarks and directions for future work. 

2. Experimental Design 
The goal of our research was to compare thin-

client systems to assess their basic display performance 

in various network environments. In our experiments, 
we used the following six versions of thin-client 
platforms: Citrix MetaFrame 1.8 for Windows 2000, 
Windows 2000 Terminal Services, Tarantella 
Enterprise Express II for Linux, AT&T VNC v3.3.2 for 
Linux, Sun Ray I for Solaris, and Xfree86 3.3.6 on 
Linux. In this paper, we also refer to these platforms by 
their remote display protocols, which are Citrix ICA 
(Independent Computing Architecture), Microsoft RDP 
(Remote Desktop Protocol), Tarantella AIP (Adaptive 
Internet Protocol), VNC, Sun Ray, and X, respectively. 
As summarized in Table 1, these platforms span a range 
of differences in the encoding of display primitives, 
policies for updating the client display, algorithms for 
compressing screen updates, supported display color 
depth, and transport protocol used. To evaluate their 
performance, we designed an experimental testbed and 
various experiments to exercise each of the thin-client 
platforms on single-user web-based and multimedia-
oriented workloads using slow-motion benchmarking as 
explained in Section 2.1. Section 2.2 describes the 
experimental testbed we used. Section 2.3 discusses the 
application benchmarks used in our experiments.  

2.1 Measurement Methodology 
To provide a more effective method for evaluating 

thin-client performance, we previously developed slow-
motion benchmarking [37]. We developed this 
benchmarking technique in order to address the 
inadequacies in conventional benchmarks in measuring 
thin-client performance. In thin-client systems, the 
client display is often decoupled from the server-side 
application execution. In some systems, the screen 

Platform Display 
Encoding 

Screen Updates Compression Client Caching Client 
Cache Size 

Max Client 
Display 

Transport 
Protocol 

Citrix 
MetaFrame 
(ICA) 

Low-level 
graphics 

Server-push, lazy RLE  Glyphs, small 
bitmaps in 
memory; large 
bitmaps on disk 

3 MB RAM, 
Percent of 
disk (1% 
default) 

8-bit color* TCP/IP 

Microsoft 
Terminal 
Services 
(RDP) 

Low-level 
graphics 

Server-push, lazy RLE Glyphs, small 
bitmaps in 
memory; large 
bitmaps on disk 

1.5 MB 
RAM,  
10 MB disk 

8-bit color TCP/IP 

Tarantella 
(AIP) 

Low-level 
graphics 

Server-push, eager or 
lazy depending on 
bandwidth, load 

Adaptively 
enabled, RLE 
and LZW at low 
bandwidths 

Glyphs, pixmaps, 
files 

1024 objects 8-bit color TCP/IP 

AT&T VNC 2D draw 
primitives 

Client-pull, lazy 
updates between client 
requests discarded 

Hextile (2D 
RLE) 

Only local 
framebuffer 
(Copyrect) 

N/A 24-bit color TCP/IP 

Sun Ray 
 

2D draw 
primitives 

Server-push, eager None Only local 
framebuffer 

N/A 24-bit color UDP/IP 

X High-level 
graphics 

Server-push, eager None Application / 
toolkit-specific, 
usually none 

N/A 24-bit color TCP/IP 

* Citrix MetaFrame XP offers the option of 24-bit color depth, but this was not available in time for our experiments. 

Table 1: Characteristics of thin-client platforms. 



updates may be merged or even discarded in order to 
synchronize the display with the application logic. 
While these techniques allow the thin server to run the 
application without being constrained by the slow 
display update speed, they pose a unique challenge in 
benchmarking. Standard benchmarks designed for 
desktop systems cannot be used to provide accurate 
results when evaluating thin-client systems. Because 
the benchmark applications are executed on the thin 
server, independent of the client-side display updates, 
the benchmarks effectively only measure the server’s 
performance and do not accurately reflect the user’s 
experience at the client-side. A video playback 
benchmark, for example, would measure the frame rate 
as rendered on the server, but if many of the frames did 
not reach the client, the frame rate reported by the 
benchmark would give an exaggerated view of the 
system’s performance. While internal instrumentation 
may be an effective solution to this problem, many thin-
client products are proprietary and closed-source, 
making it difficult to instrument them and obtain 
accurate results. Internal instrumentation can also add 
intrusive processing overhead. 

In slow-motion benchmarking, we use network 
packet traces to monitor the latency and data transferred 
between the client and the server, but we alter the 
benchmark application by inserting delays between the 
separate visual events, such as web pages or video 
frames, so that the display update for each event is fully 
completed on the client before the server begins 
processing the next one. Then we process the network 
packet traces and use these gaps of idle time between 
events to break up the results on a per-event basis. This 
allows us to obtain the latency and data transferred for 
each visual event separately. We can then obtain overall 
results by taking the sum of these per-event results. The 
amount of the delay inserted depends on the application 
workload and platform being tested. The necessary 
length of delay can be determined by monitoring the 
network traffic and making the delays long enough to 
achieve a clearly demarcated period between all the 
visual events where client-server communication drops 
to the idle level. This ensures that each visual event is 
discrete and generated completely. 

2.2 Experimental Testbed 
To verify our results in a controlled network 

environment and to provide a basis for comparison, we 
constructed an isolated network testbed. Our 
experimental testbed consisted of seven machines, five 
of which were active for any given test. The testbed 
consisted of a network emulator machine, a packet 
monitor machine, two pairs of thin client/server 
systems, and a web server used for the web benchmark. 

The network emulator machine was a Micron Client 
Pro PC with two 10/100BaseT NICs running The Cloud 
[29], a network emulator that we used to adjust the 
network bandwidth between the client and server. For 
our experiments, we considered the performance of 
thin-client systems over a range of network bandwidths, 
specifically 128 Kbps, 768 Kbps, 1.5 Mbps, 10 Mbps, 
and 100 Mbps, corresponding roughly to ISDN, DSL, 
T1, 10BaseT, and 100BaseT, respectively. The packet 
monitor machine was a Micron Client Pro PC running 
Etherpeek 4 [33], a network traffic monitor that we 
used to obtain the measurements for slow-motion 
benchmarking. To ensure a level playing field, we used 
the same client/server hardware for all of our tests 
except when testing the Sun Ray platform, which only 
runs on Sun machines. The features of each system are 
summarized in Table 2. As discussed in Section 3, the 
slower Sun client and server hardware did not affect the 
lessons derived from our experiments.  

Unless otherwise stated, the video resolution of 
the client was set to 1024x768 with 8-bit color, as this 
was the lowest common denominator supported by all 
of the platforms. However, the Sun Ray client was set 
to 24-bit color, since the Sun Ray display protocol is 
based on a 24-bit color encoding. By default, 
compression and memory caching were left on for those 
platforms that used it, and disk caching was turned off 
by default in those platforms that supported it. For each 
thin-client system, we used the server operating system 
that delivered the best performance for the given 
system; Terminal Services only runs on Windows. 
MetaFrame ran best on Windows. Tarantella, VNC, and 
X ran best on UNIX/Linux, and Sun Ray runs only on 
Solaris.  

2.3 Application Benchmarks 
To measure the performance of the thin-client 

platforms, we used two application benchmarks: a web 
benchmark for measuring web browsing performance, 
and a video benchmark for measuring video playback 
performance. The web and video benchmarks were 
used with the slow-motion benchmarking technique 
mentioned in Section 2.1 to measure thin-client 
performance effectively. We describe each of these 
benchmarks below.  

2.3.1 Web Benchmark 
The web benchmark we used was based on the 

Web Text Page Load test from the Ziff-Davis i-Bench 
benchmark suite [10]. We first describe the original i-
Bench web benchmark and then discuss how it was 
modified for our experiments. The original i-Bench web 
benchmark loads a JavaScript-controlled sequence of 
54 web pages from the web benchmark server. 



Normally, as each page downloads, a small script 
contained in each page starts off the subsequent 
download. The pages contain both text and bitmap 
images, with some pages containing more text while 
others contain more images. Some common elements 
appear on each page, including a blue left column, a 
white background, a PC Magazine logo and other small 
images. The JavaScript cycles through the page loads 
twice, resulting in a total of 108 web pages being 
downloaded during this test. When the benchmark is 
run from a thin client, the thin server would execute the 
JavaScript that sequentially requests the test pages from 
the i-Bench server and relay the display information to 
the thin client. For the web benchmark used in our tests, 
we modified the original i-Bench benchmark’s 
JavaScript call to introduce delays of several seconds 
between pages using the JavaScript, sufficient in each 
case to ensure that the thin client received and 
displayed each page completely and that there was no 
temporal overlap in transferring the data belonging to 
two consecutive pages. We used the packet monitor to 
record the packet traffic for each page, and then used 
the timestamps of the first and last packet associated 
with each page to determine the download time for each 
page.  

We used Netscape Navigator 4.72 as the web 
client for the web benchmark, as it is available on all 
the platforms in question. The browser's memory cache 
and disk cache were enabled but cleared before each 
test run. In all cases, the Netscape browser window was 
1024x768 in size, so the region being updated was the 
same on each system.  

2.3.2 Video Benchmark 
The video benchmark program processes and 

displays an MPEG1 video file containing a mix of news 
and entertainment programming. We measured video 
performance by monitoring resulting packet traffic at 
two playback rates, 1 frames/second (fps) and 24 fps. 
Although no user would want to play video at 1 fps, we 
took the measurement at that frame rate in order to 
establish the reference data size transferred from the 
thin server to the client that corresponds to a "perfect" 
playback. To measure the normal 24 fps playback 
performance and video quality, we monitored the 
packet traffic delivered to the thin client at this 
playback rate and compared the total data transferred to 
the reference data size. The video quality can then be 
quantified by the ratio of data transfer rate at the full 
frame rate of 24 fps to the transfer rate at the slow-

Role / Model Hardware OS / Window System Software 
PC Thin Client 
Micron Client Pro 
 

450 MHz Intel PII 
128 MB RAM 
14.6 GB Disk 
10/100BaseT NIC 

MS Win 2000 Professional  
Caldera OpenLinux 2.4, Xfree86 3.3.6, 
KDE 1.1.2 

Citrix ICA Win32 Client 
MS RDP5 Client 
VNC Win32 3.3.3r7 Client 
SCO Tarantella Win32 Client 
Netscape Communicator 4.72 

Sun Thin Client 
Sun Ray I 
 

100 MHz Sun uSPARC IIep 
8 MB RAM 
10/100BaseT NIC 

Sun Ray OS N/A 

Packet Monitor 
Micron Client Pro 
 

450 MHz Intel PII 
128 MB RAM 
14.6 GB Disk 
10/100BaseT NIC 

MS Win 2000 Professional AG Group's Etherpeek 4 
 

Benchmark Server 
Micron Client Pro 
 

450 MHz Intel PII 
128 MB RAM 
14.6 GB Disk 
10/100BaseT NIC 

MS Win NT 4.0 Server SP6a Ziff-Davis i-Bench 1.5 
MS Internet Information Server 

PC Thin-Client Server 
Micron Client Pro 
(SPEC95 – 17.2 int, 12.9 fp) 

450 MHz Intel PII 
128 MB RAM 
14.6 GB Disk 
2 10/100BaseT NICs 

MS Win 2000 Advanced Server 
Caldera OpenLinux 2.4, Xfree86 3.3.6, 
KDE 1.1.2 

Citrix MetaFrame 1.8 
MS Win 2000 Terminal Services 
AT&T VNC 3.3.3r7 for Win32 
SCO Tarantella Express 
AT&T VNC 3.3.3r2 for Linux 
Netscape Communicator 4.72 

Sun Thin-Client Server 
Sun Ultra-10 Creator 3D 
(SPEC95 – 14.2 int, 16.9 fp) 

333 MHz UltraSPARC IIi 
384 MB RAM 
9 GB Disk 
2 10/100BaseT NICs 

Sun Solaris 7 Generic 106541-08, 
OpenWindows 3.6.1, CDE 1.3.5 

Sun Ray Server 1.2_10.d Beta 
Netscape Communicator 4.72 
 

Network Simulator 
Micron Client Pro 
 

450 MHz Intel PII 
128 MB RAM 
14.6 GB Disk 
2 10/100BaseT NICs 

MS Win NT 4.0 Server SP6a Shunra Software The Cloud 1.1 

Table 2: Testbed machine configurations. 



motion playback rate of 1 fps expressed in percent [37]. 
The ratio was computed as follows: 

 
For the video benchmark, we used two different 

MPEG1 players. We used Microsoft Windows Media 
Player version 6.4.09.1109 for the Windows-based thin 
clients and MpegTV version 1.1 for the Linux/Solaris-
based platforms. Both players were used with non-
video portions of the interfaces minimized so that the 
appearance of the playback application was similar 
across all platforms. In the minimized mode, accessory 
components like progress bars, frame counters, or 
clocks were not displayed. The test video clip was 
34.75 seconds long and consisted of 834 352x240 pixel 
frames with an ideal frame rate of 24 fps. The total 
video file size was 5.11 MB. The thin server executed 
the video playback program to decode the MPEG1 
video then relayed the resulting display to the client. 

3. Experimental Results 
We ran the web and video benchmarks on each of 

the six thin-client platforms and measured their 
resulting performance under five network bandwidths. 
The web benchmark results are shown both in terms of 
latencies and the respective amounts of data transferred 
from server to client to illustrate both the overall user-
perceived performance and the bandwidth efficiency of 
the thin-client systems. The data transferred from client 
to server was not significant in any of our experiments. 

Section 3.1 discusses the results obtained for 
running the thin-client systems with their default 
configuration options as discussed in Section 2.2. 
Section 3.2 analyzes the impact of the underlying 
baseline remote display encodings. Section 3.3 
considers the impact of caching and compression 
mechanisms on thin-client performance. 

3.1 Default Configurations 
The results of running the web benchmark on each 

of the thin-client systems with the default settings are 
shown in Figure 1 through Figure 4. The results of 
running the video benchmark on each of the thin-client 
systems are shown in Figure 5 through Figure 8. For 
comparison purposes, we also show results for using 
the PC client connected directly through the network 
emulator to the web and video server to demonstrate the 

performance of a traditional “fat” client system for web 
browsing and streaming video, respectively. 

3.1.1 Web Performance 
Figure 1 shows the average download latency per 

page. Usability studies have shown that web pages 
should take less than one second to download for the 
user to enjoy an uninterrupted browsing experience [16, 
17]. Using this metric, all of the thin-client systems 
delivered good performance over the 10 Mbps and 100 
Mbps LAN bandwidths with average web page 
latencies well under a second. Using the 100 Mbps 
bandwidth, X and AIP are the fastest with average web 
page latencies of less than 300 ms while the other thin-
client systems have average latencies of about 500 ms. 
Figure 1 shows that reducing the bandwidth had the 
biggest negative impact on X and Sun Ray. In contrast, 
Citrix ICA, Microsoft RDP, Tarantella AIP, and VNC 
were able to deliver sub-second average web page 
latencies over bandwidths as low as 768 Kbps, 
corresponding to DSL environments. However, none of 
the thin-client systems were able to deliver sub-second 
performance at 128 Kbps. Only the PC fat-client 
achieved sub-second performance across all bandwidths 
tested. The results indicate that thin-client systems can 
provide good web browsing performance in broadband 
or higher bandwidth network environments, but are not 
yet able to perform well in lower-bandwidth dialup 
modem and ISDN environments. 

The web performance of the systems at various 
bandwidths can be better understood by examining the 
average amount of data sent per web page shown in 
Figure 2. Since the visual quality is constant across all 
bandwidths as a result of slow-motion benchmarking, 
the amount of data transferred for each platform is also 
essentially constant across all bandwidths, except for 
AIP. For AIP, the different data transfer amounts across 
various bandwidths is caused by adaptive compression 
mechanisms which we discuss further in Section 3.3.  

At higher bandwidths, there is little correlation 
between the amount of data transferred and the average 
web page latency. The best performing thin-client 
systems at the LAN bandwidths were X and AIP, which 
sent far more data than the lesser performing ICA and 
VNC. X sent more data than any other thin-client 
system except Sun Ray at 100 Mbps, yet it achieved the 
best performance at this bandwidth. At lower 
bandwidths, however, there is direct correlation 
between the amount of data transferred and the average 
web page latency. ICA sends the least amount of data 
and has the best performance of all the thin-client 
systems when using the 128 Kbps network 
environment. As shown in Figure 2, ICA sends on 
average about 30 KB of data per page, only twice as 



much data for its display updates compared to using 
HTTP with a PC fat-client. 

Figure 3 and Figure 4 show the network 
bandwidth and client and server CPU utilizations for 
the web benchmark. The utilization measurements 
shown do not include the idle time between web pages. 
Figure 3 shows that the stronger correlation between 
latency and data transfer efficiency at lower bandwidths 
is due to the network becoming the main bottleneck. 
When the average bandwidth utilization exceeds 85 
percent, the latency incurred for the thin-client systems 
generally increases beyond the one-second web page 
latency threshold. Figure 4 shows the client and server 
load when using the 100 Mbps network environment. 
The measurements show that, except for VNC, the 
clients were not heavily loaded during the web 
benchmark, indicating that the client CPU was not the 
primary bottleneck even at high bandwidths. In the case 
of VNC, the client does not rest much as it is constantly 
pulling from the server. The CPU utilization for the Sun 
Ray hardware client is not shown because there were no 
tools available to measure it. In general, the server CPU 
was more heavily loaded than the client CPU. AIP, 
which requires running a web server on the server, had 
the highest server CPU utilization and appears limited 
by server speed in a 100 Mbps network environment.  

3.1.2 Video Performance 
Figure 5 shows the resulting video quality on each 

system for various network bandwidth environments. 
The video quality was quantified using the VQ formula 
discussed in Section 2.3.2. Unlike the web benchmark 
performance, several of the thin-client platforms, ICA, 
RDP, and VNC, deliver poor video quality even in the 
100 Mbps network environment. Only X, AIP, and Sun 
Ray deliver good video quality at the highest 
bandwidth. None of the platforms deliver reasonable 
video quality at lower network bandwidths. Figure 5 
shows that X, AIP, and Sun Ray all deliver over 90 
percent video quality at 100 Mbps, but that even the 
best of them degrades to only about 50 percent video 
quality at 10 Mbps. Sun Ray has a special color space 
convert display primitive that can be used to improve 
the video playback performance if the application is 
written to exploit the feature. The MpegTV application 
we used, however, was not written to do so. No video 
benchmark data is shown for Sun Ray at 128 Kbps, 
because Sun Ray could not play the entire clip without 
interruption due to the limited bandwidth. The PC fat-
client provides good video quality even at 1.5 Mbps, 
but the video quality rapidly deteriorates at lower 
bandwidths. For all platforms, the video playback time 
was relatively constant across all bandwidths, taking 
about 35 seconds to play the entire video clip. 

Figure 1: Average latency per page in the web benchmark 
with default settings at various network bandwidths. 

Figure 2: Average data transferred per page in the web 
benchmark with default settings at various network 
bandwidths. 

Figure 3: Average bandwidth utilization while downloading 
pages in the web benchmark with default settings at various 
network bandwidths. 

Figure 4: Average client and server CPU utilization while 
downloading pages in the web benchmark with default 
settings at 100 Mbps. 
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The video performance of the various systems at 
different bandwidths can be better understood by 
examining the total data transferred. Figure 6 shows the 
amount of data transferred by each system at the normal 
playback rate of 24 fps and at the slow-motion playback 
rate of 1 fps. The 1 fps data transfer measurements 
show how efficiently each system encoded the display 
updates when all of the video frames were fully 
delivered and displayed on the client. Comparing the 24 
fps and 1 fps measurements, we see that all of the 
systems discard data at lower bandwidths to maintain a 
constant playback rate, resulting in lower video quality. 
ICA, RDP, and VNC even discard large amounts of 
data at 100 Mbps. Figure 6 also shows that the thin-
client systems that performed the best on the video 
benchmark were also the least data efficient at encoding 
the display. AIP and X transferred roughly 70 MB to 
play back the video clip in 8-bit color and Sun Ray 
transferred roughly three times that amount to display 
in 24-bit color. These data transfer rates are comparable 
to sending raw pixels over the network for each 
352x240 pixel frame and more than ten times the 
transfer rate of MPEG streaming the 5.11 MB clip. 

Comparing Figure 7 and Figure 3 shows that the 
average bandwidth consumption of the thin-client 
systems when running the video benchmark was much 
higher than when running the web benchmark. None of 
the platforms was bandwidth limited at 100 Mbps, even 
though half of the systems (ICA, RDP, and VNC) 
delivered poor video quality at that bandwidth. 
However, all of the three systems (X, AIP, and Sun 
Ray) that delivered good video quality at 100 Mbps 
consumed well over 10 Mbps of network bandwidth. 
As a result, bandwidth limitations were the primary 
bottleneck for these three systems at lower network 
bandwidths. For the other systems that failed to perform 
well even at 100 Mbps, Figure 8 indicates that none of 
the client or server systems had high CPU load except 
for VNC. We note that while none of the client and 
server average utilization measurements reached 100 
percent, there was high variability in the system loads 
with frequent peaks at 100 percent for VNC on the 
client-side, suggesting that VNC video performance 
appears to be limited by the client’s CPU speed. 

Our measurements of thin-client performance on 
the web and video benchmarks indicate that AIP, X, 

Figure 5: Video quality in the video benchmark with default 
settings at various network bandwidths. 

Figure 6: Total data transferred in full-motion (24 fps) and 
slow-motion (1 fps) playback in the video benchmark with 
default settings at various network bandwidths. 

Figure 7: Average bandwidth utilization during video 
playback in the video benchmark with default settings at 
various network bandwidths.  

Figure 8: Average client and server CPU utilization during 
video playback in the video benchmark with default settings 
at 100 Mbps. 
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and Sun Ray are more able to support a broader range 
of applications, particularly multimedia applications. 
The results also suggest that thin-client systems such as 
ICA, RDP, and VNC can be quite bandwidth efficient 
for web applications, but that these same mechanisms 
which lead to bandwidth efficiency may degrade the 
performance in multimedia video applications. 

3.2 Baseline Display Encoding Primitives 
To understand how the underlying design choices 

in thin-client systems impact their performance, we 
isolated the effects that can be attributed to the basic 
display encoding primitives used. Four types of display 
encoding primitives are high-level graphics, low-level 
graphics, 2D draw primitives, and raw pixels. Higher-
level display encodings are generally considered to be 
more bandwidth efficient, but may require more 
computational complexity on the client and may be less 
platform-independent. For instance, graphics primitives 
such as fonts require the thin-client system to separate 
fonts from images while using pixel primitives enable 
the system to view all updates as just regions of pixels 
without any semantic knowledge of the display content. 
X takes a high-level graphics encoding approach and 
supports a rich set of graphics primitives in its protocol. 
ICA, RDP, and AIP are based on lower-level graphics 
primitives that include support for fonts, icons, drawing 
commands as well as images. Sun Ray and VNC 
employ 2D draw primitives such as fills for filling a 
screen region with a single color or a two-color bitmap 
for common text-based windows. VNC can also be 
configured to use raw pixel encoding only, but none of 
the systems we considered used raw pixels by default. 

To examine the basic display encoding 
performance, we disabled all configurable caching and 
compression mechanisms and ran the benchmarks. For 
AIP, there was no option to disable caching. For VNC, 
the display compression could not be disabled because 
it is built into the default hextile display encoding used. 
For X and Sun Ray, the baseline and default 
configurations were the same as there were no caching 

and compression options. For comparison purposes, we 
also show measurements using the VNC raw pixel 
encoding (RAW), which essentially encodes display 
updates as just raw pixels. The caching and 
compression options for each platform are discussed in 
further detail in Section 3.3. Due to space constraints, 
and since performance at lower network bandwidths is 
strongly correlated with bandwidth efficiency, we 
simply present latency and data transfer measurements 
for experiments at 100 Mbps to illustrate the baseline 
display encoding performance for the various 
approaches.  

3.2.1 Web Performance 
Figure 9 and Figure 10 show the latency and data 

transfer measurements for the baseline performance of 
the thin-client systems running the web benchmark. In 
particular, we show results for running two versions of 
the web benchmark: one with all of the images 
displayed normally, and one with just text in which all 
of the images were removed and replaced with blank 
spaces of equal size. We employed both versions to 
compare how different thin-client mechanisms perform 
on graphics versus text-oriented media.  

We first discuss the baseline measurements with 
the standard benchmark content (both images and text). 
Figure 9 shows that the average web page download 
latencies are not much different than those with the 
default thin-client configurations discussed in Section 
3.1.1. We note that all of the systems fare much better 
than RAW, which results in unacceptable average web 
page latencies of over 4 seconds. ICA and RDP exhibit 
somewhat higher latencies using just the baseline 
display encoding primitives as opposed to the default 
configurations. X and AIP still deliver the lowest 
average web page download latencies.  

The more interesting measurements are in Figure 
10, which shows the average data transferred per web 
page at the baseline settings. Comparing with RAW, the 
results show that all of the other display encodings used 
are substantially more bandwidth efficient than sending 

Figure 9: Average latency per page in the web benchmark 
with baseline settings at 100 Mbps. 

Figure 10: Average data transferred per page in the web 
benchmark with baseline settings at 100 Mbps. 

3.8 4.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PC RAW X ICA RDP AIP VNC SunRay X-24 VNC-24

Platforms

A
ve

ra
ge

 L
at

en
cy

 (s
)

Baseline Baseline Text Only

1218 1160

0
50

100
150
200
250
300
350
400
450
500

PC RAW X ICA RDP AIP VNC SunRay X-24 VNC-24

Platforms

A
ve

ra
ge

 D
at

a 
Tr

an
sf

er
re

d 
(K

B
)

Baseline Baseline Text Only



raw pixels, in some cases by more than an order of 
magnitude. ICA, RDP, and AIP all send about the same 
amount of data, which is consistent with the fact that 
they all employ low-level graphics display encoding 
primitives. X, which employs the higher-level graphics 
primitives, surprisingly sends the most data among all 
the 8-bit color thin-client systems. Although both VNC 
and Sun Ray use 2D draw primitives, the amount of 
data sent in each case is quite different. While the VNC 
display encoding appears the most data efficient, it 
includes built-in compression so comparing its 
efficiency with the other systems without compression 
is not a fair comparison. On the other hand, Sun Ray 
uses 24-bit color, so comparing its efficiency with other 
8-bit systems is not entirely fair either. 

To account for the impact of different color depths 
on display encoding efficiency, we also measured the 
performance of X and VNC using 24-bit color, as these 
were the only platforms we used that could operate 
using either 8-bit or 24-bit color depth. As shown in 
Figure 10, both X and VNC send roughly three times as 
much data using 24-bit color as opposed to using 8-bit 
color. This suggests that to fairly compare Sun Ray 
with the other 8-bit color results, we should normalize 
the amount of data transferred by the pixel color depth, 
which would effectively reduce the amount of data Sun 
Ray transferred by a factor of three. The normalized 
Sun Ray data transfer measurements would then be 
better than X and only about 20 percent worse than 
ICA. Surprisingly, the use of simple 2D draw primitives 
results in data transfer requirements better than the 
high-level graphics X approach and not much different 
from the low-level graphics approach used by ICA, 
RDP, and AIP. Furthermore, Figure 9 shows that Sun 
Ray performs somewhat better than the 8-bit color ICA 
and RDP platforms despite providing a higher quality 
24-bit color display.  

Figure 9 and Figure 10 also show the latency and 
data transfer measurements for the performance of the 
thin-client systems running the text-only version of the 

web benchmark. These results suggest that the higher-
level display encodings are more optimized to reduce 
the data transfer requirements of text content as 
opposed to image content. Figure 10 shows that the 
higher-level encodings used by ICA, RDP, AIP, and X 
were much more bandwidth efficient for text than the 
lower-level encodings used by Sun Ray and VNC. In 
particular, RDP reduced the amount of data sent for text 
to less than five percent of that for both images and 
text. Despite the large bandwidth savings for text 
content, the higher-level encoding systems do not 
provide the same degree of reduction in latency, as 
shown in Figure 9. Instead, Sun Ray demonstrates the 
largest percentage reduction in web page download 
latency despite having the smallest percentage 
reduction in the amount of data transferred when 
comparing image and text content to text-only content. 
This again demonstrates that at a high enough 
bandwidth, the encoding overhead rather than the 
amount of data generated is the primary factor in 
determining the performance. 

3.2.2 Video Performance 
Figure 11 and Figure 12 show the video quality 

and data transfer measurements for the baseline 
performance of the thin-client systems. The video 
quality results shown in Figure 11 for the baseline 
display encoding configuration are quite similar to the 
results for the default configuration discussed in 
Section 3.1.2. All of the systems performed much better 
than RAW, which yielded poor video quality of less 
than 15 percent. X, AIP, and Sun Ray still deliver good 
video quality while ICA, RDP, and VNC deliver 
noticeably worse video quality. Although the video 
quality for ICA and RDP are similar to their respective 
performance with the default configurations, Figure 12 
shows that they send roughly twice as much data when 
just using the basic display encoding. 

To account for the impact of different color depths 
on display encoding efficiency, we again measured the 
performance of X and VNC using 24-bit color as well. 

Figure 11: Video quality in the video benchmark with 
baseline settings at 100 Mbps. 

Figure 12: Total data transferred in full-motion (24 fps) 
and slow-motion (1 fps) playback in the video benchmark 
with baseline settings at 100 Mbps. 
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As expected, both platforms send substantially more 
data using 24-bit color versus using 8-bit color. In 
addition, Figure 11 shows that when using 24-bit color, 
the video quality of VNC remains poor and the video 
quality of X decreases down to about 65 percent. When 
comparing among the 24-bit color platforms, Sun Ray 
clearly delivers the best video quality. 

An important lesson derived from the default and 
baseline video benchmark results is that the timing of 
display update can be just as important as how a display 
update is encoded. X, AIP, and Sun Ray employing an 
eager server-push display update model excelled in the 
video benchmark at 100 Mbps. AIP also uses a lazy 
model to adapt to lower bandwidths. When a rendering 
command is generated by the application, these thin-
client systems immediately convert that command to 
the underlying display encoding primitives and send the 
display update to the client. The eager updates enable 
the server to keep up with the video application’s 
rendering commands and allow the server to take 
advantage of any semantic information that can be used 
from the rendering command. In contrast, ICA, RDP, 
and VNC employ a lazy display update model, in which 
multiple rendering commands are first buffered and 
then later merged before lazily sending the merged 
display updates to the client. For ICA and RDP, the 
updates are lazily sent at a server-defined rate. The 
problem is that the updates are not sent frequently 
enough for real-time video display, resulting in multiple 
video frames being merged and overwritten at the 
server and never displayed at the client. For VNC, the 
updates are lazily sent when the client requests them. 
Since the client running VNC is already heavily loaded, 
the client becomes a bottleneck in requesting the 
display updates, resulting in lost video frames that are 
merged and overwritten at the server before the client is 
able to generate the next display request. 

3.3 Caching and Compression  
Four of the six thin-client platforms tested employ 

some form of configurable caching or compression to 
improve system performance. ICA and RDP both 
employ run-length encoding compression and cache 
fonts and bitmaps in memory and on disk at the client. 
AIP also employs local client caching of display objects 
and uses an adaptive mechanism to progressively 
enable higher-degrees of compression as the availability 
of network bandwidth becomes limited. VNC has RLE 
compression built-in with its display encoding format 
and employs a very simple form of on-screen caching 
whereby the client can simply copy display data from 
one portion of the screen to another rather than 
requesting it from the server if the display data is 
already displayed on another portion of the framebuffer.  

To examine the performance impact of caching 
and compression techniques, we measured the 
performance of the thin-client systems on the web and 
video benchmarks with various caching and 
compression configuration settings. We show results 
for ICA, RDP, AIP, and VNC. In Section 3.3.1 and 
3.3.2, we compare four configurations: (1) the baseline 
results from Section 3.2 with all caching and 
compression options disabled, (2) all compression only 
options enabled, (3) all caching only options enabled, 
and (4) all caching and compression options enabled. In 
particular, for ICA and RDP which support both 
memory and disk caching, we enabled or disabled both 
caches together. In Section 3.3.3, we explore the disk 
and memory caching options of ICA separately in 
further detail. For AIP, there was no option to disable 
caching as mentioned in Section 3.2, so the AIP cache 
only and baseline and cases are the same and there was 
no compression only configuration tested. For VNC, 
the compression cannot be separately configured as it is 
part of the default hextile encoding used, so the VNC 
baseline and compression only cases are the same and 
there was no cache only configuration tested. 

Figure 13 through Figure 16 show the latency and 
data transfer measurements for running the web 
benchmark relative to the baseline performance of each 
system as reported in Section 3.2.1. We again show 
results for running the normal web benchmark with 
both images and text and the text-only version of the 
web benchmark. Figure 17 and Figure 18 show the 
video quality and slow-motion 1 fps data transfer 
measurements for running the video benchmark relative 
to the baseline performance of each system as reported 
in Section 3.2.2.  

3.3.1 Web Performance 
Figure 13 shows that using 100 Mbps bandwidth, 

there is no significant performance benefit due to 
caching and compression options in most of the thin-
client systems. The most notable difference occurs for 
ICA with caching enabled. Surprisingly, enabling 
ICA’s cache increases the average web page latency by 
almost 40 percent over the baseline performance.  

Figure 14 shows that there was a substantial 
difference in the amount of data transferred for almost 
all platforms for different caching and compression 
options. For all three platforms, ICA, RDP, and AIP, 
for which compression could be enabled or disabled, 
enabling compression resulted in a substantial reduction 
in the amount of data transferred, at least a factor of two 
in all cases. It must be noted that the effect of AIP’s 
compression could not be isolated and directly 
compared with those of RDP and ICA, because its 
cache could not be disabled. But AIP seems to have a 



large reduction in data transfer when its compression is 
engaged, which is most likely due to its use of both 
RLE and LZW compression as opposed to using only 
RLE compression for ICA and RDP. AIP, however, 
was adversely affected by the added processing 
overhead of using cache and compression at 100 Mbps. 
When compression was enabled, the latency increased 
by 13%. At higher bandwidths, where the network is 
not the bottleneck, it may be advantageous to reduce the 
processing overhead by holding back on compression 
even if it results in a larger amount of data. Since 
performance at lower bandwidths is directly related to 
the amount of data transferred, compression is 
beneficial for improving performance at lower 
bandwidths. 

Caching is also not always beneficial. Among the 
systems that provided the option to enable or disable 
caching, Figure 14 shows that enabling caching results 
in the largest reduction in data transferred for ICA. ICA 
shows almost a factor of three reduction in data transfer 
for just using caching, and yet results in a significant 
increase in the average web page latency. In other 
words, the overhead of ICA caching outweighs its 
benefits in high bandwidth network environments. On 

the other hand, using caching with RDP and VNC 
resulted in very little difference in either latency or data 
transferred versus not using caching. For VNC, the on-
screen cache contains only the current display data 
which does not provide sufficient history to be 
beneficial in reducing the amount of data that the server 
needs to send. However, the ineffectiveness of the 
cache for RDP is more surprising as its caching 
architecture is similar to ICA on the surface. Our results 
indicate that RDP’s caching mechanism may not be 
operating correctly at best or poorly designed at worst. 
Figure 14 and Figure 16 show that there was no 
reduction in data size due to RDP’s disk cache. 

Figure 15 and Figure 16 show the latency and data 
transfer measurements for various combinations of 
caching and compression for the thin-client systems 
running the text-only web benchmark. The results for 
running the text-only benchmark were generally similar 
to those for the normal web benchmark with both text 
and images. These results suggest that the caching and 
compression mechanisms have similar advantages and 
disadvantages for both the image and text content of the 
web benchmark. The one exception was for using 
caching with ICA. With the text-only content, the 

Figure 13: Latency (expressed as percentage relative to 
baseline) in the web benchmark at 100 Mbps with various 
cache and compression settings. 

Figure 14: Data transferred (expressed as percentage relative 
to baseline) in the web benchmark at 100 Mbps with various 
cache and compression settings. 

Figure 15: Latency (expressed as percentage relative to 
baseline) in the web benchmark at 100 Mbps with various 
cache and compression settings and with only text content. 

Figure 16: Data transferred (expressed as percentage relative 
to baseline) in the web benchmark at 100 Mbps with various 
cache and compression settings and with only text content. 
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performance did not degrade when ICA’s caching was 
engaged as we saw with both text and images. 

3.3.2 Video Performance 
Figure 17 shows the video quality measurements 

for various combinations of caching and compression 
for the thin-client systems running the video benchmark 
at 100 Mbps. For RDP and VNC, there was little 
difference in the video quality for the various options. 
For ICA, the biggest difference again appeared with the 
use of caching, which resulted in a substantial decrease 
in video quality from roughly 50 percent to less than 5 
percent. For AIP, the use of compression reduced the 
VQ from over 90 percent to less than 30 percent. 

Figure 18 shows the 1 fps data transfer 
measurements for various combinations of caching and 
compression for the thin-client systems running the 
video benchmark. These measurements provide a 
quantitative comparison of the amount of data each 
system transferred when sending all of the video 
content to the client without discarding data. Just as for 
the web benchmark, for all three platforms, ICA, RDP, 
and AIP, for which compression could be enabled or 
disabled, enabling compression resulted in a substantial 
reduction in the amount of data. The data reduction was 
generally not as large for the video benchmark as for 
the web benchmark, reflecting the fact that the video 
content was not as compressible as the web content. 
More importantly, enabling compression can have a 
detrimental impact on video performance at LAN 
bandwidths, as in the case of AIP. Compression, 
however, could yield some benefit at lower bandwidths 
due to its ability to reduce the amount of data 
transferred. Unlike the other thin-client systems, AIP 
employs an adaptive mechanism for enabling 
compression that turns compression off at high 
bandwidths and on at low bandwidths. Our results 
suggest that an adaptive mechanism for enabling 
compression at lower bandwidths is useful in trading 

off compression overhead versus bandwidth savings at 
different bandwidths. 

As in the case of the web benchmark, caching did 
not consistently reduce the amount of data transferred 
for the video benchmark. Among the systems that 
provided the option to enable or disable caching, Figure 
18 shows that enabling caching reduced the amount of 
data transferred for ICA, but had no impact on the 
amount of data transferred for RDP or VNC. Just as 
with the web benchmark, the video benchmark results 
indicate that the overhead of ICA caching outweighs its 
benefits in high bandwidth network environments.  

3.3.3 Memory versus Disk Caching 
Thin-client systems may implement a hierarchical 

caching architecture with multiple levels of cache. In 
ICA, two forms of client caching are applied to improve 
the performance: caching in client memory and caching 
in client disk. These two forms of caching may have 
very different characteristics. Memory caching can 
provide much faster access times to smaller caches 
while disk caching can provide larger amounts of local 
cache with relatively slower access times. ICA provides 
both memory and disk caching as well as the ability to 
enable and disable each cache independently. We 
investigated the impact of memory and disk caching 
techniques by running the web and video benchmarks 
using ICA with various cache configurations. We 
considered all possible combinations of memory and 
disk caching, both with and without compression 
enabled. For the ICA disk cache, the maximum cache 
space and the minimum cacheable bitmap size are user-
configurable. For our tests, the disk cache size was set 
to 39 MB, and the minimum cacheable bitmap size to 
8KB. The memory cache size was 8 MB. These disk 
and memory cache settings were default in the ICA 
client.  

Figure 17: Video quality (expressed as percentage relative to 
baseline) in the video benchmark at 100 Mbps with various 
cache and compression settings. 

Figure 18: Total data transferred (expressed as percentage 
relative to baseline) in slow-motion (1 fps) playback in the 
video benchmark at 100 Mbps with various cache and 
compression settings. 
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Figure 19 through Figure 22 show the 
performance of ICA with various cache and 
compression combinations available for ICA. As 
discussed in Section 2.3.1, the web benchmark cycles 
through 54 web pages twice. We call the first iteration 
Run1 and the second Run 2. In order to highlight the 
effects of caching and compression, we present the 
performance relative to the baseline configuration as 
well as the performance ratio of Run 2 to Run 1. If 
enough elements are cached while displaying the 
content from Run 1, we would expect the Run 2 to 
produce less data transferred from server to client and 
potentially yield a better performance. Also, if some 
elements are displayed repeatedly within the 54-page 
iteration, then we would expect the transferred data 
amount to decrease in Run 1 as well as Run2. 

While there is no tool available to us to directly 
measure the cache hit/miss rate reliably for ICA, it 
would be reasonable to assume the ratio of data 
transferred from the server to the client with cache 
turned on to that with cache off provides a rough 
measure of the cache miss rate. As shown in Figure 20, 

Run 1 of the benchmark run at 100 Mbps with disk 
cache on produced 77% of the data generated by Run 1 
with the baseline configuration. That is, the client was 
forced to fetch 77% of the total display data from the 
server even with the disk cache on, presumably because 
the data wasn’t found in the local cache. In Run 2, 
however, the data ratio drops to 48%. As expected, 
more data was found in the local cache in Run 2. 
Inferring from Figure 2, the first iteration of 54 pages 
would yield only 1.6 MB of data, which would fit well 
within the cache. However, not all of the elements were 
cached even though the 39 MB disk cache had enough 
capacity to store all objects encountered in Run 1. In 
particular, the bitmap objects smaller than 8 KB were 
not cacheable per the disk cache setting we used.  

Comparing the relative data size and latency 
between Run 1 and Run 2, it is evident that the memory 
cache serves to handle small elements, while the disk 
cache is used for caching large bitmaps. Figure 19 
shows that there is less significant improvement in 
latency in Run 2 compared to Run 1 with memory 
cache engaged. Figure 20 shows that there is almost no 

Figure 19: The latency in Run 1 and Run 2 of the web 
benchmark at 100 Mbps with various cache and compression 
settings in ICA. The Run 1 and Run 2 latency are expressed 
as percentage relative to baseline as well as relative to one 
another. 

Figure 20: The data size in Run 1 and Run 2 of the web 
benchmark at 100 Mbps with various cache and compression 
settings in ICA. The Run 1 and Run 2 data sizes are expressed 
as percentage relative to baseline as well as relative to one 
another. 

Figure 21: The latency in Run 1 and Run 2 of the web 
benchmark at 100 Mbps with various cache and compression 
settings in ICA and with only text content. The Run 1 and 
Run 2 latency are expressed as percentage relative to baseline 
as well as relative to one another. 

Figure 22: The data size in Run 1 and Run 2 of the web 
benchmark at 100 Mbps with various cache and compression 
settings in ICA and with only text content. The Run 1 and 
Run 2 data sizes are expressed as percentage relative to 
baseline as well as relative to one another. 
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difference in data size between Run 1 and Run 2. While 
small graphical elements appear repeatedly throughout 
each cycle of 54 web pages, the large bitmaps seen in 
Run 1 only reappear when the same web page reappears 
in Run 2. If the memory cache cached larger objects, 
then we would expect to see a significant change in Run 
2 compared to Run 1. With disk caching, however, we 
do observe such a change. The difference in the types 
of objects cached caused the two methods of cache to 
yield very different performance characteristics in our 
tests. 

A notable finding was that, at 100 Mbps, ICA 
performed worse whenever the disk cache was engaged 
even though the cache significantly reduced the amount 
of transferred data. As shown in the web benchmark 
results in Figure 19, the increase in latency with disk 
caching, relative to the baseline setting, was almost by a 
factor of two in Run 1. In Run 2, there was a slight 
improvement in performance with the disk cache 
engaged, but when accounting for both Run 1 and Run 
2, there was 44% higher latency overall. These data 
suggest there is a heavy cache-miss penalty associated 
with ICA’s disk caching. At a high bandwidth like 100 
Mbps, the amount of time required to look up the cache 
becomes significant relative to the network access time.  

Figure 21 shows that the performance degradation 
due to disk caching does not occur in displaying text-
only content, except when disk caching is used in 
combination with compression. The disk cache is 
primarily utilized for storing large bitmap objects. In 
the text-only test, no bitmap image is displayed during 
the benchmark run; therefore, we would expect the disk 
cache to have little to no effect. As seen in Figure 22, 
the disk cache does not contribute to any decrease in 
data size. We note that, in general, the data size 
increases slightly in Run 2 of the text-only tests 
compared to Run 1, because Netscape for Windows, 
with its own cache engaged, behaves slightly differently 
in Run 2 compared to Run 1 in terms of the way the 
page is drawn. 

Memory caching, on the other hand, introduced no 
performance degradation. As shown in Figure 19, in 
both Run 1 and Run 2, the latency with memory cache 
engaged was less than the baseline latency. Figure 20 
shows the transferred data size was roughly reduced to 
half relative to baseline. Although each of the 54 web 
pages is displayed for the first time in Run 1, there are 
fonts, text, and small graphical elements (like the PC 
Magazine logo) that are repeated many times. With disk 
caching, any benefit in caching the repeated graphical 
elements was overwhelmed by the penalty in looking 
up the cache on the hard drive. The cache-miss penalty 
associated with the memory cache is much less severe.  

The lower thin-client performance with disk 
caching is due to the relative speed of the network 
compared with the disk and the penalty associated with 
cache misses. In a 100 Mbps LAN environment, the 
network speed is almost comparable in speed and 
bandwidth to the sustained performance of the local 
disk of our client machine. Consequently, obtaining 
display data from the disk cache is not necessarily 
faster than obtaining the data from the server across the 
100 Mbps network. In addition, with disk caching 
enabled, each disk cache miss requires the client to 
access the local disk as well as obtain the display data 
across the network. If local disk and network speeds 
were comparable, a cache miss would result in roughly 
twice as much latency as when the data were simply 
sent from the server without any disk caching.  

Figure 23 compares the performance of ICA at 
various network bandwidths with the default 
configuration settings versus the same settings except 
with the disk cache enabled. The results show that 
while disk caching adversely affects ICA performance 
at higher network bandwidths, it improves ICA 
performance at bandwidths below 768 Kbps. At low 
enough network bandwidths, the disk access time 
becomes insignificant relative to the network access 
time such that it is much faster to fetch data from the 
client disk cache than going across the network to the 
server. For lower bandwidth networks, assuming 
reasonable cache hit rates, the benefit of smaller disk 
cache latencies on cache hits outweigh the penalty of 
extra disk cache latencies incurred on cache misses. 

4. Related Work 
Several studies have been conducted to evaluate 

thin-client computing architectures. Danskin conducted 
an early study of the X protocol [7] by gathering traces 
of X requests. Citrix and Microsoft have conducted 
internal performance testing of their products. 
Microsoft has examined thin-client scalability issues in 
Terminal Services performance for the purposes of 

Figure 23: Average latency per page in the web benchmark 
for ICA with disk cache on and off. 
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capacity planning [15]. Schmidt, Lam, and Northcutt 
examined the performance of the Sun Ray platform in 
comparison to the X protocol [26]. Wong and Seltzer 
have studied the performance of Windows NT Terminal 
Server and LBX [34, 35]. Tolly Research has conducted 
similar studies for Citrix MetaFrame [31]. Howard has 
measured the performance of various hardware thin 
clients using the i-Bench benchmark suite [9], but his 
results suffer from methodology problems due to only 
measuring server-side application performance instead 
of user-perceived client-side performance. We have 
also conducted earlier studies of thin-client 
performance [18, 19, 36, 37], including previously 
developing the slow-motion benchmarking [37] used in 
this paper. Some of these studies have examined 
selected thin-client systems in detail via internal 
instrumentation. However, no study considered the 
performance of remote display mechanisms across the 
broad range of systems, system configurations, and 
network bandwidths discussed here. We have also 
further considered the performance of thin-client 
systems in wide-area network environments [12]. 

In addition to the thin-client systems discussed in 
this paper, a number of other systems for remote 
display have been developed. These include extensions 
to the systems considered such as low-bandwidth X 
(LBX) [1] and Kaplinsk's recent VNC tight encoding 
[11] as well as remote access solutions such as Laplink 
[13] and PC Anywhere [20]. Because of space 
constraints and previous work [18, 19] showing that 
LBX, Laplink, and PC Anywhere perform very poorly, 
we did not include them in this study. While thin-client 
systems have primarily been employed in LAN 
environments, a growing number of ASPs are 
employing thin-client technology to host desktop 
computing sessions that are remotely delivered over 
WAN environments. Examples include services from 
Charon Systems [3], Runaware [23], and Expertcity [8].  

5. Conclusions and Future Work 
Our results show that thin-client systems can 

provide good performance for web and multimedia 
applications in LAN environments. Unlike traditional 
PC software environments, our results show that 
different thin-client system designs exhibit widely 
varying performance that can differ by orders of 
magnitude in some cases. Through our experiments, we 
have analyzed various design choices underlying 
current thin-client systems. Specifically, our 
measurements show three important conclusions 
regarding thin-client system design.   

First, higher-level graphics display primitives are 
not always more bandwidth efficient than lower-level 
display encoding primitives. X, which uses high-level 

graphics encoding consumed the most bandwidth in 
rendering the display at 8-bit color. Furthermore, 
higher-level primitives are often more optimized for 
text-oriented content, which will likely become a 
smaller and smaller percentage of display content as 
multimedia applications become increasingly popular.  

Second, the timing in sending display updates 
from the server to the client can be as important as how 
display updates are encoded. Our results indicate that 
an eager server-push model as used in X and Sun Ray 
provides better overall performance than lazy update 
models like ICA, RDP, and VNC, especially for 
multimedia video applications. While lazy update 
models may lead to some bandwidth savings by 
discarding or merging display updates, our results show 
that these techniques for optimizing bandwidth 
efficiency degrade the performance of multimedia 
applications even in high bandwidth environments.  

Third, display caching and compression are 
techniques which should be used with care as they can 
help or hurt thin-client performance. At higher 
bandwidths, ICA displayed significant performance 
degradation when caching was engaged, and AIP 
slowed down when its compression was forced on. Our 
results with current thin-client systems suggest that 
existing compression techniques provide a greater 
performance benefit than current caching mechanisms. 
Furthermore, adaptive use of these mechanisms based 
on the availability of network bandwidth as shown by 
AIP produces a good balance between the 
computational overhead of these encoding mechanisms 
and the potential bandwidth savings that they provide. 
In general, cutting down the processing time is 
desirable when there is enough network bandwidth, 
while reducing the amount of transferred data is 
beneficial at lower network speeds. 

Our results quantify the effectiveness of a number 
of thin-client design and implementation choices across 
a broad range of thin-client platforms and network 
environments. In doing so, we provide the first 
comparative analysis of the performance of these 
systems. These measurements provide a basis for future 
research in developing more effective thin-client 
systems.  
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