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Abstract.This paper presents, EtE monitor, a novel ap-

proach to measuring web site performance. Our system pas-

sively collects packet traces from a server site to determine

service performance characteristics. We introduce a two-pass

heuristic method and a statistical filtering mechanism to accu-

rately reconstruct different client page accesses and to mea-

sure performance characteristics integrated across all client

accesses. Relative to existing approaches, EtE monitor offers

the following benefits: i) a breakdown between the network

and server overhead of retrieving a web page, ii) longitudi-

nal information for all client accesses, not just the subset

probed by a third party, iii) characteristics of accesses that

are aborted by clients, and iv) quantification of the benefits

of network and browser caches on server performance. Our

initial implementation and performance analysis across two

sample sites confirm the utility of our approach.

1 Introduction

Today, Internet services are delivering a large array of
business, government, and personal services. Similarly,
mission critical operations, related to scientific instru-
mentation, military operations, and health services, are
making increasing use of the Internet for delivering infor-
mation and distributed coordination. However, the best
effort nature of Internet data delivery, changing client
and network connectivity characteristics, and the highly
complex architectures of modern Internet services make
it very difficult to understand the performance charac-
teristics of Internet services. In a competitive landscape,
such understanding is critical to continually evolving and
engineering Internet services to match changing demand
levels and client populations.

∗This work was originated and largely completed while Y. Fu
worked at HPLabs during the summer 2001 and supported in part
by research grant from HP. A. Vahdat and Y. Fu are supported in
part by the National Science Foundation (EIA-9972879). A. Vah-
dat is also supported by an NSF CAREER award (CCR-9984328).

Currently, there are two popular techniques for bench-
marking the performance of Internet services. The first
approach, active probing [13, 17, 23, 19], uses machines
from fixed points in the Internet to periodically request
one or more URLs from a target web service, record end-
to-end performance characteristics, and report a time-
varying summary back to the web service. The second
approach, web page instrumentation [8, 10, 2, 20], asso-
ciates code (e.g., JavaScript) with target web pages. The
code, after being downloaded into the client browser,
tracks the download time for individual objects and re-
ports performance characteristics back to the web site.

In this paper, we present a novel approach to mea-
suring web site performance called EtE monitor. Our
system passively collects network packet traces from
the server site to enable either offline or online analy-
sis of system performance characteristics. Using two-
pass heuristics and statistical filtering mechanisms, we
are able to accurately reconstruct individual page com-
position without parsing HTML files or obtaining out-
of-band information about changing site characteristics.
Relative to existing techniques, EtE monitor offers a
number of benefits:

• Our system can determine the breakdown between
the server and network overhead associated with
retrieving a web page. This information is nec-
essary to understand where performance optimiza-
tions should be directed, for instance to improve
server-side performance or to leverage existing con-
tent distribution networks (CDNs) to improve net-
work locality.

• EtE monitor tracks all accesses to web pages for a
given service. Many existing techniques are typi-
cally restricted to a few probes per hour to URLs
that are pre-determined to be popular. Our ap-
proach is much more agile to changing client ac-
cess patterns. What real clients are accessing de-
termines the performance that EtE monitor eval-



uates. Finally, given the Zipf popularity of service
web pages [1], our approach is able to track the char-
acteristics of the heavy tail that often makes up a
large overall portion of web site accesses.

• Given information on all client accesses, clustering
techniques [15] can be utilized to determine network
performance characteristics by network region or
autonomous system. System administrators can use
this information to determine which content distri-
bution networks to partner with (depending on their
points of presence) or to determine multi-homing
strategies with particular ISPs.

• EtE monitor captures information on page requests
that are manually aborted by the client, either be-
cause of unsatisfactory web site performance or spe-
cific client browsing patterns (e.g., clicking on a link
before a page has completed the download process).
Existing techniques cannot model user interactions
in the case of active probing or miss important as-
pects of web site performance such as TCP connec-
tion establishment in the case of web page instru-
mentation.

• Finally, EtE monitor is able to determine the ac-
tual benefits of both browser and network caches.
By learning the likely composition of individual web
pages, our system can determine when certain em-
bedded objects of a web page are not requested
and conclude that those objects were retrieved from
some cache in the network.

This paper presents the architecture and implementa-
tion of our prototype EtE monitor. It also highlights
the benefits of our approach through an evaluation of
the performance of two sample network services using
EtE monitor. Overall, we believe that detailed perfor-
mance information will enable network services to dy-
namically react to changing access patterns and system
characteristics to best match client QoS expectations.
Depending on the architecture of the system, a front end
“Layer-7” switch [18] could redirect requests for particu-
lar objects to a smaller or larger set of back-end machines
based on observed performance summaries. Similarly,
performance characteristics across multiple services be-
ing served from a single hosting center can be used to
allocate resources to competing services to, for example,
maximize aggregate throughput or to maintain higher-
level service level agreements [4]. Sites may also use
performance information to dynamically adjust system
consistency [25] or content fidelity [3] with the goal of
meeting target levels of performance.

The rest of this paper is organized as follows. In the
next section, we survey existing techniques and products
and discuss their merits and drawbacks. Section 3 out-
lines the EtE monitor architecture, with additional de-
tails in Sections 4-6. In Section 7, we present the results

of two performance studies, which have been performed
to test and validate EtE monitor and its approach. Sec-
tion 8 presents two specially designed experiments to
validate the accuracy of EtE monitor performance mea-
surements and its page access reconstruction power. We
discuss the limitations of the proposed technique in Sec-
tion 9 and present our conclusions and future work in
Section 10.

Acknowledgments: Both the tool and the study
would not have been possible without generous help of
our HP colleagues: Mike Rodriquez, Steve Yonkaitis,
Guy Mathews, Annabelle Eseo, Peter Haddad, Bob
Husted, Norm Follett, Don Reab, and Vincent Rabiller.
Their help is highly appreciated. Our special thanks to
Claude Villermain who helped to identify and to correct
a subtle bug for dynamic page reconstruction. We would
like to thank the anonymous referees for useful remarks
and insightful questions, and our shepherd Jason Nieh
for constructive suggestions to improve the content and
presentation of the paper.

2 Related Work

A number of companies use active probing techniques to
offer measurement and testing services today, including
Keynote [13], NetMechanic [17], Software Research [23],
and Porivo Technologies [19]. Their solutions are based
on periodic polling of web services using a set of ge-
ographically distributed, synthetic clients. In general,
only a few pages or operations can typically be tested,
potentially reflecting only a fraction of all user’s expe-
rience. Further, active probing techniques cannot typi-
cally capture the potential benefits of browser and net-
work caches, in some sense reflecting “worst case” per-
formance. From another perspective, active probes come
from a different set of machines than those that actually
access the service. Thus, there may not always be cor-
relation in the performance/reliability reported by the
service and that experienced by end users. Finally, it
is more difficult to determine the breakdown between
network and server-side performance using active prob-
ing, making it more difficult for customers to determine
where best to place their optimization efforts.

Another popular approach is to embed instrumen-
tation code with web pages to record access times
and report statistics back to the server. For instance,
WTO (Web Transaction Observer) from HP OpenView
suite [8] uses JavaScript to implement this functionality.
With additional web server instrumentation and cookie
techniques, this product can record the server processing
time for a request, enabling a breakdown between server
and network processing time. A number of other prod-
ucts and proposals [10, 2, 20] employ similar techniques.
Relative to our approach, web page instrumentation can
also capture end-to-end performance information from
real clients, except connection establishment times (po-



tentially an important aspect of overall performance).
Further, this approach requires additional server-side in-
strumentation and dedicated resources to actively collect
performance reports from clients.

There have been some earlier attempts to passively
estimate the response time observed by clients from net-
work level information. SPAND [21, 22] determines net-
work characteristics by making shared, passive measure-
ments from a collection of hosts and uses this informa-
tion for server selection, i.e. for routing client requests
to the server with the best observed response time in a
geographically distributed web server cluster.

3 EtE Monitor Architecture

EtE monitor consists of four program modules shown in
Figure 1:
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Figure 1: EtE Monitor Architecture.

1. The Network Packet Collector module collects the
network packets using tcpdump[24] and records
them to a Network Trace, enabling offline analysis.

2. In the Request-Response Reconstruction module,
EtE monitor reconstructs all TCP connections from
the Network Trace and extracts HTTP transactions
(a request with the corresponding response) from
the payload. EtE monitor does not consider en-
crypted connections whose content cannot be an-
alyzed. After obtaining the HTTP transactions,
the monitor stores some HTTP header lines and
other related information in the Transaction log
for future processing (excluding the HTTP pay-
load). To rebuild HTTP transactions from TCP-
level traces, we use a methodology proposed by
Feldmann [7] and described in more detail and ex-
tended to work with persistent HTTP connections
by Krishnamurthy and Rexford [14].

3. The Web Page Reconstruction module is responsible
for grouping underlying physical object retrievals
together into logical web pages and stores them in
the Web Page Session Log.

4. Finally, the Performance Analysis and Statistics
module summarizes a variety of performance char-
acteristics integrated across all client accesses.

EtE monitor can be deployed in several different ways.
First, it can be installed on a web server as a software

component to monitor web transactions on a particular
server. However, our software would then compete with
the web server for CPU cycles and I/O bandwidth (as
quantified in Section 7). Another solution is to place EtE
monitor as an independent network appliance at a point
on the network where it can capture all HTTP transac-
tions for a web server. If a web site consists of multiple
web servers, EtE monitor should be placed at the com-
mon entrance and exit of all web servers. If a web site
is supported by geographically distributed web servers,
such a common point may not exist. Nevertheless, dis-
tributed web servers typically use “sticky connections”,
i.e., once the client has established a connection with
a web server, the subsequent client requests are sent to
the same server. In this case, EtE monitor can still be
used to capture a flow of transactions to a particular
geographic site.

4 Request-Response Reconstruc-
tion Module

As described above, the Request-Response Reconstruc-
tion module reconstructs all observed TCP connections.
The TCP connections are rebuilt from the Network Trace
using client IP addresses, client port numbers, and re-
quest (response) TCP sequence numbers. Within the
payload of the rebuilt TCP connections, HTTP transac-
tions can be delimited as defined by the HTTP protocol.
Meanwhile, the timestamps, sequence numbers and ac-
knowledged sequence numbers for HTTP requests can
be recorded for later matching with the corresponding
HTTP responses.

When a client clicks a hypertext link to retrieve a
particular web page, the browser first establishes a TCP
connection with the web server by sending a SYN packet.
If the server is ready to process the request, it accepts
the connection by sending back a second SYN packet ac-
knowledging the client’s SYN 1. At this point, the client
is ready to send HTTP requests to retrieve the HTML
file and all embedded objects. For each request, we are
concerned with the timestamps for the first byte and
the last byte of the request since they delimit the re-
quest transfer time and the beginning of server process-
ing. We are similarly concerned with the timestamps of
the beginning and the end of the corresponding HTTP
response.

EtE monitor detects aborted connections by observ-
ing either a RST packet sent by an HTTP client to ex-
plicitly indicate an aborted connection or by a FIN/ACK

1Whenever EtE monitor detects a SYN packet, it considers the
packet as a new connection iff it cannot find a SYN packet with
the same source port number from the same IP address. A re-
transmitted SYN packet is not considered as a newly established
connection. However, if a SYN packet is dropped, e.g. by interme-
diate routers, there is no way to detect the dropped SYN packet
on server side.



packet sent by the client where the acknowledged se-
quence number is less than the observed maximum se-
quence number sent from the server. After reconstruct-
ing the HTTP transactions (a request and the cor-
responding response), the monitor records the HTTP
header lines in the Transaction Log and discards the ac-
tual body of the HTTP response.

Each entry in the log includes a number of fields: (1)
a unique flow ID for the TCP connection, (2) the client’s
IP address, (3) the requested URL, (4) the content type,
(5) the referer field, (6) the via field, (7) whether the
request was aborted, (8)the number of packets resent
during the connection (potentially an indication of the
presence of network congestion), (9) the size and times-
tamps of the request and response. Some fields in the
entry are used to rebuild web pages, while other fields
can be used to measure end-to-end performance.

An alternative way to collect most of the fields of the
Transaction Log entry is to extend web server function-
ality. Apache, Netscape and IIS all have appropriate
APIs. Most of the fields in the Transaction Log can
be extracted via server instrumentation. This approach
has some merits: 1) since a web server deals directly
with request-response processing, the reconstruction of
TCP connections becomes unnecessary; 2) it can handle
encrypted connections.

However, the primary drawback of this approach is
that web servers must be modified in an application spe-
cific manner. Our approach is independent of any partic-
ular server technology. On the other hand, instrumenta-
tion solutions cannot obtain network level information,
such as the connection setup time and the resent packets,
which can be observed by EtE monitor.

5 Page Reconstruction Module

To measure the client perceived end-to-end response
time for retrieving a web page, one needs to identify
the objects that are embedded in a particular web page
and to measure the response time for the client requests
retrieving these embedded objects from the web server.
Although we can determine some embedded objects of a
web page by parsing the HTML for the “container ob-
ject”, some embedded objects cannot be easily discov-
ered through static parsing. For example, JavaScript is
used in web pages to retrieve additional objects. With-
out executing the JavaScript, it may be difficult to dis-
cover the identity of such objects.

Automatically, determining the content of a page re-
quires a technique to delimit individual page accesses.
One recent study [6] uses an estimate of client think time
as the delimiter between two pages. While this method
is simple and useful, it may be inaccurate in some im-
portant cases. For example, consider the case where a
client opens two web pages from one server at the same
time. Here, the requests for the two different web pages

interleave each other without any think time between
them. Another case is when the interval between the
requests for objects within one page may be too long to
be distinguishable from think time (perhaps because of
the network conditions).

Different from previous work, our methodology uses
heuristics to determine the objects composing a web
page, and applies statistics to adjust the results. EtE
uses the HTTP referer field as a major “clue” to group
objects into a web page. The referer field specifies
the URL from which the requested URL was obtained.
Thus, all requests for the embedded objects in an HTML
file are recommended to set the referer fields to the URL
of the HTML file. However, since the referer fields are
set by client browsers, not all browsers set the fields. To
solve this, EtE monitor first builds a Knowledge Base
from those requests with referer fields, and uses more
aggressive heuristics to group the requests without ref-
erer fields based on the Knowledge Base information.

Subsection 5.1 outlines Knowledge Base construction
of web page objects. Subsection 5.2 presents the algo-
rithm and technique to group the requests in web page
accesses using Knowledge Base information and a set of
additional heuristics. Subsection 5.3 introduces a statis-
tical analysis to identify valid page access patterns and
to filter out incorrectly constructed accesses.

5.1 Building a Knowledge Base of Web
Page Objects

The goal of this step is to reconstruct a special subset of
web page accesses, which we use to build a Knowledge
Base about web pages and the objects composing them.
Before grouping HTTP transactions into web pages, EtE
monitor first sorts all transactions from the Transaction
Log using the timestamps for the beginning of the re-
quests in increasing time order. Thus, the requests for
the embedded objects of a web page must follow the
request for the corresponding HTML file of the page.
When grouping objects into web pages (here and in the
next subsection), we consider only transactions with suc-
cessful responses, i.e. with status code 200 in the re-
sponses.

The next step is to scan the sorted transaction log
and group objects into web page accesses. Not all the
transactions are useful for the Knowledge Base construc-
tion process. During this step, some of the Transaction
Log entries are excluded from our current consideration:

• Content types that are known not to contain embed-
ded objects are excluded from the knowledge base,
e.g., application/postscript, application/x-tar, appli-
cation/pdf, application/zip and text/plain. For the
rest of the paper, we call them independent, single
page objects.

• If the referer field of a transaction is not set and its



content type is not text/html, EtE monitor excludes
it from further consideration.

To group the rest of the transactions into web page ac-
cesses, we use the following fields from the entries in the
Transaction Log: the request URL, the request referer
field, the response content type, and the client IP ad-
dress. EtE monitor stores the web page access informa-
tion into a hash table, the Client Access Table depicted
in Figure 2, which maps a client’s IP address to a Web
Page Table containing the web pages accessed by the
client. Each entry in the Web Page Table is a web page
access, and composed of the URLs of HTML files and
the embedded objects. Notice that EtE monitor makes
no distinction between statically and dynamically gener-
ated HTML files. We consider embedded HTML pages,
e.g. framed web pages, as separate web pages.

HTML 11IP

IP

IP

IP

2

3

n

... ...

Object ObjectHTML

ObjectHTML

Object Object Object

Web Page Table

2

3

Client Access Table

Figure 2: Client Access Table.

When processing an entry of the Transaction Log, EtE
monitor first locates the Web Page Table for the client’s
IP in the Client Access Table. Then, EtE monitor han-
dles the transaction according to its content type:

1. If the content type is text/html, EtE monitor treats
it as the beginning of a web page and creates a new web
page entry in the Web Page Table.

2. For other content types, EtE monitor attempts
to insert the URL of the requested object into the web
page that contains it according to its referer field. If
the referred HTML file is already present in the Web
Page Table, EtE monitor appends this object at the end
of the entry. If the referred HTML file does not exist
in the client’s Web Page Table, it means that the client
may have retrieved a cached copy of the object from
somewhere else between the client and the web server.
In this case, EtE monitor first creates a new web page
entry in the Web Page Table for the referred HTML file.
Then it appends the considered object to this page.

From the Client Access Table, EtE monitor deter-
mines the content template of any given web page as
a combined set of all the objects that appear in all the
access patterns for this web page. Thus, EtE monitor
scans the Client Access Table and creates a new hash ta-
ble, as shown in Figure 3, which is used as a Knowledge

Base to group the accesses for the same web pages from
other client’s browsers that do not set the referer fields.

HTML 1

... ...

URL 1

URL 2

URL 3

URL n

Content Template Table

Object

Object

Content Template

Figure 3: Knowledge Base of web pages.

5.2 Reconstruction of Web Page Ac-
cesses

With the help of the Knowledge Base, EtE monitor pro-
cesses the entire Transaction Log again. This time, EtE
monitor does not exclude the entries without referer
fields. Using data structures similar to those introduced
in Section 5.1, EtE monitor scans the sorted Transaction
Log and creates a new Client Access Table to store all ac-
cesses as depicted in Figure 2. For each transaction, EtE
monitor locates the Web Page Table for the client’s IP
in the Client Access Table. Then, EtE monitor handles
the transaction depending on the content type:

1. If the content type is text/html, EtE monitor cre-
ates a new web page entry in the Web Page Table.

2. If a transaction is an independent, single page ob-
ject, EtE monitor marks it as individual page without
any embedded objects and allocates a new web page en-
try in the Web Page Table.

3. For other content types that can be embedded in
a web page, EtE monitor attempts to insert it into the
web page that contains it.

• If the referer field is set for this transaction, EtE
monitor attempts to locate the referred page in the
following way. If the referred HTML file is in an ex-
isting page entry in the Web Page Table, EtE mon-
itor appends the object at the end of the entry. If
the referred HTML file does not exist in the client’s
Web Page Table, EtE monitor first creates a new
web page entry in the table for the referred page
and marks it as nonexistent. Then it appends the
object to this page. If the referer field is not set
for this transaction, EtE monitor uses the following
policies. With the help of the Knowledge Base, EtE
monitor checks each page entry in the Web Page
Table from the latest to earliest. If the Knowledge
Base contains the content template for the checked



page and the considered object does not belong to
it, EtE monitor skips the entry and checks the next
one until a page containing the object is found. If
such an entry is found, EtE monitor appends the
object to the end of the web page.

• If none of the web page entries in the Web Page
Table contains the object based on the Knowledge
Base, EtE monitor searches in the client’s Web Page
Table for a web page accessed via the same flow ID
as this object. If there is such a web page, EtE
monitor appends the object to the page.

• Otherwise, if there are any accessed web pages in
the table, EtE monitor appends the object to the
latest accessed one.

If none of the above policies can be applied, EtE monitor
drops the request. Obviously, the above heuristics may
introduce some mistakes. Thus, EtE monitor also adopts
a configurable think time threshold to delimit web pages.
If the time gap between the object and the tail of the
web page that it tries to append to is larger than the
threshold, EtE monitor skips the considered object. In
this paper, we adopt a configurable think time threshold
of 4 sec.

5.3 Identifying Valid Accesses Using
Statistical Analysis of Access Pat-
terns

Although the above two-pass process can effectively pro-
vide accurate web page access reconstruction in most
cases, there could still be some accesses grouped incor-
rectly. To filter out such accesses, we must better ap-
proximate the actual content of a web page.

All the accesses to a web page usually exhibit a set of
different access patterns. For example, an access pattern
can contain all the objects of a web page, while other pat-
terns may contain a subset of them (e.g., because some
objects were retrieved from a browser or network caches).
We assume the same access patterns of those incorrectly
grouped accesses should rarely appear repeatedly. Thus,
we can use the following statistical analysis on access
patterns to determine the actual content of web pages
and exclude the incorrectly grouped accesses.

First, from the Client Access Table created in Subsec-
tion 5.2, EtE monitor collects all possible access patterns
for a given web page and identifies the probable content
template of the web page as the combined set of all ob-
jects that appear in all the accesses for this page. Table 1
shows an example of a probable content template. EtE
monitor assigns an index for each object. The column
URL lists the URLs of the objects that appear in the
access patterns for the web page. The column Frequency
shows the frequency of an object in the set of all web
page accesses. In Table 1, the indices are sorted by the

occurrence frequencies of the objects. The column Ra-
tio is the percentage of the object’s accesses in the total
accesses for the page.

Index URL Frequency Ratio (%)
1 /index.html 2937 95.51
2 /img1.gif 689 22.41
3 /img2.gif 641 20.85
4 /log1.gif 1 0.03
5 /log2.gif 1 0.03

Table 1: Web page probable content template. There are

3075 accesses for this page.

Sometimes, a web page may be pointed to by sev-
eral URLs. For example, http://www.hpl.hp.com and
http://www.hpl.hp.com/index.html both point to the
same page. Before computing the statistics of the access
patterns, EtE monitor attempts to merge the accesses
for the same web page with different URL expressions.
EtE monitor uses the probable content templates of these
URLs to determine whether they indicate the same web
page. If the probable content templates of two pages
only differ due to the objects with small percentage of
accesses (less than 1%, which means these objects might
have been grouped by mistake), then EtE monitor ig-
nores this difference and merges the URLs.

Based on the probable content template of a web page,
EtE monitor uses the indices of objects in the table to
describe the access patterns for the web page. Table 2
demonstrates a set of different access patterns for the
web page in Table 1. Each row in the table is an access
pattern. The column Object Indices shows the indices
of the objects accessed in a pattern. The columns Fre-
quency and Ratio are the number of accesses and the
proportion of the pattern in the total number of all the
accesses for the web page. For example, pattern 1 is a
pattern in which only the object index.html is accessed.
It is the most popular access pattern for this web page:
2271 accesses out of the total 3075 accesses represent this
pattern. In pattern 2, the objects index.html, img1.gif
and img2.gif are accessed.

Pattern Object Indices Frequency Ratio (%)
1 1 2271 73.85
2 1,2,3 475 15.45
3 1,2 113 3.67
4 1,3 76 2.47
5 2,3 51 1.66
6 2 49 1.59
7 3 38 1.24
8 1,2,4 1 0.03
9 1,3,5 1 0.03

Table 2: Web page access patterns.

With the statistics of access patterns, EtE monitor
further attempts to estimate the true content template
of web pages, which excludes the mistakenly grouped ac-
cess patterns. Intuitively, the proportion of these invalid



access patterns cannot be high. Thus, EtE monitor uses
a configurable ratio threshold to exclude the invalid pat-
terns (in this paper, we use 1% as a configurable ratio
threshold). If the ratio of a pattern is below the thresh-
old, EtE does not consider it as a valid pattern. In the
above example, patterns 8 and 9 are not considered as
valid access patterns. Only the objects found in the valid
access patterns are considered as the embedded objects
in a given web page. Objects 1, 2, and 3 define the
true content template of the web page shown in Table 3.
Based on the true content templates, EtE monitor filters
out all the invalid accesses in a Client Access Table, and
records the correctly constructed page accesses in the
Web Page Session Log, which can be used to evaluate
the end-to-end response performance.

Index URL
1 /index.html
2 /img1.gif
3 /img2.gif

Table 3: Web page true content template.

6 Metrics to Measure Web Ser-
vice Performance

In this section, we introduce a set of metrics and the
ways to compute them in order to measure a web service
efficiency. These metrics can be categorized as:

• metrics approximating the end-to-end response time
observed by the client for a web page download.
Additionally, we provide a means to calculate the
breakdown between server processing and network-
ing portions of overall response time.

• metrics evaluating the caching efficiency for a given
web page by computing the server file hit ratio and
server byte hit ratio for the web page.

• metrics relating the end-to-end performance of
aborted web pages to the QoS.

6.1 Response Time Metrics

We use the following functions to denote the critical
timestamps for connection conn and request r:

• tsyn(conn): time when the first SYN packet from
the client is received for establishing the connection
conn;

• tstart
req (r): time when the first byte of the request r
is received ;

• tend
req (r): time when the last byte of the request r is
received;

• tstart
resp (r): time when the first byte of the response
for r is sent;

• tend
resp(r): time when the last byte of the response for

r is sent;

• tack
resp(r): time when the ACK for the last byte of the
response for r is received.

Additionally, for a web page P , we have the following
variables:

• N - the number of distinct connections used to re-
trieve the objects in the web page P ;

• rk
1 , ...rk

nk
- the requests for the objects retrieved

through the connection connk (k = 1, ..., N), and
ordered accordingly to the time when these requests
were received, i.e.,

tend
req (r

k
1 ) ≤ tend

req (r
k
2 ) ≤ ... ≤ tend

req (r
k
nk
).

The extended version of HTTP 1.0 and later version
HTTP 1.1 [9] introduce the concepts of persistent con-
nections and pipelining. Persistent connections enable
reuse of a single TCP connection for multiple object re-
trievals from the same IP address. Pipelining allows a
client to make a series of requests on a persistent connec-
tion without waiting for the previous response to com-
plete (the server must, however, return the responses in
the same order as the requests are sent).

We consider the requests rk
i , ..., rk

n to belong to
the same pipelining group (denoted as PipeGr =
{rk

i , ..., rk
n}) if for any j such that i ≤ j − 1 < j ≤ n,

tstart
req (rk

j ) ≤ tend
resp(rk

j−1).
Thus for all the requests on the same connection

connk: rk
1 , ..., rk

nk
, we define the maximum pipelining

groups in such a way that they do not intersect, e.g.,

rk
1 , ..., rk

i︸ ︷︷ ︸
PipeGr1

, rk
i+1︸︷︷︸

PipeGr2

, ..., rk
nk︸︷︷︸

PipeGrl

.

For each of the pipelining groups, we define three por-
tions of response time: total response time (Total),
network-related portion (Network), and lower-bound es-
timate of the server processing time (Server).

Let us consider the following example. For conve-
nience, let us denote PipeGr1 = {rk

1 , ..., rk
i }.

Then

Total(PipeGr1) = tend
resp(r

k
i )− tstart

req (rk
1 ),

Network(PipeGr1) =

i∑
j=1

(tend
resp(r

k
j )− tstart

resp (rk
j )),

Server(PipeGr1) = Total(PipeGr1)− Network(PipeGr1).

If no pipelining exists, a pipelining group only consists
of one request. In this case, the computed server time
represents precisely the server processing time for a given



request-response pair. If a connection adopts pipelining,
the “real” server processing time might be larger than
the computed server time because it can partially overlap
the network transfer time, and it is difficult to estimate
the exact server processing time from the packet-level
information. However, we are still interested to estimate
the “non-overlapping” server processing time as this is
the portion of the server time on a critical path of overall
end-to-end response time. Thus, we use as an estimate
the lower-bound server processing time, which is explic-
itly exposed in the overall end-to-end response.

If connection connk is a newly established connection
to retrieve a web page, we observe additional connection
setup time:

Setup(connk) = tstart
req (rk

1 )− tsyn(connk)
2,

otherwise the setup time is 0. Additionally, we define
tstart(connk) = tsyn(connk) for a newly established con-
nection, otherwise, tstart(connk) = tstart

req (rk
1 ).

Similarly, we define the breakdown for a given con-
nection connk:

Total(connk) = Setup(connk) + tend
resp(r

k
nk
)− tstart

req (rk
1 ),

Network(connk) = Setup(connk) +

l∑
j=1

Network(PipeGrj),

Server(connk) =

l∑
j=1

Server(PipeGrj).

Now, we define similar latencies for a given page P :

Total(P ) = max
j≤N

tend
resp(r

j
nj
)−min

j≤N
tstart(connj),

CumNetwork(P ) =

N∑
j=1

Network(connj),

CumServer(P ) =

N∑
j=1

Server(connj).

For the rest of the paper, we will use the term EtE time
interchangeably with Total(P ) time.

All the above formulae use tend
resp(r) to calculate re-

sponse time. An alternative way is to use as the end of
a transaction the time tack

resp(r) when the ACK for the
last byte of the response is received by a server. Fig-
ure 4 shows an example of a simplified scenario where a
1-object page is downloaded by the client: it shows the
communication protocol for connection setup between
the client and the server as well as the set of major times-
tamps collected by the EtE monitor on the server side.
The connection setup time measured on the server side
is the time between the client SYN packet and the first
byte of the client request. This represents a close ap-
proximation for the original client setup time (we present

is sent
ACK is received
request r is sent

response for r
is received

Client

Client observed end-to-end time 

syn
t    (conn) t      (r)start

req t       (r)resp
start t      (r)resp

end t      (r)

SYN

resp

time

 ack

Server

Setup(conn)

EtE time (last byte)

EtE time (ack)

Round trip time

time

Figure 4: An example of a 1-object page download by the

client: major timestamps collected by the EtE monitor on

the server side.

more detail on this point in Section 8 when reporting our
validation experiments).

If the ACK for the last byte of the client response is
not delayed or lost, tack

resp(r) is a more accurate approxi-
mation of the end-to-end response time observed by the
client: it “compensates” for the latency of the first client
SYN packet that is not measured on the server side.
The difference between the two methods, i.e. EtE time
(last byte) and EtE time (ack), is only a round trip time,
which is on the scale of milliseconds. Since the overall
response time is on the scale of seconds, we consider this
deviation an acceptably close approximation. However,
to avoid the problems with delayed or lost ACKs, EtE
monitor determines the end of a transaction as the time
when the last byte of a response is sent by a server.

Metrics introduced in this section account for packet
retransmission. However, if the retransmission happens
on connection establishment (i.e. due to dropped SYNs),
EtE monitor cannot account for this.

The functions CumNetwork(P ) and CumServer(P )
give the sum of all the network-related and server pro-
cessing portions of the response time over all connections
used to retrieve the web page. However, the connections
can be opened concurrently by the browser. To evaluate
the concurrency impact, we introduce the page concur-
rency coefficient ConcurrencyCoef(P):

ConcurrencyCoef(P ) =

∑N

j=1
Total(connj)

Total(P )
.

Using page concurrency coefficient, we finally compute
the network-related and the service-related portions of
response time for a particular page P :

Network(P ) = CumNetwork(P )/ConcurrencyCoef(P ),

Server(P ) = CumServer(P )/ConcurrencyCoef(P ).

EtE monitor can distinguish the requests sent to a
web server from clients behind proxies by checking the

2The connection setup time as measured by EtE monitor does
not include dropped SYNs, as discussed earlier in Section 4.



HTTP via fields. If a client page access is handled via the
same proxy (which is typically the case, especially when
persistent connections are used), EtE monitor provides
correct measurements for end-to-end response time and
other metrics, as well as provides interesting statistics
on the percentage of client requests coming from proxies.
Clearly, this percentage is an approximation, since not
all the proxies set the via fields in their requests. Finally,
EtE monitor can only measure the response time to a
proxy instead of the actual client behind it.

6.2 Metrics Evaluating the Web Service
Caching Efficiency

Real clients of a web service may benefit from the pres-
ence of network and browser caches, which can signifi-
cantly reduce their perceived response time. However,
none of the existing performance measurement tech-
niques provide any information on the impact of caches
on web services: what percentage of the files and bytes
are delivered from the server comparing with the total
files and bytes required for delivering the web service.
This impact can only be partially evaluated from web
server logs by checking response status code 304, whose
corresponding requests are sent by the network caches
to validate whether the cached object has been modi-
fied. If the status code 304 is set, the cached object is
not expired and need not be retrieved again.

To evaluate the caching efficiency of a web service,
we introduce two metrics: server file hit ratio and server
byte hit ratio for each web page.

For a web page P , assume the objects composing the
page are O1, ..., On. Let Size(Oi) denote the size of ob-
ject Oi in bytes. Then we define NumFiles(P ) = n and
Size(P ) =

∑n
j=1 Size(Oj).

Additionally, for each access P i
access of the page P ,

assume the objects retrieved in the access are Oi
1, ..., O

i
ki
,

we define NumFiles(P i
access) = ki and Size(P i

access) =∑ki

j=1 Size(Oi
j). First, we define file hit ratio and byte hit

ratio for each page access in the following way:

FileHitRatio(P i
access) = NumFiles(P i

access)/NumFiles(P ),

ByteHitRatio(P i
access) = Size(P i

access)/Size(P ).

Let P 1
access, ..., P

N
access be all the accesses to the page P

during the observed time interval. Then

ServerF ileHitRatio(P ) =
1

N

∑
k≤N

FileHitRatio(P k
access),

ServerByteHitRatio(P ) =
1

N

∑
k≤N

ByteHitRatio(P k
access).

The lower numbers for server file hit ratio and server
byte hit ratio indicate the higher caching efficiency for
the web service, i.e., more files and bytes are served from
network and client browser caches.

6.3 Aborted Pages and QoS

User-perceived QoS is another important metric to con-
sider in EtE monitor. One way to measure the QoS of
a web service is to measure the frequency of aborted
connections. However, such simplistic interpretation of
aborted connections and web server QoS has several
drawbacks. First, a client can interrupt HTTP transac-
tions by clicking the browser’s “stop” or “reload” button
while a web page is downloading, or clicking a displayed
link before the page is completely downloaded. Thus,
only a subset of aborted connections are relevant to poor
web site QoS or poor networking conditions, while other
aborted connections are caused by client-specific brows-
ing patterns. On the other hand, a web page can be re-
trieved through multiple connections. A client’s browser-
level interruption can cause all the currently open con-
nections to be aborted. Thus, the number of aborted
page accesses more accurately reflects client satisfaction
than the number of aborted connections.

For aborted pages, we distinguish the subset of pages
Πbad with the response time higher than the given
threshold XEtE (in our case, XEtE = 6 sec). Only these
pages might be reflective of the bad quality downloads.
While a simple deterministic cut off point cannot truly
capture a particular client’s expectation for site perfor-
mance, the current industrial ad hoc quality goal is to de-
liver pages within 6 sec [12]. We thus attribute aborted
pages that have not crossed the 6 sec threshold to in-
dividual client browsing patterns. The next step is to
distinguish the reasons leading to poor response time:
whether it is due to network or server-related perfor-
mance problems, or both.

7 Case Studies

In this section, we present two simple case studies to
illustrate the benefits of EtE monitor in assessing web
site performance. The first site is the HP Labs exter-
nal site (HPL Site), http://www.hpl.hp.com. Static web
pages comprise most of this site’s content. We measured
performance of this site for a month, from July 12, 2001
to August 11, 2001. The second site is a support site
for a popular HP product family, which we call Support
Site. It uses JavaServer Pages [11] technology for dy-
namic page generation. The architecture of this site is
based on a geographically distributed web server cluster
with Cisco Distributed Director [5] for load balancing,
using “sticky connections”. We measure the site perfor-
mance for 2 weeks, from October 11, 2001 to October
25, 2001.

Table 4 summarizes the two site’s performance at-a-
glance during the measured period using the two most
frequently accessed pages at each site. The average end-
to-end response time of client accesses to these pages re-
flects good overall performance. However in the case of
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Figure 5: HPL site during a month: a) Number of all and aborted accesses to index.html ; b) Approximated page size and

average access size to index.html.

Metrics HPL
url1

HPL
url2

Support
url1

Support
url2

EtE time 3.5 sec 3.9 sec 2.6 sec 3.3 sec
% of accesses above
6 sec

8.2% 8.3% 1.8% 2.2%

% of aborted ac-
cesses above 6 sec

1.3% 2.8% 0.1% 0.2%

% of accesses from
clients-proxies

16.8% 19.8% 11.2% 11.7%

EtE time from
clients-proxies

4.2 sec 3 sec 4.5 sec 3 sec

Network-vs-Server
ratio in EtE time

99.6% 99.7% 96.3% 93.5%

Page size 99 KB 60.9 KB 127 KB 100 KB
Server file hit ratio 38.5% 58% 22.9% 28.6%
Server byte hit
ratio

44.5% 63.2% 52.8% 44.6%

Number of objects 4 2 32 32
Number of
connections

1.6 1 6.5 9.1

Table 4: At-a-Glance statistics for www.hpl.hp.com and sup-

port site during the measured period.

HPL, a sizeable percentage of accesses take more than
6 sec to complete (8.2%-8.3%), with a portion leading
to aborted accesses (1.3%-2.8%). The Support site had
better overall response time with a much smaller per-
centage of accesses above 6 sec (1.8%-2.2%), and a cor-
respondingly smaller percentage of accesses aborted due
to high response time (0.1%-0.2%). Overall, the pages
from both sites are comparable in size. However, the
two pages from the HPL site have a small number of
objects per page (4 and 2 correspondingly), while the
Support site pages are composed of 32 different objects.
Page composition influences the number of client con-
nections required to retrieve the page content. Addi-
tionally, statistics show that network and browser caches
help to deliver a significant amount of page objects: in
the case of the Support site, only 22.9%-28.6% of the
32 objects are retrieved from the server, accounting for
44.6%-52.8% of the bytes in the requested pages. As
discussed earlier, the Support site content is generated
using dynamic pages, which could potentially lead to a
higher ratio of server processing time in the overall re-

sponse time. But in general, the network transfer time
dominates the performance for both sites, ranging from
93.5% for the Support site to 99.7% for the HPL site.

Given the above summary, we now present more de-
tailed information from our site measurements. For
the HPL site, the two most popular pages during the
observed period were index.html and a page in the
news section describing the Itanium chip (we call it ita-
nium.html).

Figure 5 a) shows the number of page accesses to in-
dex.html, as well as the number of aborted page accesses
during the measured period. The graph clearly reflects
weekly access patterns to the site.

Figure 5 b) reflects the approximate page size, as re-
constructed by EtE monitor. We use this data to addi-
tionally validate the page reconstruction process. While
debugging the tool, we manually compare the content
of the 20 most frequently accessed pages reconstructed
by EtE monitor against the actual web pages: the EtE
monitor page reconstruction accuracy for popular pages
is very high, practically 100%. Figure 5 b) allows us to
“see” the results of this reconstruction process over the
period of the study. In the beginning, it is a straight
line exactly coinciding with the actual page size. At
hour mark 153, it jumps and returns to a next straight
line interval at the 175 hour mark. As we verified, the
page has been partially modified during this time inter-
val. The EtE monitor “picked” both the old and the
modified page images, since they both occurred during
the same day interval and represented a significant frac-
tion of accesses. However, the next day, the Knowledge
Base was “renewed” and had only the modified page in-
formation. The second “jump” of this line corresponds
to the next modification of the page. The gap can be
tightened, depending on the time interval EtE monitor
is set to process. The other line in Figure 5 b) shows
the average page access size, reflecting the server byte
hit ratio of approximately 44%.

To characterize the reasons leading to the aborted web
pages, we present analysis of the aborted accesses to in-
dex.html page for 3 days in August (since the monthly
graph looks very “busy” on an hourly scale). Figure 6 a)
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Figure 7: HPL site during a month: a) end-to-end response times for accesses to index.html; b) number of resent packets in

response.

shows the number of all the requests and the aborted
requests to index.html page during this interval. The
number of aborted accesses (662) accounts for 16.4% of
the total number of requests (4028).

Figure 6 b) shows the average end-to-end response
time measured by EtE monitor for index.html and the av-
erage end-to-end response time for the aborted accesses
to index.html on an hourly scale. The end-to-end re-
sponse time for index.html page, averaged across all the
page accesses, is 3.978 sec, while the average end-to-end
response time of the aborted page accesses is 9.21 sec.

Figure 6 c) shows a cumulative distribution of all
accesses and aborted accesses to index.html sorted by
the end-to-end response time in increasing order. The
vertical line on the graph shows the threshold of 6 sec
that corresponds to an acceptable end-to-end response
time. Figure 6 c) shows that 68% of the aborted accesses
demonstrate end-to-end response times below 6 sec. This
means that only 32% of all the aborted accesses, which
in turn account for 5% of all accesses to the page, ob-
serve high end-to-end response time. The next step is to
distinguish the reasons leading to a poor response time:
whether it is due to network or server performance prob-
lems, or both. For all the aborted pages with high re-
sponse time, the network portion of the response time
dominates the overall response time (98%-99% of the to-
tal). Thus, we can conclude that any performance prob-
lems are likely not server-related but rather due to con-
gestion in the network (though it is unclear whether the
congestion is at the edge or the core of the network).

Figure 7 a) shows the end-to-end response time for ac-

cesses to index.html on an hourly scale during a month.
In spite of good average response time reported in at-a-
glance table, hourly averages reflect significant variation
in response times. This graph helps to stress the ad-
vantages of EtE monitor and reflects the shortcomings
of active probing techniques that measure page perfor-
mance only a few times per hour: the collected test num-
bers could vary significantly from a site’s instantaneous
performance characteristics.

Figure 7 b) shows the number of resent packets in the
response stream to clients. There are three pronounced
“humps” with an increased number of resent packets.
Typically, resent packets reflect network congestion or
the existence of some network-related bottlenecks. In-
terestingly enough, such periods correspond to week-
ends when the overall traffic is one order of magnitude
lower than weekdays (as reflected in Figure 5 a)). The
explanation for this phenomenon is that during week-
ends the client population of the site “changes” signifi-
cantly: most of the clients access the site from home us-
ing modems or other low-bandwidth connections. This
leads to a higher observed end-to-end response time and
an increase in the number of resent packets (i.e., TCP is
likely to cause drops more often when probing for the
appropriate congestion window over a low-bandwidth
link). These results again stress the unique capabili-
ties of EtE monitor to extract appropriate information
from network packets, and reflect another shortcoming
of active probing techniques that use a fixed number of
artificial clients with rather good network connections
to the Internet. For site designers, it is important to
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Figure 9: HPL site: a) server file hit ratio for itanium.html; b) server byte hit ratio for itanium.html.

understand the actual client population and their end-
to-end response time and the “quality” of the response.
For instance, when large population of clients have lim-
ited bandwidth parameters, the site designers should
consider making the pages and their objects “lighter
weight”.

Figure 8 a) shows the number of page accesses to ita-
nium.html. When we started our measurement of the
HPL site, the itanium.html page was the most popular
page, “beating” the popularity of the main index.html
page. However, ten days later, this news article started
to get “colder”, and the page got to the seventh place
by popularity.

Figure 8 b) shows the percentage of accesses with end-
to-end response time above 6 sec. The percentage of
high response time jumps significantly when the page
becomes “colder”. The reason behind this phenomenon
is shown in Figure 9, which plots the server file hit and
byte hit ratio. When the page became less popular, the
number of objects and the corresponding bytes retrieved
from the server increased significantly. This reflects that
fewer network caches store the objects as the page be-
comes less popular, forcing clients to retrieve them from
the origin server.

Figure 8 b) and Figure 9 explicitly demonstrate the
network caching impact on end-to-end response time.
When the caching efficiency of a page is higher (i.e.,
more page objects are cached by network and browser
caches), the response time measured by EtE monitor is

lower. Again, active probing techniques cannot measure
(or account for) the page caching efficiency to reflect the
“true” end-to-end response time observed by the actual
clients.

We now switch to the analysis of the Support site. We
will only highlight some new observations specific to this
site. Figure 10 a) shows the average end-to-end response
time as measured by EtE monitor when downloading the
site main page. This site uses JavaServer Pages technol-
ogy for dynamic generation of the content. Since dy-
namic pages are typically more “compute intensive,” it
has a corresponding reflection in higher server-side pro-
cessing fraction in overall response time. Figure 10 b)
shows the network-server time ratio in the overall re-
sponse time. It is higher compared to the network-server
ratio for static pages from the HPL site. One interest-
ing detail is that the response time spike around the 127
hour mark has a corresponding spike in increased server
processing time, indicating some server-side problems at
this point. The combination of data provided by EtE
monitor can help service providers to better understand
site-related performance problems.

The Support site pages are composed of a large num-
ber of embedded images. Two most popular site pages,
which account for almost 50% of all the page accesses,
consist of 32 objects. The caching efficiency for the site
is very high: only 8-9 objects are typically retrieved from
the server, while the other objects are served from net-
work and browser caches. The site server is running
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main page; b) corresponding end-to-end response time per AS.

HTTP 1.0 server. Thus typical clients used 7-9 connec-
tions to retrieve 8-9 objects. The ConcurrencyCoef (see
Section 6), which reflects the overlap portion of the la-
tency between different connections for this page, was
very low, around 1.038 (in fact, this is true for the site
pages in general). This indicates that the efficiency of
most of these connections is almost equal to sequential
retrievals through a single persistent connection.

Figure 11 a) shows the connection setup time mea-
sured by EtE monitor. We perform a simple computa-
tion: how much of the end-to-end response time observed
by current clients can be improved if the site server would
run an HTTP 1.1 server, allowing clients to use just two
persistent connections to retrieve the corresponding ob-
jects from the site? In other words, how much of the
response time can be improved by eliminating unneces-
sary connection setup time?

Figure 11 b) shows the estimated percentage of end-
to-end response time improvement available from run-
ning an HTTP 1.1 server. On average, during the ob-
served interval, the response time improvement for url1
is around 20% (2.6 sec is decreased to 2.1 sec), and for
url2 is around 32% (3.3 sec is decreased to 2.2 sec).

Figure 11 b) reveals an unexpected “gap” between
230-240 hour marks, when there was “no improvement”
due to HTTP 1.1. More careful analysis shows that dur-
ing this period, all the accesses retrieved only a basic
HTML page using 1 connection, without consequent im-
age retrievals. The other pages during the same interval
have a similar pattern. It looks like the image directory
was not accessible on the server. Thus, EtE monitor,
by exposing the abnormal access patterns, can help ser-
vice providers get additional insight into service related
problems.



EtE monitor also provides the information about the
client clustering by associating them with various ASes
(Autonomous Systems). Figure 12 a) shows the 20
largest client clusters by ASes. Figure 12 b) reflects
the corresponding average end-to-end response time per
AS. The information provides a useful quantitative view
on response times to the major client clusters. It can
be used for efficient site design when the geographically
distributed web cluster is needed to improve site per-
formance. Similarly, such information can be used to
make appropriate decisions on specific content distribu-
tion networks and wide-area replication strategies given
a particular service’s client population.

The ability of EtE monitor to reflect a site perfor-
mance for different ASes (and groups of IP addresses)
happens to be a very attractive feature for service
providers. When service providers have special SLA-
contracts with certain groups of customers, EtE monitor
provides a unique ability to measure the response time
observed by those clients and validate QoS for those con-
tracts.

Finally, we present a few performance numbers to re-
flect the execution time of EtE monitor when processing
data for the HPL and Support sites. The tests are run on
a 550Mhz HP C3600 workstation with 512 MB of RAM.
Table 5 presents the amount of data and the execution
time for processing 10, 000, 000 TCP Packets.

Duration, Size, and Exe-
cution Time

HPL site Support site

Duration of data collection 3 days 1 day
Collected data size 7.2 GB 8.94 GB
Transaction Log size 35 MB 9.6 MB
Entries in Transaction Log 616,663 157,200
Reconstructed page accesses 90,569 8,642
Reconstructed pages 5,821 845
EtE Execution Time 12 min 44 sec 17 min 41 sec

Table 5: EtE monitor performance measurements.

The performance of reconstruction module perfor-
mance depends on the complexity of the web page com-
position. For example, the Support site has a much
higher percentage of embedded objects per page than
the HPLabs pages. This “higher complexity” of the re-
construction process is reflected by the higher EtE mon-
itor processing time for the Support site (17 min 41 sec)
compared to the processing time for the HPLabs site
(12 min 44 sec). The amount of incoming and outgoing
packets of a web server farm that an EtE monitor can
handle also depends on the rate at which tcpdump can
capture packets and the traffic of the web site.

8 Validation Experiments

We performed two groups of experiments to validate the
accuracy of EtE monitor performance measurements and
its page access reconstruction power.

In the first experiment, we used two remote clients re-
siding at Duke University and Michigan State University
to issue a sequence of 40 requests to retrieve a designated
web page from HPLabs external web site, which consists
of an HTML file and 7 embedded images. The total
page size is 175 Kbytes. To issue these requests, we use
httperf[16], a tool which measures the connection setup
time and the end-to-end time observed by the client for
a full page download. At the same time, an EtE monitor
measures the performance of HPLabs external web site.
From EtE monitor measurements, we filter the statis-
tics about the designated client accesses. Additionally,
in EtE monitor, we compute the end-to-end time using
two slightly different approaches from those discussed in
Section 6.1:

• EtE time (last byte): where the end of a transaction
is the time when the last byte of the response is sent
by a server;

• EtE time (ACK): where the end of a transaction
is the time when the ACK for the last byte of the
response is received.

Table 6 summarizes the results of this experiment (the
measurements are given in sec):

httperf EtE monitor
Client Conn Resp. Conn EtE time EtE time

Setup time Setup (last byte) (ACK)
Michigan 0.074 1.027 0.088 0.953 1.026
Duke 0.102 1.38 0.117 1.28 1.38

Table 6: Experimental results validating the accuracy of
EtE monitor performance measurements.

The connection setup time reported by EtE monitor
is slightly higher (14-15 ms) than the actual setup time
measured by httperf, since it includes the time to not
only establish a TCP connection but also receive the
first byte of a request. The EtE time (ACK) coincides
with the actual measured response time observed by the
client. The EtE time (last byte) is slightly lower than
the actual response time by exactly a round trip delay
(the connection setup time measured by httperf repre-
sents the round trip time for each client, accounting for
74-102 ms). These measurements correctly reflect our
expectations for EtE monitor accuracy (see Section 6.1).
Thus, we have some confidence that EtE monitor accu-
rately approximates the actual response time observed
by the client.

The second experiment was performed to evaluate the
reconstruction power of EtE monitor. The EtE monitor
with its two-pass heuristic method actively uses the ref-
erer field to reconstruct the page composition and to
build a Knowledge Base about the web pages and ob-
jects composing them. This information is used during
the second pass to more accurately group the requests
into page accesses. The question to answer is: how de-
pendent are the reconstruction results on the existence



of referer field information. If the referer field is not set
in most of the requests, how is the EtE monitor recon-
struction process affected? How is the reconstruction
process affected by accesses generated by proxies?

To answer these questions, we performed the follow-
ing experiment. To reduce the incorrectness introduced
by proxies, we first filtered the requests with via fields,
which are issued by proxies, from the original Transac-
tion Logs for the both sites. These requests constitute
24% of total requests for the HPL site and 1.1% of total
requests for the Support site. We call these logs filtered
logs. Further, we mask the referer fields of all trans-
actions in the filtered logs to study the correctness of
reconstruction. We call these modified logs masked logs,
which do not contain any referer fields. We notice that
the requests with referer fields constitute 56% of the to-
tal requests for the HPL site and 69% for the Support
site in the filtered logs. Then, EtE monitor processes the
filtered logs and masked logs. Table 7 summarizes the
results of this experiment.

Metrics HPL
url1

HPL
url2

Support
url1

Support
url2

Reconstructed page ac-
cesses (filtered logs)

36,402 17,562 17,601 11,310

EtE time (filtered logs) 3.3 sec 4.1 sec 2.4 sec 3.3 sec
Reconstructed page ac-
cesses (masked logs)

33,735 14,727 15,401 8,890

EtE time (masked logs) 3.2 sec 4.1 sec 2.3 sec 3.6 sec

Table 7: Experimental results validating the accuracy of EtE

monitor reconstruction process for HPL and Support sites.

The results of masked logs in Table 7 show that EtE
monitor does a good job of page access reconstruction
even when the requests do not have any referer fields.
However, with the knowledge introduced by the ref-
erer fields in the filtered logs, the number of recon-
structed page accesses increases by 9-21% for the con-
sidered URLs in Table 7. Additionally, we also find that
the number of reconstructed accesses increases by 11.2-
19.8% for all the considered URLs if EtE monitor pro-
cesses the original logs without filtering either the via
fields or the referer fields. The difference of EtE time
between the two kinds of logs in Table 7 can be ex-
plained by the difference of the number of reconstructed
accesses. Intuitively, more reconstructed page accesses
lead to higher accuracy of estimation. This observation
also challenges the accuracy of active probing techniques
considering their relatively small sampling sets.

9 Limitations

There are a number of limitations to our EtE monitor
architecture. Since EtE monitor extracts HTTP transac-
tions by reconstructing TCP connections from captured
network packets, it is unable to obtain HTTP informa-
tion from encrypted connections. Thus, EtE monitor is

not appropriate for sites that encrypt much of their data
(e.g., via SSL).

In principle, EtE monitor must capture all traffic en-
tering and exiting a particular site. Thus, our software
must typically run on a single web server or a web server
cluster with a single entry/exit point where EtE moni-
tor can capture all traffic for this site. If the site “out-
sources” most of its popular content to CDN-based so-
lutions then EtE monitor can only provide the measure-
ment information about the “rest” of the content, which
is delivered from the original site. For sites using CDN-
based solutions, the active probing or page instrumenta-
tion techniques are more appropriate solutions to mea-
sure the site performance. A similar limitation applies to
pages with “mixed” content: if a portion of a page (e.g.,
an embedded image) is served from a remote site, then
EtE monitor cannot identify this portion of the page
and cannot provide corresponding measurements. In this
case, EtE monitor consistently identifies the portion of
the page that is stored at the local site, and provides
the corresponding measurements and statistics. In many
cases, such information is still useful for understanding
the performance characteristics of the local site.

The EtE monitor does not capture DNS lookup times.
Only active probing techniques are capable of measuring
this portion of the response times. Further, for clients
behind proxies, EtE monitor can only measure the re-
sponse times to the proxies instead of to the actual
clients.

As discussed in Section 3, the heuristic we use to
reconstruct page content may determine incorrect page
composition. Although the statistics of access patterns
can filter invalid accesses, it works best when the sample
size is large enough.

Dynamically generated web pages introduce another
issue with our statistical methods. In some cases, there
is no consistent content template for a dynamic web page
if each access consists of different embedded objects (for
example, some pages use a rotated set of images or are
personalized for client profiles). In this case, there is a
danger that metrics such as the server file hit ratio and
the server byte hit ratio introduced in Section 6 may be
inaccurate. However, the end-to-end time will be com-
puted correctly for such accesses.

There is an additional problem (typical for server ac-
cess log analysis of e-commerce sites) about how to ag-
gregate and report the measurement results for dynamic
sites where most page accesses are determined by URLs
with client customized parameters. For example, an e-
commerce site could add some client specific parameters
to the end of a common URL path. Thus, each access
to this logically same URL has a different URL expres-
sion. However, service providers may be able to provide
the policy to generate these URLs. With the help of the
policy description, EtE monitor is still able to aggregate
these URLs and measure server performance.



10 Conclusion and Future Work

Today, understanding the performance characteristics of
Internet services is critical to evolving and engineering
Internet services to match changing demand levels, client
populations, and global network characteristics. Exist-
ing tools for evaluating web service performance typi-
cally rely on active probing to a fixed set of URLs or on
web page instrumentation that monitors download per-
formance to a client and transmits a summary back to
a server. This paper presents, EtE monitor, a novel ap-
proach to measuring web site performance. Our system
passively collects packet traces from the server site to
determine service performance characteristics. We in-
troduce a two-pass heuristic method and a statistical
filtering mechanism to accurately reconstruct composi-
tion of individual page and performance characteristics
integrated across all client accesses.

Relative to existing approaches, EtE monitor offers
the following benefits: i) a breakdown between the net-
work and server overhead of retrieving a web page, ii)
longitudinal information for all client accesses, not just
the subset probed by a third party, iii) characteristics
of accesses that are aborted by clients, and iv) quan-
tification of the benefits of network and browser caches
on server performance. Our initial implementation and
performance analysis across two sample sites confirm the
utility of our approach. We are currently investigat-
ing the use of our tool to understand the client perfor-
mance on a per-network region. This analysis can aid
in the placement of wide-area replicas or in the choice
of an appropriate content distribution network. Finally,
our architecture is general to analyzing the performance
of multi-tiered web services. For example, application-
specific log processing can be used to reconstruct the
breakdown of latency across tiers for communication be-
tween a load balancing switch and a front end web server,
or communication between a web server and the storage
tier/database system.
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