Scalability of the Microsoft Cluster Service

Werner Vogels,
Dan Dumitriu, Ashutosh Agrawal,
Teck Chia, Katherine Guo

Reliable Distributed Systems Group
Dept. of Computer Science
Cornell University
Agenda

• Research Goals
• Intro into MS Cluster Service
• Practical Scalability
• Evaluation of MSCS components
• Conclusions
• What’s Cookin’?
Disclaimer©

• The tests have taken MSCS far beyond the goals set in its design.

• Any limitations are due to pushing the technology to extremes, and are not present in the commercial systems.
Agenda

- Research Goals
- Intro into MS Cluster Service
- Practical Scalability
- Evaluation of MSCS components
- Conclusions
- What’s Cookin’?
Research Goals

General: Reliable Distributed Systems

Specific Cluster Research:
- Efficient Distributed Management
- Low Overhead Scalability
- Cluster Collections
- Cluster Aware Programming Tools (Quintet)
Research into Scalable Clusters

• Today’s practice
 – Parallel Computing on 512++ nodes
 – High-Availability up to 16 nodes

• Distribution and Fault Management are very scale sensitive.
 – Failure Management
 – Node Membership
 – Cluster-Wide Consistency
The Reality of Scalable Clusters

Clusters of SMP Systems

For example, 16 Nodes of 16 Proc SMP Systems = 256 CPUs
Mandatory Reading

“In Search of Clusters
the ongoing battle in lowly parallel computing”

Gregory Pfister

second edition
Prentice Hall
Agenda

• Research Goals
• Intro into MS Cluster Service
• Practical Scalability
• Evaluation of MSCS components
• Conclusions
• What’s Cookin’?
Windows NT Clusters
What is clustering to Microsoft?

- Group of independent systems that appear as a single system
- Managed as a single system
- Common namespace
- Services are “cluster-wide”
- Ability to tolerate component failures
- Components can be added transparently to users
- Existing client connectivity is not affected by clustered applications
Windows NT Clusters
Development goals

• Extend Windows NT to seamlessly include cluster features

• Ship high-availability features for Windows NT first
 – Support key applications without modification
 – Failover support for base Windows NT hardware, services, and applications
 – Available API for ISV products

• Develop scalability product later
MSCS Features

- Shared nothing
 - Simplified hardware configuration
- Remoteable tools
- Windows NT manageability enhancements
 - Never take a “cluster” down: rolling upgrade
- Microsoft® BackOffice™ product support
- 3rd Party Support: SAP, Oracle
Non-Features Of MSCS

• Not lock-step/fault-tolerant
• Not able to “move” running applications
 – “MSCS” restarts applications that are failed over to other cluster members
• Not able to recover shared state between client and server (i.e., file position)
 – All client/server transactions should be atomic
 – Standard client/server development rules still apply
MSCS Cluster

Client PCs

Server A

Server B

Disk cabinet A

Disk cabinet B

Heartbeat

Cluster management
Agenda

- Research Goals
- Intro into MS Cluster Service
- Practical Scalability
- Evaluation of MSCS components
- Conclusions
- What’s Cookin’?
Scaling Distributed Systems 101

• Reduce algorithmic dependency on the number of nodes.

• Traditional Solutions:
 – Reduce Synchronous Behavior
 – Reduce System Complexity

• Radical Solutions:
 – Epidemic (gossip, probabilistic) techniques
Scaling MSCS?

• Why do we care? *(Tools, Tools, Tools)*

• Do the Distributed Algorithms scale?
• Are there bottlenecks in the implementation?
• Is it a good basis for Cluster Aware Support?
Agenda

• Research Goals
• Intro into MS Cluster Service
• Practical Scalability
• Evaluation of MSCS components
• Conclusions
• What’s Cookin’?
Cornell Test Cluster

- 32 node MSCS Cluster
- Modified MSCS code
- 300 MHz PII - 200 P6 (128 Mb memory)
- 100 Mbit/sec Switched Ethernet
- Test environment
 - Unloaded systems
 - Loaded system with IO intensive Apps
MSCS 1.X Architecture

Cluster administrator
Cluster API DLL
MSCLUS.DLL
Cluster API DLL
Cluster.exe
Cluster API DLL

Cluster API stub

Database Manager
Log Manager
Global Update Manager
Membership Manager
Node Manager
Failover Manager
Event Processor
Object Manager

Resource Manager
Res COM
Res API

Resource API

Application resource DLL
Logical resource DLL
Application resource DLL
Physical resource DLL

Resource monitors

Reliable Cluster Transport + Heartbeat

Network
Components under Investigation

• Failure Detection
• Node Membership
 – Join operation
 – Reconfiguration after failure
• Consistent Distributed State Management
Failure Detection

• Heartbeat broadcast
 – over all interfaces
 – period 1.2 second
• Interface suspicion after 3 misses
• Node Suspicion after 6 misses (7.2 seconds)
Membership Join

• 6 phase operation
 – discovery
 – lock
 – enable network
 – petition
 – database sync
 – unlock
Membership Regroup

- 5 Phase fully distributed
 - Activate
 - Closing
 - Pruning
 - Cleanup phase one
 - Cleanup phase two
Global Update I

- **Atomic / Total Order**
 - Organize nodes in a ring
 - Acquire lock
 - Transmit to each node in order
 - Release lock
- **Handles a number of failure scenarios**
Global Update

- Developed for sparse updates of OS structures
- Implemented in MSCS using repeated RPC
- Collapses under load
Agenda

• Research Goals
• Intro into MS Cluster Service
• Practical Scalability
• Evaluation of MSCS components
• Conclusions
• What’s Cookin’?
Conclusions

• Can the current Algorithms scale?
 – \textit{FD} & \textit{Regroup}: Yes
 – \textit{GUP}: 10-16 nodes

• Are there bottlenecks in the implementation?
 – \textit{FD} & \textit{Regroup}: Repeated p2p in
 – \textit{Join} & \textit{GUP}: RPC Trains

• Is it a good basis for cluster aware support
 – NO
Agenda

• Research Goals
• Intro into MS Cluster Service
• Practical Scalability
• Evaluation of MSCS components
• Conclusions
• What’s Cookin’?
Rat Pack Clusters
A Quick Glance in the Kitchen

- Tested on 200++ nodes
- Mixed Nuts: NT & Unix
- Provides Cluster Events
- Epidemic FD & Membership
- Probabilistic Communication Tools
- Sub-Clusters for Limited Scalability operations
Be Courageous, Do A Demo
Any Questions?