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Abstract

Manufacturers now have the capability to build high
performance multiprocessor machines with common
PC components.  This has created a new market of
low cost multiprocessor machines.  However, these
machines are handicapped unless they have an oper-
ating system that can take advantage of their under-
lying architectures.  Presented is a comparison of
two such operating systems, Windows NT and So-
laris.  By focusing on their implementation of
threads, we show each system’s ability to exploit
multiprocessors.  We report our results and inter-
pretations of several experiments that were used to
compare the performance of each system.  What
emerges is a discussion on the performance impact
of each implementation and its significance on vari-
ous types of applications.

1. Introduction

A few years ago, high performance multiprocessor
machines had a price tag of  $100,000 and up, see
[16].  The multiprocessor market consisted of pro-
prietary architectures that demanded a higher cost
due to the scale of economics.  Intel has helped to
change that by bringing high performance comput-
ing to the mainstream with its Pentium Pro (PPro)
processor.  The PPro is a high performance processor
with built in support for multiprocessing, see [4].
This coupled with the low cost of components has
enabled computer manufacturers to build high per-
formance multiprocessor machines at a relatively
low cost.  Today a four processor machine costs un-
der $12,000.
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Figure 1: A basic symmetric multiprocessor architecture.

1.1 Symmetric Multiprocessing

Symmetric multiprocessing (SMP) is the primary
parallel architecture employed in these low cost ma-
chines.  An SMP architecture is a tightly coupled
multiprocessor system, where processors share a
single copy of the operating system (OS) and re-
sources that often include a common bus, memory
and an I/O system, see Figure 1.  However, the ma-
chine is handicapped unless it has an OS that is able
to take advantage of its multiprocessors.  In the past,
the manufacturer of a multiprocessor machine would
be responsible for the design and implementation of
the machine’s OS.  It was often the case, the ma-
chines could only operate under the OS provided by
the manufacturer.  The machines described here are
built from common PC components and have open
architectures.  This facilitates an environment where
any software developer can design and implement an
OS for these machines.  Two mainstream examples
of such operating systems are Sun’s Solaris and Mi-
crosoft’s Windows NT.  They exploit the power of
multiprocessors by incorporating multitasking and



multithreading architectures.  Their implementations
are nevertheless very different.

1.2 Objects Of Execution

Classic operating systems, such as UNIX, define a
process as an object of execution that consists of an
address space, program counter, stack, data, files,
and other system resources.  Processes are individu-
ally dispatched and scheduled to execute on a proc-
essor by the operating system kernel, the essential
part of the operating system responsible for manag-
ing hardware and basic services.  In the classic case,
a multitasking operating system divides the available
CPU time among the processes of the system.  While
executing, a process has only one unit of control.
Thus, the process can only perform one task at a
time.

In order to exploit concurrency and parallelism, op-
erating systems like NT and Solaris further develop
the notion of a process.  These operating systems
break the classical process into smaller sub-objects.
These sub-objects are the basic entity to which the
OS allocates processor time.  Here we will refer them
as kernel-level objects of execution.  Current oper-
ating systems allow processes to contain one or more
of these sub-objects.  Each sub-object has its own
context1 yet it shares the same address space and
resources, such as open files, timers and signals,
with other sub-objects of the same process.  The de-
sign lets the sub-objects function independently
while keeping cohesion among the sub-objects of the
same process.  This creates the following benefits.

Since each sub-object has its own context each can
be separately dispatched and scheduled by the oper-
ating system kernel to execute on a processor.
Therefore, a process in one of these operating sys-
tems can have one or more units of control.  This
enables a process with multiple sub-objects to over-
lap processing.  For example, one sub-object could
continue execution while another is blocked by an
I/O request or synchronization lock.  This will im-
prove throughput.  Furthermore with a multiproces-
sor machine, a process can have sub-objects execute
concurrently on different processors.  Thus, a com-
putation can be made parallel to achieve speed-up
over its serial counterpart.  Another benefit of the

                                               
1 This refers to its state, defined by the values of the program counter,
machine registers, stacks, and other data.

design arises from sharing the same address space.
This allows sub-objects of the same process to easily
communicate by using shared global variables.
However, the sharing of data requires synchroniza-
tion to prevent simultaneous access.  This is usually
accomplished by using one of the synchronization
variables provided by the OS, such as a mutex.  For
general background information on synchronization
variables see [14], for information on Solaris’s syn-
chronization variables see [1, 5, 12, 13], and [7, 10,
15] for Windows NT’s synchronization variables.

2. Solaris’s and Windows NT’s Design

Windows NT and Solaris further develop the basic
design by sub-dividing the kernel-level objects of
execution into smaller user-level objects of execu-
tion.  These user-level objects are unknown to the
operating system kernel and thus are not executable
on their own.  They are usually scheduled by the
application programmer or a system library to exe-
cute in the context of a kernel-level object of execu-
tion.

Windows NT and Solaris kernel-level objects of exe-
cution are similar in several ways.  Both operating
systems use a priority-based, time-sliced, preemptive
multitasking algorithm to schedule their kernel-level
objects.  Each kernel-level object may be either in-
terleaved on a single processor or execute in parallel
on multiprocessors.  However, the two operating
systems differ on whether user-level or kernel-level
objects should be used for parallel and concurrent
programming.  The differences have implications on
the overall systems’ performances, as we will see in
later sections.

2.1 NT’s Threads and Fibers

A thread is Windows NT’s smallest kernel-level
object of execution.  Processes in NT can consist of
one or more threads.  When a process is created, one
thread is generated along with it, called the primary
thread.  This object is then scheduled on a system
wide basis by the kernel to execute on a processor.
After the primary thread has started, it can create
other threads that share its address space and system
resources but have independent contexts, which in-
clude execution stacks and thread specific data.  A
thread can execute any part of a process' code, in-
cluding a part currently being executed by another



thread.  It is through threads, provided in the Win32
application programmer interface (API), that Win-
dows NT allows programmers to exploit the benefits
of concurrency and parallelism.
A fiber is NT’s smallest user-level object of execu-
tion.  It executes in the context of a thread and is
unknown to the operating system kernel.  A thread
can consist of one or more fibers as determined by
the application programmer.  S̋ome literature [̋1,11]
assume that there is a one-to-one mapping of user-
level objects to kernel-level objects, this is inaccu-
rate.  Windows NT does ˝provide the means for
many-to-many ˝scheduling.  However, NT's design is
poorly documented and the application programmer
is responsible for the control of fibers such as allo-
cating memory, scheduling them on threads and pre-
emption.  This is different from Solaris's implemen-
tation, as we shall see in the next section.  See [7,
10] for more details on fibers.  An illustrative exam-
ple of NT's design is shown in Figure 2.

Fibers 

Threads 

Process Structure 
 

Global Data 

The Windows NT Kernel 
 

Application Code 

Figure 2: The relationships of a process and its threads
and fibers in Windows NT.

2.2 Solaris’s LWPs and Threads

A light weight process (LWP) is Solaris’s smallest
kernel-level object of execution.  A Solaris process
consists of one or more light weight processes.  Like
NT’s thread, each LWP shares its address space and
system resources with LWPs of the same process and
has its own context.  However, unlike NT, Solaris
allows programmers to exploit parallelism through a
user-level object that is built on light weight proc-
esses.  In Solaris, a thread is the smallest user-level
object of execution.  Like Windows NT's fiber, they
are not executable alone.  A Solaris thread must exe-
cute in the context of a light weight process.  Unlike
NT's fibers, which are controlled by the application
programmer, Solaris's threads are implemented and
controlled by a system library.  The library controls
the mapping and scheduling of threads onto LWPs

automatically.  One or more threads can be mapped
to a light weight process.  The mapping is deter-
mined by the library or the application programmer.
Since the threads execute in the context of a light
weight process, the operating system kernel is un-
aware of their existence.  The kernel is only aware of
the LWPs that threads execute on.  An illustrative
example of this design is shown in Figure 3.
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Figure 3: The relationships of a process and its LWPs and threads
in Solaris.

Solaris's thread library defines two types of threads
according to scheduling.  A bound thread is one that
permanently executes in the context of a light weight
process in which no other threads can execute.  Con-
sequently, the bound thread is scheduled by the oper-
ating system kernel on a system wide basis.  This is
comparable to an NT thread.

An unbound thread is one that can execute in the
context of any LWP of the same process.  Solaris
uses the thread library for the scheduling of these
unbound threads.  The library works by creating a
pool of light weight processes for any requesting
process.  The initial size of the pool is one.  The size
can be automatically adjusted by the library or can be
defined by the application programmer through a
programmatic interface.  It i̋s the library’s task to
increase or decrease the pool size to meet the re-
quirements of an application.  Consequently, the
pool size determines the concurrency level (CL) of
the process.  The threads of a process are scheduled
on a LWP in the pool, by using a priority based,
first-in first-out (FIFO) algorithm.  The priority is
the primary algorithm and FIFO is the secondary
algorithm (within the same priority).  In addition, a
thread with a lower priority may be preempted from
a LWP by higher priority thread or by a library call.
Here we will only consider threads of the same pri-
ority without preemption.  Thus, the scheduling al-
gorithm is solely FIFO.  In ˝this case, once a thread is



executing it will execute to completion on a light
weight process unless it is blocked or preempted by
the user.  If blocked, the library will remove the
blocked thread from the LWP and schedule the next
thread from the queue on that LWP.  The new thread
will execute on the LWP until it has completed or
been blocked.  The scheme will then continue in the
same manner.  ̋ For more i̋nformation on Solaris’s
design a̋nd implementation, see [1, 5, 12, ˝13].

3. Experiments

Seven experiments were c̋onducted to determine if
differences in the implementation, design and
scheduling of threads would produce significant dif-
ferences in performance.  None of the experiments
used NT's Fibers since they require complete user
management and any comparison using them would
be subject to our own scheduling algorithms.  Fur-
thermore, we wanted to test each system's chosen
thread API.  Thus we chose to compare the perform-
ance of NT’s threads to three variations of Solaris’s
threads (bound, unbound, and restricted
concurrency).  Although it may seem unfair to com-
pare NT's kernel implementation to Solaris's user
implementation, it is fair because Solaris's imple-
mentation is not purely user based.  Embedded in its
design are kernel objects, LWPs.  Therefore, like the
NT case, the OS kernel is involved in scheduling.
Furthermore, the comparison is between each őper-
ating system's chosen thread model and thus w̋e are
comparing models that each system has specifically
documented for multithreading.  The models do have
fundamental differences, yet they still warrant a
comparison to determine how each could effect dif-
ferent aspects of performance.  The conducted ex-
periments tried to achieve this by measuring the
performance of each system under different condi-
tions.  In some cases, the experiments tried to simu-
late the conditions of real applications such the ones
found in client/server computing and parallel proc-
essing.  The seven experiments were:

1. Measure the maximum number of kernel
threads that could be created by each system
(Section 3.2).

2. Measure the execution time of thread creation
(Section 3.2).

3. Measure the speed of thread creation on a
heavily loaded system (Section 3.2).

4. Determine how each operating system’s ˝thread
implementation would perform on processes

with CPU intensive threads that did not re-
quire any synchronization (Section 3.3).

5. Determine how each operating system’s thread
implementation would perform on processes
with CPU intensive threads that required ex-
tensive synchronization (Section 3.4).

6. Determine the performance of each operating
system's implementation on parallel searches
implemented with threads (Section 3.5).

7. Determine the performance of each operating
system's implementation on processes with
threads that had bursty processor requirements
(Section 3.6).

To restrict the concurrency of Solaris’s threads in the
experiments, unbound threads were created and their
concurrency was set to the number of processors,
noted by (CL = 4) in the tables.  In theory, this cre-
ated a LWP for each processor and imposed on the
thread library to schedule the unbound threads on
the LWPs.  To use Solaris unbound threads, threads
were created without setting the concurrency level.
Thus, only one LWP was made available to the
thread library, and the test program could not exploit
the multiprocessors.  However, the thread library is
documented [11, 12, 13] as having the capability to
increase or decrease the pool of LWPs automatically.
Therefore, any processes using unbound threads,
including processes that contain with restricted
concurrency, indirectly test the thread library's man-
agement of the LWP pool.

Our reported benchmarks are in seconds for an aver-
age of 10 trials.  In most cases, the standard devia-
tions (σ) for trails were less than 0.15 seconds.  We
only report σ, when a trial's   σ ≥ 0.2 seconds.

3.1 Parameters

We acknowledge the arguments on the stability of
benchmarks presented in [2].  Thus, we take every
precaution to create a uniform environment.  For all
experiments, the default priority was used for each
system’s kernel-level objects of execution.  Experi-
ments were performed on the same hardware, a four
PPro SMP machine with 512 megabytes of RAM and
a four-gigabyte fast and wide SCSI hard drive.  At
any one time, the machine solely operated under
Solaris version 2.6 or Windows NT Server version
4.0.  This was implement by a dual boot to facilitate
easy switching between the OSs.  Each operating
system used its native file s̋ystem.  There were no



other users on the machine during experiments.  The
“same compiler”, GNU gcc version 2.8.1, was used
to compile the test programs for both operating sys-
tems.  Originally, this was done to reduce any vari-
ances in execution time that could be attributed to
different compilers.  However, later we compiled the
test programs with each system's native compiler
(Visual C++ 5.0 and SUN C Compiler 4.2) and
found no significant differences in performance.  In
order to maintain a standard format, we chose to
only report the results from the gcc compilations.
Note, all test programs were c̋ompiled with the op-
tions:  -O3 -mpentiumpro  -march=pentiumpro.
These options generate the highest level of perform-
ance optimizations for a Pentium Pro.

3.2 Thread Creation

The first experiment measured the maximum n̋um-
ber of kernel-level objects of execution each operat-
ing system could create, since neither system clearly
documents the limit.  The experiment was performed
by repeatedly creating threads (bound in the Solaris
case) that suspended after creation.  At some given
point, the tested operating system would fail trying
to create a thread because it had exhausted resources
or had reached the preset limit.

Description NT Solaris

# of Threads Created 9817 2294

Memory Usage 68MB 19MB

Execution Time (sec.) 24.12 2.68

Table 1: Comparison of the maximum num-
ber of threads allowable.

Table 1 shows the test program executing on Solaris
failed after 2294 requests to create bound threads.
At the time of termination, the process had only used
19 megabytes of memory.  The Windows NT test
program created 9817 threads before failing.  At that
time, it had used approximately 68 megabytes of
memory.  In addition, the table shows the amount of
time required to create the threads.

The second experiment, shown in Table 2, measured
the speed of thread creation on both systems.  The
table shows Solaris bound threads and NT threads
had similar performances.  The similar performance
can be attributed to the fact that each OS required
system calls for thread creation.  In the case of So-
laris, this was done indirectly through the ˝thread

library.  The library was required to make a system
call to create an LWP for each bound thread.  In ad-
dition as expected, Solaris's unbound thread creation
outperformed NT's.  In this case, Solaris's thread
creation required a simple library call, while NT's
required a system call.  It is also worth noting that
the Solaris restricted concurrency case (CL=4) was
only marginally slower than the Solaris unbound
case.  This was because only four LWPs were
needed.  Thus, only four system calls were required
to create the threads.

Bound CL=4 Unbound

100 0.11 0.08 0.07 0.06

200 0.17 0.15 0.11 0.09

500 0.37 0.37 0.24 0.22

1000 0.74 0.81 0.49 0.45

2000 1.90 2.07 1.12 0.98

Solaris Time
Threads NT Time

Table 2: Comparison of thread creation speed.

The third experiment also involved the creation of
threads.  The experiment measured the speed of
thread creation while other threads were executing
CPU intensive tasks.  The tasks included several
integer operations such as addition, subtraction, and
multiplication.  This imposed on each OS to create
threads on a heavily loaded system.  The number of
threads created was varied.  Table 3 shows how long
it took to create a collection of threads in each sys-
tem.

Time σ Time σ

16 3.65 0.29 0.33 0.04

32 5.72 0.34 0.52 0.14

64 12.56 0.43 0.91 0.22

128 146.74 18.77 1.98 0.39

NT Solaris
Threads

Table 3: Comparison of the performance of
processes that create CPU intensive threads.

The experiment showed that the Solaris version of
the test program created threads much faster than the
NT version.  This can be attributed to each systems
multi-tasking scheduling algorithm.  Although, the
algorithms are similar in design, priority differences
exist.  Solaris's algorithm was fair with respect to
newly created LWPs, while NT scheduling algorithm
gave priority to currently executing threads.  Thus in



the case of NT, requests for thread creation took
longer because of the heavily loaded system.  We
found this to be characteristic of NT’s scheduling
algorithm.  In various cases, executing several CPU-
bound threads severely reduced the responsiveness of
the system.  Microsoft documents this behavior in
[7].  Also, in both the Solaris and the NT cases, as
the number of threads increased, the thread creation
time became less predictable.  This was especially
true in the NT case, σ = 18.77 seconds when 128
threads were used.

3.3 No Synchronization

The fourth experiment determined how each oper-
ating system’s thread implementation would perform
on processes that created CPU intensive threads
(with identical workloads) that did not require any
synchronization.  The experiment was performed by
executing a process that created threads, where each
thread had a task to perform that required a proces-
sor for approximately 10 consecutive seconds.  A
thread would perform its task and then terminate.
After all the threads terminated, the creating process
would terminate.  Table 4 shows how long it t̋ook
processes to complete in each system.

Bound CL=4 Unbound

1 10.11 10.06 10.06 10.06

4 10.13 10.13 10.12 40.18

8 20.32 20.53 20.26 80.35

16 40.37 40.35 40.52 160.67

32 80.49 80.80 80.73 321.27

64 160.78 161.34 161.49 642.54

Solaris Time
Threads NT Time

Table 4: Comparison of the performance of processes
with CPU intensive threads that do not require syn-
chronization.

The experiment showed few differences in perform-
ance between NT threads and Solaris bound threads.
This suggests that Solaris bound threads are similar
to NT threads while performing CPU intensive tasks
that did not require synchronization.  However, it is
worth noting that as the number of CPU intensive
threads increased, Windows NT's performance w̋as
slightly better.

In Solaris's unbounded and CL=4 cases, the thread
library did not increase nor decrease the size of the
LWP pool.  Therefore, only one LWP was used by

the library for the unbounded case.  Consequently,
the unbound threads took approximately 10N time,
where N was the number of threads used.  (Recall
each thread performed a 10 second task.)  The per-
formance was also reflective of the FIFO algorithm
used by library.  Another point worth noting is that
in Solaris CL=4 case, the performance was equiva-
lent to that of the bound threads, which were opti-
mal.  Thus, additional LWPs did not increase the
performance.  This leads to two observations.  First,
in the case of equal workloads with no synchroniza-
tion, peek performance is reached when the amount
of LWPs is equal to the number of processors.  Sec-
ond, the time it takes Solaris’s thread library to
schedule threads on LWP is not a factor in perform-
ance.

3.4 Extensive Synchronization

The fifth experiment determined how each operating
system’s thread implementation would perform on
processes that use threads (with identical workloads),
which require extensive synchronization.  The test
program was a slightly altered version of an example
from [1] called “array.c”.  The test program created
a variable number of threads that modified a shared
data structure for 10000 iterations.  Mutual exclusion
was required each time a thread needed to modify
the shared data.  In the general case, this can be im-
plemented with a mutual exclusion object, like a
mutex.  Both operating systems offer local and
global mutual exclusion objects2.  Windows NT pro-
vides two mutual exclusion objects, a mutex, which
is global, and a critical section, which is local.  So-
laris only provides a mutex.  However, an argument
can be passed to its initialization function, to specify
its scope.  We thus chose to compare each system's
local and global mutual exclusion objects.  Tables 5
and 6 shows the execution times for processes to
complete in each system.

The results show NT out performs Solaris when us-
ing local synchronization objects, while Solaris out
performs NT when using global synchronization
objects.  In addition, the experiment showed large
differences in the performance of NT’s mutex in
comparison to its critical section, and few differences
in performance of Solaris local mutex in comparison
to its global mutex.  The poor performance of NT's
mutex was directly attributed to its implementation.

                                               
2 This refers to the scope of the synchronization object, where local
refers to a process scope and global refers to a system scope.



NT’s mutex is a kernel object that has many security
attributes that are used to secure its global status.
NT’s critical section is a simple user object that only
calls the kernel when there is contention and a
thread must either wait or awaken.  Thus, its
stronger performance was due to the elimination of
the overhead associated with the global mutex.

The Solaris case CL = 4 outperformed both bound
and unbound Solaris cases.  This was due to a re-
duction in contention for a mutex.  This reduction
was caused by the LWP pool size.  Since the pool
size was four, only four threads could execute con-
currently.  Consequently, only four threads could
contend for the same mutex.  This reduced the time
threads spent blocked, waiting for a mutex.  Fur-
thermore, when a thread was blocked, the thread
library scheduled another thread on the LWP of the
blocked thread.  This increased the throughput of the
process.

NT Time

Critical

Section Bound CL=4 Unbound

250 1.04 1.20 1.13 2.69

500 2.49 2.93 2.56 5.98

750 3.76 5.16 4.37 9.63

1000 4.93 8.18 6.43 13.89

2000 9.89 24.85 17.84 35.38

Threads Local Mutex

Solaris Time

Table 5: Comparison of the performance of processes
with threads that required extensive synchron-ization
using local/intra-process syncronization ob-jects.

NT Time

Bound CL=4 Unbound

250 10.84 1.18 1.20 2.68

500 25.58 2.69 2.74 5.94

750 37.78 4.80 4.60 9.59

1000 49.73 7.79 6.95 13.73

2000 99.15 24.98 19.75 34.89

Threads

Solaris Time

Mutex
Global Mutex

Table 6: Comparison of the performance of processes
with threads that require extensive synchronization
using global/inter-process synchronization objects.

3.5 Parallel Search

The sixth experiment determined how each operat-
ing system’s thread implementation would perform

on the execution of a parallel search implemented
with threads that required limited synchronization.
Here we explored the classic symmetric traveling
salesman problem (TSP).  The problem is defined as
follows:

Given a set of n nodes and distances for each
pair of nodes, find a roundtrip of minimal
total length visiting each node exactly once.
The distance from node i to node j is the
same as from node j to node i.

The problem was modeled with threads to perform a
parallel depth-first branch and bound search.  For
background information on parallel searches, see [6].
The threads were implemented in a work pile para-
digm, see Chapter 16 in [5].  The work pile con-
tained equally sized partially expanded branches of
the search tree.  The threads obtained partially ex-
panded branches from the work pile and fully ex-
panded them in search of a solution.  The initial
bound of the problem was obtained by a greedy heu-
ristic, see [8].  For testing purposes, the heuristic
always returned the optimal solution.  Therefore, it
was the task of the threads to verify the optimality of
the heuristic.  Synchronization was required for ac-
cessing the work pile and for solution updates.  Yet,
recall the previous experiment showed that NT's
mutex performed poorly when extensive synchroni-
zation was required.  This leads one to believe that a
critical section should be used for NT.  However,
after thorough testing, it was found that, synchroni-
zation occurred infrequently enough that it c̋ould be
implemented by using mutexes without any loss in
performance as compared to a critical section.  We
still chose to report our results using a critical sec-
tion for NT.  In the case of Solaris, a mutex with
local scope was used.  The data, gr17.tsp with n =
17, were obtained from the TSPLIB at Rice Univer-
sity [17].  Table 7 shows how long it took to verify
optimality using processes in each system.



Time σ Time σ Time σ Time σ

1 149.86 0.05 152.05 0.01 152.08 0.04 152.08 0.02

2 74.96 0.01 76.06 0.01 76.06 0.01 76.06 0.02

3 50.02 0.01 50.76 0.01 50.74 0.01 76.29 0.22

4 37.59 0.07 38.20 0.04 38.17 0.04 76.37 0.33

8 37.90 0.26 38.36 0.24 38.15 0.02 76.35 0.34

16 38.17 0.24 38.78 0.21 38.18 0.04 76.97 0.29

Threads
NT

Solaris

Bound CL=4 Unbound

Table 7: Comparison of the performance of the TSP using threads to
perform a parallel depth-first branch and bound search (Data:
gr17.tsp, n = 17).

The NT version of the TSP slightly outperformed the
Solaris version.  Both systems were able to achieve
an almost linear speed up (3.9+).  The Solaris
benchmarks again showed that when the LWP pool
size was four the performance was equivalent to us-
ing four bound threads.  Another observation was
that when using two or more of Solaris’s unbound
threads the performance was equal to using two of
Solaris’s bound threads.  This would suggest that the
thread library used two LWPs although two LWPs
were not requested.  This is the only experiment
where Solaris's thread library changed the size of the
LWP pool.

3.6 Threads With CPU Bursts

The last experiment determined how each operating
system’s thread implementation would perform on
processes that had many threads with CPU bursts.
This is analogous to applications that involve any
type of input and output (I/O), e.g., networking or
client/server applications, such as back end process-
ing on a SQL server.  The experiment was performed
by executing a process that created many threads.
Each thread would repeatedly be idle for one second
and then require the CPU for a variable number of
seconds.  Three burst lengths were explored, one less
than the idle time (0.5 sec.), one equal to the idle
time (1.0 sec.) and one greater than the idle time (4
sec.).  The amount of required CPU time causes the
threads to act as if they are I/O-bound, equally-
bound, or CPU- bound, respectively.  Tables 8 – 10
show how long it took to complete the processes in
each system.

Time σ Time σ Time σ Time σ

1 7.58 0.01 7.53 0.00 4.99 0.04 4.96 0.13

4 7.58 0.01 7.58 0.05 4.97 0.15 5.93 0.12

8 9.17 0.19 8.94 0.10 7.23 0.28 10.82 0.23

16 12.25 0.30 12.90 0.14 10.97 0.24 20.88 0.16

32 21.47 0.03 21.54 0.11 20.93 0.10 41.11 0.11

64 41.70 0.02 41.80 0.05 40.97 0.50 81.57 0.11

Threads
NT

Solaris

Bound CL=4 Unbound

Table 8: Comparison of the performance of processes with threads
that require the CPU for intervals that are less than their idle time
(I/O-Bound).

Time σ Time σ Time σ Time σ

1 10.08 0.01 10.05 0.02 9.96 0.13 9.94 0.21

4 10.08 0.01 10.13 0.08 9.95 0.12 10.99 0.11

8 14.17 0.18 13.24 0.16 11.11 0.35 20.92 0.05

16 22.27 0.06 22.11 0.25 20.95 0.11 40.99 0.04

32 41.92 0.05 41.58 0.06 41.09 0.28 81.15 0.13

64 81.82 0.03 82.13 0.12 81.81 0.36 162.39 0.20

Threads
NT

Solaris

Bound CL=4 Unbound

Table 9: Comparison of the performance of processes with threads
that require the CPU for intervals that are equal to their idle time
(Equally-Bound).

Time σ Time σ Time σ Time σ

1 25.15 0.02 25.10 0.01 24.98 0.07 25.00 0.00

4 25.16 0.01 25.33 0.17 24.98 0.08 40.99 0.08

8 43.36 0.25 42.50 0.23 42.06 0.60 81.04 0.11

16 82.25 0.06 82.25 0.31 81.78 0.48 108.84 0.27

32 162.25 0.04 162.63 0.14 162.68 0.39 237.67 0.36

64 322.64 0.01 323.67 0.31 323.81 0.31 431.44 0.44

Threads
NT

Solaris

Bound CL=4 Unbound

Table 10: Comparison of the performance of processes with threads
that require the CPU for intervals that are greater than their idle time
(CPU-Bound).

The experiments showed a few differences in the
performance between Solaris’s bound threads, So-
laris’s threads with restricted concurrency and NT’s
threads.  A noticeable difference in performance
occurred in the first two cases, shown in Tables 8
and 9, where the threads required the CPU for inter-
vals that were less than or equal to their idle time.
In these cases, the Solaris version using restricted
concurrency showed a slightly better performance in
comparison to NT’s threads or Solaris bound and



unbound threads.  This can be directly attributed to
Solaris’s two-tier system.  In this case, it was shown
that optimal performance could be achieved by set-
ting the concurrency level to the number of CPUs
and creating as many unbound t̋hreads as needed.
This logically creates one LWP for each CPU.  Re-
call the operating system is only aware of the LWPs.
This coupled w̋ith the FIFO scheduling of Solaris’s
thread library keeps its bookkeeping to a minimal
while maximizing the concurrency.

There were also notable differences in performance
in the last case, Table 10, where the CPU intervals
were greater than the idle time, CPU-bound.  The
results of Solaris's bound threads and N̋T's threads
were similar to the fourth experiment, Section 3.3,
Table 4.  NT's threads out performed Solaris's bound
threads as the number of threads increased.

4. Conclusions

Both Windows NT and Solaris were able to utilize
multiprocessors.  Their performance scaled well with
the number of CPUs.  However, there is a lack of
documentation pertaining to the performance i̋ssues
of each system.  Microsoft and Sun have taken steps
in the right direction with the availability of docu-
mentation at their respective web sites [7] and [18].
However, little is written on the performance impact
of each design.  Yet, we found that each implemen-
tation can have significant performance implications
on various types of applications.

The experiments showed that Windows NT’s thread
implementation excelled at CPU intensive tasks that
had limited synchronization or only intra-process
synchronization.  Therefore, NT's threads can be
greatly exploited on applications such as parallel
computations or parallel searches.  The experiments
also showed that NT’s mutex performed poorly com-
pared to Solaris's mutex, when extensive synchroni-
zation was required.  However, NT's critical section
provided significantly better performance than So-
laris's mutex.  Therefore, for NT, a critical section
should be used to implement extensive intra-process
synchronization.  Another NT observation was that
to achieve optimal performance the number of
threads used by a process for the execution of a par-
allel search or computation should be approximately
equal to the number of CPUs.  Although, it was
found that the exact number of threads was depend-
ent on the specific problem, its implementation and

the specific data set being used, also see [6].  It is
also worth noting, that both systems grew erratic as
the number of executing CPU intensive threads grew
larger than the number of processors.  This was es-
pecially true in the NT case.  Responsiveness was
sluggish on heavily loaded systems and often re-
quired dedicated system usage.

Solaris's thread API proved to be more flexible, at
the cost of complexity.  We found that the exploita-
tion of multiprocessors required a thorough under-
standing of the underlying OS architecture.  How-
ever, we also found Solaris's two-tier design to have
a positive performance impact on tasks with bursty
processor requirements.  This suggests that Solaris
threads are well suited for applications such back
end processing or client/server applications, where a
server can create threads to respond to a client's re-
quests.  In a̋ddition, we found the Solaris thread li-
brary's automatic LWP pool size control to be insig-
nificant.  We found in most cases, the programmer
can achieve desirable performance with unbound
threads and a restricted concurrency level that is
equal to the number of processors.

In conclusion, the advent of relatively inexpensive
multiprocessor machines has placed a critical im-
portance on the design of mainstream operating sys-
tems and their implementations of threads.  Threads
have become important and powerful indispensable
programming tools.  They give programmers the
ability to execute tasks concurrently.  When used
properly they can dramatically increase performance,
even on a uniprocessor machine.  However, threads
are new to mainstream computing and are at a rela-
tively early stage of development.  Thus, arguments
exist on how threads should be implemented.  Yet,
one should remember that differences between im-
plementations are simply tradeoffs.  Implementers
are constantly trying to balance their implementa-
tions by providing facilities they deem the most im-
portant at some acceptable cost.

Note there has been a movement to standardize
threads.  IEEE has defined a thread standard POSIX
1003.1c-1995 that is an extension to the 1003.1
Portable Operating System Interface (POSIX).  The
standard, called pthreads, is a library-based thread
API.  It allows one to develop thread applications
cross platform.  However, IEEE does not actually
implement the library.  It only defines what should
be done, the API.  This leaves the actual implemen-
tation up to the operating system developer.  Usually



the pthreads library is built on the developer’s own
thread implementation.  It is simply a wrapper over
the developers’ own implementation and thus, all
features may or may not exist.  In the case where the
OS does not have a thread implementation, the li-
brary is solely user based, and thus can not exploit
multiprocessors.
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