
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Implementing IPv6 for Windows NT

Richard P. Draves, Brian D. Zill
Microsoft Research

Allison Mankin
University of Southern California

Proceedings of the 2nd USENIX Windows NT Symposium, Seattle, WA, August 3–4, 1998. 1

Implementing IPv6 for Windows NT

Richard P. Draves,1 Allison Mankin,2 Brian D. Zill1

1Microsoft Research 2USC/ISI
One Microsoft Way 4350 North Fairfax Drive

Redmond, WA 98052 Arlington, VA 22203
richdr@microsoft.com mankin@isi.edu

Abstract

We have created a publicly-available implementation of
IPv6 for Windows NT. Because we have made our
source code available, we hope that our implementation
can serve as a base for networking research and supply
sample code for other implementations. In this paper
we describe our solutions for several problems that any
network protocol implementation for Windows NT will
encounter. Based on our experience, we also comment
on the utility of access to the source code for the Win-
dows NT product.

1. Introduction
This paper reports our experiences developing a net-
work protocol stack for Windows NT. We have created
a prototype implementation, known as MSR IPv6, of
IPv6 for Windows NT. We have released the imple-
mentation and its source code publicly, for testing, re-
search, and educational purposes [10]. Our implemen-
tation should prove useful to people experimenting with
IPv6 and to people wishing to use Windows NT as a
platform for networking research or education.

IPv6 [3] is the next version of the Internet Protocol; it is
an active effort within the Internet Engineering Task
Force (IETF). IPv6 primarily solves scaling problems
with the current version of the Internet Protocol (IPv4),
but it also introduces many other major and minor ar-
chitectural improvements. Most notably, IPv6 addresses
have 128 bits (16 bytes) [7]. We will introduce other
salient aspects of IPv6 throughout the paper, as they are
relevant. Numerous vendors have pre-release IPv6 im-
plementations and there are several free, publicly avail-
able implementations for BSD and Linux variants [9].
Our implementation is the first free, publicly available
implementation for Windows NT.

We started this project at Microsoft Research in late
1996 primarily as a learning experience: we wanted to
learn more about the Internet Protocol and this step in
its evolution, and we wanted to learn more about Win-
dows NT internals. We also hoped that our efforts
might help bootstrap a Microsoft product implementa-
tion of IPv6. (We can not say anything further about

Microsoft’s product plans or schedules.) As we made
progress, we realized that a public release, including
source code, would be valuable for the community.
USC/ISI East joined the project in December 1997. Our
first public release was March 24, 1998.

Overall, Windows NT has been a good platform for
protocol development. It accommodates new protocols,
loadable at run-time, with great ease. The kernel de-
bugger provides a good source-level debugging envi-
ronment. Microsoft’s Network Monitor tool, for cap-
turing and viewing packets, was also very useful for
debugging. We use Windows NT 4.0 for our develop-
ment, but our MSR IPv6 implementation runs equally
well on current versions of Windows NT 5.0.

We did come across several implementation challenges
that are not specific to IPv6 and would be faced by any
protocol implementation for Windows NT. Among the
challenges for an efficient implementation are how to
handle received packets given the multiplicity of ways
to receive them, how to “pull-up” fragmented packet
buffers into a contiguous buffer, and how to add link-
layer headers when sending packets. In Section 4 we
examine these and other problems and our solutions in
detail.

We have had access to Windows NT source code dur-
ing our development, which we have found useful but
not essential. The learning curve for NT internals was
very steep and sample code was particularly useful.
(Our implementation can serve this purpose for others
attempting Windows NT protocol development.) Not
surprisingly, on several occasions source code was use-
ful for debugging or for understanding poorly docu-
mented interfaces. In Section 5 we document more pre-
cisely when and how we made use of Windows NT
source code.

The remainder of the paper is organized as follows.
First, we present an overview of Windows NT’s archi-
tecture for network protocols. Section 3 briefly de-
scribes our implementation and some of the major de-
sign choices we made. Next we report our experiences
developing networking code for Windows NT, dis-
cussing solutions to problems inherent in Windows

Proceedings of the 2nd USENIX Windows NT Symposium, Seattle, WA, August 3–4, 1998. 2

NT’s protocol architecture and also discussing the util-
ity of access to Windows NT source code. Section 6
presents initial performance results for our implemen-
tation, and the next section compares our implementa-
tion to other IPv6 implementations. The paper ends
with conclusions and a discussion of future work.

2. Windows NT Networking Architecture

Network protocols in Windows NT are dynamically
loadable device drivers, much like any other device
driver in Windows NT [1]. It is possible to add a new
protocol to the system by writing two new components:
a kernel-level driver (tcpip6.sys in Figure 1) that ex-
ports the TDI interface and uses the NDIS interface,
and a user-level helper (wshipv6.dll in Figure 1) to sup-
port access to the driver via sockets.

Unlike the original BSD Unix sockets architecture, in
which socket operations were direct system calls into
the kernel, the Winsock architecture has several signifi-
cant user-level components or Dynamic Link Libraries
(DLLs). The Winsock DLL (ws2_32.dll) acts as a “traf-
fic cop;” it redirects calls from the application to the
appropriate Windows Socket Provider (WSP) or Name
Space Provider (NSP). The WSP and NSP interfaces
are both publicly documented. A WSP implementation
can provide a new address family or an alternative im-
plementation for an existing address family. WSP and
NSP implementations make their presence known via
entries in the system registry. The Microsoft WSP
(msafd.dll) communicates with kernel drivers as de-
scribed below, but other WSP implementations might
function entirely at user-level or collaborate with a ker-
nel driver via completely custom means. An NSP im-

plementation supports name spaces for gethostbyname
and related calls. For example, the Microsoft NSP
(rnr20.dll) implements a DNS resolver.

To make it easier to add new protocols, msafd.dll sup-
ports multiple protocols through the use of helper
DLLs. The helper DLL (like wshipv6.dll in our IPv6
implementation) exports the documented WSH inter-
face, which msafd.dll uses when it wants to perform
protocol-specific actions (like converting a socket ad-
dress to a TDI address, or parsing the string representa-
tion of an address). msafd.dll handles almost all of the
real work of being a Windows Socket Provider.

msafd.dll communicates with kernel protocol drivers
via afd.sys. The interface between msafd.dll and afd.sys
is not documented. Together msafd.dll and afd.sys han-
dle buffering, select, and other minor issues as “glue”
between Winsock and the TDI interface.

TDI (Transport-Device Independent) is Microsoft’s
kernel-level network protocol interface. It uses Micro-
soft’s driver architecture [1], which encodes I/O opera-
tions in small structures called I/O Request Packets
(IRPs). The driver architecture is inherently asynchro-
nous. The kernel converts system calls into IRPs and
drivers pass IRPs around until the operation that they
represent completes. TDI is mostly just a family of op-
erations encoded as complex ioctl IRPs. It uses its own
address representation, distinct from Winsock’s
sockaddrs. It uses two kinds of pseudo-file objects, to
represent connection-oriented and connectionless com-
munication endpoints. It is documented, but not par-
ticularly well.

Application

ws2_32.dll
Winsock 2

Winsock

wship6.dll
Winsock Helper for IPv6

WSH msafd.dll
MS’s Winsock Provider

WSP

rnr20.dll
MS’s Namespace Provider

NSP

afd.sys
Driver for Winsock

tcpip6.sys
IPv6 Protocol

TDI

ndis.sys
Device-Independent Driver

NDIS

dc21x4.sys
Device-Specific Driver

NDIS

Existing Components

Added Components
User Process

Kernel

Figure 1: Windows NT Networking Architecture

Proceedings of the 2nd USENIX Windows NT Symposium, Seattle, WA, August 3–4, 1998. 3

A network protocol driver like tcpip6.sys implements
TDI. Typically the protocol driver uses NDIS (Network
Driver Interface Specification) to handle actual network
interface cards. Like TDI, the NDIS interface is also
asynchronous, but it uses callbacks instead of IRPs. For
example the protocol calls NDIS to send a packet, and
NDIS calls the protocol to indicate that a packet was
sent and to indicate that a packet was received. Rather
than have each hardware vendor reimplement NDIS,
Microsoft supplies a common component (ndis.sys) that
implements most NDIS functionality, and hardware
vendors supply a relatively small “miniport” (like
dc21x4.sys) that implements functionality specific to
their device.

If one supplies an initialization file with configuration
information, the standard Network Control Panel
graphical user interface (GUI) can install, configure,
and uninstall custom network protocols. The initializa-
tion file format is documented in the Device Driver Kit
(DDK). Entries in the system registry control all con-
figuration information, for network drivers, Winsock
providers, and Winsock helpers. Registry entries also
control the bindings between network interfaces and
protocol stacks. For example, using Network Control
Panel to modify the registry it is possible to disable a
particular protocol for a given interface. One complica-
tion with configuration is that in Windows NT 5.0, both
the initialization file format and the GUI for network
installation and configuration have changed radically.

3. Our Implementation

Our implementation supports basic IPv6 functionality,
but it is not a complete implementation. As of this
writing, it supports Neighbor Discovery (which among
other things replaces ARP), stateless address autocon-
figuration (which allows hosts to configure automati-
cally based on packets sent by routers), ICMPv6, Mul-
ticast Listener Discovery (essentially IGMPv2 for
IPv6), several flavors of tunneling IPv6 via IPv4, and of
course UDP and TCP over IPv6. It does not yet support
security, authentication, mobility, or forwarding.

Future MSR IPv6 releases will include a separate driver
for translating between IPv6 and IPv4, based on re-
search at the University of Washington [4]. A translator
allows an IPv6-only node to communicate with an
IPv4-only node.

3.1. Implementation Strategy

We started with Windows NT 4.0 source for Micro-
soft’s TCP/IP driver (tcpip.sys) and incrementally
modified it. Eventually we replaced or rewrote all the
IP-layer code, but our TCP and UDP layers are still
strongly based on the original Microsoft code. Almost
all of the machinery for supporting TDI is unchanged

from the original code base. Starting with working IPv4
code and modifying it was very helpful in overcoming
our learning curve and getting something working, but
it resulted in intellectual property issues that we had to
resolve when we wanted to plan a public source code
release. Section 5 discusses our use of source code in
more detail.

We also briefly considered starting with a public BSD-
based IPv6 implementation and porting it to Windows
NT. We feel that porting a BSD-based protocol, per-
haps with TDI and NDIS glue layers, would be consid-
erable work (the differences between BSD and Win-
dows NT internals being much greater than the differ-
ences between IPv4 and IPv6) and probably result in an
unsightly implementation. Because we would like our
implementation to serve as a relatively clean example
for others, we did not pursue this approach.

We decided to implement a “single stack,” which only
supports IPv6, as opposed to a “hybrid stack,” which
would support both IPv4 and IPv6 in an integrated
fashion. We felt the single stack approach would be
better for testing and experimentation, because the
normal functions of the system, which rely on the IPv4
stack, are not affected by bugs or problems with the
IPv6 stack. In practice this has worked very well and
the presence of the experimental IPv6 stack has not
caused problems for our systems. However for real
product usage, the hybrid approach is probably superior
for most scenarios. It eliminates the duplication of
having separate IPv4 and IPv6 implementations of TCP
and UDP. It also makes it easier to implement some
transition mechanisms, like v4-mapped addresses (a
way to have what seems to be an IPv6 socket which is
really sending/receiving IPv4 packets) or an ioctl to
change a IPv4 socket to IPv6 and back.

We decided very early on not to support Windows 95.
The Windows 95 network architecture is similar to but
not identical to Windows NT’s, and we felt that for our
purposes it was not worth the effort of understanding
these differences, coding around them, and testing for
two environments. The IPv4 code base from which we
started was built with a proprietary glue layer to support
both Windows NT and Windows 95, but we had to re-
move references to this glue layer prior to our public
release. For a product implementation, Windows 95
support would be more interesting. The Windows 98
and Windows CE driver models more closely resemble
Windows NT’s, but we have not yet thoroughly ex-
plored the possibility of ports to those operating sys-
tems.

3.2. Code Organization

Our IPv6 implementation has three layers: the link
layer, the network or IPv6 layer, and transport and other

Proceedings of the 2nd USENIX Windows NT Symposium, Seattle, WA, August 3–4, 1998. 4

upper-layer protocols. (See Figure 2.) The IPv4 code
base from which we started had the same divisions into
three layers, but we simplified the interfaces between
the layers.

LAN Loopback Tunnel

Neighbor
Discovery

Send/Receive Routing

TCP UDP

ICMP MLD

Link-Layer
Modules

Core

Upper-Layer
Protocols

Figure 2: IPv6 Code Modules

The link-layer modules each manage a specific low-
level interface type. The LAN module uses NDIS to
handle Ethernet interfaces, and with minor changes it
could also handle token-ring and other LAN media. The
loopback module creates a pseudo-interface that reflects
packets back to the sending machine. The tunnel mod-
ule implements configured tunnels and automatic tun-
neling [5], and “6-over-4” [2]. In all three variations,
the tunnel module uses IPv4 as the link layer to send
and receive IPv6 packets. The tunnel module communi-
cates with the IPv4 stack using TDI, in much the same
way that the LAN module uses NDIS to communicate
with Ethernet interfaces.

The core IPv6 modules communicate with link-layer
modules through a well-defined interface. The link-
layer module supplies IPv6 with a structure of informa-
tion containing the length of link addresses, the network
interface’s own link-layer address, the link maximum
transmission unit (MTU), and six entry points. The two
substantial entry points send a packet and control multi-
cast address assignment. The other four entry points are
small helper functions, for creating an IPv6 address for
the network interface given an IPv6 address prefix, for
creating a link-layer multicast address given an IPv6
multicast address, and for reading and writing the link-
layer address option fields in Neighbor Discovery
packets. In the other direction, the link-layer modules
call up to IPv6 to deliver received packets and to indi-
cate the completion of packet-send operations. Our
link-layer interface could easily be exposed to allow
link-layer modules to reside in other kernel drivers or
components, but we have not yet taken that step.

The IPv4 code base from which we started had a simi-
larly well-defined link-layer interface, but the details
were much more complicated. For example, IPv4 link-
layer modules exported ten non-trivial entry points.
Furthermore, IPv4 link-layer modules were responsible

for allocating buffer space for their link-layer header
(see Section 4.3) and for address resolution (ARP). In
our implementation, common IPv6 code handles these
responsibilities.

The core IPv6 modules implement the basic
send/receive functionality, including fragmentation and
reassembly and extension header processing, Neighbor
Discovery (which replaces ARP for address resolution),
and routing. Our current routing module only performs
on-link determination and default router selection, us-
ing the data structures described below. We do not yet
have any true routing table data structure or packet for-
warding support.

The interface between higher-layer protocols like TCP
or UDP and the core IPv6 code is fairly narrow but not
yet as clearly defined as the link-layer interface. The
IPv6 code calls up via a protocol switch table to deliver
packets and control messages, and the higher-layer
protocol code calls down to allocate packets, select
source addresses, perform routing, and send packets.
ICMP and MLD are technically upper-layer protocols
but their implementation is integrated with the core
IPv6 modules and data structures. For example, Neigh-
bor Discovery uses ICMP messages and MLD uses the
ADE data structures describe below.

3.3. Data Structures

Our design hews fairly closely to the conceptual data
structures found in the Neighbor Discovery specifica-
tion [11]. For example, it has a Neighbor Cache, a Des-
tination Cache (although we call it a Route Cache), a
Router List, and a Prefix List. The design deviates from
the conceptual data structures in two major ways. First,
we support multi-homed hosts (hosts with multiple in-
terfaces), and this complicates the data structures
slightly. Second, Route Cache entries cache the pre-
ferred source address for destinations as well as caching
the next-hop neighbor, path MTU, and other informa-
tion. Figure 3 presents the major data structures and
their interconnections.

The Interface (IF) is our central data structure. There is
one Interface for each network interface card, plus ad-
ditional Interfaces for logical or virtual links like loop-
back, configured/automatic tunneling, and 6-over-4. In
addition to link-layer information and configuration
information, each Interface has a list of NTEs, which
represent the addresses assigned to the interface that
can be used as source addresses; a list of ADEs, which
represent the addresses for which the Interface can re-
ceive packets; and a cache of NCEs, which represent
neighboring nodes on that link.

Proceedings of the 2nd USENIX Windows NT Symposium, Seattle, WA, August 3–4, 1998. 5

IF
link info
NTE list
ADE list

NCE cache

NCE
IF

IPv6 addr
link addr
ND state

NTE
IF

IPv6 addr
DAD state

lifetime

RCE
dest IPv6 addr
source NTE

next-hop NCE
PMTU

rate-limiting

PLE
IF

prefix
lifetime

RLE
NCE

lifetime

ADE
recv NTE
IPv6 addr

Figure 3: IPv6 Data Structures

The Net Table Entry (NTE) represents a unicast address
assigned to an interface for use as a source address. It
primarily contains state information for Duplicate Ad-
dress Detection (DAD) and lifetime information de-
rived from stateless address autoconfiguration. The
name NTE derives from an IPv4 data structure similar
in concept but different in detail (IPv4 does not have
DAD or stateless autoconfiguration).

The Address Entry (ADE) represents a destination ad-
dress for which the interface can receive packets. A
unicast address can have both an ADE and an NTE, but
a multicast address will have only an ADE. Each ADE
maps to the NTE that logically receives the packets
(would be used to reply to the packet if necessary). For
example, IPv6 has the concept of addresses with link-
local scope. An ADE for a multicast address with link-
local scope maps to the NTE for the interface’s link-
local unicast address.

The Neighbor Cache Entry (NCE) represents a neigh-
boring node on the interface’s link. The NCE maps the
neighbor’s IPv6 address to its link-layer address. The
Neighbor Discovery algorithms manage the state tran-
sitions for NCEs. We use a simple least-recently-used
(LRU) algorithm to manage the cache.

The Prefix List Entry (PLE) and Router List Entry
(RLE) represent routing information learned from ad-
vertisements sent by routers. Together they determine
the next hop (NCE) to which a packet should be sent. If
the destination address matches the prefix in a PLE,
then the destination is assumed to be “on-link,” or di-

rectly reachable. Otherwise the list of default routers
(RLEs) must be consulted to choose a router for that
destination.

The Route Cache Entry (RCE) caches the results of the
next-hop selection algorithm. That is, an RCE maps a
destination IPv6 address to a next-hop neighbor (NCE).
In addition, the RCE caches the preferred source ad-
dress (NTE) to use when sending to the destination, the
path MTU, and ICMP error rate-limiting information.
The name RCE derives from a similar IPv4 data struc-
ture.

We use a deliberately coarse-grained locking discipline
for our data structures. Our intent is to refine the lock-
ing after we gain more experience with the data struc-
tures. Currently each Interface has a lock that protects
the Interface itself and its NTEs, ADEs, and NCEs.
There is a global route lock that protects PLEs, RLEs,
and RCEs. In the normal case, sending a packet using a
cached RCE does not require the acquisition of the
route lock. The relevant Interface lock is briefly taken
to send a packet (to check the Neighbor Discovery
state) and to receive a packet (to search the ADE list).

The NCE, NTE, and RCE structures have reference
counts, so pointers to them can be safely kept. Many of
their interesting fields are read-only or can be safely
accessed without holding a lock. The ADE, PLE, and
RLE structures can only be accessed while holding the
relevant Interface or route lock. The Interface structure
does not have a reference count, but this is not a prob-
lem because our implementation does not yet support
the plug-n-play features of Windows NT 5.0 that would
allow interfaces to be removed at run-time. Once cre-
ated, an Interface is never destroyed.

We also use deliberately simplistic data structures to
represent our lists and caches. To keep the code simple,
we use singly and doubly-linked lists instead of sorted
arrays, trees, or hash tables. As we gain experience with
the data structures in more demanding environments we
plan to revisit these choices.

Using the conceptual data structures has been very suc-
cessful for us. It has made it easy to track changes in
the specification, because of the close correspondence
between the spec and the code. We also hope that it will
make our implementation more useful as an example
for people interested in learning about IPv6. On the
other hand, our implementation does not currently sup-
port routing tables, or forwarding of packets between
interfaces. Efficient routing table support might require
a more complicated data structure that would merge the
PLE, RLE, and possibly the RCE data structures.

Proceedings of the 2nd USENIX Windows NT Symposium, Seattle, WA, August 3–4, 1998. 6

3.4. Configuration

Our implementation automatically configures itself as
much as possible [14]. There is no configuration dialog
in Network Control Panel. At boot time, it assigns link-
local addresses to all interfaces, performs duplicate
address detection, and solicits configuration informa-
tion from routers. When it receives configuration in-
formation from a router, it automatically configures the
receiving interface appropriately. This may involve
creating new NTEs, PLEs, or RLEs. If the IPv4 stack is
also present (normally the case), then it enables “auto-
matic tunneling” [5] and creates a virtual “6-over-4”
interface [2] for each IPv4 address. With automatic
tunneling, packets sent to special v4-compatible IPv6
addresses are encapsulated and sent to an IPv4 destina-
tion address that is extracted from the low bits of the
v4-compatible IPv6 address. With 6-over-4, the IPv6
code uses a multicast-capable IPv4 network as a true
virtual link, with Neighbor Discovery and all other IPv6
features operational.

The only aspect of the implementation that must be
configured manually, if the administrator wishes to
enable it, is the “configured tunnels” transition mecha-
nism [5]. For example, to connect an MSR IPv6 ma-
chine to the 6bone [12], a global IPv6 test network pri-
marily composed of tunnels over the Internet, requires
the following two registry entries. First, the adminis-
trator must supply an IPv6 address to be assigned to the
tunnel interface. The machine accepts encapsulated
IPv6 packets with this destination address. This results
in the creation of an NTE and an ADE on the tunnel
interface. Second, the administrator must supply the
IPv4 address of the tunnel endpoint. IPv6 packets sent
via the configured tunnel are encapsulated and sent to
this IPv4 address. This results in the creation of an NCE
(with a special state value that inhibits Neighbor Dis-
covery) on the tunnel interface to represent the tunnel
endpoint, and an RLE to represent the tunnel endpoint’s
role as a default router.

4. Problems and Solutions

During our implementation, we came across several
challenges that would be faced by any protocol imple-
mentation for Windows NT. This section examines four
such problems and our solutions in detail. In addition,
we briefly document how our starting point IPv4 code
addressed these problems. Note that we describe here
the Windows NT 4.0 TCP/IP code base and Microsoft’s
TCP/IP stack has evolved very significantly in subse-
quent versions.

4.1. NDIS Receive Handlers

NDIS offers two different ways to receive packets. Un-
fortunately, the best method depends on the choice of

network interface card and miniport. We were able to
hide the differences between these methods inside the
LAN link-layer module without sacrificing perform-
ance in any interesting cases.

A protocol implementation must support the most
common method for receiving packets, called Proto-
colReceive. With this method, NDIS calls the Proto-
colReceive entry point with a pointer to a flat look-
ahead buffer containing packet data. The buffer con-
tents must be treated as read-only and are only valid for
the duration of the call. Furthermore, the buffer may not
contain the entire packet. For longer packets, the proto-
col may have to request NDIS to transfer the packet
data to a new buffer (or chain of buffers) specified by
the protocol. When this transfer is complete, NDIS calls
another protocol entry point. This transfer-data case
increases the interaction overhead with NDIS, but if
used cleverly it can eliminate a copy by placing packet
data directly in its final destination. If the protocol
doesn’t like what it sees in the look-ahead buffer and
chooses not to transfer, this method may eliminate I/O
operations.

NDIS 4.0 introduced an optional new method, called
ProtocolReceivePacket, for receiving packets. (If a
miniport wants to use ProtocolReceivePacket and the
protocol does not support it, NDIS falls back to Proto-
colReceive.) With this method, NDIS calls the Proto-
colReceivePacket entry point with a pointer to a packet
structure. The packet structure contains a chain of buff-
ers, which the protocol must treat as read-only. The
protocol can hold onto a received packet by returning a
non-zero reference count to NDIS and later relinquish
the references to return the packet. However it’s not
clear for how long a protocol may safely hold a packet.
The miniport owns the packet’s buffers, and preventing
the miniport from reusing them may cause denial of
service problems. Furthermore, in this situation the
packet structure does not contain a “context” area that
the protocol can use for its own purposes.

We examined the receive behavior of several different
network interface cards and miniports. The Digital
DE435 (dc21x4.sys) was the only one that used Proto-
colReceivePacket. It always provided a packet with a
single buffer. The SMC 9432TX EtherPower II
(smc9432n.sys), the 3com 3c905 Fast Etherlink XL
(el90x.sys), and the Intel EtherExpress PRO/10
(epro.sys) used ProtocolReceive, but the look-ahead
buffer always contained the complete packet. The older
Intel EtherExpress 16 (ee16.sys) was the only one that
used ProtocolReceive with small look-ahead buffers,
necessitating the use of transfer-data.

Given this data, we decided not to take advantage of
ProtocolReceive’s transfer-data case. We support trans-
fer-data, so our implementation works with cards like

Proceedings of the 2nd USENIX Windows NT Symposium, Seattle, WA, August 3–4, 1998. 7

the EtherExpress 16, but inside the link-layer module
we always transfer-data immediately to a temporary
buffer instead of postponing the transfer until the data’s
final destination is known. This hides the transfer-data
complexity from the core IPv6 modules. However, it
introduces a copy, relative to the IPv4 stack, in some
circumstances.

We support ProtocolReceivePacket, but we do not take
full advantage of its capabilities. Given the time scales
involved, it seems ill-advised to hold onto the mini-
port’s buffers across the reassembly of IPv6 fragments
or to buffer data for TCP. Hence we always return to
NDIS a zero reference count for the packet. When we
implement packet forwarding, we may want to hold a
packet from one interface just long enough to resend it
on another interface; this will complicate our design
slightly.

To present a common picture to the core IPv6 modules,
our link-layer module hides the apparent differences
between ProtocolReceive and ProtocolReceivePacket.
Our receive path uses our own IPv6 packet structure,
defined with the fields we want, instead of the NDIS
packet structure. For ProtocolReceive, we initialize a
stack-allocated IPv6 packet structure to point to the
look-ahead buffer. In the ProtocolReceivePacket case,
we initialize an IPv6 packet structure to point to the
chain of buffers from the NDIS packet. Receiving
modules can deal in a unified way with the IPv6 packet
structure, reducing the number of parameters passed up
the stack at each layer from seven to two.

The base IPv4 code did not support ProtocolRe-
ceivePacket. It implemented the transfer-data case of
ProtocolReceive, but it would not defer the transfer-
data in most interesting cases (like receiving a TCP
packet). It took advantage of transfer-data to eliminate a
copy when discarding packets not actually destined for
the receiver, when reassembling fragments, and when
forwarding packets.

4.2. Pull-up

Our implementation “pulls-up” non-contiguous packet
data into contiguous data with no overhead in the com-
mon case when pull-up is not required. When examin-
ing headers, it is very convenient to have contiguous
data, and in most cases the header is in fact contiguous.
However, the IPv6 packet structure mentioned above
does permit a packet representation consisting of a
chain of buffers. In this situation, a header may fall
across two or more buffers. A BSD-style pull-up design
does not work, because the buffer chain is read-only for
the protocol stack and must be left undisturbed.

With the network interface cards we have tried to date,
the NDIS ProtocolReceivePacket indication never pro-
vides more than one buffer for a packet, rendering pull-

up moot. However, the NDIS interface explicitly allows
for multiple buffers and some cards may take advantage
of this capability. Furthermore, our other link-layer
modules do in practice deliver multi-buffer packets.

We use the IPv6 packet structure mentioned in Sec-
tion 4.1 to solve the pull-up problem. To support this,
the packet structure contains several relevant fields. The
Data field points into the current data area being ex-
amined. The ContigSize field tracks the amount of re-
maining contiguous data, and the TotalSize field the
total amount of data remaining. An Auxiliary field re-
members any side allocation of buffer space for the
most recent pull-up, so it can be properly freed. Nor-
mally the Data field points into the packet’s first buffer.
When a pull-up is required, auxiliary buffer space is
allocated and initialized from two or more buffers in the
chain and the Data field is updated to point to the aux-
iliary buffer area. This solution does not modify the
original buffer chain, which is read-only for the proto-
col stack.

Our implementation leverages the common case checks
to hide the pull-up if it is never required. Before casting
a buffer data pointer to a header structure, a receive
handler must in any case perform a length check to
verify that there is enough remaining data. Figure 4
shows an example code fragment.

if (Packet->ContigSize < sizeof(Header))
if (! PacketPullup(Packet, sizeof(Header)))

; // pullup failed – packet too small
h = (Header *) Packet->Data;

Figure 4: Pull-up Example

The base IPv4 code did not implement a generic pull-up
solution. The IPv4 code did not support extension
headers between the IP header and the upper-layer
header, making it possible to bound the total amount of
header data. Furthermore, the IPv4 code did not support
ProtocolPacketReceive.

4.3. Adding Link-Layer Headers

Our implementation avoids chaining new buffers to add
link-layer headers, reducing packet-send latency and
simplifying the link-layer modules. When sending a
packet, it is most efficient to allocate space for all the
headers up front, as one contiguous area. However,
when constructing a packet one does not always know
in advance the exact total size of the headers. For ex-
ample, the outgoing interface may be chosen later, and
in that case the size of the link-layer header that will be
needed is not known.

The obvious solution, which we use, is to track the
maximum link-layer header size needed by any inter-
face. When constructing the packet’s headers, it is easy

Proceedings of the 2nd USENIX Windows NT Symposium, Seattle, WA, August 3–4, 1998. 8

to leave space for the worst-case link-layer header at
the front of the packet.

The problem with this solution is that the NDIS packet
structure does not allow for unused buffer space at the
front of a packet. This will occur if the actual NDIS
interface has a smaller link-layer header than the pessi-
mistically allocated maximum size. The same problem
occurs when sending a packet via TDI in the tunnel
link-layer module.

To solve this problem, we make a pair of helper rou-
tines available to link-layer modules. The first helper
routine rewrites a packet’s first buffer descriptor (which
is actually a memory descriptor list, or MDL), to hide
any unused buffer space. The second helper routine
undoes the work of the first, so that the link-layer mod-
ule can return the packet unchanged. The two helper
routines communicate some state information (an offset
value) via the protocol context area of the NDIS packet
structure. The NDIS packet format allows for a context
area, or protocol-defined annex following the main
packet structure. The only tricky aspect to rewriting the
MDL occurs if the unused buffer space crosses a physi-
cal page boundary, in which case an array of physical
page addresses in the MDL must be rewritten in place.

4.4. Preventing Deadlock

During our implementation effort, we discovered that
our IPv6 stack would hang some machines during boot.
Debugging this problem (see Section 5.2) led us to an
interesting deadlock between the core IPv6 modules
and our link-layer modules. This section explains the
deadlock, which is a potential danger for any protocol
implementation, and our solution for avoiding it.

The potential for deadlock lies in NDIS’s control op-
erations. NDIS supports control operations such as
changing the current list of link-layer multicast ad-
dresses to which the interface should listen. These con-
trol operations are asynchronous: one calls NDIS to
request the operation, and NDIS calls a protocol entry
point to indicate completion. This is inconvenient, and
in fact our LAN link-layer module has a helper function
(inherited from the IPv4 code base) that implements a
synchronous control operation. The helper function
initiates the control operation and then waits for the
completion call back via a synchronization object.

The problem arose when our stateless address autocon-
figuration code would configure a new address on an
interface. This could change the list of multicast ad-
dresses for the interface, because for each IPv6 unicast
address there is a corresponding address, the solicited-
node multicast address, used in Neighbor Discovery. A
change in the list of IPv6 multicast addresses in turn
could change the link-layer multicast addresses. This
would result in a “synchronous” call into NDIS via the

helper function. In most cases this worked fine, but
with some interface cards it would deadlock because
NDIS would call the protocol stack’s receive entry
point while holding an internal lock. The multicast ad-
dress control operation needed to acquire this same
lock.

We tried two different solutions. The first solution was
to expose in our internal link-layer interface the inher-
ently asynchronous nature of the set-multicast-address-
list control operation. This worked, but it greatly com-
plicated our link-layer interface. The final solution was
to document that the set-multicast-address-list operation
in the link-layer interface can only be called from a safe
thread context; it can not be called from the receive
path. When the receive path wants to invoke this opera-
tion (for example because of stateless address autocon-
figuration), the actual call is deferred to a kernel worker
thread.

The final solution also solved a problem with the tunnel
link-layer module. The tunnel link-layer module uses
the TDI interface to the IPv4 stack instead of NDIS.
The IPv4 stack exposes a TDI operation for controlling
multicast addresses. We never saw this problem in
practice, but we realized that the IPv4 implementation
of this TDI operation implicitly assumed that it was
being called from a preemptible thread context. (For
example, it executes pageable code.)

The lesson we draw from this is to carefully document
the call-context assumptions in interfaces. It should be
clear whether a function must be called from a pre-
emptible thread context, what locks may be held when a
function is called, etc. The NDIS and TDI interfaces are
both inadequately documented from this perspective.

5. Source Code Access

In this section, we explore how we made use of Win-
dows NT source code. We have access to all Windows
NT source, and in fact for our MSR IPv6 implementa-
tion we started from the source code for TCP/IP in
Windows NT 4.0. The TCP/IP stack was very valuable
as sample code, but in the end we have replaced almost
all of the core IP-layer code. We have made limited use
of the source for other Windows NT components.

5.1. Source for Windows NT 4.0 TCP/IP

We based our implementation on an old version (NT
4.0 with no Service Packs) of Microsoft’s IPv4 protocol
stack. This source code played several roles for us:

• Sample code. Sample source code was essential for
us to get started quickly. We had no prior experi-
ence with network protocol programming for Win-
dows NT.

Proceedings of the 2nd USENIX Windows NT Symposium, Seattle, WA, August 3–4, 1998. 9

• UDP/TCP code. Not having to implement UDP,
and especially, TCP has saved us much effort.

• TDI glue code. Our stack’s support for the TDI
interface derives almost unchanged from the IPv4
code. This includes the code for managing TDI’s
pseudo-file objects that represent communication
endpoints.

At this point, we have replaced or written from scratch
most lines of code in the link-layer modules, the core
IPv6 modules, and ICMP and MLD. There is still a
noticeable genetic resemblance to the original IPv4
code, in terms of code organization and function and
variable names. In the UDP and TCP modules we have
made relatively minor changes. We changed the buffer
handling in TCP to support our IPv6 packet structure in
the receive path. We updated the UDP and TCP check-
sum calculations. We updated variables, fields, and
parameters that represented addresses. Addresses as
parameters generally changed from by-value to by-
reference.

For sample code, we did not look early enough at Mi-
crosoft’s Driver Development Kit (DDK). The DDK
has a sample network driver, which looks useful but we
have not evaluated it carefully. The DDK also contains
a sample Winsock helper DLL. This sample is really
just the Windows NT 4.0 IPv4 helper, with minor
modifications for the DDK build environment. Our
IPv6 Winsock helper DLL was originally based on
Windows NT source, but we easily recreated it based
on the DDK sample. More importantly, the Winsock
helper sample implicitly reveals some aspects of the
TDI interface to the IPv4 stack that are nowhere else
documented. For example, our tunnel code uses the
IPv4 stack via TDI and the ioctls (specific to the IPv4
stack) for controlling multicast are only documented in
this DDK sample.

5.2. Other Windows NT Components

We have made limited use of the source code for other
Windows NT components. It has occasionally been
useful for debugging or for informational purposes,
when interfaces were inadequately documented. We
have not modified any existing Windows NT compo-
nents for our implementation, with the exception of one
bug fix in msafd.dll.

We did not have good sample code for Winsock’s
WSALookupServiceBegin/Next/End APIs, and source
code for rnr20.dll (the DNS Name Space Provider) was
essential for our use of these ostensibly documented
APIs. These APIs are a generalized version of gethost-
byname. In fact it turns out that with the right combina-
tion of arguments, one can use these APIs to request
AAAA (IPv6 address) records from DNS, and have the

raw DNS replies returned. We have wrapped this in a
helper function that looks up IPv6 addresses, despite
the fact that rnr20.dll does not support IPv6. Unfortu-
nately in this usage, rnr20.dll does not cache the DNS
replies.

Source code for other Windows NT components (like
ntoskrnl.exe, afd.sys, ndis.sys) was occasionally very
useful for debugging but not essential to the project.
During debugging it would be helpful to step through
these other components as well as the IPv6 driver to
understand a problem. The deadlock problem described
in Section 4.4 was a prime example of this.

We came across a problem in getsockname that we
traced to a bug in msafd.dll that only showed up with
large addresses. Of course, source code for the Winsock
components was essential for finding and fixing this.

5.3. Network Monitor

Microsoft’s Network Monitor tool captures network
packets and parses them for display. It has been ex-
tremely useful during our development. It supports run-
time loadable parsers, developed with Microsoft’s
SDK. The parser architecture is fairly simple and clean
and it was very easy to write a new IPv6 parser. Al-
though in general new parsers can be developed without
access to Network Monitor source, we did have to
modify the existing IPv4, UDP, and TCP parsers to deal
properly with the interactions between the IP layer and
the UDP/TCP layers. One example is verifying the TCP
checksum in the TCP parser, when the previous header
could be IPv4 or IPv6.

6. Performance

We examined the TCP performance of our IPv6 imple-
mentation, and found roughly 2% performance degra-
dation relative to IPv4 for both 10 and 100 Mb/s
Ethernet. Because IPv6 packets have a larger header,
we expected roughly 1.4% performance degradation.
We have not yet tuned our stack for performance, so we
are satisfied with these initial results. Fiuczynski [4] has
performance numbers for an earlier version of our im-
plementation.

Our testing environment consisted of two machines
directly connected via a reversing Ethernet cable. The
sending machine was a 300 MHz Pentium II Gateway
E5000; the receiving machine was a 266 MHz
Pentium II Gateway E3100. Both were equipped with
SMC 9432TX EtherPower II network interface cards,
which are capable of running in either 10 or 100 Mb/s
mode. We performed tests in both modes. While the
cards also support full-duplex transfers, we performed
all our testing at the more commonly used half-duplex
setting.

Proceedings of the 2nd USENIX Windows NT Symposium, Seattle, WA, August 3–4, 1998. 10

Both machines were running Windows NT Version 4.0
with Service Pack 3 installed. However, to achieve a
fair comparison we replaced the TCP/IPv4 driver
(tcpip.sys) with a driver that we built using the Win-
dows NT 4.0 sources from which we derived our IPv6
implementation. The software driving the test was the
public domain “ttcp” program, which we ported to run
on our IPv6 stack. We used 128KB socket buffers. (We
observed very similar performance with 64KB buffers,
but buffers smaller than 64KB performed poorer.)

We ran TCP throughput tests for both IPv4 and IPv6
over both 10 Mb/s and 100 Mb/s Ethernet. Each test
was run six times, with each run taking about 100 sec-
onds. We present the mean throughput and standard
deviation for each test.

We expected to see a performance degradation of ap-
proximately 1.4% with the IPv6 stack. IPv6 headers are
40 bytes, IPv4 headers are 20 bytes, and TCP headers
are 20 bytes. The maximum Ethernet frame size is 1500
bytes. So the degradation is 20 bytes out of 1460 bytes.

10 Mb/s 100 Mb/s

IPv4 1058±4 10995±20

IPv6 1032±3 10790±30

Table 1: TCP Throughput in KB/s

Table 1 depicts our actual results. For 10 Mb/s
Ethernet, we see 2.5% degradation. For 100 Mb/s
Ethernet, we see 1.9% degradation.

While performing these measurements, we noticed sev-
eral things that we have not been able to follow up on.
The IPv4 stack that we built yields slightly better
throughput than the IPv4 stack released with Windows
NT 4.0 Service Pack 3. With the 266 MHz machine
sending and the 300 MHz machine receiving, we ob-
served better 10 Mb/s performance and poorer
100 Mb/s performance. We also tried Digital DE500
interface cards, but we observed substantially poorer
100 Mb/s performance.

7. Other IPv6 Implementations

This section describes our IPv6 stack in comparison
with other current IPv6 implementations.

The IPng Home Page [9] implementations list includes
many implementations for host computers, notably ac-
tively supported “early adopter” implementations from
Digital [6] and Sun [13]. These implementations are not
available as source code.

Both Digital and Sun developed hybrid stack imple-
mentations, in which an integrated implementation of
IPv4 and IPv6 share common transport-layer code. An
IPv6 socket (AF_INET6) is usable for both IPv6 and
IPv4 traffic, so that the result of a domain name lookup

at runtime can determine what IP should be used on
output, and the arrival of an IPv6 or IPv4 datagram de-
termines the stack used on input.

We can compare the Digital and Sun implementations
with MSR IPv6 and another freely distributed source
code, that of INRIA Roquencourt [8]. We and INRIA
have separate transport modules for IPv6. In our case,
the goal was to avoid interfering with IPv4 traffic in
any way during experiments using IPv6. MSR IPv6
does not modify the TCP/IPv4 driver. The drawback is
excess code in the system and a requirement for two
sockets in applications for them to run over both IP
versions. This seems like the right tradeoff for a fre-
quently changing research environment where both the
stack and the applications may be modified at will.

On other dimensions, the four stacks here are very
comparable: all have complete implementations of the
base specifications and Neighbor Discovery. None have
as yet fully implemented the required IPSec and mobil-
ity functions. As of this writing, compared to the other
implementations MSR IPv6 has more complete multi-
cast support.

7.1. Size Comparison with INRIA IPv6
This section compares the MSR IPv6 source code with
the freely available INRIA implementation’s source
code [8].

INRIA used the strategy of creating clones of the IPv4
files for IPv6. INRIA IPv6 files are very similar to their
IPv4 counterparts. In contrast, though MSR IPv6
started from IPv4 code, the core IPv6 modules have
been largely designed and written from scratch.

Table 2 shows code size comparisons of INRIA IPv6
and IPv4 and of MSR IPv6 and its IPv4 starting point
code. The table uses raw source lines because it com-
pares INRIA to INRIA and MSR to MSR, and a partial
set of comparisons with comments stripped looked very
similar.

Module INRIAv4 INRIAv6 MSRv4 MSRv6

IP input 1427 2205 1145 11091

IP output 1432 2503 1867 4511

TCP 4239 4678 12089 11275

ICMP2 1653 1654 2286 2230

Table 2: Lines of Code
1MSR IPv6’s subr.c (869 lines) is not included in the IP
input and output line counts. 2Including IGMP or MLD,
but not Neighbor Discovery.

As expected, the cloning method results in larger code
sizes for adding IPv6 to an IPv4 base. The method of
rewriting and optimizing that we did often results in a

Proceedings of the 2nd USENIX Windows NT Symposium, Seattle, WA, August 3–4, 1998. 11

code for an IPv6 function, such as packet output, that is
smaller than the parallel IPv4 function. To a degree that
is difficult to quantify, the streamlined design of the
IPv6 base protocol may contribute to the shrinkage. For
example, IPv6 has simpler header structures.

The INRIA ICMP module has similar line counts for
IPv4 and IPv6 because the revisions in the design of
ICMP from IPv4 to IPv6 have led INRIA to rewrite this
code instead of cloning it.

The minimal effect of IPv6 on TCP is clear from the
comparison of TCPv4 and TCPv6 code sizes. The TCP
pseudo-header checksum calculation changes for IPv6,
but otherwise the protocol is not modified. The shrink-
age seen for the MSR TCP results from simplifications
to buffer management stemming from our IPv6 packet
structure. The MSR TCP implementation does not yet
take advantage of an opportunity to optimize Neighbor
Discovery by using reachability information gleaned
from TCP acknowledgments to suppress Neighbor Dis-
covery messages. This would add slightly to the TCP
code size for IPv6.

8. Conclusions

Once past the learning curve, we have found Windows
NT to be a good platform for protocol development.
The internal interfaces are often complex, but so far we
have been able to accomplish everything we need to do
with them.

We plan to continue our development, with periodic
public source code releases. Our first public source re-
lease was March 24, 1998, available at http://www.
research.microsoft.com/msripv6. Our first priority in
subsequent releases is finishing a full host implementa-
tion, including security, authentication, and mobility
support, and adding interesting applications to the re-
lease.

Beyond our own work of completing this IPv6 imple-
mentation, we believe also that the code is a good re-
source for hands-on research in a variety of areas. Some
examples include active network protocols used beside
or instead of IP, new unicast and multicast transport
protocols or algorithms, signaling protocols, queue
management algorithms, and network aware applica-
tions.

Acknowledgments

Maryann Pérez Maher and Paul Dyke contributed sig-
nificantly to our implementation. Marc Fiuczynski
wrote our IPv6-IPv4 translator, based on his research at
the University of Washington. The Windows Net-
working Group generously allowed us to release por-
tions of their code in our public distribution.

References

[1] Art Baker. The Windows NT Device Driver Book:
A Guide for Programmers. Prentice-Hall PTR, Upper
Saddle River, New Jersey, 1997.

[2] B. Carpenter and C. Jung. Transmission of IPv6
Packets over IPv4 Networks without Tunnels. Internet
Draft, draft-carpenter-ipng-6over4-03.txt, September
1997.

[3] S. Deering, R. Hinden. Internet Protocol, Version
6 (IPv6) Specification. RFC 1883, December 1995.

[4] Marc E. Fiuczynski, Vincent K. Lam, and Brian
N. Bershad. The Design and Implementation of an
IPv6/IPv4 Network Address and Protocol Translator.
Proceedings of the 1998 USENIX Technical Confer-
ence, June 1998.

[5] R. Gilligan, E. Nordmark. Transition Mechanisms
for IPv6 Hosts and Routers. RFC 1933, April 1996.

[6] Daniel T. Harrington, James P. Bound, John J.
McCann, Matt Thomas. Internet Protocol Version 6 and
the Digital UNIX Implementation Experience. Digital
Technical Journal, Volume 8, Number 3, http://www.
digital.com/DTJN01/DTJN01HM.HTM, 1996.

[7] R. Hinden, S. Deering. IP Version 6 Addressing
Architecture. RFC 1884, December 1995.

[8] INRIA Rocquencourt IPv6. ftp://ftp.inria.fr/
network/ipv6/.

[9] IPng Working Group Web Site. http://
playground.sun.com/pub/ipng/html/ipng-main.html.

[10] Microsoft Research IPv6 Implementation. http://
www.research.microsoft.com/msripv6.

[11] T. Narten, E. Nordmark, W. Simpson. Neighbor
Discovery for IP Version 6 (IPv6). RFC 1970, August
1996.

[12] 6bone Web Site. http://www.6bone.net/.

[13] IPv6 for Solaris. http://playground.sun.com/
pub/solaris2-ipv6/html/solaris2-ipv6.html.

[14] S. Thompson, T. Narten. IPv6 Stateless Address
Autoconfiguration. RFC 1971, August 1996.

