
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Millipede: a User-Level NT-Based Distributed Shared Memory System
with Thread Migration and Dynamic Run-Time Optimization of Memory References

Ayal Itzkovitz, Assaf Schuster, Lea Shalev
Computer Science Department

Technion, Haifa



Millipede: a User-Level NT{Based Distributed Shared Memory

System with Thread Migration and Dynamic Run-Time

Optimization of Memory References

http://www.cs.technion.ac.il/Labs/Millipede

Ayal Itzkovitz Assaf Schuster Lea Shalev

Computer Science Department, Technion, Haifa

Abstract

millipede is an all user mode, no kernel-patches,
\add on" software tool for standard corporate en-
vironments, that takes advantage of idle system re-
sources and e�ciently utilizes idle processor time in
available distributed environments of personal work-
stations. millipede presents to the user a power-
ful virtual parallel machine which abstracts away the
underlying hardware con�guration. In this way mil-
lipede supports mapping of the applications to dy-
namically varying levels of parallelism according to
both changes in the underlying hardware and changes
in the application requirements.

millipede is multi-threaded, thus taking full ad-
vantage of SMPs. millipede provides a true dis-
tributed shared memory with several coherence pro-
tocols (and a exible mechanism for easy inclusion of
new ones) and dynamic thread migration [3]. mil-

lipede studies the memory access pattern and opti-
mizes the locality of memory references by adapting
the thread distribution accordingly [5].

millipede supports several of the more liberal par-
allel programming paradigms [2]. Currently we sup-
port ParC (which allows for example nested paral-
lelism and barriers among sibling activities), Par-
C++ (which is as exible as C++ except for addi-
tional parallelizing constructs), the splash macros
(which we had to adapt to Windows-NT and to
the multi-threaded concept), and of course for best
speedups one can use directly the millipede job
manager library. We are working on the implementa-
tion of Parfortran90 and Java (for which we came
up with a new de�nition of the JVM memory behav-
ior, and with an e�cient algorithm for distributed
garbage collection [4]).

In order to support many di�erent programming
languages on top of a single virtual parallel machine

we developed millipede Job Event Control (MJEC)
[2]. mjec can be used to e�ciently implement a vari-
ety of synchronization and communication protocols
(e.g., ParC in about 250 lines of code).

millipede is fully implemented at the Technion,
Haifa, using the Windows-NT operating system (pre-
vious version on MACH [1]). We refer the reader to
our WWW site (see above) for online versions of the
papers, and for downloading a distribution of milli-
pede.

References

[1] R. Friedman, M. Goldin, A. Itzkovitz, and
A. Schuster. Millipede: Easy Parallel Program-
ming in Available Distributed Environments.
Software: Practice & Experience, 1997. (To Ap-
pear). Also Technion/LPCR/TR,#9506, Novem-
ber 1995.

[2] A. Itzkovitz, A. Schuster, and L. Shalev.
Millipede: Supporting Multiple Programming
Paradigms on Top of a Single Virtual Parallel Ma-
chine. In Proc. HIPS Workshop, Geneve, April
1997.

[3] A. Itzkovitz, A. Schuster, and L. Shalev. Thread

Migration and its Applications in Distributed
Shared Memory Systems. The Journal of Systems

and Software, 1997. To appear (See also Technion
TR LPCR-#9603).

[4] D. Kogan and A. Schuster. Collecting Garbage
Pages with Reduced Memory and Communica-
tion Overhead. In Proc. European Symposium on

Algorithms, Graz, September 1997.
[5] A. Schuster and L. Shalev. Access Histories:

How to Use the Principle of Locality in Dis-
tributed Shared Memory Systems. Technical Re-
port #9701, Technion/LPCR, Jan 1997. Submit-
ted for Publication.


