
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Scheduling Scheme for Network Saturated NT Multiprocessors

Jørgen Sværke Hansen and Eric Jul
Department of Computer Science, University of Copenhagen (DIKU)

Copenhagen, Denmark



A Scheduling Schemefor Network Saturated NT
Multip rocessors

Jørgen Sværke Hansen Eric Jul

Department of Computer Science, University of Copenhagen (DIKU)
Universitetsparken 1, 2100 Copenhagen, Denmark

E-mail: fcyller,eric g@diku.dk

Abstract

The use of high performancenetworking tech-
nologies, e.g., ATM networks, demands much from
both operating systems and processors. During high
network loads, user threads may be starved because
theprocessor spendsall its timehandling interrupts.

To alleviate this problem, we propose using
a two level network interface servicing scheme that
uses interrupts during low network loads to provide
low latency, and polling threadsduring high network
loads to avoid user thread starvation.

In this paper, we examine the use of such a
schemeon dual-processor workstationsrunningWin-
dows NT connected by an ATM network. Per-
formance evaluation of our multiprocessor proto-
type implementation shows that using our two level
scheme can improve performance when used care-
fully.

1 Introduction

High performance networks based on, e.g.,
ATM often demand substantial processor time; so
much that processorscan becomesaturated with net-
work traffic leaving littl e or no time for actually pro-
cessing data.

As part of a project concerning ATM net-
work striping1, wehaveconsidered how to efficiently
handle multiple network interfaces. Processing the
data that arrives on just a single high-speed network
interface is a problem even for fairly high perfor-
mance workstations; using several high-speed net-
work interfaces (as we wil l be doing when perform-
ing network striping) wil l only aggravate the situa-
tion. Such processor overload can be handled by

1For more information visit the project homepage at
http://www.diku.dk/distlab/Research/CIT/SPAN/span.html.

using extremely powerful processors. However, there
are both economical and physical limits on how fast
a processor that it is possible to use. As an alterna-
tiveweproposeusing multiprocessorsto providesuf-
ficient processing power.

Previous work in the area of multiprocessor
network performancehasconcentratedmainly on im-
proving the performance of higher level protocols
([1], [4] and [5]), and furthermore, these approaches
useasinglenetwork interface. Weconsider thesche-
duling issues related to handling oneor multiplenet-
work interfaceson multiprocessors.

In thefollowing, wefirst describetheproblems
of thread starvation, then we present a two level net-
work interface servicing scheme that uses interrupt-
driven servicing at low network loads, and polling
threadsat high network loads. Lastly weevaluate the
performanceof the two level scheme.

We have implemented this scheme on dual-
processor workstations running Windows NT con-
nected by an ATM network. As network interfaces,
weuseOlicom ATM network interfaces, and Olicom
A/S has provided us with access to the source code
for theATM network interfacedrivers.

2 User Thread Starvation

In interrupt-driven kernels the total processor
usage of a network application can be split into two
parts, a part used by the user threads, and a part
used by the interrupt-routine. Ideally, the partition-
ing should be such that the interrupt-routinedelivers
packetsat the rate in which theuser thread consumes
them. To avoid packet loss in case of timing mis-
match between user thread and interrupt-routine, a
limited number of packetsmay bebuffered in theI/O
subsystem untill the user thread collects them. As
long as the total demand for processing power does



not exceed what is available, this should cause no
problem.

When processing power is a problem during
heavy network loads, the threads on the system are
starved due to the fact that interrupt-routines have ab-
solute priority over any other thread in the system,
and thus the bulk of processing time is used process-
ing interrupts from the network interfaces receiving
data. The actual consumers of the received data are
not allowed to process the data, and this may cause
upper layer buffers in the network subsystem to over-
flow. The result can be that a large amount of pro-
cessing power is used on receiving data that is sub-
sequently discarded. Mogul and Ramakrishnan [3]
identified this problem and propose to avoid this sit-
uation (which they callreceive livelock) by using
interrupt-initiated polling. When a network interface
issues an interrupt, its handler merely starts a polling
thread. This thread is scheduled together with any
other threads in the system, thus reducing the live-
lock problem. Another benefit from using a polling
thread is that the number of interrupts and context
switches per received network data unit is lowered in
stress situations.

The thread starvation problem is not neces-
sarily removed by adding more processors to an
interrupt-driven system. Because an interrupt steals
processing time from the thread that it is interrupt-
ing, there is the danger of starving a thread during
heavy network load. On a multiprocessor, a situa-
tion (which we callthread pinning) may arise where
some processors are almost idle, while another pro-
cessor is heavily loaded servicing the network in-
terfaces and starving the thread that was to process
the incoming data. Furthermore, in the case where
a multithreaded user application is used, the user
thread worklo709 V 1438 708 V 1441 707 V 1444 706 V 1447 705 V 1450 704 V 1453 703 V 1456 702 V 1459 701 V 1462 700
of the interrupt-routine. This may produce subopti-
mal performance as illustrated in figure 1. The fig-
ure shows how the processor usage is divided be-
tween user threads, interrupt-routine and idle time on
a two processor machine. As full load is reached, the
interrupt-routine starts stealing processor time from
the user threads. This continues until the processor
usage of the interrupt-routine reaches the capacity of
a single processor. If the multiple threads are sharing
data, the interrupt-routine might further degrade per-
formance, if it interrupts a thread holding a lock to
shared data. As illustrated in figure 2, this will occur
when the total load generated by the user threads ex-
ceeds the capacity of one processor. From that point
the user threads, that are sharing processor with the
interrupt-routine, may be interrupted, and thus result

high

user threads

network loadlow

Processor 2

Processor 1

interrupt routine

Figure 1: Processor usage as a function of network load
on a two processor machine in the case with suboptimal
performance during high load due to interrupt-handling.

network loadlow high

Processor 1

Processor 2

user threads

locking

interrupt routine

Figure 2: Processor usage as a function of network load
on a two processor machine illustrating the performance
degradation caused by user threads waiting on locks held
by an interrupted thread.

in that threads running on the other processor must
wait for a lock held by the interrupted thread. In the
figure the idle time resulting from this is marked with
locking.

To alleviate these problems, the scheduling of
network handling on multiprocessors needs to be
considered. One possible solution to the thread pin-
ning problem is that the interrupt-handling routine at
regular intervals yields the processor, thus allowing
the user thread to be rescheduled—possibly on a less
loaded processor. Another solution is to utilize that
some multiprocessor architectures (e.g., the Pentium
Pro) have support for controlling which processor is
to receive a given interrupt on the basis of a prior-
ity assigned to each processor. As long as there is
only one active thread handling network data, and as
long as there are fewer network interfaces than pro-
cessors, this would alleviate the thread pinning prob-
lem. Alternatively, one might consider simply dis-
abling interrupts from the network interface(s) caus-
ing the overload, but this might hinder the progress
of the user threads in the case where they depend on
sending data as part of their processing. Lastly, a
scheme with a polling thread as described in [3] can
be used. By letting one or more threads handle the
network interfaces, the usual scheduling mechanism
of the operating system may be used to distribute
the load on the available processors. This should be



high

polling routine

network loadlow

Processor 2

Processor 1

user threads

Figure 3: Processor usage as a function of network load
on a two processor machine in the case where the use of a
polling thread prevents performance degradation.

able to solve the problems regarding thread pinning,
interrupt-routines stealing processor time from user
threads and locking. This is illustrated in figure 3.
Here the polling routine does not steal cycles from
the user thread, and thus the processor time is used
in a way that maximizes throughput. Furthermore, as
there are no interrupts, threads holding a lock cannot
be interrupted.

3 Our Two Level Scheme

The problems described in the previous sec-
tions lead us to abandon pure interrupt-driven net-
work interface handling. The network handling based
on interrupt-initiated threads seems attractive when
the network load is high, but it would be nice to
avoid the delay caused by both issuing an interrupt
and making a context switch in order to process a
packet when the network load is low. We therefore
use a two level scheme where interrupt-driven ser-
vicing of the network interfaces is used until a certain
level of network traffic, and above that level, a polling
thread scheme is used.

4 Windows NT Implementation

This section provides a closer look at how we
have implemented this scheme in Windows NT. First
we give a brief description of the relevant parts of
Windows NT I/O management as this provides the
basis for the further discussion. Then we look at how
to detect livelock in Windows NT, and finally we dis-
cuss how support for this scheme could be integrated
with the current Windows NT I/O subsystem.

4.1 Windows NT I/O Management

In our description, we use a simplified model of
a network protocol stack, where we have a transport
driver placed on top of a device driver. In Windows
NT, the layers interact by passing I/O Request Pack-
ets (IRPs) from one layer to the other. This is done
via an I/O manager. In the following we describe

how data transmission and reception is handled by
this model.

On data transmission, the transport driver
passes an IRP to the device driver, where the IRP is
either processed by a device driver dispatch routine,
or—in the case where the device is busy—queued for
later processing. When the transmit operation is com-
pleted, the IRP is returned to the transport driver. This
causes an I/O completion routine to be called in the
transport driver. This I/O completion routine is of-
ten just a queuing of the IRP for further processing.
In the case, where the completion of the transmit op-
eration relies on a hardware interrupt from the de-
vice, the dispatch routine would return, and rely on
an interrupt handler to complete the transmit opera-
tion. The NT interrupt handling consists of two steps
- first the hardware interrupt causes the execution of
an Interrupt Service Routine (ISR) running at device
Interrupt ReQuest Level (IRQL), which does minimal
work (e.g., disabling interrupts). This causes a De-
ferred Procedure Call (DPC) to be queued. This DPC
is executed by a software interrupt when the IRQL
drops below Dispatch/DPC Level (this is below de-
vice IRQL, but above normal thread execution level).
This DPC handles the bulk of the processing.

When data is received on a device, the data is
passed on to the transport driver in an IRP as de-
scribed above.

The IRP queues can either be managed by the
device driver or the I/O manager. Transmit opera-
tions are handled by a set of device driver dispatch
routines. These may rely on interrupts to signal the
completion of a transmit operation, and thus a part of
the transmit handling is placed in the DPC.

4.2 Detecting User Thread Starvation

The main problem is to detect user thread star-
vation, i.e., when to make the transition between
interrupt-driven and polled I/O. We consider the fol-
lowing possibilities:

Length of network data queues By monitoring the
length of the network data queues (possibly IRP
queues) that are emptied by the user thread, it
should be possible to detect when user thread
starvation occurs. The problem is that these
queues are often internal to the transport driver
requiring that the device driver has access to in-
formation about the size of the queues in the
transport driver. As a transport driver may be
bound to several devices, it should only be the
IRPs belonging to the device that are reported



back.

Interrupt rate By monitoring the interrupt rate of a
device, an interrupt rate threshold value could be
used to decide when the network load is high.
The problem is that many device drivers use in-
terrupt batching, i.e., processes multiple packets
per interrupt.

Amount of time spent processing interrupts By
measuring the percentage of processor time
used by the DPC of the device driver, it should
also be possible to detect user thread starvation.
The measurement of the processing time is
complicated by the fact that a DPC may be
interrupted, but as the interrupts primarily are
hardware related interrupts the impact should
be negligible.

We have based our implementation on measur-
ing the interrupt processing time as this is simple to
implement. The transition from polled to interrupt-
driven I/O is made when the polling thread lacks
work to do.

4.3 Operating System Support

As the work done by the polling thread and the
interrupt handlers is almost the same, it would be
beneficial to integrate support for both interrupt hand-
ling and polling in the operating system. By letting a
device driver register routines explicitly for polling
threads and interrupt handlers, the I/O Manager can
take active part in the decisions on what type of I/O
handling to use , e.g., by monitor the execution time
of interrupt handlers and initiate polling.

5 Results

In the following, we compare our two level
scheme with a standard purely interrupt-driven de-
vice driver. In order to evaluate the viability of the
two level scheme, we look at network latency, thread
pinning, and finally we examine the effects of user
thread starvation on multithreaded applications.

5.1 Methodology

To produce an overload situation on the receiv-
ing machine, a Dual Pentium Pro 200 MHz host was
used as the transmitting side, and a Dual Pentium
133 MHz machine as the receiver. Both machines
were running Windows NT 4.0 with service pack 3.
The two machines were each equipped with two Oli-
com RapidFire 155 Mbps ATM adapters. All perfor-
mance tests have been made using the TCP/IP pro-
tocol stack shipped with Windows NT on top of the

Olicom driver configured to use Classical IP with a
PVC between each pair of network adapters. As net-
work load generator we use the network performance
measurement toolnetperf 2. Again, to overload the
receiver, we use the UDP protocol. In our two level
scheme we used a threshold of 50%, i.e., the transi-
tion to polling was made, if an interrupt-routine used
more than 50% of the processing time on a single pro-
cessor for a period of more than two seconds.

5.2 Latency

To compare the overhead introduced by using
the polling routine, we compare the latency of a pure
interrupt-driven system, our two level scheme, and
an interrupt-initiated polling routine. The interrupt-
initiated polling routine is obtained by modifying the
two level scheme implementation, so that all the DPC
does is to signal the polling thread. The measure-
ments are illustrated in figure 4, and show that the two
level and pure interrupt-driven schemes have about
the same latency, which is between 25 and 50�sec
higher than the interrupt-initiated polling scheme.
Thus, the overhead of monitoring the execution time
of the interrupt-routine is negligible, and low latency
is achieved at low network load.

5.3 Thread Pinning

When thread pinning occurs, we expect to see
two different levels on the rate of received data, one
high level corresponding to the case where the user
thread and interrupt-routine execute on different pro-
cessors, and a low level in the case where they are
executing on the same processor. We look at user
threads running both at normal and real-time priority.
User threads at real-time priority should be more vul-
nerable to interrupt-routines stealing cycles, as they
can only be preempted by threads with higher real-
time priority.

In figure 5 we show how thread pinning occurs
on the receiving machine during a throughput mea-
surement using 1024 bytes UDP packets at various
send rates. In order to show the instability and vari-
ation in throughput, we conducted 10 measurements
for a series of send rates for each priority, and show
each of these measurements as a single dot in the
graph. As can be seen from the figure, the received
rate of the normal priority threads only split into two
levels during extremely heavy load. This is due to
the fact that only during maximum network load does
the interrupt-routine run continuously and thus pre-

2Netperf can be obtained from The Public Netperf Homepage
at http://www.cup.hp.com/netperf/NetperfPage.html.



300

350

400

450

500

550

600

0 200 400 600 800 1000

Latency

(�sec)

Packet size (bytes)

Interrupt-initiated polling b
b

b

b
b

b

b

b

b

b

Pure interrupt-driven r

r

r

r r

r

r

r

r

r

Two level

b

b

b

b

b

b

b

b

b
b

b
b

b

b

b b b b

b

b

b

b b b b

Locking 40% r

r

r

r

r

r

r

r

r
r

r r
r

r

r

r

r

r r

r

r

r r
r r

Locking 60% ��

�

�

�

�

�
�
�
�

�

�

�

�

�
��

���

�

� � � �

Figure 9: The effects of locking on throughput with constant workload. Each dot in the graph represents the average
throughput of a series of measurements with 2048 bytes UDP packets.

In the Windows NT Kernel-Mode Driver Refe-
rence Guide [2] it is suggested, that periodic polling
should be used to complete sends, when the total load
on the processor, on which the interrupt-routine is ex-
ecuting, exceeds a certain level. This would also re-
duce user thread starvation, but does not address the
problems of unevenly balanced load on multiproces-
sors.

7 Conclusion

We propose a two level device servicing sys-
tem that uses interrupt handling during low network
loads in order to provide low latency and polling dur-
ing high network loads in order to prevent user thread
starvation. This can be integrated in the I/O system
of Windows NT.

Our current prototype on a couple of dual pro-
cessor workstations running Windows NT 4.0 shows
that the scheme is able to improve performance on
network saturated multiprocessors.

Acknowledgments

We wish to thank Olicom A/S, in particular
Tomasz Goldman and Kim R. Pedersen, for provid-
ing the necessary ATM hardware, for giving us access
to their driver source codes, and for providing sup-
port in general. The project is funded in part by The
Danish Natural Science Foundation and The Danish
National Centre for IT Research.

References

[1] Mats Björkman and Per Gunningberg. Lock-
ing Effects in Multiprocessor Implementations of
Protocols. InProceedings of SIGCOMM ’93,

pages 74–83, September 1993.

[2] Kernel-Mode Drivers Reference Guide. Part of
the Windows NT 4.0 Device Driver Kit, 1996.

[3] Jeffrey Mogul and K. K. Ramakrishnan. Elim-
inating Receive Livelock in an Interrupt-driven
Kernel. InProceedings of the USENIX 1996 An-
nual Technical Conference, January 1996.

[4] Erich M. Nahum, David J. Yates, James F.
Kurose, and Don Towsley. Performance Issues in
Parallelized Network Protocols. InProceedings
of OSDI ’94, November 1994.

[5] Gerald W. Neufeld, Mabo Robert Ito, Mur-
ray Goldberg, Mark J. McCutcheon, and Stuart
Ritchie. Parallel Host Interface for an ATM Net-
work. IEEE Network, pages 24–34, July 1993.

[6] Jonathan M. Smith and C. Brendan S. Traw.
Giving Applications Access to Gb/s Networking.
IEEE Network, pages 44–52, July 1993.


