
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

DIGITAL FX!32
Running 32-Bit x86 Applications on Alpha NT

Anton Chernoff, Ray Hookway
Digital Equipment Corporation

DIGITAL FX!32
Running 32-Bit x86 Applications on Alpha NT

Anton Chernoff, Ray Hookway
Digital Equipment Corporation

Abstract

DIGITAL FX!32 is a unique combination of emulation
and binary translation which makes it so that any 32-
bit program that runs on an x86 system running
Windows NT 4.0 will install and run on an Alpha
Windows NT 4.0 system. After translation, x86
applications run as fast under DIGITAL FX!32 on a
500Mz Alpha system as on a 200Mz Pentium-Pro.

The emulator and its associated runtime provide for
transparent execution of x86 applications. The
emulator uses translation results when they are
available and produces profile data for use by the
translator. The translator provides native Alpha code
for the portions of an x86 application which have been
previously executed. A server manages the translation
process for the user, making the overall process
completely transparent.

This paper focuses on the ways in which DIGITAL
FX!32 achieves its transparency when running on an
unmodified NT system.

1. Introduction

Three factors contribute to the success of a
microprocessor: price, performance, and software
availability. DIGITAL FX!32 addresses the last of
these factors, software availability, by making hundreds
of new applications available on Alpha-based platforms
running Windows NT. DIGITAL FX!32 combines
emulation and binary translation to provide fast,
transparent execution of x86 programs on Alpha.

Since it was introduced, the Digital Alpha
microprocessor has been the fastest microprocessor
available. A large number of applications, particularly
those that require a high performance processor, are
available on Alpha. DIGITAL FX!32, makes it so that
any 32-bit program which runs on an x86 system
running Windows NT 4.0 will install and run on an
Alpha Windows NT 4.0 system. The performance of an
x86 application running on a high end Alpha is similar

to the performance of the same application running on a
high end x86 platform.

Many different systems have successfully used
emulators to run applications on platforms for which
they were not initially targeted[4, 7]. The major
drawback has been poor performance[7]. Several
emulators have used “dynamic translation” to achieve
better performance than that which a straight interpreter
can obtain[2, 3, 7]. This approach translates small
segments of the program while it is being executed.
These systems must make a tradeoff between the
amount of time spent translating and the resulting
benefit of the translation. Too much time spent on the
translation and related processing makes the program
unresponsive. This limits the optimizations that
emulators can perform using dynamic translation.

DIGITAL FX!32 makes a different tradeoff. No
translation is done while the application is executing.
Rather, the emulator captures an execution profile.
Later, a binary translator[1] uses the profile to translate
the parts of the application that have been executed into
native Alpha code. Since the translator runs in the
background, it can use computationally intensive
algorithms to improve the quality of the generated code.
To our knowledge, DIGITAL FX!32 is the first system
to explore this mix of emulation and binary translation.

One of the important features of DIGITAL FX!32 is
the transparent execution of x86 programs. Digital has
provided several static binary translators. These were
targeted at developers and sophisticated end-users.
They required the user to manually use the translation
tool to convert code from one computer architecture to
another. This scheme was difficult to use when
confronted with a distribution kit containing many
images. With the ascension of the point-and-click user
interface, a static translator is not feasible -- users
expect programs to “just work." DIGITAL FX!32
achieves this transparency in a number of ways. Other
than specifying that an application is an x86 application
when it is being installed, the process of installing and
running the application is the same on an Alpha as it is
on an x86.

2. Overview

Windows NT has used an emulator to run 16-bit x86
applications since it was first released. Applications
which run on this emulator install and run just like they
do on an x86, but they run much slower. The emulator
built into DIGITAL FX!32 provides a similar capability
for 32-bit applications.

Unlike the 16-bit environment, DIGITAL FX!32 also
provides a binary translator which translates 32-bit x86
applications into native Alpha code. The translation is
done in the background and requires no interaction with
the user. Operating in the background allows the
DIGITAL FX!32 translator to perform optimizations
that are too expensive to perform while the application
is running. The resulting translated application runs up
to ten times faster than the same application running
under the emulator.

DIGITAL FX!32 consists of seven major components.
Along with the emulator and translator mentioned
above, the other major components are the agent, the
runtime, the database, the server and the manager. The
agent provides for transparent launching of 32-bit x86
applications. The runtime loads x86 images and sets up
the runtime environment to execute them. As part of
loading an image, the runtime “jackets” imported API
routines. These jackets allow the x86 code to call the
native Windows API. The database stores execution
profiles produced by the emulator and used by the
translator. It also stores translated images. The server
maintains the database and runs the translator as
appropriate. The manager allows the user to control
resources used by DIGITAL FX!32. Each of the major
components is discussed in more detail below.

This paper will focus on the agent and the runtime,
since those components are primarily responsible for
achieving the run-time transparency.

3. The DIGITAL FX!32 Agent

The DIGITAL FX!32 agent provides for transparent
launching of 32-bit x86 applications. It is a DLL that is
inserted into the address space of a process and hooks
calls on CreateProcess and related APIs. If a call to
CreateProcess specifies an x86 image to be executed,
the Agent invokes the DIGITAL FX!32 runtime to
execute the image instead. A process which contains
the Agent is said to be enabled.

3.1 Enabling a Process

DIGITAL FX!32 enables processes using a technique
described by Jeffrey Richter in chapter 16 of his book
Advanced Windows NT[8] to inject a copy of the agent
into the process’ address space.

The process doing the enabling (the enabler) must have
a handle on the process being enabled (the subject). For
a process created by the enabler, this is the value
returned by the CreateProcess call. Other enablers must
get a handle with OpenProcess. This frequently
requires administrator privileges.

The enabler allocates a small area of virtual memory in
the address space of the subject by starting a suspended
thread (CreateRemoteThread) and using its stack. It
changes the protection of that memory to executable,
readable, and writable (WriteProcessMemory). It then
copies a small piece of code and data into the subject
(WriteProcessMemory). The code that it copies simply
calls LoadLibrary to load the DIGITAL FX!32 agent
DLL and then returns. Note that the code built by the
enabler must know the location of the LoadLibrary
routine in the subject’s virtual address space.
Fortunately, NT arranges for the system DLLs
(including KERNEL32.DLL, which contains
LoadLibrary) to be at the same virtual address in all
processes on the system. Hence, the enabler can just
use the address of LoadLibrary in its own address
space. The data written to the subject’s memory
contains the pointer to LoadLibrary and the full path
name of the agent DLL. The enabler then creates a
thread of execution in the subject and passes it the
address of that data (CreateRemoteThread), raises its
priority (SetThreadPriority), and waits for the thread to
finish. If all goes well, the subject thread runs and loads
the agent DLL into its address space. The agent’s main
routine is called automatically, and it goes about its
work of enabling the subject process.

Inside the subject process, the agent DLL proceeds to
hook a number of system functions. It does this by
changing the addresses in the image import tables of all
loaded modules to point to routines in the agent which
replace the system routines. The hooked routines
include LoadLibrary, FreeLibrary, CreateProcess,
WinExec, LoadModule, and GetProcAddress. Other
routines are also hooked to provide an execution
environment that makes the system appear to be an x86.

3.2 Running in an Enabled Process

Once a process is enabled, any attempt to execute an
image or load a DLL enters the DIGITAL FX!32 agent
instead. If the image is an x86 executable, the agent
arranges for the DIGITAL FX!32 runtime to take
control of execution.

A program executes a new image by calling
CreateProcess. Any such call enters the agent’s hook
for CreateProcess. If the image is a native Alpha
executable, the agent passes the request to the system’s
CreateProcess, enables the new process, and then just
lets it run. If the image is an x86 image, the agent adds
the name of the runtime to the front of the command
line and then creates the process. The DIGITAL FX!32
runtime runs and arranges to load and execute the x86
code. (This has the unfortunate side effect of listing all
x86 processes as “fx32” in the processes list of the task
manager. We are still looking for ways around this for
NT Version 4.0.) Note that since the new process starts
in the runtime, it is automatically enabled.

A request to load an x86 library is handled differently.
If the current process’ main image is an x86 image, the
runtime is already present. The hooked LoadLibrary
loads the library (“as data” as far as the Alpha NT
system is concerned) and starts execution of its main
code using either the emulator or translated code. If the
current process’ main image is a native Alpha image,
the runtime is first brought into memory. Note that
DIGITAL FX!32 will only load an Alpha DLL into an
x86 image if it has enough information to allow it to
jacket the calling sequences of all the exported entry
points. This is discussed in section 4.1.

3.3 The Root of all Enabling

Any enabled process will ensure that all processes that
it creates are enabled. How does this cascade of
enabled processes start? By the time a user logs in, all
the top-level processes must be enabled somehow, so
that any attempt to execute a 32-bit x86 application
invokes DIGITAL FX!32.

The processes which must be initially enabled are the
Shell (explorer.exe), the Service Control Manager
(services.exe) and RPCSS (rpcss.exe). The DIGITAL
FX!32 server enables the Service Control Manager and
RPCSS when it starts up, usually when the system
boots. These two are system processes, and are running
even before a user can log in. There is currently a short
time window in which the Service Control Manager can
attempt to start an x86 service before it is enabled. This

causes the x86 service to fail to start. The current work-
around is to make the x86 service dependent on the
DIGITAL FX!32 server.

Enabling the processes for a logged-in user is trickier.
When DIGITAL FX!32 is installed, it stores
fx32strt.exe in the registry as the Windows Shell,
replacing the real Windows Shell (explorer.exe). When
a user logs on, fx32strt runs and creates an enabled
version of the Explorer. Thus, by the time the user is
logged on, all the top level processes have been
enabled. There is one catch to this process. The
Explorer checks the registry to see if it is the user’s
default shell. If so, it runs in a reduced mode, and does
not create a task bar or run any programs in the startup
group. To get around this, the server temporarily
changes the registry’s Shell value to point to the
Explorer, long enough to fool it into believing (quite
rightly) that it is the user’s default shell.

4. The DIGITAL FX!32 Runtime

The DIGITAL FX!32 runtime is invoked whenever an
enabled process attempts to execute an x86 image. The
runtime loads the image into memory, sets up the
runtime environment required by the emulator, and then
calls the emulator to execute the image.

The runtime duplicates the functionality of the NT
loader. This is necessary since the Alpha NT loader
will return an error indicating that the image is of the
wrong architecture if it is invoked to load an x86 image.
Duplicating the functionality of the NT loader requires
that the runtime relocate images which are not loaded at
their preferred base address, set up shared sections, and
process static TLS (Thread Local Storage) sections.

The runtime registers each image it processes with NT
by inserting pointers to the image into various lists used
internally by the operating system. Maintaining these
lists allows the native Windows NT code to correctly
implement routines like LoadResource that require
access to loaded images. It also means that the DllMain
functions of the loaded DLLs are called as appropriate.
(The runtime jackets the entry points of x86 DLLs.)

Fortunately, these image lists are in the user’s address
space and no modification of NT was required to
register images with the system. Unfortunately, the
structure of these lists is not part of the documented
Win32 interface and using them creates a dependency
on the version of NT that is being run. This is one of a
number of places where FX!32 has dependencies on
undocumented features of NT, making it more

dependent on a particular version of the operating
system than a typical layered application. On the other
hand, it is remarkable that the implementation of FX!32
required no changes to NT.

In addition to being registered with NT, the image is
also registered in the DIGITAL FX!32 database. The
database maintains the association between the image
and the application which uses it. It also returns the
name of the translated image to be used with a given
x86 image. The database is accessed using an image id
obtained by hashing the image’s header. The image id
uniquely identifies the image by its contents, and is
independent of the image name or location in the file
system. Both the runtime and the server use the image
id to access information about the image which is stored
in the DIGITAL FX!32 database.

If there is a translated image in the database, the
runtime loads it along with the original x86 image.
Translated images are normal NT DLLs, and are loaded
by the native LoadLibrary. They contain additional
sections holding information required by the runtime to
map x86 routines to the corresponding Alpha code.

4.1 Jackets

When the NT loader loads an image, it “snaps” the
image’s imports using symbolic information in the
image to locate the address of the imported routine or
data. The DIGITAL FX!32 runtime duplicates this
process. However it treats imports which refer to
entries in Alpha images specially by redirecting them to
refer to the correct jacket entry in the DIGITAL FX!32
DLL jacket.dll.

The “jackets” in jacket.dll are small code fragments
which manage the transition between the x86 and Alpha
environment. These jackets enable the x86 program to
call the native Alpha implementation of the Windows
API.

Each jacket contains an illegal x86 instruction that
serves as a signal to the interpreter to switch into the
Alpha environment. The interpreter calls an Alpha
jacket routine at a fixed offset from the illegal x86
instruction. The basic operation of most jacket routines
is to move arguments from the x86 stack to the
appropriate Alpha registers, as dictated by the Alpha
calling standard. Some jacket routines provide special
semantics for the native routine being called, as
required by FX!32. For example, the jacket for
GetSystemDirectory returns the path to the FX!32
directory, rather than the path to the true system

directory, so that x86 applications do not overwrite
native Alpha DLLs.

More complicated jackets are required in many cases.
For instance, many Windows routines are passed the
addresses of routines to call back when some event
occurs. If these values were to be passed blindly, the
Alpha Windows code would make a call to a location
containing x86 code, and would certainly crash. A
jacket for such a routine is a hand-crafted special jacket
which dynamically creates incoming jackets for the
procedure-pointer arguments, and passes those to the
native Alpha code. When that code calls back to its
argument, the incoming jacket enters the runtime to
execute x86 code.

The most complicated jacketing problem is associated
with OLE. An OLE interface is represented by a table
of function pointers. DIGITAL FX!32 jackets these
objects’ functions in such a way as to allow them to be
used from either native Alpha code or from x86 code.

FX!32 provides jackets for entries to over 50 native
Alpha DLLs, including jacketing many undocumented
routines whose argument lists were determined from the
header files in the SDKs.

In order for native Alpha code to interoperate with the
x86 environment, it must be possible to jacket the
calling sequences for every function call that can cross
architecture boundaries. This is possible for system
DLLs because their interfaces are (usually)
documented. It can be done for DLLs that contain OLE
objects because there are strict rules on how those
objects publish their interfaces. However, consider the
case of an application that is running a native Alpha
version, but which accepts plug-in extensions. A plug-
in provided as an x86 DLL may have any calling
sequence agreed to by the application vendor.
DIGITAL FX!32 cannot load such a plug-in unless it is
taught how to jacket the interfaces. The current version
of DIGITAL FX!32 jackets a few common plug-in
interfaces, and we are working on ways to describe
arbitrary plug-in interfaces for a future release.

5. The DIGITAL FX!32 Emulator

The emulator has a fundamentally important role in
DIGITAL FX!32. It allows x86 applications to run
prior to their translation. The first time any x86 image
executes under DIGITAL FX!32, it is executed by the
emulator.

The emulator also plays an important role as a backup
for translated code. In general it is impossible to
statically determine all the code that can ever be
executed by an application, especially for applications
which generate code “on the fly." The emulator
provides a mechanism to execute x86 application code
which has not been translated. Previous binary
translators built by Digital have always depended on the
presence of an emulator in this role[1]. A fundamental
difference between DIGITAL FX!32 and the earlier
binary translators is that large amounts of code are
interpreted by the DIGITAL FX!32 emulator the first
time an application is run. The performance of the
emulator is therefore more of an issue for DIGITAL
FX!32 than for the earlier translators.

The DIGITAL FX!32 emulator is an Alpha assembly
language program which interprets the subset of x86
instructions that a Win32 application can execute.
While an x86 application is running, the state of the x86
processor is kept partially in Alpha registers and
partially in a per-thread data structure called the
CONTEXT. While in the emulator, a dedicated register
always points to the CONTEXT. x86 integer registers
are permanently mapped to Alpha registers and the state
of the x86 condition codes is maintained in Alpha
registers during execution of x86 code. Any part of the
x86 state which must be maintained across calls to other
parts of the system (for example on calls to Alpha APIs)
is stored in the CONTEXT.

The emulator generates profile data for use by the
translator while it is interpreting an x86 program. The
profile data includes the following information:

• addresses which are the targets of CALL
instructions,

• source address, target address pairs for indirect
jumps, and

• addresses of instructions which make
unaligned references to memory.

The translator uses this information to generate
“routines," units of translation which approximate a
source code routine. The emulator generates profile
data by inserting values in a hash table whenever a
relevant instruction is interpreted. For example, when
interpreting the CALL instruction, the emulator records
the target of the call. When an image is unloaded,
either as a result of a call on FreeLibrary or when the
application exits, the loader processes the hash table to
produce a profile file for the image. The server will

process this profile and may invoke the translator to
create a new translation of the image.

The emulator uses the same hash table to detect when
there translated code is available. When the DIGITAL
FX!32 loader brings in a translated image, it builds
entries in the hash table that associate the addresses of
x86 routines which were translated with the addresses
of the corresponding translated code. The loader
extracts this information from the translated image.
When the emulator interprets a CALL instruction, it
looks for the target address in the hash table. If a
corresponding translated address exists, the emulator
transfers to the translated code.

6. The DIGITAL FX!32 Translator

The translator is invoked by the server to translate x86
images which have been executed by the emulator. As
a result of executing the image, a profile for the image
will exist in the DIGITAL FX!32 database. The
translator uses the profile to produce a translated image.
On subsequent executions of the image, the translated
code will be used, substantially speeding up the
application.

The front end of the translator contains a component
called the “regionizer” which divides the x86 image into
“routines." Routines are units of translation which
approximate real routines in source programs. Each
routine is then processed by the other components of the
translator to produce Alpha code.

The regionizer uses data in the profile to divide the
code in the source image into routines. Each call target
in the profile is used to generate an entry to a routine.
The regionizer represents routines as a collection of
regions. Each region is a contiguous range of addresses
which contains instructions that can be reached from the
entry address of the routine. Unlike basic blocks,
regions can have multiple entry points. The smallest
collection of regions which contain all the instructions
which can be reached from the routine entry is used to
represent the routine. Many routines have a single
region. This representation efficiently describes the
division of the source image into units of translation.

The regionizer builds routines by following the control
flow of the source image. When an indirect jump is
encountered while following the control flow, the
profile provides a list of possible targets. Without this
information from the profile, it would be very difficult
to reliably identify the targets of indirect jumps, and
they would have to be treated as returns from the

routine. The profile information makes it possible to
reliably generate a more complete representation of
routines with correct control flow.

The remaining components of the translator process the
source image one routine at a time. They build an
internal representation of the routine, perform several
transformations which produce code more suited to the
Alpha architecture, generate Alpha code, and write the
resulting translated image.

7. The DIGITAL FX!32 Database

The DIGITAL FX!32 database consists of two parts.
The first is a directory tree which contains profile files,
translator log files, and translated images. The second
part is in the registry and provides information about the
x86 applications and images which DIGITAL FX!32
has run on the system.

DIGITAL FX!32 also keeps configuration information
in the registry. This information includes things like the
maximum amount of disk space to use, the maximum
number of images to store in the database, and default
translation options (which can be overridden at the
application or image level). The registry also holds the
work list, which the server uses to schedule translations.

One important piece of configuration information kept
in the registry is the DatabaseDirectoryList. This is a
list of paths to additional databases which the server can
search for image profiles and translation results.
Directories on this list are searched the first time an
image is executed and can provide information about
the image from other machines on the network. This
allows DIGITAL FX!32 to use the results of
translations performed on other, possibly more powerful
machines.

8. The Server

The DIGITAL FX!32 server is an NT Service which
normally starts whenever the system is rebooted. The
primary role of the server is to automatically run the
translator “when appropriate." This makes the overall
translation process completely transparent to the user.
The server also maintains the database to control
DIGITAL FX!32 resource usage.

9. The User Interface

Most of the time, the operation of DIGITAL FX!32 is
completely transparent to the user. However, DIGITAL
FX!32 consumes system resources and there must be

some way for a knowledgeable user to control this
resource usage. This is the role of the DIGITAL FX!32
manager. The manager provides a user interface to the
configuration information kept in the database.

By interacting with the manager, the user can control
various aspects of the operation of FX!32, such as the
maximum amount of disk space to use, which
information to retain in the database, and when the
translator should run.

10. Results

DIGITAL FX!32 had two primary goals: transparent
execution of 32-bit x86 applications, and performance
that was roughly equal to a high-end x86 platform when
running the same applications on a high-performance
Alpha system. Both objectives have been meet.

Transparency is provided by the DIGITAL FX!32 agent
and a runtime environment which will load and execute
an x86 application without a translation step.
Applications launch and execute on an Alpha running
DIGITAL FX!32 just like they do on an x86.

DIGITAL FX!32 also meet its performance objectives.
Figure 1 shows the relative performance on the Byte
Benchmark of a 200Mz Pentium Pro and a 500 Mz
Alpha running DIGITAL FX!32. For this benchmark,
the Alpha running DIGITAL FX!32 provides about the
same performance as a 200Mz Pentium Pro. Figure 1
also shows that the Alpha native version of the
benchmark runs twice as fast as the Pentium Pro.

Of course, no single benchmark characterizes the
performance of a system. However, we have
consistently measured performance between a 200Mz
Pentium and a 200Mz Pentium Pro for applications
running under DIGITAL FX!32 on a 500Mz Alpha.

0

2

4

6

8

Pentium Pro
200

FX!32 (Alpha
21164a-500)

Native(Alpha
21164a-500)

Integer

Floating Point

Figure 1
DIGITAL FX!32 Performance on Byte Benchmark

There are some things that the initial version of
DIGITAL FX!32 was not designed to do. DIGITAL
FX!32 only executes application code. It does not
execute drivers, so native drivers are still required for
any peripheral installed on an Alpha system. It also
fails to provide complete support for x86 services, as
discussed in Section 3.3. Another limitation of
DIGITAL FX!32 is that it does not support the NT
Debug API. Supporting this interface would require
that the x86 state could be re-materialized after every
x86 instruction, severely limiting optimizations which
could be performed by the translator. This limitation is
similar to the tradeoff in optimizing compilers where
debugging is restricted when optimizations are turned
on. Since DIGITAL FX!32 does not support the Debug
interface, applications which require it do not run under
DIGITAL FX!32. These applications are mostly x86
development environments, and it probably makes sense
to run them on an x86 anyway.

Despite these limitations most x86 applications which
run on an x86 Windows NT system will run on an
Alpha system running FX!32 under Windows NT.

11. Conclusion

DIGITAL FX!32 provides for fast transparent execution
of 32-bit x86 applications on Alpha systems running
Windows NT. This is accomplished using a unique
combination of emulation and binary translation.

12. Acknowledgments

Building a product like DIGITAL FX!32 required a lot
of hard work by some extremely talented people. Many
of these people contributed the ideas described in this
paper. The following engineers were part of the
DIGITAL FX!32 development team: Jim Cambell,
Anton Chernoff, George Darcy, Tom Evans, Mark
Herdeg, Ray Hookway, Maurice Marks, Srinivasan
Murari, Brian Nelson, Scott Robinson, Norm Rubin,
Joyce Spencer, Tony Tye and John Yates. Charlie
Greenman wrote the documentation.

13. Availability

DIGITAL FX!32 is available electronically from

http://www.service.digital.com/fx32

This web site contains more information on DIGITAL
FX!32 along with the software itself.

14. References

1. Richard L. Sites, Anton Chernoff, Matthew B. Kirk,
Maurice P. Marks, and Scott G. Robinson, “Binary
Translation”, Digital Technical Journal, Vol. 4, No. 4, 1992

2. Robert Bedichek, “Some Efficient Architecture
Simulation Techniques”, USENIX - Winter ’90

3. L. Peter Deutsch and Allan M. Schiffman, “Efficient
Implementation of the Smalltalk-80 System”, Record of the
Eleventh Annual ACM Symposium on Principles of
Programming Languages, 1983

4. Brian Case, “Rehosting Binary Code For Software
Portability”, Microprocessor Report, January 1989

5. Robert F. Cmelik and David Keppel, “Shade: A Fast
Instruction-Set Simulator for Execution Profiling”, Technical
Report UWCSE 93-06-06, University of Washington, 1993

6. Richard Hank and B. Ramakrishna Rau, “Region-Based
Compilation: An Introduction and Motivation”, Proceedings
of MICRO-28, 1995 IEEE

7. Tom R. Halfhill, “Emulation: RISC’s Secret Weapon”,
BYTE, April 1994

8. Jeffery Richter, Advanced Windows NT, Microsoft
Press, 1994

9. Alfred V. Aho, Mahadevan Ganapathi and Steven W.
K. Tjiang, “Code Generation Using Tree Matching and
Dynamic Programming”, ACM Transactions on Programming
Languages and Systems, Vol. 11, No. 4, October 1989

