
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Coordinated Thread Scheduling for
Workstation Clusters Under Windows NT

Matt Buchanan and Andrew A. Chien
Concurrent Systems Architecture Group

Department of Computer Science, University of Illinois

Coordinated Thread Scheduling for Workstation Clusters
Under Windows NT

Matt Buchanan and Andrew A. Chien
Concurrent Systems Architecture Group

Department of Computer Science, University of Illinois
 ({mbbuchan,achien}@cs.uiuc.edu)

Abstract

Coordinated thread scheduling is a critical factor in
achieving good performance for tightly-coupled par-
allel jobs on workstation clusters. We are building a
coordinated scheduling system that coexists with the
Windows NT scheduler which both provides coordi-
nated scheduling and can generalize to provide a wide
range of resource abstractions. We describe the basic
approach, called “demand-based coscheduling”, and
implementation in the context of Windows NT. We
report preliminary performance data characterizing
the effectiveness of our approach and describe bene-
fits and limitations of our approach.

1. Introduction

Coordinated scheduling for parallel jobs across the
nodes of a multiprocessor is well-known to produce
benefits in both system and individual job efficiency
[1, 5, 6]. Without coordinated scheduling, parallel
jobs suffer high communication latencies between
constituent threads due to context switching. This
effect is exacerbated if the thread scheduling for indi-
vidual nodes is done by independent timesharing
schedulers. With high performance networks that
achieve latencies in the range of tens of microsec-
onds, the scheduling and context switching latency
can increase communication latency by several orders
of magnitude. For example, under Windows NT,
CPU quanta vary from 20 ms to 120 ms [3], implying
that uncoordinated scheduling can cause best-case
latencies on the order of 10 µs to explode by three to
four orders of magnitude, nullifying many benefits of
fast communication. While multiprocessor systems
typically address these problems with a mix of batch,
gang, and timesharing scheduling (based on kernel
scheduler changes), the problem is more difficult for
workstation clusters in which stock operating systems
kernels must be run. Coordinated scheduling reduces

communication latencies by coscheduling threads that
are communicating, thereby eliminating the context
switch and scheduling latencies from the communi-
cation latency. Another important problem is that
uncoordinated scheduling can reduce system effi-
ciency as increased latency can decrease the effi-
ciency of resource utilization. As high-performance
networks and CPUs become more affordable for
high-end computing, scheduling emerges as an im-
portant factor in overall system performance.

A low-latency, high-bandwidth messaging layer
works to bridge the mix of interconnect, operating
system, and user applications, delivering the raw per-
formance of the interconnect to the software
[14,2,8,9]. Such layers are essential because they
make available the high performance of the underly-
ing network hardware to applications. Illinois Fast
Messages (FM) is such a messaging layer [14], and is
a key part of the Concurrent System Architecture
Group’s High Performance Virtual Machines
(HPVM) project [15], which seeks to leverage clus-
ters of commodity workstations running Windows NT
to run high-performance parallel and distributed ap-
plications. Fast Messages can deliver user-space to
user-space communication latencies as low as 8 µs
and overheads of a few µs. However, such levels of
performance implies avoiding interrupts and system
calls, so systems such as FM use polling to detect
communication events, and therefore only delivers
peak communication performane when effective co-
scheduling is achieved.

Coscheduling for clusters is a challenging problem
because it must reconcile the demands of parallel and
local computations, balancing parallel efficiency
against local interactive response. Ideally a cosched-
uling system would provide the efficiency of a batch-
scheduled system for parallel jobs and a private time-
sharing system for interactive users. In reality, the
situation is much more complex, as we expect some
parallel jobs to be interactive. Furthermore, in a

cluster environment, kernel replacement is difficult at
best, so we restrict ourselves to approaches that in-
volve augmentation of existing operating system in-
frastructure.

Our approach to coordinated scheduling is Demand-
based Coscheduling (DCS) [4, 7] which achieves
coordination by observing the communication be-
tween threads. The essence of this approach is the
observation that only those threads which are com-
municating need be coscheduled, and this admits a
bottom-up, emergent scheduling approach. This ap-
proach can achieve coscheduling without changes to
the core operating system scheduler and without
changes to the applications programs. DCS causes
the Windows NT scheduler to schedule communicat-
ing threads in a parallel job to run at roughly the same
time, thereby minimizing communication latency.

Our implementation of DCS in Windows NT coexists
with release binaries of the operating system require a
customized device driver for the network card (in this
case the Myrinet [13] card). This driver memory
maps the network device into the user address space.
The device driver, combined with special Myrinet
firmware, influences the operating system scheduler’s
decisions by boosting thread priorities, based on
communication traffic and system thread scheduling.
The DCS algorithms are designed to drive the node
OS schedulers into synchrony, achieving coschedul-
ing among parallel threads that are closely communi-
cating while simultaneously preserving fairness of
CPU allocation. Our experiments evaluate an imple-
mentation of DCS for Windows NT, demonstrating
that such an architecture is feasible, and validating
DCS as a –promising approach for coscheduling.
However, more extensive experiments are required
before stronger conclusions can be drawn.

The remainder of this paper is organized as follows.
Section 2 describes demand-based coscheduling
briefly and our implementation approach for DCS.
Section 3 describes performance with DCS, and sec-
tion 4 presents some concluding remarks.

2. Demand-based Coscheduling

2.1. Overview

Demand-based coscheduling makes one central ob-
servation about the problem of scheduling parallel

jobs, that only communicating threads need to be co-
scheduled to overcome scheduling and context switch
latencies. DCS is driven directly by message arrivals:
Whenever a message arrives, an opportunity for co-
scheduling arises. If no thread that can receive the
message is currently running, DCS decides whether to
preempt the current thread to synchronize the sending
and receiving threads. The decision may be based on
many factors, but in general DCS attempts to strike a
balance between maximizing coscheduling perform-
ance and ensuring that the CPU is allocated fairly.

At the highest level, DCS has three key elements:

1. Monitoring communication and thread
scheduling,

2. Deciding whether to preempt the currently
running thread, and

3. Inducing the scheduler to select a particular
thread.

The most direct approach to all three elements of
DCS is to modify thread scheduler, embedded at the
heart of the operating system kernel. However, be-
cause our goal is to support clusters running retail
operating systems, such an approach has at least three
drawbacks. First, modified kernels are unlikely to be
run on a large number of systems, so such an ap-
proach will preclude large scale use of the cosched-
uling technology as middleware. Second, kernel
modifications will tie the implementation to a par-
ticular operating system and version, increasing the
software maintenance overhead, and making it diffi-
cult to leverage new operating systems features. The
third and final drawback is proprietary concerns re-
lating to source and binary distribution. An external
implementation is generally more easily distributable.

DCS has been simulated extensively and imple-
mented in the context of Solaris 2.4 [7,4]. The So-
laris 2.4 implementation served as a model for and is
similar in many ways to our Windows NT imple-
mentation

2.2. Implementation

We implemented DCS for Windows NT 4.0 for the
Intel x86 family of CPUs. Our implementation for
Windows NT consists of four distinct parts: a DCS-
aware Myrinet driver, the Fast Messages user-level
library, a Fairness monitor, and DCS-aware FM
firmware (a “LANai Control Program”, or LCP) that
runs on Myrinet card. These elements interact as
shown in Figure 1. The Fairness monitor in combi-
nation with the device driver monitors thread sched-
uling in the system, the modified firmware uses this
information to decide whether to preempt the current
thread, and the modified device driver induces the
kernel scheduler to choose the desired thread for
DCS.

2.2.1. Fairness Monitor

Our DCS implementation monitors thread and com-
munication activity to ensure fairness of CPU alloca-
tion. The Fairness monitor runs as user-level (and
thereby can access the NT kernel’s performance data
for the length of the run queue). The average run
queue length is written to the network card periodi-
cally, allowing the Myrinet firmware to moderate the
frequency of priority boosts to ensure fair CPU allo-
cations. Status information for the current thread is
provided by the device driver as indicated below.

2.2.2. Myrinet Firmware

The DCS aware firmware is a modified version of the
FM LANai Control Program and in addition to its
basic communication function, the firmware makes
preemption decisions based on the monitoring infor-

mation provided by the Fairness monitor and the de-
vice driver.

Based on the run-queue length, current thread infor-
mation, and the communication activity, the Firm-
ware decides whether the current thread needs to be
preempted (via an interrupt) and the device driver
invoked to take DCS-related action. The decision
procedure used by the Firmware is described below.

To determine whether a given thread is running, the
Firmware periodically scans (approximately once per
millisecond) the context switch information provided
by the device driver. The LCP sets a flag if a com-
municating thread is running, and when a packet ar-
rives, evaluates the following condition:

 !threadIsRunning && fairToPreempt()

If the condition is true, then the LCP interrupts the
host. The fairness criteria is critical and we adopt the
approach taken in [4] to decide whether to interrupt
the host. For a given thread, we interrupt if the fol-
lowing inequality is true:

2E(TC - TP) + C ≥ TqR

where

• TC is the current time,

• TP is the time the host was last interrupted to
schedule this thread,

• Tq is the length of a CPU quantum (120 ms under
Windows NT Server [3]),

• R is the number of threads waiting for the CPU,

• E and C are constants chosen to balance fairness
and performance.

This approach limits the number of preemptions per-
formed on behalf of a communicating thread by re-
quiring that TC - TP, the time since the last preemption,
is no less than the time it would take the CPU to
service all of the ready threads if each thread ran for
its entire quantum. The decay function 2E and con-
stant C afford some flexibility in tuning the inequality
to allow for perturbations, such as those caused by
threads that do not expire their quanta and priority-
decay scheduling. The Firmware uses the Myrinet
card’s on-board clock (0.5 µs granularity) to track TC

User level

Kernel

Network interface

Fairness monitor

Load information

NT kernel Device driver

FM library

LANai Control Program

Interrupt host if fair

Preempt

Initialize

DCS policy

Figure 1. DCS organizational chart

and TP. Under NT Server, the quantum size is con-
stant.

Since the LCP scans the context switch information at
one-millisecond intervals rather than for each packet,
the information that fairToPreempt() uses may
be stale. The scanning period involves a tradeoff
between per packet overhead and staleness of the
data. Since NT typically switches threads on tens of
milliseconds time scale, we choose to reduce the per
packet overhead.

2.2.3. Device Driver

We explored two basic approaches to the device
driver, and describe both here as an illustration of
what turned out to be difficult about manipulating the
kernel scheduler to achieve the desired schedule. We
term these two approaches thread select which
makes use of a thread select callback, and priority
boost which uses the thread priority boosting mecha-
nism.

Thread Select Our initial implementation of DCS
used NT’s thread select notify callback, implemented
in multiprocessor versions of the kernel. The sched-
uler passes the handle of a thread it proposes to select,
and the callback returns a boolean value that it uses as
a hint in deciding whether the given thread is appro-
priate to schedule. To cause the scheduler to favor a
given thread when the thread has messages pending,
the callback would simply reject the scheduler’s
choices until it proposed the preferred thread.

Unfortunately, the thread select notify callback is not
suitable for DCS because its influence on thread
scheduling decisions is limited. The scheduler uses
several other criteria in addition to the callback’s re-
turn value in choosing a thread to run, including the
time the thread has been waiting for a CPU and its
processor affinity [10]. Of course, if a competitor
thread has a higher priority than a communicating
thread, the scheduler may never propose a communi-
cating thread to the callback. Thus, there is no guar-
antee that a communicating thread will be offered,
much less scheduled at an appropriate time. Thus,
using the callback to modify the scheduler’s behavior
was not a viable implementation for DCS.

Priority Boost This approach boosts the priority of a
thread DCS would like to schedule which in general
causes the NT scheduler to schedule the desired
thread. However, since the Windows NT kernel does
not export a well-defined interface to device drivers

for modifying the priorities of arbitrary threads, (only
for boosting the priority of driver created system
threads [10]), we were forced to use an undocu-
mented internal interface for thread priority modifi-
cation. By using a tool called “NTExport” [11] that
uses the symbol information distributed with every
build of Windows NT (intended for kernel debugging
support) to build an export library for the kernel, we
exported the appropriate calls to our driver, enabling
thread priority modification. (We hope to find a more
portable yet equally effective approach to solve this
problem.) When a thread needs to be scheduled, the
driver’s interrupt handler affects a priority boost for
the thread.

In addition, monitoring thread scheduling activity is
another key function of the device driver. To provide
thread scheduling (current thread) information to the
Myrinet Firmware, our device driver exploits a kernel
callback on each thread context switch to write the
context switch information to the Firmware. Thus,
the firmware has precise current thread information.

3. Performance Results

We have implemented DCS for Windows NT 4.0 on a
cluster of dual-processor Micron brand Pentium Pro
machines running at 200 MHz, each with 64 MB of
physical memory. Each machine contains a Myrinet
PCI interface connected to a Myrinet switch.

Our experimental methodology was as follows: We
ran trials of FM’s latency benchmark along with zero,
one, two, four, and eight CPU-bound competitor
threads, passing one million packets on a round trip
between a sender and receiver node. We ran ten runs
of this test. Each trial reported a histogram of round-
trip times in microseconds. We computed the mean
value of each bin for each number of competing
threads over the ten trials to get the results we report
here.

Preliminary results show that DCS improves per-
formance, but that balancing fairness with perform-
ance is a tradeoff. We ran a ping-pong latency mi-
crobenchmark and a barrier benchmark on a cluster of
six dual-processor 200 MHz Pentium Pro machines.
Malfunctions in our LANai development tools pre-
vent us from reporting the results of the barrier series
here.

Figure 2 shows the wall-clock time-to-completion for
FM’s latency test with DCS enabled using E=0 and
E=-5 and with DCS disabled. Our testing has indi-

cated that for a large number n of compute-bound
competitor threads, say four, the NT Server scheduler
is fair; that is, we observe each competing thread to
receive 1/n of the system. For four or more competi-
tors, Figure 2 shows DCS with E=-5 to exhibit be-
havior similar to that of the NT scheduler alone.
Since the latency test measures the wall-clock round-
trip time required for a series of messages (in this
case, one million), the time required for the entire test
to run is an indicator of the average round-trip latency
observed.

Figure 3 shows the distribution of round-trip times for
the eight-competitor case. The graph illustrates the
large contributions that round-trip times as large as 1
second make to the latency benchmark’s time to
completion as the number of competitor threads
grows. Most of the contribution that the aggressive
DCS configuration (E=0) makes to time to comple-
tion is clustered on the left side of the graph; non-
DCS and the more passive DCS configuration (E=-5)
show substantial numbers of round trips that last
longer than 2 ms to total time to completion. The
average latencies for the non-DCS and passive DCS

cases swamp the average latency reported in the ag-
gressive DCS case.

Ping-pong latency test time-to-completion

0

100

200

300

400

500

600

700

0 1 2 4 8

Number of competitor threads

W
al

l-
cl

o
ck

 t
im

e-
to

-c
o

m
p

le
ti

o
n

 (
se

co
n

d
s)

DCS (E=0, C=0)

DCS (E=-5, C=0)

No DCS

Figure 2. Latency test time-to-completion

L a te n c y (1 ,0 0 0 ,0 0 0 ro u n d tr ip s), 8 c o m p e tito rs

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

20 40 60 80 10
0

30
0

50
0

70
0

90
0

20
00

10
00

0

30
00

0

50
00

0

70
00

0

90
00

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

W a ll-c lo c k ro u n d -tr ip t im e (m ic ro s e c o n d s)

N
u

m
b

er
 o

f
ro

u
n

d
 t

ri
p

s
o

f
d

u
ra

ti
o

n
 X

N o D C S

D C S (E = -5)

D C S (E = 0)

Figure 3. Distribution of latency test round-trip times. For x=20, y=996000 for each con-
figuration.

4. Summary

Our initial performance results are encouraging and
suggest that DCS can be implemented and can

achieve coscheduling for Windows NT systems. This
coscheduling is demonstrated in the improved per-
formance of our benchmark for communicating
threads. Unfortunately, we can only report limited
results at this point, but hope to report performance

data from a broader array of experiments in the near
future.

5. Discussion and Future Work

More complete performance measurements using
larger applications with our DCS implementation are
clearly an important step. Exploration of the pa-
rameter space for our DCS fairness equation and
techniques for auto-calibration are of interest. In
addition, we have added a blocking primitive to the
FM interface that we will use to explore the behavior
of spin-block synchronization under NT in addition to
the current spin-only synchronization, alone and in
the presence of DCS. Beyond that, experiments with
multiprocessor nodes, proportional share scheduling,
and scheduling a broader array of cluster resources
are all challenging directions.

Our experience with external customization of the
Windows NT scheduler has mixed results. While we
initially believed that the wealth of callbacks and ex-
ternal hooks for NT would make external customiza-
tion easier, our experience was much less encourag-
ing. The callbacks for thread scheduling were inade-
quate, and only available in the multiprocessor
released kernel. For research such as we have dis-
cussed to proceed without NT kernel modificaitons,
general, better external access to NT’s policies (and
mechanisms) must be achieved. Priority boosts are a
crude mechanism for achieving coscheduling, but an
effective callback would influence the scheduler’s
policy, possibly achieving the longer-term scheduler
synchrony across the cluster that is our goal. A less
ambitious approach would involve simply better ac-
cess to mechanisms for thread priority modification,
obviating the need for recourse to tools like NTEx-
port.

More information

More information is available on our WWW site at
http://www-csag.cs.uiuc.edu.

Acknowledgments

The research described in this paper was supported in
part by DARPA Order #E313 through the US Air
Force Rome Laboratory Contract F30602-96-1-0286,
NSF grants MIP-92-23732, NASA grant NAG 1-613.
Support from Intel Corporation, Tandem Computers,
Hewlett-Packard, and Microsoft is also gratefully

acknowledged. Andrew Chien is supported in part by
NSF Young Investigator Award CCR-94-57809.

6. References

[1] Ousterhout, J. K. Scheduling techniques for con-
current systems. In Proceedings of the 3rd Interna-
tional Conference on Distributed Computing Systems,
pages 22-30, October 1982.

[2] Von Eicken, T, D. Culler, S. Goldstein, and K.
Schauser. Active Messages: a mechanism for inte-
grated communication and computation. In Pro-
ceedings of the International Symposium on Com-
puter Architecture, 1992.

[3] Russinovich, M. Differences between Windows
NT Workstation and Server. Available from
http://www.ntinternals.com/tune.txt .

[4] Sobalvarro, P. G. Demand-based coscheduling of
parallel jobs on multiprogrammed multiprocessors.
Ph.D. thesis, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, January 1997.

[5] Feitelson, D. G. and L. Rudolph. Coscheduling
based on run-time identification of activity working
sets. In International Journal of parallel Program-
ming, Vol. 23, No. 2, pages 135-160, April 1995.

[6] Dusseau, A. C., R. H. Arpaci, and D. E. Culler.
Effective distributed scheduling of parallel work-
loads. In ACM SIGMETRICS ’96 Conference on the
Measurement and Modeling of Computer Systems,
1996.

[7] Sobalvarro, P. G. and W. E. Weihl. Demand-
based coscheduling of parallel jobs on multipro-
grammed multiprocessors. In Proceedings of the
Parallel Job Scheduling Workshop at IPPS ’95, 1995.
Available in Springer-Verlag Lecture Notes in Com-
puter Science, Vol. 949.

[8] Von Eicken, T., A. Basu, V. Buch, and W.
Vogels. U-Net: a user-level network interface for
parallel and distributed computing. In Proceedings of
the 15th ACM Symposium on Operating Systems
Principles, December 1995..

[9] Tezuka, H. A. Hori, and Y. Ishikawa. Design
and implementation of PM: a communication library
for workstation clusters. In JSPP, 1996.

[10] Microsoft. Windows NT device driver kit
documentation.

[11] Russinovich, M. and B. Cogswell. NTExport
documentation. Available from
http://www.ntinternals.com..

[12] Custer, H. Inside Windows NT. Microsoft
Press (Redmond, WA), 1993.

[13] Boden, N., et. al. Myrinet—a gigabit-per-
second local-area network. In IEEE Micro, pages 29-
36, February 1995.

[14] Pakin, S., Karamcheti, V. and Chien, A. A. Fast
Messages: Efficient, Portable Communication for
Workstation Clusters and MPP’s, IEEE Concurrency
5(2), April 1997, pages 60-73.

[15] Chien, A., et. al. High Performance Virtual Ma-
chines (HPVM): Clusters with Supercomputing Per-
formance and API’s, Proceedings of the Eighth SIAM
Conference on Parallel Processing, March 1997,
Minneapolis, Minnesota.

