Push vs. Pull: Implications of Protocol Design on Controlling Unwanted Traffic

Zhenhai Duan, Kartik Gopalan
Florida State University

Yingfei Dong
University of Hawaii
Objectives and Scope

- Controlling spam-like unwanted traffic
 - We target unsolicited asynchronous messages
 - These rely on content being read/heard by the receiver

- Two objectives
 1. Examine two protocol design choices
 - Sender-push vs. receiver-pull
 2. Study the feasibility of using receiver-pull for asynchronous message applications
Outline of the Talk

- Message delivery models and their variants
 - Sender-Push (SP)
 - Receiver-Intent-based Sender-Push (RISP)
 - Receiver-Pull (RP)
 - Sender-Intent-based Receiver-Pull (SIRP)

- A simple receiver-pull-based email delivery system
 - The Differentiated Mail Transfer Protocol (DMTP)

- Summary
Sender-Push (SP)

(a) Sender Push

- Examples: SMTP-based email, asynchronous voice messages

- Roles
 - S: Controls what content is delivered and when it is delivered
 - R: Passively receives the entire message before processing/discardng

- Responsibilities
 - S: Prepare and transmit message when ready
 - R: Has to wait, receive, process, store/discard each message.

- Accountability
 - Senders can vanish after pushing messages
Receiver-Intent-based Sender-Push (RISP)

- Examples:
 - Mailing lists, subscription-based stock/news ticker, instant messaging.

- Receiver can exercise minimal control over sender
 - Subscribe/unsubscribe
 - Whitelist/blacklist

- Basic problems for SP
 - Senders control what/when to send
 - Receiver must accept entire message.
 - Poor accountability
Receiver-Pull (RP)

Examples: HTTP and FTP

Roles
- S: Stores the message and passively waits for retrieval
- R: Controls if and when to retrieve the message

Responsibilities
- S: Prepare, store, manage the content and wait (stay online)
- R: Retrieve the message when convenient

Accountability
- Sender’s identity is visible for a larger window of time
Sender-intent-based Receiver Pull (SIRP)

- Example: Pager service

- Allow senders to express short intent to send a message
 - Content delivery is still controlled by receiver

- Primary advantages of RP
 - Receivers control delivery
 - Senders commit more resources
 - Senders can be held accountable
 - Senders cannot vanish before message is retrieved

- Disadvantage:
 - To some extent, intent notice may itself be considered as SPAM.
 - Definitely better than receiving the whole message.
SIRP Email Architecture

Issue: All messages, whether spam or legitimate, are affected by the two-step delivery
DMTP: Differentiated Mail Transfer Protocol

- Classify the senders
 - Allowed – regular contacts
 - Denied – well-known spammers
 - Unclassified – anyone not in allowed/denied

- Differentiate delivery of messages based on sender classification
 - Allowed: Directly accept the entire message
 - Denied: Directly decline the message before content is delivered.
 - Unclassified: Use the SIRP model to retrieve message

- Classification granularity at
 - MTA level and
 - (optionally) Email address level
If \((\text{SMTA is Denied})\)
return 550 (PE)
close TCP session
else \((\text{SMTA is allowed})\)
proceed using SMTP
else /* \text{SMTA is unclassified} */
accept MSID
(reject any DATA command)
/* pull message later if and when user wants */
Example DMTP transactions

SMTA: open TCP connection
RMTA: Get IP address of SMTA

// Case 1: SMTA IP is Allowed
RMTA: 220

// Case 2: SMTA IP is Denied
RMTA: 550
RMTA: close TCP connection

// Case 3: SMTA IP is Unclassified
RMTA: 220
SMTA: EHLO domain.com
RMTA: 220 MSID
SMTA: MAIL FROM: <yyy> DMTP
RMTA: 220
SMTA: RCPT TO: <xxx>
RMTA: 220
SMTA: MSID <identifier>
RMTA: 220

// if DATA command is attempted
SMTA: DATA
RMTA: 550
Other aspects

- **DMTP can be incrementally deployed**
 - No need to change everyone from SMTP ➔ DMTP overnight

- SIRP model is also applicable to mobile text messages, asynchronous voice message etc.

- Other references:
 - *Receiver-Driven Extensions to SMTP*, Internet Draft
 - *DiffMail: Controlling Spam Through Message Differentiation*, TR, FSU
 - *DiffMail Project webpage*:
 http://www.cs.fsu.edu/~duan/projects/diffmail/
Summary

- We examined two message delivery models and their variants
 - Receiver-pull model preferred in controlling unwanted messages

- Presented application of receiver-pull to email delivery
 - Differentiated Mail Transfer protocol (DMTP)
 - Currently implementing DMTP in Sendmail.
 (code to be available soon)

- Thank you!