Restricting Network Access to System Daemons
under SunOS

William LeFebvre

FECS Department
Northwestern University

Abstract

The implementation of most network daemons gives little consideration to the im-
plications of worldwide access. In some cases, such access can permit the worldwide
distribution of sensitive information, such as encrypted passwords. In other cases, local
changes can be effected by processes running anywhere on the network. The shared
library mechanism of SunOS can be used to provide a “wrapper” around certain dae-
mons. This wrapper takes the form of an alternate 1ibc shared library. Rather than
linking against the standard 1ibc, a daemon is directed to link against this alternate
secure library. The secure library has an augmented form of certain network-related sys-
tem calls which first perform the true system call then check the socket’s peer against a
configurable list of allowed hosts. If the peer is not found in the list, then the augmented
call returns an indication of failure to the caller.

1 The Problem of Network Services

Local networking technology has provided a very powerful mechanism for the interaction
of multiple machine. Services and information can be provided for machines on the local
network via servers, or daemons, running on a select number of hosts. These services are
vital to the operation of the local environment and their presence makes management of
the machines significantly easier.

At the same time that local networking technology has exploded, so has wide area
networking. As a result, most (if not all) of the daemons which intend to provide services
for the local network inadvertently provide access to machines all around the world. These
loopholes can be and have been exploited by unscrupulous individuals of malicious intent
[5].

The most striking example of this problem is Sun’s Network Information Service (NIS)L.
This service provides a great deal of critical information for a UNIX system, including the
data normally found in /etc/passwd, and especially including encrypted passwords. A list
of known account names is an incredible benefit to an abuser, and common passwords can
be easily discovered from their encrypted forms [4]. In all currently distributed forms, the
program which provides this information, ypserv, will gladly give this information out to
any machine that asks for it. Only the name of the NIS domain is needed.

Sites which now use Sun’s “adjunct files” to protect encrypted passwords may have lured
themselves into a false sense of security. All the data in the passwd map except the password

'In a previous life, NIS was known as Yellow Pages (YP).

USENIX Association UNIX Security Symposium

93

is still available to anyone who can guess the domain name, including usernames and full
names. Sites which, for the sake of convenience, provide NIS maps for the adjunct files via
the map passwd.adjunct are putting themselves back in the same position they were in
before using the adjunct files. Although it is true that ypserv will only answer queries for
“protected” maps if the originator of the query is uid 0, no check is made against the host
which originated the request. So uid 0 on any Internet host can still obtain the encrypted
passwords.

Other examples exist as well. Even for a minimal level of security, some network services
must be actively protected from access by non-local machines.

2 Possible Solutions

2.1 The Firewall

The most severe form of protection is a network barrier between the local organization
and the rest of the world [1]. This barrier, usually called a firewall, is configured so that
only packets for specific services are forwarded between local and global networks. Exactly
which packets are forwarded is determined by the network administrator or his superiors.
Typically it is limited to a very few protocols, including SMTP and NNTP but almost
always excluding remote login and file transfer protocols (such as Telnet, FTP, and rexec).

A firewall insures the highest level of security short of removing the outside connection
altogether [2]. But this security takes its toll in the form of added inconvenience for the
legitimate users. Any remote logins which local users wish to make must be done it two hops:
a login into the firewall, then a login from there to the remote host. Most organizations
provide a mechanism to make this nearly transparent to the local users. Other activities,
such as FTP, remain problematical.

Until global networks and network protocols reach a superior level of security, the firewall
will remain the only choice for many organizations. Still, there are alternatives for those
who are willing to sacrifice a small amount of security.

2.2 Secure RPC

RPc does not enforce any specific authentication scheme. Rather it uses open-ended au-
thentication, allowing the applications to specify what type they require. Currently most
RPC implementations provide only two forms of authentication: UNIX and DES. Those who
are seriously concerned about the security of RPC communications may choose to use DES
authentication, which actually encrypts the information in the rRpc transaction [6, pp. 429-
437].

2.3 Explicit Server Checking

The most obvious form of protection takes place in the server itself. When a server such
as ypserv receives a request, it first checks the address of the originator to determine if it
is a “trusted” host. It is the opinion of this author that all UNIX systems should provide
this functionality in the form of library functions and that servers which provide sensitive
information use such functions to protect themselves. Unfortunately, few vendors had the
foresight to provide such functionality.

Very recently Sun began providing binaries which do this sort of checking [3] by releasing
patch 100482-2. But this patch falls short in several ways:

94

UNIX Security Symposium USENIX Association

e it is not yet part of any standard operating system distribution
¢ it only protects three binaries: ypserv, ypxfrd, portmap

o the configuration mechanism does not generalize well: it does not provide a mechanism
to selectively protect services

A more generalized approach is needed, and it needs to be adopted, implemented, and used
by all uNIX vendors.

2.4 The Wrapper

Since UNIX vendors didn’t compile the protection in to their daemons and since they also
usually don’t give out source, two options remain. One is to find the source for a reimple-
mentation of the network daemon and alter it. Another is to find a way to wrap protection
around the server.

If a service’s executable is invoked once per connection (for example, those handled by
inet), it is possible to start a generalized “wrapper” program which will check and possibly
log the connection before invoking the real executable. The package “T'CP Wrapper” by
Wietse Venema does this [8]. Unfortunately, this approach will not work for true daemons
such as ypserv and portmap. A true daemon is started once and continues to run in the
background forking off children to handle requests.

3 Kernel Wrapper via Shared Libraries

Starting with version 4.0, SunOS began providing a library sharing mechanism. Nearly
all executables distributed with the system are linked against a shared C library. SunOS
versions 4.1 and higher also provides the files necessary to rebuild the shared C library.
With this functionality, it is possible to build special-purpose copies of the shared C library
and to invoke standard executables with alternate libraries. This is sufficient to hook in to
the servers and force them to do appropriate source verification.

3.1 Implementation

To understand the implementation, one must first understand a very fundamental fact
about the uNIX C run-time library. All kernel calls [7] are implemented by a front end in
the C library. Different computers will have different machine instructions for generating
the protected trap required of kernel calls, and the front-end routines hide this detail from
C programmers. The C run-time library—the same library which contains printf and
malloc—also contains a front-end function for every kernel call. For example, the kernel
call write actually exists as a function in the C library. This function is trivial: after
possibly moving or rearranging the arguments, it merely executes the appropriate machine
language “trap” instruction.

Since the front-end functions exist in the C library, the SunOS shared library mech-
anism allows a sufficiently clever individual to replace such a function, effectively adding
functionality to any kernel call. This is what the secure library package uses to implement
its security checks: every kernel call pertaining to network access has its front-end function
replaced with one that verifies the address of the connecting host.

USENIX Association UNIX Security Symposium

95

int retval;

retval = syscall(. . .);
if(retval > 0)

if(-ok_address(socket, addr, *addrlen))
return(retval);

errno = ECONNREFUSED,;
return(—1);

return(retval);

Figure 1: Basic Network Wrapper Algorithm

It turns out that only three kernel calls need such protection:

accept accept a connection on a socket
recvirom receive a message from a connectionless socket
recvmsg receive a message using a struct msghdr

Other kernel calls read data from the network, but only if the data is read from a connected
socket. Only accept can generate file descriptors for connected sockets. Therefore, having
accept verify the remote host is sufficient.

Figure 1 gives the basic algorithm for the secured “wrapper” functions. Each of the
front-end functions listed above is replaced with a wrapper function which is patterned
after this algorithm. The actual C code is listed in appendix A.

Each replaced function calls _ok_address for verification. It is this function that verifies
the remote host address, returning true (1) if the remote host is acceptable and false (0) if
it is not. It takes three arguments:

1. a file descriptor for the socket
2. a pointer to the socket address (a struct sockaddr *)

3. the length of the socket address

Each of these values is readily available to each wrapper, since they are passed as arguments
(either directly or indirectly) to the corresponding kernel call.

The function _ok_address uses the socket address and length arguments if they make
sense. However, if the socket address pointer is NULL or the length is not sufficient, then
-ok_address will attempt to get the remote host’s address by calling getpeername with the file
descriptor (the first argument). If the socket is connectionless, then the call to getpeername
will fail and _ok_address takes the attitude “better safe than sorry” by returning failure.

It is important to realize that the file descriptor is only used if the socket address pointer
and length do not provide sufficient information. In all three cases (accept, recvfrom,

96

UNIX Security Symposium USENIX Association

Configuration file for securelib.

<name> <address> <mask>

all 127.0.0.0 0.255.255.255
all 129.105.5.0 0.0.0.255
ypserv 129.105.2.0 0.0.0.255

Figﬁre 2: Example Configuration File

recvmsg), the socket address values are taken from the arguments supplied by the caller.
Therefore, a well-written program should not encounter any problems.

3.2 Configuration

The first implementation of _ok_address used a static table to determine if an address was
acceptable. When the first version of this package was released, one of its users kindly
sent the author a better version of _ok_address which reads its information from a file.
Availability of source means that _ok_address can be changed to suit any particular needs
that a given site may have.

The location of the configuration file is determined at compile time. By default, it is
named /etc/securelib.conf. Some may wish to provide an additional level of security by
placing the configuration file in a directory readable only by root, such as /etc/ security.
The advantage is that a regular user cannot determine which hosts are allowed to connect
to which local servers. The disadvantage is that only processes run as root can use the
secured library. In most environments, this is not an issue since all network servers run as
root anyway.

The syntax of the configuration file is typical for uNIXx. A hash mark (#) starts a
comment which ends at the end of the line. Each line has three fields separated by white
space:

1. the service name
2. the permissible address
3. the comparison mask

An example configuration file is given in figure 2. The function _ok_address maintains an
internal copy of each applicable line from the file. It only considers a line “applicable” if the
service name is “all” or if it matches the name of this process’s service (the method used
to determine that name is discussed in section 3.3). To verify a connection, _ok_address
checks every applicable line as follows:

e the socket’s Internet address is masked via a “bitwise and” of the one’s complement
of the specified mask (in retrospect, the configuration file should have specified a true
subnet mask)

e the result is compared against the address specified in the configuration file

e success is indicated if and only if the result is true

USENIX Association UNIX Security Symposium

97

LD_LIBRARY_PATH=/usr/lib/secure
export LD_LIBRARY_PATH
exec $0

Figure 3: Shell script to start secured programs

SECURE=""

if [-x /usr/lib/secure/start]; then
echo ’Using network secure library where appropriate.’
SECURE="/usr/lib/secure/start"

fi

Figure 4: Possible addition to rc.local

3.3 Use

After proper configuration, the Makefile distributed with the package (in conjunction with
a few shell scripts) will perform all steps required to build a new shared C library. The
library should then be installed in a location separate from /usr/1ib. This library is not
designed to replace the standard libc. Rather, it is intended to be used only in certain
cases. The author chose to create a special directory for the task: /usr/lib/secure. Any
process started with the environment variable LD_LIBRARY_PATH set to this directory will
be dynamically linked against the secure C library instead of the standard one. Figure 3
gives an Bourne shell script which can be used to start “secured” daemons.

Normally, the name of a network service is determined a priori or by looking at the
process’s zeroth argument (argv[0]). The secure library cannot use either method for
determining the service name. It must resort to either heuristics or sneaky tricks. The
author of the configuration file code opted for the latter. Any process using the secure
library is already being started with an altered environment, so requiring one more change
to the environment was deemed acceptable. The function _ok_address uses the value of the
environment variable SL_NAME to determine the name of the service. Only those lines in the
configuration file which start with the same name or the name all will have significance.

The shell file presented in figure 3 is easily modified to accommodate this method by
adding one line to the beginning:

. SL_NAME=‘basename $1°¢

The only other change required is the obvious one to the export command. This modified
script is provided in the secure library package and is called start. The installation step
places a copy in the same directory as the secure library itself.

Actual invocation of the start script will almost certainly be limited to /etc/rc.local.
Those who wish to keep rc.local as adaptable as possible should make modifications as fol-
lows. Near the beginning of rc.local a check is made for the existence of /usr/1ib/secure
and an environment variable is set accordingly. The script fragment in figure 4 accomplishes
this.

The lines in rc.local which invoke the daemons in need of protection are modified so
that they start with $SECURE. If the library exists on this machine, the start script makes

98

UNIX Security Symposium USENIX Association

sure that each daemon is started with the appropriate environment. Otherwise, $SECURE
expands to nothing and the daemon is started normally.

3.4 Limitations

This technique is not intended to solve all network security problems. It insures that servers
have some control over the network location of clients who are requesting information.
Network administrators must use every tool at their disposal to secure their systems. This
is just another tool for the toolbox.

The most serious shortcoming is its reliance on peer information. The wrappers have
no choice but to trust the information about the remote host which the kernel gives it.
But this information is based solely on the data in the IP packet header—information
that can be forged. The more common Internet problem of falsifying IP address to host
name translations will not affect the secure library, since its checking is based solely on IP
addresses.

Another limitation is time. It takes time to check even one packet. For most protocols,
this extra overhead has little impact. But for heavily used stateless and connectionless
protocols, such as NFs, the impact is very noticeable. This technique is not well suited to
such applications. This is a very disappointing realization. It implies that an NFs daemon
which does explicit checking for every request would be too slow for any practical purposes.

4 In the Absence of Shared Libraries

This technique was developed under SunQS specifically for a network of SunOS machines.
It can easily be adapted to any operating system which supports and uses shared libraries,
provided that there is a mechanism for rebuilding a shared C run-time library. Although
implementation would certainly be difficult, the idea may be applicable to operating systems
which do not support shared libraries.

An unstripped executable still contains the symbol table, which includes enough infor-
mation to find the entry point for any external function in the program. This would include
the front ends for kernel calls. One can conceive of a program that would alter the first
instruction in a function with a jump to a new function added to the executable. Adding ad-
ditional code is the difficult part: even an unstripped executable typically does not contain
the relocation information, making it impossible to move any existing symbols. Ironically,
application of virus writing technology would make it possible to add the necessary code to
the executable.

Executables which have had the symbol table stripped pose an additional challenge.
The only way to patch it would be to do some sort of disassembly. Prior knowledge of the
program’s structure would aid the disassembly process, and such knowledge can be gleaned
from the freely available BSD network program sources. The vendor’s executable may not be
identical to the BsD programs, but similarities should still exist. Fach network daemon has
essentially the same structure: initialization followed by the main loop. Near the beginning
of the majn loop one would find a call to one of the three networking system calls: accept,
recvirom or recvmsg. Once this call is found, the location of the appropriate kernel front
end function would be known and the technique used in the previous ‘paragraph could be
applied. It would be difficult—perhaps impossible—to automate this analysis.

USENIX Association UNIX Security Symposium

99

oM vy

5 Availability

The secured C library package is freely redistributable. It is available via anonymous FTP
from eecs.nwu.eduin the directory /pub/securelib. At the time this paper was published,
the Internet address for eecs.nwu.edu was 129.105.5.103.

6 Conclusions

Security is a very difficult problem. This package takes one step in the right direction by
providing an extra level of checking. It prevents access to critical system services by clients
outside a specified realm. It provides added functionality which should have been there
all along, but it does so in a way that does not require source from the original operating
system. The secure library can be installed and used on any stock Sun system provided
these simple requirements are met: SunOS version 4.1, 4.1.1, or 4.1.2 and installation of
the option shlib_custom (available on all distribution tapes, but not preinstalled by Sun).

7 Acknowledgements

The author would like to thank all the brave people who tried the first version of his package
and to Northwestern University for giving him a sandbox to play in. He would especially
like to thank Sam Horrocks of UCI for providing the code which reads the configuration
file.

References

(1] William R. Cheswick. The design of a secure internet gateway. In Proceedings of the
Summer 1990 USENIX Conference. USENIX Association, 1990.

[2] William R. Cheswick. An evening with berferd in which a cracker is lured, endured,
and studied. In Proceedings of the Winter 1992 USENIX Conference, pages 163-174.
USENIX Association, 1992.

(3] Computer Emergency Response Team. SunOS NIS vulnerability. CERT Advisory 92:13,
June 4 1992.

[4] Daniel V. Klein. Foiling the cracker: A survey of, and improvements to, password
security. In UNIX Security Workshop II, pages 5-14. USENIX Association, 1990.

[5] Eugene H. Spafford. The internet worm incident. Technical Report CSD-TR-933, De-
partment of Computer Science, Purdue University, September 1991.

[6] Sun Microsystems. Network and Communications Administration, March 27 1990.
(7] Uniz Programmers Reference Manual. Section 2.

[8] Wietse Venema. TCP wrapper, a tool for network monitoring, access control, and for
setting up booby traps. In Third UNIX Security Symposium, 1992. To be published.

100

UNIX Security Symposium USENIX Association

A Kernel Call Wrappers
This is the C function used in place of the kernel ca]l accept.

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <errno.h>

accept(s, addr, addrlen)
int s;

struct sockaddr *addr;
int *addrlen;

{
register int retval;
struct sockaddr sa;
int salen;
salen = sizeof(sa);
if ((retval = syscall(SYS_accept, s, &sa, &salen)) >= 0)
{
if (_ok_address(retval, &sa, salen))
{
-addrcpy(addr, addrlen, &sa, salen) ;
return (retval);
}
close(retval);
errno = ECONNREFUSED;
return (-1);
}
return (retval);
}

USENIX Association UNIX Security Symposium

101

This is the C function used in place of the kernel call recvfrom.

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <errno.h>

recvirom(s, buf, len, flags, from, fromlen)

int s;

char *buf;

int len, flags;

struct sockaddr *from;
int *fromlen;

{
register int retval;
if ((retval = syscall(SYS_recvfrom, s, buf, len, flags,
from, fromlen)) >= 0)
{
if (_ok_address(s, from, *fromlen))
{
return (retval);
}
errno = ECONNREFUSED;
return (-1);
}
return (retval);
}

102

UNIX Security Symposium

USENIX Association

This is the C function used in place of the kernel call recvmsg.

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <errno.h>

recvmsg(s, msg, flags)
int s;
struct msghdr *msg;

int flags;

{

register int retval;

if ((retval = syscall(SYS_recvmsg, s, msg, flags)) >= 0)

{
if (_ok_address(s, (struct sockaddr *) (msg-~>msg_name) ,
msg->msg_namelen))
{
return (retval);
}
errno = ECONNREFUSED;
return (-1);
}

return (retval);

USENIX Association UNIX Security Symposium 103

