PKI

Managing Trust Extension

Mark Chen
CTO, Securify
Components of a PKI

- CA
- RA
- Validator
- Cert Holder
- Verifier
- Directory

liability
PKI: What It *Appears* to Do

- Remove requirement for out-of-band negotiation
- Provide generalized authentication mechanism
Conventional Transaction vs. PKI Transaction

Typical Transaction
- Server
 - Client 1
 - Client 2
 - Client N
 - Transaction
 - Trust Negotiation

PKI Transaction
- Server
 - CA
 - Clients
 - Transaction
 - Trust Negotiation
PKI Justifications

- Explicit data-authentication
- Non-repudiation
 - Strong
 - Weak
- Key distribution
- Implementation issues
Common Public-Key Algorithms

- Diffie-Hellman
- Elgamal
- DSS
- RSA
- Menezes-Vanstone, etc.
Hierarchical Certification

- Root
 - CA
 - Cert
 - CA
 - Cert
 - CA
 - Cert
 - CA
 - Cert
Relational Certification

A

Cert

B

C

D
Certification Models

- Hierarchical certification (e.g., X.509)
 - Certifiers delegate authority and (should) assume liability
- Relational certification (e.g., PGP)
 - Trust decisions are made by the verifier
Levels of ‘Nymity’

- **Anonymity**
 - Events are unconnected

- **Pseudonymity**
 - Events are connected, but the event chain is truncated

- **Identity**
 - Events are connected to a real person (put another way, the event chain goes all the way back to birth)
Typical Transaction

- Service provider creates key pair and sends public component to CA
- CA creates certificate and sends it to service provider
- Service provider sends certificate to relying party
- Relying party makes trust decision
The CA as Trust Proxy: Basic Principles

- Extension of trust requires explicit definition of obligations
- Relying parties must have relief in the case of a failure
- In most cases, the CA does not have explicit bilateral agreements with relying parties
The Certificate Policy: *What It Should Not Do*

- Stipulate extraneous extensions
- Stipulate unparsable extensions
- Contain binding reference to a CPS

- List explicitly all supported applications and protocols
- Be explicit about non-repudiation requirements
- Separate authentication from authorization
- Manage liability
- Hold the CA responsible for its own security
When Is the CA Responsible for Security Failures?

- CA is not responsible
- CA is responsible for compliance with CP
- CA is responsible (period)
- CA is responsible, except for failures resulting from named perils
Three Levels of Validation

- Offline system without validation
 - Possibility of limitless loss cannot be removed
- Online system without validation
 - Individual verifiers can take unilateral action to suspend transactions
- Positive validation
 - Validator is in the transaction stream
How Much Is the CA Responsible for?

- Instance liability cap
- Aggregate liability cap
Summary

- You don’t get something for nothing
- “PKI” is not a universal solution to the authentication problem
- Certification is primarily about liability management, not technology