
USENIX Association

Proceedings of the
9th USENIX Security Symposium

Denver, Colorado, USA
August 14 –17, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Defeating TCP/IP Stack Fingerprinting

Matthew Smart G. Robert Malan Farnam Jahanian

Department of Electrical Engineering and Computer Science

University of Michigan

1301 Beal Ave.

Ann Arbor, Mich. 48109-2122

fmcsmart,rmalan,farnamg@eecs.umich.edu

Abstract

This paper describes the design and implementa-
tion of a TCP/IP stack �ngerprint scrubber. The
�ngerprint scrubber is a new tool to restrict a re-
mote user's ability to determine the operating sys-
tem of another host on the network. Allowing en-
tire subnetworks to be remotely scanned and char-
acterized opens up security vulnerabilities. Specif-
ically, operating system exploits can be eÆciently
run against a pre-scanned network because exploits
will usually only work against a speci�c operating
system or software running on that platform. The
�ngerprint scrubber works at both the network and
transport layers to convert ambiguous traÆc from a
heterogeneous group of hosts into sanitized packets
that do not reveal clues about the hosts' operating
systems. This paper evaluates the performance of
a �ngerprint scrubber implemented in the FreeBSD
kernel and looks at the limitations of this approach.

1 Description

TCP/IP stack �ngerprinting is the process of de-
termining the identity of a remote host's operating
system by analyzing packets from that host. Freely
available tools (such as nmap [3] and queso [15])
exist to scan TCP/IP stacks eÆciently by quickly
matching query results against a database of known
operating systems. The reason this is called \�nger-
printing" is therefore obvious; this process is simi-
lar to identifying an unknown person by taking his
or her unique �ngerprints and �nding a match in
a database of known �ngerprints. The di�erence
is that in real �ngerprinting, law enforcement agen-
cies use �ngerprinting to track down suspected crim-
inals; in computer networking potential attackers

can use �ngerprinting to quickly create a list of tar-
gets.

We argue that �ngerprinting tools can be used to aid
unscrupulous users in their attempts to break into
or disrupt computer systems. A user can build up a
pro�le of IP addresses and corresponding operating
systems for later attacks. Nmap can scan a subnet-
work of 254 hosts in only a few seconds, or it can
be set up to scan very slowly, i.e. over days. These
reports can be compiled over weeks or months and
cover large portions of a network. When someone
discovers a new exploit for a speci�c operating sys-
tem, it is simple for an attacker to generate a script
to run the exploit against each corresponding host
matching that operating system. An example might
be an exploit that installs code on a machine to take
part in a distributed denial of service attack. Fin-
gerprinting scans can also potentially use non-trivial
amounts of network resources including bandwidth
and processing time by intrusion detection systems
and routers.

Fingerprinting provides �ne-grained determination
of an operating system. For example, nmap

has knowledge of 21 di�erent versions of Linux.
Other methods of determining an operating sys-
tem are generally coarse-grained because they use
application-level methods. An example is the ban-
ner message a user receives when he or she uses tel-
net to connect to a machine. Many systems freely
advertise their operating system in this way. This
paper does not deal with blocking application-level
�ngerprinting because it must be dealt with on an
application by application basis.

Almost every system connected to the Internet is
vulnerable to �ngerprinting. The major operating
systems are not the only TCP/IP stacks identi�ed
by �ngerprinting tools. Routers, switches, hubs,



bridges, embedded systems, printers, �rewalls, web
cameras, and even game consoles are identi�able.
Many of these systems, like routers, are important
parts of the Internet infrastructure, and compromis-
ing infrastructure is a more serious problem than
compromising end hosts. Therefore a general mech-
anism to protect any system is needed.

Some people may consider stack �ngerprinting a
nuisance rather than a security attack. As with
most tools, �ngerprinting has both good and bad
uses. Network administrators should be able to �n-
gerprint machines under their control to �nd known
vulnerabilities. Stack �ngerprinting is not neces-
sarily illegal or an indication of malicious behav-
ior, but we believe the number of scans will grow
in frequency as more people access the Internet and
discover easy to use tools such as nmap. As such,
network administrators may not be willing to spend
time or money tracking down what they consider
petty abuses each time they occur. Instead they
may choose to reserve their resources for full-blown
intrusions. Also, there may be networks that no sin-
gle authority has administrative control over, such
as a university residence hall. A tool that detects
�ngerprinting scans but turns them away would al-
low administrators to track attempts while keeping
them from penetrating into local networks.

This paper presents the design and implementation
of a tool to defeat TCP/IP stack �ngerprinting. We
call this new tool a �ngerprint scrubber. The �nger-
print scrubber is transparently interposed between
the Internet and the network under protection. The
intended use of the scrubber is for it to be placed
in front of a set of end hosts or a set of network
infrastructure components. The goal of the tool is
to block the majority of stack �ngerprinting tech-
niques in a general, fast, scalable, and transparent
manner.

We describe an experimental evaluation of the tool
and show that our implementation blocks known �n-
gerprint scan attempts and is prepared to block fu-
ture scans. We also show that our �ngerprint scrub-
ber can match the performance of a plain IP for-
warding gateway on the same hardware and is an
order of magnitude more scalable than a transport-
level �rewall.

The remaining sections are organized as follows. We
describe TCP/IP stack �ngerprinting in more detail
in Section 2. In Section 3 we describe the design
and implementation of our �ngerprint scrubber. In

Section 4 we evaluate the validity and performance
of the scrubber. In Section 5 we cover related work
and in Section 6 we cover future directions. Finally,
in Section 7 we summarize our work.

2 TCP/IP Stack Fingerprinting

The most complete and widely used TCP/IP �n-
gerprinting tool today is nmap. It uses a database
of over 450 �ngerprints to match TCP/IP stacks to
a speci�c operating system or hardware platform.
This database includes commercial operating sys-
tems, routers, switches, �rewalls, and many other
systems. Any system that speaks TCP/IP is poten-
tially in the database, which is updated frequently.
Nmap is free to download and is easy to use. For
these reasons, we are going to restrict our talk of
existing �ngerprinting tools to nmap.

Nmap �ngerprints a system in three steps. First, it
performs a port scan to �nd a set of open and closed
TCP and UDP ports. Second, it generates specially
formed packets, sends them to the remote host, and
listens for responses. Third, it uses the results from
the tests to �nd a matching entry in its database of
�ngerprints.

Nmap uses a set of nine tests to make its choice of op-
erating system. A test consists of one or more pack-
ets and the responses received. Eight of nmap's tests
are targeted at the TCP layer and one is targeted at
the UDP layer. The TCP tests are the most impor-
tant because TCP has a lot of options and variabil-
ity in implementations. Nmap looks at the order of
TCP options, the pattern of initial sequence num-
bers, IP-level ags such as the don't fragment bit,
the TCP ags such as RST, the advertised window
size, and a few more things. For more details, in-
cluding the speci�c options set in the test packets,
refer to the home page for nmap [3].

Figure 1 is an example of the output of nmap

when scanning our EECS department's web server,
www.eecs.umich.edu, and one of our department's
printers. The TCP sequence prediction result comes
from nmap's determination of how a host increments
its initial sequence number for each TCP connec-
tion. Many commercial operating systems use a ran-
dom, positive increment, but simpler systems tend
to use �xed increments or increments based on the
time between connection attempts.



(a)

TCP Sequence Prediction:

Class=truly random

Difficulty=9999999 (Good luck!)

Remote operating system guess:

Linux 2.0.35-37

(b)

TCP Sequence Prediction:

Class=trivial time dependency

Difficulty=1 (Trivial joke)

Remote operating system guess:

Xerox DocuPrint N40

Figure 1: Output of an nmap scan against (a) a web
server running Linux and (b) a shared printer.

While nmap contains a lot of functionality and does
a good job of performing �ne-grained �ngerprint-
ing, it does not implement all of the techniques that
could be used. Various timing-related scans could
be performed. For example, determining whether
a host implements TCP Tahoe or TCP Reno by
imitating packet loss and watching recovery behav-
ior. We discuss this threat and potential solu-
tions in Section 3.2.4. Also, a persistent person
could also use methods such as social engineering
or application-level techniques to determine a host's
operating system. Such techniques are outside the
scope of this work. However, there will still be a
need to block TCP/IP �ngerprinting scans even if
an application-level �ngerprinting tool is developed.
Currently, TCP/IP �ngerprinting is the fastest and
easiest method for identifying remote hosts' operat-
ing systems, and introducing techniques that target
applications will not make it obsolete.

3 Fingerprint Scrubber

We developed a tool called a �ngerprint scrubber to
remove ambiguities from TCP/IP traÆc that give
clues to a host's operating system. In this section we
discuss the goals and intended use of the scrubber
and its design and implementation. We demonstrate
the validity of the scrubber in the face of known
�ngerprinting scans and give performance results in
the next section.

3.1 Goals and Intended Use of Finger-
print Scrubber

The goal of the �ngerprint scrubber is to block
known stack �ngerprinting techniques in a general,
fast, scalable, and transparent manner. The tool
should be general enough to block classes of scans,
not just speci�c scans by known �ngerprinting tools.
The scrubber must not introduce much latency and
must be able to handle many concurrent TCP con-
nections. Also, the �ngerprint scrubber must not
cause any noticeable performance or behavioral dif-
ferences in end hosts. For example, it is desirable to
have a minimal e�ect on TCP's congestion control
mechanisms by not delaying or dropping packets un-
necessarily.

We intend for the �ngerprint scrubber to be placed
in front of a set of systems with only one connec-
tion to a larger network. We expect that a �nger-
print scrubber would be most appropriately imple-
mented in a gateway machine from a LAN of het-
erogeneous systems (i.e. Windows, Solaris, MacOS,
printers, switches) to a larger corporate or campus
network. A logical place for such a system would be
as part of an existing �rewall. Another use would be
to put a scrubber in front of the control connections
of routers. The network under protection must be
restricted to having one connection to the outside
world because all packets traveling to and from a
host must travel through the scrubber.

Because the scrubber a�ects only traÆc moving
through it, an administrator on the trusted side of
the network will still be able to scan the network.
Alternatively, an IP access list or some other au-
thentication mechanism could be added to the �n-
gerprint scrubber to allow authorized hosts to by-
pass scrubbing.

3.2 Fingerprint Scrubber Design and
Implementation

We designed the �ngerprint scrubber to be placed
between a trusted network of heterogeneous systems
and an untrusted connection (i.e. the Internet). The
scrubber has two interfaces; one interface is des-
ignated as trusted, and the other is designated as
untrusted. A packet coming from the untrusted in-
terface is forwarded out the trusted interface and
vice versa. The basic design principle is that data



ipintr

ip_forwardip_input ip_output

isg_input

isg_tcpin isg_outputisg_forward

ether_input ether_output

Figure 2: Data ow through modi�ed FreeBSD ker-
nel.

coming in from the untrusted interface is handled
di�erently than data traveling out to the untrusted
interface.

The �ngerprint scrubber operates at the IP and
TCP layers to cover a wide range of known and po-
tential �ngerprinting scans. We could have simply
implemented a few of the techniques discussed in
the following sections to defeat nmap. However, the
goal of this work is to stay ahead of those devel-
oping �ngerprinting tools. By making the scrubber
operate at a generic level for both IP and TCP, we
feel we have raised the bar suÆciently high.

The �ngerprint scrubber is based o� the protocol
scrubber by Malan, et al. [7]. The protocol scrub-
ber operates at the IP and TCP layers of the pro-
tocol stack. It is a set of kernel modi�cations to
allow fast TCP ow reassembly to avoid TCP inser-
tion and deletion attacks as described by Ptacek and
Newsham [13]. The protocol scrubber follows TCP
state transitions by maintaining a small amount of
state for each connection, but it leaves the bulk of
the TCP processing and state maintenance to the
end hosts. This allows a tradeo� between the per-
formance of a stateless solution with the control of
a full transport-layer proxy. The protocol scrubber
is implemented under FreeBSD, and we continued
under FreeBSD 2.2.8 for our development.

Figure 2 shows the data ow through the kernel for
the �ngerprint scrubber. Packets come in from ei-
ther the trusted or untrusted interface through an
Ethernet driver. Incoming IP packets are handed
to ip input through a software interrupt, just as
would be done normally. A �lter in ip input de-
termines if the packet should be forwarded to the
TCP scrubbing code. If not, then it follows the

normal IP forwarding path to ip output. If it
is, then isg input (ISG stands for Internet Scrub-
bing Gateway) performs IP fragment reassembly
if necessary and passes the packet to isg tcpin.
Inside isg tcpin the scrubber keeps track of the
TCP connection's state. The packet is passed to
isg forward to perform TCP-level processing. Fi-
nally, isg output modi�es the next-hop link level
address and isg output or ip output hands the
packet straight to the correct device driver interface
for the trusted or untrusted link.

We must also make sure that di�erences in the pack-
ets sent by the trusted hosts to the untrusted hosts
don't reveal clues. These checks and modi�cations
are done in isg forward for TCP modi�cations,
isg output for IP modi�cations to TCP segments,
and ip output for IP modi�cations to non-TCP
packets.

3.2.1 IP scrubbing

IP-level ambiguities arise mainly in IP header ags
and fragment reassembly algorithms. Modifying
ags requires no state but requires adjustment of the
header checksum. Reassembly, however, requires
fragments to be stored at the scrubber. Once a
completed IP datagram is formed, it may need to
be re-fragmented on the way out the interface.

The �ngerprint scrubber uses the code in Figure 3
to normalize IP type-of-service and fragment bits in
the header. This occurs for all ICMP, IGMP, UDP,
TCP, and other packets for protocols built on top of
IP. Uncommon and generally unused combinations
of TOS bits are removed. In the case that these bits
need to be used (i.e. an experimental modi�cation
to IP) this functionality could be removed. Most
TCP/IP implementations we have tested ignore the
reserved fragment bit and reset it to 0 if it is set, but
we wanted to be safe so we mask it out explicitly.
The don't fragment bit is reset if the MTU of the
next link is large enough for the packet. This check
is not shown in the �gure.

Modifying the don't fragment bit could break MTU
discovery through the scrubber. One could argue
that the reason you would put the �ngerprint scrub-
ber in place is to hide information about the systems
behind it. This might include topology and band-
width information. However, such a modi�cation is
controversial. We leave the decision on whether or



/*

* Normalize IP type-of-service flags

*/

switch (ip->ip_tos)

{

case IPTOS_LOWDELAY:

case IPTOS_THROUGHPUT:

case IPTOS_RELIABILITY:

case IPTOS_MINCOST:

case IPTOS_LOWDELAY|IPTOS_THROUGHPUT:

break;

default:

ip->ip_tos = 0;

}

/*

* Mask out reserved fragment flag.

* The MTU of the next downstream link

* is large enough for the packet so

* clear the don't fragment flag.

*/

ip->ip_off &= ~(IP_RF|IP_DF);

Figure 3: Code fragment to normalize IP header
ags.

not to clear the don't fragment bit up to the end
user by allowing the option to be turned o�.

The fragment reassembly code is a slightly modi-
�ed version of the standard implementation in the
FreeBSD 2.2.8 kernel. It keeps fragments on a set
of doubly linked lists. It �rst calculates a hash to
determine which list the fragment maps to. A lin-
ear search is done over this list to �nd the IP data-
gram the fragment goes with and its place within
the datagram. Old data in the fragment queue is
always chosen over new data.

3.2.2 ICMP scrubbing

In this section we describe the modi�cations the �n-
gerprint scrubber makes to ICMP messages. We
only modify ICMP messages returning from the
trusted side back to the untrusted side because �n-
gerprinting relies on ICMP responses and not re-
quests. Speci�cally, we modify ICMP error mes-
sages and rate limit all outgoing ICMP messages.

ICMP error messages are meant to include at least
the IP header plus 8 bytes of data from the packet
that caused the error. According to RFC 1812 [1], as
many bytes as possible, up to a total ICMP packet

length of 576 bytes, are allowed. However, nmap
takes advantage of the fact that certain operating
systems quote di�erent amounts of data. To counter
this we force all ICMP error messages coming from
the trusted side to have data payloads of only 8
bytes by truncating larger data payloads. Alterna-
tively, we could look inside of ICMP error messages
to determine if IP tunneling is being used. If so,
then we would allow more than 8 bytes.

3.2.3 TCP scrubbing

The TCP protocol scrubber we based the �ngerprint
scrubber on converts TCP streams into unambigu-
ous ows by keeping a small amount of state per
connection. The protocol scrubber keeps track of
TCP connections using a simpli�ed TCP state dia-
gram. Basically, it keeps track of open connections
by following the standard TCP three-way hand-
shake (3WHS). This allows the �ngerprint scrubber
to block TCP scans that don't begin with a 3WHS.
In fact, the �rst step in �ngerprinting a system is
typically to run a port scan to determine open and
closed ports. Stealthy, meaning diÆcult to detect,
techniques for port scanning don't perform a 3WHS
and are therefore blocked. Only scans that commit
to a 3WHS will get through.

A large amount of information can be gleaned from
TCP options. We did not want to disallow cer-
tain options because some of them aid in the per-
formance of TCP (i.e. SACK) yet are not widely
deployed. Therefore we restricted our modi�cations
to reordering the options within the TCP header.
We simply provide a canonical ordering of the TCP
options known to us. Unknown options are included
after all known options. The handling of unknown
options and ordering can be con�gured by the end
user.

We also defeat attempts at predicting TCP sequence
numbers by modifying the normal sequence number
of new TCP connections. The �ngerprint scrubber
stores a random number when a new connection is
initiated. Each TCP segment for the connection
traveling from the trusted interface to the untrusted
interface has its sequence number incremented by
this value. Each segment for the connection travel-
ing in the opposite direction has its acknowledgment
number decremented by this value.



0 200 400 600 800 1000

ICMP message arrival time (ms)

ICMP Reply

0 200 400 600 800 1000

ICMP message arrival time (ms)

ICMP Request

Figure 4: ICMP rate limiting of returning ICMP
echo replies captured using tcpdump.

3.2.4 Timing attacks

The �ngerprinting scans we have designed the �n-
gerprint scrubber to block up to now have all been
static, query-response style probes. A host carefully
forms queries, sends them to a host, and analyzes
the response or lack of response. Another possible
form of scan is one that relies on timing responses.
For example, the scanning host could open a TCP
connection, simulate a packet loss, and watch the
recovery behavior of the other host.

It would be very diÆcult to create a generic method
for defeating timing-related scans, especially un-
known scans. One approach would be to add a
small, random amount of delay to packets going
out the untrusted interface. The scrubber could
even forward packets out-of-order. However this
approach would introduce an increased amount of
queuing delay and probably degrade performance.
In addition, these measures are not guaranteed to
block scans. For example, even with small amounts
of random delay, it would be relatively easy to deter-
mine if a TCP stack implements TCP Tahoe or TCP
Reno based on simulated losses because a packet re-
transmitted after an RTO has a much larger delay
than one retransmitted because of fast retransmit.

We implemented protection against one possible
timing-related scan. Some operating systems imple-
ment ICMP rate limiting, but they do so at di�er-
ent rates, and some don't do any rate limiting. We
added a parameter for ICMP rate limiting to the �n-
gerprint scrubber to defeat such a scan. The scrub-
ber records a timestamp when an ICMP message
travels from the trusted interface to the untrusted
interface. The timestamps are kept in a small hash
table referenced by the combination of the source
and destination IP addresses. Before an ICMP mes-
sage is forwarded to the outgoing, untrusted inter-

face, it is checked against the cached timestamp.
The packet is dropped if a certain amount of time
has not passed since the previous ICMP message
was sent to that destination from the source speci-
�ed in the cache.

Figure 4 shows the �ngerprint scrubber rate limiting
ICMP echo requests and replies. In this instance,
an untrusted host is sending ICMP echo requests
once every 20 milliseconds using the -f ag with
ping (ooding). The scrubber allows the requests
through unmodi�ed since we are not trying to hide
the identity of the untrusted host from the trusted
host. As the ICMP echo replies come back, however,
the �ngerprint scrubber makes sure that only those
replies that come at least 50 ms apart are forwarded.
Since the requests are coming 20 ms apart, for every
three requests one reply will make it through the
scrubber. Therefore the untrusted host receives a
reply once every 60 ms.

We chose 50 ms for convenience because ping -f

generates a stream of ICMP echo requests 20 ms
apart, and we wanted the rate limiting to be no-
ticeable. The exact value for a production system
would have to be determined by an administrator or
based upon previous ICMP ood attack thresholds.
The goal was to homogenize the rate of ICMP traÆc
traveling from the untrusted interface to the trusted
interface because operating systems rate limit their
ICMP messages at di�erent rates. Another method
for confusing a �ngerprinter would be to add small,
random delays to each ICMP message. Such an ap-
proach would require keeping less state. We can add
delay to ICMP replies, as opposed to TCP segments,
because they won't a�ect network performance.

4 Evaluation of Fingerprint Scrubber

This section presents results from a set of exper-
iments we performed to determine the validity,
throughput, and scalability of the �ngerprint scrub-
ber. They show that our current implementation
blocks known �ngerprint scan attempts and can
match the performance of a plain IP forwarding
gateway on the same hardware. The experiments
were conducted using a set of kernels with di�erent
�ngerprint scrubbing options enabled for compari-
son.

The scrubber and end hosts each had 500 MHz Pen-



10.0.0/24

Untrusted Clients 10.1.0/24

Trusted ServersFingerprint
Scrubber

Figure 5: Experimental setup for measuring the per-
formance of the �ngerprint scrubber.

tium III CPUs and 256 megabytes of main mem-
ory. The end hosts each had one 3Com 3c905B
Fast Etherlink XL 10/100BaseTXEthernet card (xl
device driver). The gateway had two Intel Ether-
Express Pro 10/100B Ethernet cards (fxp device
driver). The network was con�gured to have all
traÆc from 10.0.0/24 go to 10.1.0/24 through the
gateway machine. Figure 5 shows how the three
machines were connected as well as the trusted and
untrusted domains.

4.1 Defeating �ngerprint scans

To verify that our �ngerprint scrubber did indeed
defeat known scan attempts, we interposed our gate-
way between a set of machines running di�erent
operating systems. The operating systems we ran
scans against under controlled conditions in our lab
were FreeBSD 2.2.8, Solaris 2.7 x86, Windows NT
4.0 SP 3, and Linux 2.2.12. We also ran scans
against a number of popular web sites, and campus
workstations, servers, and printers.

Nmap was consistently able to determine all of
the host operating systems without the �ngerprint
scrubber interposed. However, it was completely
unable to make even a close guess with the �nger-
print scrubber interposed. In fact, it wasn't able to
distinguish much about the hosts at all. For exam-
ple, without the scrubber nmap was able to accu-
rately identify a FreeBSD 2.2.8 system in our lab.
With the scrubber nmap guessed 14 di�erent oper-
ating systems from three vendors. Each guess was
wrong. Figure 6 shows a condensed result of the
guesses nmap made against FreeBSD before and af-
ter interposing the scrubber.

The two main components that aid in blocking nmap
are the enforcement of a three-way handshake for
TCP and the reordering of TCP options. Many of
nmap's scans work by sending probes without the

(a)

Remote operating system guess:

FreeBSD 2.2.1 - 3.2

(b)

Remote OS guesses:

AIX 4.0 - 4.1, AIX 4.02.0001.0000,

AIX 4.1, AIX 4.1.5.0, AIX 4.2,

AIX 4.3.2.0 on an IBM RS/*,

Raptor Firewall 6 on Solaris 2.6,

Solaris 2.5, 2.5.1, Solaris 2.6 - 2.7,

Solaris 2.6 - 2.7 X86,

Solaris 2.6 - 2.7 with tcp_strong_iss=0,

Solaris 2.6 - 2.7 with tcp_strong_iss=2,

Sun Solaris 8 early acces beta (5.8)

Beta_Refresh February 2000

Figure 6: (a) Operating system guess before �n-
gerprint scrubbing and (b) after �ngerprint scrub-
bing for an nmap scan against a machine running
FreeBSD 2.2.8.

SYN ag set so they are discarded right away. Sim-
ilarly, operating systems vary greatly in the order
that they return TCP options. Therefore nmap suf-
fers from a large loss in available information.

We intend this tool to be general enough to block
potential or new scans also. We believe that the in-
clusion of IP header ag normalization and IP frag-
ment reassembly aid in that goal even though we
do not know of any existing tool that exploits such
di�erences.

4.2 Throughput

We conducted an experiment to test the raw
throughput possible through the �ngerprint scrub-
ber. The throughput was measured using the
netperf benchmark [11]. The three test machines
were connected using a 100 Mbps switch.

We measured both the throughput from the trusted
side out to the untrusted side and from the un-
trusted side into the trusted side. This was to take
into account our asymmetric �ltering of the traf-
�c. We ran experiments for TCP traÆc to show
the a�ect of a bulk TCP transfer and for UDP to
exercise the fragment reassembly code. We used
three kernels on the gateway machine to test di�er-
ent functionality of the �ngerprint scrubber. The
IP forwarding kernel is the unmodi�ed FreeBSD



IP Forwarding 87.06
Fingerprint Scrubbing 86.86

Fingerprint Scrub. + Frag. Reas. 87.00
Application-level Transport Proxy 86.53

Table 1: Throughput for a single untrusted host to a
trusted host using TCP (Mbps, �2.5% at 99% CI).

IP Forwarding 87.06
Fingerprint Scrubbing 86.79

Fingerprint Scrub. + Frag. Reas. 86.84
Application-level Transport Proxy 86.53

Table 2: Throughput for a single trusted host to an
untrusted host using TCP (Mbps, �2.5% at 99%
CI).

kernel, which we use as our baseline for compari-
son. The �ngerprint scrubbing kernel includes the
TCP options reordering, IP header ag normaliza-
tion, ICMP modi�cations, and TCP sequence num-
ber modi�cation but not IP fragment reassembly.
The last kernel is the full �ngerprint scrubber with
fragment reassembly code turned on.

We also compared the �ngerprint scrubber to a full
application-level proxy. The TIS Firewall Toolkit's
plug-gw proxy is an example of a �rewall compo-
nent that operates at the user-level to do transport-
layer proxying [18]. When a new TCP connection is
made to the proxy, plug-gw creates a second con-
nection from the proxy to the server. The proxy's
only job is to read and copy data from one connec-
tion to the other. A more fully featured �rewall will
process the copied headers and data, which adds ad-
ditional latency and requires more state. Therefore
the performance of plug-gw represents a minimum
amount of work a �rewall built from application-
level proxies must perform. We modi�ed the origi-
nal plug-gw code so that it did no logging and no
DNS resolutions, which resulted in a large perfor-
mance increase. The proxy's kernel was also mod-
i�ed so that a large number of processes could be
accommodated. A custom user-space proxy op-
timized for speed would certainly do better (the
plug-gw proxy forks a child for each incoming con-
nection). However, the multiple data copies and
context switching will always resign any user-space
implementation to signi�cantly worse performance
than in-kernel approaches [8; 17].

0 10 20 30 40 50 60

Number of clients

0

500

1000

1500

2000

2500

3000

R
eq

ue
st

s 
se

rv
ic

ed
 p

er
 s

ec
on

d

IP forwarding
Fingerprint scrubbing
Fingerprint scrubbing w/ IP fragment reassembly
Plug−gw proxy

Figure 7: Connections per second through the gate-
way.

Table 1 shows the TCP bulk transfer results for an
untrusted host connecting to a trusted host. Table 2
shows the results for a trusted host connecting to an
untrusted host. The �rst result is that both direc-
tions show the same throughput. The second, and
more important result, is that even when all of the
�ngerprint scrubber's functionality is enabled we are
seeing a throughput almost exactly that of the plain
IP forwarding. The bandwidth of the link is obvi-
ously the critical factor for all of the throughput
experiments, therefore we would like to run these
experiments again on a faster network in the future.

We ran the UDP experiment with the IP forwarding
kernel and the �ngerprint scrubbing kernel with IP
fragment reassembly. Again, we measured both the
untrusted to trusted direction and vice versa. To
measure the a�ects of fragmentation, we ran the test
at varying sizes up to the MTU of the Ethernet link
and above. Note that 1472 bytes is the maximum
UDP data payload that can be transmitted since the
UDP plus IP headers add an additional 28 bytes to
get up to the 1500 byte MTU of the link. The 2048
byte test corresponds to two fragments and the 8192
byte test corresponds to �ve fragments.

Table 3 shows the UDP transfer results for an un-
trusted host connecting to a trusted host. Table 4
shows the results for a trusted host connecting to
an untrusted host. Once again both directions show
the same throughput. We also see that the through-
put of the �ngerprint scrubber with IP fragment re-
assembly is almost exactly that of the plain IP for-
warding. This is even true in the case of the 8192
byte test where the fragments must be reassembled



64 bytes 1472 bytes 2048 bytes 8192 bytes
IP Forwarding 14.39 89.39 92.76 90.11

Fingerprint Scrubbing + Frag. Reas. 14.48 89.35 92.76 90.11

Table 3: Throughput for a single untrusted host to a trusted host using UDP (Mbps, �2.5% at 99% CI).

64 bytes 1472 bytes 2048 bytes 8192 bytes
IP Forwarding 14.39 89.39 92.76 90.11

Fingerprint Scrubbing + Frag. Reas. 14.40 89.37 92.76 90.12

Table 4: Throughput for a single trusted host to an untrusted host using UDP (Mbps, �2.5% at 99% CI).

at the gateway and then re-fragmented before being
sent out.

4.3 Scalability

We also ran an experiment to measure the scal-
ability of the �ngerprint scrubber. That is, how
many concurrent TCP connections can our �nger-
print scrubbing gateway support? We set up three
machines as web servers to act as sinks for HTTP
requests. On three other machines we ran increasing
numbers of clients repeatedly requesting the same 1
KB �le from the web servers. The choice of 1 KB
allows us to keep the web servers' CPUs from being
the limiting factor. Instead, the bandwidth of the
link is again the bottleneck. The clients were con-
nected with a 100 Mbps hub and the servers were
connected with a 100 Mbps switch. The number
of connections per second being made through the
�ngerprint scrubber was measured on the hub.

Figure 7 shows the number of sustained connec-
tions per second measured for plain IP forwarding,
TCP/IP �ngerprint scrubbing, �ngerprint scrub-
bing with IP fragment reassembly, and the plug-gw
application-level proxy. The error bars represent
the standard deviation for each second. The results
of the experiment are that the �ngerprint scrub-
ber scales comparably to the unmodi�ed IP for-
warder and performs much better than the trans-
port proxy. The �ngerprint scrubber achieves a
rate of about 2,700 connections per second, which
may be enough for most LANs. In comparison, the
plug-gw proxy only achieves a rate of about 300
connections per second, which is an order of mag-
nitude worse than the scrubber. The abysmal per-
formance of the application-level proxy can be ex-

plained by the number of interrupts, data copies,
and context switches incurred by such a user-level
process. For each TCP connection, the proxy has
to keep track of two complete TCP state machines
and copy data up from the kernel then back down.
The system running plug-gw was CPU bound for
all but a few concurrent clients.

Achieving full line-speed in the �ngerprint scrubber
for higher bandwidth links would probably require
dedicated hardware. A platform such as Intel's In-
ternet Exchange Architecture (IXA) [14; 5] could
help. The small size of the TCP state table we use
in the �ngerprint scrubber would be amenable to
such a system.

5 Related Work

Current �rewall technology is similar to the �nger-
print scrubber [2]. Firewalls exist at the border of
a network to provide access control. They both
require packets to travel through them to get to
their �nal destinations and can deny certain types
of packets. Older �rewalls, such as the TIS Fire-
wall Toolkit [18], use application-level proxies and
don't scale very well because they must keep two
TCP connections open per session. Such a �rewall
will block TCP �ngerprinting scans because it iso-
lates the behavior of the TCP implementations on
the side it is protecting by copying data. However,
we showed that such a �rewall's performance is an
order of magnitude worse than the �ngerprint scrub-
ber. Also, the application-level proxy does not take
care of IP-level ambiguities. Modern �rewalls, such
as Gauntlet [16], identify authorized ows by exam-
ining portions of packet headers and data payloads
or using more sophisticated authentication meth-



ods. The �rewall then routes packets through a fast
path once the ow is set up to increase through-
put and scalability. Such a �rewall won't provide
continued security against �ngerprinting scans once
a connection is set up. In contrast, the �ngerprint
scrubber removes scans throughout the lifetime of
a ow while remaining more scalable by keeping a
minimal amount of state per connection.

Various tools are available to secure a single machine
against nmap's operating system �ngerprinting. The
TCP/IP traÆc logger iplog [10] can detect an nmap

�ngerprint scan and send out a packet designed to
confuse the results. Other tools and operating sys-
tem modi�cations simply use state inherently kept
in the TCP implementation to drop certain scan
types. However, none of these tools can be used
to protect an entire network of heterogeneous sys-
tems. In addition, these methods will not work for
networks that are not under single administrative
control, unlike the �ngerprint scrubber.

Vern Paxson presents a tool to analyze a TCP im-
plementation's behavior called tcpanaly [12]. It
works o�ine on tcpdump traces to try to distinguish
if a certain traÆc pattern is consistent with an im-
plementation. In this way, it is doing a sort of TCP
�ngerprinting. However, tcpanaly su�ers from a
lot of uncertainty that makes it unfeasible as a �n-
gerprinting tool. It also keeps explicit knowledge
of several TCP/IP implementations. In contrast,
our �ngerprint scrubber has no knowledge of other
implementations. The main contribution tcpanaly

makes is not in �ngerprinting but in analyzing the
correctness of a TCP implementation and aiding in
determining if an implementation has faults.

Malan, et al. [7] have presented the idea of not only
transport-level scrubbing, but also application-level
scrubbing. Obviously more specialization would
need to be done. The main focus is on HTTP traÆc
to protect web servers. The idea could be extended
to protect infrastructure components such as routers
by scrubbing RIP, OSPF, and BGP.

6 Future Work

As mentioned in Sections 4.2 and 4.3, the �rst-order
limiting factor in the performance of the �ngerprint
scrubber is the available link bandwidth. We are
planning on testing the scrubber over gigabit Eth-

ernet connections. To support a ten-fold increase
in bandwidth we will be looking at reducing the
amount of data copying, using incremental check-
sums when modifying header bits, and using a faster
fragment reassembly algorithm.

Because of the close relationship between �rewalls
and �ngerprint scrubbers, we would like to combine
the two technologies. We would use the scrubber
as a substrate and add features, such as authenti-
cation, required by a fully functional �rewall. We
believe such a system would combine the additional
security bene�ts of a modern �rewall with the per-
formance characteristics and bene�ts of the �nger-
print scrubber.

We would also like to examine how IP security [6]
a�ects TCP/IP stack �ngerprinting and operating
system discovery. If a host implementing IPsec
doesn't allow unknown hosts to establish connec-
tions, then those hosts will not be able to discern
the host's operating system because all packets will
be dropped. If a host does allow unknown hosts
to connect in tunnel mode, however, then a �nger-
print scrubber will be ine�ective. The scrubber will
be unable to examine and modify the encrypted
and encapsulated IP and TCP headers. However,
allowing any host to make a secure connection to
an IPsec-enabled host is not the standard proce-
dure unless it is a public server. Another portion
of IPsec that could be exploited is the key exchange
protocols, such as ISAKMP/IKE [9; 4]. If di�erent
systems have slight di�erences in their implementa-
tions, a scanner might be able to discern the host's
operating system.

Another thing we would like to try is to have the
�ngerprint scrubber spoof an operating system's �n-
gerprint instead of anonymizing it. For example, it
might be interesting to have all of the computers on
your network appear to be running the secure oper-
ating system OpenBSD. This is harder to do than
simply removing ambiguities because you have to
introduce artifacts in enough places to make the de-
ception plausible.

As network infrastructure components increase in
speed, tools such as the �ngerprint scrubber must
scale to meet the demand. To try to achieve line-
speed, we would like to implement core components
of the �ngerprint scrubber in hardware. An example
would be to build the minimal TCP state machine
we use into a platform such as Intel's Internet Ex-
change Architecture (IXA) [14; 5].



7 Conclusions

We presented a new tool called a �ngerprint scrub-
ber to remove clues about the identity of an end
host's operating system. We showed that the scrub-
ber blocks known �ngerprinting scans, is compara-
ble in performance to a plain IP forwarding gate-
way, and is signi�cantly more scalable than a full
transport-layer �rewall.

The �ngerprint scrubber successfully and com-
pletely blocks known scans by removing many clues
from the IP and TCP layers. Because of its gen-
eral design, it should also be e�ective against any
evolutionary enhancements to �ngerprint scanners.
It can protect an entire network against scans de-
signed to pro�le vulnerable systems. Such scans are
often the �rst step in an attack to gain control of ex-
ploitable computers. Once compromised these sys-
tems could be used as part of a distributed denial
of service attack. By blocking the �rst step, the
�ngerprint scrubber increases the security of a het-
erogeneous network.

Acknowledgments

The Intel Corporation provided support for this
work through a generous equipment donation and
gift. This work was also supported in part by
a research grant from the Defense Advanced Re-
search Projects Agency, monitored by the U.S. Air
Force Research Laboratory under Grant F30602-99-
1-0527.

References

[1] F. Baker. Requirements for IP Version 4 Routers.
RFC 1812, 1995.

[2] D. Brent Chapman and Elizabeth D. Zwicky. Build-
ing Internet Firewalls. O'Reily and Associates,
Inc., 1995.

[3] Fyodor. Remote OS detection via TCP/IP stack
�ngerprinting. http://www.insecure.org/nmap/

nmap-fingerprinting-article.html, October
1998.

[4] D. Harkins and D. Carrel. The Internet Key Ex-
change (IKE). RFC 2409, November 1998.

[5] Intel Internet Exchange Architecture.
http://developer.intel.com/design/IXA/.

[6] S. Kent and R. Atkinson. Security Architecture for
the Internet Protocol. RFC 2401, November 1998.

[7] G. Robert Malan, David Watson, Farnam Jaha-
nian, and Paul Howell. Transport and Application
Protocol Scrubbing. In Proceedings of the IEEE IN-

FOCOM 2000 Conference, Tel Aviv, Israel, March
2000.

[8] David Maltz and Pravin Bhagwat. TCP Splicing
for Application Layer Proxy Performance. Tech-
nical Report RC 21139, IBM Research Division,
March 1998.

[9] D. Maughan, M. Schertler, M. Schneider, and
J. Turner. Internet Security Association and
Key Mangement Protocol (ISAKMP). RFC 2408,
November 1998.

[10] Ryan McCabe. Iplog.
http://ojnk.sourceforge.net/.

[11] Netperf: A Network Performance Benchmark.
http://www.netperf.org/.

[12] Vern Paxson. Automated packet trace analysis
of TCP implementations. In Proceedings of ACM

SIGCOMM '97, Cannes, France, September 1997.

[13] Thomas H. Ptacek and Timothy N. Newsham.
Insertion, evasion, and denial of service: Elud-
ing network intrusion detection. Originally Se-
cure Networks, Inc., now available as a white pa-
per at the Network Associates Inc. homepage at
http://www.nai.com/, January 1998.

[14] David Putzolu, Sanjay Bakshi, Satyendra Ya-
dav, and Raj Yavatkar. The Phoenix Frame-
work: A Practical Architecture for Programmable
Networks. IEEE Communications, 38(3):160{165,
March 2000.

[15] Queso Homepage. http://www.apostols.org/

projectz/queso/.

[16] PGP Security. Gauntlet Firewall.
http://www.pgp.com/asp set/products/tns/

gauntlet.asp.

[17] Oliver Spatscheck, Jorgen S. Hansen, John H. Hart-
man, and Larry L. Peterson. Optimizing TCP For-
warder Performance. Technical Report TR98-01,
Dept. of Computer Science, University of Arizona,
February 1998.

[18] Trusted Information Systems. TIS Firewall
Toolkit. ftp://ftp.tislabs.com/pub/firewalls/

toolkit.


