
The following paper was originally published in the
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation

New Orleans, Louisiana, February, 1999

For more information about USENIX Association contact:

1. Phone: 1.510.528.8649
2. FAX: 1.510.548.5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

ETI Resource Distributor: Guaranteed Resource Allocation
and Scheduling in Multimedia Systems

Miche Baker-Harvey
Equator Technologies, Inc.

ETI Resource Distributor: Guaranteed Resource Allocation and
Scheduling in Multimedia Systems

Miche Baker-Harvey

Equator Technologies, Inc.
520 Pike Street, Suite 900
Seattle WA 98101-4001

miche@equator.com

Abstract
Multimedia processors offer a programmable, cost-
effective way to provide multimedia functionality in
environments previously serviced by fixed-function
hardware and digital signal processors. Achieving
acceptable performance requires that the multimedia
processor’s software emulate hardware devices.

There are stringent requirements on the operating
system scheduler of a multimedia processor. First,
when a user starts a task believing it to be backed by
hardware, the system cannot terminate that task. The
task must continue to run as if the hardware were
present. Second, optimizing the Quality of Service
(QOS) requires that tasks use all available system
resources. Third, QOS decisions must be made
globally, and in the interests of the user, if system
overload occurs. No previously existing scheduler
meets all these requirements.

The Equator Technologies, Inc. (ETI) Resource
Distributor guarantees scheduling for admitted tasks:
the delivery of resources is not interrupted even if the
system is overloaded. The Scheduler delivers resources
to applications in units known to be useful for
achieving a specific level of service quality. This
promotes better utilization of system resources and a
higher perceived QOS. When QOS degradations are
required, the Resource Distributor never makes
inadvertent or implicit policy decisions: policy must be
explicitly specified by the user.

While providing superior services for periodic real-
time applications, the Resource Distributor also
guarantees liveness for applications that are not real-
time. Support for real-time applications that do not
require continuous resource use is integrated: it neither
interferes with the scheduling guarantees of other
applications nor ties up resources that could be used by
other applications.

1 Introduction
We have designed and implemented a multimedia

resource manager and scheduler for managing
resources on our MAP1000 processor. The processor is
designed to execute applications that emulate such
fixed-function hardware as MPEG video encoders and

decoders, 2D and 3D graphics engines, audio devices,
and modems.

The MAP1000 is a multimedia processor
comprised of a Very Long Instruction Word (VLIW)
processor with a RISC-like instruction set; a multi-
element Fixed Function Unit (FFU); and a
programmable, multi-ported DMA engine, called the
Data Streamer. The VLIW processor can issue up to
four operations each cycle. Figure 1 shows a block
diagram of the MAP1000. 1

The MAP1000 runs the MMLite operating system,
part of the Talisman program’s Escalante reference
design from Microsoft. The operating system supports
basic functions with a COM-style interface. As
delivered, the operating system supported a subset of
the features based on the Rialto scheduler. We have

1 Several additional features make the MAP1000
extremely effective at running multimedia applications.
However, since these features do not raise issues for the
Resource Distributor, they are not discussed in this
paper. For more information, see [Basoglu et al 99].

Figure 1: Block Diagram of the Map1000.

PCI/AGP
Controller
(2 channels)

Data Streamer

Internal 64 bit Bus 1.6G byte/sec @200MHz

JTAG

PLL

VLD/VLE
Co-processor

VGA
Controller

9KB Memory

2D/3D Graphics
Accelerator

Glue-less
SDRAM
/SGRAM
Controller

D
at

a
C

ac
he

In
st

ru
ct

io
n

C
ac

he

Integer ALU

IFG-UnitR
eg

is
te

r
Fi

le

Integer ALU

IFG-UnitR
eg

is
te

r
Fi

le

Data MMU Inst. MMU

AC97
I/F

CCIR
656/601

I/F

T1 CSU
I/F

I C2
53 Pin

Versa Port
 MUX

Parallel
Port

UART

Transport
Channel

I/F

ISDN
I/F

FLASH
ROM

I/F

ISA
Mapper

CRTC
RAMDAC

Smart
Card
I/F

removed these features and implemented the ETI
Resource Distributor (RD) in their place.2

Our goal is to provide an environment in which
applications can emulate hardware. We support real-
time guarantees that are harder than conventional soft
real-time guarantees: user expectations for hardware do
not allow for failures nearly as often as would occur
with a truly soft real-time scheduler. We support
conventional tasks running concurrently.

We provide absolute scheduling guarantees in the
face of a dynamic task set. A real-time task admitted to
our system is guaranteed to receive predictable
resources. This guarantee applies in every period,
whether the system is overloaded or not.

Decision making about resource distribution policy
is well-integrated. Policy decisions are made globally,
not by any single application. The policy delivered is
affected neither by accidents of timing nor by the order
of task creation. Scheduling guarantees are maintained
while policy decisions are being made.

While the RD was conceived in an environment
that required harder real-time guarantees, it is appro-
priate for many systems that combine conventional and
soft real-time tasks. Its stricter real-time guarantees,
and its integrated support for making global policy
decisions, make it attractive for real-time applications.
Conventional tasks exist concurrently, and their
performance is also constrained by the global policy.

2 Organization of This Paper
Section 3 of this paper describes the design of the

ETI Resource Distributor (RD). Section 4 describes
implementation algorithms for the primary RD
components. Additional features and ancillary issues
pertaining to the ETI RD are detailed in Section 5, and
Section 6 quantifies performance. Section 7 draws
conclusions and presents opportunities for future
research and development in the area of multimedia
resource managers and schedulers.

In this paper, the term application refers to some
piece of code started by a user, where the user is
someone sitting at the system. The application may be
comprised of one or more threads or tasks, terms used
interchangeably. Both are schedulable entities on the
MAP1000.

3 ETI Resource Distributor Design
This section describes various aspects of the ETI

RD design. First, we attempt to characterize
multimedia applications that run on the MAP1000. We
then itemize design requirements abstraced from these
applications. Next, we present ETI RD design

2 Information on the MMLite operating system can be
found in [Jones et al. 96] and [Helander & Forin 98].

components and follow them with a discussion of
alternative designs. We conclude the section with a
synopsis of the benefits offered by our design.

3.1 Application Characteristics
The ETI RD manages resources in a way that

maintains for the user the appearance of actual hardware
rather than of software running on a separate processor.
In particular, applications must degrade gracefully in
overload, and one application cannot cause
unpredictable behavior in another. MAP1000
applications share some of the following characteristics
that helped to drive this design:
 1. They are primarily periodic, with naturally or
externally set periods.
Some applications are strictly periodic, such as MPEG,
whose period is defined by the content provider. Others
have a period defined by actions that occur only at
specific points; for example, the output for 2D graphics
is paced by the screen refresh rate set by the user. While
the periods we support may be as small as 500 µSec, the
CPU requirements within a period tend to be relatively
high. For example, the AC3 audio task requires about
12% of the core VLIW processor cycles.
2. They are capable of shedding load when the system
is overloaded.
The applications can shed load when there are
insufficient resources to run all tasks at the highest
quality. For instance, the MPEG decoder can drop
frames or change resolution to use fewer resources.
3. Their resource requirements are discrete, not
continuous.
The work that an application must do is predictable.
For example, processing an MPEG frame to a given
resolution requires a known amount of CPU time. If
more is allotted, it will be wasted; if less is allotted, the
frame will not be decoded in time. To shed load, the
MPEG application drops some complete frames or
alters the resolution of the output. It is not useful for
MPEG to process part of a frame.

Resource requirements for the MPEG application
take quantum steps, from a maximum CPU requirement
for top quality (displaying all frames at full resolution)
to a lowest CPU requirement for the poorest quality
supported (dropping frames and/or reducing resolution).
The application can make only step-wise degradations.

This is not the case for all applications. Both 2D
and 3D graphics are notable exceptions: the work they
must do is a function of the complexity of the scene to
be rendered, which is not known far in advance.
4. Their performance is extremely well characterized.
At a low level, the performance characteristics of these
applications are well understood. On the MAP1000, the
inner loops are understood down to the cycle.

The task set is dynamic, with most new applica-
tions being started by user request. Generally, these
applications can be denied service if the system does
not have the resources to run them. Some applications
cannot be denied service, or the user does not want
them to be denied service. A telephone-answering
modem task is an example.

3.2 Design Requirements
The ETI Resource Distributor has three design

requirements (or “first principles”) derived from the
nature of our multimedia applications and user
requirements. First, the RD must not cause perfor-
mance anomalies in tasks that were started by the user.
Second, it must allocate (nearly) 100% of available
resources to ready tasks. Third, the quality of service
(QOS) policy is determined by the user. Each of these
requirements is now described in further detail.
1. Once a task has been successfully started by the
user, it must continue (from the user’s perspective)
until it terminates naturally or is terminated by the
user.
Assume that the user initiates a task (e.g., hitting the
“play” button on the CD player). Once the task has
begun (e.g., the sound track begins to emanate from the
speakers), it will continue until it terminates (the end of
the CD is reached) or until the user terminates it (e.g.,
by hitting “stop”). The application should behave as a
user expects dedicated hardware to behave.
2. The scheduler must allocate (nearly) 100% of
available resources to ready tasks.
If a task is ready to run and some resource is partially
unused, it will be made available to that task. For
example, idle CPU time will be granted to a requesting
task. If a task requests a resource that an earlier task
reserved but is not using, the later task will be granted
that resource if scheduling guarantees can still be met.
3. Quality of service modifications should be made in
response to user requirements.
Assume that a system is overloaded because too much
of one resource is required by the task set. A task must
either be terminated (which is inconsistent with the first
principles) or asked to shed load by providing a lower
QOS. The decision as to which task(s) should be asked
to shed load, and by how much they should be asked to
degrade their service, should be based on user
preferences. There must be a global understanding of
how the task set is meeting the users’ needs: QOS
decisions should not be made (solely) in the context of
a single thread.

3.3 Components and Control Flow of the
Resource Distributor

The ETI Resource Distributor consists of three
components: the Resource Manager, the Scheduler,

and the Policy Box. Figure 2 shows these components
and the communication paths among them.

The key insight that led to the design of the RD
concerns the nature of application resource
requirements: the QOS degradations that the
applications can actually do are discrete. Performance
levels are step-wise and known in advance by
application writers. Resource allocations that do not
map to a known service level in the application will
result either in a missed deadline or in unused resources.

The Resource Manager allocates system resources
to competing tasks. Allocation decisions are broken
into two parts. The first, admission control, is the
process of determining whether a thread can be
admitted to the system. An admitted thread is
guaranteed some non-zero amount of resources every
period. Our approach requires that applications present
a list of the load-shedding possibilities that they support
at the time they request admittance. When the Resource
Manager makes decisions, it thus has complete
knowledge of the possibilities in the system.

The second part of the allocation decision, grant
control, determines how much of each resource will be
given to each thread (i.e., the grant set). The grant
consists of a time period and an amount of resources
that can be consumed in that time. For instance, a grant

Figure 2: Components of the Resource Distributor.

User

Resource Manager

User starts
applications

User modifies
with own policy

preferences

Task requests
admittance

Use Policy Box if
system is overloaded

Notify scheduler to
remove or add grants

Execute EDF
schedule of

tasks with grants

Resource Distributor

Admission
Control

Grant
Control

Processor

Grant
executed

via
callbacks

through the
Resource
Manager

Scheduler

Applications
(Tasks)

callback function
also reports on
prior utilization

Policy Box

might allocate 10 ms of CPU cycles in a 30 ms period.
The grant is a guarantee to the thread that this much
resource will be allocated to the thread in each period.

The work of actually ordering the threads to be
run, and guaranteeing that granted resource allocations
are delivered, is performed by the Scheduler. The
scheduler makes no policy decisions: it simply cycles
through the set of threads that has been established by
the grant control process.

The Scheduler implements an Earliest Deadline
First (EDF) schedule [Liu & Layland 73] of the tasks
that have been specified by the Resource Manager. It
enforces the grants that have been made by the
Resource Manager, limiting applications to their
resource allocation if there are other applications that
are also ready to run. The Scheduler accepts grant
modification information from the Resource Manager
and implements the changes in a way that maintains the
scheduling guarantees of the first principles; it also
passes accounting information to the Resource
Manager. The Scheduler communicates only with the
Resource Manager -- never with the Policy Box, with
users, or with any application.

When the Resource Manager is unable to give each
application all the resources it has requested, it refers to
the Policy Box to resolve the conflict. The Policy Box
is a repository of information on how to make tradeoffs
among the QOS possibilities for the different applica-
tions that are running. The Policy Box contains default
settings, but these settings can be overridden by users.

3.4 Alternative Multimedia Schedulers
Existing multimedia schedulers address some of

the requirements posed by a multimedia environment.
However, none of them meets all the requirements or
addresses all the first principles.

Other multimedia schedulers support both soft
real-time and interactive tasks. Most are designed for
use in a PC or workstation environment, where one or
more users are doing conventional workstation tasks
and there is multimedia activity. This differs from our
environment in that we must supply tighter real-time
guarantees to our multimedia tasks, and some of the
interactive requirements of the workstation
environment are absent.

All multimedia schedulers also acknowledge the
need for QOS reductions in overload. When there are
more demands for resources than can be met, the
schedulers expect the applications to shed their load
and recover gracefully.

Processor Capacity Reserves, from CMU [Mercer
et al. 94], provides CPU reservations on a per-thread
basis. Reservations are enforced, so a poorly behaved
task cannot impinge on a well-behaved task with a
reservation. Reservations can be passed between tasks

in a multi-threaded environment. The actual scheduling
algorithm used is Earliest Deadline First (EDF) and is
based on the period for which a reservation is made.

The SMART Scheduler from Stanford [Nieh &
Lam 97, Nieh & Lam 96] provides for the simultaneous
execution of conventional and real-time tasks. It uses a
modified best-effort scheduler. In underload, SMART
meets all real-time constraints. In overload,
conventional tasks continue to make progress, but real-
time requirements are not necessarily met. Interactive
tasks get good response, but low-priority threads may be
denied service.

The Rialto system was developed at Microsoft
Research [Jones et al. 97, Jones et al. 96, Jones et al.
95]. It combines resource reservation and constraint-
based scheduling in an aggressive system that tries both
to manage overload gracefully and to handle networked,
independently authored, real-time environments. To
better support cooperating processes, the scheduling
algorithm uses minimum-laxity scheduling, with a
concept of virtual time. The intent is to let cooperating,
independently authored tasks reason about their real-
time requirements.

None of these approaches meets all of the ETI
RD’s design requirements. Processor Capacity
Reserves encourages applications to over-reserve, so the
full processor may not be used. Both SMART and
Rialto have approaches to avoid this, but they do not
handle overload as required by our first principles. In
SMART, overload is handled with fair-share
scheduling, which conflicts with the discrete resource
requirements of our applications. In Rialto, the nature
of constraints causes the system to make policy
decisions after a deadline may have already been
missed. We discuss these implications in more detail
later in the paper.

3.5 ETI Resource Distributor Benefits
The ETI RD is a real-time scheduler and resource

manager that provides stronger guarantees than those
provided by other soft real-time schedulers. It strictly
adheres to the three first principles. As a result, it
provides:
1. Better admissions control
2. Better resource allocation
3. Clear, practical separation of scheduling and QOS

decision-making

Better Admissions Control
The RD guarantees its admissions: An admitted

task is guaranteed that it will not miss a deadline. Most
other systems cannot make this guarantee because of
transient overload conditions. Examples include
SMART, which does fair-share scheduling in overload,

and Rialto, which does not guarantee that a repeating
constraint will be met in advance.

The RD does not reserve resources for a task that is
not actually using them. Some systems, such as
CMU’s Processor Capacity Reserves, can provide
guaranteed admission; however, these systems foster
the over-reservation of resources so that deadlines can
be met.

The RD also provides support for tasks that are not
currently using resources but which cannot be denied
admittance at some unspecified later time. These tasks,
called quiescent tasks, are supported while still pro-
viding guaranteed admissions for non-quiescent tasks.

Better Resource Allocation
Unlike resource reservation schemes, the RD

allocates 100% of available resources for ready tasks.
The allocations are specifically tailored to the needs of
the applications that are running. Unlike fair-share or
best-effort schedulers, the RD allocates units of
resources known to be useful to a thread. Resource
allocations are made in quantum units; hence, resources
are not allocated to a task that cannot meet its deadline.
The actual resource allocations made are determined by
the user. No accident of timing plays a part in the QOS
provided by an application.

Clear, Practical Separation of Scheduling and
QOS Decision-Making

The RD provides effective, reliable separation of
scheduling and QOS decision-making. QOS decisions
are always made in a global context, with reference to a
user-defined Policy Box. The RD makes QOS
decisions only during the time that has been allocated
to the task requesting a global change in resource
allocation. The RD’s policy decisions are never made
either in the context of a single application or when a
thread will miss a deadline.

Alternative soft real-time systems deny users
control of QOS decisions. There is usually some
attempt to separate resource management, scheduling,
and QOS decision making, but it does not go far
enough. A system that makes any of its scheduling or
resource allocation decisions in real-time fails in this
regard when the system is in overload. Some of the
literature acknowledges this clearly [Nieh & Lam 97],
while other literature has not dealt explicitly with the
issue of how to perform resource allocation and
scheduling in overload conditions.

Most systems provide a failure notification to the
application that is requesting resources. This
independently authored application may then shed load.
The problem with this approach is that the application
that has just been denied service was selected by an

accident of timing. The user might instead prefer that
some other application degrade its service.

Alternative systems could assume a set of well-
behaved applications, which would refer to a global
third party to determine who should shed load.
However, three problems remain. First, by the time the
response returns from the third party, the deadline may
no longer be reachable. Second, there is nothing in the
literature that addresses how some other selected task,
or the scheduler, would be informed that it is required to
degrade its service. Third, even if another thread could
be notified, it might either fail in the current frame or
not degrade its service until later, causing other threads
to miss their next deadlines.

4 RD Implementation
We now present the algorithms used by the

Resource Manager, the Scheduler, and the Policy Box.
We address some of the key issues in each area.

4.1 Resource Manager Algorithms
An application seeking real-time guarantees must

access the Resource Manager to “request admittance.”
The application passes a resource list to the Resource
Manager. The resource list is an ordered list of entries,
each of which corresponds to one level of QOS that the
application can provide.

Each entry contains a period and CPU requirement,
both of which are specified in units of 27 MHz ticks.
The reason for using the 27 MHz tick as a unit relates to
clock synchronization issues and the MPEG tasks, as
explained later in the paper. The minimum period is 500
µSec, and the maximum is 159 seconds. Each entry
also contains a callback function associated with that
level of QOS.

Table 1 shows the simplified format of a resource
list. It omits several fields that manage resources other
than CPU cycles on the MAP1000.

The “period(s)” selected by the applications are
either naturally occurring, defined by some standard, or
set by external events. For instance, MPEG needs to
generate 30 frames per second, so a period of 1/30th of a
second is needed. Expressed in terms of 27 MHz ticks,
MPEG requests a period of 900,000 in its resource list.
If the user in a PC environment had selected a display
refresh rate of 72 Hz, a period of 375,000 ticks
(27,000,000/72) would be used by 2D graphics. The
period defines the start and end times of each time unit
in which resources are allocated for this application.
The start of period (n+1) is the same as the end of
period (n).

The “CPU requirement” is a measure of the amount
of CPU time the application requires during every
period. If MPEG requires 1/3 of the CPU, it would pick
a CPU requirement of 300,000 ticks. The “Rate” value

is computed as the CPU requirement/ period and
represents the rate at which the resource list entry
consumes CPU resources.

Period
27 MHz

CPU Req.
27 MHz

Rate
(computed)

Function

Periodmax
CPU

Req. max

CPU Req. max

/Period Funcmax

Periodj CPU Req. j … Funcj

Periodi CPU Req. i … Funci

… … … …

Periodmin
CPU

Req. min

CPU Req. min

/Period
Funcmin

Table 1: Simplified Format of a Resource List.

 “Function” is the address of a routine that
implements the level of QOS appropriate for the
resource list entry. An application may have different
functions for different entries. The scheduler upcalls to
the function when the application has been granted the
resources associated with the resource list entry.

Example resource lists for MPEG decoding and 3D
graphics are shown in Tables 2 and 3, respectively.
The MPEG application sheds load by selectively
dropping more B frames. The 3D graphics application
sheds load simply by making less progress on the same
function. Neither of these examples necessarily reflects
how real applications would shed load. The resource
lists again are simplified.

Period CPU
Req.

Rate Function

900,000 300,000 33.3 % FullDecompress()

3,600,000 900,000 25.0 % Drop_B_in_4()

 2,700,000 600,000 22.2 % Drop_B_in_3()

3,600,000 600,000 16.7 % Drop_2B_in_4()

Table 2: Resource List for an MPEG Thread.

The resource list for a thread does not change if it
is quiescent. A quiescent thread is not scheduled,
because it is in a different mode. It is not necessary to
add a null entry to the resource list for a quiescent
thread.

When a task requests admittance, the Resource
Manager performs two distinct tasks. The first,
admission control, determines whether the application
is allowed to run with scheduling guarantees: to be
admitted to the domain of the ETI Resource
Distributor. If the task is admitted, the Resource
Manager performs a second task, determining the new
grant set. The grant set determines which resources are
made available to each admitted task.

Period CPU Req. Rate Function

2,700,000 2,160,000 80% Render3DFrame()

2,700,000 1,080,000 40% Render3DFrame()

2,700,000 540,000 20% Render3DFrame()

2,700,000 270,000 10% Render3DFrame()

Table 3: Resource List for a 3D Graphics Thread.

A new thread is allowed to enter the system if and
only if the sum of the minimal grants for all threads
(runnable and quiescent) in the system can be
simultaneously accommodated if the new thread is
admitted. The admissions control test is expressed as:

%100(min)(min)
00

≤+ ∑∑
==

Quiescent

j
j

Runnable

i
i RateRate

When a thread enters or leaves the system, or when
a potentially quiescent thread changes state, the
Resource Manager generates a new set of grants for all
threads. The grant for a thread can increase or decrease
at this time. The thread is informed indirectly, because
the next period is started with a call to the function
associated with the new grant. Because the Resource
Manager ensures that the sum of grants does not exceed
100%, the scheduler need only enforce the grants to be
able to use a simple EDF scheme to successfully
schedule all threads. The calculation used to determine
the new grant set is:

%100)(
0

≤∑
=

Runnable

i
igrantRate

Because we admit a task only if the sum of the
minimum resource list entries is less than the total
resources available on the machine, we are assured that
a legitimate grant set exists: at worst, all tasks receive
their minimum grant. If possible, all tasks are given
their maximum grant. However, if there are insufficient
resources, the Policy Box is referenced to make trade-
offs. An example grant set for three tasks is shown in
Table 4.

Period CPU Req Rate Function

Modem 270,000 27,000 10% Modem

3D 275,300 143,156 52% Render
3DFrame

MPEG 810,000 270,000 33% Full
Decompress

Table 4: Grant Set for Three Threads: Modem,
MPEG Decompression, and 3D Graphics.

The Resource Manager does its work in the context
of the requesting application. Admission control is per-
formed only when a new task tries to enter the system.

A new grant set is computed only when a task enters or
leaves the system, when it changes its resource list, or
when it enters or leaves the quiescent state.

One strength of the Resource Distributor is that the
cost of computing a grant set is never paid using cycles
that have already been committed to some other
admitted task. By design, the costs of the Resource
Manager cannot affect its ability to meet its scheduling
guarantees. The Resource Manager decisions are made
neither in interrupt mode nor when a deadline is in
jeopardy. Coordinated communication of the new grant
set to the Scheduler is done so that scheduling
guarantees are maintained.

4.2 Scheduler Algorithms and
Guarantees

The Scheduler implements an Earliest Deadline
First (EDF) scheduling algorithm. The EDF algorithm
is proven to be able to schedule any set of tasks for
which there is a schedule. By not allocating more
resources than there are, a set of tasks is guaranteed to
be schedulable. EDF is extremely cheap to implement
[Liu & Layland 73].

There are some rules governing the ability of an
EDF scheduler to make scheduling guarantees.
1. All tasks must be periodic.
All tasks managed by the Resource Distributor are
periodic tasks. Sporadic tasks are managed by a
Sporadic Server, as discussed below.
2. All tasks must be infinitely preemptible.
While tasks are not infinitely preemptible, they are
finely preemptible. In fact, to minimize context-switch
overhead, we override the EDF policy when the overlap
between two tasks is extremely small. If the currently
executing thread has a distant deadline but only a small
allocation of CPU time remaining, we complete it, even
though another thread with a nearer deadline is
runnable. The length of this override time is a function
of the context-switch time.
3. The period end is the period start.
EDF does not support a separate start time and period
start. This implies that an application must be willing
to take its allocation at any point within its period.
4. There can be no synchronization between tasks.
The reason for this limitation is the same as the
previous: a task must be willing to accept its allocation
at any point in the period. If a task has blocked to
synchronize, it might miss the (only) window in which
it could be scheduled. Non-blocking synchronization is
acceptable.

One implication of EDF is that the maximum
guaranteed latency for a task is twice its period minus
twice its CPU requirement. This occurs when the grant
is delivered to an application at the beginning of one
period and at the end of the subsequent period.

The Resource Manager notifies the Scheduler that a
new grant is available. The next time there is
unallocated CPU time, the Scheduler makes a callback
to the Resource Manager to get the new grant
information. By waiting for unallocated time to begin a
new grant, we assure that adding a new task cannot
affect the running of an already admitted task. The
Scheduler is notified immediately that a grant should be
removed or decreased, and the decrease occurs in the
next period for the affected task.

The Scheduler maintains all tasks with grants on
one of two queues: (1) The TimeRemaining queue,
which contains all tasks that have unused CPU cycles
allocated in this period, or (2) the TimeExpired queue,
which contains all others. Both queues are ordered by
deadline. A thread on the TimeExpired queue has either
used its allocated CPU cycles for the period or indicated
that it is done with its work for the period. A thread on
the TimeExpired queue can also be on an Overtime-
Requested queue if it ran out of time and still had more
work to do.

On a context switch, the Scheduler takes the first
thread off the TimeRemaining queue, if there is one. If
no threads have time remaining but there are new
grants, it calls back to the Resource Manager to get the
new grant information. Finally, it takes the first thread
off the OvertimeRequested queue. We always maintain
at least one thread (the Idle thread) on this list.

The Scheduler sets a timer interrupt for the next
context switch. This occurs at the earlier of: (1) the end
of the grant for this thread for this period, or (2) the
beginning of a new period for another thread whose
next-period end precedes the period end for the thread
about to run.

The next context switch is caused either by a timer
interrupt or by the running task yielding the processor.

The ETI RD takes exactly those context switch
interrupts required by the set of applications running on
the system. We take (at least) twice as many interrupts
as the shortest period in the system. If a task has a
period of 5 ms, we switch context at least twice every 5
ms. The number of context switches can be minimized
when tasks have the same period or periods that are
multiples of each other, but this is an artificial
restriction for most task sets.

Figure 3 shows a schedule for the grant set depicted
in the example in Table 4. The EDF schedule preempts
the MEPG and 3D Graphics tasks.

The ETI Resource Distributor makes the following
scheduling guarantees to admitted tasks:
1. The task will receive a grant from the Resource List

supplied by the application.
2. The grant will be delivered in each period.
3. Unless the task has the smallest CPU requirement

in the system, it may be preempted each period.
4. The grant will not change mid-period.

5. The task will not be involuntarily terminated.
These guarantees are void for any period in which

the task is blocked, but they will resume in the first full
period in which the thread is not blocked.

Figure 3: Schedule for Modem, 3D Graphics, and
MPEG Decode.

4.3 Policy Box Algorithms
The Policy Box is a repository of information used

to resolve conflicts when the system is overloaded. It is
accessed by the Resource Manager when: (1) system
requirements change, and (2) not all tasks can have
their maximum resource list entry.

Because the Policy Box is always consulted when
the system goes into overload, policy decisions are
never made locally. Further, because decisions are
made in the context of a task not yet admitted, they are
not made when a deadline is about to be missed. The
policy is not even affected by the order in which a set
of threads is started. The cost of consulting the Policy
Box is paid by the task requesting admittance.
Therefore, no task will be denied service or miss a
deadline as a result of the system going into overload.

The Policy Box has default policies supplied by the
system designers, which can be overridden by users.
For example, video should generally be degraded
before audio, because most users are more sensitive to
the quality of audio. However, in a loud environment,
the clicks and pops of poor audio may be indistinguish-
able from ambient noise. In such an environment,
where the user may rely more on video than audio, the
quality requirements may be reversed. Alarms (with
clicks and pops) are still needed, but the visuals must
be current.

Each policy contains a relative ranking for its
included threads. These rankings are used to compute
which resource list entry each thread should receive. A
simplified example Policy Box is shown in Table 5. In
this example, there are four tasks known to the Policy

Box. The Policy Box correlates a task name and Policy
Box identifiers.

RankingsPolicy
ID Task 1 Task 2 Task 3 Task 4
1,2 10 85
1,3 20 75
1,4 10 85
1,2,3 10 50 35
1,2,4 10 35 50
1,3,4 10 35 50
1,2,3,4 5 35 20 35

Table 5: Example Policy Box.

5 Additional Features
This section discusses important additional features and
characteristics of the system. We describe our support
for other task types, timing issues, the specifics of grant
delivery, and preemptions.

5.1 Sporadic Tasks
Most tasks in our system are periodic and have

real-time characteristics. Some tasks are neither
periodic nor real-time. We call these sporadic tasks.

Sporadic tasks are managed by a Sporadic Server,
which is itself a periodic task [Sprunt et al 89]. We
provide an interface whereby any periodic task can
“assign” its grant for a specific period of time to another
(non-periodic) task. The Sporadic Server maintains a
round-robin queue of the sporadic tasks in the system.
When it is scheduled by the Scheduler, it looks for work
to do on its queue. If there are sporadic tasks ready to
run, the Sporadic Server assigns its grant for some fixed
amount of time (currently 10 ms) to them. The
Sporadic Server then returns to the Scheduler.

When the Scheduler selects a periodic task to run, it
routinely checks to see if the task’s grant has been
assigned. If it has, the Scheduler runs the assigned-to
thread instead. Resource bookkeeping is still done in
the context of the periodic task. The assignment
extends over multiple periods if more time is assigned
than is available in a single period. When the grant is
consumed, or when the sporadic thread blocks, the
Scheduler returns to the periodic task.

Sporadic tasks can perform the same functions as
periodic tasks. The only distinction is that there are no
scheduling guarantees for a sporadic task. The
performance of a sporadic task is a function of the
amount of CPU time allocated to the Sporadic Server
(which can be modified through the Policy Box) and the
number of sporadic tasks.

5.2 Interrupt Tasks
The periodic model does not work well for low-

latency, high-frequency tasks. Latency requirements of
less than about 1 ms cannot be accommodated by
periodic tasks running under the ETI Resource
Distributor. (Recall that the best guaranteed latency is
two times the period minus two times the CPU cycle
allocation.) Generally, these tasks are triggered by an
interrupt and must be serviced by an interrupt handler.

Because these tasks do not come under the purview
of the Resource Distributor, their resources are not
taken into account. We reserve a small percentage of
the processor for handling interrupts.3 Tradeoffs must
be made between keeping this number small to avoid
wasted resources and making it large enough that
interrupts do not conflict with the deadlines for
admitted tasks.

5.3 Quiescent Tasks
A quiescent task is one that is not currently using

any resources, but which cannot be denied admittance
when ready to run. One example is a cool-down task.
If the processor is overheating, the operating system is
notified and is expected to cool down the processor. It
does this by running a no-op loop that switches fewer
transistors. The cool-down task does not need to use
100% of the processor (because if it did, it might make
more sense to shut down the system); however, it does
need some percentage, depending on the extent of
overheating. Until the processor has overheated (if
ever), we do not want to reserve resources for this task.
However, if the processor has overheated, we must run
the cool-down task.

An obvious, simple way to handle this situation is
to terminate some other task that is running. However,
this approach violates our scheduling guarantee.

A better way is to incorporate the quiescent task
into the calculation for admissions control and to ignore
it for calculating the grant set. With this approach,
when the task ceases to be quiescent, we are guaranteed
a grant set for all admitted tasks: at worst, all tasks
receive their minimum resource list entry. However,
while the task is quiescent, the resources it would
otherwise use are allocated to other tasks, enabling
them to provide a higher level of QOS.

3 On the MAP1000, the Data Streamer greatly

reduces the number of interrupts taken. Most tasks are
double or triple buffered. In period (n+1), they may be
outputting the data generated in period (n). This,
combined with the fact that the Data Streamer can be
programmed to do flow control, reduces the number of
I/O interrupts in the non-error case to near zero.

An example is a telephone-answering modem task.
Imagine a PC environment where the user is studying
multimedia data from a DVD. The user is waiting for a
teleconferencing connection to be established so that the
multimedia data can be discussed. Until the telephone
call occurs, the full resources of the machine should be
dedicated to the DVD. Afterwards, the modem,
teleconferencing, and DVD software must share
resources, and the DVD may have to shed load. Our
Resource Distributor lets the user start these
applications in any order. The desired global policy
decisions will be made, the correct load shedding
performed, and the telephone answered promptly.

5.4 Clock Synchronization Issues
The periods of applications are frequently defined

by external clocks. For instance, MPEG applications
are tied to the TCI clock, which runs at 27 MHz [ISO
96]. The TCI clock is routinely modified by the MPEG
system software to stay synchronized to an incoming
MPEG data stream. In other words, it is known that the
MPEG clock will drift with respect to any other clock.
The system clock on the MAP1000 is 200 MHz.

Clocks driven by different crystals can drift with
respect to each other. One can be running slightly
faster, one slightly slower. The TCI clock can do both.
Sometimes it drifts faster, sometimes slower, depending
on the source of the MPEG input stream.

The drifting of two clocks with respect to each
other causes problems for periodic threads whose period
is externally defined. For example, imagine that a user
has selected a 100 Hz display refresh rate. Every 10 ms
the MAP1000 needs to have an image ready to display,
and every 10 ms the Display Refresh Controller (DRC)
picks it up. Since the image-generating application on
the MAP1000 and the DRC are controlled by different
clocks, they can drift with respect to each other. In
time, one of them can get an entire frame ahead of or
behind the other. At this point, either an entire frame is
dropped, or a frame is displayed in duplicate.

Unlike the case for many applications, the DRC can
ignore this problem at a fairly small cost. It is
commonly the case that the same screen is displayed
multiple times, since the MPEG frame rate is typically
less than the refresh rate of a non-interlaced RGB
computer monitor. Further, there is unlikely to be
anything unique about a single display frame that would
make its loss seriously reduce quality. A more
significant problem is tearing: if the DRC displayed
half of one frame and half of the next, the user could
detect a quality degradation. This problem is common
with most schedulers. It is usually avoided by changing
the pointer to the data to be displayed only when it is
complete. For the DRC, clock synchronization issues
are relatively easy to manage.

However, some other applications have significant
problems with clock synchronization. One example is
an MPEG decoder. The MPEG data stream is received
live, at 30 frames per second. The stream is
compressed, and not all the delivered frames are the
same type. An MPEG stream has I, B, and P frames.
The I frames are Initial frames without temporal
prediction: they can be decoded in isolation. The
compressed P frames are encoded as the difference
from the previous I or P frame. The compressed B
frames are encoded as the difference relative to both the
preceding and following I or P frames. The significance
of losing a B frame is small – one frame is not
displayed. However, if an I frame is lost, a perfect
picture cannot be displayed again until the next I frame
is received, which is typically every 15 frames or half-
second. A half-second loss of video is noticeable and
unacceptable. Therefore, for MPEG, if an I frame is
lost, the QOS would be inadequate.

Because the consequences of losing an I frame are
unacceptable, we have partially finessed the problem of
staying synchronized with the TCI clock by using the
TCI clock for scheduling. This means that the first
MPEG transport stream does not need to worry about
TCI synchronization. However, a second MPEG thread
using a different TCI transport stream, and any other
application that wants to stay synchronized with an
external clock, must do so in software.

We provide an interface (InsertIdleCycles) that can
be used to postpone the start of the next period for a
task by an arbitrary number of 27 MHz ticks.
Postponing the period cannot jeopardize the scheduling
guarantees to other tasks, but pulling it in would, so the
interface cannot be used to pull in the period start. This
interface can be used both to control the effects of drift
from clock skew and to get into phase with a clock.
The application must read both the TCI and the external
clock at some interval. The difference between the
external clock readings is determined. From that, the
expected difference in the TCI clock is computed. The
actual difference in the TCI clock readings can be used
to calculate the skew.

5.5 Semantics for Delivering a Grant
When a task receives a grant, we make a callback

to the function named in the resource list entry. The
stack is cleared before the call, and the calling
arguments include whether the previous call completed,
the sum of the resources used in the previous call, and
an indicator of which grant has been assigned for this
period. This is how the initial grant for an admitted
task is always delivered.

We offer both callback and return semantics for all
periods past the initial one. For truly periodic tasks
(e.g., MPEG, modem, audio), a callback is generated at

the beginning of every new period. The work of the
previous period is complete, and the exact same
function is performed on the set of data in this new
period. For tasks such as 2D and 3D graphics, which
are not as tightly tied to their periods, the state between
periods should be retained, and the application should
continue where it left off. These tasks use return
semantics. Note that all tasks use return semantics
when they have been preempted in the middle of their
grant for the period; callback semantics apply only at
the beginning of a new period.

A task must be prepared to receive a new grant in
any period. For tasks using callback semantics, this is
trivial. For those using return semantics, some clean-up
operations may be required. Depending on the differ-
ences between the old and new grants, the task may
even prefer to use return semantics on the new grant.

An example is the 3D graphics task, which has
multiple resource list entries that use the same function.
On the MAP1000, the 3D graphics application has some
resource list entries that use the video scaler component
of the FFU, and some that do not. If the grant change
involves either acquiring or losing access to this unit,
then the 3D graphics task needs to use callback
semantics to get the grant started after some clean-up.
If the access to the FFU does not change, it uses return
semantics.

We provide a filter callback option for a task that
uses return semantics when its grant changes. If the
task has registered a filter callback, we call it instead of
either returning or using the new grant’s callback
function. The task does whatever cleanup is necessary
and then returns an indicator as to whether it would
prefer return or callback semantics for this one call.

5.6 Preemptions and Real-time
Applications

As long as the tasks in a system have differing
periods and CPU requirements, it will be necessary to
preempt the tasks with longer CPU requirements and
periods. Preemptions are expensive and disruptive.
Besides the context switch overhead, the cache state
may also be lost.4

The majority of tasks we run are double or triple
buffered. At the end of a buffer, some data will even be
jettisoned. The best time to preempt a task is when it
has finished handling one buffer and before it starts on
the next. The “buffers” may be relatively small; they do
not correspond to an entire frame, for instance, but
perhaps to an MPEG macroblock, which is 384 bytes.

4 Our chip has additional complications with the Data
Streamer and the FFU. At any given point, both the
Data Streamer and the FFU are likely to be performing
long-running operations on behalf of the current task.

To minimize the cost of preemptions, we provide a
mechanism with which a well-behaved task can
perform controlled preemptions. Otherwise, it is
preempted as usual.

We distinguish between involuntary and voluntary
preemptions. An involuntary preemption occurs in a
normal context switch, when the process is being given
to another task. A voluntary preemption occurs when a
task blocks, for example, on synchronization or I/O. A
voluntary preemption also occurs when the task
volunteers to yield the processor because the Scheduler
must do a context switch.

To perform controlled preemptions, the task
notifies the Resource Manager of its intention, and the
Resource Manager notifies the Scheduler. When the
Scheduler needs to preempt the task, it sets a marker
indicating that a context switch is needed, notifies the
task, and sets a timer interrupt for a grace period.
Before the grace period expires, the task must notice
that it is in the grace period and voluntarily preempt
itself by yielding the processor. If the grace period
expires before the task yields, it is involuntarily
preempted.

The task can specify a local address at which it
would like to be notified when a context switch is
needed. By doing so, the task avoids the system call
needed to determine if a preemption is required and
may avoid additional cache misses. The grace period is
quite short – on the order of a couple hundred µSec.

The grace period effectively lets one task run into
the time allotted to another. The task will be charged
for the resources it uses in the grace period; however,
the other task is still postponed. Therefore, it is critical
to keep the grace period as small as possible. On the
other hand, the more often that applications have to
check for preemption, the more constrained their
coding, because they must be prepared to yield the
processor. It remains a matter of further study to
determine the optimal grace period length.

If a task is doing voluntary preemptions and fails to
yield in the grace period, it is involuntary preempted.
When next run, it is sent an exception callback,
enabling it to clean up.

6 Performance
This section presents performance data for the

costs involved in context switches, admissions, grant
set determination, managing preemption and
scheduling. Most costs are incurred in the context of a
task either requesting admittance or significantly
changing its state; the run-time costs are relatively
small. All performance numbers reported in these
sections were acquired on a cycle-accurate simulator.

6.1 Context-Switch Costs
One advantage of the ETI Resource Distributor is

that preemptions are taken only when required for
correctness of scheduling guarantees. The number of
context switches depends on the number of applications,
and the size of their periods and CPU requirements.
Rialto reduces the number of context switches by
enforcing the rule that all applications have periods that
are even multiples of each other [Jones et al. 97]; we
support any period length in range.

A context switch on the MAP1000 incurs the cost
of saving and restoring as many as two banks of 64 32-
bit registers. In our calling standard, most registers are
caller-saved; therefore, for a synchronous (voluntary)
context switch, only 14 32-bit registers (times two
banks) must be saved. There are another 64 32-bit
system registers that must be saved on an involuntary
context switch.5

On a 200 MHz chip, a fully synchronous, voluntary
context switch takes a minimum, median, and average
of 11.5, 18.3, and 20.7 µSec. A fully involuntary
context switch takes a minimum, median and average of
16.9, 28.2, and 35.0 µSec.

On a highly tuned system running an MPEG video
decoder and AC3 audio, we might expect about 300
context switches per second (i.e., 60 each for the
MPEG decoder and AC3 audio and for each of their
data management threads, and another 30 for the
Sporadic Server). Of these, 120 will be synchronous
context switches, for a total of 2196 µSec. The
remaining 180 context switches are asynchronous, at a
mean cost of 28.2, for a total of 5076 µSec. For this
load, we would expect a total context-switch cost of
about 0.7% of the CPU.

Threads that have the same period do not preempt
each other. If threads have different periods, the one
with the shorter period can preempt the one with the
longer.

6.2 Admissions Control Cost
Admissions control is computed in constant time.

A running sum of the resources used for each thread’s
minimum resource list entry is maintained. When a
new thread requests admittance, the resources of its
minimum resource list entry are added to the running
total and compared to what is available on the system.
On a 200 MHz system, the admissions control process
takes between 150 and 200 µSec.

5 The cost of saving Data Streamer and FFU state is not
considered part of the context-switch cost. For a well-
behaved application, the cost is zero.

6.3 Determining a Grant Set Cost
The cost of determining a grant set is a function of:

(1) whether the system is in overload, and (2) the
number of threads admitted to the system. If the
system is not in overload, we first make an O(1)
determination as to whether every thread can have the
resources requested in its maximum resource list entry.
If so, we are done.

If the system is in overload, the computation
becomes more complex. When the Resource Manager
finds that not all threads can have their maximum, it
asks the Policy Box for a policy for the set of admitted,
non-quiescent threads. The Policy Box searches its
database for a matching policy. If it does not find one,
the current implementation invents a policy in which
each of N threads receives 1/Nth of the resources, and
an arbitrary thread is given control of exclusive
resources.

Once it has received a policy, the Resource
Manager correlates the policy received with the actual
resource list entries of the threads. Our current imple-
mentation for this step is O(N). We iterate through
each thread, noting the resource list entries just above
and below the QOS specified by the policy. If the sum
of the entries that were above the policy-specified QOS
ratings fits, we are done. Otherwise, we walk through
once more, turning higher entries into lower entries.
This process will converge in a single pass, because
only policies that fit are allowed by the Policy Box.
We make a third pass if substantial resources remain
unused after the second pass, looking for a thread that
can use these otherwise unallocated resources.

6.4 Managing Preemption Cost
Threads that want to do controlled, voluntary

preemptions make a call to the Resource Manager,
giving a local address in which the notification should
be placed. The cost of a managed preemption is
potentially much less than the cost of an involuntary
context switch. The application writer controls what
information is in the caches and the states of the FFU
and Data Streamer.

There are two incremental costs to doing controlled
preemptions. First, the thread must periodically check
to see if it is in a grace period. It must do this
frequently enough so that it can get into a safe state and
yield the processor before the grace period expires. On
the MAP1000, the process of checking to see if a thread
is in the grace period is essentially free. On any
architecture with a functional unit that is not 100%
utilized, an otherwise idle cycle on that unit can be used
to check if preemption is required.

The second, and higher, incremental cost of
controlled preemptions is incurred in the operating
system, where we must notify the thread that it is in a

grace period. When the operating system receives a
timer interrupt, we check to see if the running thread is
eligible for a grace period. If so, we set the location
specified by the thread, reset the timer interrupt for the
grace period, and continue the interrupted thread.

6.5 Scheduler Effectiveness
The ETI Resource Distributor effectively schedules

a set of threads. We are currently running simultaneous
sets of MPEG, AC3, and 3D graphics. There are a
number of ancillary support threads for data
management, for the Display Refresh Controller, etc.

The following data are from a test run with four
periodic threads in addition to the Sporadic Server. Each
is running with a period of 1/30th of a second, and each
has a maximum CPU requirements of 13, 2, 3 and 3 ms,
respectively. The thread with the largest requirement
never reports that it has finished its work for the period.
This set of threads does not overload the system.

Figure 4 shows the schedule one-third of a second
into the run. The two data control threads (8 and 10) are
waiting for more data from the producers. Producer
thread 7 receives the unused time (shown in the lighter
lines) but is preempted when a new period begins; it
then receives its guaranteed allocation (shown in the
darker lines). The other producer thread (9) completes
its work each period.

This example shows a bug in the application: the
data management threads should block, waiting for the
data to become available. The context switches to the
data management threads could be avoided when no
data is available. The producer threads could set an
event when data is available, and the data management
threads would regain their scheduling guarantees in the
following period.

The next test shows five threads in addition to the
Sporadic Server, each of which has nine entries in its
resource list. Each resource list entry has a period of 10
ms, and the nine entries range from requiring 90% to
10% of the CPU. Because there are no policies for

Thread 7

Thread 8

Thread 9

Thread 10

Thread 1

310 320 340330 380370360350 400390300

Figure 4: Schedule for Five Threads from 300-400 Ms.
(Dark Lines show guaranteed allocations; light lines
show allocations of unreserved time.)

these threads, we expect the Policy Box to make up a
policy that evenly divides the resources among the
available threads, including the Sporadic Server. The
Sporadic Server requires only 1% every 100 ms, but it
is the only thread that indicates it has work to do at the
end of each period; the other threads all yield when
preemption is required.

Each of the threads is started in turn, with a wait of
20 ms between each thread start. Because the period
for each thread (except the Sporadic Server) is 10 ms,
we expect each thread to be scheduled every 10 ms. As
each new thread is admitted, we expect the CPU
allocation for all previously admitted threads to be
reduced. Since we reserve 4% of the processor for
interrupt processing, and there are no interrupts other
than those for the timer in this run, we expect the
Sporadic Server to run at least every 10 ms. We also
expect that each new thread will receive its first grant in
a period that would otherwise have been given to the
Sporadic Server as unallocated time.

Table 6 shows the resource list for each of the
threads 2-6. Figure 5 shows that the run has behaved as
expected. Thread 2 (the first periodic thread admitted
after the Sporadic Server) begins with an allocation of 9
ms out of 10. It then drops to 4 ms when one thread is
added, to 3 ms when there are three threads, and to 2
ms when there are four or five threads running in
addition to the Sporadic Server. Each thread’s
allocations are received 10 ms apart, because the period
does not change.

7 Conclusions and Future Directions
The ETI Resource Distributor is unique in its

ability to provide scheduling guarantees to a dynamic
set of applications without wasting resources. Like
other soft real-time systems, we support the dynamic
creation of tasks and the possibility of overload. Like
hard real-time systems, we provide guarantees

regarding the resources that will be made available to a
task and the timeframe in which they will be provided.
By designing for the step-wise nature of resource usage
in multimedia applications, we support load shedding in
a way that meets the user’s performance requirements.

Period CPU Req. Rate Function

270,000 243,000 90% BusyLoop()

270,000 216,000 80% BusyLoop()

270,000 189,000 70% BusyLoop()

270,000 162,000 60% BusyLoop()

270,000 135,000 50% BusyLoop()

270,000 108,000 40% BusyLoop()

270,000 81,000 30% BusyLoop()

270,000 54,000 20% BusyLoop()

270,000 27,000 10% BusyLoop()

Table 6: Resource List for Threads 2-6.

We are also unique in providing practical control of
QOS policy decisions, even in the face of a dynamic
task set with firm real-time requirements. Our system
truly separates policy decisions from accidents of
timing, task creation order, and other inadvertent
influences. Even with a dynamic task set, we provide
exactly the policy that is desired.

This system has a low run-time cost, and provides
reliable QOS, and guaranteed scheduling. It guarantees
liveness for conventional tasks, and also supports the
Quiescent task model for tasks that cannot be denied
service.

There remain areas for additional research. First is
the better integration of more resources. Our implemen-
tation supports the CPU, the FFU, and the Data
Streamer. However, we do not specifically manage

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

10 20 4030 80706050 100900 110 120

Thread 6

Thread 2 admitted
at time 3 (9 ms)

Thread 3 admitted
at time 32 (4 ms)

Thread 4 admitted
at time 50 (3 ms)

Thread 5 admitted
at time 76 (2 ms)

Thread 6 admitted
at time 108 (1ms)

Figure 5: Schedule for Five Load-Shedding Threads Plus the Sporadic Server.

bandwidth as a resource, but we will need to do so
when the number of applications using the Data
Streamer increases. It is possible that memory should
also be incorporated. However, every additional
resource increases the complexity of the algorithms.

A second area for more investigation is the Policy
Box. Ours can be accessed by applications, the user,
and the operating system. There are open issues around
policy modifications: when is it reasonable to change
the Policy Box, and when should the modification(s)
occur to avoid affecting current scheduling guarantees?

Currently, policies are specified as relative rates.
There are two problems with this. First, other resources
are not integrated. Second, the correlation between the

“rates” of the Policy Box are not theoretically well
matched to the rates of the applications. Future research
will find a better way of expressing possibilities in the
Policy Box without limiting the range of resources used
by the applications.

8 Acknowledgements
I wish to thank my editor, Sandy Kaplan, my shepherd,
Sape Mullender, and the anonymous reviewers who
made many helpful comments on earlier drafts. Thanks
to my colleagues at Equator Technologies, Inc. who
provided endless support for this work.

Bibliography
[Basoglu et al 99] Chris Basoglu, Robert Gove, Keiji Kojima, and John O’Donnell. Single-Chip Processor Media

Applications: The MAP1000. In Int J Imaging Syst Technol, 10, 1999, in press.
 [Helander & Forin. 98] Johannes Helander and Alessandro Forin. MMLite: A Highly Componentized System

Architecture. In Proceedings of the Eighth ACM SIGOPS European Workshop on Support for Composing
Distributed Applications, Sintra, Portugal, Sep. 1998.

[ISO 96] ISO/IEC International Standard 13818-1, Information Technology – Generic coding of moving pictures
and associated audio information: Systems. 1996.

[Jeffay & Bennet. 95] Kevin Jeffay and David Bennett. A Rate-Based Execution Abstraction For Multimedia
Computing. In Proceedings of the Fifth International Workshop on Network and Operating Systems
Support for Digital Audio and Video, April, 1995.

 [Jones et al. 95] Michael B. Jones, Paul J. Leach, Richard P. Draves, Joseph S. Barrera, III. Modular Real-Time
Resource Management in the Rialto Operating System. In Proceedings of the Fifth Workshop on Hot
Topics in Operating Systems, Orcas Island, pp. 12-17. IEEE Computer Society, WA, May, 1995.

[Jones et al. 96] Michael B. Jones, Joseph S. Barrera, III, Alessandro Forin, Paul J. Leach, Daniela Rosu, Marcel-
Catalin Rosu. An Overview of the Rialto Real-Time Architecture. In Proceedings of the Seventh ACM
SIGOPS European Workshop, Connemara, Ireland, pp. 249-256, Sep. 1996.

[Jones et al. 97] Michael B. Jones, Daniela Rosu, Marcel-Catalin Rosu. CPU Reservations and Time Constraints:
Efficient, Predictable Scheduling of Independent Activities. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles, Saint-Malo, France, Oct. 1997.

[Liu & Layland 73] C.L.Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment. In Journal of the ACM, vol.20, pp. 46-61, Jan. 1973.

[Mercer et al. 94] Clifford W. Mercer, Stefan Savage, Hideyuki Tokuda. Processor Capacity Reserves: Operating
System Support for Multimedia Applications. In Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, May 1994.

[Nieh & Lam 97] Jason Nieh and Monica S. Lam. The Design, Implementation and Evaluation of SMART: A
Scheduler for Multimedia Applications. In Proceedings of the 16th ACM Symposium on Operating Systems
Principles, Saint-Malo, France, Oct. 1997.

[Nieh & Lam 96] Jason Nieh and Monica S. Lam. The Design of SMART: A Scheduler for Multimedia Applica-
tions. Technical Report CSL-TR-96-697, Compute Systems Laboratory, Stanford University, June 1996.

[Sprunt et al. 89] Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic Task Scheduling for Hard-Real-Time
Systems. In The Journal of Real Time Systems 1, 1 Nov. 1989.

