New Challenges and Dangers for the DNS

Jim Reid
ORIGIN TIS-INS

Jim.Reid@nl.origin-it.com
Introduction

• new technologies
 — IPv6, W2K
 — dynamic DNS updates
 — secure DNS

• new resource records
 — NXT, KEY, SIG, TSIG
 — AAAA, SRV, IXFR
 — A6, DNAME

• close inter-relationships

• probably unavoidable
IPv6

• 128-bit addresses
 — cumbersome

• reverse lookups
 — ip6.int domain
 — analogous to in-addr.arpa
W2K

• WINS dies (rejoice!)
 — replaced by Active Directory Service
 — depends on SRV records

• dynamic DNS updates
 — WINS-like on the fly registration:
 • names and addresses
 • services - printing, dialup, etc
Secure DNS

• strong authentication
 — name servers
 — queries

• industrial-strength crypto
 — Diffie-Hellman, RSA

• strong checksumming
 — DSS, MD5
Dynamic Updates

• on the fly updates of zone data
• needed for plug & play
• updates SOA zone version number
• BIG problems
 — security
 • write access to zone data
 — scaling
 • zone transfer storms on Monday morning
 — zone synchronisation
 • who updates forward & reverse zones?
Dynamic DNS Scaling Worries

• each (set of) updates bumps SOA
 — => zone transfer to slaves

• get DHCP server to batch updates?

• writing transaction logs on name servers will slow this anyway
Dynamic DNS - Security Worries

• who gets write access to DNS zone?

• no fine-grained control
 — anyone can change just about anything
 — obviously not for desktops

• only for "trusted" systems
 — sane DHCP servers
 — even then use secure Dynamic DNS
Dynamic DNS & W2K

• W2K depends on Dynamic DNS

• makes DNS more WINS-like

• who wants a W2K box scribbling on their DNS data?
 — put ’em in a leper colony
 — delegate \textit{w2k.foo.bar} \textit{(say)}
 — make \textit{ntbox.foo.bar} a \textbf{CNAME} for \textit{ntbox.w2k.foo.bar}

• weird WINS-like names
 — undocumented

• JSPNRMPTGSBSSDIR from Remote Access Service
Dynamic DNS - Forward and Reverse Zones

• who does what?

• DHCP server does forward and reverse updates
 — "atomic" operation
 — least insecure method
 — dynamic name/address mappings
 • not good for dial-in pools
 — what about fixed names or addresses?
 • bind names and IP addresses to MAC addresses?
 • might need this for IPv6
Dynamic DNS - Forward and Reverse Zones

- DHCP server does forward update, client updates reverse zone
 - seems to be the W2K approach
 - asynchronous forward/reverse updates
 - dial-ins can assign fixed names
 - do you want random computers updating the DNS?

- scaling and security worries again
Secure Dynamic Updates

• RFC2137

• crypto authentication

• a bit of a misnomer
 — only authenticates the request
 — no say over what the request changes
DHCP & Dynamic DNS

• not much happening
 — ISC DHCP development stalled
 — Microsoft could well drive this

• use static names in DNS (for now)

• hassles for roaming users
 — move away from host-based authentication in long run?
Incremental Zone Transfer

- RFC1995
- IXFR query type
- send deltas, not whole zones
- meant for .com

- implemented in BIND8.2
 - special case of dynamic updates
 - comparable semantics
New Resource Records

• SRV
 — service location

• SIG
 — crypto-signature for a RR

• NXT
 — what RRs have SIG records

• KEY
 — public keys of SIG records
 — shared secrets for TSIG?
More New Resource Records

• AAAA
 — IPv6 addresses

• A6
 — map a domain name to an IPv6 address
 — IPv6 delegation & reverse lookup
 — should replace AAAA

• DNAME
 — CNAMEs for domains
The SRV RR

- RFC2052
 - due for update Real Soon Now

- format:
 _Service._Proto.Name SRV Priority Weight Port Target

- example:
 _http._tcp.www.a.net. SRV 0 0 80 foo.bar.
 - web service for www.a.net is on TCP port 80 of foo.bar.
 - priority field is like MX priority
 - weight field is for crude load balancing
 - underscores in new standard
The TSIG RR type

• on standards track, no RFC yet

• transaction signatures

• lightweight authentication

• relies on a shared secret:
 — HMAC-MD5
 — other algorithms possible

• not in zone files
 — computed on the fly
 — appended to additional data section
The KEY RR

• defined in RFC2065

• public key for some name

format:

```
name KEY flags proto algorithm public-key
```

— flags - what kind of key?

• user, zone, IPsec, etc

— proto - identify non-DNS applications

• SSH?, SSL?, email, IPsec, Kerberos? keys

— crypto algorithm - MD5/RSA

— base-64 encoding of key
Example KEY RR

foo.com. IN KEY 513 3 1 (\\nAQOxuZdEyFD1ONGz9xF3fdAvG \\nPaUqj6s727UOXVtXKcyodC0EM \\nC+82L1cDFa1AqsgPrMjHRqfzL \\niaAoVKYPof+sdWr+fD/DGzKAx \\nnK1FKRMRTyDoZnk3uqffe5n2Q \\nuSDDMZPKhEt1qwISzowjJZCGU \\nWU1wyH/B7TPTvuaPen/ExayQ== \\
)

The SIG RR

• also defined in RFC2065

format:

name SIG type flags proto algorithm \
time-RR-signed sig-expiry-time \
footprint signer signature

• type is the RR type that is signed

• proto, flags and algorithm identify crypto

• timestamps thwart cryptanalytic replay and replay attacks

 — => secure NTP

• signer: who signed the SIG

• signature in base-64 encoding
The SIG RR continued

• each SIG RR signs 1 resource record

• signer identifies relevant KEY RR

• delegated signing authority

— postmaster could sign MX records
Example SIG RR

```plaintext
bar.foo.com. SIG MX 1 3 ( \n  19960102030405 \n  19961211100908 \n  21435 \n  foo.com. \n  MxFcby9k/yvedMfQgKzhH5er0Mu/ \n  vILz45IkskceFGgiWCn/GxHhai6V \n  AuHAoNUz4YoU 1tVfSCSqQYn6//1 \n  1U6Nld80jEeC8aTrO+KKmCaY= )
```
The NXT RR

• defined in RFC2065
 — which RRs are signed or not
 — authentication of non-existent names

• RR type not found in zone files
 — derived from zone contents
 — in auth. section of reply from a secure name server

• example:
 foo.bar.com. NXT foo.bar.com. A NXT
SIG/KEY RR Generation

• primitive tools in BIND8.2
 — dnskeygen
 — dnssigner

• scant documentation
Interesting SIG/KEY/TSIG Problems

• signing zone transfers

• wildcard resource records

• normalised RR names:
 — all lower-case
 — fully qualified domain names
 — standard TTL values
 — what original data was signed?
Key Management

• a very hard problem

— but we already knew that...

• private keys and shared secrets
 in /etc/named.conf

— server statements

— key statements

— very ugly

— an N-squared problem
Secure DNS Problems

• public-key crypto is expensive
 — not for common usage
 — signing "important" data

• zone transfers?

• keys, e-commerce?

• TSIG is computationally cheap-ish
 — maybe for resolving?

• shared secret a problem: can’t be secret

— probably OK dynamic DNS

• "trusted" DHCP servers
Secure DNS Concerns

- establishing relationships of trust between name servers
 - master and slave servers
 - intra- and inter-domain
 - does foo.com. "trust" com.?
 - does foo.com. "trust" bar.com.?
 - does com. "trust" foo.com.?
Secure DNS and Top Level Domains

• query rate on TLD name servers:
 — ~2000/sec on Internet root server
 — where is the compute power for even TSIG?

• key management for .com domain
 — ?million key & server statements?

• memory usage
 — signing every RR makes zone 10x bigger!
 — currently ~600 Mb for unsigned .com domain
The AAAA RR

- defined in RFC1886

- IPv6 notation from RFC1884

example IN AAAA 1080:0:0:0:8:800:200C:417A
example IN AAAA 1080::8:800:200C:417A
example IN AAAA 1080:0:0:0:8:800:32.12.65.122
example IN AAAA 1080::8:800:32.12.65.122

- unwieldy PTR records

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0. \
0.1.0.0.0.0.0.0.0.1.2.3.4.IP6.INT. PTR example

- may be obsoleted by A6 RR type
The A6 RR

• no RFC yet - on standards track

• two or three fields
 — prefix length
 — textual representation of IPv6 address
 — domain name if non-zero prefix length

• example

 CC.NET.ALPHA-TLA.ORG. A6 0 2345:00C0::

 — C.NET.ALPHA-TLA.ORG "owns" IPv6 addresses beginning 2345:00C0
The DNAME RR

• no RFC yet - on standards track

 — format:
 owner DNAME target

 — example:
 d.e.f. DNAME w.xy.

 • lookup of a.b.c.d.e.f => lookup of a.b.c.w.xy

• useful with:

 — A6 records

 — RFC2317-style delegations
IPv6 and DNAME/A6 Records

• A6 & DNAME records are cleaner
 — smaller and simpler ip6.int zone
 — easier to manage & delegate
 • regional, provider, subscriber bits
 — parallel address spaces
 • easier renumbering!

• should replace AAAA records

• bottom bits come from MAC address
 — => dynamic DNS?