i

The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA '97)
San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org

An Analysis of UNIX
System Configuration

Rémy Evard — Argonne National Laboratory

ABSTRACT

Management of operating system configuration files files is an essential part of UNIX
systems administration. It is particularly difficult in environments with a large number of

computers.

This paper presents a study of UNIX configuration file management. It compares existing
systems and tools from the literature, presents several case studies of configuration file
management in practice, examines one site in depth, and makes numerous observations on the

configuration process.

Introduction

Systems administration is hard, and is getting
harder. This may be the computing world’s single
biggest problem. There are certainly others: security,
privacy, improving performance, standards enforced
by potential monopolies, the year 2000, etc.; the list
can go on and on. But none of these matters if com-
puters aren’t useable in the first place.

In our modern distributed systems, each desktop
is becoming increasingly more powerful and is
expected to provide more and more functionality. Bor-
rowing a metaphor from Rob Kolstad, the “service
knob” is being cranked up, and systems administra-
tors and users are paying by spending more time con-
figuring systems, installing software, tuning networks,
fighting fires, and trying to convince the environment
to just work right. In the corporate world, this problem
is usually referred to as part of the “total cost of own-
ership” or TCO, and it is a growing concern.

Simply stated — it is difficult to keep a computing
system up to date and performing correctly. This has
traditionally been the role of the systems administra-
tor, and, as the requirements for computers continue to
grow, the systems become more complex to adminis-
ter. It is imperative that we make systems administra-
tion easier.

In computer science and engineering disciplines,
complexity is often managed by abstraction. For
example, source code is organized into functions, pro-
cedures, or objects with well-defined interfaces. Infor-
mation is stored in data structures, allowing algo-
rithms to be developed to manage abstract data struc-
tures. Abstraction methods are often used in systems
administration as well. We often create a set of scripts
or a tool for performing some particular function. As
evidenced by the growing complexity in our field, we
need to investigate more powerful abstraction mecha-
nisms.

The work in this paper is part of an ongoing pro-
ject to understand the underlying principles of systems

1997 LISA XI — October 26-31, 1997 — San Diego, CA

administration. It is hoped that a deeper understanding
will result in tools and methods that can be used to
build stronger abstractions, and in new administration
models that help to reduce the complexity of manag-
ing large and diverse sites of all different types.

The particular area discussed in this paper is that
of operating system configuration files — the files in a
UNIX system that control how the operating system
and its constituent services perform. Classic examples
are /etc/passwd, root’s crontab file, and /etc/inetd.conf.
The number of files configured on any particular sys-
tem varies dramatically from one site to another and
one architecture to another, but can range from a small
handful to perhaps a hundred. Ultimately, these are the
files that determine who can use the machine, how it
can be used, and what takes place on it.

These configuration files are a good area of
study because they are relatively simple but can lead
to complex issues. They are quite well understood at
the single-system level, but they require a very care-
fully planned strategy in a network of several thou-
sand hosts. Each configuration file is a self-contained
problem; but the files are typically grouped together,
making them a choice candidate for an abstraction that
encapsulates all configuration management in a sys-
tem. In understanding how configuration files are cre-
ated, managed, and distributed at a site, one will typi-
cally have to understand the site’s management model
(and, often, the political intricacies). In this way, con-
figuration file study becomes a platform for under-
standing the other aspects of systems administration.

The goal of this study is to understand the oper-
ating system configuration process and the problems
associated with it, to look at how different sites have
approached this problem, and to consider various
abstractions for managing the configurations of multi-
ple hosts.

Although the problem of the complexity of sys-
tems administration spans all different types of com-
puters, organizations, and management approaches,

179

An Analysis of UNIX System Configuration

this study was limited in scope in order to make it fea-
sible. The discussions in this paper are principally
applicable to heterogeneous networks of UNIX
machines.

Configuration Management Background

Configuration file management is not a new
topic to the systems administration community. Yet,
despite multiple papers on the topic, there does not yet
appear to be a commonly accepted approach to build-
ing new machines, configuring existing systems, or
managing the files used in the process. While this may
be a problem for systems administrators, it also means
that there is a wealth of information from which to
draw potential solutions.

As part of the background for this study, I spent
some time reviewing the history of configuration sys-
tems. A detailed discussion of this review is in itself
quite interesting but beyond the scope of this paper. A
quick summary, however, may be help set the context
of the study.

Interest and work in this topic dates at least as far
back as the days of LISA I (all the way back to the
Reagan years), when Ken Stone [Stone] presented a
paper that described HP workstation disk cloning,
making initial modifications with sed, and then per-
forming later updates with rdist. Ironically, nearly the
same method is used today in several very large sites.

Over the next several years, Sun Microsystems’
NIS [NIS] became more widely used, due in part to
the 1991 publication of the book Managing NFS and
NIS by Hal Stern [Stern]. Other solutions from ven-
dors appeared, including the Tivoli Systems Manage-
ment Environment [Tivoli].

Several configuration systems and cloning
scripts were detailed in various LISA proceedings.
Then in 1994, in LISA VIII, the community nearly
exploded with four configuration systems:

¢ Anderson’s lcfg [Anderson]

¢ Harlander’s GeNUAdmin [Harlander]

e Imazu’s OMNICONTF [Imazu]

¢ Rouillard and Martin’s Config [Rouillard]
Each of these is quite different, but they share some
interesting similarities. First, each grew out of a need
for a more powerful tool than was currently available
to the author. Second, each maintains a central
description or database of the configurations that
should be installed on individual hosts. I recommend
that scholars in this area examine Anderson’s paper
for an excellent summary of the state of host configu-
ration at this time.

In following years, configuration systems were
used in increasingly sophisticated ways, or perhaps
more accurately, were seriously discussed as a part of
other processes for the first time. Shaddock and fellow
authors [Shaddock] discussed a use of their sasify sys-
tem to do a massive upgrade of 1500 workstations.
Fisk [Fisk] the rather hazy barrier between machine

180

Evard

configuration and software distribution, and described
a system that tackled both areas as part of the same
problem.

The general approach taken by the administrative
community over this time period has been to develop a
host cloning process and then to distribute updates
directly to hosts from a central repository. The diver-
sity of solutions developed illustrates that this is a
basic problem for many sites with — as is not surpris-
ing — a wide range of requirements.

Site Case Studies

During the past two years, I moved from a site
where we had rigorous configuration management to a
site that had ad-hoc methods of keeping machines up
to date with good informal methods but no formal
structures in place. The difference between the two
sites struck me as remarkable. This was one of my pri-
mary motivations for examining configuration files in
detail.

Initially, I thought that my new site would be
much more difficult to manage at the host level,
requiring a lot more hands-on management, but that
was usually not the case. Instead, the differences were
really about how easy it was to manage the entire
environment.

At the first site, it was easier to delegate manage-
ment of machines to different people, because no sin-
gle person had the configuration of an architecture in
their head: it was all kept in the central configuration
files and build scripts. Global changes such as an inetd
replacement or a new shell could be easily performed,
and so they often were, making for a rich environ-
ment.

On the other hand, at my new site, it was much
simpler to handle new architectures, because there was
no overhead in assimilating them into a global system.
One simply set up the machine, tweaked it until it
worked, warned new users that it had a minimal envi-
ronment, and then left it alone. This resulted in more
flexibility at the host level and less in the larger envi-
ronment.

Intrigued by these differences, I started to talk to
administrators at other sites to learn how they handle
configuration management. During the past year, I’ve
talked about the issues with approximately thirty dif-
ferent groups. These studies were informal, usually
occurring as a series of conversations on the phone,
around a whiteboard, or over lunch.

I present a summary of a number of these discus-
sions here in order to impart a general idea of the
range of the sites and strategies. These sites are not
intended to be representative of the industry as a
whole; a far larger study would be required for that.
Instead, they provide insight into how other sites do
configuration management, and the general state of
systems administration at a number of different sites.

1997 LISA XI - October 26-31, 1997 — San Diego, CA

Evard

All sites and participants have been kept anony-
mous except for Northeastern University. I worked
there and played a large role in the design of its sys-
tems, and feel that I should acknowledge my own role
in the evaluation of its environment.

Case Study 1 — Northeastern University

The College of Computer Science at Northeast-
ern University runs a network of approximately 70
Suns, 40 Alphas, 50 PCs running Windows variants,
50 Macintoshes, and a number of special purpose
UNIX machines. These are managed by a central
administration group that is responsible for all aspects
of the technical environment.

At NU, a new machine is built by installing an
operating system from media, following a set of
instructions to configure it, and then applying modifi-
cations from the network. NIS is used to coordinate
most of the files that it can support. All other configu-
ration files are maintained in a central location under
RCS. The configuration directory is NFS exported to
all hosts. Machines are updated manually by using a
homegrown system based on a root rsh mechanism
from a central server that then installs the correct file
onto that host. A number of tools have been built
around this mechanism to automate the distribution of
files. In general, changes to local machines are kept to
a minimum through this mechanism, even though sev-
eral machines have very different configurations from
others (in part because the central repository is able to
store different configurations for different machines).

When the system was first installed, it solved a
number of important problems. Over the years, the
environment has grown more complicated. The
administrators have identified new requirements for
the system, such as keeping changes to the OS and
other configuration information on all client machines
in sync, even when machines are down temporarily.
This is especially important to them in order to keep
all machines current the latest vendor security patches.
They expect to completely rework the system soon.

Case Study 2

Site 2 is a computer science department with
about 70 UNIX-based computers. The majority of
these are dataless machines (with just swap on the
local disk) that get their filesystems over the network
from an Auspex NFS server. The remaining comput-
ers are SGIs, and can’t boot from the Auspex, so use
their own local disks and a centralized /usr/local-like
scheme.

If a machine is a client of the Auspex, building is
pretty simple: an additional set of directories is created
for that machine, and it is configured to netboot from
the Auspex. Changes to those machines’ configura-
tions are done on the Auspex, by editing the file
directly on the Auspex’s file system and then copying
changes to the other clients. RCS is used for change
management of key system files.

1997 LISA XI — October 26-31, 1997 — San Diego, CA

An Analysis of UNIX System Configuration

The other machines in the department are set up
individually, each by hand. If changes need to take
place to them, the administrator logs in and makes
those changes. There is some expectation that this
method won’t scale to large numbers of machines, but
that’s not seen as an important issue at this time.

Case Study 3

Site 3 is a large Fortune 100 corporation. There
are many groups within the company who are respon-
sible for different parts of the infrastructure. The par-
ticular group that was interviewed is responsible for
the environment for a large development and engi-
neering segment of the company. The set of machines
that they are responsible for includes 1000 Sun work-
stations and 5000 X terminals. In addition, some peo-
ple in the group have responsibility for other architec-
tures within the company including HPs and SGIs.
The approach to managing these other computers is
completely different than the management of the Suns,
and was not discussed during the interview due to a
lack of time. The group is responsible for the operat-
ing system and the applications on the Suns, but does
not manage the network, or some networked applica-
tions like email. Their users and the machines they
manage are in multiple locations spread around the
world.

This group has divided their computers into
small modules, each consisting of a machine for gen-
eral logins, an application server, and a number of
compute servers. Users are associated with one partic-
ular module and use X-terminals to access the
resources.

The machine configurations are kept on a set of
master hard drives. New machines are cloned from
these hard drives, and then the initial boot-up script
asks a series of questions in order to initialize the host.
The master configurations are rigorously maintained,
with files documenting all changes kept in critical
directories.

NIS is used to distribute password, group, and
netgroup information. In order to scale NIS to their
environment, the group rewrote the NIS transfer
mechanism to introduce another layer of hierarchy.
Some files, such as /etc/passwd, are pushed out using
an rdist mechanism, while other files, such as
/etc/printcap, are maintained largely by hand and dis-
tributed by complex scripts to each system architec-
ture. OS patches are kept on designated OS masters,
with changes tracked in RCS control files. These
patches are distributed using a combination of rdist
and ftp.

In some cases, the group has to do direct hands-
on management. Notably, the administration group
had to install the 5000 X-terminals and configure them
by hand because of security concerns and an SNMP
bug.

181

An Analysis of UNIX System Configuration

The group is having troubles with the disk
cloning strategy because of an increasing number of
variables: operating system versions, different sizes of
disks, different types of computers, and, most impor-
tantly, organizational changes.

Case Study 4

Site 4 is a growing company currently expanding
to multiple campuses. The primary UNIX computer
users are engineers using CAD applications. A central
administration group is responsible for all aspects of
managing the computing infrastructure, and is divided
into several different groups with separate areas of
authority, such as UNIX, PC desktops, and network-
ing. The environment consists of 1500 Intel-based PCs
and 900 UNIX machines, most of which are Suns run-
ning Solaris 2.5.x. There are also a dozen HPs and
SGIls that are managed independently by specialists
within the UNIX group.

The Suns are built by using Sun’s JumpStart
[JumpStart], which solves the build and initialization
issues. The group uses NIS to manage password and
other changes. Further configuration of machines
almost never takes place, due to a very strong empha-
sis on centralized servers. When changes do need to
take place, they are pushed out from a server using a
script wrapped around rdist, which takes advantage of
clever hostnaming conventions in order to make deci-
sions about what hosts to affect. Central files are not
kept under revision control, but backup copies of criti-
cal files will typically be maintained.

The group uses approximately 30 servers to sup-
port the 900 Suns. Those servers are managed in a
more ad-hoc way, with a lot of hands-on modification
of configurations, primarily because the servers span a
wide range of services and hardware.

Interestingly, the smaller HP and SGI environ-
ments are managed in a much looser way, with indi-
vidual host configuration typically taking place
directly on the host. Thus, the centrally managed
approach of the Suns comes from a need to manage on
a large-scale, not from a mandate from management.

The group anticipates that the next operating sys-
tem upgrade may be very difficult and, despite the fact
that machines are well behaved in this system, is ner-
vous that things are on the verge of getting compli-
cated.

Case Study 5

Site 5 is a small university department serving a
combination of computer science and art graduate stu-
dents. Their network consists of some thirty SGls, a
couple of Suns, and a scattering of Intel-based and
Macintosh personal computers. The direction of the
infrastructure is determined almost entirely on the
availability of funding and the need for project devel-
opment and demos.

Each of the SGIs is generally built from CD-
ROM or by doing a byte-for-byte copy of the system

182

Evard

disk of a previously built system. Since performance
for demos is a big concern, patches are applied very
sparingly, and considerable work is done to verify that
the vendor patches do not break or slow down existing
code.

Each machine is individually maintained by
hand. This approach is taken to avoid having a central
machine that, if compromised, would allow for easy
compromise of others. In this dynamic university
environment, security is a big issue. Each systems
administrator has an individual root account in
/etc/passwd on a given machine. Various people in the
environment, beyond the system administrator, have
root access to selected machines in order to facilitate
research and development by installing software,
changing kernel configurations, and permissions for
/dev devices.

NIS is used to allow department-wide logins.
The system administrators of this network control
their NIS maps, but send email to another group for
updates to their DNS tables. It is felt that the time
required to set up a DNS server would be better spent
on immediate pressing issues.

Any systems other than SGI are maintained fit-
fully or not at all; attention is given to them only in the
case of a particular user need or security incident.

Backups of system areas of critical machines are
performed, but users are expected to back up their
own files as the user deems necessary. DAT tape
drives are provided in public areas for this purpose.
There is no change management for configuration
files; copies of relevant files can usually be found on
similarly configured machines.

The administrator of this environment is well
past the point where he can keep up with all of the
changes that need to take place.

Case Study 6

Site 6 is a financial company that is spread
across several cities. As with many large sites, the
infrastructure is managed by several different groups,
who are divided both according to function (i.e., net-
working) and according to company directions (i.e.,
all activity based around one type of interaction with
clients). The focus of this study was a part of their
computing infrastructure used to build, maintain, and
run one particular application, where uptime during
business hours is the prime directive. This environ-
ment consists of about 350 Suns, all running Solaris.
200 of these are used for running the application, 100
of these are development and support machines, and
the remainder are servers of various types.

NIS is used within this environment to deliver
passwords, automount maps, and some special maps
used by administrative applications. NFS is barely
used, because of the importance of minimizing depen-
dencies.

1997 LISA XI - October 26-31, 1997 — San Diego, CA

Evard

The application machines are critical and are
carefully controlled. They are built either from Jump-
Start or from a cloned disk that boots up into an inter-
active initialize phase. The developer machines are
less carefully managed, and will typically be built by
hand. The servers run on a number of different types
of Sun hardware and have all been custom-built. The
group uses an internal web page to maintain a check-
list of things that should be done when building a
machine. Over the past year, one of the group’s major
projects has been to get the servers and the devel-
oper’s machines “rationalized” or similarly config-
ured.

Each machine has a separate root password, and
there is no centrally authoritative machine. However,
the group uses a “master root cron” mechanism to
achieve the same effect. Every half hour, the cron job
checks to see whether there is a new crontab available
on any of several replicated NFS servers. If so, it is
copied in as the new crontab, which is, of course, exe-
cuted as root. The group uses this mechanism to install
carefully crafted patches, to update configuration files,
and to make global changes as necessary.

The group is pretty happy with their system.
Other than the dependence on NFS for some central
functions, the environment is quite failsafe and reli-
able. There is some dissatisfaction with the server and
development environments, but those are being fixed
during the reconciliation process. The hardest prob-
lem they have is finding all the machines.

Case Study 7

Site 7 is a research lab with an emphasis on com-
putational science. The infrastructure consists of sev-
eral supercomputers, a UNIX-based workstation net-
work with over 100 UNIX machines of many different
types, a growing number of PCs, and a production net-
work based on ethernet and ATM. Most of the infras-
tructure is managed by a central group, with some of
the experimental labs being managed by individuals
focused in that area. This study focused on the
machines managed by the central group.

There is one NIS server for the department, and
all machines are a member of the NIS domain. NFS is
the primary remote file system in use, although AFS
and DFS are used minimally. The build process for a
new machine depends on what type of computer is
being built, but the group is working to standardize
methodology. Typically, one will install the operating
system onto a machine from CD-ROM, then follow
written instructions to get the machine onto the net-
work. After that, a script applies relevant patches and
makes changes to the local machine.

Many changes are handled through NIS, but
occasionally changes must be pushed out to all
machines. When this happens, the group generates a
list of machines and then does an rsh from a central
server to push out the changes. Until recently, no pre-
cautions were taken to check for machines that were

1997 LISA XI — October 26-31, 1997 — San Diego, CA

An Analysis of UNIX System Configuration

down, or to use revision control on the sources of the
files. Some of the machines in the environment are
special purpose or specially configured, and the set of
machines is constantly moving and being reconfig-
ured, so a hands-on approach was the simplest to
develop.

This approach resulted in a somewhat inconsis-
tent environment and was too difficult to use for all
but the most serious modifications, so individual hosts
weren’t tuned often to match new requirements. When
they were updated, the build scripts weren’t necessar-
ily changed to reflect that update, so machines built
after the change might or might not have that new
change.

The group is moving to a centrally managed set
of configuration files, and a standard mechanism for
installing new hosts based on these files and central-
ized sets of OS patches. There are two main concerns
with this system: first, it must support individual
machine idiosyncrasies, and second, it must be able to
handle machines that are down or disconnected from
the network.

Case Study 8

Site 8 is an engineering department in a univer-
sity. A lot of the administration work is done by stu-
dents, and the policies and procedures reflect this. The
large environment consists of many different types of
UNIX machines, including BSDI, NetBSD, Solaris,
SunOS, Alphas, HPs, and some Windows boxes and
Macintoshes added for flavor.

Many machines are built by students by hand.
Others are built by doing a network boot and then get-
ting the latest set of modifications.

A set of HPs is used for most of the central man-
agement. The HPs use both NIS and rdist to distribute
files into the environment. In many cases, the source
files are built by using either Perl or m4 macros,
because the environment is complicated enough that
the source files are hairy. The rdist files are built using
gnumake, and the source files are kept under RCS.
They’ve found that, because of the number of new stu-
dents they work with, detailed logging is important.

This is a rather complicated system, and one of
the most difficult tasks is to incorporate new architec-
tures into it. The administrators would also like the
ability to put comments and documentation within the
source of files, and feel the need for a comprehensive
database of hosts.

Case Study 9

Site 9 is a research lab with a focus on computer
science. The UNIX environment consists of about
fifty DEC Alphas running Digital UNIX, along with a
few SGIs.

Builds of new machines are done by using a cus-
tomized version of the Digital UNIX install process. It
builds the local machine, makes some modifications,
and then invokes an rdist on the machine to add files

183

An Analysis of UNIX System Configuration

from a central collection. The administrators can build
a number of machines simultaneously, spending only
about five minutes per machine. The entire process
takes about two hours.

The site uses a rdist system to manage configura-
tions on all of the machines. It is used to push out
aliases, fstab, automount files, printcap, and others.
The rdist scripts are run nightly, and not invoked
directly by the administrator. Maintaining the list of
target hosts for rdist is one of the bigger problems.
The files that are pushed out are generally maintained
by hand, although some of them have special rules
that are applied on distribution. For example, fstab
incorporates any fstab.local it finds on the target
machine.

The site does not use NIS, so all password
changes must take place on a central machine. New
accounts and password changes are pushed out using
the rdist system.

The administrators aren’t particularly happy with
the mechanism, although it works. Among other
things, they would like to see a pull mechanism rather
than a centralized push. The system has been in place
for quite some time, and given the staffing levels, they
are unlikely to be able to change it for some time.

Case Study Observations

As I mentioned above, this sample set is too
small to generalize to the entire industry. Nonetheless,
a number of interesting observations can be made,
some of which may help to understand what is needed
in a stronger abstraction method.

¢ Almost every site uses NIS, although some use
it to distribute for only a few maps, while oth-
ers used it for every map intended.

¢ No site uses NIS+, not even the Sun-only sites.

¢ No one seems to settle into a definitive way of
doing things on every host. Most sites have
more than one method that they use for build-
ing machines and more than one method to
configure them. Site 6 is a good example of
this; they use JumpStart in some cases and disk
cloning in others (once they even participated
in a race between two administrators who

Evard

favored different approaches). Site 7, while
having a build script for some architectures,
doesn’t have a build script for others. some
architectures, didn’t have a build script for oth-
ers.

e The large sites typically have a very controlled
method for managing most of their machines,
and a more ad-hoc method of managing their
servers. The way they manage their thirty
servers often is similar to how a thirty-machine
site manages its entire environment. This fact
has some very interesting ramifications.

¢ Centralized management and automated build-
ing of some type or another are done at nearly
every site with fifty or more machines. In the
cases where this isn’t true, building is done by
giving a cd-rom and a set of instructions to a
student (which is nearly the same as automated
building).

¢ Once a site has a strategy, it is stuck. Whether
the staff have invested heavily in one vendor’s
build mechanism (like JumpStart), or an Aus-
pex, or a management scheme, they find it very
difficult to move beyond the restrictions
imposed by that scheme. This is one reason that
a major OS upgrade or the installation of a new
architecture is so hard. Not only must the
administrators learn the nuances of the new
system, they have to modify their existing prac-
tices in order to support it.

¢ At some sites, changes take place constantly, at
others rarely. This appears to be a function of a
number of variables: how comprehensive the
build process is, the ways in which the
machines are used, and the need for the envi-
ronment to stay modern. Schools and research
labs seem to have more dynamic environments,
while corporations seem to focus on supporting
one type of application and then not changing
once the application works well.

¢ A surprising number of people feel that keeping
track of machines is the hardest problem they
have with configuration. If a complete list of
machines could be generated, it would be much
easier to keep them up to date.

Site Environment Build Configure Revision
1 100 various Media + Script NIS, file push RCS

2 70 dataless Suns Copying NIS, edits RCS

3 1000 Suns Disk clones NIS, rdist -

4 900 Suns JumpStart NIS, rdist .bak

5 30 SGI Media NIS, edits -

6 350 Suns JumpStart / Clone NIS, cron copies -

7 100 various Media + Script NIS, edits -

8 100 various Media + Script NIS, rdist RCS

9 50 Alpha Digital UNIX install rdist RCS

Figure 1: Environment attributes.

184

1997 LISA XI — October 26-31, 1997 — San Diego, CA

Evard

¢ Some sites differentiate between the build pro-
cess and the configure process. Others don’t
touch a machine after building it, except in
extreme cases, while still others don’t have any
more formal build process than a set of notes
from the last time they did it. Again, this comes
down to what the computers are being used for.

¢ Everyone in the survey who has an update sys-
tem uses a push mechanism. In some cases, the
hosts pull down the files, but that pull is initi-
ated from some central spot. No one is doing an
explicit pull, where the action on the host is ini-
tiated by the host or the user on the host. (This
may come from the fact that I always spoke
with an administrator who was part of some
kind of central support organization, not with a
user who was responsible for their own
machine.)

Also, a few notes of non-technical nature:

e Everyone has a different definition of what
“server” means.

e Nearly everyone feels overworked and said

An Analysis of UNIX System Configuration

something similar to “I’ve been too busy to
take the time to go back and fix that.”

e If you’ve seen one machine room, you’ve seen
them all. But it’s still a lot of fun to see them
all.

An In-Depth Look at One Site

For four years, Northeastern University’s Col-
lege of Computer Science (Site 1 in the above section)
has been using a central configuration mechanism to
manage most of its files. I have studied the files in this
system in some depth in order to understand what was
being changed and how often those changes took
place.

A Dbit of background on the NU configuration
system will be helpful. The system is based on a cen-
tral NFS repository, where all UNIX machines,
regardless of architecture, retrieve their files. Multiple
copies of a single type of file can be kept, with specifi-
cations based on hostname and architecture type. So,
for example, if a sun4 named ““sol”” were to look for a

Different Different
File Versions Revisions Type File Versions Revisions Type
amd 2 1-2 admin tool | svc.conf 2 1 (ON
cops.cf 3 1 admin tool | syslog.conf 8 1-7 (0N}
etherdown 1 1 admin tool | termcap 2 3 (ON]
newsyslog 2 1-3 admin tool | ttys 2 1 (ON
rotlogs 1 1 admin tool | ttytab 10 1-2 (ON
staticroutes 1 1 admin tool | rc 5 2-3 OS bootup
sudoers 1 1 admin tool | rc.local 11 4-14 OS bootup
super-users 3 50 admin tool | rc.priv 25 1-17 OS bootup
watchmerc 11 1-4 admin tool | hosts.Ipd 1 1 printer
crontab 7 1-4 cronrelated | printcap 10 1-10 printer
daily 16 2-26 cron related | aliases 1 2 service
hourly 5 3-11 cronrelated | ftpusers 1 1 service
monthly 4 1 cron related | hosts.allow 9 6-16 service
weekly 10 2-11 cron related | hosts.deny 6 3-6 service
bootparams 1 1 (0N Ibed 1 1 service
bootptab 1 5 oS mrouted.conf 4 1-6 service
exports 3 1 oS ntp.conf 4 3 service
format.dat 2 2/3 oS resolv.conf 6 1-4 service
fstab 1 1 oS sendmail 2 1 service
group 4 1-2 oS sendmail.cf 2 2 service
hosts.equiv 1 1 (0N zshenv 1 5 shell
inetd.conf 11 4-15 (N} profile 1 5 shell
magic 1 1 0S profile.bash 1 4 shell
nis 1 6 0S tesh.cshre 1 6 shell
passwd 45 1-10 (N} Xconfig 1 1 X config
securenets 1 3 0S xlogin 1 1 X config
securettys 3 1 0S Xsession 1 1 X config
services 4 1-2 oS Xsetup 1 1 X config
shells 2 1-3 (0N} Xstartup 1 1 X config
Figure 2: Northeastern’s config files.
1997 LISA XI — October 26-31, 1997 — San Diego, CA 185

An Analysis of UNIX System Configuration

passwd file, it would first select the file “passwd.sol”
if it existed. If not, it would select “passwd.sun4.” If
that didn’t exist, it would copy “passwd.”” This mech-
anism allows the administrators to set up defaults for
the system, override those for specific architectures,
and then override those for individual hosts. Thus, if
one file will suffice for the entire system, there will
only be one copy of it in the repository.

I’ve grouped these files by their function as I
perceive them. For each file, I’ve noted two pieces of
data:

e “Versions” is the number of different copies of
that file are kept in the repository (so for the
above example there would be three copies of
the passwd file).

e “Revisions” is the number of times that file has
been modified during the last four years.
Because each version of the file might have
multiple revisions, I’ve given the range of revi-
sions.

The files are listed in Figure 2.

Some of the entries in the figure require some
explanation or deserve some comment:

e After five revisions, bootptab has moved out of
the config system because it is being autogener-
ated from a database of hosts.
exports and fstab are in the repository but aren’t
actually distributed by the system. Instead,
these are managed by hand on all hosts.

e group is the copy of /etc/group with NIS hooks
in it.

¢ passwd has an enormous number of different
versions. All differences amount to which net-
groups are in which files, since this environ-
ment has restrictions over who can log in to
which machines. Even with this number of
files, it is possible to change the root password
everywhere by running a sed script to change
all of these files, and then typing "pushfile
/etc/passwd".

e aliases and ftpusers are no longer used, since

they are maintained as part of the central mail

and ftp servers.

hosts.allow and hosts.deny are part of the tcpd

program, which controls access to various

ports. These files have been changed exten-
sively.

e sendmail is the actual sendmail binary. This is
an interesting change for the config system,
which, other than this file, is used only for
ASCII files.

e amd is a script used to startup and shutdown the

amd automounter.

etherdown, rotlogs, and staticroutes are home-

grown utilities.

¢ super-users is a file used to list who can have
super-user access on a machine. At one point,
there were many more versions of this file than

186

Evard

just three, but the differing copies were recently
eliminated.
hourly, daily, weekly, and monthly are scripts
executed by the root crontab at the frequencies
you would expect. These are typically used to
do maintenance on various kinds of servers,
such as rotating logs, cleaning up tmp, and so
on. The high number of daily and weekly files
reflects the number of machines running cus-
tomized services.

e rc, rc.local are used on suns to replace /etc/rc
and /etc/rc.local.

e rc.priv is an augmentation of /etc/rc.local that is
typically host specific, often used to start ser-
vices on that particular machine such as a web
server. Again, the high number of these reflects
the number of machines running customized
services.
tesh.cshre, profile, profile.bash, and zshenv are
the central files used to control all of the shells
in the environment. These are changed only to
make major changes to the default environ-
ment. Most PATH changes and other modifica-
tions are set using a different system.

e The various X* files are part of the Alpha CDE
environment, and have a small number of revi-
sions because they are newly added to the
repository.

From this information, it is possible to make
some statements about the role of the configuration
management scheme at Northeastern. It is not clear
how many of these observations will be relevant to
other sites, but they nonetheless provide some insight
into what kinds of patterns may be observed in the
configuration of a network.

¢ A file that only has one copy and a small num-

ber of revisions is typically a file that was

shipped with the OS but changed just a bit.

The build process copies in the changed version

of that file.

e The repository is used to change existing OS
files, to add new files to the OS, to distribute a
binary, to distribute scripts, and to distribute
local configuration files for various processes.
This is more than a simple configuration mech-
anism, but less than a complete solution, since
it doesn’t really handle software distribution,
operating system patches, and other types of
modifications. The system seems to have
evolved into a mechanism for pushing out
“things on individual machines that change or
need to be kept locally.”

A number of files in the repository aren’t dis-

tributed to hosts anymore, and some never

were.

¢ It is not possible to gather this information from
the table, but is worth mentioning that over
twenty different people made modifications to
the files. The system uses RCS for change

1997 LISA XI - October 26-31, 1997 — San Diego, CA

Evard

management, and this seems to have worked.

A very small number of files had changes that
were made and then reversed. RCS was used to
detect a problem and move back to the last
known good configuration. This does not seem
to have been a common occurrence.

At a first glance, it’s difficult to generalize the
number of times a file is likely to be changed.
However, there are some distinct patterns. Files
like super-users and passwd were changed quite
often, due primarily because of changing roles
of users. New students would arrive and be
given root privileges, new machines were pur-
chased on grants and had to number of people
who could use them had to be constrained. In
these cases, the files have some direct relation-
ship to the role of the people who use the com-
puters, so they changed more often than files
that didn’t.

Another type of file that changed relatively
often were those relating to some aspect of the
physical environment, such as printcap, which
had to be updated every time a new printer was
purchased or an existing printer was moved.
Files relating to the purposes of a specific
machine, notably inetd.conf and the daily cron
jobs, tended to have a high number of different
versions, with some of those files having a high
number of revisions.

For the most part, the number of times that files
change over the course of four years is pretty
small. This may imply that emphasis should be
put into the process of building a machine and
getting it up to date with respect to the rest of

An Analysis of UNIX System Configuration

the environment, rather than working on the
process of distributing files.

e Some files aren’t in this repository at all, or
were in it but then their functionality moved
away. This reflects a move toward centralizing
a service, or encapsulating the functionality of
the file into a different system. For example,
sendmail.cf and aliases were minimally updated
because major changes took place on the cen-
tral mail hub. (In contrast, the aliases file on the
hub has been updated 961 times during the
same period.) Files like group, passwd and
bootparams are generally updated via NIS. The
central files for the shells are only updated min-
imally because they use another systems to set
global paths (which has been updated 62
times). /etc/motd is not updated via the configu-
ration system because it is never changed.
Instead, the group uses a msgs-like system to
make announcements. In every case, the move
to a centralized system made the function pro-
vided by that file easier to manage and support.

Finally, to complete the story, the primary maps that
are distributed via NIS at Northeastern are listed in
Figure 3. In this figure, the “revisions” column also
refers to the number of times the file has been updated
since 1993. A few entries are worth describing in
detail.

e The amd.* files refer to various automount
maps used by the AMD automounter.

e The amd.home file has a line in it for each user
of the system, specifying the mapping of their
home directory.

¢ The amd.net and amd.home are actually in their

1997 LISA XI — October 26-31, 1997 — San Diego, CA

File

Versions

amd.ftp

amd.net
amd.proj
archtree

ethers
group
hosts
netgroup

netmasks
networks
passwd
protocols
publickey
rpe
services
ypservers

amd.home

bootparams

netgroups.aux

5
3241
132
127

22
38

Figure 3: Primary maps at Northeastern.

187

An Analysis of UNIX System Configuration

second and third major releases, using a feature
of RCS that lets one change major version
numbers. This facility was used to mark major
changes in the environment. The revision num-
ber given is a sum of all changes in all releases.
e The netgroup file is created using a script that
collates several source files, some of which
come from a database. The actual number of
revisions is very difficult to calculate, but the
number of revisions to the source files is
approximately 2000.
The hosts map is not used to distribute hosts
information. It’s essentially empty. All name
lookups are done via DNS, which is largely
independent of the hosts map. The database that
is used to build DNS files has been changed
502 times in the last two years, and probably
1000 times in the last four.

Again, a number of observations specific to Northeast-
ern can be made:

e There are several orders of magnitude differ-
ence between some of these maps and others,
and several of the maps have been changed far
more often than any files in the configuration
system. It’s clear from the number of changes
in the passwd and amd.home maps that NIS is
being used to support those files in the environ-
ment that change the most.

¢ For the most part, the files can be categorized
by order of magnitude of their revisions.

o O(1000) files include amd.home, passwd
and netgroup. These are the files that
must be changed in order to create a new
account and arrange for it to be usable.
These files reflect daily changes in the
system, and they are very tightly coupled
with the users of the environment.

0(100) files include amd.net, amd.proj,

and group. The amd files are changed

when the group adds new disks to some
computer somewhere and must make

o

o

o

o

Evard

them visible to the environment. The
group files are changed most often when
students enter or leave groups. These
correspond with the super-users and
password file changes in the central con-
figuration system. These files reflect
ways in which different parts of the
organization use the environment.

O(10) files include services and
ypservers. These change when some new
service or function needs to be added to
the environment, or when the network
structure is modified. They correspond
with centrally managed files like
inetd.conf, rc.priv, and daily. Changes in
these files reflect modifications to the
network and to machines used as
servers, and indicate a new function or a
major architectural change in the net-
work.

O(1) files are generally either unused or
setup once and then forgotten, reflecting
some part of the environment that rarely
changes. Ethers, for example, never
changes because this site does no disk-
less booting. Further changes typically
reflect minor fixes. This pattern is gener-
ally true with the centrally managed files
as well, although in some cases, such as
the shells, the small number of modifica-
tions is because the mechanism for
change has been delegated to another
part of the system.

Some files do not fit perfectly into this
ranking. For example, the hosts database
has been updated around 1000 times,
making it an O(1000) file. The hosts
database at this site is comprehensive,
including information such as architec-
ture type, IP address, user, and OS ver-
sion. Due to the expansive nature of this

Figure 4: The lifecycle of a machine.

188

1997 LISA XI - October 26-31, 1997 — San Diego, CA

Evard

information, it is hard to generalize
when changes are made to the hosts
database, other than to say that it is
changed whenever something relating to
the identity of a machine is updated.
More research into this area is required.
Keeping in mind that this data spans four years,
the actual number of revisions of files is less
important than how often they change relative
to each other.
It is possible for the password files and the
amd.home files to be maintained as actual files
on every host. This would require that new files
be pushed out on the average of three times a
day, which would pose several problems for the
configuration system, including delivery to all
machines (including ones that are down) and
speed of distribution. In general, the NIS mech-
anism scales better to a high frequency of
changes than their existing configuration sys-
tem.
The NIS system has achieved a certain degree
of abstraction at this site. The administrators do
not think of “adding a new user to the entire
network by changing a file in NIS,” they sim-
ply think of “adding a new user to the NIS
maps.”’
Whether these statistics and observations will corre-
late with those of other sites remains to be seen.
Regardless, it is hoped that this data will provide some
insight into where and how often changes are made in
a real-world environment.

General Observations and Theories

The real killer for systems administrators is
change. Requirements change, new versions of appli-
cations appear, hardware becomes outdated, users
change their mind about what they need . . . every-
thing’s a moving target. A configuration management
system, in part, is the process by which an administra-
tor controls and manages operating system and host
changes.

From the literature survey, the site interviews,
and the in-depth study of Northeastern’s configuration
file changes, I have collected a lot of observations and
developed a few conjectures about the patterns of
changes that take place on a host and in a network of
computers. It is important to understand these patterns
because they can be helpful in understanding the
issues and requirements in a configuration system.
Furthermore, they can be of help in developing
stronger models and abstractions that may eventually
result in an improvement in systems administration
methods.

Changes Within A Machine Life Cycle

The life cycle of an individual machine is an
interesting place to investigate the role of change. This
cycle in itself is a complicated process and worthy of

1997 LISA XI — October 26-31, 1997 — San Diego, CA

An Analysis of UNIX System Configuration

further study, but not in this paper. A sufficiently
detailed version of the cycle is given in Figure 4. In
the figure, a machine moves between these states:

e New. A new machine.

¢ Clean. A computer with the OS installed, but
not configured to work in the environment. (For
example, its network is unconfigured.)
Configured. A computer that is configured cor-
rectly according to the requirements of the
computing environment.
e Unknown. A computer that has been miscon-
figured, or has gotten out of date, or perhaps
been borrowed by an intern and returned with
stains on it.
Off. All done. Retired. Excessed. A dead par-
rot.

The interesting part of the figure are the changes
that a machine goes through as it moves between
states. These are “processes,”” and consist of:

¢ Build. During the build process, the operating
system is installed on the machine.

e Initialize. This occurs directly after build, and
at many sites, is thought of as part of the same
process. This is the initial set of modifications
to the OS image that are required to have the
computer operate in the environment. This will
typically include network configuration, and
may include OS patches and other changes.
Once initialization is complete, the computer is
(theoretically) a functional citizen of the com-
puting environment.

¢ Update. At some point after the initialization,

the computer will probably have to be modi-
fied. Perhaps the network configuration has
changed, or a user needs to be added, or an OS
patch needs to be applied, or the machine needs
some kind of new functionality. Whatever the
cause, the computer needs to be updated in
order to bring the machine into conformance
with the requirements. In most cases, this will
happen continually for the lifetime of the com-
puter.

Entropy. This refers to the gradual process of
change that results in a computer that has an
unknown state. The causes for this are numer-
ous; they include, for example, undisciplined
changes made to the machine, major changes in
the environment, or unexplained problems.
Debug. This refers to the process of debugging
an “‘unknown” machine, and getting it back
into spec. This is usually an intensive, hands-on
experience. Debugging can often involve
updating as well.

Rebuild. In some cases, a machine will need to
be rebuilt, either because of some kind of prob-
lem or because the changes to be made are so
drastric that simple updates make no sense. For
example, a rebuild is typically done when
upgrading from one major revision of an OS to

189

An Analysis of UNIX System Configuration

the next. The rebuild process usually consists
simply of reapplying the build and initialization
processes to the machine.

e Retire. This is the process of turning a machine
off. In some sites, there is an official process
for this, in others, it merely involves turning the
computer off or forgetting it exists.

Obviously, these are generalizations. In some sites,
and for some operating systems, the “build” and “ini-
tialize” processes are the same thing. At other sites,
there is no particular definition that can be pointed at
to say that a machine is “configured.” It may only be
“working right” or “broken,”” which, in effect, are the
same thing as “configured” and ‘“‘unknown.”

In fact, this may be an important point. The liter-
ature and common knowledge implies that there is
some strong definition of how a machine should be
configured in an environment. Yet the majority of the
sites that were interviewed could not say with cer-
tainty whether or not any of their hosts matched that
definition; they could only say that they were working
without complaint. It may be that we need a less rigor-
ous concept of an environment definition.

In this life cycle, the desired state of a computer
is the “configured” state, and almost all of the effort
in the life cycle involves trying to get a machine con-
figured and keeping it there. Changes to a machine
only take place in the process portion of the diagram.
So why do these processes take place, and what do
they entail?

The “build” and “initialize” processes take
place because a machine is in a known state (new or
clean) and must be brought into conformance with the
definition of a configured machine in the environment.
Here the machine needs to be updated, but the require-
ments are stable.

The “update” process takes place because a new
requirement has been identified, and the machine
needs to reflect that requirement. In this case, the
machine needs to be updated because the environment
has changed.

The “entropy” process is perhaps the most inter-
esting and least understood, and is the section of the
graph that needs the most expansion. For our pur-
poses, entropy includes any kind of situation where a
machine is discovered to not have the correct configu-
ration, and getting it back to where it should be will be
difficult.

The “debug” process can be painful and time-
intensive. It takes place only because entropy has
occurred. (This is different from debugging a known
configuration.)

Finally, the “rebuild” process takes place either
as an alternative to debugging, or because the changes
that must take place are so extensive that the “initial-
ize” process is preferred. The rebuild process is a way
of taking a machine in any state and moving into a

190

Evard

known and understood state. It takes place either
because of massive changes in the environment or
massive changes in the machine.

In general, changes must take place on a machine
for these reasons:
e The machine needs to conform to the environ-
ment.
¢ The environment has changed, and a machine
needs to be modified to match it.

Using this model, we can identify the high-level
requirements for an abstraction mechanism to manage
configurations:

¢ It must contain or have access to the definition
of the environment.

¢ It must be able to perform or replace each of
the processes that result in a configured

machine, i.e.:

o build

o initialize
o update

o debug

As noted above, all of the effort in the life cycle
is involved in getting a machine into the “config-
ured’* state. It may be worth considering a model in
which the configuration abstraction simply takes a
machine in any state and configures it.

Areas of Change

Modifications made to UNIX machine file space
are often categorized on into the following areas:

e The operating system. The kernel, libraries,
server processes, controlling files, initial appli-
cations and whatever else the vendor has
decided is part of their OS release.

e Software. Any additional software installed on
the machine beyond what was installed as part
of the OS. In some places, new software
installed only goes into /ust/local, while in oth-
ers, it may go anywhere.

e User space. Home directories, files in /tmp,
crontabs, and so on. On UNIX machines, the
presence of these files doesn’t typically impact
the configuration of the machine from an
administration perspective.

e Glue. The part of the computer that makes the
environment appear like one large system,
including such things as hooks for file system
mounts. User space and software is often acces-
sible via these mounts rather than residing on
local disk.

The distinction between the operating system and the
software installed comes to us because of the tradi-
tional model in use at many large sites: each individ-
ual workstation has its own copy of the OS, while the
software is delivered to them from a central server.
User space is typically centrally served as well. Thus,
the difference between OS and software can often be

1997 LISA XI - October 26-31, 1997 — San Diego, CA

Evard

“what is on the local machine” versus ‘“what is on the
server.”

In this distinction, for the purposes of worksta-
tion change management, the centrally served soft-
ware and user space repositories is usually considered
to be a different kind of configuration management
problem. They are not so much a part of machine con-
figuration as environment configuration. However,
software and user data is sometimes installed directly
on machines in order to improve performance or
reduce the dependency on the network. In these cases,
as was seen in the examination of the configuration
files at Northeastern, the differences between a config-
uration distribution scheme and a software distribution
scheme can become quite unclear.

This categorization also emphasizes the issue of
responsibility for change management, as shown in
Figure 5. Interestingly, the systems administrator is
involved in each area of change. Note that in the OS
and software areas, the sysadmin must work to config-
ure something that was created by someone else. Per-
haps that’s why systems administration is so hard.

The Role of the Environment Model in Host
Changes

The above discussion assumed a model where a
machine has its own copy of the operating system, and
gets user data and software data from over the net-
work. This is a simple model, useful for understanding
changes on a local machine, but very few real world
systems conform completely to it.

On one end of the spectrum is the environment
where every machine has its own OS, all local soft-
ware, and all local user space. This is often done
because the performance of local disk is so much bet-
ter than network disk, because the environment is so
small that the systems administrator (if there is a des-
ignated administrator) hasn’t had to discover the value
of centralized servers, or simply because everyone at
the site is very good at administration of their own
machine.

At the other extreme is the diskless workstation
or X terminal model, where absolutely no data what-
soever is kept on the individual machines, and every-
thing is served from some set of central locations. This
is usually done to make administration easier, but if
it’s not done right, it can still be quite difficult to man-
age.

An Analysis of UNIX System Configuration

The need for a configuration management sys-
tem may be less pronounced in some models than in
others. Ideally, an abstraction mechanism would be
applicable to the entire spectrum of data distribution
models. In examining existing systems, it appears that
one constant goal is to achieve the reliability and per-
formance of the independent machine model, while
achieving the management simplicity and environ-
mental consistency of the diskless model.

Change Magnitude Conjecture

Based on the observations of the orders of mag-
nitude of changes in the Northeastern University con-
figuration files, I propose this model for understanding
change magnitude.

Assume an organization with a sufficiently large
computing system, and the following sets of files:

e U — the files that contain information that
relates to the way in which specific users can
use the system

e G — the files that contain information that
relates to the way in which a particular group of
users can use the system

e [/ — the files that contain information that
defines the services that function in the network
and the architecture of the environment

o | — the files that are used to initialize services
that then reference centralized information
resources

In practical terms, files in set U change more
often than files in set G, files in set G change more
often than files in E, and files in set E change more
often than files in set I. Furthermore, in my observa-
tions, the ratio of changes between U and G is approx-
imately the same as the ratio of changes between G
and E, and so on.

In psuedomathematical terms, if C(X) means
“the number of times that a file of type X is
changed,” then there is a number k>1 such that

C(U) = kC(G) = I*C(E) = K C().

This postulation has yet to be proven in any formal
sense. In order to so, one would, at the very least, have
to come up with a more rigorous definition of the sets
of files.

However, if it turns out to be generally true then
it has important ramifications to those working on
configuration management systems. In particular, sys-
tems must best support distribution of files with a high
change value.

Configuration Responsibility

Initial Responsibility
(ON Vendor
Software 3rd party
User Sysadmin
Glue Sysadmin

Sysadmin
Sysadmin
User
Sysadmin

Figure 5: Responsibilities.

1997 LISA XI — October 26-31, 1997 — San Diego, CA

191

An Analysis of UNIX System Configuration

This also points out an interesting problem for
systems administrators. In this model, one would
expect that files in group U, which are related to spe-
cific user information and change the most often,
should only impact one user if there were a problem
with the change. Likewise, files in group E, which
configure system-wide services, should be more likely
to impact a large number of users at one time. While
this situation is true in general, it is most certainly not
true every time. If there is a problem in the NIS
passwd file or in the central DNS entries, it is entirely
possible for it to take down an entire environment.

We must design our systems so that the changes
that are made the most often have the least potential
for negative widespread impact.

The State of the Community

There is a disturbing dichotomy in the systems
administration community. The experienced adminis-
trators with whom I’ve discussed the contents of this
paper generally feel that the area of systems configu-
ration is well understood and that many of the points
contained here are nothing new. This may well be
true, since this has been an area of exploration for at
least ten years.

At the same time, these administrators and nearly
every one of subjects of the site survey indicated a
strong dissatisfaction with the system they were using.
None of the more sophisticated tools developed by the
LISA community were being used at any of the sites
that [visited. In fact, each of them used a home-grown
tool, often layered on top of rdist or NIS. None of the
newer administrators were aware of the work that has
been done by the community, and may be doomed to
putting out fires until they too have developed 20/20
hindsight and specialized scripts.

Even though our environments are changing like
mad, our standard methods for handling the changes
have remained largely the same. It is to be hoped that
a deeper understanding of the area will help to solve
this problem.

Towards a Stronger Abstraction

I began this paper by suggesting that systems
administration community needs stronger abstraction
models in order to manage complexity. Throughout
this paper, | have made observations that could be fac-
tored into the creation of such an abstraction. I would
like to close by summarizing a few key points about
possible abstraction models.

A good abstraction model changes the way in
which one thinks. It presents an interface and hides
implementation details. One should be able to think in
terms of “updating the environment” rather than in
terms of pushing changes out to hosts.

It may be necessary to change the configuration
model in order for it to support strong abstraction. A
few ways to do this were suggested earlier:

192

Evard

e Migrate changes into the network and away
from the host. The aliases file at Northeastern is
a good example of this model. Rather than
make changes on every host’s aliases file, or
even make changes to the NIS aliases map and
push them out, all changes are made on and iso-
lated to the primary mail server. The passwd
map under NIS is a bad example of this. Even
though the passwd map is the source of the vast
majority of changes, the local /etc/passwd file
must still be updated regularly on client
machines in order to change root passwords or
update the netgroups in the file.

The usual model is “configure from,” i.e., one
assumes certain information about a host (for
example, that it is up) and makes changes to
that configuration to get to the desired state. An
alternate model is “configure to,” where one
simply describes the desired final state, and it is
up to the machine to figure out how to get
there. The MIT Athena project [Rosenstein]
used a version of this model rather extensively,
but it seems not to have caught on much out-
side of the Athena environment.

Furthermore, it should be possible to instrument
and evaluate any methods or tools being used to
implement the abstraction. Libraries are often avail-
able with debugging and profiling information to
allow programmers to improve the quality of the code
that calls the library routines. One can compare library
routines and see which performs better, even if one
doesn’t know the details of the code. We need to be
able to measure our tools and understand whether or
not they have improved the quality of our systems
administration. This may require some kind of analy-
sis tools or formal models of the abstraction, perhaps
allowing one to describe the environment and the
changes applied to it in some kind of state diagram.

The ultimate goal is to improve systems adminis-
tration by making it easier to manage large and com-
plex systems. Hopefully, this study of configuration
mechanisms in practice today will help the systems
administration community move one step closer to
that goal.

Acknowledgements

This work was supported by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Computational and Tech-
nology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

My sincere thanks goes out David Blank-Edel-
man, Michele Evard, Bill Nickless, Gail Pieper, Gene
Rackow, and members of the MCS Support Group for
moral support and suggestions for this paper. In addi-
tion, I would like to express my gratitude to the many
anonymous folks who participated in the site case
study.

1997 LISA XI - October 26-31, 1997 — San Diego, CA

Evard

Author Information

Rémy Evard is the Manager of Advanced Com-
puting Technologies in the Mathematics and Com-
puter Science Division of Argonne National Labora-
tory. Among other things, this means that he looks
back fondly on the days when he had time to crash the
system in spectacular ways while exploring weird
administration ideas. He can be reached at
evard@mecs.anl.gov.

References

[Anderson] Anderson, Paul, “Towards a High-Level
Machine Configuration System,” LISA VIII Pro-
ceedings, 1994.

[Fisk] Fisk, Michael, “Automating the Administration
of Heterogeneous LANSs,” LISA X Proceedings,
1996.

[Harlander] Harlander, Dr. Magnus, “Central System
Administration in a Heterogeneous Unix Envi-
ronment: GeNUAdmin,” LISA VII Proceedings,
1994.

[Imazu] Imazu Hideyo, “OMNICONF — Making OS
Upgrades and Disk Crash Recover Easier,” LISA
VIII Proceedings, 1994.

[JumpStart] Sun Microsystems, http://www.sun.com/

smcc/solaris-migration/tools/docs/cookbook/30.htm .

[NIS] Sun Microsystems Inc., “The Networking Infor-
mation Service,” System and Network Adminis-
tration, 1990.

[Rosenstein] Rosenstein, Mark A., and Geer, Daniel
E., and Levine, Peter J., “The Athena Service
Management System,” Proceedings of 1988
USENIX Conference, 1988.

[Rouillard] Rouillard, John P. and Martin, Richard B.,
“Config: A Mechanism for Installing and Track-
ing System Configurations,” LISA VIII Proceed-
ings, 1994.

[Shaddock] Shaddock, Michael E. and Mitchell,
Michael C. and Harrison, Helen E., “How to
Upgrade 1500 Workstations on Saturday, and
Still Have Time to Mow the Yard on Sunday,”
LISA IX Proceedings, 1995.

[Stern] Stern, Hal, “Managing NFS and NIS,”
O’Reilly and Associates Inc., 1991.

[Stone] Stone, Ken, “System Cloning at hp-sdd,”
LISA I Proceedings, 1987.

[Tivoli] Tivoli Systems, Tivoli Management Environ-
ment, 1992.

[Zwicky] Zwicky, Elizabeth D., “Typecast: Beyond
Cloned Hosts,” LISA VI Proceedings, 1992.

1997 LISA XI — October 26-31, 1997 — San Diego, CA

An Analysis of UNIX System Configuration

193

194 1997 LISA XI — October 26-31, 1997 — San Diego, CA

