
The following paper was originally presented at the
Seventh System Administration Conference (LISA ’93)

Monterey, California, November, 1993

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Towards a POSIX Standard for
Software Administration

Barrie Archie
ICL

Towards a POSIX Standard for
Software Administration

Barrie Archer – ICL

ABSTRACT

The POSIX draft standard for Software Administration is about to go to ballot for
acceptance as a formal POSIX standard. Since this standard is likely to form the basis of
future Software Administration products it will have a profound effect on the facilities
available to administrators and the way they manage software. This paper explains how the
standard came about, gives a summary of the features and explains how systems
administrations can, via the balloting process, have an influence on the final standard.

Introduction

The distribution, installation and control of
software is an important and time consuming task
for administrators. Most vendors supply tools for
their own systems, but, especially in a network of
heterogeneous systems, administrators have often
had to resort to inventing their own methods. Previ-
ous papers at LISA have reported on some of these
efforts. To address this problem the POSIX Systems
Administration Group (P1003.7) set up a subgroup to
propose a standard for software administration.
Working from the specifications of existing tools this
subgroup produced a draft standard that will shortly
be balloted for acceptance as a POSIX standard.

The purpose of this paper is to bring to the
notice of a wide audience the impending ballot of
the draft standard and to encourage participation in
the ballot as well as to explain what is in the draft
standard and why. In describing the draft standard
more emphasis is put on the overall structure and the
background to what is there, than expounding the
detail. By doing this it is hoped that reviewers will
appreciate the conflicts that were addressed and the
process that led to their resolution. They will then be
in a better position to understand what the draft stan-
dard is trying to achieve and will be able to contri-
bute to maintaining a coherent standard.

This paper was prepared whilst the draft stan-
dard was still under development and so anything
stated here should be taken as a guide only - refer to
the standard itself for definitive information. Also,
for the sake of readability, some simpler terms have
been used in this description in place of the formally
defined terms in the draft standard.
Objectives

The subgroup defined three objectives that the
standard should address.
Administrator Portability

By providing an interface for software adminis-
tration that was consistent on all conformant imple-

mentations, administrators would be able to use any
such system without retraining.
Standard Packaging format

A common packaging format would enable
software to be processed on any conformant system.
This does not imply a architecture independent for-
mat, although it does not preclude it. Software can
only be run on an architecture it is designed for. It
does allow, however, for discless clients to be
catered for.
Distributed Administration

The provision of interoperability interfaces
enables distributed software administration across
systems. This can be done either through the com-
mand line interface or through a management appli-
cation specifically written for the purpose.
Standards

In order to be useful, a standard must define
interfaces or formats in a sufficiently rigorous way
that there should be no ambiguities that could result
in incompatibilities between implementations. How
this applies to POSIX standards is discussed in a
later section. However, attaining this necessary
rigour does not lead to a readable document. For
example, any particular aspect should only be
defined once in a standard, whereas for readability a
summary of the aspect might appear in several
places.
Rationale

In order to try to address the problem of reada-
bility POSIX standards contain sections of rationale.
These sections are intended to explain what parts of
the standard mean, how they are expected to be used
and why they are there. Even the addition of
rationale has its limitations, however, and cannot
substitute for the kind of overview being presented
here.
Scope

Another important consideration in defining a
standard is to limit its scope to something that can
be achieved in a reasonable time. There is a trade

1993 LISA – November 1-5, 1993 – Monterey, CA 67

Towards a POSIX Standard for Software Administration Archer

off here between what one would like to do and the
least one can do for a usable standard. In the section
on the history of this standard there are some com-
ments on how the scope changed over the definition
life cycle. An aim of this paper is to give some
information about how the standard came about and
why it covers some things but not others. It is hoped
that this will enable those who join the balloting
group to be in a better position to make comments.

POSIX Standards

POSIX Standards have to be approved by the
Project Monitoring Committee who will seek to
assure that the standard is reasonable, that it is based
on existing practice and that there is sufficient sup-
port to enable the work to be done. Once such
approval is obtained a group (or sub-group as in the
case of Software Administration) can be formed
which will meet at the quarterly POSIX meetings to
progress the development of the draft standard. At
the end of the development process a draft will be
produced which will be balloted
Balloting

To ballot a draft standard a balloting group is
formed. The IEEE uses appropriate means to adver-
tise that the group is being formed. Any individual
may join, but comments from those who are not
members of IEEE or the Computer Society are for
information only. To pass the ballot 75% of the bal-
loting group must respond and 75% of those
responding must agree to the standard. Agreement
can be the result of comments being taken into
account - the process known as ballot resolution. Of,
course if there are too many comments requiring
material changes it would be necessary to ballot
again.
Mock Ballot

It is customary for groups to engage in a mock
ballot prior to the ballot described above. The inten-
tion is to address the same audience and to find out
if there are any fundamental problems before going
to ballot. For Software Administration the mock bal-
lot showed that Configuration, Recovery and
Software Service (patching) would have to be
addressed in the draft to go to ballot.
ISO Standards

Once standards have been approved through the
balloting process they go forward to ISO for
ratification as international standards. This is handled
by Working Group 15 of SC22. There are certain
agreements in place between IEEE and ISO designed
to smooth this process by ensuring that the POSIX
standards will be acceptable to ISO without altera-
tion. One area where this affects the work is that a
POSIX standard can only reference other formal
standards. It cannot reference or rely on an imple-
mentation or de facto standard.

History

This section covers the way in which the draft
standard evolved. This is useful information for
understanding why the draft standard contains what
it does and why the facilities are defined in the way
they are.
Participation

One of the conditions of starting out on the
process of producing a POSIX standard is that there
should be sufficient commitment to enable the work
to be done. The subgroup was fortunate that there
were was a high level of commitment by several
companies and individuals. Most major vendors were
represented as were users, in the form of
living/breathing systems administrators. The sub-
group was also able to get work done between meet-
ing by the use of a mail reflector. In this way even
those who were not able to attend a particular meet-
ing could continue to contribute.
Existing Practice

Another condition for a POSIX standard is that
it should be based on existing practice and not be a
invention of the group, hence indicating that the
standard can be implemented. One of the first
actions taken by the subgroup, therefore, was to
examine the existing practice, and this was done by
inviting submissions, either or both of a paper sub-
mission or a presentation. The companies that made
such submissions are given in Table 1.

IBM
ICL

Digital Equipment Corporation
Hewlett Packard

SNI
SCO

UNIX Systems Laboratories

Table 1:: Companies making submissions

The subgroup found that all the submissions
had many features in common and that there was a
good deal of agreement in the facilities that should
be provided. Obviously, some features were only
found in some submissions and there were some
misalignments. Nevertheless, the subgroup was
encouraged by this to proceed, in the belief that
there was a good chance that the interested parties
could come to an agreement on a draft standard.

It should be noted that the requirement for
existing practice brings its own complications. These
can arise because existing practices in different areas
being addressed by the draft standard do not fit
together well, or because there is no one existing
practice that gives all the facilities identified as
necessary for the draft standard.

68 1993 LISA – November 1-5, 1993 – Monterey, CA

Archer Towards a POSIX Standard for Software Administration

Comparison
The subgroup drew up comparisons of the

documents submitted in order to determine the core
facilities and to examine the additional aspects of
particular submissions. Part of this work appeared in
the rationale of the draft that was basis of the Mock
Ballot.
Base Document

In order to start work on the text of the draft
standard, the subgroup decided to adopt one of the
submitted papers as a base document. The one
chosen was the SDU utilities submitted by Hewlett
Packard (also the basis of OSF DME software distri-
bution). Having adopted this base document the
group then proceeded to modify it so that it was
more generic and also covered important features not
found in the SDU utilities but which existed in other
submissions or identified as needed by the mock bal-
lot.
Mock Ballot

The document that was distributed for the
Mock Ballot was Draft 8. It was recognised that a
lot of work needed to be done on it before it could
become a formal standard but it was felt that the
time was appropriate to get a wider opinion of the
work so far. 67 people took part in the Mock Ballot,
sending in almost 1000 comments. Three of these
responses were classed as votes against the proposed
draft standard, the rest being qualified approvals.
Many respondents identified the lack of rigour, but
there were also many comments that pointed out
problems that might not otherwise have been
corrected before the formal ballot. In addition it
became very clear that Configuration, Recovery and
Software Service (patching) would have to be
addressed to make the draft standard acceptable. In
getting to draft 8 these items had been considered
and dropped due to a lack of existing practice and in
an attempt to simplify the task of producing the draft
standard. What the Mock Ballot clearly showed was
that many people saw them as vital parts of the stan-
dard.

Overview

This section gives a high level description of
the draft standard, the details of which are filled out
in later sections.
Components

The draft standard can be considered as consist-
ing of three key components, which are required to
achieve the objectives.
Packaging Layout

The draft standard defines the information that
is held about software on a distribution medium, as
well as the way this information is represented on
the medium. This definition enables the use of dif-
ferent media to distribute software (including

electronic transfer), optimising the use of each type
of media according to its particular attributes. The
draft standard does not define an architectural neutral
format but does not preclude it. However, it does
allow for the architecture of a product to be
identified and for variants of the product for several
architectures to be present simultaneously. Hence, an
appropriate variant may be chosen from several on a
medium.
Commands

The draft standard defines commands for per-
forming the various tasks that are needed in order to
perform software administration. The definition of
these commands is based on the submissions
received. On any conformant system an administra-
tor will hence have a consistent way way of dealing
with software.
Management Information

The draft standard defines the information
which describes the software being managed. The
draft standard does not define how this information
is stored for software that has been installed,
although it does define the way in which the tasks
use the information. The management information is
sometimes referred to as the Management Informa-
tion Base (MIB) by analogy with Network Manage-
ment standards, although this term will not appear in
the draft standard.
Roles

In order to provide a framework for producing
the draft standard the concept of roles was used,
although it is not in the normative part of the draft
standard (although it is in the rationale). The concept
of roles helps in the explanation of the tasks but it is
not rigorously defined and so could not be included
in the normative part of the draft standard. This is
just one example where the rigour of a draft standard
conflicts with making it readable. Figure 1, shows
the relationship of these roles, which are further dis-
cussed below. Note that this diagram is a simplified
version of the one that appears in the rationale of the
draft standard. The different roles may each take
place on separate systems or combinations of roles
may take place on one system.
Package Role

In the package role developed software is taken
and put in a distribution. How the developed
software got into a state to be packaged is outside
the scope of the draft standard - the standard is not
intended to cover the area of software development
and source control.
Source Role

In the source role a distribution, or one or more
components of it, is transferred to where it is to be
installed. The transfer may also be to another source
role - a staging operation. This transfer may take the
form of electronic transmission or transfer on some

1993 LISA – November 1-5, 1993 – Monterey, CA 69

Towards a POSIX Standard for Software Administration Archer

medium. The concept of the source role came from
some of the submissions which had very extensive
functionality associated with this area. However,
other implementations provided much less func-
tionality and allowed for the role to effectively null
in some circumstances.
Target Role

It is in the target role that the software is
installed, that is it is deployed and manipulated to
put it in a form that will enable it, eventually, to be
run. One important aspect of the target role is that it
may take place on a system which has a different
architecture from that on which the software will
run. Where there are discless clients the target role
is taken by the server.

Manager
role

Package
role

Source
role

Target
role

Client
role

Developed
Software Distribution Installed

Software
Configured
Software

Developer
role

out of scope

. ...
..
..
..
..
..
..
..
..
..
..
..
.. .

control flow

data flow

Figure 1: Roles in Software Administration

Client Role
In the client role the software is configured so

that it will be in a state to be run. Configuration
takes place on the architecture on which the software
is to run. Installed software may be subject to being
configured several times, for example comms
software may be configured to serve several different
paths. At mock ballot configuration was outside the
scope of the standard because it was believed to be
in the scope of another subgroup. However, many
responses to the the mock ballot indicated that
without configuration the draft standard would be
incomplete and of significantly less use. Since the
other subgroup had not progressed their work,
configuration has been added.

Manager Role
Having the manager role provides for distri-

buted control of the software administration process.
The functions performed in the other roles can be
controlled by the manager role. The manager role
may be performed by the command line interface
provided in the draft standard or by a management
application. It is worth stressing again that the
manager role can be on the same system as any (or
all) of the other roles.
Developer Role

This role is specifically outside the scope of the
standard. In the developer role software is con-
structed and placed into the form known as
developed software which is the form in which it can
be accepted by the package role. Typically this will
involve activities such as compilation, source con-
trol, etc.
Structure of Packaging

The draft standard defines very precisely the
format into which the software is packaged, this
being the form that the source role transfers. The
draft standard also defines the format for developed
software, particularly the steering information which
defines how to do the packaging. The draft standard
does not define the format for installed or configured
software (this being specific to particular architec-
tures). The rest of this section gives the high level
structure of the packaging format.

70 1993 LISA – November 1-5, 1993 – Monterey, CA

Archer Towards a POSIX Standard for Software Administration

History
Although the various submissions showed con-

siderable commonality in the fundamental concepts
of the packaging format, this area of the draft stan-
dard caused significant problems, undergoing sub-
stantial changes before and after mock ballot. The
problem lay with how many levels of structure there
should be in the packaging format. Products contain-
ing filesets containing files was an obvious and sim-
ple format but one which all submitters had found to
be inadequate. At one point (the first Santa Clara
meeting) a recursive structure was proposed whereby
a product could contain a product, and this could be
to any depth. However, this was not what is com-
monly understood by the term "product". The group
hence looked for some other (unloaded) word but
ended up adopting, temporarily, the term RNC - for
Recursive Notational Convenience!

However, although the recursive structure had
many attractions, it was an unknown quantity, hav-
ing no known existing practice. It was also felt that
when work progressed to the detail, let alone imple-
mentation, there would be significant problems
caused by this structure. An example might be
dependencies (q.v.).

After many discussions over many meetings,
the structure illustrated in Figure 2 has been adopted.
This has subproducts within products and bundles
within distributions.
Products

Although products were common to all submis-
sions it took some effort to tightly define what they
were since there were significant differences in the
detail between the submissions. A late addition to
the draft standard is the concept of bundles to group
together products. These are explained below. Pro-
ducts are defined in the draft standard to have attri-
butes like a name, a revision number, architecture,
etc. One area of concern was that two software ven-
dors might produce products with the same name.
The draft standard already incorporated a mechanism
to permit different versions of software to co-exist in
a distribution and in installed software. However, in
order for administrators to correctly identify a pro-
duct, a vendor tag was added as an attribute that
could be used to select a product. The group realised
that there could still be a conflict if vendors used the
same tag but felt it was beyond their remit to solve
this problem. However, the administrator can also
display the vendor description attribute where a ven-
dor can put additional information, such as address,
support telephone number, etc. There is probably lit-
tle chance of this not being unique!

Products contain filesets and subproducts. Pro-
ducts can have dependencies on other products (see
section on Dependencies).

Distribution

Product Bundle

Fileset Subproduct

File
Contains

Refers

Figure 2: Structure of Packaging Layout

Filesets
A fileset is a collection of files that are logi-

cally related. The important point about a fileset is
that it is the smallest unit that can be specified for
the tasks defined in the draft standard. Filesets have
many of the attributes of a product, such as name,
version, architecture, etc. Filesets can have depen-
dencies on other filesets, as well as bundles, pro-
ducts and subproducts (see section on Dependen-
cies).
Subproducts

Subproducts are contained in products and are a
method of addressing a group of filesets or subpro-
ducts. Hence a fileset (or subproduct) may be
referred to from more than one subproduct. Subpro-
ducts do not contain anything and are not the recur-
sive structure mentioned above. Subproducts are
very simple and have few attributes (no revision or
architecture, for example). A use of subproducts
might be to group together the man pages, thus
allowing an administrator to load a product, or pro-
ducts, but not the man pages for them.
Bundles

Bundles enable several products to be grouped
and managed together. A major example of this was
the operating system, which is a collection of pro-
ducts distributed as a whole. Bundles refer to pro-
ducts or other bundles in a similar manner to

1993 LISA – November 1-5, 1993 – Monterey, CA 71

Towards a POSIX Standard for Software Administration Archer

subproducts. They share many attributes in common
with products. Products exist in a distribution in
their own right; they do not have to be referred to
from bundles. Some details of the operation of bun-
dles is still being worked out by the group. There are
discussions taking place about their attributes and
the extent to which they still exist in installed
software.
Packaging Information

The packaging format defines two types of
information, the data that is the actual software
(code, data, resources, etc.) and the control informa-
tion that enables the installation process to take
place. It is this control information that actually
supplies the structure discussed in the preceding sec-
tions. In order to make installation efficient from a
serial medium this information is required to be at
the start of such a medium.

Tasks

In this section the tasks that are provided by
the draft standard are described. These tasks are
invoked using the CLI commands defined in the
draft standard or by applications.
Phases

Tasks are implemented in three phases, the
selection phase, the analysis phase and the execution
phase.
Selection Phase

In the selection phase the filesets that are to be
the subject of the task are determined. A fileset may
be included because is has been specified individu-
ally or because it is part of a higher level component
(e.g., a product). The way in which a selection is
specified on the command line is covered in a later
section. In addition a fileset may be included
because it (or a component it is a part of) is needed
to satisfy a dependency. In this case the fileset may
be included without being specified to the task.
Analysis Phase

The analysis phase determines if the task is
likely to succeed. This involves evaluating if there
are enough resources, whether dependencies are
satisfied, etc. Success in this phase does not guaran-
tee that the task will succeed but failure should only
occur if the task would certainly fail. A key aspect
of this phase is that no change is made to the system
so that if the phase fails part way through no
recovery is necessary to revert to the initial state.
The analysis phase is run for all selected products
and filesets before proceeding to the next phase.
Execution Phase

In the execution phase the actual work of the
task takes place, using the information from the
selection phase.

Packaging
The task of packaging takes place in the pack-

aging role and involves collecting the components of
the software, together with control information, and
making this into a distribution. The draft standard
defines the way the steering information is supplied
to the task as well as the way in which the com-
ponent files are supplied. The information supplied
to this task involves a detailed knowledge of the
software and how it is constructed. It is envisaged
that this task will be performed by the implementors
of the software, either directly or as part of a
make(1).

A

B

Copy Task

Distribution

Product

Selection

Dependency

Figure 3: Example of Copy Tasks

Copying
Copying takes place in the source role and

involves copying complete distributions or parts of
them. Where parts of distributions are to be copied,
the selection mechanism is used to define the com-
ponents to be copied. Where the destination already

72 1993 LISA – November 1-5, 1993 – Monterey, CA

Archer Towards a POSIX Standard for Software Administration

exists, copying involves adding to the distribution.
Copying may take place to or from different storage
forms, for example copying to a serial medium.

It is envisaged that copying will be a common
task performed by administrators. It might involve
taking several distributions, received from the imple-
mentors or a software distributor, and constructing
one or more further distributions from them. These
new distributions may contain only parts of the ori-
ginal distributions, with only some products from
bundles being copied or some subproducts from pro-
ducts. The latter case may occur where, for exam-
ple, it was decided not to distribute the tutorial com-
ponents of a product.

Figure 3 shows an example of creating two dis-
tributions, A and B. Distribution A is created by
selecting 4 products from 3 distributions. Distribu-
tion B is created by selecting one product from a
distribution and a second product is also copied
because the selected product has a dependency on it.
A similar example could show filesets or subpro-
ducts being selected from within products or pro-
ducts from within bundles.
Installing

Installation takes place in the target role and
involves transforming software from the distribution
format to the installed form in which the software
can configured to be run. This involves operations
such as creating directories, copying files, setting
permissions, running scripts, etc. The installation
process is explained in more detail in a later section.
Input to the installation process may be a distribu-
tion in filestore (possibly copied from a serial
medium) or directly from a serial medium.
Configuring

Configuring software is the final step before
software is actually made operational and, unlike
installation, always takes place in the client role and
on the client architecture. The definition of
configuration depends on the software but it is
expected that it will normally be an operation that
can be performed in significantly less time than the
installation task. An example might be the installa-
tion of a new revision of a Message Transfer Agent.
Configuring would specialise the software for the
particular situation and make it the revision actually
in use. Software may be configured more than once,
each giving rise to a different configured instance.
Taking the example of the MTA again, it may be
that the software is configured for several different
services. The parameters to configuration are
specific to the software being configured, and are
hence not part of the draft standard. They are sup-
plied via the request task.
Removing

Removing a product involves deletion of the
filestore elements that were created during the instal-
lation process as well as the management

information relating to the product. There are some
elements that are not removed, these being informa-
tion that users would wish to have left. Examples of
this would be the files that make up a database or
the postbox in a Message Transfer Agent. These are
identified specifically in the control information
when the product is packaged.

P
A
C
K
A
G
E

R
O
L
E

S
O
U
R
C
E

R
O
L
E

T
A
R
G
E
T

R
O
L
E

Request
Script

Packager
DEFINES

Administrator

Request
Script

QUESTIONS

Response
File

ANSWERS

Response
Task

Response
File

Install
Script

Install
Task Data

Interaction

Task

Figure 4: Request Task

Request
The installation and configuration tasks can

involve the running of scripts defined during the
packaging task. These scripts may need to obtain
information to customise the work they do. If the
scripts were to interrogate the administrator at the
time the information was required, the installation or
configuration task would be running interactively.
To avoid this undesirable situation a script is defined
during the packaging task which asks the questions.
This script is run by the request task and the
responses stored in a response file. When the instal-
lation or configuration task is taking place the scripts

1993 LISA – November 1-5, 1993 – Monterey, CA 73

Towards a POSIX Standard for Software Administration Archer

can use the information from the response file. The
request task can be run entirely independently of the
installation or configuration task and the response
files distributed with the products to which they
apply. If this is not done, the request task will be run
at the start of the installation or configuration task.
Figure 4 illustrates the use of the request script and
response file.
Verifying

Verification of a distribution or installed
software can be run in the source, target or client
roles. It establishes the integrity of the information
by checking the file attributes and checksum against
the control information. Files that might change, and
therefore should not be verified, are marked as such
in the control information. If a customisation script
(described in a later section) changes the contents of
a file, the modification task should be used by the
script to ensure that the management information is
updated.
Listing

Listing can take place in the source, target or
client roles and gives information about distributions
and installed software. The selection process deter-
mines the items to be listed. The depth of informa-
tion is given by an option.
Modification

Modification takes place in the source, target or
client roles and is the process by which the manage-
ment information is changed to reflect the informa-
tion it refers to. This may be necessary because a
customisation script has modified a file or because
some of the management information associated with
a product is inapplicable in a particular situation.
Systems administrators who worked on the draft
standard emphasised the importance of being able to
correct the information, when (not if) it got out of
step with reality. Since the way in which the
management information is stored is implementation
dependent it is necessary to provide a task to change
it.

The Installation Process

One of the major items of the draft standard is
how the installation of a product (or group of pro-
ducts) takes place. Installation of software involves
those activities needed to transform it from the dis-
tribution to a state in which it can be run once it is
configured.
Files

A fairly straightforward aspect of installation is
the creation of directories to hold filesets and the
copying of files from the distribution into the
installed software. It is also possible to create links.
The following sections discusses some of the more
complex aspects of installation.

Dependencies
Dependencies provide an important way to

ensure that software is correctly installed,
configured, copied or removed. During the selection
phase of a task a check is made for dependent
software. If dependencies are not satisfied the task
will fail (this can be overridden). A dependency is
an attribute of a fileset that refers to a bundle, pro-
duct, subproduct or other fileset. A dependency may
also be an attribute of a product, which means that it
applies to all filesets within the product.

Consideration was given to allowing depen-
dences as attributes of subproducts but this was
dropped because subproducts are references not
"containers" and the rules would have been too com-
plex.

The following sections describe the three types
of dependency defined in the draft standard.
Prerequisites

A prerequisite must already have been installed
before the software that depends on it is installed or
it must be installed as part of the same installation
task. During the selection phase of a task, products
may be added to the selected set in order to satisfy
prerequisite dependencies.
Corequisites

In the case of a corequisite, the software that is
depended on must be installed and configured in
order for the dependency to be satisfied. Dependen-
cies such as this might occur for parts of the operat-
ing system.
Exrequisites

In this case installation cannot take place if the
exrequisite has already been installed or has previ-
ously been selected during the install task. Depen-
dencies such as this might occur where versions of a
product cannot co-exist on a system.
Customisation Scripts

A common feature of all submissions was the
use of scripts to allow installation and configuration
to be customised. These scripts are defined during
the packaging task. The scripts (apart from the
configuration script) are run in the Target Role and
thus not necessarily in the environment or on the
architecture on which the software will be run.
Environment variables for the scripts define the final
environment. The method of returning information
from scripts is also a problem and a totally satisfac-
tory solution has yet to be found.

Scripts may be associated with products and
with filesets. In principle each different fileset in a
product could have a different script. Existing prac-
tice indicates that such a situation would be unusual
and that product scripts are likely to be the most
common. A exception to this might be filesets that
make up the operating system.

74 1993 LISA – November 1-5, 1993 – Monterey, CA

Archer Towards a POSIX Standard for Software Administration

Check Script
The check script is run during the analysis

phase of the task to supplement the checks done
automatically. For example, the automatic check for
sufficient disc space could be supplemented by a
disc space check that is dependent on some customi-
sation of the installation specified in the response
file. Since the scripts are executed during the
analysis phase, they are not allowed to make any
modifications to the target role.
Installation scripts

There are two installation scripts, the pre- and
post-installation scripts run before and after the files
are copied from the distribution. These scripts are
run in the environment of the target role, not the
client role. Examples of such scripts are the produc-
tion of a new version of a product by applying
changes to a previous revision and the transforma-
tion of data into a new format for a new revision of
the product. Virtually the only constraint on these
scripts is that if they modify the installed software a
call to change the management information must be
made (modification task). These extensive possibili-
ties raise problems for the draft standard since it is
difficult to ensure that the rules given are sufficient
to guarantee interoperability. It is probably for this
reason that so much discussion within the group con-
cerned this aspect of the draft standard. To enable
recovery to take place there are also undo scripts for
pre- and post-install.
Removal Scripts

Like the installation scripts there are pre- and
post-removal scripts. The draft standard does not
define what the removal scripts should do except that
they should reverse any changes that the installation
scripts have made and which have not, or could not,
be reflected in the management information. Hence
if an installation script creates a file and adds this to
the management information such a file will be
deleted automatically. However, if a data file needs
to be transformed into a different format that will
have to be handled by the removal script.
Configuration Script

These scripts perform functions that must take
place on the architecture on which the software will
run or which are associated with the configuration of
a particular instance of the software. Since the only
substantive action defined in the draft standard for
the configuration task is the running of the
configuration script, a product can only effectively
be configured if such a script is supplied. The
parameters to the configuration task are supplied to
the configuration script by means of the request task.
Examples of configuration scripts are a compilation
to the architecture of the client role or the definition
of particular services.

Product Location
The packaging layout specifies a default loca-

tion in the filestore where a product will be installed.
This can be overridden by an option to the task.
Simultaneous Versions

It is possible to install different versions of a
product simultaneously, provided the product can be
installed anywhere in the filestore hierarchy (i.e., it
is relocatable). The version of a product includes its
revision and the architecture it is to run on. Hence, it
is possible to have simultaneous installation of mul-
tiple revisions of a product as well as installing ver-
sions for different architectures (important for
servers of discless clients). Depending on the pro-
duct, it may or may not be possible to configure
multiple revisions simultaneously.
Overlaying

Only one product can exist at one location. If
an attempt is made to install another product (or
another version of the same product) at the same
location it will either be rejected as an error or the
original product will be deleted. The action to be
taken can be selected by an option to the task. It is
expected that all products will be relocatable and the
installation of a new version of a product will not be
done by overlaying.
Recovery

Recovery is the process of undoing the effect of
a failed task, addressed here in terms of installation
but also applying to copying and, to a lesser extent,
packaging and configuring. Recovery is only
significant when a product has been overlaid. Where
a new version is installed simultaneously with an old
version, recovery merely involves removing the par-
tially installed new version. As has been stated,
recovery was not addressed in the draft that was cir-
culated for mock ballot. This was because the dis-
cussions up to that point had not produced a con-
sensus on what should be done. However, responses
to the mock ballot showed that recovery would have
to be addressed in the final balloting draft. In the
event of a failure there are basically two choices, to
delete what has already been installed or to leave
what has been done so that a subsequent installation
does not have to re-install parts already successfully
installed. The choice of these could be an installa-
tion option. The following sections discuss some of
issues involved.
Overlaid Products

Information was provided to the group about
implementations that provided recovery by roll-back
or by copying and deletion of the old version. What-
ever the implementation there are implications in
terms of storage required, already a potential prob-
lem area if both the distribution and installed
software were present on a system.

1993 LISA – November 1-5, 1993 – Monterey, CA 75

Towards a POSIX Standard for Software Administration Archer

Administrative Applications
Applications that provide an advanced interface

to Software Administration would handle recovery in
their own style. In order to enable this to happen the
distributed interface would provide detailed control
over the phases of the installation process (events on
completion of a phase and control over the transition
between phases). Any facilities in the draft standard
must therefore cover the requirements of the com-
mand line as well as administrative applications.
Level of recovery

The components selected for installation may
be the result of a high level definition ("install this
bundle") or a low level definition ("install these
filesets"). It might be deemed necessary for the
recovery action to be different in the two cases - and
all the cases in between and combinations. However,
this seems to imply that the draft standard should
contain a very complex definition, detailing what
should happen in each case, and providing equally
complex overrides for the default actions.
Scripts

When an installation fails it is necessary to run
scripts to undo the changes made by the installation
script(s). However, it would be difficult for an
implementor to ensure that such scripts would work
irrespective of the the type or position of the failure.
Current Situation

The current proposal being worked on in the
draft standard provides a fairly straightforward
recovery mechanism. It is applicable to the situation
where a product is overlaid and requires that, in the
event of a failure, the product is restored to its origi-
nal state. Two new scripts are proposed, the unpre-
install and the unpost-install scripts which undo any
changes made by the corresponding install scripts.
Interactions During Tasks

One area where there was not commonality in
the submissions was the facility for the installation
scripts to ask questions of the task submitter. Since
making the installation process interactive is undesir-
able some submissions effectively forbade any such
questions whereas others enabled the questions to be
answered at the start of the installation task and even
allowed the answers to be distributed with the
software. The draft standard adopts this latter
approach - see the request task.
Software Service

Software Service is the term adopted to
describe modifications made to product other than
replacement by a different version of the product.
This includes replacement of one or more files and
in situ modification of the data within a file, the
classic form of "patching". When this was initially
considered many different methods of achieving it
were described. However, there was no common
core that could be discerned in these methods and

the submitters were frequently not enthusiastic about
their own methods. It was therefore difficult for the
group to select an existing practice to standardise
and for this reason it was omitted entirely from the
mock ballot version of the draft standard. The rest of
this section describes some of the issues and the
current state of the draft standard.
Level Identification

One of the major topics for Software Service
was the identification of the modifications that had
been applied. In the completely general case each
modification would be separately identified and the
list of modifications would be available as an attri-
bute of the modified product. However, this does not
answer the question of how a task could check that a
new modification was appropriate for the existing
modification level of a product. Various schemes
were in current use, from those that re-issued all pre-
vious modifications with each new modification to
those that left it up to the administrator to select the
modifications to be applied, handling any dependen-
cies or exclusions between them.
Reversion

It is obviously necessary to be able to remove a
modification from a product and in the general case
this would either require a roll forward from the ori-
ginal, unmodified, instance of the product or would
need roll back information to be kept.
Management Information

Modification of part of a product requires that
the management information be updated. This would
then enable the verify task to operate correctly and
not report an error with respect to a modified pro-
duct. With a roll back provision for reversion (see
above) the modified management information would
have to form part of the roll back log.
Current State of Standard

The current state of the draft standard is that
there will be no additional facilities provided
specifically for software service, although the
rationale will explain how it can be achieved. This
involves the overlaying of one fileset with a new
version that has one or more of the files changed.
The installation scripts can be used to provide roll
back, identification and dependency checking. This
is the only solution that seemed capable of accom-
modating the diverse schemes currently in use.
Installing the Operating System

While the draft standard does not address all
aspects of operating system update and initial instal-
lation, it does provide the basic functionality so that
it can be used as a fundamental part of these
processes. Facilities provided include marking files
as being part of the operating system and indicating
that a product or fileset will not become effective
until a re-boot occurs. Excluded, however, are the
final stages of switching from the old to the new

76 1993 LISA – November 1-5, 1993 – Monterey, CA

Archer Towards a POSIX Standard for Software Administration

version of the operating system, which would take
place during the configuration stage. The initial ins-
tallation of the operating system on an empty system
requires special techniques since services that are
normally assumed to be present (e.g., the filestore)
are not available. The draft standard only deals with
installation of software when a POSIX compliant
operating system is present and so is not applicable
to the initial installation of the operating system
until this is true. This does not, of course, preclude a
vendor from providing such facilities but they would
be extensions to the standard.

Tasks using the CLI

One of the objectives for the draft standard has
been stated as Operator Portability, meaning that, on
any system that complies with the draft standard, an
administrator would find a well known set of Com-
mands with which to perform software administra-
tion tasks. Nevertheless, it was recognised that the
interface to software administration, and particularly
distributed software administration, would increas-
ingly be the province of an integrated interface, par-
ticularly one based on a Graphical User Interface.
Such an interface would have a significant advantage
where software was being distributed to, and
installed on multiple machines simultaneously, a task
which is inherently asynchronous. Several of the
submissions indicated that such implementations
already existed.
The Command Line Format

All submissions provided commands to invoke
the tasks and the draft standard was based on these.
The basic form of a command is

command [options...] selections \
[@ target ...]

meaning the the command operates on the software
identified by selections and the tasks take place on
the hosts specified by target. The format of the
options and target is covered in the rest of this sec-
tion. The selections, being a significant issue in their
own right, are covered in another section. The com-
mands implement the tasks already defined.
Options

An important issue that had to be addressed
was the sheer number of options that had to be
accommodated. Not all options from all submissions
were included but there was an inclination to accept
that if a facility had been found necessary or useful
it should be included. This issue of the number of
options had already been addressed by the sub-group
working on the Print standard, P1003.7.1, and a
compatible approach was adopted. This involved
specifying options in a quoted string given as the -x
option to the command, or in a file, the pathname of
which is specified in the -X option. Within the
quoted string, or file, an option would consist of an
identifier and a value. The identifier consists of

lower case letters and underscores. These identifiers
are not localisable to other languages.
Host Definitions

The format for specifying the machine on
which the task is performed is

@ target...

and this was generally liked as being intuitive
although it does not have any applicable precedence
as a separator of operands (its use in mail aliases
and Berkeley commands is different). This syntax
does not appear in POSIX.2 but is legal according to
the utility guidelines of that standard. As distributed
utilities extend the problem space that POSIX.2
addresses, avoiding extensions was not deemed to be
essential. In the end, the decision of the working
group was that the use of @ was acceptable, and
indeed desirable over alternatives such as moving
the operand to the options.
Selections

A selection defines the items that are the sub-
ject of an operation, for example a selection might
define the software products that are to be installed
from a distribution. At the simplest level this would
just be the name of a product. However, there were
several areas where the selection got more complex
and there was a struggle to achieve the necessary
flexibility without a grossly complex syntax. The fol-
lowing sections describe the details of the selection
and the objectives that were being addressed.
Depth

A selection can specify bundles, products, sub-
products or filesets and so can be as specific or gen-
eral as required. The implication is always that all
the components of the item specified are selected.
Versions

In the draft standard, the product’s version is an
attribute that identifies its intended architecture, ven-
dor, and revision of the product itself. Hence the
same revision of a product can have several ver-
sions, each for a different combination of hardware
and operating system. The specification of the archi-
tecture in the selection provides wild cards and the
comparison of the revision takes into account the
common dot format, e.g., 2.03.
Locations

A selection may also specify the location where
the product is to be located as a result of the opera-
tion, overriding the default in the product. For exam-
ple, for the install task the location would define
where the product is to be installed. This feature of a
selection is a bit of an oddity because the rest of the
selection is concerned with the source of the opera-
tion whereas the location is concerned with the des-
tination. However, it is necessary because there may
be several selections each needing to be located in a
different place.

1993 LISA – November 1-5, 1993 – Monterey, CA 77

Towards a POSIX Standard for Software Administration Archer

Dependencies
Selections are also used for dependencies, that

is for references from a product or fileset to a bun-
dle, product, subproduct or fileset, but in this case
the location cannot be specified.
Customisation

The systems administrators who had partici-
pated in the development of the draft standard had
emphasised the importance of avoiding fixed restric-
tions whilst at the same time enabling defaults and
limits to be set for any particular installation. The
existing practice supported this concept and and so
this facility was built into the draft standard.
System Wide Defaults

On any system there will be one defaults file
which gives the defaults for about 25 aspects of
software administration. In addition different defaults
can be specified for different tasks. So, for example,
the default for whether to try to automatically
resolve dependencies could be set to true for instal-
lation but false for copying a distribution.
Local Defaults

The system wide defaults can be over-ridden by
the options file to a particular command, a file which
is in a similar format to the system wide defaults
file. These in their turn can be over-ridden by what
is specified on the command line.

The Software Catalogue

The term catalogue applies to a distribution or
to a collection of installed software. Most of what
the draft standard defines about a catalogue is the
control information, which is actually very similar
between the two. The difference is that the format of
a distribution is defined by the draft standard
whereas the format for the catalog for installed
software is not. In this latter case it is implementa-
tion defined how the catalog is stored although the
draft standard does define standard ways of access-
ing it. For example, the list task reads it and the
modify task changes it.
Contents of a Catalogue

Information in the catalogue defines the con-
tents (bundle, product, etc.) of a distribution or
installed software, giving the attributes of the com-
ponents (name, revision and dependencies for exam-
ple).
Multiple Catalogues

A valuable contribution from Systems Adminis-
trators in the group was the need for multiple catalo-
gues, for example corresponding to development
software, software under test and production
software. The draft standard hence allows for the
catalogue to be specified as part of the syntax of the
commands. This does however raise the question of
how one might be able to find all the catalogues on
a particular system. It would be a distinct advantage

if this could be achieved in some way but so far this
has not been incorporated in the draft standard.

Filestore Structure

The draft standard is based on a POSIX com-
pliant filestore structure but does not specify any
other detail about how installed software should be
mapped other than that there must be a node under
which the product files are installed. This require-
ment does not exclude the possibility of some files
being located elsewhere although this is discouraged.
Software Layout

Software should be constructed so that it can be
installed relative to any point in the filestore hierar-
chy. This is particularly important for the simultane-
ous installation of multiple versions of the same pro-
duct. However there are some types of software for
which this is not possible, particularly the operating
system itself. In such circumstances the software
will have to be constructed to provide some other
method of handling simultaneous versions, possibly
by some special action as part of configuration.
Alternative Root

Sometimes it is necessary to install software
relative to a virtual (or alternative) root. This means
that absolute references in the installation to the
filestore hierarchy are taken to be relative to the
alternative root. This is particularly useful for instal-
ling operating system software for a discless client
or on a disc unit that will be installed in another sys-
tem (preloaded software). The discless client exam-
ple is illustrated in Figure 5 in which software is
installed on the target with node D as the alternative
root. For the client J is the root, node K is node E,
etc. and so it appears to the client as if the software
had been installed with the actual root as J.

A

B

C D

E F

G H

J

K L

M N

..Target Client

Figure 5: Filestore Structure for Discless Clients

Discless Clients
For discless clients the alternative root facility

is obviously important, particularly for the operating
system. Installation of other software only requires
that the correct location in the (server) filestore is

78 1993 LISA – November 1-5, 1993 – Monterey, CA

Archer Towards a POSIX Standard for Software Administration

chosen for the software to be visible to the client.
However, if the management information is to be
visible to the client it is important that this too is
located in the correct place. The provision of multi-
ple catalogues is hence an important facility for disc-
less clients.

Heterogeneous Management

The group would very much liked to have
made the standard yield implementations that were
interoperable at the task level. That is to say that the
manager role could manage any of the other roles
irrespective of the systems on which the roles were
implemented provided they conformed to the stan-
dard. This would provide not only the capability of
heterogeneous management using the commands
defined in the standard but also a mechanism for
enabling management applications to be written
which could manage conformant systems. Unfor-
tunately this would require the standard to refer to
some mechanism for performing distributed tasks
and no such mechanism is available as a formal
standard. However, the group did receive several
submissions specifying how this could be achieved
using de facto standards. In addition some work was
done on the formal definition of Managed Objects
that corresponded to the definitions in the standard.
An agreement has been reached with the X/Open
Systems Management Working Group that they
would progress this aspect of the standard, to be
published in due course as an X/Open Specification.

How to Participate in the Ballot

When the ballot is about to take place
(expected to be April/May 1994) the IEEE will
advertise for participants. Anyone can submit com-
ments but only those from members of the IEEE (or
the Computer Society of the IEEE) are counted for
the ballot; comments from others are "for informa-
tion only". To ensure that you are notified of the
ballot send your details to the author or the chair of
the group, Jay Ashford at ashford@austin.ibm.com.

Acknowledgements

A lot of people have contributed to the draft
standard, too many to be mentioned here. However,
particular thanks are due to Jay Ashford, Matt Wicks
and George Williams who have reviewed this paper
to ensure that it reflects what the draft standard actu-
ally says rather than my own prejudices.

Author Information

Barrie Archer is a Systems Designer working in
ICL Client-Server Systems. He works on the strategy
of ICL’s Systems Management products and partici-
pated in the development of ICL’s OPENframework
Architecture for Systems Management. He is the
ICL representative on the X/Open Systems Manage-
ment Working Group and POSIX 1003.7 Working

Group. He can be reached by mail on ICL Lovelace
Road, BRACKNELL Berks, RG12 8SN, UK and
electronically at barcher@oasis.icl.co.uk.

1993 LISA – November 1-5, 1993 – Monterey, CA 79

80 1993 LISA – November 1-5, 1993 – Monterey, CA

