
Monitor an Enterprise of SQL Servers - Automating Management by
Exception with Perl

Linchi Shea
Merrill Lynch & Co.
linchi_shea@ml.com

Abstract

Monitoring a large number of SQL Servers in an enterprise is a difficult task. The SQL Server
administrators have to deal with a large amount of very dynamic and diverse information, and many other
complicating factors. We found that the age-old principle of management by exception provides an
effective framework in organizing our monitoring efforts. This paper describes our experience in using Perl
to help automate the management-by-exception approach to monitoring SQL Servers. Perl is used, in most
cases together with SQL, to collect and process SQL Server-related system information, to identify
important exceptions, and to report them in a highly summarized fashion. The exception reports and a suite
of Perl scripts developed to produce the reports are discussed. We conclude the paper by sharing some
lessons learned in our struggle to tame SQL Server monitoring with Perl.

1. Introduction

Monitoring a large number of SQL Servers in a
large-scale enterprise environment is a difficult
task. When the number of SQL Servers reaches
50+, 100+, and still grows, the nature of
monitoring these servers becomes significantly
different from monitoring a dozen or two SQL
Servers. To begin with, the SQL Server
administrator (DBA) must monitor events that are
recorded in a multiplicity of sources, and must
cope with an overwhelming amount of information.
They may have to retrieve relevant system
information that does not typically fall in their own
realm of responsibilities. In addition, the DBAs are
often asked to accommodate a fast growing number
of SQL Servers with not-so-fast growing resources.

This paper describes how we use Perl to help deal
with monitoring a large number of SQL Servers.
The next section identifies several prominent
factors that have shaped our overall approach.
Section 3 gives a brief summary of a simple three-
layered strategy that frames our monitoring efforts.
The first layer of the strategy deals with prompt
responses to highly critical errors. The second layer
provides concise management by exception
reporting. The third layer consists of a DBA
repository for storing system information from
each monitored SQL Server. We use Perl primarily
at the second layer to automate the collection,
processing, and presentation of SQL Server-related
system information for administration purposes.

Notice that Perl is not the only language used to
enable this strategy. Transact-SQL is also used
extensively. But Perl is the focus of this paper.
Section 4 covers the Perl scripts used in SQL
Server monitoring.

Using this approach, we have been able to
accommodate the rapid growth in the number of
SQL Servers we have to monitor.

2. Motivation

The last several years have seen a rapid growth in
the number of SQL Servers deployed in our
environment. It is expected that this number will
continue to grow rapidly for the next few years.

In search of a way to monitor these servers, we
analyzed potential factors that may influence the
effectiveness of any monitoring approach we might
eventually adopt. We identified the following to be
particularly prominent in our environment:

Information Overload
The amount of information that must be processed
to effectively monitor the servers grows much
faster than the number of the servers. It is also
quite easy to run into the over-monitoring
syndrome: monitoring too many things results in
too little being effectively monitored.

Information Diversity
Comprehensive monitoring requires system
information from diverse sources. They include
SQL Server error logs, job log files, job schedules,
NT registries, NT event logs, directories, NT
service configurations, SQL Server system tables,
SQL trace or profiler output, performance monitor
counters, SQL Server cluster configurations and
state, and so on.

Moving Targets
Monitoring requirements are in a constant state of
flux, and the DBAs are in an endless learning
mode. The monitoring strategy has to be
completely open to accommodate changing
requirements, and new experiences and insights.

Distributed Roles and Responsibilities
Though the responsibilities of SQL Server
administration is assumed by a dedicated DBA
group, it is often not easy to effectively manage
SQL Server monitoring-related issues.
Communication of these issues can be a challenge.
For instance, NT system changes that are managed
by separate organizational groups, but may have
significant impact on SQL Server, are not always
promptly communicated to the DBA group, or not
communicated at all. Even within the DBA group,
one cannot take communication of SQL Server
monitoring for granted.

Enterprise Monitoring Infrastructure
The SQL Server DBAs work in an environment
that has a well-equipped, but rapidly evolving,
enterprise infrastructure for system monitoring.
This infrastructure dictates how critical production
errors are monitored. But it is not provided as a
solution to meet all the platform-specific or local
group-specific monitoring requirements. The SQL
Server monitoring strategy must complement this
enterprise infrastructure rather than implement a
substitute.

Varying Degrees of Urgency
Not all events are of equal criticality. Some events
are so urgent that we need to respond right away,
even in the wee hours. Responding to other events
can wait until the morning, or we simply want to be
informed on a daily basis. For events that are
neither immediate nor temporarily deferred, we are
content with a summary.

If we hope to effectively monitor a large enterprise
of SQL Servers and keep up with its rapid growth,

we need a strategy to frame our monitoring efforts.
In the next section, I outline such a monitoring
strategy.

3. Overview of the Monitoring Strategy

In a nutshell, our monitoring strategy is based on
the principle of management by exception.

Whatever the strategy may be, the key to its
success in this large enterprise environment is
automation. We need tools to enable the
automation, which adequately accommodate the
factors identified above. The tools we use are a
combination of a central DBA repository and a
collection of SQL and Perl scripts. The repository
is made up of (1) a SQL Server 7.0 database, (2) an
NT registry hive, and (3) an NT directory tree. The
repository stores comprehensive system
information for each monitored SQL Server. Perl
scripts are used to help extract system information
from heterogeneous sources on remote servers, to
store the information in the central repository, and
to summarize the information by highlighting
changes and errors, and identifying patterns.

3.1. Layers of Monitoring

We divide the focus of the monitoring strategy into
three layers:

1. Critical production problems
2. Exception reporting
3. DBA Repository

The first layer deals with critical SQL Server
production errors that must be addressed promptly.
We leverage the existing enterprise monitoring
infrastructure to notify the DBAs, and rely on the
SQL Server alert mechanism and other enterprise
monitoring agents for error detection at this layer.
SNMP traps are sent to the enterprise data center,
which then notify via pager or telephone the DBAs
on an escalation list. SQL Server alerts have been
heavily customized to minimize the number of
nuisance notifications. The primary objective at
this layer is to receive prompt notifications on all
critical production problems, and on these critical
ones only. A full discussion of how this layer of
monitoring is implemented is, however, beyond the
scope of this paper.

At the second layer, all system exceptions,
including the production problems monitored at the
first layer, are captured. While at the first layer

we’d like to be minimalist in containing the
number of notifications, at the second layer we
want to be comprehensive in capturing the
exceptions that are deemed important. However,
we want to report on these exceptions in a highly
summarized fashion to reduce information
overload on the DBAs.

The third layer of the monitoring strategy is the
SQL Server DBA repository itself. At this layer,
the objective is to be all-encompassing, i.e. to
capture all the system information that may be
useful even though it may not be presently used in
generating any exception report. This repository
also serves other useful purposes beyond reporting
on exceptions. For instance, it provides a historical
view of system configurations.

The focus of this paper is on the second layer.

3.2. Exceptions

We are interested in the exceptions originated from
the following sources:

1. Operational exceptions. These are SQL
Server-related error conditions. For instance, a
table has become corrupted.

2. Configuration exceptions. These are
significant changes (intended and unintended)
in system configurations that affect SQL
Server behavior. For instance, an NT
administrator has unintentionally changed
permissions on the SQL Server data files. Or
the SQL Server is changed to no longer listen
on an IPC method.

3. Exceptions to the DBA standards. These are
serious deviations from the established local
DBA standards, including standards on
configurations, security, best practices, and
SQL coding if applicable.

3.3. Exception Reports

The main categories of exception reports that we
generate include:

Monitoring System Configurations
We retrieve SQL Server related system information
from each monitored SQL Server and store it in the
central DBA repository. Retrieved system
information includes: (1) the SQL Server registry
hives, (2) the SQL Server system tables, (3)
generated SQL scripts, and (4) SQL Server-related
NT and hardware configurations. We then compare

two consecutive daily snapshots of this system
information to report any significant changes.

Monitoring Database Schema
Changes in database schema are tracked by
comparing two consecutive daily snapshots of the
same database schema. Significant differences are
highlighted.

Monitoring Security
SQL Server security data is retrieved from each
server into the repository on a daily basis. We
check the security data in the DBA repository in
two areas: (1) we report on any significant changes
in SQL Server access and database permissions,
and (2) we check and report on the compliance
with the established SQL Server security lockdown
policies.

Monitoring Performance and Space
Currently, the only performance data collected and
reported on is table fragmentation and distribution
statistics. Space usage information is extracted
from the SQL Server system tables that are already
stored in the DBA repository. An exception report
is produced when any of the space thresholds is
crossed.

Monitoring Logs
In addition to the SQL Servers’ own error logs, a
large number of log files are generated daily from
various scheduled jobs for the DBAs to review.
The NT event log may contain additional error
messages. All these log files and the NT event logs
are scanned to generate a consolidated concise
summary.

Monitoring Scheduled Tasks
Depending on the robustness of error trapping, a
scheduled job may fail without leaving any trace in
its log. The scheduled jobs on all monitored SQL
Servers are scanned, and a report on any failed jobs
is produced. This also provides a means to monitor
the monitoring system since the setup of
monitoring uses scheduled jobs heavily.

Monitoring DBA Standards and Best Practices
Not all the DBA standards can be codified in
scripts, but a significant portion can be. These
scripts highlight whether there is any serious
departure from the SQL Server DBA standards or
best practices.

4. Perl Scripts

To implement the monitoring strategy of
management by exception outlined above, a suite
of scripts were written. Most of them were in Perl,
some in Transact-SQL, and others in Perl with
embedded SQL scripts. Since this paper is about
using Perl to facilitate monitoring SQL Servers, I
will focus the discussions on the workings of the
Perl scripts. All the Perl scripts mentioned in the
paper are listed in the appendix. Some sample
reports from these scripts are also shown in the
appendix.

4.1. DBA Repository

The DBA repository is made up of three
collections of information on a dedicated SQL
Server: (1) a SQL Server 7.0 database, (2) a
registry hive, and (3) a tree of NT directories.

The SQL Server 7.0 database contains tables
mirroring all the significant SQL Server system
tables. The data is updated daily and kept for 30
days (configurable). Examples of the system tables
include sysprocesses, syslocks, sysdatabases,
sysdevices, and syslogins at the server level as well
as sysobjects, sysprotects, and sysindexes at the
database level. In addition, several tables record
NT level information such as space on each drive,
CPU count, and memory, as well as summary
information such as database space consumption.

The registry hive contains the last five versions of
SQL Server registry keys and values. The
following registry hives from each monitored SQL
Server are copied to the registry of the DBA
repository server1:

• HKLM\Software\Microsoft\MSSQLServer,
• HKLM\System\CurrentControlSet\Services\MS

SQLServer,
• HKLM\System\CurrentControlSet\Services\SQ

LExecutive

They are copied under the key

HKLM\Software\SQLServerAdmin\Monitored
Servers\<Server Name>\<Date String>

Registry is used as a part of the DBA repository
because some important SQL Server configurations

1 Most examples in this paper assume that SQL Server
6.5 is monitored.

are stored in the registry. There is no point of
converting these SQL Server registry keys and
values into any other storage format.

The NT directories contain generated SQL scripts
for re-creating database devices, backup devices,
server configurations, database schemas, and SQL
Server scheduled tasks. The directory tree also
contains exported system tables in plain text files.
In addition, a SQL Server setup initialization file is
generated daily. This is mainly for convenience
because the same information is already captured
in the registry hive and the system tables.
Furthermore, complete database access information
is dumped out daily to a text file. These files are
kept for 30 days.

The system table information is conveniently
retrieved into the DBA repository using SQL
Server remote stored procedure calls or linked
servers. The generated SQL scripts and the
exported system tables are produced by the
GenerateSQLScripts.pl and ExportSystemTables.pl
scripts. The SQL Server setup initialization file is
generated by script GenerateSQLSetupIniFile.pl.
File extension pl indicates that it is a Perl script.

4.2. System Configuration Changes

Every day after the SQL Server registry keys and
values are copied, script CompareSQLRegKey.pl is
run to compare the most recent two versions of the
registry keys and values for each monitored server.
A summary report is produced if there is any
significant change.

The CompareSQLConfig.pl script is run daily to
identify significant differences between two
consecutive copies of the generated SQL scripts for
setting the server and database configurations. This
helps identify, for instance, whether the SQL
Server security mode is changed, a new data device
is added, a new task is scheduled, a database option
is changed, or even a new database is created.

4.3. Database Schema Changes

There is often a need to compare the schemas of
two databases to highlight any differences or to
compare the schemas of the same database over
time to identify any unauthorized changes. There
are many existing approaches with varying degrees
of success. Most of these approaches compare
system tables through SQL queries. We found that,
with the help of Perl it is much easier and versatile

to compare two copies of properly generated
database schema scripts.

The CompareDBSchema.pl script executes in two
steps. In the first step, it talks to SQL Server
through the SQL Server distributed management
objects (SQLDMO) to generate SQL scripts for the
database objects. We control how SQL scripts are
generated for which objects, depending on what we
want to compare. The second step does a quick
parse of the scripts and stores the result in a Perl
nested hash record structure. For our purposes,
there is no need to write a sophisticated parser to
parse these SQL scripts. Because we control how
they are produced by SQLDMO in a predictable
format, Perl can parse them very conveniently. The
Perl script compares the two hash record structures
according to some comparison rules. These rules
can be easily added to or removed from the Perl
script.

Notice that for planned schema changes, this would
provide additional validation that the changes have
indeed taken place. At the risk of stating the
obvious, the facility is not meant as a substitute for
rigorous change control management.

4.4. Performance and Space Problems

Since the information on both database and disk
space for each monitored SQL Server is already
collected in the DBA repository, producing
exception reports when the space consumption has
crossed a threshold is done easily with SQL scripts
alone.

To check table fragmentation, we run script
AlertTableFrag.pl that executes an embedded SQL
script in each user database. The SQL script
produces, in a temporary file, the result of checking
fragmentation against every user table. The Perl
script then scans through the temporary file,
reporting on large tables with fragmentation (i.e.
scan density ratio) that exceeds a threshold.

Similarly, script AlertStaleStats.pl runs SQL Server
distribution statistics utility against every user table
index. It then scans the result for large table
indexes whose statistics have not been updated for
a period of time that exceeds a threshold.

We are also working on a Perl script that would
automate the processing of SQL Profiler/Trace
files and highlight significant performance
variances for the same queries or stored
procedures.

4.5. Log Files and NT EventLog

In our environment, the DBAs must review a large
number of log files each day to identify problems
or verify that the systems are in good health. If
done manually, this process is boring and
laborious, and may result in the log files not being
effectively reviewed at all. We need a way to
condense this vast array of log files while making
sure that no significant errors would be overlooked.
This is achieved with script CheckSQLErr.pl,
which processes the log files as follows:

• The script summarizes the SQL Server startup
process by identifying the SQL Server startup
date/time, and reports any failure to listen on
any configured IPC method.

• For each SQL Server error number, the script
reports the total number of occurrences of the
error and the last time it occurred as well as
the error message text from the latest
occurrence.

• For deadlock error messages, the script reports
the total number of times deadlocks have been
detected by SQL Server as well as the last time
a deadlock occurred.

• The script takes advantage of the fact that
every database backup is recorded in the
errorlog. If a database has not been backed up
within the last 24 hours (configurable), this
information is noted in the summary.

• Other messages/errors (e.g. KILL messages,
DB-Lib problems, and ODBC connection
errors) are treated similarly. This list is easily
extensible by adding new regular expression
patterns, whenever we see fit.

Words/lines that are not needed in the summary are
skipped, and the rest are stored into a Perl nested
hash record structure. The script then prints the
summary report from the record structure. The
script can be easily modified to decide what should
or should not be skipped or printed.

The NT EventLog is summarized similarly for
SQL Server related errors and warnings using
CheckNTEventlog.pl. SQL Server error messages
that are written to both the SQL Server error log
and the NT EventLog, and therefore already
reported by CheckSQLErr.pl, are ignored.

4.6. Security and Access Exceptions

Script CheckSQLLockdown.pl checks each server
for significant deviations from the established
DBA security policies. For instance, it checks for
the following (not an exhaustive list):

• Presence of SQL Server logins with null
password

• Guest account
• Whether any SQL Server user can

automatically get local NT administrator ’s
privileges through shell escape (i.e.
xp_cmdshell)

• A list of NT accounts with sa access to the
SQL Server through NT authentication

• Remote servers with sa access to this SQL
Server via remote stored procedure calls

A second script, CheckSQLSecurityChanges.pl,
reports on significant changes of security setup in
the above listed areas, and database access changes
in general. The report is produced again by
comparing two consecutive copies of security setup
and access information output by a SQL script.

4.7. Exceptions to DBA Standards and
Best Practices

When we establish DBA standards and best
practices, we intend to have them followed, or
broken for good reasons. If they are broken, we
definitely want to be informed. The
CheckSQLStdDev.pl script scans SQL Server to
report on deviations from the DBA standards and
best practices.

The following is a sample list of DBA standards
and best practices that are codified in script
CheckDBAStdDev.pl:

• Hardware and NT configurations. Is the time
on SQL Servers synchronized? Are the data
files placed on a uniform level within the
directory tree? Is compress turned on for the
drive that stores the database files? Are
consistent file extensions used?

• Server- and database-level configurations. Is
the amount of memory allocated to SQL
Server within the reasonable range? Is the
master device marked default? Are data files
and log files for a database placed on separate
disks? Is a disk device shared by databases?
Do data and log share the same device for a

database? Is there a device not used by any
database? Is auto shrink turned on? Are there
too many data files for a database? Is a
database set to grow in small increments?

• Database schemas. Is there a new user object
created in the master database? Are there any
users with mismatched logins? Is there any
index with very low selectivity? Are there any
orphaned users? Are there any duplicate
indexes? Are there any cluster-indexed
columns that are updated frequently? Is there
any very wide clustered index with multiple
non-clustered indexes on the same table? Is
there any procedure/trigger using ‘SELECT *
FROM’ or doing INSERT INTO <table>
without identifying column names?

It is worth pointing out that what we consider
should be on the list of the DBA standards and best
practices are constantly changing.

5. Lessons Learned

Our experience so far indicates that organizing Perl
scripts under an articulated framework to
accomplish specific SQL Server administration
tasks is a powerful concept. We have been able to
scale this approach in three directions. First, we
started with monitoring a relatively small number
of SQL Servers. Adding more servers results in
little extra monitoring effort. Secondly, the SQL
Server DBA group has grown in size. These
exception reports prove to be an effective
communication tool within the group. Thirdly, with
the repository containing comprehensive system
information, we have been able to create new
exception reports easily to cover the areas we
overlooked.

Perl is integral to the success of this strategy. The
large number of modules that come with the
ActiveState distribution or available from CPAN
makes it easy to extract system information from
such diverse sources as NT registries, NT event
logs, SQL Server databases, and text files, and to
obtain information on hard drives and filesystems.
It is very convenient to wrap Perl around NT
utilities such as sc.exe (a versatile NT service
configuration and query tool from the NT resource
kit) to get system information. Similarly, we take
advantage of the text processing power in Perl to
combine the results from multiple SQL scripts into
a desirable presentation.

For the kind of monitoring discussed in this paper,
we found that it is often simpler to first run a SQL

script through isql.exe, and then use Perl to process
the well-formatted results. In many cases, this is
much easier than going through a row-oriented
database access module like Win32::ODBC.

Why not use third party tools? Using third party
tools to execute the same tasks accomplished by
the Perl scripts described in this paper would
require an expensive potpourri of tools. We are not
aware of any single commercial package that does
this type of monitoring comprehensively, or that
can be easily tailored to our specific requirements.

Why not use a scripting language like VB? The
intent of this paper is to demonstrate the value of
Perl in helping automate the SQL Server
monitoring tasks rather than discount the value of
other languages. It would be interesting to see how
any other commonly used language or tools come
close to the power of Perl in text processing and
pattern matching, and the ease of Perl to glue
together the results of wide-ranging tools.

Perl is not the most convenient tool for everything.
This is obvious, yet easily overlooked when one is
totally engrossed in Perl. In our case, for instance,
some exception reports are much more easily
produced with SQL queries alone.

Very gladly, we found that many of these Perl
scripts are useful beyond monitoring SQL Servers.
For instance, it is common for us to receive
ownership of a SQL Server installation that has
been running without administrative care. We are
able to run some of our system monitoring and
security monitoring scripts to give us a quick
inventory of the system and to identify areas we
should pay attention to bring the system in line
with our standards.

As a bonus, we also found that our monitoring
strategy enables us to maintain what we call ‘live
documentation’. Since all the system information is
in the repository, we can run a script against it to
generate up-to-date documentation for any server
we are monitoring.

Constantly, we are being reminded that there is no
such thing as ‘the production release’ of the
monitoring solution. We are forced to regularly
modify our scripts to incorporate new experiences,
to adapt to changes, to cover new requirements,
and to correct false assumptions, in particular,
assumptions on what is worth noting and what is
simply a nuisance. The combination of Perl and

SQL proves to be extremely convenient in this
regard.

Finally, it should be stressed that the approach
described in this paper should be applied only to
monitor the production environments where
changes are introduced in an orderly fashion and
any uncontrolled changes are truly exceptions.
Otherwise, the exception reporting can be
overwhelming and defeats its very purpose.

6. Conclusions

Writing Perl scripts to automate large-scale system
administration is not new at all. People have been
doing this since the inception of Perl.
Unfortunately, though, this still seems to be a
rather foreign concept to most Microsoft SQL
Server DBAs. Hopefully, this discussion of
automating SQL Server monitoring with Perl has
demonstrated the power of Perl in improving SQL
Server administration.

7. Appendix

7.1. Perl Scripts

The following is a list of Perl scripts mentioned in
this paper. They can be obtained from the author:

• GenerateSQLScripts.pl
• GenerateSQLSetupIniFile.pl
• ExportSystemTables.pl
• CompareSQLRegKey.pl
• CompareSQLConfig.pl
• CompareDBSchema.pl
• AlertTableFrag.pl
• AlertStaleStats.pl
• CheckSQLErr.pl
• CheckNTEventlog.pl
• CheckSQLLockdown.pl
• CheckSecurityChanges.pl
• CheckSQLStdDev.pl

7.2. Perl Modules

The following standard Perl modules are used in
the scripts mentioned in this paper:

• Win32::Registry
• Win32::EventLog
• Win32::OLE
• Win32::Service

The following modules are also used, and are
available from www.roth.net:

• Win32::AdminMisc
• Win32::Perms

In addition, I collected common Perl routines used
in performing DBA work into the following
module:

• SQLAdmin::DBA

All Perl scripts listed above in Section 7.1 use this
module.

7.3. Sample Exception Reports

To illustrate the exception reports produced by the
Perl scripts, we give some sample here. Notice that
these reports have been reformatted and abridged
to fit the required layout of this paper. Each
sample report is followed by a brief explanation,
and boxes are used to draw attention to certain
salient items in the reports.

7.3.1. CompareSQLRegKey.pl

***Alert SQL Registry Changes

[ABCSQL01]
[Diff btw 2000-04-12 & 2000-04-13] =>{

[Software] => {
[Microsoft] => {

[MSSQLServer] => {
[Client] => {

[ConnectTo] => {
<>value: ABCSQL02

}
}
[MSSQLServer] => {

[Parameters] => {
+ value: SQLArg2

}
}

}
}

}
}

This report shows that between April 12, 2000 and
April 13, 2000 on SQL Server ABCSQL01, the
client network configuration to server ABCSQL02
was changed and a new startup parameter
(SQLArg2) was added.

7.3.2. CompareDBSchema.pl

***Alert SQL DB Schema Changes ...

[ABSQL01.CaseDB]
Diff btw 2000-04-12 and 2000-04-13

***Msg: DB objects in 2000-04-12 but
not in 2000-04-13:

Procedure dbo.sp_TableLoad
Procedure dbo.sp_dbcc
Table dbo.AppConflict

Total # of DB objects in 2000-04-12
but not in 2000-04-13 = _3_

Total # of DB objects in 2000-04-12
but not in 2000-04-13 = _0_

***Msg: Scripts for these common DB
objects are different:

Procedure sp_CheckSum
Procedure sp_BatchUpdate
Table tb_Employee

This report highlights the differences in database
CaseDB schema between April 12, 2000 and April
13, 2000. For instance, procedures sp_TableLoad,
sp_dbcc, and table dbo.AppConflict were dropped
between April 12, 2000 and April 13, 2000. It also
shows that no new objects were added. Moreover,
it indicates that even though procedure
sp_CheckSum and sp_BatchUpdate, and table
tb_Employee are in the database on both April 12,
2000 and April 13, 2000, they are modified.

7.3.3. AlertTableFrag.pl

***Alert Table Fragmentation

[ABCSQL01.CaseDB]
dbo.Accounts 80.00%
dbo.TranMaster 77.00%

This report shows that two tables, Accounts and
TranMaster, in database CaseDB on server
ABCSQL01 are considered large (e.g. > 100,000
rows) and are significantly fragmented (the main
indicator scan density ratio < 85%).

7.3.4. CheckSQLErr.pl

[ABCSQL01]
Chking Errorlog D:\MSSQL\LOG\Errorlog
Restarted at: 2000/02/20 14:55:45

Err: 1608, Severity: 21, Total #: 36,
Last Occurred: 2000/04/26 11:47:06,
A network error was encountered
while sending results to the front
end.

Chking DBCC log D:\DBA\LOG\DBCC.LOG,
Created 0 days ago

CaseDB, Msg: 2540, Severity: 16, Total
#: 1, Allocation Discrepancy: Page
is allocated but not linked;

tempdb, Msg: 2540, Severity: 16, Total
#: 79, Alloc Discrepancy: Page is
allocated but not linked;

tempdb, Msg: 2546, Severity: 16, Total
#: 1, Table Corrupt: Extent id 256
on alloc pg# 256 has objid –641,
used bit on, but reference bit off.

[ABCSQL02]
Chking Errorlog D:\MSSQL\LOG\Errorlog
Restarted at: 00/02/10 08:36:35

Chking DBCC log E:\DBA\Log\DBCC.LOG,
Created 0 days ago

DB: tempdb, Msg: 2540, everity: 16,
Total #: 1, Allocation Discrepancy:
Page is allocated but not linked;

Warning: dump tran with no_log issued
by 'sa' invalidates log dumps in
database 'Loans' taken after Apr 27
2000 6:05PM, Total #: 1, Last
Occurred: 2000/04/27 18:15:11

***Deadlock detected, Total #: 46,
last occurred: 2000/04/30 17:24:34

Among other things, this report summarizes the
following: SQL Server ABCSQL01 is last started
on 2000/02/20, and so far, it has encountered 36
errors of error number 1608. It highlights when a
log file is created. It also shows that the SQL
Server has encountered a total of 46 deadlocks and
the last one took place at 17:24:34 on 2000/04/30.

7.3.5. CheckSQLStdDev.pl

[ABCSQL02]
***Warning: 16MB out of 512MB

allocated to SQL Server

***Warning: These data files are in
the root directory:

D:\data1.dat
D:\data2.dat

***Warning: The following devices are
not used by any database:

TestCaseDB_Dat01,
D:\MSSQL\Data\TestCaseDB_Dat01.DAT

TestCaseDB_Log01,
E:\MSSQL\Data\TestCaseDB_Log01.DAT

***Warning: Master device is default.

*** Warning: these devices are shared
by different databases:
DeviceName DatabaseName
-------------- -------------
DBA_DAT01 DBA
DBA_DAT01 ProjectDB
DBA_LOG01 DBA
DBA_LOG01 ProjectDB
master master
master model
master pubs

The report identifies the potential violations of the
following DBA best practices:

• Giving 16 MB out of 512 MB of available
RAM to SQL Server is unusually low.

• We do not advise placing data files in the root
directory.

• If a device is not used by any database, it
should be removed. Otherwise, it’s just a waste
of space.

• The master device should not be the default
data device.

• No device should be shared by different user
databases.

