
Enterprise Management of Windows NT Services

J. Nick Otto
notto@parikh.net

Parikh Advanced Systems

Abstract

A problem faced by NT administrators is the management of NT based services in the enterprise. In the NT
environment, services have particular startup states and run with varying degrees of security. Multiple NT domains,
servers, and workstations providing services all add to the difficulty of managing NT services. Un-authorized
introduction of some services can cause problems to end-users and even block network access. Proactive
monitoring of NT services is essential to maintaining the availability of network resources.

A system administrator must be aware of the following service related issues: 1) current status and uptime of all
critical NT services; 2) services authorized to be running on the network; 3) are there any un-authorized services
currently running. A system administrator must perform actions based on facts about network services. However,
in order to make quality decisions, information must be collected and monitored, prior to the administrator’s
involvement. Each area of service management presents a unique challenge. These challenges are the motivating
factor behind the tools described in this paper.

1 Introduction

This paper focuses on enterprise-level management of
NT services in a large, multi-domain, NT enterprise.
The tools and methodologies presented here are
applicable in heterogeneous environments. They are
designed to assist with the automated management of
NT services.

A system leveraging Windows NT server, Visual Basic
applications (with Microsoft’s Active Directory Service
Interfaces (ADSI)), and a Microsoft SQL server back-
end was implemented to monitor and manage NT
services across the enterprise.

Prior to developing the solution presented in this paper,
service management solutions were investigated and
tested. And, although there are many inexpensive
solutions in the market for managing certain services, a
custom solution was the best value. A custom solution
allows more control over monitoring and negates post-
implementation costs associated with scaling the
application, i.e., instance licensing.

2 Systems Requirements

The NT network this solution was built for consisted of
approximately 150 NT servers, 500 NT workstations,
three domains, and 5,000 clients. The network is
distributed over a corporate campus and a Wide Area
Network.

2.1 Initial Motivation

Better automation of NT services management became
a necessity when a troublesome new service was
brought on-line. The service in question would
randomly stop running, and require an administrator to
start up the service. While working on this issue, it was
determined that a tool could be written to check this
service each morning and ensure it was running. After
developing routines that managed the “problem”
service, it was a natural progression to continue
development and build a more full-featured service
management solution.

2.2 Needs Assessment

The driving forces behind service management issues
are NT services that stop for various reasons, fail to
start, or are unavailable. Service management is
different in each environment; some services are
critical, others are not. Frequently services must be
stopped for maintenance and should not be re-started
until a later date. Based on some of these concepts,
conclusions, and ideas, a production system was
developed that featured the following:

• A repository of all critical NT services and
associated parameters along with customizable
option fields

• Administrative front-end, or console, that
would allow for easy addition or removal of

monitored services, as well as stopping the
monitoring process completely

• An application that would poll services and
take action based on repository information

• E-mail notification, configurable per service
• Alpha paging, configurable per service
• Logging of all application functions
• A Web interface to display status, logging

summaries, and other reports and statistics
• A solution built completely on Microsoft

technology
• A minimal implementation cost

2.3 Requirements Analysis

The main objective of this effort was to develop a
system that proactively monitors and takes reactive
measures on NT services, resulting in an increase in
service availability and a reduction in response times to
a service outage.

During the development efforts, prototypes were
compiled, posted, and run. Administrator input was
gathered from the very beginning of the project and
resulted in the addition of many features; most
importantly the addition of the error count to limit e-
mail and pages.

2.4 Functionality

Proactive service monitoring and the subsequent
reactive system responses were a challenge in respect to
building the application. Services can be in different
states, with varying startup types. An administrator may
stop a service for a specific reason and not want it
started again. Critical services may require pager
notification, but only during certain hours. If a service
is off-line and e-mail notification is enabled, the system
must be set to stop notification.

The first step in defining functional requirements was
addressing the repository. The application needed to
operate based on the status of a service as well as the
repository information. Each service record in this
database contained the following fields: Host
Computer, Name, Display Name, Path, Service
Account Name, Startup Type, Status, Time/Date, Pager,
E-mail, and Error Count.

Services can be in one of seven states; 1) Not Running
(Stopped), 2) Start Pending, 3) Stop Pending, 4)
Running, 5) Continue Pending, 6) Pause Pending, and
7) Paused. A service is also configured with one of
three possible startup states; 1) Automatic, 2) Manual,
and 3) Disabled. Using combinations of these various

service states, a set of “rules” determined the action
taken by the application. The rules function based on a
combination of service startup type and service status.
If the service has a status of X and startup type of Y,
then do Z. The basic rules represented in a case select
are shown in Appendix A. Through this set of rules the
system takes the appropriate action on a target service.
To avoid the system “touching” a service an
administrator wants off-line, the startup type can be
changed to disabled, a change that can be made quickly
and at the same time that the service is stopped.

The system provides for notification of actions taken.
Two notifications methods were identified during the
needs assessment; e-mail and alpha pager. Sending e-
mail is accomplished with a simple SMTP mail routine.
Alpha paging is accomplished by tying into a network
accessible alpha paging solution. Functionally, the
system provides both services, but one would not want
to receive hundreds of e-mails if the same service was
off-line or to receive excessive pages. An error count
field was added to the database to compliment the fields
for paging and e-mail. If the error count is above five,
e-mail is no longer sent; if above two, alpha pages are
no longer sent. An assumption was made that the
administrator receiving the pages or e-mails will note
the consecutive messages and check the service status.

The database is updated whenever a service is checked.
The time and date of last service status check and the
last service status are updated. Updating these fields
allow for a real-time look at service statuses across the
network. Along with updating the main service
information, the application logs all actions taken to an
error table stored in the database. Error log records
contain the following fields: Error Message, Action,
and Time/Date. Error log functionality is essential to
the system requirements.

An administration program for the main application
was developed that enumerates network resources and
creates a “tree” view. Using this tool an administrator
can check the available services on a server and add,
remove, or edit the associated database entries. This
tool also allows for “browsing” available resources.
Administrators generally know their servers and which
machines should be on the network. With a good
naming convention one can quickly recognize servers
that stand out and then check the services. An added
benefit to this functionality is the ability to find rouge
network servers, then take appropriate action.

Configuration data for the application is held in the
database. Configuration data includes a setting for
looping frequency of the service checking routine. On
startup the application reads the configuration

information, then reads in all services to be checked.
Once checked the application “sleeps” for a pre-set
amount of time. Each iteration results in a re-reading of
configuration information and of services to be
checked. With this scenario, an administrator can add
or remove services and expect the changes to be applied
during the next run of the application.

3 Laying the Groundwork

As defined by the system needs, the service monitoring
application was required to be completely built with
Microsoft solutions and require minimal
implementation costs. Existing development tools and
back-end systems were available for this effort and
helped meet the requirements. Staying within the
Microsoft model allowed the system to be built and
implemented on existing servers, with existing Visual
Basic licenses, and the database added to an MS-SQL
server that served other needs. MS-SQL server 6.5 was
the database used for the implementation of this
application.

3.1 Why Visual Basic?

Visual Basic 6, Enterprise, was used to develop both
the administrator’s console and the service monitoring
application. Visual Basic provides a rapid development
environment for building database driven applications.
Visual Basic is easy to learn and is consistent with
VBScript allowing for easy transition from application
development to Active Server Page Development.

3.2 Microsoft ADSI

The Microsoft Active Directory Service Interfaces
(ADSI) are a key part of this application. ADSI version
2.5 was used for this project. The ADSI controls allow
objects within the NT enterprise to be connected to and
manipulated. With ADSI a developer can bind to a
server or the domain and control Services, Users,
Printers, Shares, etc. Most core administrative tasks
can be accomplished with ADSI and Visual Basic.

Another compelling argument for the use of ADSI for
developing administration tools is that ADSI provides
support for MS Exchange, Novell NDS, IIS, and LDAP
resources. Administration tools built on this technology
can bridge systems, unify administration scenarios and
reduce the burden of administration in heterogeneous
environments.

3.3 The role of IIS and ASP

One of the basic system requirements was to provide a
status of services on the network and to provide reports.
This application is completely database driven and each
error log is written to the database. With all the
information in the database it was a logical decision to
use IIS with Active Server Pages to provide the
interface for checking server status, looking up
individual records and generating reports.

4 Implementation

The implementation of the service monitoring
application was a straight forward process. Target
domains with associated services were identified and
documented. Administration groups were notified of
the pending installation and trained on what the
application would perform. A major function of the
application is to start services that are not running. If
an administrator is upgrading an application or service
and the service monitoring application starts the
service, there could be negative effects. Avoiding
conflicts between the service monitoring application
and administration teams was very important. Thus, the
involvement of each administration team was essential
to project success.

4.1 System Components

The system consists of four main components: 1) the
service monitoring application, 2) the administration
interface, 3) the database back-end, and 4) the web
interface. The basic system layout is shown in Figure
1.

MS-SQL & IIS
All Application data

& config info.

WinNT Server 4.0 Sp5
Service Monitor App

NT Domains Containing all
Monitored Services

Administration App.
Installed on Admin Desktops

Running Windows NT workstation

Figure 1 - Basic System Overview

4.2 Security

Since this application was built with Microsoft
solutions, security is dependent upon proper settings
and configurations in the Windows NT domains where
the services managed reside. The services for this
implementation resided in three domains, a master with
two trusting sub-domains. The service monitoring
application is run with domain administrator privileges.
Access to the administration program and database are
handled via integrated domain security with the MS-
SQL server.

4.3 Propagating the database

There were two options available for database
propagation: 1) enumerate network resources and add
services based on a set of criteria, or 2) selectively add
services to the database with the administration utility.
Option 2 was chosen for database propagation so that
subjective reasoning could be applied to which services
were added. Only critical services were added to the
database, there was no need to fill the database with
extraneous services. If an automatic procedure was
used to fill the database, services from all enumerated
servers would be in the database. There was no desire
to add “test” or other non-critical servers to the
program. Also, for each service there is the option for
e-mail and/or pager notification upon taking an action
on the service. The decision for these settings is
completely subjective and up to the administrator.

The process to add all the desired services to the
database was approximately a half-day effort. Each
server was investigated with the administration program
and a decision made on which services should be added
and the associated options. After implementation, new
services can be added to the database as part of the
process of adding a new server to the network.

4.4 Deployment

Deployment of the application took place as the
program was being developed. One of the basic system
needs was to have a solution that would be installed on
currently available hardware. The database was added
to an existing server and the application was installed
on an administration staff utility server. There was no
“roll-out” in the traditional sense. The application did
require installation of ADSI on the server that hosted
the application. There is no client component to this
application. All work is performed by the service
monitoring application with all communication and
polling originating with the application. This situation
is helpful when monitoring services in a firewall DMZ,

as all connections originate from inside the network
from the server hosting the service monitoring
application (although, this was not done for this
implementation).

4.5 Testing

Testing consisted of manually changing services to
varying states and watching to see if the application
behaved as predicted. During this process it was
discovered that “hung” services did not always return
an expected response to the application, sometimes the
service would return nothing. This situation, and the
case of a server being off the network, was handled by
the error handling routines in the program. If the
service didn’t return a status, or was not available, a
status of “un-reachable” was added to the database and
the appropriate notification carried out.

The application proved to be very reliable and accurate
in determining what action to take. Many of the
monitored services were over a WAN, with some very
slow links, and the application handled the slow
connections without problems. Sleep routines were
built in to account for start-up delays when the
application started a service. Originally the application
was to issue the start command, then check on the next
iteration of the program. However, this makes it more
difficult to track what action the program has
previously taken. To solve the problem, the program re-
checks any service it takes action on, prior to moving to
the next service.

4.6 Support Structure and Monitoring

Prior to implementation, service monitoring and
management was a reactive process. A service would
become un-available and remain so until reported by a
user or noticed by an administrator. Service
management under the old scenario resided with first
level administrators who would typically just re-start
the service, (or re-boot the server), and then report the
incident to the appropriate group. The service
monitoring application changes this scenario in that the
re-starting of a service, while still a reactive solution,
takes action prior to user notification. This results in
minimizing the time a service is un-available.

E-mail and pager notifications are handled by sending
the e-mail messages to a mail group that includes all
administrators. The “on-call” administrator can check
the messages and take action; while other
administrators can just delete the messages. This setup
avoids the issue of making weekly changes to the e-
mail configuration options. It also allows for coverage

when the “on-call” administrator is busy and the back-
up “on-call” would be seeing the messages. The alpha-
pages are sent to an “on-call” pager that is passed
around the support group. Pages from the application
are treated in the same manner as any other support
call.

Monitoring of log files and application activity allows
for service monitoring to become a more proactive
situation. A given service may stop for an unknown
reason on a regular basis. Administrators may be re-
starting this service but not readily noticing the trend.
Analysis of the log files and system activity allows for
trend recognition and association of application activity
with other processes. Thus, a problem service may not
be the problem at all, just the end result of a different
issue. Analysis of log files for this implementation
resulted in the identification of several trends that were
corrected shortly after implementation.

5 Lessons Learned – Success?

Post-implementation the question was asked, “Were the
needs met and does the system work?” The short
answer is yes. The suite of Microsoft products chosen
proved to be reliable and extensible. Concerns about
programmatically managing services were raised and
investigated. This simple automation of existing
technology proved to be essential for administering
large environments where consolidation of effort is
important. The application functioned as expected and
resulted in identifying troublesome services and root
causes. The web interface proved to be a handy
addition as this interface can easily be sorted by
category. An administrator can check the current status
of all instances of a given service, or can just check for
any service in the system not currently running.

5.1 Problems and Bugs

The only major problem encountered revolved around
network outages. If a WAN link or network segment
went down that contains several services, the
administration team is hit with many e-mails and pages.
This problem is a design issue and can be changed. The
work around used for this problem was to stop service
monitoring in the event of a network outage. The
network in question was very robust and the situation of
having to stop service monitoring rarely occurred.

5.2 Extensibility and Future improvements

The main purpose of this application was to monitor
and report on services existing within a WinNT domain
or domains. However, building the application with

ADSI allows for features to be added that can change
the application from a service monitoring tool to a
service administration tool.

The application can easily be modified to allow for
making changes to the service properties, both the
administrator’s console and web interface can be
modified in this way. This would allow an
administrator checking service status the ability to
change the status with the tool. The startup type and
associated account information could then also be
modified.

Additionally, ADSI provides support for many other
environments and products. Using this support the
service monitoring application can be extended to
manage resources other than NT services. In a nutshell,
the framework chosen for this application allows for
extending the application to many aspects of systems
administration. Using Visual Basic as the development
tool, also allows for taking advantage of the Windows
API to add features not supported directly by ADSI.

6 Summary

By leveraging existing resources and the power of
Visual Basic with ADSI, a working service-
management solution was implemented. Monthly
reports show when and where there are issues with key
network resources. Troublesome services (those
services that tend to stop on their own), can now be re-
started expeditiously, reducing downtime and calls to
the help desk, and identifying root causes. The logging
and tracking functionality provides the ability to
quickly recognize trends and problem areas. The
implementation resulted in an increased level-of-service
and a corresponding decrease in administrative
response time.

7 References

15 Seconds Web Page, http://www.15seconds.com.

Eck, Thomas, Windows NT/2000 ADSI Scripting for
System Administration, MTP, 2000

Hahn, Steven, ADSI ASP Programmer’s Reference,
Wrox Press, 1998.

Microsoft Active Directory Services Interfaces
Overview pages,
http://www.microsoft.com/windows2000/library/howit
works/activedirectory/adsilinks.asp

Appendix A – Code Examples

The code examples show how the decision structure for
the service monitoring application works. The
GetServiceStatus function is called by the main
program to check the current status and startup state of
a specified service. If the service is running or paused,
the function returns to the main routine. Any state

other than paused or running results in the StartService
function being called. A rather verbose case select is
used during the StartService function to determine if the
service starts and if a page should be sent. This code is
dependent on several other routines and is not intended
to be fully functional.

‘ This function shows the decision structure to decide if the application should take
‘ an action on a service. Service to be checked is passed from main routine.
‘ Return values for service status and start type are defined with constants.
‘ Actual values can be found in the ADSI documentation.

Function GetServiceStatus(sServiceName As String) As String

Dim ServiceStats As IADsServiceOperations
Dim ServiceInfo As IADsService
Dim Status As Integer

On Error GoTo ErrHandler

Set ServiceStats = GetObject(sServiceName)

Status = ServiceStats.Status

‘ if the status is running or paused, leave, we’re done

If Status = S_Running Then
 GetServiceStatus = "Running"
 iCurrErrCount = "0"
ElseIf Status = S_Paused Then
 GetServiceStatus = "Paused"
 iCurrErrCount = "0"
Else
 Set ServiceInfo = GetObject(sServiceName)
 ‘ if service is not disabled, pass the service to the startservice function,
 ‘ if not end routine.
 If Not ServiceInfo.StartType = S_Disabled Then
 GetServiceStatus = StartService(sServiceName)
 Else
 GetServiceStatus = "Stopped(Disabled)"
 iCurrErrCount = "0"
 AddErrLogEntry sServiceName, "Checked service has a start value of Disabled", _
 "Re-Start not attempted"
 End If
End If

Set ServiceStats = Nothing
Set ServiceInfo = Nothing

Exit Function

ErrHandler:
 GetServiceStatus = "UnReachable"
 AddErrLogEntry sServiceName, "Service Unavailable or Server off Network", "None"

 iCurrErrCount = iCurrErrCount + 1

 Err.Clear

 Set ServiceStats = Nothing
 Set ServiceInfo = Nothing

End Function

‘ this function is used to start services and then pass the results back to the
‘ getservice status function. Here again constants are used to identify the return
‘ value of service status.

Function StartService(sServiceName As String) As String

Dim ServiceOp As IADsServiceOperations
Dim result As String

Set ServiceOp = GetObject(sServiceName)

‘ We know the service is stopped, so let’s start it
ServiceOp.Start

MeSleep (5) ‘ wait for service to start

‘ This case select is used to determine what the application should do
‘ after the first service startup has been attempted.

Select Case ServiceOp.Status
 Case Is = S_Not_Running
 StartService = "Stopped(Re-Start Failed)"
 AddErrLogEntry sServiceName, "Service not running", "Re-Start attempt failed"
 If iCurrErrCount = "0" And sIsPageable = "Yes" Then
 Send_Page sServiceName & ": Service not running. Re-Start attempt failed."
 End If
 iCurrErrCount = iCurrErrCount + 1
 Case Is = S_Start_Pending
 MeSleep (5)
 If ServiceOp.Status = S_Running Then
 StartService = "Running(Re-Started)"
 AddErrLogEntry sServiceName, "Service not running", "Re-Started"
 iCurrErrCount = "0"
 Else
 StartService = "Stopped(Re-Start Failed)"
 AddErrLogEntry sServiceName, "Service not running", "Re-Start attempt failed"
 If iCurrErrCount = "0" And sIsPageable = "Yes" Then
 Send_Page sServiceName & ": Service not running. Re-Start failed."
 End If
 iCurrErrCount = iCurrErrCount + 1
 End If
 Case Is = S_Stop_Pending
 MeSleep (5)
 If ServiceOp.Status = S_Running Then
 StartService = "Running(Re-Started)"
 AddErrLogEntry sServiceName, "Service not running", "Re-Started"
 iCurrErrCount = "0"
 Else
 StartService = "Stopped(Re-Start Failed)"
 AddErrLogEntry sServiceName, "Service not running", "Re-Start attempt failed"
 If iCurrErrCount = "0" And sIsPageable = "Yes" Then
 Send_Page sServiceName & ": Service not running. Re-Start failed."
 End If
 iCurrErrCount = iCurrErrCount + 1
 End If
 Case Is = S_Running
 StartService = "Running(Re-Started)"
 AddErrLogEntry sServiceName, "Service not running", "Re-Started"
 iCurrErrCount = "0"
 Case Is = S_Continue_Pending
 MeSleep (5)
 If ServiceOp.Status = S_Running Then
 StartService = "Running(Re-Started)"
 AddErrLogEntry sServiceName, "Service not running", "Re-Started"
 iCurrErrCount = "0"
 Else
 StartService = "Stopped(Re-Start Failed)"
 AddErrLogEntry sServiceName, "Service not running", "Re-Start attempt failed"
 If iCurrErrCount = "0" And sIsPageable = "Yes" Then
 Send_Page sServiceName & ": Service not running. Re-Start failed."
 End If

 iCurrErrCount = iCurrErrCount + 1
 End If
 Case Is = S_Pause_Pending
 MeSleep (5)
 If ServiceOp.Status = S_Running Then
 StartService = "Running(Re-Started)"
 AddErrLogEntry sServiceName, "Service not running", "Re-Started"
 iCurrErrCount = "0"
 Else
 StartService = "Stopped(Re-Start Failed)"
 AddErrLogEntry sServiceName, "Service not running", "Re-Start attempt failed"
 If iCurrErrCount = "0" And sIsPageable = "Yes" Then
 Send_Page sServiceName & ": Service not running. Re-Start failed."
 End If
 iCurrErrCount = iCurrErrCount + 1
 End If
 Case Is = S_Paused
 MeSleep (5)
 If ServiceOp.Status = S_Running Then
 StartService = "Running(Re-Started)"
 AddErrLogEntry sServiceName, "Service not running", "Re-Started"
 iCurrErrCount = "0"
 Else
 StartService = "Stopped(Re-Start Failed)"
 AddErrLogEntry sServiceName, "Service not running", "Re-Start attempt failed"
 If iCurrErrCount = "0" And sIsPageable = "Yes" Then
 Send_Page sServiceName & ": Service not running. Re-Start failed."
 End If
 iCurrErrCount = iCurrErrCount + 1
 End If
End Select

Set ServiceOp = Nothing

Exit Function

