
Samba and Windows NT Security Interoperability

Luke Kenneth Casson Leighton
SAMBA Team

lkcl@samba.org

Abstract

Samba provides Windows NT File, Print and Login compatibility for Unix. Starting life in 1991 as Server 0.1 with
2,000 lines of code, it now consists of just over 300,000, providing full Windows NT Domain integration - a project
that began in August 1997 and is still in progress.

With the introduction of Windows 2000 (and even with Service Pack 4 for Windows NT 4.0), developers of Samba
have had to address several issues related to the interoperability with Windows NT/2000 clients. This paper
presents the technical security issues confronted by Samba developers during further implementation of the
Windows NT 4.0 domain control protocol.

1. Introduction

Samba provides Windows NT File, Print and Login
compatibility for Unix. Starting life in 1991 as Server
0.1 with 2,000 lines of code, it now consists of just over
300,000, providing full Windows NT Domain
integration - a project that began in August 1997 and is
still in progress.

During the development of Samba's NT Domain
interoperability, there have been key sticking points that
have had to be worked out, such as:

• The NTLMv2 protocol.

• The NETLOGON "Secure Channel" on
DCE/RPC.

• NTLMSSP and its application on DCE/RPC.

• User-password changing.

• Administrative user-password changing.

• PDC / BDC SAM Database Synchronization.

The NTLMv2 and the NETLOGON "Secure Channel"
were introduced in Windows NT Service Pack 4.
Without all these key components, any server that
claims to be Windows NT Domain-compatible is
completely useless. Fortunately, they are now
documented (ISBN 157870-150-3) to the extent that
they are understood.

Worse than this, if some of these mechanisms are not
implemented, a server is interoperable with Windows
NT, but is insecure, as the (outdated) mechanisms are
cryptographically extremely weak. It would be nice to
have some official documentation on these protocols,
however such an official release could potentially be
used as the basis of a lawsuit claiming exposure to
security threats, so unofficial will have to do (for which
no direct responsibility can be claimed).

This paper outlines, for both Windows NT and Samba:

• The current level of interoperability with these
security mechanisms.

• How these mechanisms are activated at the
higher security levels and how they can be
made mandatory (refuse low security
connections).

• Where the use of these mechanisms is still
insecure, and the workarounds, or The Things
to Avoid.

2. NTLMv2

NTLMv2 is a much-improved CHAP system
(Challenge Protocol). A server sends a challenge to the
client, and the client must, to a degree of probability
determined by the entropy of the challenge, prove to the
server, using the challenge and the user's password, that
the client does in fact know the user's password.

The NTLMv2 mechanism uses the NT password hash,
not the LM hash, as the user's password in the
algorithm. The response should also contain other
information such as the local time, and the server
should verify this time, to within +/- 30 minutes,
according to the NTLMv2 specification. As it turns out,
the information in the client's response is not validated
on NT4 SP4, although the HMAC_MD5 signature-part
of the client's response is validated.

Here follows a quote from MS KB Article Q147/7/06
which describes how to enable NTLMv2 (and
optionally disable NTLMv1, or support both):

Control of NTLM security is through the following
registry key:

HKLM
System

CurrentControlSet
Control

LSA

Choice of the authentication protocol variants used and
accepted is through the following value of that key:

LMCompatibilityLevel
Value Type: REG_DWORD - Number
Valid Range: 0-5
Default: 0
Description: This parameter specifies the type of
authentication to be used.

• Level 0 - Send LM response and NTLM
response; never use NTLMv2 session
security.

• Level 1 - Use NTLMv2 session security if
negotiated

• Level 2 - Send NTLM authentication only
• Level 3 - Send NTLMv2 authentication

only
• Level 4 - DC refuses LM authentication
• Level 5 - DC refuses LM and NTLM

authentication (accepts only NTLMv2)

NOTE: Authentication is used to establish a session
(username/password). Session security is used once a
session is established using the appropriate type of
authentication. Also system times should be within 30
mins of one another. Authentication can fail because
the server will think the challenge from the client has
expired.

In Samba, the equivalent options are:

client NTLMv2 = yes, no or auto

which enables whether either samba itself or a
client-side program such as smbclient or samedit
uses NTLM or NTLMv2 for outgoing connections.

server NTLMv2 = yes, no or auto

which enables whether the samba server accepts or
refuses either NTLM, or NTLMv2, or both, on
incoming connections.

3. NETLOGON "Secure Channel"

The NETLOGON "Secure Channel" provides a means
to negotiate the level of security to be used for the
communication of User Authentication requests and
SAM Database Replication. Unfortunately, the default
level of security in NT Service Pack 3 and below, all
ports of NT to Unix (AS/U by AT & T; AFPS by SCO;
Cascade by Sun Microsystems) and all production
releases of Samba (which has unofficial PDC support)
is, as is already known, pretty much a token effort.

With the introduction of Service Pack 4, it has been
possible to negotiate a more secure NETLOGON
channel, the name of which is not publicly known, but
is negotiated by setting bit 30 of the neg_flags
parameter in a NetrAuthenticate2 DCE/RPC function
call on the NETLOGON pipe. NT 5 negotiates an entire
army of encryption mechanisms, which are presumably
intended to mirror either the Crypto API or the same
kinds of authentication mechanisms that can be
negotiated for use with Kerberos 5.

In order to enable the NETLOGON Secure Channel,
here follows a quote from MS KB Article Q183/8/59:

A fix to Windows NT 4.0 Netlogon service has been
designed that will allow or integrity checking. After
applying this fix, the following Registry values can be
used to modify the behavior of the secure channel
between the client and domain controller. All of the
following values can be found in the registry under the
following key:

HKLM
CurrentControlSet

Services
Netlogon

Parameters

SignSecureChannel

Value Type: REG_DWORD - Boolean
Valid Range: 0 (FALSE) or 1 (TRUE)
Default: TRUE
Description: This parameter specifies that all
outgoing secure channel traffic should be signed. If
SealSecureChannel is also TRUE, it will override
any setting for this parameter and force it to TRUE.

SealSecureChannel

Value Type: REG_DWORD - Boolean
Valid Range: 0 (FALSE) or 1 (TRUE)
Default: TRUE
Description: This parameter specifies that all
outgoing secure channel traffic should be encrypted.

RequireSignOrSeal

Value Type: REG_DWORD - Boolean
Valid Range: 0 (FALSE) or 1 (TRUE)
Default: FALSE
Description: This parameter specifies that all
outgoing secure channel traffic must be either
signed or sealed. Without this parameter, this is
negotiated with the Domain Controller. This flag
should only be set if ALL of the domain controllers
in ALL the trusted domains support signing and
sealing. If this parameter is TRUE,
SignSecureChannel is implied to be TRUE.

In Samba, the equivalent options are:

client schannel = yes, no or auto

which enables whether either samba itself (as a
Domain Member, BDC or for verifying Inter-
Domain Trust Relationships) or a client-side
program such as samedit uses the encrypted form of
the NETLOGON Secure Channel or not, for
outgoing connections.

server schannel = yes, no or auto

which enables whether the samba server accepts or
refuses either unencrypted or encrypted
NETLOGON sessions, or both, on incoming
connections.

Failure to use the NETLOGON encrypted channel
implies that any user logons or SAM Database
replications will be insecure. And unfortunately, that
means:

Windows NT 4.0 Service Pack 4 and below
Advanced Server for Unix (AS/U) and all other
ports of Windows NT to Unix, including the new
Sun Microsystems' Cascade product. The unofficial
PDC support in all Samba production releases.

Samba does have a 98% complete implementation of
the encrypted channel - sufficient to make one
NetrSamSync or NetrSamLogon, after which the
connection must be dropped because there is a sequence
of eight bytes that is attached to the Sealing-part of the
channel, and only the first exchange (request /
response) is currently known! This is sufficient for the
purposes of making a single SAM Database replication
request (using the samsync sub-command in samedit),
but not sufficient, server-side, to service multiple
incoming requests, as a PDC.

4.NTLMSSP

The NTLM Secure Service Provider is documented in
the MSDN at a high-level, client-side. None of the
internal workings is publicly available. NTLMSSP is a
means by which the NTLM CHAP Protocol (and now
the NTLMv2 CHAP Protocol) can be leveraged to
provide signed and sealed communication. Typically
this is used to securely exchange "authentication
tokens" (which is the only [unconfirmed] acceptable
excuse to use strong crypto). ISBN 157870-150-3
provides an annotated example of how NTLMSSP
negotiation is performed and used. The example only
covers NTLMv1 at 40-bit, as this is the only
mechanism that is currently fully understood.

In order to mandate certain levels of security, should a
client actually request it, there follows a quote from MS
KB Article Q147/7/06:

Control over the minimum security negotiated for
applications using NTLMSSP is through the following
key:

HKLM
System

CurrentControlSet
Control

LSA
MSV1_0

The following values are for this key:

NtlmMinClientSec

Value Type: REG_DWORD – Number
Default: 0
Valid Range: the logical 'or' of any of the following

values:

0x00000010
0x00000020
0x00080000
0x20000000

NtlmMinServerSec

Value Type: REG_DWORD – Number
Valid Range: same as NtlmMinClientSec
Default: 0
Description: This parameter specifies the minimum
security to be used.

 0x00000010 Message integrity
 0x00000020 Message confidentiality
 0x00080000 NTLMv2 session security
 0x20000000 128 bit encryption

NtlmMinClientSec and NtlmMinServerSec

• If the bit with value 0x00000010 is set in the
NtlmMinClientSec or NtlmMinServerSec value,
the connection will fail if message integrity is
not negotiated.

• If the bit with value 0x00000020 is set in the
NtlmMinClientSec or NtlmMinServerSec value,
the connection will fail if message
confidentiality is not negotiated.

• If the bit with value 0x00080000 is set in the
NtlmMinClientSec or NtlmMinServerSec value,
the connection will fail if NTLMv2 session
security is not negotiated.

• If the bit with value 0x20000000 is set in the
NtlmMinClientSec or NtlmMinServerSec value,
the connection will fail if 128-bit encryption is
not negotiated.

NOTE: These settings will not guarantee that the
NTLM SSP is actually used by every application, or
that message integrity or confidentiality will
actually be used by an application even when they
are negotiated.

What this last comment means, for example, is that
when, say, you change your password, you expect the
password change to be encrypted using 128-bit-based
NTLMv2 encryption. However, because of a bug, the
wrong Domain and password is used (you changed the
password from someone else's workstation whilst that

other person was logged in. Your domain and username
is used with their password, in the NTLMSSP
encryption negotiation, which of course fails unless you
both have the same password!). The workstation then
falls back to not using encrypted NTLMSSP, which is
accepted by the server, bypassing any attempts to use
higher security settings. No warning is issued at either
the client or the server end that this is occurring.

At present, there are no equivalent options in Samba, as
Samba only supports 40-bit NTLMSSP using NTLM
only - not NTLMv2. This is because NTLMSSP with
NTLM is quite complicated to work out without a
specification, and NTLMv2 even more so even with a
partial specification: there are some key constants
missing, without which the (otherwise useful)
specification is only of academic interest. This is a pity,
because the use of NTLMv2 in NTLMSSP looks like it
has been well thought out, cryptographically.

5. User-password changes

User-password changing uses the old user's password
hash to encrypt the new Unicode plaintext password, in
an undocumented function call,
SamrChangeUserPassword. The old password is used
as an RC4 cypher key to encrypt the new password.

This implies that if the encrypted DCE/RPC negotiation
fails, and the client falls back to using unencrypted
DCE/RPC to transfer the SamrChangeUserPassword's
function arguments (one of which is the encrypted
password block mentioned above), then if two users
ever have the same password, or the same user ever
reuses a password, an attacker can XOR these two
blocks together to obtain information about the two new
plaintext passwords.

Unfortunately, there is no way to mandate, on NT, that
unencrypted DCE/RPC sessions be refused, so the only
guaranteed secure way to change user passwords is to
use the ntpass sub-command of the samedit tool.
Unfortunately, Samba's encrypted DCE/RPC channel
negotiation only supports 40-bit NTLMv1, which is
better than nothing.

6. Administrative user-password changes

Administrative user-password changes, which are also
carried out when an account is created, use an
undocumented function call, SamrSetUserInfo. The
password is in Unicode plaintext, and is encrypted with
the Administrator's "User Session Key". When

NTLMv1 is used, a User Session Key is calculated
from the password - and does not change.

For secure, remote Account Management using
USRMGR.EXE, is therefore vital that NTLMv2 is
used, and even then, used only once and the connection
to the DC torn down. This is of course completely
impractical in a large-scale environment, so other
measures are required, such as ensuring that the remote-
access consoles from which USRMGR.EXE are on
secure, private networks to the Domain Controller, and
that those consoles are physically secure as well.

Alternatively, the sub-command samuserset of the
samedit tool could be used [note: this is not currently
implemented - however the code is publicly available
:)]. Although this would only be at the current level of
security - 40-bit - it is better than giving away plain-text
passwords and a cryptographic hint on the
Administrator's password as well!

7. SAM Database Replication

Samba has manually-controllable SAM Database
replication. Given that Unix has cron (a mechanism to
run commands at certain time intervals) this is not such
a great loss. Samba must first be configured as a BDC:

[global]
workgroup = NTDOMAIN
password server = pdcname
; because the pdc is the
; domain master!
domain master = no
domain logons = yes
security = user
encrypt passwords = yes
server schannel = yes
client schannel = yes

[netlogon]
; stores login scripts
read only = yes
path = /usr/local/samba/netlogon

Once this is done, and Samba is joined to the domain,
the samedit tools' sub-command, samsync, can be used
to contact the PDC, obtain the user accounts and update
the BDC's local copy of the SAM database. Here
follows a transcript of a Samba Server being joined to
an NT Domain, with samedit. It is important that the
NETLOGON Secure Channel be encrypted for this,
otherwise the SAM database pretty much goes over-
the-wire in cleartext (note the prevalent usage of the
password "test" in the example below, a particularly
secure password, this is):

bin/samedit -S changeme-nt4s -U root%test \

> -l log
Server: \\CHANGEME-NT4S: User: root Domain:
Connection: OK

[root@CHANGEME-NT4S]$ use \\knight -Uroot%test
-W knight

use \\knight -Uroot%test -Wknight

Server: \\KNIGHT: User: root Domain: knight
Connection: OK

[knight\root@CHANGEME-NT4S]$ createuser
knight$ -s -j domain

createuser knight$ -s -j domain

SAM Create Domain User
Domain: DOMAIN Name: knight$ ACB: [S]
Create Domain User: OK
Join KNIGHT to Domain DOMAIN
Set $MACHINE.ACC: OK

[knight\root@CHANGEME-NT4S]$ lsaquery

lsaquery

LSA Query Info Policy
Domain Member - Domain: DOMAIN (S-1-5-21-
4070507235-114175824-2771791698)
Domain Controller - Domain: DOMAIN (S-1-5-21-
4070507235-114175824-2771791698)

[knight\root@CHANGEME-NT4S]$ samsync

samsync

SAM Database Sync

Domain: DOMAIN
Group: Domain Admins
Group: Domain Users
Group: Domain Guests
Group: testgroup
Group: testgroup2
Group: testgroup3
Group: testgroup5
Group: testgroup6
Group: testgroup7

Account: Administrator
{

0x01,0xFC,0x5A,0x6B,0xE7,0xBC,0x69,0x29,
0xAA,0xD3,0xB4,0x35,0xB5,0x14,0x04,0xEE

};
{

0x0C,0xB6,0x94,0x88,0x05,0xF7,0x97,0xBF,
0x2A,0x82,0x80,0x79,0x73,0xB8,0x95,0x37

};
Account: Guest
{

0xB3,0xCC,0x5A,0x77,0xA6,0x8F,0x64,0x77,
0x61,0x2A,0x53,0xE1,0x2D,0xFC,0x18,0x3B

};
{

0xB3,0xCC,0x5A,0x77,0xA6,0x8F,0x64,0x77,
0x61,0x2A,0x53,0xE1,0x2D,0xFC,0x18,0x3B

};
Account: CHANGEME-NT4S$
{

0x17,0x47,0xDB,0xE6,0x1B,0xA8,0x60,0x32,

0x1D,0x1A,0xEE,0x2B,0x53,0xF6,0x29,0xEA
};
{

0x5E,0x6A,0xBA,0x10,0xF7,0xA2,0x3F,0xDC,
0xEF,0x50,0xBA,0x30,0x62,0x75,0xBF,0x53

};
Account: NT4-1$
{

0x8F,0xCA,0x67,0xCF,0x5A,0x9F,0xEB,0x7D,
0xB0,0x6F,0xDA,0xCB,0xE2,0xEF,0xDE,0xAB

};
{

0x6D,0x60,0xD6,0x79,0x43,0xE7,0x2C,0xE3,
0x46,0xC3,0x4C,0xD1,0xD4,0xC9,0xD6,0x2C

};
Account: root
{

0x01,0xFC,0x5A,0x6B,0xE7,0xBC,0x69,0x29,
0xAA,0xD3,0xB4,0x35,0xB5,0x14,0x04,0xEE

};
{

0x0C,0xB6,0x94,0x88,0x05,0xF7,0x97,0xBF,
0x2A,0x82,0x80,0x79,0x73,0xB8,0x95,0x37

};
Account: knight$
{

0xBF,0xFB,0x57,0x74,0x20,0x86,0xF0,0x83,
0x1A,0xD1,0x2E,0xDD,0xA1,0x3A,0x11,0xFC

};
{

0x92,0x3A,0x73,0x26,0xCA,0xFC,0x62,0xAD,
0x7E,0x25,0x04,0x32,0x56,0x2D,0x2A,0x41

};

The first command is createuser, with the -s option
denoting that knight is a Server (a BDC). The second
command, lsaquery, is a clunky, (now old-fashioned)
way to manually obtain the Domain name of the PDC,
and the third command, samsync, actually obtains the
SAM database. Examining the smbpasswd file on
knight would show that these accounts have been added
or updated.

8. Conclusion

With the right knowledge, NT Domain interoperability
is feasible. Without this knowledge, not only can there
be no possibility of interoperability, but also it cannot
be guaranteed that the, up until now proprietary,
methods are secure. As it turns out, in this case,
Windows NT Domain systems are not secure even in
the default configuration, as they still allow, for
backwards-compatibility reasons, the lowest security
settings. Hopefully, now that it is known that these
systems are so insecure it will encourage the use of a
more responsible and already-proven (time and time
again) attitude to security. Namely that the only safe
way to develop security measures is to publish their
workings and let experts analyze it - before they are
actually used in production environments.

9. References

Subject: NT admin password change
algorithms expose user plaintext
passwords

Date: Mon, 5 Jun 2000 06:33:36 +1000
From: Luke Kenneth Casson Leighton

<lkcl@samba.org>
To: NT Bug Traq List

<NTBUGTRAQ@LISTSERV.NTBUGTRA
Q.COM>, bugtraq@securityfocus.com

Subject: Why You Should Upgrade To NT4 SP4
or NT5

Date: Mon, 5 Jun 2000 05:37:57 +1000
From: Luke Kenneth Casson Leighton

<lkcl@samba.org>
To: NT Bug Traq List

<NTBUGTRAQ@LISTSERV.NTBUGTRA
Q.COM>, bugtraq@securityfocus.com

L. Leighton, DCE/RPC over SMB: Samba and
Windows NT Domain Internals,
Publisher: Macmillan Technical
Publishing, ISBN 15787015

