System Security Administration for NT

Harlan Carvey
Hcarvey @netsol.com

Network Solutions
http: //mwww.networ ksol utions.com

Abstract

System security administration has, for the most part, been largely ignored as network administration has flourished.
The result of this is that there are large installations of NT that need to be retrofitted with some form of security
administration and management system. There are various third party tools available to assist in this endeavor, but
they are somewhat general and not tailored to meet the needs of a particular user or organization. System administra-
tors must therefore learn to mold their infrastructure to the tool, rather than the other way around. Often times, the
tools may also be quite expensive, and difficult to learn and maintain.

1. Introduction

Security administration for a single NT system can be
cumbersome, at best. There is no single interface for
configuring and monitoring the security posture of an
NT system. For example, the audit policy for a sanda
lone NT system is set viathe User Manager, while log-
specific settings and all monitored activity is recorded in
the EventLog. Further, each object (file, directory,
share, Registry key) has it's own interface for enabling
access control lists (ACLs) and audit settings. Rolling
out a common audit standard across an NT enterprise,
and then monitoring the EventLogs, can be a daunting
task. However, there are many third-party commercial
tools available to assist the system administrator. Two
drawbacks of these tools are their vagueness and cost.
Commercialy available solutions are very general in
nature, not providing the ability to focus in on the spe-
cific needs of the administrator. Some check for com-
pliance with “best practices’ but the definition of “best
prectices’ is purely arbitrary. Other tools provide a
wealth of information. In fact, they provide too much
information, inundating the administrator with facts,
requiring him to sift through this information and at-
tempt to extract the real issues at hand. None of the
tools take other aspects of the administrator’s infrastruc-
ture into account, such as corporate security policies,
the existence of a firewall, ACLs on routers, VLAN
implementations on switches, etc. The cost of purchas-
ing and installing the tools, coupled with the “cost” of
deciphering the collected data, makes for a very low
return on investment (ROI). Updates to the tools to
look for new vulnerabilities may even be an added ex-
pense.

System administrators need a more viable solution.
The appropriate solution for a security administration
system must:

= Besimple, and easy to construct and maintain.
= Becentraized.

= Bescaable
= Be configurable, to meet the specific needs of a
user.

= Provide for verification of security policy compli-
ance (compliance checking and verification).

= Notify the administrator of systems that are not in
compliance.

= Where appropriate, modify system settings to bring
systems into compliance with policies.

= Reduce overal cost for administering the system
(i.e., no expensive per-seat license fees, etc).

1.1 Purpose

The purpose of this paper is to provide a framework,
using Perl, for administering system security across an
NT enterprise. Due to space limitations, all code ex-
amples cannot be presented in this paper. Additional
scripts will be available via the author's web site at
http://www.patriot.net/users/carvdawag/perl.html.

1.2. Background

The solution will be implemented in Perl, a scripting
language that has been used on Unix platforms for ad
ministration purposes of years, and has been made
available for the Win32 platform. ActiveState provides
a fairly complete distribution of Perl for Win32 sys-
tems, as well as severa avenues of support. There are

also several additional modules that provide a quantum
leap in functionality and usability, in the NT environ-
ment, to the ActiveState distribution. These modules
provide a convenient wrapper around the Win32 API
functions, making them more accessible, and easier to
use and understand. This access to the Win32 API fa
cilitates collection, and if necessary, modification, of
security-relevant data for NT machines across the enter-
prise.

2. Solution

The solution for the centralized security administration
of NT systems can be separated into three phases. col-
lection, filtering/analysis, and modification. The three
phases are kept distinctly separate in order to maintain
simplicity, scalability and functionality. Separating the
phases also makes it easier to construct a working set of
tools, by allowing for testing and verification of one
phase before moving on to the next. Additiona func-
tionality can be added to one phase without requiring
any changes to the other phases.

The collection phaseis used to extract raw configuration
datafrom NT machines across the enterprise:

= Generate MD5 checksums of specific filesto ensure
file integrity.

= Registry settings (checking for security-specific
settings, trojans, viruses, etc)

= File, directory, share and Registry key ACLs

= Services (running, stopped, and paused), the ac-
count each service runs under, and the executable
caled by the service

= Audit policies and EventLog entries

= User rights and user account information

= File(boot.ini) and directory (“Start Menu” for each
user) contents

Thisdata is saved in a central location, most likely on
an administration workstation, in a suitable format.
The data may be written to an Access database or an
Excel spreadsheet, but the simplest method is to choose
astandard delimiter, such as a colon or semi-colon, ad
write the data to flat text files. The data is simple to
parse and review, and easily compressed and encrypted
for archival. The examples in this paper will send all
datato STDOUT, alowing it to also be redirected to a
flat file.

The data can be easily andlyzed using filters written in
Perl, making use of its inherent ability to parse data ad
files. Thesefilters access and process the data based on
predefined conditions, making full use of the pattern

matching abilities of regular expressions. Filters may
be designed to check for:

= Known security issues, such as ACLs (on files,
directories, and Registry keys) or specific Registry
values.

= More complex issues, such as the ACLs on a file
as it's related to the function of the particular sys-
tem (PDC, BDC, or workstation) and a Registry
key entry.

= General trends across the enterprise, such as the
level of Service Packs and HotFixes installed.

= Compliance with corporate security policies, to
include the audit policy for each system, or the ex-
istence of modems on workstations vice RAS serv-
ers.

The processed information can then be presented in
whichever format meets the needs of the user, to in-
clude:

Email

Pager

HTML

XML

Word document
Excel spreadsheet
Access database
EventLog entries

The system administrator can also use Perl to act upon
the information derived from filtering and analysis,
making modifications as necessary. Services can be
stopped or started, Registry values added or deeted,
auditing can enabled, and EventLogs can be collected
and filtered, all from a single workstation.

Dueto it's simple, modular nature, this system can be
easily updated as new information (new vulnerabilities,
updated security policies) isincorporated.

This system can also be used to establish a baseline,
which managers and administrators can use to look for
system changes, or develop and implement security
policies and standards.

Once the data is filtered and analyzed, system adminis-
trators can begin the modification phase. Using the
same Perl modules that were used to collect data from
systems, the system administrator can bring the NT
systems into compliance with security standards, by
updating settings (i.e, Registry entries,
file/directory/share/Registry permissions, audit policy,
etc). As this is done from a centralized location, only

one account, with a strong password, is required to per-
form this entire range of security administration.

Once all settings have been implemented and tested, the
collection and filtering phases can again be used to ver-
ify compliance with security standards, by executing
those phases as part of a regular security scan. Using
the baseline information, the system administrator nesd
only to look for anomalies and unusual settings, indi-
cating that a lack of compliance with security policies
and standards.

As an example, assume the system administrator wishes
to not only check for the existence of trojan programs
on her NT servers and workstations, but she also wants
to ensure that these programs (or any other programs,
for that matter) can not be installed on the systems.
She uses Perl scripts collect relevant data (Registry key
entries and permissions, file and directory ACLS, €tc)
from across the enterprise, to include offices connected
to the master domain by WAN and VPN links. Once
she's collected data from all systems, she filters the
Registry entries based on published signatures of known
trojan programs, and then reviews the entries for suspi-
cious or unauthorized entries. Not finding anything
significant, she then sets about modifying Registry and
directory ACLs on all systems to prevent the installa-
tion of trojan programsin the future. She follows this
up with periodic scans of the Registry keys and Security
EventLog to ensure compliance, and incorporates new
data, as it becomes available. The entire process is
simple to maintain, and automated to reduce errors and
increase efficiency.

3. Implementation

The examples presented in this paper are not meant to
be al-inclusive. Rather, they are presented as a frame-
work or set of tools from which system administrators
can build solutions that meet their specific needs. Also,
space requirements limit the number and functionality
of the scripts that can be presented. Additional scripts
will be avalable via the web, a

http://www.patriot.net/users/carvdawg/perl .html.

The following examples lay the groundwork from
which specific solutions and systems can be built.

3.1 Checksums

The integrity of critical system files is a serious secu-
rity concern, as there are publicly available web sites
that demonstrate the construction of a rootkit for NT

(http://www.rootkit.com). Rootkits have been a thorn
in the sides of Unix administrators, as they are used to
patch the kerngl and trojanize commands in order to hide
malicious activities. DIGEST.PL (Script 1) demon-
strates a method for generating MD5 hashes of critical
files. These hashes can be saved to a protected file or
database and be used to verify the integrity of critical
system files on aregular basis.

3.2 Registry Settings

The NT Registry can be as much atreasuretrove asit is
a technological minefield. There are several Registry
values that have a direct or indirect impact on the secu-
rity posture of the system.

3.2.1 Individual Registry Values

REGKEYS.PL (Script 2) shows how Registry vaues
can be collected from remote NT systems. The values
can then be verified, and a message printed to STDOUT
for each incorrectly set Registry value. This information
can be logged to a database or file, or the value simply
modified as needed. For example, the system adminis-
trator can check NT systems for compliance by check-
ing the Service Pack level on each system.

3.22Trojan Keys

TROJANKEYS.PL (Script 3) demonstrates collecting
the contents of Registry keys. The values can be
scanned for known trojan signatures using the grep()
function. Trojan signatures are available from anti-
virus sites such as F-Secure (http://www.f-secure.com).
For example, using grep(), the system administrator can
quickly scan incoming data using the following signa-
tures for network backdoor, remote administration trojan
programs (signature in parens):

ATAKA (SNDVOL.EXE)

NetBus (Patch)

DeepThroat (SystemDLL32)

NetSphere (NSSX)

GateCrasher (Command)

Portal of Doom (ljsgz.exe)

Girlfriend (Windll.exe)

HackATack (Expl32.exe)

Phase Zero (MsgServ|msgsvr32.exe)

MyPics Variant (agent5|zip0l.exe)

NewApt (tpawen|panth)

= SubSeven (mtmtask.dl)

By simply changing the Registry key examined, system
administrators can verify which HotFixes are installed
on each NT system.

3.3ACLs

Access control lists (ACLs) define which users ad
groups have what level of access to specific resources.
PERMS.PL (Script 4) demonstrates a method for col-
lecting the ACLs from files, directories, Registry keys,
and shares, and presenting the ACLs in an easy to un-
derstand format. Credit goesto Dave Roth for both his
Win32::Perms module, as well as the code for the get-
perms() method.

3.4 Services

SERVICES.PL (Script 5) demonstrates a method for
collecting information from services available on NT
systems, such as the service's status, the service execu-
table, and the account that the service runsunder. Other
methods in the Win32::Lanman module will alow the
system administrator to start or stop services. Dave
Roth’s Win32::Daemon module provides a nice inter-
face for creating services from Perl scripts.

3.5 Auditing and L ogging

NT systems have the capability of performing auditing
and logging functions. Administrators can use the in-
formation available in the EventLog to see if there are
problems with applications, look for clean or dirty sys-
tem shutdowns, or even as a rudimentary intrusion de
tection system.

3.5.1 Audit Palicies

The AUDITPOL.PL (Script 6) script shows how the
audit policy can be determined. Auditing can be enabled
if the current state shows it to be disabled, and the par-
ticular events to be audited can be set.

3.5.2 EventLog Entries

The DUMPEVENTS.PL (Script 7) script demonstrates
a means of collecting EventLog entries from multiple
machines within the domain. The script collects the
entries and sends them to STDOUT. However, the en-
tries can be deposited in an Excel spreadsheet or Access
database, making the entries more manageable. Specific
events can be filtered during the collection process, such
as Dr. Watson messages, failed logon attempts, etc. |If
ACLs are set to prevent users from writing to specific
directories and Registry keys, attempts to do so (as
when the user attempts to install software, or when a
trojan attempts to install itself) appear as EventlD 650
in the Security EventLog.

3.6 User Privileges and User Account In-
formation

The administrator may need to determine the privileges
that users have available in order to diagnosis access
issues. The Win32::Lanman module provides methods
for displaying privileges assigned to particular users or
groups, or assigning privileges as necessary.

USERS.PL (Script 8) demonstrates how an administra-
tor might collect information about user accounts from
the local NT system. Other Win32::Lanman methods
alow the administrator to enumerate global and local
groups, or add users and groups.

3.7 Directory and File Contents

STARTUPCHK.PL (Script 9) shows how an adminis-
trator can examine the contents of the Start Up directo-
riesfor al profiles on an NT system. This script will
also show the executable files pointed to by shortcuts.

Administrators can also use Perl to get the contents of
particular files, such as boot.ini or Imhosts, in order to
aid in troubleshooting problems.

4. Conclusions

The system and example scripts presented in this paper
are quite simple, yet scalable and easy to maintain. All
requirements for a security administration system have
been met, to include reducing overall cost. At the same
time, system administrators using this model have an
understanding of the necessity for maintaining the secu-
rity of their NT systems. They aso have a complete
security administration toolkit consisting of resources
for NT-specific security information, a powerful script-
ing language (Perl), and a wide variety of tools ad
techniques to make their jobs easier and more efficient.

Using other modules, system administrators can per-
form awide variety of other centralized security admini-
stration tasks. For example, there are modules available
that allow the system administrator to interface with the
Performance Monitor on remote NT systems to check
running processes. System administrators can also use
Win32::0OLE to interface locally with 1IS 4.0's meta-
base and make configuration changes, or use
LWP::UserAgent to test their 1IS 4.0 web servers for
susceptibility to the latest exploit (note: Rain Forest
Puppy’s whisker.pl is uses Socket.pm to provide the
functionality of LWP::UserAgent).

5. Appendix A: Resources
51Perl on NT

All scripts associated with this paper were written and
tested using ActiveState's ActivePerl build 522 on
Windows NT 4.0. At the time of this writing, Ac-
tivePerl build 522 was avalable from
ftp://ftp.activestate.com/A ctivePerl /Windows/5.005/I nte
/.

5.2 Extensions

The following extensions are available as part of the
default distribution of ActiveState’'s ActivePerl:

= Win32::TieRegistry
= \Win32::Shortcut

The Digest::MD5 moduleis not installed as part of the
gandard distribution, but is available via PPM (“ppm
install Digest-MD5").

The following extensions are available from Dave
Roth’'s web site, and installable via PPM:

= Win32::AdminMisc
= Win32::Perms

The Win32::Lanman module is available in a zipped
archive from Dave Roth’s FTP site
(ftp://ftp.roth.net/ntperl/Others/l anman/lanman_1 05.zi
pl or it can be ingadled via PPM from
http://jenda.mccann.cz/perl/.

5.3 Books and Papers

Schwartz, R. L., Olson, E., and Christiansen, T.,
“Learning Perl on Win32 Systems’, O'Reilly & Asso-
ciates, 1997

Roth, D., “Win32 Programming: The Standard Exten-
sions’, MacMillian Technical Publishing, 1998

Roth, D., “A Network Machine Management System”,
USENIX's 2nd Large Installation System Administra-
tion of Windows NT (LISA-NT) Conference, July,
1999

Jumes, J. G., Cooper, N. F., Chamoun, P., and Fein-
man, T. M., “Windows NT 4.0 Security, Audit, ad
Control”, Microsoft Press, 1999

5.4 Web Sites

The author’'s web site lists severa scripts which could
not be listed in this paper due to space requirements

(http://www.patriot.net/users/carvdawag/perl.html).

Dave Roth’'s site is the home of severa extremely use-
ful Perl modules, as well as his paper from the Usenix
LISA-NT '99 Conference (http://www.roth.net)

Joe Casadonte’'s web site lists many modules available
for NT (http://www.netaxs.com/~joc/perlwin32.html)

6. Appendix B: Scripts
6.1 Digest.pl (Script 1)

c:\perl\bin\perl.exe

digest.pl

Generate MD5 checksums on files to verify file

integrity

Use with system files, web pages, etc. Can also use
files on mapped drives, but must use complete path.
use strict;

use Digest::MD5;

my $server = shift || Win32::NodeName;
my @files = ("io.sys","ntldr","boot.ini"," ntdetect.com”,
"winnt\\system32\\f pnweclnt.dll");
my $path;
Sserver =~ yla-z/A-Z/;
(Pserver eq Win32::NodeName) ? ($path ="c:\\") :
($path = "\Wserver\\c\$\\");

foreach (@files) {
my $file = $path.$_;
if (-e$file) {
my $hash = hash($file);
print "$server\t$file => $hash\n";
}
ese{
print "$file could not be found.\n";
}
}

sub() to generate the actual hash
sub hash {
my ($file) = @_;
open (FILE, $file) or die "Can't open $file: $!\n";
binmode(FILE);
my $digest = Digest::MD5->new->
addfile(* FIL E)->b64digest;
return $digest;

}
6.2 Regkeys.pl (Script 2)

#! c:\perl\bin\perl.exe

RegKeys.pl

Collect Registry key values for analysis
use strict;

use Win32::TieRegistry(Delimiter=>"/");

my $server = shift || Win32::NodeName;
my $remote;

if (Sremote = $Registry->{"//$server/LMachine'}) {
\& getRegV alues($server);
}
ese{
print "Could not connect to $server Registry.\n";
}

sub getRegValues {
my($value $data);
my %regkeys = ();
Keys are kept in adatafile, in format: Value;Path
Ex: EnableDCOM ; SOFTWARE/Microsoft/Ole
my $datafile = "RegKeyValues';
if (-e $datafile) {
open(FL ,$datafile) || die "Could not open “.
“ $datafile: $1\n";
while(<FL>) {
chomp;
Skip comments and blank lines
next if ($_ =~ m/"#/);
next if ($_=~ mMs+$/);
my($key,$path) = split(/;/,$);
$regkeys{ $key} = $path;
}

close(FL);
foreach my $key (keys %regkeys) {
$value = $remote->{ $regkeys{ $key} };
$data = $value->{ $key};
if (defined $data) {
$data = hex($data) if ($data =~ m/*Ox/);
print "$key = $data\n";
}
else{
print "$key = NotFound\n";
}
}
}

}
6.3 TrojanKeys.pl (Script 3)

#! c:\perl\bin\perl.exe

trojankeys.pl

Check Registry keys where trojans

like to hide for suspicious entries

use strict;

use Win32::TieRegistry(Delimiter=>"/");

my ($remote);
my $server = shift || Win32::NodeName;

my %hives = ("LMachine" =>"HKLM",
"CUser" =>"HKCU");

foreach my $hive (keys %hives) {
print "Checking $hives{ $hive} hive..\n";
($remote = $Registry->{"//$server/$hive'}) ?
(\& getTrojanK eys($server)) :
(print "Could not connect to “.
“ $hives{ $hive} hive\n");
print "\n";

}

sub getTrojanKeys{
my($path) = 'SOFTWARE/Microsoft/ .
‘“Windows/CurrentVersion';
my(@keys) = ('Run’,’RunOnce’, RunOnceEX’,
'RunServices);
foreach my $k (@keys) {
my $key = $remote->{ "$path/$k"} ;
if (defined $key) {
my @vals = $key->ValueNames;
if ($#vas!=-1) {
foreach my $val (@vals) {
my $data = $key->{$val};
$data = "NotFound" unless($data);
print "$k:$val:$dataln”;

6.4 Perms.pl (Script 4)

c:\perl\bin\perl.exe

Perms.pl

usage: perl perms.pl [obj]
ex: perl perms.pl c:\winnt
use strict;

use Win32::Perms;

my $obj = shift ||
die"You must enter an object: File, Dir,”.
“ or Reg key.\n";

\& getperms($obyj); DecodeM ask($A cct,\@M \@F);

foreach $Mask (@M) {
Credit goesto Dave Roth for providing the $Perm |= 2**$SPERM{$SMAP{$Mask} } ;
following code to translate the DACL mask }
into something readable; ie, Explorer-like
listing foreach $Mask (keys(%PERM)) {
sub getperms { $String[$PERM{ $Mask}] = $Mask
my($obj) = @_; if ($Perm & 2**$PERM{$Mask}) ;
my($Acct, @List,$Path,$i Total,@String); }

my($Perm) = new Win32::Perms($obj);
$DacI Type = $Acct->{ ObjectName} ;

my (%PERM) = (R => 0, if(2 == $Acct->{ ObjectType}) {
W = 1 #We have either afile or directory. Therefore we
X = 2, # need to figure out if this
D => 3 # DACL represents an object (file) or a
P => 4, # container (dir)...
0O => 5, ($Acct->{ Flag} & DIR) ?
A => 6); ($Dacl Type = "Directory") :
($DacI Type = "File");
my(%MAP) = (FILE_READ _DATA' => R, }
'GENERIC_READ' = 'R, my $permstr = join("",@String);
'KEY_READ' => 'R, print "$Acct->{ Account} :$Dacl Type:”.
'KEY_QUERY_VALUE' => 'R, “$permstr\n”;
'FILE_WRITE_DATA' => "W/, }
'KEY_WRITE' ='W, print "Everyone has full permissions\n" if(!$iTotal);
'GENERIC_WRITE' => 'W/ }
'KEY_SET_VALUE' => "W/
'DELETE' => D, 6.5 Services.pl (Script 5)
'FILE_DELETE_CHILD'=> 'D',
'FILE_ EXECUTE' => 'X|, # c:\perl\bin\perl.exe
'FILE_TRAVERSE' => 'X', # Services.pl
'GENERIC_EXECUTE' => 'X/, # Retrieve info on services on $server
'CHANGE_PERMISSION' => 'P, use strict;
"TAKE_OWNERSHIFP => 'O, use Win32::Lanman;
'FILE_ALL_ACCESS => 'A',
'GENERIC_ALL' = 'A', my $server = shift || Win32::NodeName;
'STANDARD_RIGHTS ALL'
=>'A"); \& Services($server);
die "Can not obtain permissions for '$Path\n" sub Services{
if(1$Perm); my($server) = @_;
Array to trandlate the current state of the service into
$Perm->Dump(\@L.ist); # something readable
my(@state) = (""," Stopped"," Start_Pending",
foreach $Acct (@List) { "Stop_Pending", "Running",
my($Perm); "Continue_Pending",
my(@string) = split(//, "-" "Pause_Pending","Paused");
x scalar(keys(%PERM)));
my($Mask,@M,@F); # Array to trandate the startup options for the service
my($Dacl Type); # into something readable
my(@startup) = ("",""," Automatic","Manual",
next if($Acct->{ Entry} ne"DACL"); "Disabled");
$iTotal++; my($err,@services,$service,%info);

if (Win32::Lanman::EnumServicesStatus(

"W$server","",& SERVICE_WIN32,
&SERVICE_STATE_ALL \@services)) {
foreach $service (@services) {

if (Win32::Lanman::QueryServiceConfig(
"Wserver","" ¥ $service} { name},
\%info)) {

Print out in an easy to read format
print "${ $service} { display}\n";
print "\tName\t${ $service} { name}\n";
print "\tState\t" . $state] ${ $service} { state}]."\n";
print "\tAccount\t$info{ account}\n";
print "\tFile\t$info{ filename}\n";
print "\tStart\t" .$startup[$infof start}]."\n";
print "\n";
}

else{
$err = Win32::FormatM essage
Win32::Lanman::GetL astError();
$err = Win32::Lanman::GetL astError()
if (Serr eg™);

print "$server: QueryServiceConfig Error: $err”;

}
}
}
ese{
$err = Win32::FormatM essage
Win32::Lanman::GetL astError();
$err = Win32::Lanman::GetL astError()
if (Serr eg™);
print "$server: Services Error: $err”;
}
}

6.6 AuditPol.pl (Script 6)

#! c:\perl\bin\perl.exe

auditpol.pl

Determine the audit policy of an NT system
use strict(vars);

use Win32::Lanman;

my $server = shift || Win32::NodeName;

\& AuditPol ($server);

sub AuditPol {
my($server) = @_;
my(%info);
my(%hash) = (
"AuditCategoryLogon" => "L ogon and Logoff",
"AuditCategoryObjectAccess' => "File and

Object Access',

"AuditCategoryPrivilegeUse" => "Use of

User Rights',
" AuditCategoryAccountManagement” =>
"User/Group Mgmt",
"AuditCategoryPolicyChange" => "Security Policy
Changes’,
"AuditCategorySystem" => "Restart and
Shutdown System",
"AuditCategoryDetailedTracking" =>
"Process Tracking™);

my(%settings) = (0 => "None",
1 => "Success',
2 => "Failure",
3 => "Success and Failure");

if (Win32::Lanman::LsaQuery-
AuditEventsPolicy("\\W$server" \%info)) {

my $audit = $info{ auditingmode} ;

if (!Saudit) {

print "$server: Auditing is NOT enabled!\n";

}

else{
print "\n";
printf "%-35s %-ZOs\n "Audit Events Sett| ngs";
printf "%-35s %-20s\n",’
my $options = $info{ eventaud|t| ngopt|ons}
foreach my $key (keys %hash) {

printf "%-35s %-20s\n",
$hash{ $key} ,$settings{ $$options[& $key]};

}

}
}
ese{
my $err = Win32::FormatM essage
Win32::Lanman::GetL astError();
print "$server: Audit Error: $err\n”;
}
}

6.7 DumpEvents.pl (Script 7)

c:\perl\bin\perl.exe

Dumpevents.pl

use strict;

use Win32::Lanman;

use Win32::Perms;

my $server = shift || Win32::NodeName;
Win32::Perms::LookupDC(0);

\& GetEvents($server,” Security");
sub GetEvents{

my($server,$evtlog) = @ _;
my(@events $event,$desc);

my %types = (1 =>"(Error)",
4 => "(Information)",
8 => "(Success Audit)",
16 => "(Failure Audit)");

my %category = (0 =>"(None)",
1 =>"(System Event)",
2 =>"(Logon/Logoff)",
3 =>"(Object Access)",
4 =>"(Privilege Use)");

if(Win32::Lanman::ReadEventL og("\\$server",
$evtlog, Oxffffffff, 0, \@events)) {
foreach $event (@events) {
print"Computer: ".${ $event} { computername}."\n";
print “Category:".${ $event} { eventcategory} ."
" $category{ ${ $event} { eventcategory}}."\n";
my $id = (${ $event} { eventid} & Oxffff);
Use the EventID to filter on specific types of events
print "Event ID: ".$id."\n";
print "EventType: ".${ $event} { eventtype} ."
" $types{ ${ Sevent} { eventtype} }."\n";
print " Source: ".${ $event} { source} ."\n";
print "SourceName: ".${ $event} { sourcename}."\n";
print"Generated: ".localtime(${ $event}
{timegenerated})."\n";
print "Written: ".localtime(${ $event}
{timewritten})."\n";
print "Flags: ".${ $event} { reservedflags}."\n";
print "User: ".Win32::Perms::
ResolveA ccount(${ $event} { usersid})."\n";
print "Description: ";
if (Win32::Lanman::GetEvent
Description("\\W$server", $event)) {
$desc = ${ $event} { eventdescription} ;
print $desc."\n";
}
else{
my $strings = ${ $event} { strings};
print "\n";
foreach (@$strings) {
print "\t+".$_."\n";
}
}
print "Data:" .unpack("H".2* length(${ $event}
#{data}), ${ $event} { data})."\n"
if (¥ $event}{data} ne"");
print "\n\n";
}
}
else
my $err = Win32::FormatM essage
Win32::Lanman:;:GetL astError();
$err = Win32::Lanman::GetL astError()

if (Serr eq ™)
print "$server: ReadEventLog error: $err.\n";
}
}

6.8 Users.pl (Script 8)

c:\perl\bin\perl.exe

Users.pl

Get user info from local system
use strict;

use Win32::Lanman;

my $server = shift || Win32::NodeName;
print "$server users...\n";

\& GetUserInfo($server);

sub GetUserInfo {
my($server) = @_;
my(@users,$user,$pwage):

if (Win32::Lanman::NetUserEnum
("\WSserver",0\@users)) {
foreach my $user (@users) {
Spwage = (split(/\./,5{ Suser} { ‘password_age’}))
/(3600* 24);

print "${ $user}{'name’}\n";

print "\tComment => ${ $user}{‘comment'}\n";
print "\tUID => ${ $user}{'user_id'}\n";
print "\tPasswd Age => $pwage\n”;

print "\tLogon Svr =>
${Suser}{'logon_server}\n’;

print "\tLast Logon =>
" .mlocaltime(${ $user}{'last_logon'})."\n";
print "\tLast Logoff =>
" .mlocaltime(${ $user}{'last_logoff'})."\n";
print "\tAccount does not expire\n"
if (${Puser}{'acct_expires} ==-1);
print "\tACCOUNT DISABLED.\n"
if (${S$user}{'flags} &
UF_ACCOUNTDISABLE);
print "\tUser cannot change password.\n"
if (${S$user}{'flags} &
UF_PASSWD_CANT_CHANGE);
print "\tAccount is locked out.\n"
if (${Suser}{'flags} & UF_LOCKOUT);
print "\tPassword does not expire.\n"
if (${Suser}{'flags} &
UF_DONT_EXPIRE_PASSWD);
print "\tPassword not required.\n"
if (${Suser}{'flags} &
UF_PASSWD_NOTREQD);
print "\n\n";

} "$dir:$file:$shortcut->{ Path}\n") :

} (print "Error with
ese{ Shortcut: ".Win32::FormatM essage
my $err = Win32::FormatM essage Win32::GetLastError."\n");
Win32;:Lanman::GetL astError(); }
$err = Win32::Lanman::GetL astError() else{
if (Jerreg™"); print "$dir:$file\n”;
print "NetUserEnum Error: $err\n”; }
} }
} }
}
sub mlocaltime { else {
($_]0] ==0) ? (return "Never") : print "$newdir does not exist or is not”.
(return localtime($_[0])); “ adirectory.\n";
} } }
6.9 StartUpChk.pl (Script 9) else{
print "$dir2 does not exist or isnot a’.
#! c:\perl\bin\perl.exe “ directory.\n";
StartUpChk.pl }
Checks contents of StartUp folder }
for each profile closedir(ST);
use strict; }
use Win32::Shortcut; else{
print "$start does not exist or is not a direc
my $server = shift || Win32::NodeName; tory.\n";
my $me = Win32::NodeName; }
my S$startdir;

($server eq $me) ? (Sstartdir ="c:\\") :
($startdir = "\W$server\\c\$\\");

my $start = $startdir."winnt\profiles\";
my $startup = "\\start menu\\programs\\startup";
my ($dir,$err);

if (-e$start && -d $start) {
opendir(ST,"$start");
foreach $dir (sort readdir(ST)) {
next if ($dir eq"." || $dir eq"..");
my $dir2 = $start.$dir;
if (-e$dir2&& -d $dir2) {
my $newdir = "$start".$dir." $startup”;
if (-e $newdir && -d $newdir) {
opendir(SUP,$newdir);
my @files = readdir(SUP);
closedir(SUP);
if (@files) {
foreach my $file (@files) {
next if ($fileeq”." || $fileeg"..");
if ($file =~ m/Ink$/) {
my $shortcut = Win32::Shortcut
->new($newdir."\\".$file);
($shortcut) ? (print

