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Abstract

The Direct Access File System (DAFS) is a new,
fast, and lightweight remote file system protocol.
DAFS targets the data center by addressing the
performance and functional needs of clusters of ap-
plication servers. We call this the local file shar-
ing environment. File access performance is im-
proved by utilizing Direct Access Transports, such
as InfiniBand, Remote Direct Data Placement, and
the Virtual Interface Architecture. DAFS also en-
hances file sharing semantics compared to prior
network file system protocols. Applications using
DAFS through a user-space I/O library can by-
pass operating system overhead, further improv-
ing performance. We present performance measure-
ments of an IP-based DAFS network, demonstrat-
ing the DAFS protocol’s lower client CPU require-
ments over commodity Gigabit Ethernet. We also
provide the first multiprocessor scaling results for
a well-known application (GNU gzip) converted to
use DAFS.

1 Introduction

With the advent of the Virtual Interface Architec-
ture [11], InfiniBand [1], and the Remote Direct
Data Placement (RDDP) protocol [13], messaging
transports that support Remote Direct Memory Ac-
cess (RDMA) operations are moving from the realm
of esoteric, single-vendor implementations into the
mainstream of commodity technology. The DAFS
Collaborative was launched in 2000 with the mission
of developing a network file access protocol, the Di-
rect Access File System (DAFS) [9], that takes full
advantage of such Direct Access Transports (DATs),
building on the semantics of existing network file
system protocols. DAFS employs many concepts
and semantics of NFSv4 [12], which in turn is de-
rived from earlier versions of NFS and incorporates

some semantic features of CIFS [30]. Unlike NFSv4,
DAFS includes semantics for which there were no
pre-existing APIs. The Collaborative defined the
DAFS API to access them.

The design of DAFS targets two goals. The first
is to enable low-latency, high-throughput, and low-
overhead data movement between file system clients
and servers. Part of this goal is to minimize the de-
mands placed on the client CPU by the protocol.
DAFS addresses network throughput and latency
concerns by using fast DAT technologies built upon
RDMA capability. It minimizes client CPU utiliza-
tion by using the direct data placement and operat-
ing system bypass capabilities of the transports and
by placing a premium on client CPU cycles at all
stages of the protocol. By minimizing client CPU
utilization, DAFS clients can potentially experience
better performance accessing files via DAFS than
they can by accessing files through their local file
systems.

The second goal of DAFS is to include the nec-
essary semantics to ensure reliable, shared access
in a clustered system. Because it is targeted at
highly scalable workloads within data center envi-
ronments, support for clustered clients is essential.
DAFS contains many features that enable sharing
of files among clients, while allowing cooperating
clients to limit access to shared files by outsiders.

1.1 Motivation

Files can be accessed in three ways: from local disk,
from a remote shared disk, and over a network file
system. Traditionally, local file systems [26, 28] ac-
cessing local disk storage have provided the highest
performance access to file resident data. However,
they do not solve the problem of sharing data sets
or storage among a number of computers. Cluster
file systems, such as Frangipani [20, 34], GPFS [29],
and GFS [32], allow multiple clients to access a sin-
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gle remote shared disk pool, by coordinating man-
agement and control of the shared file system among
the clients. These systems access shared disks us-
ing transports such as iSCSI and Fibre Channel
[31] that are designed for data storage, so they en-
joy bulk data transfer performance on par with lo-
cal disk. The price paid is relatively complex dis-
tributed data and metadata locking protocols, and
complex failure handling. These systems also de-
mand client software homogeneity.

Network file systems [16, 27] permit heterogenous
clients to share data on remote disks using more tra-
ditional networks. This characteristic comes at the
expense of relatively poor performance compared to
local file systems, due in part to the high CPU and
latency overhead of the network protocol layers, and
the limited bandwidth of the transports. Network
file systems avoid much of the complexity of clus-
ter file system implementations by using messaging
protocols to initiate operations that are performed
on the server. The implementation of data shar-
ing, fault isolation, and fault tolerance is simpli-
fied compared to cluster file systems because data
and metadata modifying operations are localized on
the server. Network file systems are typically less
tightly integrated than cluster file systems, requir-
ing a lower degree of locality and cooperation among
the clients. We believe that there is a role for a high-
performance network file system in tightly coupled
environments, because of the inherent advantages
of simple data sharing, interoperable interfaces, and
straightforward fault isolation.

Based upon almost two decades of experience with
the network file system model, it was apparent to
the participants in the DAFS Collaborative that a
new network file system protocol based on RDMA-
capable Direct Access Transports would be most
useful as a step beyond NFSv4. This need was
recognized before NFSv4 was finalized, but after
NFSv4 was largely defined. Unlike NFSv4, DAFS
was targeted specifically at the data center, incorpo-
rating what was called the local sharing model as its
design point. Hence DAFS assumes a higher degree
of locality among the clients than NFSv4, and is
designed to enable a greater degree of cooperation
among those clients and the applications running
on them. The intent is to enhance the support for
clustered applications, while maintaining the simple
fault isolation model characteristics of the network
file system model.

One design alternative would be to leverage the ex-

isting ONC RPC [33] framework that underlies NFS
by converting it to use RDMA for data transfer [18].
This approach would enable direct data placement,
but the existing framework would not allow sev-
eral other optimizations, including full asynchrony,
session-oriented authentication, request throttling,
and resource control. While it is likely that a rea-
sonable modification to ONC RPC to accommodate
these goals could be done, it would involve fairly
major changes in the RPC framework and inter-
face. Our goal was high-performance file access, not
a general purpose RPC mechanism.

A goal of DAFS is to maximize the benefit of using
a DAT. To accomplish this, it was not sufficient to
simply replace the transport underneath the exist-
ing RPC based NFS protocol with an RDMA-aware
RPC layer. DAFS enables clients to negotiate data
transfers to and from servers without involving the
client CPU in the actual transfer of data, and mini-
mizes the client CPU required for protocol overhead.
DATs offload much of the low-level network protocol
processing onto the Network Interface Card (NIC),
and the interfaces to these network adapters, such as
DAPL [10], are callable from user space and do not
require transitions into the kernel. Thus, it is pos-
sible to reduce the client CPU load of the network
file system to just the costs of marshalling parame-
ters for remote operations, and unpacking and inter-
preting the results. Data can be placed directly in
the applications’ memory by the NIC without addi-
tional data copies. DAFS further reduces the over-
head of data transfer by incorporating batch and
list I/O capabilities in the protocol.

To support clustered clients, DAFS extends the se-
mantics of NFSv4 in the areas of locking, fencing,
and shared key reservations. It does not require that
the cluster file system implementations built using
DAFS fully support POSIX file access semantics,
but does provide sufficient capability to implement
such semantics if desired.

The remainder of the paper is as follows. Section 2
provides some background on Direct Access Trans-
ports, the network technology required for DAFS.
Section 3 introduces the core of the Direct Access
File System, focusing on the rationale behind sig-
nificant design decisions. Section 4 follows with the
DAFS API, the standard interface to a user-space
DAFS client. Section 5 demonstrates the suitabil-
ity of DAFS for local file sharing by providing some
performance results. Finally, the paper concludes
with a summary of our work.
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2 Direct Access Transports

Direct Access Transports are the state of the art
in faster data transport technology. The high-
performance computing community has long used
memory-to-memory interconnects (MMIs) that re-
duce or eliminate operating system overhead and
permit direct data placement [3, 4, 5, 15]. The
Virtual Interface Architecture standard in the mid
1990’s was the first to separate the MMI proper-
ties and an API for accessing them from the un-
derlying physical transport. Currently, InfiniBand
and RDDP are positioned as standard commodity
transports going forward.

The DAT Collaborative has defined a set of re-
quirements for Direct Access Transports, as well
as the Direct Access Provider Layer (DAPL) API
as a standard programming interface [10] to them.
The DAT standard abstracts the common capabil-
ities that MMI networks provide from their physi-
cal layer, which may differ across implementations.
These capabilities include RDMA, kernel bypass,
asynchronous interfaces, and memory registration.
Direct memory-to-memory data transfer operations
between remote nodes (RDMA) allow bulk data
to bypass the normal protocol processing and to
be transferred directly between application buffers
on the communicating nodes, avoiding intermediate
buffering and copying. Direct application access to
transport-level resources (often referred to as kernel
bypass) allows data transfer operations to be queued
to network interfaces without intermediate operat-
ing system involvement. Asynchronous operations
allow efficient pipelining of requests without addi-
tional threads or processes. Memory registration
facilities specify how DAT NICs are granted access
to host memory regions to be used as destinations
of RDMA operations.

DAPL specifies a messaging protocol between es-
tablished endpoints, and requires that the receiving
end of a connection post pre-allocated buffer space
for message reception. This model is quite simi-
lar to traditional network message flow. DATs also
preserve message ordering on a given connection.
The DAFS request-response protocol uses DAPL
messaging primitives to post requests from client
to server and receive their responses on the client.
DAFS also uses RDMA to transmit bulk data di-
rectly into and out of registered application buffers
in client memory. RDMA can proceed in both direc-
tions: an RDMA write allows host A to transfer data

in a local buffer to previously exported addresses in
host B’s memory, while an RDMA read allows A to
transfer data from previously exported addresses in
B’s memory into a local buffer. In the DAFS pro-
tocol, any RDMA operations are initiated by the
server. This convention means that a client file read
may be accomplished using RDMA writes. Con-
versely, a client may write to a file by instructing
the server to issue RDMA reads.

Any storage system built using a DAT network can
be measured in terms of its throughput, latency,
and client CPU requirements. Server CPU is not
typically a limiting factor, since file server resources
can be scaled independently of the network or file
system clients. DATs may be built using a variety
of underlying physical networks, including 1 and 2
Gbps Fibre Channel, 1 Gbps and 10 Gbps Ether-
net, InfiniBand, and various proprietary intercon-
nects. The newer 10Gbps interconnects (e.g. 4X In-
finiBand and 10Gbps Ethernet) approach the limits
of today’s I/O busses. In addition, multiple inter-
faces may be trunked. As such, network interface
throughput is not a performance limiting factor.

We break storage latencies down into three addi-
tive components: the delay in moving requests and
responses between the client machine and the trans-
port wire, the round trip network transit time, and
the time required to process a request on the server.
In the case of disk-based storage, the third compo-
nent is a function of the disks themselves. Being
mechanical, their access times dominate the overall
access latency. Caching on the file server mitigates
the latency problem by avoiding the disk component
entirely for a fraction of client requests. Asynchrony
or multi-threading can hide I/O request latency by
allowing the application to do other work, includ-
ing pipelining of additional requests while an I/O
request is in progress.

The remaining metric is the client CPU overhead as-
sociated with processing I/O. If the CPU overhead
per I/O operation is high, then for typical record
sizes (2–16 KB), the client can spend a significant
fraction of its available CPU time handling I/O re-
quests. Additionally, client CPU saturation can im-
pact throughput even for bulk data-movement work-
loads that can otherwise tolerate high latencies. The
most significant performance advantages of DAFS
stem from its attention to minimizing client CPU
requirements for all workload types.

There are several major sources to CPU overhead,
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including operating system, protocol parsing, buffer
copying, and context switching. Modern TCP/IP
offload engines and intelligent storage adapters mit-
igate some of the protocol parsing and copying over-
head, but do little to reduce system overhead. With-
out additional upper layer protocol support within
the offload engines, incoming data will not be placed
in its final destination in memory, requiring a data
copy or page flip [7]. It is here that DAFS shines;
only direct data placement avoids the costly data
copy or page flip step in conventional network file
system implementations. Previous results compar-
ing DAFS direct data placement to offloaded NFS
with page flipping show that the RDMA-based ap-
proach requires roughly 2/3 of the CPU cycles for
8KB streaming reads, improving to less than 1/10 of
the cycles as the block size increases beyond 128KB
[23, 24].

3 The DAFS Protocol

This section presents the Direct Access File Sys-
tem architecture and wire protocol. It begins with
an overview of the DAFS design, followed by three
subsections that cover performance improvements,
file sharing semantics targeting the requirements of
local file sharing environments, and security consid-
erations.

The DAFS protocol uses a session-based client-
server communication model. A DAFS session is
created when a client establishes a connection to
a server. During session establishment, a client au-
thenticates itself to the server and negotiates various
options that govern the session. These parameters
include message byte-ordering and checksum rules,
message flow control and transport buffer parame-
ters, and credential management.

Once connected, messages between a client and
server are exchanged within the context of a ses-
sion. DAFS uses a simple request-response com-
munication pattern. In DAPL, applications must
pre-allocate transport buffers and assign them to a
session in order to receive messages. Figure 1 shows
a typical arrangement of these transport buffers,
called descriptors, on both a client and file server.
Messages are sent by filling in a send descriptor and
posting it to the transport hardware. The receiving
hardware will fill in a pre-allocated receive descrip-
tor with the message contents, then dequeue the

descriptor and inform the consumer that a message
is available. Descriptors may contain multiple seg-
ments; the hardware will gather send segments into
one message, and scatter an incoming message into
multiple receive segments.

Client Server

Application
Buffer

Server
Buffer

Send Descriptor

Send Descriptor

Receive
Descriptor

Receive
Descriptor

Figure 1: Client and server descriptor layout. The
faint line in each system separates the provider li-
brary from its consumer, which contains an applica-
tion data buffer. This and subsequent diagrams will
use dark shading to show bulk data, light shading
for protocol meta-data, and empty boxes for unused
descriptor segments. In this diagram the receive de-
scriptors are shown to have multiple segments; the
transport hardware will scatter incoming messages
into the segment list.

DAPL provides no flow control mechanism, so a
DAFS server manages its own flow control credits
on each open DAFS session. When a DAFS con-
nection is established, the client and server nego-
tiate an initial number of request credits; a client
may only issue a request to a server if it has a free
credit on an open session. Credit replenishment is
not automatic; the server chooses when to allocate
new credits to its clients.

DAFS semantics are based on the NFSv4 proto-
col. NFSv4 provides a broad set of basic file sys-
tem operations, including file and directory man-
agement (lookup, open, close, create, rename, re-
move, link, readdir), file attribute and access con-
trol (access, getfh, getattr, setattr, openattr, verify,
secinfo, setclientid), and data access (read, write,
commit). All of these DAFS operations behave like
their NFSv4 analogues. Most DAFS messages are
small, so servers can allocate minimal transport re-
sources waiting for incoming client requests. Instead
of being included as part of the request or response,
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most bulk data is transferred using RDMA reads
and writes. These RDMA operations are always
initiated by the server, after a client sends a handle
to a particular application buffer along with a re-
quest for the server to write data to (DAFS read) or
read data from (DAFS write) that buffer. Always
initiating the RDMA on the server minimizes the
cross host memory management issues in a request-
response protocol.

3.1 Performance Improvements

This subsection outlines key DAFS protocol fea-
tures, with emphasis on how they improve file access
performance and reduce client CPU utilization.

Message format DAFS simplifies the composi-
tion and parsing of messages by placing the fixed
size portion of each message at the beginning of the
packet buffer, aligned on a natural boundary, where
it may be composed and parsed as fixed offset struc-
tures. Clients also choose the byte order of header
information, moving the potential cost of byte swap-
ping off of the client.

Session-based authentication Since DAFS
communication is session-based, the client and
server are authenticated when a session is created,
rather than during each file operation. DAFS relies
on the notion that a DAT connection is private
to its two established endpoints; specific DAT
implementation may guarantee session security
using transport facilities. DAFS sessions also
permit a single registration of user credentials that
may be used with many subsequent operations.
This reduces both the basic CPU cost of file oper-
ations on the server, and the latency of operations
that require expensive authentication verification.
Section 3.3 describes the DAFS authentication
mechanisms in greater detail.

I/O operations For most bulk data operations,
including read, write, readdir, setattr, and getattr,
DAFS provides two types of data transfer opera-
tions: inline and direct. Inline operations provide a
standard two-message model, where a client sends a
request to the server, and then after the server pro-
cesses the request, it sends a response back to the
client. Direct operations use a three-message model,

where the initial request from the client is followed
by an RDMA transfer initiated by the server, fol-
lowed by the response from the server. The trans-
port layer implementation on the client node par-
ticipates in the RDMA transfer operation without
interrupting the client. In general, clients use in-
line data transfers for small requests and direct data
transfers for large requests.

Client Server

Application
Buffer

Server
Buffer

Send Descriptor

Send Descriptor

Receive
Descriptor

Receive
Descriptor

READ_INLINE

ACK

1

2

3

READ_INLINE

ACK

Figure 2: A DAFS inline read.

Figure 2 shows a typical inline read. In step 1, the
client sends the READ INLINE protocol message to
the server. That message lands in a pre-allocated
receive buffer, and in this case only requires a sin-
gle segment of that buffer. In step 2, the server
replies with a message containing both an acknowl-
edgement and the bulk read data. The server uses a
gathering post operation to avoid copying the bulk
data. The client receives this message into its re-
ceive descriptor. Here, the message fills multiple
segments. Finally, in step 3, the client copies the
bulk data from the filled descriptor into the appli-
cation’s buffer, completing the read.

The DAFS protocol provides some support for re-
placing the copy in step 3 with a page flip by adding
optional padding of inline read and write headers.
For an inline read, the client requests the neces-
sary padding length in its read request. In the
case shown in Figure 2, the client would specify
a padding such that the read inline reply plus the
padding length exactly fills the first posted segment,
leaving the bulk data aligned in the remaining seg-
ments.

Direct operations, on the other hand, offer the chief
benefits of CPU-offload from the RDMA operation
itself, and the inherent copy avoidance due to direct
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Figure 3: A DAFS direct read.

data placement (DDP) resulting from the separa-
tion of the request operation header (transferred in
pre-allocated transport buffers) from request data
(transported memory-to-memory via the RDMA
transfer). The direct operations can also be used
to transfer unusually large amounts of file meta-data
(directory contents, file attributes, or symlink data).
Figure 3 shows the three steps of a direct read. As
with an inline read, the process begins with the
client posting a short message, READ DIRECT in this
case, to the server. This message includes a list of
memory descriptors that contain all the required in-
formation for the server to initiate an RDMA write
directly into the client’s application buffer. In step
2, the server gathers together the bulk data and
issues an RDMA write operation to the transport.
The client receives no information about this opera-
tion, so the transaction concludes with step 3, where
the server sends a small acknowledgement message
to the client. Since DATs preserve message order-
ing, the server can issue that acknowledgement im-
mediately after the RDMA write; it need not wait
for the RDMA to complete. Once the client receives
the acknowledgement message, it is assured that the
application buffer is filled in.

For latency-sensitive operations where transport
costs dominate the request latency, the inline two-
message mechanism may provide reduced overall
latency, even though it requires a copy or page
flip. For bulk data transfer, though, the direct data
movement operations are preferred. Our user-space
DAFS client always issues direct reads, since the
client CPU costs are lower and the transport cost
of an RDMA write is similar to a message post.
Our client issues small writes as inline operations,

though, since an RDMA read requires a transport-
level acknowledgement and therefore has higher la-
tency than an inline post.

By providing a small set of direct operations in ad-
dition to read and write, DAFS promotes the use of
smaller inline buffers, thereby promoting additional
operation concurrency. Effectively, DAFS is de-
signed to use a large number of small pre-allocated
buffers for most operations involving meta-data,
and a variable number of variably sized RDMA
buffers for bulk data transfer. For this reason, it is
useful to determine the smallest useful buffer size.
Since DAFS operations are generally issued in an
unpredictable order, pre-allocated buffers are sized
uniformly. In practice, since most meta-data opera-
tions require less than 1 KB of buffer space, the key
trade-off in buffer size is determining whether read
and write operations will be performed inline or di-
rect. For a given memory resource cost, the number
of concurrent requests can be increased dramatically
by maintaining a small buffer size, and performing
read and write requests using direct operations.

Reduced client overhead All RDMA transfers
are initiated by the DAFS server. For file write op-
erations, this means that the server has access to the
write request header before the RDMA read transfer
from the client begins. It can allocate an appropri-
ately located, sized, and aligned buffer before initi-
ating the transfer. This transfer should proceed as
a zero-copy operation on both the client and server.

For file read operations, the server can initiate the
RDMA write transfer to the client as soon as the
data is available on the server. Since the address
of the destination buffer on the client is contained
in the read operation header, this operation should
proceed as a zero-copy operation on both the client
and server. Since DAPL preserves message order-
ing, the server may send the read response message
without waiting for an RDMA completion. If the
RDMA transfer fails for any reason, the connection
will be broken and the response message will not
arrive at the client.

DAFS is further designed to take advantage of the
characteristics of Direct Access Transports to ad-
dress the overheads from the operating system, pro-
tocol parsing, buffer copying, and context switch-
ing, leaving the client free to run application code.
Some of these techniques are discussed in Section 4,
which covers the user-space DAFS client API. The



2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 181

DAFS protocol enables asynchronous data access,
further lowering client overhead. Where the option
exists, DAFS is somewhat biased towards reducing
the client overhead even if it slightly increases file
server overhead. One example of this tradeoff is
permitting clients to use their native byte order.

Batch I/O facility DAFS provides a batch I/O
operation, analogous to list I/O in some operat-
ing systems, that lets the client combine a num-
ber of read and write transfer requests, each access-
ing distinct buffers, files, and file offset ranges via
RDMA transfers. The batch semantics match well
with high-performance I/O APIs like MPI–IO [14].
Batch requests may specify memory scatter/gather
regions on the client and file scatter/gather regions
on the server. These regions need not align. Con-
ceptually, the data on each side of the wire maps
into a contiguous buffer for the transfer, though
the transport may implement the scatter opera-
tion directly. Clients maintain control over the I/O
pipeline and buffer resources by specifying the size
of each batch of completion notifications. Clients
may request synchronous or asynchronous notifica-
tions. In the former case, the server returns a single
reply once the entire batch has completed. In the
latter, the server asynchronously notifies the client
as results complete; the client can advise the server
how many completions should be grouped together
before sending a completion notification for that
group.

Batch I/O also allows the client to advise a maxi-
mum latency target for the batch, allowing a DAFS
server to perform write-gathering and other local
throughput optimizations while maintaining client
control of the overall throughput. This technique is
well suited for prefetching and asynchronous clean-
ing of dirty buffers in sophisticated client buffer
managers like those in database engines. The la-
tency of operations in this context is often secondary
to efficiency of the batch, so applications that can
tolerate high latencies can profit overall from batch-
ing requests and receiving asynchronous, batched
results. If, after issuing a high-latency batch, a
client finds it necessary to wait for a specific re-
quest to complete, it may issue an expedite opera-
tion to request that the server immediately process
the specified request.

Cache hints DAFS client cache hints allow the
file server to make better use of its own cache. Cache

hints are advisory. Clients can specify file-level pol-
icy and access pattern information, similar to mad-
vise(), as well as provide positive and negative byte-
range hints with each read and write operation. In
the local file sharing environment, network latencies
and DAFS CPU requirements are low enough that
server cache can be considered an extension of the
client or application cache. Hints provide a mech-
anism in a highly tuned system for the client and
server to better manage cache hierarchy. In cases
like large database deployments where the client
cache dwarfs the server cache, hints may allow the
server to function as an effective metadata or vic-
tim cache instead of uselessly shadowing a fraction
of the application’s local cache.

Chaining DAFS chaining is similar to compound
operations in NFSv4. NFSv4 defines compound re-
quests to allow multiple file operations in a sin-
gle network exchange as a way to reduce the com-
bined latency of a series of operations. DAFS de-
fines chained operations with the same semantics
as NFSv4, but transfers the component operations
separately. This approach limits the size of the pre-
allocated buffers required to receive messages on
both the client and server, and it preserves the ben-
efits of a very simple packet layout for marshaling
and parsing requests.

Combined with a user-space DAFS client, chaining
permits client engines to implement complex oper-
ations that map to sequences of DAFS protocol re-
quests. A DAFS client can then issue such requests
without intervening between each protocol opera-
tion, reducing application impact while still preserv-
ing the failure characteristics of the equivalent series
of operations.

3.2 New File Sharing Features

DAFS adds specific semantic enhancements to
NFSv4 for high-performance, reliable clustered ap-
plications. These semantic features generally fall
into two categories: shared access, and recovery se-
mantics. Shared access semantics include a fencing
mechanism to support application sharing within
clusters and a shared key mechanism to arbitrate
per-file access among cooperating applications. Re-
covery semantics include additional locking mech-
anisms and exactly-once failure semantics that aid
recovery
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Rich locking semantics File locking is impor-
tant for cooperating applications accessing a com-
mon file store. These applications may crash while
holding locks or otherwise fail to properly release
their locks before terminating. Limited to existing
locking APIs in POSIX and Windows, NFSv4 pro-
vides time-based lease expiration on locks, allowing
other clients to access the resource without requir-
ing client recovery. However, in these situations, the
state of the previously locked file is suspect: presum-
ably the lock was obtained in order to create atom-
icity across multiple operations, but since the lock
was not explicitly released, the series of operations
may be only partially completed, possibly leaving
the file in an inconsistent state. Some recovery ac-
tion may be necessary before making use of the data
in the file. DAFS includes richer locking semantics
that address this shortcoming and provide greater
utility to applications.

DAFS persistent locks provide notification of an er-
ror condition following abnormal (lease expiration)
release of a lock. Earlier lockd-based locks persisted
following the failure of a client holding a lock, un-
til either the client recovered or manual adminis-
trative intervention was performed. Further, due to
UNIX file locking semantics, NFS clients in practice
release locks immediately upon any termination of
the owning process. Persistent locks provide noti-
fication of abnormal lock release to any subsequent
client attempting to lock the file, until the lock is
specifically reset. DAFS autorecovery locks provide
an alternative safeguard against data corruption by
associating data snapshot and rollback mechanisms
with the act of setting a lock or recovering from an
abnormally released lock.

Cluster fencing In clustered application environ-
ments, cluster membership is governed by a cluster
manager that ejects nodes suspected of misbehaving
or having crashed. Such a manager requires a mech-
anism whereby cluster members that are ejected
from the cluster can be prevented from accessing
shared file storage. The DAFS fencing operations
manage client fencing access control lists associated
with files or entire file systems that are under the
control of the cluster application. The cluster man-
ager populates the fencing list with cluster mem-
bers’ names, allowing multiple cluster applications
to run on the same nodes independently of each
other. Updates to a fencing list cause the DAFS
server to complete any in-progress operations on the
file(s) and update the appropriate access control list

before responding to the fence request. Subsequent
file operations from cluster members whose access
privilege has been removed are denied by the DAFS
server. The session-based architecture maps very
conveniently to the fencing model.

The fence operation provides a serialization point
for recovery procedures by the clustered application,
without interfering with other files on the DAFS
server or other client applications. The DAFS fenc-
ing mechanism is independent of standard file ac-
cess controls, and is designed to support cooperat-
ing cluster members, similar to NFS advisory lock
controls.

Shared key reservations NFSv4 allows share
reservations, similar to those of CIFS, as part of
the open operation. Together with an access mode
of read, write, or read-write, a deny mode of none,
read, write, or read-write may be specified to limit
simultaneous access to a given file to those uses
compatible with that of the process doing the open.
DAFS enhances NFSv4 reservations by also provid-
ing shared key reservations. Any client opening a
file can supply a shared key. Subsequent opens must
provide the same key, or they will be excluded from
accessing the file. This provides a similar capability
to fencing at the file level. Key reservations have the
scope of a file open. The duration of enforcement of
a shared key reservation is from the time the first
open specifies the key, to the time the file is finally
closed by all clients that opened the file with that
key.

Request throttling The use of credit-based mes-
sage transfers managed on a per-client session basis
allows the DAFS server to dedicate a fixed amount
of resources to receiving client requests, and con-
stantly redistribute them among many connected
clients depending on their importance and activity
level. Clients may affect this by requesting more
credits as their workloads increase or returning un-
needed credits to the server.

Exactly-once failure semantics To reach par-
ity with local file systems, DAFS servers may imple-
ment exactly-once failure semantics that properly
handle request retransmissions and the attendant
problem of correctly dealing with retransmitted re-
quests caused by lost responses. Retry timeouts do
not offer this capability [17]. Our approach takes
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advantage of the DAFS request credit structure to
bound the set of unsatisfied requests. The server’s
response cache stores request and response informa-
tion from this set of most recently received requests
for use during session recovery. Upon session re-
establishment after a transport failure, the client
obtains from the server the set of last-executed re-
quests within the request credit window. It can
therefore reliably determine which outstanding re-
quests have been completed and which must be re-
issued. If the server’s response cache is persistent,
either on disk or in a protected RAM, then the re-
covery procedure also applies to a server failure.
The result is to provide true exactly-once semantics
to the clients.

Other enhancements The DAFS protocol in-
cludes a variety of additional data sharing features,
including improved coordination for file append op-
erations between multiple clients and the ability to
automatically remove transient state on application
failure. DAFS supports two common examples of
the latter: creation of unlinked files that do not
appear in the general file system name space, and
delete on last close semantics, which provide for a
deleted file that is currently being accessed to have
its contents removed only when it is no longer being
accessed.

3.3 Security and Authentication

The DAFS protocol relies on its transport layer for
privacy and encryption, using protocols like IPSEC,
and so contains no protocol provision for encryption.
Since DAFS clients may be implemented in user
space, a single host may contain many clients acting
on behalf of different users. DAFS must therefore
include a strong authentication mechanism in or-
der to protect file attributes which depend on iden-
tifying the principal. For this reason, authentica-
tion is available in several extensible levels. For
more trusted deployments, DAFS provides simple
clear-text username/password verification, as well
as the option to disable all verification. For envi-
ronments that require stronger authentication se-
mantics, DAFS uses the GSS-API [21] to support
mechanisms such as Kerberos V [19].

4 The DAFS API

In addition to the DAFS protocol, the DAFS Col-
laborative defined the DAFS API, which provides
a convenient programmatic interface to DAFS. The
API provides access to the high-performance fea-
tures and semantic capabilities of the DAFS pro-
tocol. The DAFS API is designed to hide many
of the details of the protocol itself, such as session
management, flow control, and byte order and wire
formats. To the protocol, the DAFS API adds ses-
sion and local resource management, signaling and
flow control, along with basic file, directory, and
I/O operations. The DAFS API is intended to be
implemented in user space, making use of operat-
ing system functions only when necessary to sup-
port connection setup and tear down, event man-
agement, and memory registration. Through the
use of kernel-bypass and RDMA mechanisms, the
primary goal of the DAFS API is to provide low-
latency, high-throughput performance with a sig-
nificant reduction in CPU overhead. That said, a
DAFS client may also be written as a kernel-based
VFS, IFS, or device driver. Applications written to
the POSIX APIs need not be modified to use those
flavors of DAFS clients, but in general will lack ac-
cess to advanced DAFS protocol capabilities.

The Collaborative did not attempt to preserve the
traditional POSIX I/O API. It is difficult to pre-
cisely match the semantics of UNIX I/O APIs from
user space, particularly related to signals, sharing
open descriptors across fork(), and passing descrip-
tors across sockets.1 Other aspects of the POSIX
API are also a poor match for high-performance
computing [25]. For example, implicit file pointers
are difficult to manage in a multi-threaded applica-
tion, and there are no facilities for complicated scat-
ter/gather operations. Unlike POSIX-based DAFS
clients, the DAFS API allows the application to
specify and control RDMA transfers.

The DAFS API is fully described in the DAFS
API specification [8]; this section focuses on how
the DAFS API provides inherent support for asyn-
chronous I/O, access to advanced DAFS features
like completion groups, registration of frequently-
used I/O buffers, and improved locking and sharing
semantics crucial for local file sharing applications.
The DAFS API differs from POSIX in four signifi-

1One might say that 99% API compatibility doesn’t mean
99% of applications will work correctly. It means applications
will work 99% correctly.
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cant areas:

Asynchrony The core data transfer operations in
the API are all asynchronous. Applications written
to use a polling completion model can entirely avoid
the operating system. Asynchronous interfaces al-
low efficient implementations of user-space thread-
ing and allow applications to carefully schedule their
I/O workload along with other tasks.

Memory registration User memory must be
registered with a network interface before it can be
made the destination of an RDMA operation. The
DAFS API exports this registration to the appli-
cation, so that commonly-used buffers can be reg-
istered once and then used many times. All of the
data transfer operations in the DAFS API use mem-
ory descriptors, triplets of buffer pointer, length,
and the memory handle that includes the specified
memory region. The handle can always be set to
NULL, indicating that the DAFS provider library
should either temporarily register the memory or
use pre-registered buffers to stage I/O to or from
the network.

Completion groups The traditional UNIX API
for waiting for one of many requests to complete is
select(), which takes a list of file descriptors cho-
sen just before the select is called. The DAFS API
supports a different aggregation mechanism called
completion groups, modeled on other event han-
dling mechanisms such as VI’s completion queues
and Windows completion ports. Previous work has
shown the benefits of this mechanism compared to
the traditional select() model [2, 6]. If desired, a
read or write request can be assigned to a comple-
tion group when the I/O request is issued. The
implementation saves CPU cycles and NIC inter-
rupts by waiting on predefined endpoints for groups
of events instead of requiring the event handler to
parse desired events from a larger stream.

Extended semantics The DAFS API provides
an opportunity to standardize an interface to DAFS
capabilities not present in other protocols. These
include:

• Powerful batch I/O API to match the batch
protocol facility. The batch I/O operation is-

sues a set of I/O requests as a group. Each
request includes a scatter/gather list for both
memory and file regions. Batch responses are
gathered using completion groups.

• Cancel and expedite functions. These are par-
ticularly useful for requests submitted with a
large latency.

• A fencing API that allows cooperative clients
to set fencing IDs and join fencing groups.

• Extended options at file open time, including
cache hints and shared keys.

• An extensible authentication infrastructure,
based on callbacks, that allows an application
to implement any required security exchange
with the file server, including GSS-API mecha-
nisms.

5 Performance

This section presents experimental results achieved
with our client and server implementation. The
first results are micro-benchmarks demonstrating
the throughput and client CPU benefits of DAFS.
The second result is a demonstration that the DAFS
API can be used to significantly improve an appli-
cation’s overall performance; in this case, gzip.

We have implemented the DAFS API in a user-space
DAFS library (henceforth uDAFS). Our uDAFS
provider is written to the VIPL API, and runs on
several different VI implementations. We have also
implemented a DAFS server as part of the Net-
work Appliance ONTAP system software. The Ne-
tApp uDAFS client has been tested against both our
DAFS server and the Harvard DAFS server [22, 24].

Our tests were all run on a Sun 280R client, con-
nected to a Network Appliance F840 with 7 disks.
We tested two GbE-based network configurations,
one for DAFS and one for NFS. The DAFS network
used an Emulex GN9000 VI/TCP NIC in both the
client and file server; this card uses jumbo frames on
Gigabit Ethernet as its underlying transport. The
NFS network used a Sun Gigabit PCI adapter 2.0
card in the client and an Intel Gigabit Ethernet
card in the server, speaking NFSv3 over UDP on
an error-free network. The Sun adapter does not
support jumbo frames. All connections on both net-
works are point-to-point.
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5.1 Micro-benchmarking

Our first benchmark compares the cost of reading
from a DAFS server to reads from an NFSv3 server.
We show the results for both synchronous (blocking)
I/O and asynchronous I/O. In each case we present
two graphs. The first compares overall throughput
for varying block sizes, while the second compares
the CPU consumption on the client. We stress that
these tests exercise the bulk data movement mecha-
nisms of the protocols and their transports, not the
higher protocol semantics.

In order to focus the measurements on a comparison
of the protocols, these experiments perform reads of
data that is cached on the server. Our uDAFS client
implementation does not cache data and we config-
ure the NFS client stack to do the same by mount-
ing with the forcedirectio mount option. Such
an arrangement is not contrived; database engines
are typically run in this fashion as host memory is
better allocated to the higher level database buffer
cache instead of a kernel buffer cache that would
merely replicate hot blocks, and potentially delay
writing them to stable storage.

All of these results are gathered using a benchmark-
ing tool that allows us to select either the POSIX or
DAFS API for I/O, and to perform the I/O using ei-
ther synchronous interfaces (read() and dap read())
or asynchronous interfaces (aioread(), aiowait(),
dap async read(), and dap io wait()). When using
DAFS, the program first registers its buffers with
the DAFS provider. All DAFS reads are done using
DAFS direct reads, that is, using RDMA instead
of inline bulk data. The tool includes built-in high-
resolution timing hooks that measure realtime clock
and process time.

Synchronous performance Our first test com-
pares synchronous read operations for NFSv3 and
DAFS. Figures 4 and 5 show the results. As ex-
pected, DAFS requires fewer CPU cycles per oper-
ation. Direct data placement keeps the line flat as
block size increases, while the NFS stack must han-
dle more per-packet data as the size increases. The
latency of synchronous operations limits through-
put at smaller block sizes, but once client overhead
saturates the CPU, the DAFS client can move more
data over the wire.
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Figure 4: CPU time consumed per synchronous read
request.
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Figure 5: Synchronous throughput.

Asynchronous performance Figures 6 and 7
are a repeat of the previous tests, but use the
asynchronous APIs to keep 32 reads in flight si-
multaneously. Here the advantages of DAFS be-
come clearer. Asynchronous I/O improves through-
put for both NFSv3 and DAFS, but the CPU
time is the most significant result. While NFSv3
achieves high throughput only with an increase in
CPU cost, DAFS requires less CPU time in asyn-
chronous mode, since many results arrive before the
client tries to block waiting for them. Asynchronous
DAFS throughput approaches 85 MB/sec, matching
our measured limit of 33 MHz PCI bus bandwidth
on this platform.

5.2 GNU gzip

We converted the GNU gzip program to recognize
DAFS filenames and use the DAFS API for access-
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Figure 6: CPU time consumed per asynchronous
read request.
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Figure 7: Asynchronous throughput.

ing those files. The conversion to the DAFS API
adds memory registration, read-ahead, and write-
behind capabilities. Figure 8 shows two compar-
isons. The test on the left measures the wall clock
time of a single instance of gzip compressing a 550
MB file. Two factors account for the speedup. The
gzip program uses 16 KB block sizes; Figures 4 and 6
show DAFS requiring 20 microseconds per operation
at that block size, whereas NFSv3 consumes 100 mi-
croseconds. A 550 MB file corresponds to roughly
35,000 read operations, yielding nearly 3 seconds of
CPU time saved just on the basis of read I/O cost.
Moreover, during this test, the client CPU reported
0.4% idle time when running the DAFS version of
gzip and 6.4% idle time when running the stock NFS
version, accounting for a further 10 seconds of CPU
time. By allowing asynchronous I/O without exces-
sive CPU cost, the DAFS version hardly spends any
time blocked waiting for data, so the CPU can spend
more cycles generating the compressed blocks.

The second set of numbers compares the runtime
of two gzip processes running in parallel, each oper-
ating on half of the full dataset. Here the uDAFS
client demonstrates the advantages of operating sys-
tem avoidance. The DAFS client achieves a nearly
perfect 2X speedup, whereas the NFS versions are
limited by kernel contention. In this case, both
processors remained 100% busy while executing the
DAFS version of gzip, but reported 34% idle time
in the NFS case.
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Figure 8: GNU gzip elapsed time.

6 Conclusions

The DAFS protocol enables high-performance local
file sharing, and is targeted at serving files to clus-
ters of clients. In this environment, the clients them-
selves are often application servers. DAFS takes
advantage of Direct Access Transports to achieve
high bandwidth and low latency while using very lit-
tle client CPU. To support clustered environments,
DAFS provides enhanced sharing semantics, with
features such as fencing and shared key reserva-
tions, as well as enhanced locking. As an open
client-server protocol, DAFS enables multiple inter-
operable implementations, while allowing for multi-
protocol access to files on the server.

DAFS leverages the benefit of user-space I/O by
providing asynchronous operations both in the pro-
tocol and in its application programming inter-
face. DAFS shows significant measured perfor-
mance gains over NFS on synchronous and asyn-
chronous reads, and can yield a substantial perfor-
mance improvement on I/O intensive applications,
as demonstrated by our gzip experiment.
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The unique combination of traits enabled by DAFS
is extremely well-suited to the needs of local file
sharing environments, such as data centers. The
DAFS protocol is the basis for high-performance,
scalable, and sharable network file systems that ex-
ploit current technology trends.
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