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Abstract

This paper describes the semantics of Quantum,
a language that was speci�cally designed to con-

trol resource consumption of distributed computa-

tions, such as mobile agent style applications. In

Quantum, computations can be driven by mastering
their resource consumption. Resources can be un-

derstood as processors cycles, geographical expan-

sion, bandwidth or duration of communications, etc.

We adopt a generic view by saying that computa-

tions need energy to be performed. Quantum relies

on three new primitives that deal with energy. The

�rst primitive creates a tank of energy associated

with a computation. Asynchronous noti�cations in-

form the user of energy exhaustion and computation

termination. The other two primitives allow us to

implement suspension and resumption of computa-

tions by emptying a tank and by supplying more

energy to a tank. The semantics takes the form of

an abstract machine with explicit parallelism and

energy-related primitives.

1 Introduction

Millions of computers are now connected by the In-

ternet. At a fast pace, applications are taking ad-

vantage of these new capabilities, and are becom-

ing parallel and distributed. For instance, mobile

agents [Mag96a] and multi-agent systems are tech-

nologies used in a wide range of activities, such as

information discovery on the WWW [DD97] or ne-

gotiation on behalf of the user [WJ95]; they exploit

parallelism to improve e�ciency and autonomy, and

they rely on distribution or mobility to increase lo-

cality.

A major challenge is to be able to control and mon-

itor computations in such a distributed context. On

the one hand, users are ready to delegate negotia-

tion power and responsibility to their agents, but

they wish to bound their activities by geographical,

temporal, physical (such as memory, . . . ), or mon-

etary constraints; furthermore, during execution,

users might wish to dynamically monitor and con-

trol their agent's behaviour by reducing or adding

constraints. On the other hand, service providers

o�er platforms where mobile agents can migrate to

in order to use available facilities; they are anxious

to ensure that visiting agents act according to a pre-

viously negotiated agreement, that they do not ex-

ceed temporal or physical limits, and that they are

charged according to their usage of facilities.

Our goal is to provide the means by which every-

body, users and service providers, can control and

monitor resources used by parallel and distributed

computations. We believe that parallel computa-

tions can be driven by mastering their resource con-

sumption. Resources can be understood as proces-

sor cycles, bandwidth and duration of communi-

cations, or even printer paper. We adopt a more

generic view by saying that computations need en-

ergy to be performed1.

In this paper, we present a new language, called

Quantum, that is speci�cally designed to monitor

and control the resource consumption of computa-

tions. The essence of Quantum is summarised by

three key ideas. (i) Quotas of energy can be

associated with computations, and energy is being

consumed during every evaluation step. (ii) Asyn-

chronous noti�cations inform of energy exhaustion

or computation termination. (iii) Mechanisms ex-

ist to transfer energy to or from computations; sup-

1Other names found in the literature for a similar concept

are fuel [HF87], computron [Ray91, p. 102{103], teleclick

[Mag96a] or metapill [A+97]



plying more energy to a computation gives the right

to continue the computation, while removing energy

from a computation acts as energy-based preemp-

tion. Even though the notion of energy is part

of the semantics of Quantum, the programmer can-
not create energy ex nihilo, but can only transfer

it between computations via some primitives of the

language. As a result, we were able to ensure a gen-

eral principle for Quantum: given a �nite amount

of energy, any computation is �nite.

Quantum generalises some approaches adopted

in agent scripting languages to control resources

[Mag96a, PS97]. Besides its resource-oriented foun-

dations, Quantum is conceived for parallelism and

distribution, while being independent of the actual

primitives for parallelism and distribution, and of

the memory model (central, distributed, with or

without coherence).

This paper reports about our experience with de-

signing Quantum and de�ning its semantics. Our

requirement is to de�ne the primitives that would

allow us to control the energy consumption of dis-

tributed computations. We derived a solution from

two di�erent ideas: Haynes and Friedman's engines

[HF87] can be extended to parallelism and distribu-

tion, while actor's sponsors [KH81] can be adapted

to our energy view. For the sequential subset of the

language, we adopt an applied call-by-value lambda-

calculus [Plo75]. The semantics have been our driv-

ing force in designing Quantum. Our operational

semantics takes the form of an abstract machine

for parallel evaluation; it extends the CEK ma-

chine [FF86] with parallelism and the energy-related

primitives. The choice of the semantic framework

is a major help in de�ning simple primitives: the

abstract machine hides some execution details and

o�ers a suitable degree of atomicity, while it still

o�ers a realistic model of parallelism.

This paper is organised of follows. We present the

intuition of Quantum in Section 2 and de�ne its

semantics in Section 3. Section 4 contains several

examples written in Quantum. Finally, Section 5

discusses related work and is followed by a conclu-

sion.

2 Intuition of Quantum

In this section, we introduce the languageQuantum,
its constructs and their intuitive semantics, and the

considerations that lead to its design. The prim-

itives of Quantum that are speci�c to energy are

displayed in the �rst half of Figure 1. In order to be

usable, they need to be glued with other primitives

for parallelism and communication, which may vary

according to the programmer's taste. A particular

selection is presented in the second half of Figure

1; they are brie
y described below and they will be

used in the examples of Section 4. Afterwards, we

describe the three key ideas of Quantum: groups ,

asynchronous noti�cations , and energy transfers .

Energy Speci�c Primitives

primitives ::= call-with-group(F; e; 'e; 't)

j pause(g; 'p)

j awaken(g; e)

g 2 Group

e 2 Energy

F : Group�Energy ! �

'e; 't; 'p : Group�Energy ! void

Language Speci�c Primitives

primitives ::= fork(M) j suicide()

j channel() j enqueue(ch; V )

j dequeue(ch)

ch 2 Channel

V 2 V alue

Figure 1: Abstract Syntax of Primitives

We use the term task to denote an evaluation thread

created by the construct for parallelism. Quantum
is independent of the primitives for parallelism and

distribution. Parallel threads of evaluation may be

created using Posix threads [IEEE], or higher-level

constructs such as pcall [MR95, QD92] or future

[Hal90, FF95, Mor96b]. In this paper, we adopt

the construct fork which creates a parallel evalua-

tion thread for its argument. A computation also

has the ability to terminate by evaluating the ex-

pression suicide().

Our permanent concern when designing Quantum
was to be able to compute in a distributed frame-

work. Hence, we decided that Quantum would

be independent of the memory model: so, real

shared memory, shared memory simulated over a

distributed memory [Mor96a], distributed causally

coherent memory [Que94a] are memory models that

may be adopted with Quantum. However, we need
primitives to synchronise computations and to ex-

change information between them. We observed

that asynchronous unbounded communication chan-

nels [KNY95] o�ered the appropriate level of ab-

straction. Figure 1 contains primitives to create

channels, to add a value to a channel, and to re-



move a value from a channel.

2.1 Energy and Groups

Our goal is to be able to allocate resources to com-

putations, and to monitor and to control their use

as evaluation proceeds. In our view, it is essential

to be noti�ed of the termination of a computation

so that, for instance, unconsumed resources can be

transferred to a more suitable computation. Simi-

larly, we want to be informed of the exhaustion of

the resources allocated to a computation, so that for

example more resources can be supplied.

In order to be noti�ed of the termination or en-

ergy exhaustion of a computation, we need an en-

tity that represents the computation. A group is

an object that can be used to refer to a computa-

tion in a Quantum program. So, a group is asso-

ciated with a computation that may be composed

of several tasks proceeding in parallel; in turn, they

can initiate subcomputations by creating subgroups.

As a result, our computation model is hierarchical.

A group is said to sponsor [KH81, Osb90b, Hal90]

the computation it is associated with. Reciprocally,

every computation has a sponsoring group, and so

does every task.

At creation time, a group is given an energy quota.

More speci�cally, a computation that evaluates

the expression call-with-group(F; e; 'e; 't) under the

sponsorship of a group g1, creates a new �rst-class

group g2 that is allocated an initial quota of en-

ergy e and whose parent is g1. Furthermore, it ini-

tiates a computation under the sponsorship of g2
by applying F to g2 and e; hence, the user func-

tion F receives a handle on its sponsoring group.

As Quantum keeps track of resource consumption,

the cost of g2 creation and the energy e allocated to

g2 are deducted from the energy of g1. The value

of the call-with-group primitive is the value returned

by the application of F .

2.2 Asynchronous Noti�cations

The semantics enforces the following principle: ev-

ery computation consumes energy from its spon-

soring group. Therefore, not only is a group per-

ceived as a way of naming computations, but also

it must be regarded as an energy tank for the com-

putation. In addition, two events may be signalled

during the lifetime of a group: group termination

and energy exhaustion are asynchronously noti�ed

by applying the user functions (the noti�ers) 't and

'e, respectively
2. A group is said to be terminated,

when it has no subgroup and it does not sponsor any

task; i.e. no more activity can be performed in the

group. When group g2 is terminated, the function

't is asynchronously called on g2 to notify its termi-

nation, and the energy surplus of g2 is transferred

back to g1. Note that calling 't is sponsored by g1,

i.e. the parent of g2. Similarly, when a computation

sponsored by g2 requires more energy than available

in g2, the function 'e is asynchronously called on g2
to notify its energy exhaustion, also under the spon-

sorship of g1, with transfer of the remaining energy

of g2 to g1.

noti�cation 'e

termination

pause

awaken

noti�cation 't

exhaustion

terminated

exhausted

awaken
pause

pause

awaken

running

e = 0

e = 0e � 0

Figure 2: State Transitions

Figure 2 displays the state transition diagram for

groups. At creation time, a group is in the running

state, which means that the tasks that it sponsors

can proceed as long as they do not require more en-

ergy than available. Asynchronous noti�cations are

represented by dotted lines. Once a computation re-

quires more energy than available in its sponsoring

group, the state of its group changes to exhausted,

and at the same time an asynchronous noti�cation

'e is run. When all subgroups and all tasks spon-

sored by a group terminate, its state becomes termi-

nated, while the asynchronous noti�er 't is called.

Let us observe that the terminated state is a dead

end in the state diagram; this guarantees the sta-

bility of the termination property: once a computa-

tion terminates, it is not allowed to restart (as the

resource that it did not consume may have been re-

allocated). Here we should point out that the prim-

itive fork can only create a thread in the group that

sponsors its evaluation.

2Subscript t denotes termination, whereas subscript e de-

notes exhaustion.



2.3 Energy Transfers

Energy may be caused to 
ow between groups, inde-

pendently of the group hierarchy, under the control

of the user program. Two primitives operate on

groups: pause and awaken. Intuitively, the primi-

tive pause forces a running group and its subgroups

into the exhausted state, and all the energy that was

available in this hierarchy is transferred to the group

that sponsored the pause action. The construct

awaken(g; e) supplies a group g with some energy

e, which is deducted from the group sponsoring the

awaken action. In addition, if the group was in the

exhausted state, it is changed to the running state;

if the group is in a terminated state, awaken acts as

a null operation. Let us observe the non-symmetric

behaviours of pause and awaken: the former operates

recursively on a group hierarchy, while the latter

acts on a group and not its descendants. However,

we might wish to awaken a hierarchy recursively,

for instance when we wish to resume a paused par-

allel search. In particular, we might wish to resume

the search with the energy distribution that existed

when the hierarchy was paused. Unfortunately, such

information is no longer available because groups

are memory-less . It is therefore the programmer's

responsibility to leave some information at pausing-

time about the way a hierarchy should be awakened.

Not only does pause transfer energy, but it does also

post a noti�cation for each group in the tree. More

precisely, pausing a group g with a noti�er 'p forces

into the exhausted state each group g0 in the hierar-

chy rooted by g; moreover, for each g0, a task that

applies 'p on g0 is created under the sponsorship of

the parent of g0. Let us note that noti�cations are

prevented to run as all groups in the hierarchy have

been dried out (except the noti�cation on the root

g, which is sponsored by the parent of g and then

might run). Once the root of the hierarchy is awak-

ened, any noti�cation sponsored by the root will be

activated, and may decide to awaken the group it is

applied on, and step by step, energy may be redis-

tributed among the hierarchy.

3 The Language Quantum: Seman-

tics

In this section, we present the semantics of

Quantum using an abstract machine, called the Q-
machine. Figure 3 displays its state space. We

can see that the primitives of Figure 1 appear in

the set of terms �Q. The core of �Q is an applied

call-by-value lambda calculus composed of abstrac-

tions, variables, applications, and constants [Plo75].

Let us note that fork and suicide only are essential

syntax, whereas the other primitives appear as con-

stants in the set FConst. Transition rules appear

in Figures 4 to 10.

In the sequel, we adopt Barendregt's [Bar84] de�-

nitions and conventions on the lambda-calculus; in

particular, n-ary functions should be understood as

curried functions. We use the notation f [x ! V ]

to denote the function f 0 such that f 0(x) = V and

f 0(y) = f(y); 8y 6= x.

A con�guration of theQ-machine, represented asM
in Figure 3, is a triple composed of a set of tasks, A

set of groups and their associated information, and

a set of channels and their contents. A task , rep-

resented by a pair hC; gi, is an entity, sponsored by

group g, that embodies a computational state C. In

Quantum, tasks are anonymous and are not �rst-

class values; instead, groups are rei�ed as �rst-class

objects as a mean to monitor and control computa-

tions. The function � associates each group g with

a parent group, its current energy, its state, the two

noti�ers 'e and 't, and the number of tasks and

the set of subgroups that it sponsors. The hierar-

chy root is the initial group, and by convention, the

parent of the initial group is represented by ?g.

Noti�ers are closures with a signature Group !
Energy ! V oid, which receive the group that is

noti�ed the event and its remaining energy. As noti-

�cations are asynchronous, they are not expected to

return values, hence the void value returned. Chan-

nels are �rst-class values represented by hch �i, with
� a location pointing to a queue in the queue store �.

The computational state of a task is a CEK-

con�guration [FF86] represented as EvhM;�; �i or
RethV; �i, respectively representing the evaluation of
a term M in the environment � with a continuation

�, and the return of a value V to a continuation �.

The continuation � is encoded by a data-structure,

called continuation code.

Figure 4 displays the transition rules for the sequen-

tial purely functional subset of the language; for

more detail, we refer the reader to [FF86].

As previously mentioned, the purpose of Quantum
is to measure the resources used by computations.

In order to be generic, we decided to associate the

semantics with two cost functions K;Kn, giving

each transition its cost in terms of energy.

Warning. The cost of a transition is a

function of the task involved in the tran-

sition and of the function �. For the sake

of concision, we do not represent this de-

pendency explicitly. We use the symbol



M 2 �Q ::= Vs j (M M) j (fork M) j (suicide) (Term)

Vs 2 SV alue ::= cs j x j (�x:M) (Syntactic Value)

V 2 V alue ::= c j ` j fc j (cons V V ) j g j hch �i (Semantic Value)

cs 2 SConst ::= f j b (Syntactic Constant)

fc 2 PApp ::= (cons V ) j (enqueue V ) j (Partial Application)

(call-with-group V ) j ((call-with-group V ) V )

(((call-with-group V ) V ) V )

c 2 Const ::= cs j d (Constant)

b 2 BConst = ftrue; false; nil; 0; 1; : : :g (Basic Constant)

d 2 V oid = fvoidg (Void Constant)

f 2 FConst = fcons; car; cdr; call-with-group; (Functional Constant)

channel; enqueue; dequeue; pause; awakeng
x 2 V ars = fx; y; z : : :g (User Variable)

' 2 Notifier � Closure (Noti�er)

` 2 Closure ::= hcl �x:M; �i (Closure)

M2 Qconfig ::= hT;�; �i (Q-Con�guration)

� 2 GMap : Group! GInfo (Group Mapping)

i 2 GInfo ::= hg; e; s; 'e; 't; n; g
�i (Group Information)

g 2 Group = f?gg [ fg0; g1; : : :g (Group)

t 2 Task ::= hC; gi (Task)

C 2 CoSt ::= EvhM;�; �i j RethV; �i (Computational State)

� 2 CCode ::= (init) j (� fun V ) j (� arg M �) j (� rgroup) (Continuation code)

s 2 GState ::= running j exhausted j terminated (Group State)

T � Task (Set of Tasks)

q 2 Queue ::= hi j hV i j qxq (Queue)

� 2 QStore : Loc! Queue (Queue Store)

� 2 Loc = f�0; �1; : : :g (Location)

� 2 Env : V ars! V alue (Env)

n 2 IN (Number of sponsored tasks)

e 2 Energy � IN (Energy)

K;Kn : Task �GMap! Energy (Cost Function)

Figure 3: State Space

K to denote the value of the cost function

for the task involved in the transition and

a given �. For instance, in rule (sequen-

tial) of Figure 6, the task involved in the

transition is hC; gi; therefore, the symbol

K stands for K(hC; gi;�).

We also use the symbol Kn to denote the

cost of a noti�cation, i.e. the cost of rule

(termination) or (exhaustion).

Rule (sequential) of Figure 6 states that if there ex-

ists a task hC; gi sponsored by a group g, such that

a CEK-transition reduces C to C1, then after tran-

sition the task becomes hC1; gi; the energy of g is

decremented by the cost of the transition; the other

tasks remain unchanged. Rule (sequential), as most

other rules, assumes that the energy associated with

g is greater than the sum of the transition cost and

the noti�cation cost, which is represented by the

side-condition noted (?). This side-condition guar-

antees that after transition, we still have enough

energy to post a noti�cation if required.

We use the following notations for accessing and

modifying components of the tuple associated with

a group g. If �(g) = hgp; e; s; 'e; 't; n; g
�i, then

�(g):p = gp, �(g):e = e, �(g):s = s, �(g):n = n,

�(g):g� = g�. Updates are written as follows:

�[g:e := e1] denotes �[g ! hgp; e1; s; 'e; 't; n; g
�i],

�[g:s := s1] denotes �[g ! hgp; e; s1; 'e; 't; n; g
�i].

Sometimes, we even combine both conventions so

that �[g:n := g:n � 1] should be read as �[g !
hgp; e; s; 'e; 't; n� 1; g�i].

As many cost models are conceivable, we decided to

parameterise the semantics by the cost model. Fig-

ure 5 gives the de�nition of functions K;Kn, charg-

ing a unitary cost for every transition, in addition to



Evh(M1 M2); �; �i !cek EvhM1; �; (� arg M2; �)i (rator)

Evh�x :M; �; �i !cek Rethhcl �x :M; �i; �i (lambda)

Evhc; �; �i !cek Rethc; �i (constant)

Evhx ; �; �i !cek Reth�(x); �i (variable)

RethV; (� arg M;�)i !cek EvhM;�; (� fun V )i (rand)

RethV; (� fun hcl �x :M; �i)i !cek EvhM;�[x ! V ]; �i (apply)

Reth(cons V1 V2); (� fun car)i !cek RethV1; �i (car)

Reth(cons V1 V2); (� fun cdr)i !cek RethV2; �i (cdr)

RethV; (� fun f)i !cek Reth�(f; V ); �i (�)

Figure 4: CEK Transitions

Unitary Cost Function

K(hReth't; (� fun (((call-with-group F ) e) 'e))i; gi;�) = e+ 1

K(hRethe; (� fun (awaken g1))i; gi;�) = e+ 1 if g 6= g1;�(g1):s 6= terminated

K(hC; gi;�) = 1; otherwise

Kn = 1 (noti�cation cost)

Soundness Constraints on Cost Functions K and Kn

K(hReth't; (� fun (((call-with-group F ) e) 'e))i; gi;�) > e

K(hRethe; (� fun (awaken g1))i; gi;�) > e if g 6= g1;�(g1):s 6= terminated

K(hC; gi;�) > 0; otherwise

Kn � 1

Figure 5: Cost Functions K;Kn

the quantity of energy transferred. Other de�nitions

are acceptable as long as they satisfy the soundness

constraints of Figure 5, which preserve the following

principles: �rst, every computation step has a cost;

second, transferring some energy costs this amount

of energy at least.

In Figure 6, the rule for the construct (fork M) cre-

ates a new task to evaluate M with the same envi-

ronment � and an initial continuation, resulting in

an additional task in the current group. The con-

struct (suicide) removes the current task from its

sponsoring group; the Q-machine behaves similarly
when a void value is returned to the initial continu-

ation.

Rules dealing with channels, which appear in Fig-

ure 7, are straightforward. The construct (channel)

returns a new channel hch �i with a newly allocated

location � bound to an empty queue in the queue

store. The primitive enqueue adds a value V at the

end of the queue associated with the channel, while

dequeue takes the �rst element of the queue. Note

that the transition (dequeue) is allowed to be �red

only if the queue is not empty; as a result, a task

is not allowed to progress when trying to dequeue

an element from an empty channel. For the sake of

simplicity, we have decided not to associate a cost

with such a \blocked" task. This could be easily

overcome by adding a rule for the empty queue case

which would charge its cost to the sponsoring group.

Figure 8 displays rules related to groups. Groups are

created by evaluating (call-with-group F e 'e 't),

which results in the application of the partial ap-

plication (((call-with-group F ) e) 'e) on 't. Then,

rule (make group) creates a new group g1 in a run-

ning state, whose parent is the sponsoring group g,

with an energy e, with one sponsored task applying

the closure F on g1 and e. Following the soundness

constraints of Figure 5, the sponsoring group g is



hf hC; gi g [ T ;�; �i

! hf hC1; gi g [ T ;�[g:e := g:e�K]; �i if C !cek C1 (?) (sequential)

hf hEvh(fork M;�; �i; gi g [ T ;�; �i

! hf hRethvoid; �i; gi; hEvhM;�; (init)i; gi g [ T;�[g:e := g:e�K][g:n := g:n+ 1]; �i (?) (parallel)

hf hEvh(suicide); �; �i; gi g [ T ;�; �i

! hT;�[g:e := g:e�K][g:n := g:n� 1]; �i (?) (suicide)

hf hRethvoid; (init)i; gi g [ T ;�; �i

! hT;�[g:e := g:e�K][g:n := g:n� 1]; �i (?) (init)

Convention: (?) � �(g):e � K +Kn

Figure 6: Sequential and Parallel Evaluations

hf hReth(channel); �i; gi g [ T ;�; �i

! hf hRethhch �i; �i; gi g [ T ;�[g:e := g:e�K]; �[�! hi]i with � 62 DOM(�) (?) (channel)

hf hRethV; (� fun (enqueue hch �i))i; gi g [ T ;�; �i

! hf hRethvoid; �i; gi g [ T ;�[g:e := g:e�K]; �[� := �(�) x hV i]i (?) (enqueue)

hf hRethhch �i; (� fun dequeue)i; gi g [ T ;�; �i

! hf hRethV; �i; gi g [ T ;�[g:e := g:e�K]; �[� := q ]i if �(�) = hV i x q (?) (dequeue)

Convention: (?) � �(g):e � K +Kn

Figure 7: Channels Related Operations

hf hReth't; (� fun (((call-with-group F ) e) 'e))i; gi g [ T ;�; �i

! hf hRethg1; (((� rgroup) arg e; ;) fun F )i; g1i g [ T ;�1; �i (?) (make group)

with �1 = �[g:e := g:e�K][g:n := g:n� 1][g:g� := g:g
�

[ fg1g][g1 ! hg; e; running; 'e; 't; 1; ;i];

g1 62 DOM(�)

hf hRethV; (� rgroup)ig; ig [ T ;�; �i

! hf hRethV; �i; g1i g [ T ;�[g:e := g:e�K][g:n := g:n� 1][g1:n := g1:n+ 1]; �i (return group)

with g1 = �(g):p (?)

Convention: (?) � �(g):e � K +Kn

Figure 8: Groups Related Operations

hf hC; gi g [ T ;�; �i

! hf hRethg; (((init) arg e; ;) fun 'e)i; g1i g [ f hC; gi g [ T ;�1; �i (exhaustion)

if �(g) = hg1; e; running; 'e; 't; n; g
�

i; g1 6= ?g; e < K(hC; gi) +Kn; �(g1):s = running

with �1 = �[g:s := exhausted][g:e := 0][g1:e := g1:e+ e�Kn][g1:n := g1:n + 1]

hT; f (g ! hg1; e; running; 'e; 't; n; g
�

i) g [ �; �i

! hf hRethg; (((init) arg e; ;) fun 't)i; g1i g [ T ;�1; �i (termination)

if g1 6= ?g; �(g1) = hg2; e1; s; 'e1; 't1; n1; g
�

1i; n = 0; g
�

= ;; �(g1):s = running

with �1 = �[g ! hg1; 0; terminated; 'e; 't; n; g
�i][g1 := hg2; e1 + e�Kn; s; 'e1; 't1; n1 + 1; (g�1 n fgg)i]

Figure 9: Asynchronous Noti�cations



hf hRethnil; (� fun (pause 'p))i; gi g [ T ;�; �i

! hf hRethvoid; �i; gi g [ T ;�[g:e := g:e�K]; �i (?) (pause group 1)

hf hReth(cons g1 g
�

); (� fun (pause 'p))i; gi g [ T ;�; �i

! hf hReth(g
�

x �(g1):g
�

); (� fun (pause 'p))i; gi g [ f t1 g [ T ;�1; �i

if g 6= g1; �(g1):s 6= terminated (?) (pause group 2)

with t1 = hRethg1; (((init) arg e; ;) fun 'p)i; g2i

with �1 = �[g:e := g:e+ e�K][g1:e := 0][g1:s := exhausted][g2:n := g2:n+ 1]

with g2 = �(g1):p; e = �(g1):e

! hf hReth(g� x �(g1):g
�); (� fun (pause 'p))i; gi g [ T ;�[g:e := g:e�K]; �i (pause group 3)

if (g = g1 _ �(g1):s = terminated) (?)

hf hRethe; (� fun (awaken g1))i; gi g [ T ;�; �i

! hf hRethvoid; �i; gi g [ T ;�[g:e := g:e�K][g1:e := g1:e+ e][g1:s := running]; �i (awaken group 1)

if g 6= g1; �(g1):s 6= terminated (?)

! hf hRethvoid; �i; gi g [ T ;�[g:e := g:e�K]; �i (awaken group 2)

if (g = g1 _ �(g1):s = terminated) (?)
Convention: (?) � �(g):e � K +Kn

Figure 10: Pause and Awaken Operations on Groups

deducted of the transition cost, which includes the

energy e given to g1: rule (make group) guarantees

that no energy is generated during group creation.

Let us notice that F is applied on g1, with a contin-

uation (� rgroup) indicating that the evaluation is

performed under the sponsorship of a group. When

a value is returned to the continuation code rgroup

as in (return group), the task leaves the sponsorship

of its group: the task that was sponsored by g now

becomes sponsored by its parent g1; the numbers

of tasks sponsored by g and g1 are updated accord-

ingly.

Rules controlling asynchronous noti�cations appear

in Figure 9. If the energy available in a group g

is smaller that the sum of the energy required by

a task and the energy for a noti�cation, rule (ex-

haustion) changes the state of g to exhausted, and

creates a new task applying the noti�er 'e on g and

the remaining energy e. The noti�cation is executed

under the sponsorship of the parent group g1, and

the energy e is transferred to g1.

Asynchronous termination detection follows a simi-

lar pattern: if a group g does not sponsor any task

and has no subgroup, a noti�er 't is applied on g

and the remaining energy e under the sponsorship

of the parent group g1; the remaining energy is also

transferred to g1.

As noti�cations are executed under the sponsorship

of the parent of the group terminating or being ex-

hausted, care should be taken not to apply these

rules to the root of the hierarchy, which is expressed

by the condition g1 6= ?g.

A noti�er is de�ned as a user function. Evaluat-

ing a call to a noti�er is a noti�cation. Posting a

noti�cation is creating a task that performs a noti�-

cation. Like any other transition, rules (exhaution)

and (termination) are given a cost; for the sake of

simplicity, it is de�ned as Kn. The side-condition

(?) used in all rules but (exhaution) and (termina-

tion) ensures that enough energy is left in a group

to post a noti�cation.

Noti�cation rules transfer energy from the noti-

�ed group to its parent, avoiding energy loss.

Noti�cations allow the user program to ob-

serve semantically-caused energy transfers between

groups. Even though the user code is given access to

the amount of energy transferred, energy account-

ing remains strictly under control of the semantics,

which guarantees the safeness of the approach.

The semantics of pause and awaken is displayed in

Figure 10. The primitive pause requires two argu-

ments: a noti�cation function 'p and a list of groups

to be paused. For each group g1 of the list, rule

(pause group 2 ) sets the state of g1 to exhausted,

transfers its remaining energy e to the group g spon-

soring the pause action, creates a task applying the

noti�er 'p on g1 and e under the sponsorship of g2
the parent of g1, and adds the subgroups of g1 to

the list of groups remaining to be processed.

Special care is taken in rule (pause group 3 ) to avoid



pausing the current group or to avoid setting a ter-

minated group to the exhausted state. In rule (pause

group 1 ), we see that the primitive pause returns a

void value as it is used for its side-e�ect on group

energies.

The primitive awaken takes the group to be awak-

ened and the energy to be transferred in arguments.

Assuming the sponsoring group g has enough en-

ergy, rule (awaken group 1 ) decrements its energy,

increments the energy of the awakened group g1,

and sets it to the state running. Again care is taken

to avoid awakening a terminated group. Let us ob-

serve again that the user speci�es the amount of

energy to be transferred but accounting is strictly

performed at the semantic level.

De�nition 1 displays the evaluation relation of the

language. Evaluation starts with an initial con�g-

uration, composed of the initial group g0, a queue

store containing a location �0 aimed at receiving all

values generated by the computation, and an initial

task; this task evaluates the program in an empty

environment, and with a continuation accumulating

the results obtained in location �0. The evaluation

relation associates a program with all the possible

�nal results that can be accumulated in �0.

De�nition 1 (Evaluation Relation)

evalK;Kn(M; e) = V if 9hT;�; �i, such that

hfhEvhM; ;; �0i; g0iig;�0; �0i !� hT;�; �i, with

V 2 �(�0) and Final(hT;�; �i), and with:

�0 = fg0 ! h?g ; e; 'e0; 't0; 1; hiig

�0 = f�0 ! hig

�0 = ((init)fun (enqueue hch �0i))

Final(hT;�; �i) � 6 9hT 0;�0; �0i;

hT;�; �i ! hT 0;�0; �0i

'e0 = 't0 = hcl �g:�e:void; ;i

2

Let us note that the evaluation relation is parame-

terised by the cost functions K;Kn and by the ini-

tial energy quota e given to the Q-machine. The

initial group has no parent, receives the initial en-

ergy quota, sponsors the initial task; the noti�ca-

tion functions are arbitrary because they are never

called, as seen in rules (exhaustion) and (termina-

tion).

We establish the soundness of the semantics with

respect to energy by the next two propositions.

Proposition 2 For any cost function satisfying the

constraints of Figure 5, total energy decreases as

evaluation proceeds. 2

Corollary 3 For any cost function satisfying the

constraints of Figure 5, and for a �nite positive ini-

tial energy, any computation is �nite. 2

4 Examples

In this Section, we adopt Scheme syntax [RC91] and

present some examples using our primitives.

4.1 Energy Critical Section

Even though Quantum substantially di�ers from

Scheme, it is expressive enough to model �rst-class

mutable boxes. Figure 11 displays the code for mu-

table boxes in Quantum, where a mutable box is

represented by a channel. Functions deref and se-

tref ! maintain the invariant that the channel con-

tains one and only one value, by �rst dequeuing the

current value, and then enqueuing another one. Si-

multaneous accesses to a same box are protected by

the atomicity of the primitive dequeue.

(de�ne (makeref V )

(let ((c (channel)))

(enqueue c V )

c))

(de�ne (deref c)

(with-enough-energy

(let ((v (dequeue c)))

(enqueue c v)

v)))

(de�ne (setref ! c v)

(with-enough-energy

(let ((old (dequeue c)))

(enqueue c v)

old)))

Figure 11: First-Class mutable boxes

However, a program could run out of energy af-

ter having read a value and before having stored

the new one into the channel: this would leave the

box in a inconsistent state, unusable by other tasks.

Therefore, we must be sure that an exhaustion no-

ti�cation cannot occur between these two opera-

tions. This kind of \energy-critical section" is im-

plemented by creating a group which receives the

amount of energy minimal-energy required to per-

form both operations (Figure 12).

Let us notice that such a group does not prevent

the program to be paused from outside. However, if

such a pausing action occurs, it can only be caused



(de�ne-syntax with-enough-energy

(syntax-rules ()

((with-enough-energy form . . . )

(call-with-group (lambda (g e)

form . . . )

minimal-energy

re�ll-handler

ignore-handler))))

(de�ne (re�ll-handler g e)

(awaken g (+ e 1)))

(de�ne (ignore-handler g e)

(suicide))

Figure 12: Energy-critical Section

by the user's program. It is his role to ensure that

a paused group does not leave objects such as boxes

in an inconsistent state.

4.2 Monitoring Computations

In traditional computing, we have no tool to tell

us whether a computation is running or what is

the amount of work done by a given task. Such

tools usually exist at the operating-system level, but

deal with \processes" and not with tasks, and they

do not take into account tasks executed on remote

hosts. Figure 13 displays the code of a probe, which

updates the content of a box with the amount of en-

ergy already consumed by a computation generated

by a thunk . When the computation ends, the box is

updated with a pair indicating the total consump-

tion of the thunk .

(de�ne (probe box thunk unit)

(call-with-group

(lambda (g e) (thunk))

unit

(lambda (g e)

(setref ! box (+ unit (deref box )))

(awaken g (+ unit e)))

(lambda (g e)

(setref ! box (cons 'sum (� (deref box ) e))))))

Figure 13: Probe

4.3 Controlling Computations

Quantum o�ers the possibility to control compu-

tations in a re�ned way. It is possible to stop a

(distributed) computation, to suspend and resume

it later, or to adjust it level energy, which introduces

a form of energy-based priority. All three operations

are implemented using pause and awaken.

The function suspend temporarily pauses a group

hierarchy. The hierarchy will be resumed by awak-

ening its root, which will awaken its subgroups step

by step using the noti�ers left by pause. Note that

the condition in the noti�er prevents to awaken the

root of the hierarchy immediately after the root has

received the noti�cation.

On the contrary, the function kill pauses a hierarchy

without leaving any opportunity to resume it, unless

the programmer has explicitly kept handles on the

groups that belong to the hierarchy, and explicitly

awakens them.

Last, adjust-energy pauses and immediately re-

sumes a hierarchy with a quota of energy which

is proportional to the one it had before. The en-

ergy transfer that occurs during this operation is

worth noticing: the group calling adjust-energy will

be credited of the energy of hierarchy before adjust-

ment, while the energy of the hierarchy after ad-

justment is deducted from the parent of the root.

In order to guarantee that awaken is executed after

pause, we introduce an explicit synchronisation by

the channel go.

(de�ne (suspend group)

(pause (lambda (g e)

(if (not (eq? g group))

(awaken g e)))

(list group)))

(de�ne (kill group)

(pause (lambda (g e)

(suicide))

(list group)))

(de�ne (adjust-energy group coe�cient)

(let ((go (channel)))

(pause (lambda (g e)

(if (eq? g group)

(dequeue go))

(awaken g (* e coe�cient)))

(list group))

(enqueue go #t)))

Figure 14: Pause and Awaken of Computations

4.4 A Service Provider

Figure 15 displays the code of a service provider,

making use of Wright and Duba's pattern-

matching macro [WD95]. A communication channel

subscription-channel is publicly advertised as the



entry point to the service provider. A user is al-

lowed to subscribe to the service by giving its name

(possibly authenticated by a specialised protocol),

some electronic cash, and a channel to which the

service provider answers. The service provider cre-

ates a new communication channel that is returned

to the user and that will be used as an access point

to resources o�ered by the service provider. This

access point is served by a request-server , whose op-

erations are sponsored by a group that has received

an initial amount of energy corresponding to the

electronic cash transmitted at subscription time.

The user can submit jobs to the request-server ,

which in turn creates a new group to sponsor the

evaluation of job and returns it to the user. This

group can be used by the user to pause, kill, or

restart a computation. Let us observe that the user

is never given a handle either on the group initially

created with his electronic cash, or on the group

sponsoring the administration program. Thanks to

lexical scoping, these groups can be hidden, and

security is insured because nobody will be able to

pause and steal energy from such groups.

When the account of a user is exhausted, a mes-

sage is sent to the user, who gets the opportunity

to transfer more electronic cash to his account via

a message 'pay. This request is sent on the pub-

licly advertised channel, subscription-channel , and

might need some authentication protocol.

The service providers may also o�er a demonstra-

tion account which will be usable for a �xed quota

of energy energy-quota-for-free-demo and which may

o�er restricted facilities only. This program can be

extended by o�ering the possibility to close an ac-

count and to refund the electronic cash correspond-

ing to the remaining energy.

5 Discussion and Related Work

For the sake of clarity, we have presented a simple

cost model that measures the cost of computing.

In practice, we should regard energy as a multidi-

mensional (vector) datastructure of budgetised re-

sources. Such an extended model can take into ac-

count time, geographical expansion, �le access per-

mission, memory size, number of messages, num-

ber of parallel tasks, . . . . In such an extended

model, once a resource is exhausted (or a compu-

tation ends), there is an asynchronous noti�cation;

the primitives awaken and pause can supply or re-

move a given resource.

Our notion of group is at the intersection of two

di�erent ideas: Haynes and Friedman's engines and

Kornfeld, Hewitt, and Osborne's sponsors, which we

develop below.

Haynes and Friedman [HF84, HF87] introduce the

engine facility to model timed preemption; variants

can also be found in [Dyb87, Eis88, Sit94]. Engines

di�er from our groups in a number of ways. Engines

are de�ned in a sequential framework and are used

to simulate multiprogramming. Since engines do

not deal with parallelism, they do not o�er control

facilities such as pause and awaken. Another major

di�erence is that a given engine can be executed sev-

eral times, while a group can only be executed once.

Using continuation terminology, engines are \multi-

shot", while groups are \single-shot" [BWD96]. A

group is a name and an energy tank for a compu-

tation, but, unlike an engine, it does not embody

its continuation. Our decision to design \single-

shot" groups is motivated as follows. The ability to

restart several times a same computation is an un-

realistic feature for a distributed language because

the computation may be composed of several tasks

distributed over the net. Haynes and Friedman also

propose nested engines , i.e. engines that can cre-

ate other engines. In their approach, nested engines

have the same temporal vision of the world, be-

cause each computation consumes ticks, i.e. energy

quanta, from parent engines (direct and indirect).

On the contrary, groups o�er more a distributed vi-

sion of the world, because groups are tanks, from

which local tasks consume energy.

Kornfeld and Hewitt's sponsors [KH81], Osborne's

enhanced version of them [Osb90a, Osb90b, Hal90],

and subsequently Queinnec's groups [Que94b,

QD92], also allow the programmer to control hier-

archies of computations in a parallel setting. Os-

borne's sponsors are entities that give attributes,

such as priority, to tasks, which can inherit at-

tributes from several sponsors. A combining rule

yields the e�ective attributes of a task, and then

determines the resources allocated to the task. If

the group hierarchy changes, priorities should be

recomputed, which can be costly, especially in a

distributed environment. With Quantum groups,

scheduling of a task is only decided by examining

the energy available in its only sponsoring group,

which is local. Furthermore, priority is a di�cult

notion to grasp in a heterogeneous environment,

while resources are more intuitive. Queinnec's Ic-

sla language has a notion of group which substan-

tially di�ers from the one presented here. As Icsla is

energy-less, pausing a group does not collect energy

and can be performed lazily. Also, Icsla does not

have any of the noti�cations of Quantum. Let us

observe that termination noti�cation is a generali-



(de�ne subscription-channel (channel))

(de�ne (service-provider subscription-channel)

(let loop ()

(let ((subscription (dequeue subscription-channel)))
(fork (process-subscription subscription))

(loop))))

(de�ne (process-subscription subscription)

(match subscription

(('subscribe name ecash answer)

(let ((private-channel (channel))

(energy (ecash->energy ecash)))

(call-with-group (lambda (g e)
(register name g private-channel)

(enqueue answer private-channel)

(request-server private-channel g))

energy

(lambda (g e)

(enqueue answer

"Account exhausted"))
ignore-handler)))

(('pay name ecash)

(let ((group (get-group name)))

(awaken group (ecash->energy ecash))))

(('free-demo name answer)

(call-with-group (lambda (g e)

(let ((private-channel (channel)))

(enqueue answer private-channel)

(request-server private-channel g)))

energy-quota-for-free-demo

(lambda (g e)

(enqueue answer

"Demo account exhausted"))

ignore-handler))

(else 'discard))

(suicide))

(de�ne (request-server channel sponsoring-group)

(let ((message (dequeue channel)))

(fork (request-server channel sponsoring-group))

(match message

(('submit job answer)

(call-with-group (lambda (g e)

(add-group! sponsoring-group g)

(enqueue answer `(created ,g))

(job))

1

re�ll-handler

(lambda (g e)
(remove-group! sponsoring-group g)

(enqueue answer `(done ,g)))))

(('pause group answer)

(if (member group (subgroups sponsoring-group))

(begin

(suspend group)

(enqueue answer `(paused ,group)))
(enqueue answer `(unknown ,group))))

(('kill group answer)

(if (member group (subgroups sponsoring-group))

(begin

(remove-group! sponsoring-group group)

(kill group)

(enqueue answer `(killed ,group)))

(enqueue answer `(unknown ,group))))
(('restart group answer)

(if (member group (subgroups sponsoring-group))

(begin

(awaken group 1)

(enqueue answer `(restarted ,group)))

(enqueue answer `(unknown ,group))))

(else 'discard))

(suicide)))

Figure 15: Service Provider (1)

sation of unwind-protect [Ste90]. Hieb and Dybvig

[HD90] spawn operator returns a controller, which

can be invoked to suspend or restart part of a com-

putation tree; their approach relies on a notion of

partial continuation.

The mobile agent community deals with the prob-

lem of controlling distributed mobile computations,

called agents . The most widespread agent sys-

tems are Telescript [Mag96a, Mag96b], Tacoma

[JvRS95a, JvRS95b], Agent-TCL [Gra96], and Ara

agents [Pei97, PS97]. Most of them have a no-

tion of energy: Telescript agents have \permits" in

terms of teleclicks [Mag96a, Mag96b], Ara agents

[Pei97, PS97] are equipped with resource accounts

called allowances , Erlang agents [A+97] rely on

metapills. However, very few of them are able to

control resources in a similar way as Quantum.

Quoting [Mag96b], \if the agent exceeds any of its

quantitative limits, the engine destroys the agent

unceremoniously. No grace period is extended".

Our model is more general than the Telescript ap-

proach as it allows us to drive computations using

pause and awaken and to monitor them using asyn-

chronous noti�cations. Also, our model supports

agents that perform parallel and distributed compu-

tations, what is usually called multi-agent systems.

Arthursson et al. [A+97] follow an approach similar

to Telescript.

Allowances in Ara agents [PS97, Pei97] are similar

to our groups [PS97, p. 6]; as indicated by Peine,

they are a recent concept, not complete yet. Several

agents can share the same allowance, also called a

group. Agents can transfer resources explicitly be-

tween accounts. In Ara, agents can be suspended or

reactivated: these actions however are performed on

agents directly and not on groups [PS97, p. 23]; as a

result hierarchical computation cannot be controlled

as in Quantum. Ara agents are not noti�ed of an

exhaustion [PS97, p. 35]; Peine consider that this is

not a severe problem as an agent may enquire about



the existence of a resource. We believe that this

argument is not valid in parallel/distributed com-

puting because another parallel computation might

consume the resource.

Our semantic is sound because it prevents generat-

ing energy. Furthermore, our language provides the

means to enforce security in di�erent ways: (i)

energy cannot be generated, but can only be trans-

ferred between computations; all \accounting" op-

erations remain under absolute control of the se-

mantics; (ii) groups are the only handle to control

computations, and lexical scoping guarantees that

groups will be visible only where the programmer

wishes them to be, (iii) there is no primitive that

returns the group in which the user code is run-

ning, which ensures that user code cannot control

its sponsoring group, and hence it cannot control

tasks running in parallel with it, unless explicitly

passed a handle to their sponsoring group. Secu-

rity is an important issue in distributed agent-style

applications. Using Quantum primitives, there is

nothing that prevents users from erroneously trans-

ferring resources between groups, or making a group

accessible to and then preemptable by another task.

However, we believe that some static analysis [VS97]

would be able to detect whether a group might be-

come preempted if made accessible in a public data

structure for instance.

6 Conclusion

In this paper, we present the language Quantum,
whose purpose is to monitor and control resource

consumption in a parallel and distributed frame-

work. The semantics uses an abstract notion of

energy, but it can be applied to control computa-

tion time, memory usage, message sending, �le ac-

cess permission, etc. A companion paper describes

a distributed implementation of Quantum built on

top of a message-passing library [MQ97]. A re�ne-

ment of the semantics introduces explicit localities

in the spirit of [Ama97, FGLMR96, Mor96a].

Quantum is a language that is aimed at agent appli-

cation implementers, who are in need of controlling

and bounding the resources needed by their agents.

It is also useful to implementers of services who need

to monitor visiting mobile agents. Also, it provides

primitives to build \any-resource" algorithms, ap-

plying the idea \any-time" algorithms [DB88] to any

form of resource.

Quantum is the core of a consumption-oriented lan-

guage which is particularly suitable to program over

the Internet. In the future, we plan to investigate a

fault-tolerant version of the language, which would

be energy aware.
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