
USENIX Association

Proceedings of BSDCon ’03

San Mateo, CA, USA
September 8–12, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

devd – A device configuration daemon

M. Warner Losh

Timing Solutions, Inc

Boulder, Co

imp@bsdimp.com

Abstract

Hot–pluggable bus technologies have proliferated,
rendering traditional boot time configuration of de-
vices via an /etc/rc script insufficient for many
user’s needs. Most implementations of hot–plug
technologies have provided a means to address these
deficiencies, yet their solutions tend to be confined
to only that technology. The goal of FreeBSD’s
devd(8) is to provide a uniform framework by which
interesting events relating to hot–plugging can be
handled. devd provides a regular framework for
these technologies to have user–land configuration
commands run in a generic, extensible way. The im-
plementation encountered a number of issues which
are instructive to explore. devd only responds to
events that the kernel generates and does not par-
ticipate in interactions with the kernel that would
block another thread of execution. At the present
time, devd supports executing arbitrary commands
when a driver attaches to the tree, when it detaches
and when a bus detects an unknown device attached
to that bus.

1 Problem Statement

When Unix was originally designed, all the devices
that the machine had were hardwired into the ker-
nel. Over time mechanisms evolved to allow users
to configure which devices their kernels should have.
As technology improved, hardware became hot–
pluggable and self identifying. Traditional Unix ker-
nels are awkward to use on a machine where devices
dynamically change after the kernel has booted. A
number of hot–plug technologies have been brought
to market over the past few years: 16–bit and 32–
bit PC Card[PC Card], IEEE 1394–1995[Firewire],
HotPlug PCI[PCIHotPlug], USB 1.0 and 2.0[USB],
SCSI, ATA, SATA, and others.

Traditional Unix systems could only configure net-
work interfaces, or otherwise bring devices into
a useful state during the boot process through
/etc/rc or similar mechanisms. Since many hot–
pluggable devices do not exist at boot, some other
mechanism was needed to bring these devices to a
useful state.

Typically, hot–plug technologies have been inte-
grated in an ah–hoc way. For example, the PC
Card daemon pccardd in FreeBSD handles only 16–
bit PC Cards. The USB daemon usbd in FreeBSD
and NetBSD handles only USB devices. Each of
these daemons does its job well, but is specialized
to its particular technology. These daemons have
low reusability for new technologies. Each new tech-
nology needs a new daemon to be written. There’s
presently no daemon to handle firewire devices on
either FreeBSD or NetBSD, for example. The pro-
liferation of daemons takes up additional resources,
and wastes programming effort for each new tech-
nology.

A related problem is that sometimes devices are at-
tached to busses for which no driver exists in the
kernel. Bus technologies that support hot–plugging
of devices typically have some sort of so called “Plug
and Play” identifiers that can be used to intelli-
gently select the driver. In FreeBSD there is only
limited support for loading device drivers when un-
known devices are present. Only usbd supports
loading drivers when unknown hardware is plugged
in, and nothing supports augmenting drivers for un-
known devices encountered during the boot phase.

Many of these busses also provide “location” infor-
mation to uniquely identify multiple instances of the
same kind of card. While not necessarily used by
most devd users, this location information is ex-
posed in a uniform way. This uniformity allows
users to configure their system based on where a de-
vice is, rather than what order it happens to probe

in. Prior to the devd efforts, FreeBSD could only
find the location of a device for most busses via bus
specific methods that often proved unreliable.

devd was conceived to try to solve these problems.
devd will be used in this paper to refer to all parts
of the system, even though the devd daemon is only
part of the solution.

2 Prior Art

A number of ad–hoc solutions to these problems
have existed over the years. Each one of them solved
a small slice of the problem set. My search for prior
art didn’t uncover any truly generic method for all
drivers in a system.

2.1 FreeBSD pccardd

The original PC Card implementation in FreeBSD,
sometimes called OLDCARD, has a split user-land
kernel implementation. The bare minimum of func-
tions that were required in the kernel were imple-
mented there, but the bulk of the PC Card configu-
ration procedures were implemented in a daemon
called pccardd. The kernel would tell this dae-
mon of card insertions. The daemon would then
parse the CIS information from the card, chose
a driver and its resources based on a configura-
tion file and tell the kernel which device to attach.
When that was done, it would optionally run ad-
ditional commands. It did similar things when a
card was ejected. A companion program pccardc
offered some additional control to the system, such
as dumping a CIS for debugging purposes, or pow-
ering off a card.

This system worked fairly well when it was writ-
ten. In those days, most of the hardware was still
ISA based and everything was hardwired at a par-
ticular address. As systems became more compli-
cated, problems arose with resource conflicts. In ad-
dition, as bus technologies changed from edge trig-
gered interrupts to level triggered interrupts, the
split between user–land and the kernel was found to
be suboptimal because some of the things that the
user–land daemon was doing would cause interrupt
storms because the kernel didn’t expect to cooper-
ate with pccardd for those operations.

2.2 NetBSD usbd

NetBSD’s usbd provided a way for a user-land pro-
cess to react to events in the usb system and to force
a traversal of the usb tree. NetBSD moved this func-
tionality into a kernel thread. FreeBSD expanded
its usbd similarly to FreeBSD’s pccardd to allow
for aribtrary commands to be run on attach and
detach. The underlying usb driver provided hooks
for additional events that were never used by usbd.
In addition, all the usb configuration data comes
from the kernel, rather than from parsing the data
like pccardd does.

2.3 Windows

While Windows doesn’t exactly support running a
command when a device attaches or detaches from
the device tree, it does define a similar C API. Win-
dows solves the problem of which driver to load and
attach differently. In the windows world, a config-
uration file associates a driver to a plug and play
ID and the device manager, not the device driver,
decides which devices a driver services.

2.4 MAC OS/X

OS/X facilities are similar to Windows. OS/X uses
XML based config files to determine which device
driver is attached to a given device. I am unaware
of command execution when a driver attaches or
detaches.

3 Design Overview

3.1 Unix Philosophy

The Unix philosophy has been to keep things as sim-
ple as possible. Each tool does one small job, and
does it every well. Complex problems are solved by
stringing together simple tools that solve orthogonal
problems. Much like cat(1) does not try to imple-
ment paging functionality, devd does not try to dic-
tate policy to the kernel. devd is reactionary: it only
responds to events that have already happened. It

does not participate in the decision making process
of kernel device configuration.

3.2 Big Picture

Let’s look at a typical case to illustrate how the
process works. A wireless card is inserted into a
CardBus slot. The CardBus bridge notices this has
happened, and causes all drivers with CardBus at-
tachments to be probed. One of them claims the
card, and then its attach routine is called. After a
successful attach, an event is sent to the devd dae-
mon. The daemon inspects the event and decides
that it is configured to start dhclient and does so.

All the data flow is one way. Some event happens,
which causes a device driver to attach. That act
causes an event to be sent to devd, which does some-
thing. devd only reacts to events that have hap-
pened in the past. devd does not participate in the
bidding on a device. The kernel will never block
waiting for data from devd.

3.3 Kernel Driver

FreeBSD stores the kernel device driver tree in a
generic format for all devices in the system. Since
manipulation of the tree is confined to a few well
known routines, the first part of devd is a driver
that hooks into this code. This driver queues this
information and delivers it to user–land via the
/dev/devctl device. Each message is one line of
text. The messages have a well defined meta-format
so messages not known to a particular client may
easily be discarded without loss of synchronization
in the protocol stream.

3.4 User–land Daemon

The user–land daemon, called devd, processes the
events from the kernel and dispatches them based
on devd’s configuration file /etc/devd.conf. This
dispatching is regular expression based. Any infor-
mation that the kernel provides about the event can
be matched. Actions are arbitrary Unix commands.

4 Implementation Details

4.1 Kernel portion

The kernel portion of devd is implemented in
/usr/src/sys/kern/subr bus.c. Hooks in the at-
tach, detach and nomatch portions of the NEW-
BUS code queue events, if devctl is not disabled.
The queue depth is unlimited, but it is cleared when
devctl is disabled early in the boot process for those
systems that choose not to use devd’s features. Look
for the functions devadded(), devremoved() and
devnomatch() for details. Since devctl hooks in at
such a low level of FreeBSD’s NEWBUS system, all
busses in the system are automatically supported at
a rudimentary level.

The interface to the kernel is through the
/dev/devctl device driver. The devd daemon
opens this device, and reads events from the queue
using the standard read(2) calls. Each event is on a
line by itself, in ascii format. In theory, this interface
would support a devd-like program written in Perl,
Ruby or some other programming language. devctl
also supports ioctls for attaching and detaching de-
vices, but those ioctls are beyond the scope of this
paper. devctl presently supports only one reader,
but future versions will have a cloning driver that
will allow multiple readers as people write status
programs that wish to listen to the event stream
from the kernel.

4.2 Bus driver

While full support of all the devd functionality re-
quires bus drivers to implement several functions,
minimal support for devd only requires bug free op-
eration of the underlying bus.

The most basic requirement is that busses must
provide NEWBUS attachments to their children.
Busses may provide additional information about
location and identifying characteristics of the de-
vice. Finally, they may also support bus rescanning
when a new driver which has attachments on that
bus is loaded.

Most of the busses in the system do provide NEW-
BUS attachments for each of their children. Since
it mostly predates the NEWBUS system, CAM

doesn’t use NEWBUS children for the SCSI and AT-
API devices it finds. Since the usb stack was ported
from NetBSD, not all of its devices are NEWBUS
devices. For these busses, the support for them from
devd is limited. All the other busses in the tree that
have been examined use full NEWBUS children for
all the devices attached to the bus.

While all the busses using NEWBUS for their chil-
dren are automatically supported at a basic level
due to devctl’s hooks inside of newcard, each bus
can enhance its support for devd in three ways.
First, it can implement a location kobj function,
bus child location str(), which devctl uses to tell
devd where a given driver has attached to the bus.
Second, the bus can report identification informa-
tion with the bus child pnpinfo str() method. Fi-
nally, to support automatic loading of drivers for un-
known devices, the bus needs to support rescanning
unattached devices when a new driver is loaded.

Location information is a bus specific way of locat-
ing the device, possibly uniquely. Many busses have
a notion of a slot number where the card with the
function(s) resides. Other busses have a notion of
where the device lives within a tree of objects. The
information returned by the bus child location str,
method can therefore be used by the user locate
definitively the device.

Information about the nature of the device may
also be supplied. This information is similar to
the plug and play strings that Windows generates
and uses in its device configuration. Busses wish-
ing to implement this are required to implement the
bus child pnpinfo str kobj method. This method
generates strings which are presented to devd by
way of devctl. These string aren’t strictly required,
as devctl will simply pass less information about the
device up to devd when they aren’t present. When
they are present, they can be used to select the
driver to load that supports the hardware.

Finally, bus drivers that wish to fully support
devd’s functionality must also implement effective
reprobing on module loading. NEWBUS provides
hooks necessary to implement this feature, and most
busses already support it. However, some busses at-
tach a generic device to those devices that do not
otherwise match. In those cases, the bus will need
to detach that device driver from those children that
are generically matched in order to allow the newly
loaded driver a chance to bid on the device.

4.3 devd

devd dispatches commands based how a kernel event
matches information from a configuration file. devd
reads this configuration file on startup. This con-
fig file may contain a list of directories from which
to read additional files. These additional files may
contain anything that’s in the main directory, and
are only scanned once at startup. Directories are
only scanned once, even if they are listed multiple
times.

After devd reads it config file, it begins to process
events. Since devd is a daemon, it will place itself
into the background. There are two modes of op-
eration for this. The first mode, the default, waits
until all the events in the queue have been read and
their actions dispatched. This is used during boot
to eliminate a race later in the boot process between
devd configuring a device and rc scripts using those
results. The second mode of operation causes devd
to become a daemon immediately after reading its
config file. This mode can be used to optimize boot
time when no such dependency exists.

There are three kinds of events that devctl produces
for devd to consume. When a bus driver attaches
a driver to a device on that bus, an attach event is
generated. When a driver detaches from a device,
the detach event is generated. When a bus driver
detects a device on the bus no driver claims, a no-
match event is generated.

Attach and detach events happen after the fact. The
driver is already attached or detached before the
events happen. The command(s) that are run in a
matching action must take this into account. This
especially means that it is not possible to run any
commands before the driver detaches. In controlled
situations, this may be undesirable behavior, but
when a card is ejected, say, from a PC Card slot
that hardware is gone and there is no control pos-
sible. In addition, a fundamental design decision of
devd was to have it be reactionary only. Having
the kernel stall on devd before detaching the device
was deemed undesirable. Two way communication
is much harder than one way communication.

A nomatch event is generated when a driver cannot
be matched to a device. This may happen if the
driver for that device is not in the kernel, or if no
such driver exists. The typical response for a no-
match event is to either load a driver (in the former

case), or to ignore the event (in the latter). Again,
devd is reactionary. It does not participate in the
bidding process for the device. However, FreeBSD’s
NEWBUS system allows devd to be reactionary,
while still allowing the device to ultimately attach.
When the driver is loaded, the bus driver(s) for that
driver will rescan all of their unattached children.
Any new driver(s) to the system will be eligible to
attach to the unknown device on this rescan. An-
other implication of this is that if a few different
drivers could attach to the device, all can be loaded
and the right one will win the bidding. While the
“Plug and Play” information is typically sufficient
to select only a unique driver to load, in some rare
cases it only selectes one of two drivers.

5 Configuring devd

All of the details about devd’s config file can
be found in the devd.conf(5) manual page on
FreeBSD[devd.conf]. Briefly, the config file is simi-
lar to configuration files for such software packages
as bind and dhcpd. A number of different sections
are used to control devd’s behavior. A section exists
for global configuration information. In addition a
number of sections control the actions to take on
certain events. Finally, a number of different com-
ment styles are provided.

5.1 Options Section

The options section contains different options for
devd’s operation. Configuration options are speci-
fied as the option name, followed by one or more
words or strings as appropriate for the option.
While many options exist, only two will be discussed
here.

The directory option takes one string. This string
specifies a directory to read additional files from.
All the files in the listed directory are merged into
the configuration of devd, as if their contents had
been appended to the original devd.conf file. The
directory option may be specified many times; how-
ever devd only scans any given directory once. This
slightly arcane mechanism was designed to allow for
packages to participate in devd with a simple ad-
dition of a file on install and a simple unlink on
removal.

The set option takes two parameters. The first pa-
rameter is the name of the variable to set. The
second variable is the string to set it to. devd sets a
number of its own variables during event processing,
discussed below, and the set command augments
those variables.

5.2 Attach, Detach and Nomatch Sec-
tion

Each of these sections is given a weight. For each
action type, the sections are sorted in decreasing or-
der. Each section consists of zero or more matching
directives, and zero or more actions. When process-
ing an event, the sections are scanned in their sorted
order. The first one whose matching directives all
match is considered the best match. Only the sec-
tion with the best match has its actions executed.
All actions will be executed, reguardless of their exit
code.

Each match directive contains two strings. The
first string is the keyword to match against. The
second string is the regular expression to match
against. Both of these strings have devd variables
expanded before their use. Each device event con-
tains a number of key value pairs that are the plug
and play information and location information the
parent device provides. This is discussed in the sec-
tion on event generation above.

device-name "foo" is a shorthand for match

"device-name" "foo". It is nothing more than
syntactic sugar.

The action directives have one string. This is the
string to execute. Like the match directive, it too
has its devd variables expanded before the strings
are used.

All three types of sections have identical syntax.
However, the attach section is run only on at-
tach events from devctl; the detach section on de-
tach events; and the nomatch section on nomatch
events.

6 A Few Examples

A few examples will illustrate how devd works from
end to end. Each section will contain an excerpt
from a configuration file, a description of the prob-
lem and solution and a walk through of all the events
that happen in the system.

6.1 Using a Wireless CardBus Card

In this example, we have just purchased a brand new
Atheros wireless card, supported by the ath driver.
Assume that the ath driver is compiled into the ker-
nel. Let us further suppose that if this machine has
a atheros card on a pci bus, we want some other
mechanism to configure the card. Figure 1 shows
the relevant portion of the devd configuration file
for this example.

attach 10 {

match "bus" "cardbus[0-9]+";

device-name "ath[0-9]+";

action "/etc/wlan $device-name start"

};

detach 10 {

match "bus" "cardbus[0-9]+";

device-name "ath[0-9]+";

action "/etc/wlan $device-name stop"

};

Figure 1: Simple wireless configuration file.

In this example, the following events happen:

1. The user inserts an Atheros wireless card into
one of the CardBus slots

2. The CardBus bridge notices the card has been
inserted

3. The CardBus bus attaches the ath driver to
the card

4. /dev/devctl generates an attach event similar
to the following:

+ath0 at slot=0 function=0 on cardbus1

5. devd reads this event

6. devd sets “device-name” equal to “ath0”,
“slot” to “0”, “function” to “0” and “bus” to
“cardbus1”.

7. determines that the above attach clause is the
best match

8. devd expands the strings and executes
“/etc/wlan ath0 start”

9. start-wlan-card configures the ath0 interface
and the user goes wireless

10. time passes

11. the user ejects the atheros card

12. the CardBus bridge notices that the card is
gone and the ath0 driver detaches from card-
bus0

13. /dev/devctl generates an attach event similar
to the following:

-ath0 at slot=0 function=0 on cardbus1

14. devd reads the event, set variables and
matches the above detach clause.

15. devd executes “/etc/wlan ath0 stop”

6.2 Automatic Driver Loading

In this example, a driver for the ALi M7101 Power
Management Controller called apmc. In this ex-
ample, the system is booting an encounters an un-
known device. Figure 2 shows the relevant portion
of the devd configuration file for this example.

attach 10 {

match "bus" "pci[0-9]+";

device-name "apmc[0-9]+";

action "/etc/powermon $device-name start"

};

detach 10 {

match "bus" "pci[0-9]+";

device-name "apmc[0-9]+";

action "/etc/powermon $device-name stop"

};

nomatch 10 {

match "bus" "pci[0-9]+";

match "vendor" "0x10b9";

match "device" "0x7101";

action "kldload apmc"

};

Figure 2: Unknown device configuration file.

In this example, the following events happen:

1. The system boots and pci bus 2 is scanning
its children

2. No driver accepts the device in slot 17

3. /dev/devctl generates a nomatch event simi-
lar to the following (line breaks have been in-
serted for clarity):

? vendor=0x10b9 device=0x7101

subvendor=0x1265 subdevice=0x7101

class=0x068000 at slot=17

function=0 on pci2

4. eventually devd starts and reads events

5. devd reads the nomatch event, sets the vari-
ables, and picks the nomatch clause above.

6. devd executes “kldload apmc”

7. The pci bus rescans its unattached children
because a new pci driver has been loaded

8. the apmc driver attaches to the device in slot
17

9. /dev/devctl generates an attach event similar
to the following:

+apmc0 at slot=17 function=0 on pci2

10. devd reads this event, sets the variables and
executes the event.

11. devd expands strings and executes
“/etc/powermon apmc0 start”

7 Lessons Learned

A number of problems were encountered during the
development and deployment of devd. This section
details those lessons, as well as the solutions that
were arrived at for them.

7.1 To queue or not to queue

The initial implementation of devctl didn’t queue
events if there was no daemon running. There was
a problem with this. Devd would have then ignored
removable devices present at boot. In this case the
rc system could take over, but it is optimized to

static devices, so some functionality that devd offers
would be lost. In addition, devd would have seen
detach events when/if the card was removed without
a corresponding insertion event.

The solution was to always queue the events. This
allowed devd to receive the attach events for every-
thing in the system and to process them for each de-
vice. It also allowed devd load drivers for unknown
devices. There was a problem with this solution
also. It assumes that devd will run relatively early
in the boot process to reclaim the memory used by
devctl’s queue. However, the user can choose not
to run devd, or devd could have a bug and exit. In
these cases, unbounded event queue would consume
kernel resources indefinitely.

The solution to the problems introduced by the first
solution was to add a sysctl that would enable or dis-
able devctl’s queuing of events. This sysctl would
also free any events in the queue, freeing their mem-
ory. This solution works well for most cases, and
does exactly what it says it does. It was a simple
matter to wire this sysctl to a startup script param-
eter to turn devctl off in the kernel. Since devd was
disabled by default, this solved the resource utiliza-
tion issue.

One problem encountered quickly during prototyp-
ing with this solution was that users thought devd
was broken. The solution was to have devd auto-
matically re-enable devctl when it was disabled on
startup. This solved the foot shooting issue without
introducing more problems.

From the original queueing question, I found and
corrected four issues. It makes one think of the rab-
bits in Australia.

7.2 Ordering

The next problem with devd was one of ordering. I
naively thought that running devd as early as pos-
sible would be the best possible thing to do. The
thinking was that devd could be used to configure
any sort of device, and one wants to do that as early
in the boot process as possible. However, there were
problems with this. Since the environment that ex-
ists early in the boot process is severely limited, the
file systems that devd can access to configure the
devices is limited to those files in the root filesys-
tem. This environment is a fairly restricted one.

Many users require more features to configure their
devices. Many scripts use languages in /usr/local,
such as Perl or Ruby. A number of desirable bi-
naries are in /usr/bin or /usr/sbin, such as awk or
wicontrol. Placing things last is too late, since it
precludes configuring network cards early enough to
be used by daemons, etc. In the end, starting devd
just before the rc.d scripts mounted the remote file
systems. In this way, devd users could maximize
its use of the local resources available, while at the
same time maximizing the amount of the startup
process that can utilize the dynamically configured
devices.

Since both devd and /etc/rc.d are both used to con-
figure the kernel devices from user-land, some con-
flicts arose. This configuration typically is forming
ifconfig commands for network devices, mounting
remote file systems, loading firmware in some de-
vices and so forth. Since devd treats all devices the
same, both dynamic and static, some method for
making sure that devices weren’t configured multi-
ple times was needed. This issue was resolved by
using the ‘legacy’ configuration methods first. The
devd scripts have checks to make sure that devices
aren’t already configured before doing its configura-
tion.

7.3 Racing in the background

In the prototype versions, devd became a daemon
very early in the process, so as to not hold up
the boot while it read and processed its config file.
There was a subtle problem with this approach that
took a while to understand. If there were dependen-
cies on devd having configured a device in the rest
of the startup code, devd might not have config-
ured it by the time it was needed because devd was
running in the background, asynchronously to the
rest of the boot process. For example, if a net-
work interface were configured and then an NFS
filesystem mounted over that interface, devd may
or may not be able to configure the card’s network
address before the nfs mount started attempted.
This lead to a mount failure. If this configuration
is done with soemthing like dhclient, the configu-
ration time is variable and possibly significant. To
address this problem, devd processes all of the out-
standing events from /dev/devctl before becomes
a daemon. This stalls the boot process until all the
devices are configured, eliminating the race. Since
some users do not desire this stalling, devd can also

optionally become a daemon early in the process to
not stall the rest of the boot process.

8 Acknowledgments

I would like to thank Poul–Henning Kamp, John
Baldwin, Peter Wemm and Scott Long for reviewing
early designs and providing valuable insight into the
problems.

9 Future Work

devd is a good start. However, it is a very simple
tool. It provides the basic configuration stuff. Addi-
tional information is necessary to keep the full state
of a system. This is needed for those people that
only want to run sshd, for example, when they have
a network card installed. FreeBSD’s driver configu-
ration is in such a state that it is not easy to produce
tables of “Plug and Play” information that easily
could translate into devd config files for dynamic
loading of device drivers from a minimal kernel.

Power management events would offer a good fu-
ture expansion of devd’s event structure. Suspend
and resume events are currently handled by apmd

for APM. However, ACPI is replacing APM and it
has no equivalent to apmd. Having yet another dae-
mon to process events seems wasteful, so it may be
profitable to explore expanding devd to encompass
these events. Network interface events, such as car-
rier detect or carrier loss, may also be fertile ground
for future expansion. It is not clear if a separate
daemon is needed for the network events, or if pro-
grams like dhclient could handle those events in a
smarter manner.

10 Availability

The software described in this paper have been
integrated into FreeBSD 5.1–RELEASE. FreeBSD
is available free of charge for download from
http://www.freebsd.org/ in many different
forms. Improvements to devd will be incorporated
into future versions of FreeBSD.

References

[devd.conf] /usr/share/man/man5/devd.conf.5

[Firewire] http://developer.apple.com/firewire/platform.html

[FreeBSD] http://www.freebsd.org/

[Linux–HotPlug] http://sourceforge.net/projects/linux–
hotplug/

[NetBSD] http://www.netbsd.org/

[OpenBSD] http://www.openbsd.org/

[PC Card] PC Card Standard, Release 7.0, PCM-
CIA, (February 1999).
http://www.pcmcia.org

[PCIHotPlug] PCI Hot–Plug Specification, Revi-

sion 1.0, PCI Sig, (October 6, 1997).
http://www.pcisig.com

[USB] http://www.usb.org/developers/docs.html

