
USENIX Association

Proceedings of BSDCon ’03

San Mateo, CA, USA
September 8–12, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Fast IPSec: A High-Performance IPsec Implementation

Samuel J. Leffler

Errno Consulting
sam@errno.com

ABSTRACT

Fast IPsec is an implementation of the IPsec protocols [Kent & Atkinson, 1998a] for FreeBSD
that was designed for high performance. In particular the protocols use the OpenBSD Crypto-
graphic Framework, as ported to FreeBSD [Leffler, 2003], so any cryptographic hardware is
automatically used to accelerate their operation. Fast IPsec, running on a uniprocessor system
with a single Broadcom BCM5822 cryptographic processor, has demonstrated throughput of
more than 400 megabits/second when acting as an IPsec terminator. This is more than 50%
higher than any other freely available IPsec implementation.

1. Background and Introduction

The IP Security protocols (IPsec) are a suite of proto-
cols [Kent & Atkinson, 1998a] standardized by the
IETF [Kent, 1998; Kent & Atkinson, 1998b] for
secure communication of IP datagrams. IPsec is com-
prised of three protocols: AH, ESP, and IPCOMP. AH
provides authentication, ESP encryption and option-
ally authentication, and IPCOMP adds compression.
Any or all of these protocols can be combined though
most uses of IPsec employ only the ESP protocol
(with the optional authentication). Several freely
available implementations of the IPsec protocols exist:
the KAME Project distributes an IPsec suite that has
been integrated into FreeBSD and NetBSD,
OpenBSD has their own IPsec implementation, while
the FreeS/WAN Project distributes an IPsec imple-
mentation for Linux. Of these implementations only
the OpenBSD software includes support for using
cryptographic hardware to accelerate the protocols.
Cryptographic hardware vendors sometimes provide
software to integrate their products with some of these
IPsec implementations but these tend to be special-
purpose and only a few are freely available [Commu-
nications, 1999].

Fast IPsec is an implementation of the IPsec protocols
for FreeBSD that was designed for high performance.
In particular the protocols use the OpenBSD Crypto-
graphic Framework, as ported to FreeBSD, so any
cryptographic hardware is automatically used to
accelerate their operation. Fast IPsec, running on a
uniprocessor system with a single Broadcom
BCM5822 cryptographic processor, has demonstrated

throughput of more than 400 megabits/second when
acting as an IPsec terminator [Ambrisko, 2003]. This
is more than 50% higher than any other freely avail-
able IPsec implementation.

Fast IPsec is derived from the KAME IPsec, but inte-
grates many of the lessons OpenBSD learned when
adding hardware acceleration to their IPsec imple-
mentation. The decision to start from the KAME
implementation was made for two reasons:

1) The KAME distribution is the most widely used
IPsec implementation for BSD systems. Provid-
ing a successor implementation that is familiar to
existing users simplifies adoption.

2) The OpenBSD IPsec is tightly integrated with
other facilities that conflict with or duplicate exist-
ing facilities in FreeBSD.

While Fast IPsec has been designed as a successor to
the KAME IPsec it has also been written to coexist
with the KAME implementation in the source tree.
This permits users to evaluate Fast IPsec without giv-
ing up their existing IPsec implementation. Further,
because Fast IPsec and KAME share APIs, users do
not need to learn a new set of configuration tools.

The remainder of this paper is organized as follows.
Section 2 describes the Fast IPsec implementation.
Section 3 discusses performance issues and the tech-
niques used to attain its high performance. Section 4
describes performance results for FreeBSD and com-
pares them to other freely available IPsec implementa-
tions. Section 5 outlines the the status and availability
of this work and talks about future work. Section 6



gives conclusions.

2. Fast IPsec Implementation

Fast IPsec is comprised of four protocols (AH, ESP,
IPIP, and IPCOMP), the security database, PF_KEY
socket support through which applications interact
with the database, and glue code that resides in proto-
cols such as IP, TCP, UDP, and ICMP. There is no
cryptographic transformation or compression code in
Fast IPsec; this comes entirely from the FreeBSD
cryptographic framework.

2.1. Protocols

The protocol implementations in Fast IPsec are com-
pletely different from those found in KAME. They
borrow heavily from what is found in OpenBSD in
several ways:

1) The protocols are structured in a ‘‘continuation
style’’ that permits the decoupling of crypto-
graphic and protocol processing. That is, each of
the input and output processing paths for AH,
ESP, and IPCOMP are broken up into ‘‘before’’
and ‘‘after’’ portions that invoke the cryptographic
framework and then continue processing on return
through a callback mechanism.

2) Many code paths are unified to handle both IPv4
and IPv6 protocols. This eliminates code duplica-
tion.

3) IP-in-IP encapsulation is implemented as a sepa-
rate protocol. KAME handles the encapsula-
tion/decapsulation of packets for tunnels as special
case code in the ESP and AH protocols.

4) Header data are retrieved from packets with
‘‘m_copydata’’ instead of forcing mbuf data to be
contiguous. This eliminates many assumptions
about the handling of data in layers above and
below. Performance measurements indicate doing
this adds no noticeable cost over the techniques
used by KAME.

Otherwise, notable differences in the protocols are in
areas like statistics. Fast IPsec is careful to record
error statistics that uniquely identify each problem;
this is critical for diagnosing systems without source
code.

2.2. Packet Tags

Aside from the cryptographic framework that is
described elsewhere [Leffler, 2003], Fast IPsec
required only the addition of ‘‘packet tags’’ to
FreeBSD. Packet tags are used to associate typed
variable-length data with a packet. The standard mbuf

routines propagate these tags when packet headers are
moved or duplicated and they are automatically
reclaimed when an mbuf chain is freed. Packet tags
originated in OpenBSD [Keromytis, 2003] but they
were changed in two important ways:

1) OpenBSD allocates all storage with M_NOWAIT
(do not block to wait for memory). This is too
inflexible for general use. In FreeBSD routines
that allocate tag storage take a parameter that
specifies whether the caller is willing to block
when allocating storage.

2) OpenBSD defines packet tag type values as a sin-
gle 16-bit value that must be centrally adminis-
tered to ensure uniqueness. In FreeBSD this
16-bit value was expanded to add a 32-bit cookie
that specifies an ABI or module ID. By conven-
tion cookies are defined as the date and time that a
module is created, expressed as the number of sec-
onds since the epoch (e.g. using the output of
‘‘date -u +%s’’). This scheme permits software
modules to be developed without the need for a
central administrator [Elischer, 2002]. Developers
define a unique cookie and then manage tag types
privately.

When these changes were made, OpenBSD-compati-
ble shims were provided so that cross-platform com-
patibility could be maintained in code that needed to
be portable. Packet tags were also used to replace the
KAME ‘‘auxiliary mbuf ’’ mechanism.

2.3. Security Database

The security database and policy management code is
derived from the KAME implementation. While
numerous changes were done to reduce memory
usage and improve performance, its design has been
left mostly intact.

The most notable change was to replace the use of
sockaddr_storage for recording network addresses
with a sockaddr_union data structure that is a union
of the potential address formats. This reduces the
storage for a network address from 128 bytes to 28.
For systems with limited memory this is significant as
each entry in the security database records at least two
addresses. This change also reduces the size of the
runtime stack and the amount of data referenced by
structure copy and zeroing operations.

Otherwise the explicit algorithm specifications and
algorithm-related data were replaced with references
to transformation routines through which the proto-
cols interact with the cryptographic subsystem. This
technique has been used successfully in other systems
[Keromytis et al, 1997; Spencer et al, 2002].



2.4. Locking

Fast IPsec was initially developed for the 4.6 release
of FreeBSD. This version of the operating system
uses traditional synchronization techniques designed
for a non-preemptive uniprocessor environment. Only
one thread of execution is expected to be active at a
time. Code that needs to synchronize access to data
structures does this by blocking interrupts so that
asynchronous events are disabled.

FreeBSD 5.0 is the first release of FreeBSD to have a
fully preemptive kernel. In this environment it is
undesirable to guard execution paths to ensure syn-
chronization of data structures [Hsu, 2003]. Instead
locks are associated with data structures and concur-
rent threads of execution are managed by preempting
a thread when it encounters a locked data structure.
This can simplify code and make proper locking more
intuitive.

Fast IPsec has very few locking requirements. The
protocols are expressly designed to function as sepa-
rate threads that depend only on private data. The
only central data structure that needs synchronization
is the security database. The database is referenced
by code that is executed on behalf of system calls
(applications sending data), by asynchronous activi-
ties that occur because of incoming network traffic,
and by timer-driven threads that do things like expire
security policies. Prior to FreeBSD 5.0 it was possi-
ble to block asynchronous access to the security
database by raising the processor priority to splnet,
but with a fully preemptive kernel this no longer
works. Instead a set of locks were added to guard
accesses to each of the major data structures and refer-
ences to data structures are safeguarded with reference
counters. These changes were straightforward and
sufficiently fine-grained that there is no noticeable
lock contention (as measured by the lock profiling
facilities). The only real issue is the checking of secu-
rity associations when transmitting packets. Due to
the structure of the database inherited from KAME it
is necessary to lock the ipsecrequest structure to
ensure references to security associations are safely
held. This turns out to be a ‘‘hot spot’’ that limits per-
formance for bidirectional traffic flow. A redesign of
the data structures to eliminate this locking is in
progress.

3. Performance Analysis

There are several major areas to study to understand
the performance of Fast IPsec: the cryptographic sub-
system, the protocol implementations, the security
database, and the network interface drivers. (There

are other components such as mbuf and memory allo-
cators but their individual performance tends to be
less critical.) By far the majority of the overhead
associated with IPsec is in the cryptographic process-
ing. This is why it is so important to accelerate and
offload the work from the main CPU. However the
interactions between the various software components
and the system architecture can have a noticeable
effect on overall performance too. The next sections
discuss these issues in more detail.

3.1. Crypto Subsystem

Fast IPsec uses the FreeBSD cryptographic frame-
work to do all encryption and authentication work.
This subsystem provides general-purpose device-inde-
pendent support for a variety of transformations,
including the symmetric-key cryptographic operations
required by the ESP and AH protocols. The crypto
support is comprised of a core set of code that man-
ages requests and a set of device drivers for crypto-
graphic devices. In addition there is a software-only
device driver that implements symmetric-key opera-
tions on the host CPU for systems that do not have
hardware devices.

The payload of each packet sent and received is
passed to the crypto subsystem. Prior to dispatching
the crypto request all the data needed to process the
packet on return are collected and associated with the
request. When the operation completes the crypto
subsystem invokes a callback function stored in the
request. This callback method completes the process-
ing for the packet and dispatches the packet either
‘‘up’’ (for reception) or ‘‘down’’ (for transmission).

[Leffler, 2003] describes the work that was done to
optimize the performance of the FreeBSD crypto-
graphic subsystem. Increased performance of the
crypto subsystem directly affects the performance of
Fast IPsec. Of particular note is the work done to
reduce latency in processing cryptographic requests.
Compared to other systems, the FreeBSD crypto-
graphic support has significantly less overhead and
lower latency. This is reflected in significantly higher
performance, especially for embedded systems where
CPU cycles spent on overhead are more noticeable
and for high-end systems where keeping the crypto-
graphic hardware busy is critical to optimal perfor-
mance.

3.2. Data Handling, Alignment, and Fragmenta-
tion

The performance of network protocols is typically
constrained by the efficiency with which data are



moved (or not moved) and manipulated. Because
IPsec requires significant computation to process each
packet, inefficiencies in this area can be less notice-
able. Nonetheless, while tuning the performance of
Fast IPsec data handling issues frequently appeared.

One issue was the need to properly align packet data
to ensure it is always processed with the ‘‘fast path.’’
For example, some network interface drivers did not
properly align received Ethernet frames so that the IP
header is aligned to a 32-bit boundary. This can force
data to be copied by protocols as the packet is passed
up the stack. Further, when this data is passed to a
crypto device driver, misaligned data can require addi-
tional copying. Several drivers with problems of this
sort were fixed and the Fast IPsec protocols take care
to ensure data are optimally aligned for ancillary oper-
ations. Fast IPsec and the FreeBSD cryptographic
framework also keep statistics on any misaligned or
otherwise suboptimal data manipulations.

Optimizing the input data path is simpler than opti-
mizing the output path. For devices with a fixed-size
link-level header, drivers can set up receive buffers so
that data are contiguous and well aligned. As packets
work their way up the protocol stack protocol headers
can be efficiently removed. The only issue is ensuring
proper alignment of data that requires cryptographic
processing and this happens automatically if the IP
header is aligned to a 32-bit boundary.

Optimizing the output path is a bit more involved.
Headers must be prepended and packets must be
rewritten with cryptographic transformations. Data
that comes from a stream socket typically must be
copied to create a writable version that can be trans-
formed. Other data, such as packets being forwarded
by an IPsec terminator, may be writable and not need
to be copied. Fast IPsec creates a writable copy of an
mbuf chain with the ‘‘m_clone’’ routine. This routine
uses an aggressive coalescing technique that tries to
compact the resulting mbuf chain and linearize the
data, but balances this goal against the cost of copying
already writable data. Compacting an mbuf chain is
good in that it reduces the number of individual seg-
ments that must be processed; especially when arrang-
ing DMA to/from cryptographic hardware devices.
Linearizing data is critical to the efficient use of cryp-
tographic hardware that does not support scat-
ter/gather DMA; but it can also improve performance
of software algorithms. The scheme employed by
‘‘m_clone’’ uses the following rules:

1) ‘‘Inline mbufs’’ are coalesced only when there is a
cluster immediately preceding that has space to
hold the data.

2) Mbufs with writable external storage are left
untouched.

3) Mbufs with read-only external storage must be
copied. If there is space in the immediately pre-
ceding mbuf, then the data are copied. Otherwise,
new storage is allocated and the data are copied.
Data larger than a cluster is broken into multiple
mbufs.

This scheme is designed for Ethernet traffic where the
maximum frame size fits in a cluster. Further it
depends on the ability to identify whether or not
mbufs with external storage are writable. Finally, the
‘‘busting of jumbograms’’ is required because many
drivers assume packets can be directly mapped for
DMA.

In practice many packets are coalesced into a single
mbuf with all the data linearized. Packets being for-
warded are easily identified as writable in FreeBSD
5.0 but require some special handling in 4.x versions
of the system.1 Statistics kept on the operation of this
scheme indicate about 45% of the packets that require
copying are coalesced into a single mbuf; but these
numbers are believed to be artificially low. (Most
traffic is from performance benchmarks that run on
the gateway machine. In this case traffic is TCP-
based and the data are received locally instead of
being forwarded. Both these factors affect the
results.) The issue with mapping packets for DMA is
discussed below.

3.3. Network Interface Drivers

The operation of the network interface driver can
strongly influence performance. Fast IPsec was tested
with a wide variety of hardware and drivers. Perfor-
mance varies significantly depending on load and
frame size. The currently preferred device is the Intel
PRO/1000 which comes in 32-bit and 64-bit PCI con-
figurations.

Tw o issues with the driver in the handling of large
packets were identified and fixed. First, the driver did
not support the ‘‘bus dma’’ API for mapping mbuf
chains on to the system bus for DMA. This meant
that packets larger than a physical page had to be bro-
ken up into multiple mbufs (as described above for the
‘‘m_clone’’ function). The driver was redone to use
the bus dma functions so that outbound packets may
be left intact (though they presently are still broken up
into clusters).

1 In FreeBSD 5.0 read-only mbuf chains are explic-
itly marked, but in 4.x one must check a reference count
that may be maintained in a driver-private data area.



The second issue was that received jumboframes were
written to multiple segments and an mbuf chain was
then constructed. An alternative approach is to allo-
cate contiguous receive buffers. This however can
require pre-allocation of a significant amount of mem-
ory because the device constrains receive buffer sizes
to be a power of two (so a 9000-byte mtu requires 16
kilobyte receive buffers). The driver was changed to
optionally allocate contiguous memory for receiving
large frames.

This revised driver performs noticeably better than the
standard one. With a 9000-byte mtu set on both inter-
faces of systems connected by a cross-over cable, net-
perf performance results with the standard driver drop
by more than 210 Mb/s while performance for the
driver with contiguous receive buffers increases by a
modest amount (the increase is small because perfor-
mance is already near peak and one of the machines is
constrained by PCI bus bandwidth.)

3.4. System I/O Performance

Performance is influenced by many system-level
issues. Cryptographic requests directed to hardware
devices require two trips across the I/O bus for each
operation. This means that I/O performance is very
important in understanding a system’s capabilities.
Bus width, latency, and device configuration can sig-
nificantly affect performance results. Kernel profiling
indicates that most systems are limited by their ability
to field and process interrupts. In an IPsec terminator
configuration each packet requires four DMA opera-
tions (two for NIC DMA and two for hardware crypto
DMA) and as many as four interrupts to be processed.
This implies that interrupt overhead must be mini-
mized for the highest possible performance. In partic-
ular IRQ multiplexing must be avoided as well as sys-
tem overhead like harvesting ‘‘IRQ entropy’’ for the
pseudo random number generator (PRNG). Polling
techniques such those available in FreeBSD [Rizzo,
2001] can be useful in reducing this overhead. Some
vendors of hardware crypto products claim to intelli-
gently coalesce interrupts in their hardware but it is
unclear if these are anything more than marketing
hyperbole.

With regard to the PRNG, most cryptographic hard-
ware includes a hardware random number generator
(RNG) that can supply sufficient entropy to seed the
system PRNG. While this can eliminate expensive
techniques used to collect entropy data, care must be
taken to evaluate the quality of the entropy supplied
by the hardware. Rndtest is a kernel module that was
developed to test the quality of random data sources
[Wright & Leffler, 2002]. It monitors data on the way

to the system PRNG to see if it complies with the
FIPS 140-2 standard [Federal Information Processing
Standards, 2002]. If data fail any of the FIPS 140-2
tests, they are discarded and no data from the source
are passed to the system PRNG until compliant data
are seen. Testing can be done continuously or period-
ically and there are various controls (e.g. whether to
report problems to the system console) and statistics
maintained. This facility has shown, for example, that
the entropy data produced by a Broadcom BCM5822
device is sometimes unreliable.

4. Performance Results

The IPsec protocols are very flexible. There are three
protocols that can be combined to generate a variety
of packet formats. Encapsulation may also vary: there
is a transport mode in which the IPsec protocol head-
ers are directly encapsulated in IP and a tunnel mode
in which an additional IP encapsulation is done when
an intermediate machine acts as an IPsec terminator
or gateway. Tunnel mode is typical of IPsec-based
Virtual Private Network (VPN) applications.

VPN
Gateway

UNENCRYPTED ENCRYPTED

Host
Client

Client

Client

Host

Figure 1: Typical VPN gateway configuration

For this paper we analyzed the performance of IPsec
operating in tunnel mode using only the ESP protocol,
but doing both encryption and authentication of the
payload. When IPsec is deployed in this manner the
network is typically configured as a VPN gateway, as
shown in Figure 1. Specifically, IPsec data are
received from peers, decrypted and authenticated, and
forwarded in the clear to trusted clients. This means
each packet requires one pass through cryptographic
processing before it is forwarded. This is in contrast
to a point-to-point tunnel configuration where data are
cryptographically processed twice. Throughput mea-
sures for an IPsec gateway will be significantly higher
than for a point-to-point tunnel. However collecting



performance data for a gateway configuration is more
complicated because it requires multiple clients and/or
peers to saturate a Fast IPsec gateway. With multiple
clients and/or peers it is also necessary to include a
switch in the configuration and this device can
become a bottleneck when evaluating performance.
Therefore, to ensure others can easily reproduce the
results presented here, we have chosen a network con-
figuration in which two machines are physically con-
nected with a cross-over cable. Testing done on a
multi-client terminator configuration confirms the
result for this simpler configuration apply directly.

The test configuration has two systems, A and T, con-
nected by a cross-over cable. Machine A has an Asus
P4B533-V Intel845G motherboard with a 1.8 GHz P4
processor. A dedicated Intel Pro/1000 (82540) NIC
located in a 32-bit PCI slot was used for testing.
Machine T has a Tyan S2707G2N motherboard with a
1.8 GHz P4 processor. The Tyan system has dual
Intel gigabit Ethernet devices (82545 and 82551) on-
board. The 82545 has a 64-bit PCI interface and the
82551 has a 32-bit PCI interface. Testing was done
using the 82545. The mtu on each interface was the
default, 1500 bytes.

To establish baseline performance, tests were first run
on an open network. Table 1 shows data collected
using netperf version 2.2pl3. The data were collected
with a 99% confidence interval (+/- 2.5%), identical
buffering parameters, and a 32 kilobyte message size.

A->T T->A Operating
Mb/s %Sys Mb/s %Sys System

627 75 55 799 84 78 FBSD 4.8†
519 75 24 653 48 32 OBSD 3.3‡

Table 1: Raw netperf results for fast testbed

Next a manually-keyed IPsec tunnel was set up
between the two machines. All traffic was encrypted
with 3DES and authenticated with SHA1. Table 2
shows results for several configurations. The transfer
rates reported by netperf are provided as well as the
percentage of system time for the sending and receiv-
ing machines, as reported by the vmstat program.
Performance is different depending on which machine
is initiating the transfer; ‘‘A->T’’ results are for when
netperf was run on the Asus-based machine, while
‘‘T->A’’ is when netperf was run on the Tyan-based
machine. In one configuration a Broadcom BCM5822
was placed in each machine. Broadcom data sheets
claim the 5822 can do 3DES+SHA1 calculations at

† FBSD 4.8 is a July 4, 2003 snapshot of FreeBSD.

‡ OBSD 3.3 is a March 17, 2003 snapshot of
OpenBSD.

500 Mb/s. Testing described in [Leffler, 2003] mea-
sured a peak performance for a 5822 of 470 Mb/s
when located in a 64-bit PCI slot and about 410 Mb/s
when located in a 32-bit PCI slot. In the other config-
urations crypto calculations were done by the host
CPU; this is denoted by ‘‘sw/’’.

A->T T->A Operating Crypto
Mb/s %Sys Mb/s %Sys System Support

160 80 73 170 70 94 FBSD 4.8 BCM5822
n/a - - n/a - - OBSD 3.3 BCM5822
43 100 93 44 89 97 FBSD 4.8 sw/FastIPsec
42 95 95 43 100 100 FBSD 4.8 sw/KAME
27 87 94 27 88 96 OBSD 3.3 sw/OpenBSD

Table 2: IPsec tunnel results for fast testbed

The results show Fast IPsec is about 60% faster than
OpenBSD when using software crypto and slightly
faster than the KAME implementation. The higher
performance relative to OpenBSD shows the value of
FreeBSD’s optimized cryptographic subsystem. The
comparison to KAME demonstrates that moving the
crypto support out of IPsec into a general-purpose
framework can be done without losing any perfor-
mance.

Performance comparisons for Broadcom-accelerated
configuration were not possible. KAME does not
support hardware crypto acceleration and while
OpenBSD claims support for the 5822 it did not work;
traffic stalled and the tests never completed. However,
based on the performance for raw cryptographic oper-
ations reported in [Leffler, 2003] and the relative net-
work performance over the unencrypted link, one can
assume Fast IPsec will be significantly faster than
OpenBSD.

Performance in this simple network configuration is
limited by the slowest component in the loop; in this
case the CPU is the limiting factor. Tests with faster
processors and the 5822 show performance of
FreeBSD scales linearly with the CPU speed up to
218 Mb/s for 2.53 GHz P4 processors. At that point
I/O bandwidth to the 5822 in Machine A becomes the
limiting factor. 64-bit PCI support on Machine A
would make a significant difference in the results.

Because no direct comparison to OpenBSD was pos-
sible with the Broadcom hardware a second testbed
was set up with different hardware. In this configura-
tion two slower systems were used, each with a GTGI
XL-Crypt card. The XL-Crypt uses a Hifn 7811
crypto part and can do 3DES+SHA1 calculations at
approximately 145 Mb/s. The two systems were pur-
posely slower to match the performance of the crypto-
graphic hardware (using slow crypto hardware in a



fast machine yields uninteresting results because the
cryptographic hardware becomes the bottleneck.)
Machine D was a Dell XPS 300 with 266 MHz PII
processor. Machine E was an E-Machines etower
366i with a 366 MHz PIII processor. As before the
systems were connected by a cross-over cable but this
time only 100 Mb/s Ethernet was used. Table 3 shows
the results for running netperf over a manually-keyed
IPsec tunnel on this hardware.

D->E E->D Operating Crypto
Mb/s %Sys Mb/s %Sys System Support

45.9 81 20 51.4 92 22 FBSD 4.8 Hifn 7811
37.3 96 40 33.0 81 30 OBSD 3.3 Hifn 7811
9.8 100 93 9.4 99 92 FBSD 4.8 sw/FastIPsec
8.9 100 94 9.2 100 94 FBSD 4.8 sw/KAME
5.3 100 84 7.0 89 98 OBSD 3.3 sw/OpenBSD

Table 3: IPsec performance results for slow testbed

FreeBSD was 23/55% faster than OpenBSD when
using hardware acceleration. With crypto operations
done in software the difference was 34/84%. As the
system performance decreases the FreeBSD optimiza-
tions are less noticeable because other factors become
significant. In this case the I/O performance of the
Dell system is so poor that it is the critical factor in
determining overall performance.

5. Status and Future Work

An initial version of Fast IPsec was completed
September 2001. Integration of this work into
FreeBSD was completed November 2002 and com-
mitted to the stable branch in January 2003. The
work described here, except for the fine-grained lock-
ing, is freely available as part of the FreeBSD 5.0 and
4.8 releases. Fast IPsec is currently being integrated
into the NetBSD operating system [Stone, 2002].
Several vendors have incorporated Fast IPsec in their
products.

Fast IPsec lacks support for IPv6; this has yet to be
done because of lack of interest. The IPCOMP sup-
port is fully implemented but is not working due to an
issue with the gzip compression support in the
FreeBSD kernel.

The security database implementation needs to be
redone. Much of the information stored in this
database is better co-located with the routing tables so
that the routing table lookup algorithms can be used.
In addition much of the data stored in the database
requires two and three levels of indirection to access.
Relocating this data will simplify the protocols and
eliminate some of the locking currently required to
ensure indirect pointers do not change while the

protocol code follows indirect references. A
redesigned database is likely to provide a noticeable
performance improvement for systems of any signifi-
cant scale.

There is no support for the cryptographic algorithms
required by the legacy versions of the AH and ESP
protocols. Correcting this requires changes to the
cryptographic framework API and may not be worth-
while.

The PF_KEY support used to communicate with
user-level applications is intertwined with the IPsec
security database implementation. This needs to be
changed by separating the pfkeyv2 protocol and
database implementations. This would fix, for exam-
ple, problems where changing aspects of PF_KEY
break user-mode applications such as racoon and
setkey.

Otherwise, the most significant deficiency in the cur-
rent design is the inability to use protocol-specific
hardware operations. Most vendors of crypto hard-
ware optimize their products for use as ‘‘all-in-one’’
devices that take an IPsec packet and parse the proto-
col and perform the cryptographic transforms in a sin-
gle request. This is incompatible with the current
general-purpose API provided by the cryptographic
framework. Supporting this kind of operation
requires exposing IPsec state that is currently private.
However adding this is the only way that some hard-
ware devices can be used at all as they do not other-
wise provide access to the cryptographic transforma-
tion hardware.

6. Conclusions

Fast IPsec is an implementation of the IPsec protocols
that has been designed as a plug-compatible successor
to the KAME IPsec protocols with high performance.
The software has been demonstrated to have perfor-
mance more than 50% better than any other publicly
available IPsec implementation.

7. Acknowledgements

This work incorporates ideas, and some code, from
the OpenBSD IPsec implementation; without it this
work would probably not have been done. Angelos
Keromytis was helpful in understanding how bits and
pieces of OpenBSD worked.

Vernier Networks supported this work; their contribu-
tion is greatly appreciated. Doug Ambrisko of
Vernier Networks contributed many bug fixes and was
a great help in testing.



References

Ambrisko, 2003.
D. Ambrisko, Private email: 400mbs IPsec numbers
(February 2003).

Communications, 1999.
RedCreek Communications, Inc., RedCreek IPSec
VPN Card, Source for the driver is included in Linux
starting with 2.4 (April 1999).

Elischer, 2002.
J. Elischer, “Re: CFR: m_tag patch,” freebsd-
arch@freebsd.org (November 2002).

Federal Information Processing Standards, 2002.
Federal Information Processing Standards, “Security
Requirements for Cryptographic Modules” (FIPS
PUB 140-2), National Institute of Standards and
Technology (December 3, 2002).

Hsu, 2003.
J. Hsu, “Reasoning about SMP in FreeBSD,” BSD-
Con 2003 (September 2003).

Kent, 1998.
S. Kent, “IP Authentication Header,” RFC 2402
(November 1998).

Kent & Atkinson, 1998a.
S. Kent & R. Atkinson, “Security Architecture for
the Internet Protocol,” RFC 2401 (August 1998).

Kent & Atkinson, 1998b.
S. Kent & R. Atkinson, “IP Encapsulating Security
Payload (ESP),” RFC 2402 (November 1998).

Keromytis, 2003.
A. Keromytis, “Tagging Data In The Network Stack:
mbuf_tags,” BSDCon 2003 (September 2003).

Keromytis et al, 1997.
A. Keromytis, J. Ioannidis, & J. Smith, “Implement-
ing IPsec,” Proceedings of Global Internet (Globe-
Com) ’97, pp. 1948-1952 (November 1997).

Leffler, 2003.
S. Leffler, “Cryptographic Devices Support for
FreeBSD,” BSDCon 2003 (September 2003).

Rizzo, 2001.
L. Rizzo, “Polling versus Interrupts in network
device drivers,” BSDConEurope 2001 (November
2001).

Spencer et al, 2002.
H. Spencer, R. Briggs, D. Redelmeier, M. Richard-
son, S. Harris, & C. Shmeing, Linux FreeS/WAN
(April 2002).

Stone, 2002.
J. Stone, Private email: Re: Fast IPsec: patches for
Fr eeBSD 4.x? (November 2002).

Wright & Leffler, 2002.
J. Wright & S. Leffler, rndtest (2002).
http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/dev/rndtest.

Biography

Sam Leffler has been actively working with UNIX
since 1975 when he first encountered it at Case West-
ern Reserve University. While working for the

Computer Systems Research Group (CSRG) at the
University of California at Berkeley he helped with
the 4.1BSD release and was responsible for the
release of 4.2BSD. He has contributed to almost
ev ery aspect of BSD systems; most recently working
(again) on the networking subsystem. You can con-
tact him via email at <sam@errno.com>.


