
USENIX Association

Proceedings of the
5th Annual Linux

Showcase & Conference

Oakland, California, USA
November 5–10, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Embedding Linux to Track Concealed Weapons

Alexander R. Perry, Quantum Magnetics

John F. Sturtz, Codeweavers

David Walsh, Vista Clara

Brian Whitecotton, Quantum Magnetics

alex.perry@qm.com http://www.qm.com

jfs@codeweavers.com http://www.codeweavers.com

davewalsh@vista-clara.com http://www.vista-clara.com

brian.whitecotton@qm.com http://www.qm.com

Abstract

A football-sized array of magnetic sensors
can detect blades, knives, handguns and ve-
hicles in the vicinity. Immediate analysis can
show the concealed target as a red blob that
is superimposed on a video image. This paper
reviews why Linux was the only viable plat-
form, describes the software and summarizes
the algorithms being used.

1 Introduction

After initial processing by a Digital Sig-
nal Processor (DSP), the reduced data rate
will �t through an asynchronous serial port
at 115 kb=s for full analysis and tracking in
the host computer. The host must ...

� reliably retrieve the streaming data from
the serial port

� �lter and scale the data according to fac-
tory calibration data

� analyze the data for object parametrics,
position and orientation

� translate the position into user-
calibrated video alignment

� mark the threatening weapon's position
on the camera image

Figure 1: System tracking hidden gun

Some frames, grabbed from the video
stream during a demonstration, are shown
in �gure 1. The demonstrator was holding
the gun in his right hand. The blob obscures
the actual position of the gun and the red
color indicates that the magnetic signature
matches a dangerous object category.

For details on the underlying technologies,
readers are referred to the literature on mag-
netic tensor gradiometry[1], magnetic posi-
tion extraction[2], threat identi�cation[3] and
other applications[4]. This paper only sum-
marizes the algorithms to show the computa-
tional impact of their numerical implementa-
tions.



The software development for this project
was initially conducted using Microsoft tools
to take advantage of existing source code.
The prior project recorded raw data without
any calculation and subsequently used mod-
elling software for analysis. The central part
of this paper reviews the new Linux-based im-
plementation for this project, including de-
scriptions of the problems that were encoun-
tered and shows how each problem was re-
solved as the code base for the project was
migrated to Debian GNU/Linux.

1.1 Background

Most weapon detection systems range in
price between $500 and $5000 depending on
features. The end user of the system expects
to treat it like any other embedded system,
where power cycling is a routine activity and
the unit is turned o� at the end of the day by
pulling the plug. As a result, systems need to
use journaling �lesystems or similar.

Battery powered systems need to run for a
full working day, so the choice of a power eÆ-
cient processor (such as PowerPC and Stron-
gARM) is appropriate for such applications.
Few operating systems are both portable and
scalable.

In contrast, some situations require high re-
liability for 24/7 use. Windows NT and 2000,
the Microsoft releases recommended for such
applications, require considerable processor
power, memory and disk space just to run
their own infrastructure. The cost of those
resources is signi�cant compared to the total
bill of materials cost of an installed weapon
detection system. We failed to �nd technical
bene�ts to justify that expense.

2 Object Reporting

Each object detected by the analysis gen-
erates a stream of data records. Each record
has a timestamp that identi�es when the raw
data was actually measured, the three dimen-
sional location of the object in polar coordi-

nates, and additional tags. These tags iden-
tify the class of object, the orientation and
other factors to ascertain whether it is dan-
gerous, and thus what color code should be
used for the blob in the video overlay.

The timestamp is naturally always a tiny
fraction of a second old, so the software must
extrapolate from recent data records to deter-
mine where the object is likely to be at the
time that the next video frame is generated
by the camera. This ensures that the blob
is correctly drawn for moving people and ob-
jects.

2.1 Image Overlay

In the initial Windows-based software, a
frame grabber was used to convert a video
tape (from a VCR) into a directory of bitmap
�les. These bitmaps were matched to the
timestamps and the targets marked up by
modifying individual pixels. The directory
was subsequently emitted to a VCR and also
converted into a digital video for computer
presentation. The hardware cost of systems
to implement this approach in real time was
prohibitive.

For real time, instead, a video mixing unit
superimposes the computer's display onto the
camera image using a `bluescreen' mode to
ensure that most of the computer display was
invisible. The mixer output is a video signal
that has threat objects marked in, ready for
display on a security monitor and/or record-
ing by a VCR for subsequent replay or digi-
tization. The image in �gure 1 was grabbed
from such a tape.

A small program in Microsoft's Visual Ba-
sic painted the entire screen blue, then ac-
cepted a sequence of target coordinates and
moved a color-selectable blob to the desired
location. In operation, we found that the blob
could only be moved at a fraction of the video
framerate (about 10 fps), so that the motion
appeared jerky and was late. This jerkiness
made it diÆcult to match the blob against a
crowded room and thereby determine which
person is carrying the gun.



The low frame rate was in part due to
the use of a Rapid Application Development
tool, compared to a C compiler. The scien-
tists and other non-programmers on the team
were comfortable with VB or command line
GCC, but found the Visual C environment
overwhelming and didn't use it.

Under Linux, we implemented a trivial
equivalent using the ncurses library and its
suite of graphics characters. Even an old Pen-
tium 60 was able to achieve three times the
video framerate for position updates, so we
have not yet optimized from that library to
using the underlying terminfo directly. Al-
though the positioning accuracy is one char-
acter cell, careful choice of the VGA console
mode achieves resolution comparable to the
video camera alignment.

The text-based Linux version o�ers the
rapid and smooth tracking of the target that
is critical to reliable identi�cation.

2.2 Video Alignment

The system will, in general, operate with-
out any need to communicate with the user.
However, the con�guration procedure at the
user site must determine the parameters for
converting magnetic unit polar coordinates to
the video image screen coordinates.

It is important to make this easy for the
user to do. The users need to feel comfort-
able moving system components around to
meet their needs. They also need to check
the parameters quickly whenever a compo-
nent might have been knocked out of align-
ment.

Although keyboard and mouse have shown
themselves to be e�ective user input de-
vices for a desktop situation, they are lim-
iting when embedded in an open area set-
ting. Keyboards are very hard to use when
an ergonomic position cannot be achieved and
maintained, as is usually the case if the user
cannot sit down. Mice require a 
at surface
to operate and most variants do not survive
a dirty industrial environment well. Thus, a
user interface that requires these devices (or

emulations thereof) is usually inconvenient to
the users.

A standard Linux system does not have a
single native user interface model, so we are
free to select user input and output devices to
suit our environment and needs. A joystick
(whether analog or USB) was found to be a
suÆcient input device, while a VCR-style `On
Screen Display' met our output device needs.

Suitable joysticks are cheap and can be
picked up for $5 or so. There is less of a
problem with damage, loss or theft compared
to handheld keyboards and clip-on mice with
$100 prices. The hot-plug capabilities of USB
are also helpful.

2.3 Data distribution

Data delivery from the analysis was by
function call under Windows, limiting the
multitasking that could be achieved with low
latency. We usually use TCP sockets un-
der Linux, with one object data record being
stored in each packet, so that both the band-
width and the packet rate are predictable and
low. This also permits the computer that
draws the video overlay to be physically sep-
arate (i.e. next to the camera) from the one
that controls the hardware (i.e. next to the
sensor).

In some cases there are many data users,
such as multiple video camera viewpoints be-
ing overlaid or a supervisor station, in which
case the data records can be delivered using
UDP and the broadcast address for the lo-
cal ethernet segment. Loss of occasional in-
dividual data records does not signi�cantly
impact the video overlay, since it will extrap-
olate from available data.

This use of network protocols empowers the
local users to structure their environment to
meet speci�c needs, but it is important to ei-
ther use an isolated network or a local �re-
wall gateway to ensure that the display sys-
tem cannot be spoofed by a remote attacker
and thereby permit a threatening weapon to
pass through undetected.



The built-in IP chains/tables support in
the Linux kernel permits the system to safely
operate autonomously, yet still be on the lo-
cal network for delivering status reports and
other application speci�c traÆc to a central
security monitoring station elsewhere in the
facility.

3 Object Detection

The hardware does not directly measure
the object position. The contents of each ob-
ject data record must be deduced by careful
calculations from the raw magnetic informa-
tion that is reported by the magnetic sensors.

3.1 Analysis

Theory says that an individual magnetic
sensor pointing in direction n̂ = (nx; ny; nz)
and observing a magnetic source of strength
m oriented in the direction (mx;my;mz) at
a distance r = (rx; ry; rz) will observe a mag-
netic �eld B

B =
�0

4�jrj5
(3(m � r)(r � n)� (r � r)(m � n))

(1)

An array of S sensors, numbered s =
0 : : : S � 1, usually has all the directions ns
known and �xed. The sensors are not all in
the same location, so their distances rs to the
magnetic source will not be equal. These dis-
tances are the di�erence rs = p � os of the
sensor positions relative to the center of the
array os and the magnetic source position rel-
ative to that center p. Thus,

m�r = (px�ox)mx+(py�oy)my+(pz�oz)mz

(2)

We can write equation 1 for each of the
magnetic sensors. We have S equations that
relate S known values of Bs with 6S known
constants ns; os and 6 unknown values p =
(px; py; pz) and m = (mx;my;mz). Provid-
ing we have s � 6, a solution is possible. The
computation is not merely non-linear due to
the dot-products such as equation 2, but es-
pecially due to the term jrj5 which expands

to
1

jrj5
= (r � r)

�2:5
(3)

This can be solved using an iterative de-
scent by brute force, but this has an unpre-
dictable execution time and is thus inappro-
priate for a system seeking a predictable per-
formance.

A popular method involves separating both
p and m into their unit vectors p̂; m̂ and mag-
nitudes jpj; jmj and rewriting the equations.
Assuming we place our sensors in an array
pattern that makes tracking possible, we can
compute an intermediate result called the
magnetic �eld tensor gradient. This result is
nine linear combinations of the Bs values (the
actual combinations are dependent on the ar-
ray pattern) which can be used to deduce p̂
and m̂ using some nasty calculations[2]. Al-
though nasty, the execution time can be pre-
dicted and so this calculation is preferred for
a real time system. Once those values are
known, a separate computation step uses all
the original Bs to compute the m and p.

This entire calculation sequence was proto-
typed in MATLAB to analyze recorded data
�les, working from Tucson AZ. The data was
usually acquired by personnel in San Diego
CA, since someone needed to move the de-
sired target object past the sensor array in a
predictable path. For certain kinds of test-
ing, the object could be hung over the array
as a pendulum. This could be left swinging
for remote algorithm developers to collect ad-
ditional data whenever they needed it.

Once the algorithm was demonstrably
tracking objects, it was translated directly
into C and installed on a Linux computer. Af-
ter verifying that it generated the same track-
ing results as the MATLAB version, lab sta�
could stream data from any of the hardware
systems to the algorithm development com-
puter over the network (and/or VPN). The
track results were delivered to a nearby com-
puter with a 3D graphics and perspective ca-
pable display for inspection.

Now that the algorithm is stabilized and re-
liable, it may be installed locally on all com-
puters that are easily fast enough to perform



the 
oating point math. In general, therefore,
Pentium-class and above have the tracking al-
gorithm, while 386 and 486 do not.

3.2 Filtering

The primary purpose of the �lter is to
eliminate irrelevant frequency bands from the
raw data. This band-limits the data stream,
which also allows some decimation to be ap-
plied without loss of signal. By performing
the �lter and decimation stages on the data
before the numerically intensive analysis, the
processor load is minimized so that a lower
price computer chassis can be used.

The secondary purpose of the �lter module
is decoupling, through use of independent in-
put and output �fo structures. The demand-
ing real time operation of the serial port con-
cludes by dumping the raw data into the in-
put �fos.

A separate thread, at a lower priority, re-
trieves blocks of data V from the input �fo
and applies a sequence of FIR �lters and dec-
imations before writing smaller blocks of data
B into the output �fos. The FIR calculation
simply involves multiplying the most recent
i = 0 : : : n � 1 readings V (T � i; c) on each
channel c with a constant array of n coef-
�cents C(i) that were loaded from �le. The
decimation is implicit by simply neglecting to
perform that calculation for the 2 : : : d output
readings that will subsequently be discarded.

B(j; c) =
X

i=0:::n�1

C(i)V (d� j � i; c) (4)

Clearly, the �lter calculation takes linear
CPU time for the volume of data and is com-
pletely predictable. The real time needed for
execution depends on the system cache (or
worse, paging) performance. The �lter thread
is important, since it reduces the amount of
memory in use and thus improves cache hits.
It is also using large amounts of memory to
store the historical raw data and so is best
batched.

When the �lter batch thread doesn't have
anything to do, the output thread builds mag-

netic data records in the format expected by
the analysis software and deposits them into a
socket for delivery. This will trigger the com-
putational load that was discussed above.

The software infrastructure to implement
this scheme was written in St Paul MN and
tested on the hardware being developed and
located in the San Diego CA labs. After a few
weeks, the San Diego people learned not to
unplug hardware without checking for remote
logins �rst, and the St Paul people learned
to phone and �nd out whether someone had
removed the hardware before blaming their
code.

The source code can be compiled and run,
without changes, on full x86 computers with
linux and also on the Dragonball microcon-
troller with uClinux on the UCSIMM from
(now) Lineo.

3.3 Serial Port

Initially, the serial data from the hardware
was received by a Pentium II 450 computer,
which ran a succession of versions of Win-
dows while we attempted to get the serial
port to accept data without regular and fre-
quent data loss. After consistently failing, we
switched to Linux on a variety of machines
and have had few problems since. What was
diÆcult about the situation that caused Win-
dows to fail, where even a 80386 running
Linux was suÆcient ?

The raw data stream consists of 72 byte
records that arrive 100 times per second over
a 115200 baud serial cable with hardware
handshaking. Each eight bit character is sur-
rounded by two framing bits, so the link is
running at 62% of its theoretical capacity
with 3:7ms of unused time in every 10ms in-
terval. Most serial port hardware implemen-
tations have a 16 byte �fo, so �ve interrupts
are needed to transfer one data record from
the wire into memory (unless a nonstandard
polling architecture is used).

About 1:4ms after the interrupt is raised,
if the operating system has still not serviced
the interrupt, the �fo becomes full and data



delivery from the wire is paused by the hard-
ware handshake. We are now consuming that
3:7ms bu�er of unused time, which is shared
among �ve interrupt events. Thus, the oper-
ating system must achieve an average inter-
rupt response time of 2:1ms, and even one
response time in excess of 10ms will always
cause data loss.

Our reference test used a simple Visual Ba-
sic program that grabbed data from the serial
port as fast as possible, inspected it to de-
termine whether any loss had occurred, then
immediately discarded it. No user (or GUI
message) communication occurred while the
test was in progress. Data loss was observed
to occur on average once every couple of min-
utes with the network cable plugged in, re-
ducing to every ten minutes or so with no
network and every normal user con�gurable
item optimized. Touching the mouse or key-
board caused data loss events every ten sec-
onds or so.

We modi�ed the data stream so that it
was simply delivering timestamps to the host
computer with no other information content.
The test program was extended to gather
statistics. We found that there were gaps
due to missing data in excess of ten seconds
duration several times per day. Although
we experimented with the advanced con�g-
uration choices and considered non-standard
hardware installation, these were not viable
long term solutions due to the cost and com-
plexity impact on the end user.

On occasion, we still need to run the origi-
nal Visual Basic software that predates the
Linux port. This is now reliably achieved
by having it connect to a serial port emula-
tion provided by the Dialout/IP client from
Tactical Software. Under the emulation is a
raw TCP/IP connection that goes to a Linux
computer, which actually operates the serial
port and has a �fo implemented in software
that can hold several minutes of data.

An old 80386 class computer (running De-
bian 2.1) was found to be comfortably suÆ-
cient to provide reliable serial I/O and client
network communications. On this machine,
we bene�tted from the irqtune utility in the
hwtools package, which can place the serial

port interrupt at the highest priority. When
this was done, we could run other software
from the 80386 console terminal without im-
pacting serial port operations.

4 DSP development

Low cost single board and single chip com-
puters o�er fast hardware I/O with chain-
ing DMA and signal processing features such
as multiply-accumulate instructions. Often,
these units can be purchased with Linux pre-
installed.

At the time that the electronics were de-
signed, several years ago, these options were
not available at reasonable cost. Therefore,
a dedicated small signal processing chip was
designed into the electronics. The Analog
Devices 21xx series processor has two syn-
chronous serial interfaces, one of which com-
municates with the sensor electronics and the
other with the host processor.

A team containing several programmers
developed the code in parallel by segregat-
ing the project along functional lines. The
Windows-based development tools would get
confused when importing changes made by
another programmer, such as when a shared
header �le needed to be modi�ed. Some code
loss had occurred during a previous project,
so this project utilized the DOS-based tool
chain from the vendor. This tool chain made
no assumptions about the state of the under-
lying source �les and relied on �le timestamps
to control the build process, thereby increas-
ing reliability.

Each developer used an account on a Linux
computer with samba services to expose their
directory to any desktop computer. The tool
chain would execute in the directory of the
individual's SMB share, resulting in a self-
contained development environment. Each
user would log into the linux machine to run
cvs or take advantage of the more 
exible
search and indexing tools available at the
unix command line.

This allowed rapid parallel development



with no code loss. The Network Time Pro-
tocol (NTP) was used to synchronize the
clocks of the various computers, but this was
unreliable on Windows98 computers because
they tended to believe whatever any of the
other network servers had most recently told
them. Occasionally, this resulted in build er-
rors when cvs timestamps were slightly mis-
aligned, but not suÆciently for make to pro-
vide a warning.

The download and diagnostic software was
implemented on linux machines, using serial
and parallel port interfaces. The DOS tools
were installed in a virtual hard disk image
under dosemu and embedded into a Linux
make�le, so that all developers could use a
single identical execution environment for the
tool chain from any computer. In addition to
allowing the developers to telecommute, this
permitted them to make code changes from
whichever computer happened to be closest
to the hardware's location.

Thus, typing make test can rebuild the
DSP code, download and verify it, reboot the
DSP, check it wakes up, then run low level
regression tests for obvious errors. It then
checks the source tree for the protocol drivers
in the host, reinstalling them if necessary,
before running a high level functional test
that veri�es reliable acquisition. This kind
of cross-tool automation in a `make' environ-
ment is trivial under Unix. Since toolchains
are designed by their vendors to be com-
pletely self-contained under Windows, this
kind of easy project integration is generally
impossible.

A single Linux computer exported the di-
rectories to the network, ran the tools under
the DOS emulator and streamed data to and
from local hardware test stations. The Pen-
tium 75 system supported three simultane-
ous users with 16MB of RAM and 3GB of
disk space. When two additional users were
added, one of which was using octave and
gnuplot for analyzing test results, the mem-
ory was doubled to 32MB.

5 Conclusions

Looking forward to the integrated product,
the most valuable feature of developing this
system under Linux must obviously be the
opportunity to move source around. We can
develop and test code with fast commodity
desktop computers and then migrate it di-
rectly into a microcontroller target.

Looking at the development process, we
bene�tted greatly from the remote access and
administration. This allowed developers who
work several timezones away to actively test
their changes against the hardware in our
labs.

In combination, they allow the project
manager to select team members from a
worldwide pool of skills, instead of being re-
stricted to the engineers who reside in (or can
relocate to) the lead company's city.
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7 Availability

More information about this technology is
available from

http://www.qm.com/development/

weapons detect body.htm

The new application software that was de-
veloped in support of this system is cur-
rently proprietary and closed source. Driver
enhancements have been sent upstream, of
course. The Open Source development model
is not yet useful in this area, due to a shortage



of relevant expertise in the technical teams
of the collaborating organizations. Hopefully,
this will change in the new future ?
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