USENIX Association

Proceedings of the
XFree86 Technical Conference

Oakland, California, USA
November 8-9, 2001

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.




A New TreeWidget for GTK+ 2.0

JonatharBlandford
jrb@redhat.com

Abstract

TheGtkTreeMew widgetis anew widgetfor GTK+
2.0. Designedn a Model/View controllerfashion,
it is highly flexible andcapable.lt allows multiple
columnsand customrenderingof cells, aswell as
specializednodels.

1 Intr oduction

The GtkTreeMiew is a new widget for GTK+ 2.0.

Written over the courseof the pastyeat it is meant
to replacethe other main Tree/List widgets cur

rently in GTK+, the GtkCList/GtkCTreel It is a
much more substantialwork than either of those
widgetsandis similarin scopeto bothJava Swing's
JTreeandETablefrom Evolution. It is desighedo

solve anumberof problemsfoundin GtkCListand
GtkCTree.Mostimportantly:

Lack of flexibility in the data model: The older
widgetrequiredthe datato be partof the wid-
get making it difficult to keepthe datasyn-
chronized.

Lack of customcell renderers: Although possi-
ble to customize renderers by drawving
pixmaps,it requiresa lot of effort andis ba-
sically ahack.

Wrongorder of inheritance: A listis atreewith-
outary children. Having thetreeinherit from
alist is backward.

In addition, the GtkTreeMew was designed
to keep one of the main strengths of the

Therealsoexistsa GtkList anda Gtk Tree. Thesetwo wid-
getsareextremelybroken andhave beendeprecatedor some
time. They will notbementionedagainin this paper

GtkCList/GtkCTree—theability to efficiently dis-
play large amountsof data.

2 Overview

The tree object-set is designed around a
Model/\View/Controller(MVC) designandconsists
of four majorparts:

thetreeview widget

theview columns

thecell renderers

themodelinterface

The first three partscomprisethe View, while the
last partis the Model. One of the prime benefits
of the MVC designis that multiple views canbe
createdof a single model. For example,consider
afile managerlt could createonemodelmapping
the file systemsuchthat only one copy of all the
file dataneedsbe keptin memoryat onetime. A

differentview of variouspartsof this modelcanbe
createdvhenanew window is needed.

2.1 A quick example

It is somavhattricky to understandhow theseparts
all fit together Let usfirst startoff with avery sim-
ple example. The relevant codeis locatedin Ap-
pendixA.

2Thereareactuallynine GObjectsfive interfaces andone
widget that make up the whole tree as shippedwith GTK+,
spreadout amongover thirty-five sourcefiles and comprises
of almostthirty thousandinesof code.For simplicity’s sale, |
will referto thewidgetthroughouthis paperasthetree object-
set, unlessreferringto a specificelement.



=] (=] (]

Calurn 1 | Calumn 2

Fow 0 Bold text, Row 0
Fow 1 Bold text, Row 1
Row 2 Bold text, Row 2
Fow 3 Bold text, Row 3
Fow 4 Bold text, Row 4
Fow 5 Bold text, Row 5
Fow B Bold text, Row 6
Row 7 Bold text, Row 7
Fow & Bold text, Row &
Fow 9 Bold text, Row 9

Figurel: Simpleexampleof the Gtk TreeMew wid-
get

In thisexample wewill simplycreateamodel,cre-
ateaview, andthenputthemtogether Pleasenote
that this exampleonly shaws the part of the code
relevantto the tree-objectsetanddoesnot include
the rest of the codeneededor a functioning pro-
gram. Whenrun, it couldlook somethindik e Fig-
urel.

Here, we createa model(in this case,a GtkTree-
Store)andthenadddata.We addacolumnandthen
addatext rendereto thecolumn.We finally create
amappingfrom the modelto the cell renderers.

3 The Model

Oneof the primary partsof thetreeobject-sets the
GtkTreeModel interface. This interfaceallows the
view to get datafrom the modeland is meantto
be attachedo ary appropriatedatastructure. The
programmesimply hasto implementthis interface
on his own datatype for it to be viewable by the
GtkTreeMew. The interface can be seenin Ap-
pendixB.

The modelis representeds a hierarchicaltree of
strongly-typed,columneddata. In other words,

the modelcanbe seenasa treewhereevery node
has different valuesdependingon which column
is being queried. The type of datafound in a
column is determinedby using the GType sys-
tem (ie. G.TYPELINT, GTK_.TYPEBUTTON,
G_TYPE_POINTER,etc.)andshouldbefamiliarto
GTK+ programmers. Thetypesarehomogeneous
percolumnacrossall nodes.lt is importantto note
thatthisinterfaceonly providesaway of examining
a modelandobservingchanges.The implementa-
tion of eachindividual modeldecideshow andif
changesaremade.

In orderto make life simplerfor programmersvho
do not needto write their own specializednodel,
two genericmodelsareprovidedwith GTK+ 2.0—

the GtkTreeStore andthe GtkListStore. Thesetwo

modelsare'shove’ models.To bemorespecific the
developersimply pusheslatainto thesemodelsas
necessaryThey provide the datastructureaswell

asall appropriatdreeinterfaces.As aresult,imple-

mentingdraganddrop, sorting,andstoringdatais

trivial. For thevastmajority of treesandlists, these
two modelsshouldbe sufficient.

3.1 Accessinghe Model

Models are accessedn a node/columnlevel of
granularity Onecanqueryfor thevalueof amodel
atacertainnodeanda certaincolumnonthatnode.
Therearetwo structuresusedto referencea partic-
ularnodein amodel. They arethe GtkTreePath and
the GtkTreelter.* Themajority of theinterfacecon-
sistsof operation®n a GtkTreelter

A pathis essentiallya potentialnode. It is a hy-
potheticallocationon a modelthatmay or may not
actuallycorrespondo a nodeon a specificmodel.
The GtkTreeRathstructcanbecorvertedinto either
anarrayof unsignedntegersor astring. Thestring
formis alist of numbersseparatetty acolon. Each
numberrefersto the offsetat thatlevel. Thus,the
path“0” refersto theroot nodeandthe path“2:4”

refersto thefifth child of thethird node.

3for those unfamiliar with it, more information can be
foundat http://developergnome.og/doc/API/
“here“iter” is shortfor “iterator”



By contrast,a GtkTreelteris a referenceto a spe-
cific nodeon a specificmodel. It is agenericstruct
with an integer andthreegenericpointers. These
arefilled in by the modelin a model-specifiovay.
One can corvert a path to an iterator by calling
gtk_tree_model_get_iter(). Thesdteratorsarethe
primaryway of accessingmodelandaresimilarto
theiteratorsusedby GtkTextBuffer. They aregen-
erally staticallyallocatedon theheapandonly used
for a shorttime. The modelinterfacedefinesa set
of operationausingthemfor navigatingthe model.

It is expectedthat modelsfill in the iterator with
privatedata.For example,the GtkListStoremodel,
which s internally a simplelinkedlist, storesa list
nodein oneof thepointers.The GtkTreeModelSort
storesanarrayandan offsetin two of the pointers.
Additionally, thereis an integer field. This field
is generallyfilled with a uniqguestampper model.
This stampis for catchingerrorsresultingfrom us-
ing invalid iteratorswith amodel.

Thelifecycle of aniteratoris alittle confusing. It-

eratorsare expectedto be valid for aslong asthe
modelis unchanged.The modelis consideredo
own all outstandingteratorsand nothingneedsto
be doneto freethemfrom the users point of view.

Additionally, somemodelsguarantedhat an iter-

atoris valid for aslong asthe nodeit refersto is
valid (mostnotablythe GtkTreeStoreand GtkList-
Store).Althoughgenerallyuninterestingasoneal-
ways hasto allow for the casewhereiteratorsdo
not persistbeyond a signal, somevery important
performancesnhancementaere madein the sort
model.As aresult,aflagwasaddedo indicatethis
behaior.

3.2 Rationale of complexity

Unfortunately this dual way of referringto nodes
increaseshe compleity for the applicationdevel-
oper Thereis atemptationto wantto simply refer
to nodesonly by aniteratoror by apath® However,
it quickly becameclearthat having both methods
of accessing nodewasnecessaryor performance
reasons.

5In fact JTree usesa non-opaquéist of Objectsto imple-
menttheir TreeRath. | feelthis quickly becomeson-trivial for
alot of models.

Theview mustbe referencedy path$ for reasons
thatwill bemadeclearlaterin this paper Lik ewise,
it wasimportantto have away of quickly finding a
nodein themodel.

For example,during every exposeevent, the Gtk-

TreeMew finds the first exposednode and then
walks throughthe remainderof the exposednodes
in order For a modellike the GtkListStore(which

is internallyimplementedsalinkedlist), thisoper

ationwould be O(n?) if eachnodewasreferenced
by index. By usingthe GtkTreelter and,by exten-

sion, having a pointerto the internallist node,the

gtk_tree_model iiter _next() operatiorcanbevery

fast.

3.3 The GtkTreeRavReferencestructure

To male life easierfor applicationdevelopers,a
structurecalledthe GtkTreeRowReference exists. It
is a GtkTreeRiththatlistensto a modelandadjusts
for changesllowing youto trackarow while other
rows areinserted/deletedinternally it is usedex-
tensvely for things like keyboard navigation and
selection.

4 Cell Renderers

Thecell renderersarea classof objectsthatinherit
from GtkCellRenderer. They do the actualrender
ing of a cell to the display They areflyweight ob-
jects, meaningthat they do not storeary statebut
have it passedn just beforebeingused. As are-
sult, onecell renderercanbe usedfor every row in
atree.

GTK+ 2.0 comeswith threebasiccell renderers—
GtkCellRendereraxt, GtkCellRendererPixif, and
GtkCellRendererdggle. Custom renderersare
easyto createaswell. It is importantto notethat
thereis nothing specific abouttheserenderersto
the GtkTreeMew/GtkTreeModel. In fact, thereare
plansto write atable-like widgetfor futureversions
of GTK+ thatwould usethem.

8A numberof the methodson the GtkTreeMew actually
take aniteratorastheir agument.However, theseiteratorsare
immediatelycorvertedinternallyto paths.



Theprimaryway of settingdataonacell is through
the GTK+ property system’. GObjects have a
way of associatingtring attributeswith typedval-
ues. For example,thetext cell renderethas“text”,
“font”, “foreground”,“background”,and“weight”
propertieseachtaking a string as their agument.
It also has an “underline” property that takes a
boolear? Onecansetthesepropertiesin the fol-

lowing way:

g_obj ect _set (text_renderer,

"text", "Random text"
"font", "Sans 12",
"foreground”, "black"
"wei ght", "bold",
"underline", TRUE,
NULL) ;

Onceset,you canquerythecell rendereffor its size
andrenderit to a GdkDravable. Additionally, ren-
derershave two otherinterestingmethods. A cell

renderemay be activatedor edited? For example,
the GtkCellRendererdggle is activated wheneer
it is clicked. Onceactvated,it emitsa signalindi-

catingwhat hashappened.As thereis no way to

modify a modelusingthe GtkTreeModelinterface,
it is upto theprogrammeto listenfor thesesignals
andto modify themodeldirectly.

Editing is donein a similar fashion. When the
cell rendererstartsthe editing processijt createsa
GtkWidget. The GtkTreeMew displaysthis wid-
get over the areathe cell occupies. This widget
will exist until editing hasended,at which point
it emits an “editing_finished” signal. Any widget
implementingthe GtkCellEditableinterfacecanbe
used.For example thetext renderetakesa GtkEn-
try andusesit to displayeditedtext.

The rationalefor doing the editing in a separate
widgetis thatthe stateneedsto persistthroughout

"formerly the GtkArg system

8indeed, this object has thirty-four propertiesof various
types and usefulness. The most commonly used ones are
shavn in theexample.

Pleasenotethat the editableinterfacehasnot beenfinal-
ized at the time of the writing of this paperandmay even be
removed.

the durationof the editingphaset® A cell renderer
may be correctlyinitialized with dataat the startof
the editing phasebut may be usedelsevherein the
model. It is necessaryo storesomestatessuchas
pointergrabsandcursorpositions.

5 TreeColumns

The GtkTreeMiewColumn objects bind the entire
object-setogether Eachof theseobjectsis a visi-
ble columnin the view (asopposedo the model).
Theseobjectscanbepacledinto theview in aman-
nersimilarto widgetsin anhbox. Onceaddedthey
canbemovedaround hidden,or remored.

The primarytaskof the GtkTreeMewColumnis to

handledrawving eachcolumnfor the view. Addi-

tionally, it determineghe sizing policy of the col-

umn aswell as handlingthe button in the header
(if the headersareshawvn.) It alsohandlesthe sort
arrows.

The way that the GtkTreeMewColumn draws the
cellsisthroughcellrenderersEachcolumnhasone
or morecell renderemacled into it. For example,
hereis somecode—thisime writtenin Pythort'—
shaving how to createa columnwith alook similar
to acheckbox:

colum = gtk. TreeVi enCol um ()
toggle cell =
gt k. Cel | Renderer Toggl e ()
text_cell =
gt k. Cel | Renderer Text ()
toggl e_cell.connect ("activated",
cal | back)

colum. set _title ("Exanple Colum")
colum. pack_start (toggle_cell,

gt k. FALSE)
col um. pack_start (text _cell,

gt k. TRUE)

the fact that a lot of code could be reuseddid not hurt
either

11| amdoingthis examplein Pythonto give anideaof what
it lookslike in anothedanguage However, atthetime of this
paper the Pythonbindingsfor GTK+ 2.0 arenotfrozen.As a
result,working codemaylook differentin thefuture.



col um. set _spaci ng (4)

colum. set_attributes (toggle cell,
"t oggl ed",
0)

colum. set _attributes (text_cell,
"text", 1,
"foreground”,
2)

In this example,we createa columnand the ren-
derers. We connectthe “activated” signal so we
can modify the columnwhenthe toggle button is

pressedWethenpackthetwo cellsinto thecolumn
with afour pixel spacebetweerthem.Theboolean
value passedo pack_start() indicateswhetheror

not the cell is allocatedleftover space. In this in-

stance,the text following the toggle button gets
all remainingspace. We then make the mapping
of attributeson the cellsto variouscolumnsin the
model.

As analternatve to providing a mappingfor every
rendererwe canusea customfunction to setthe
attributesontherendererThis is mostusefulif we
wantto storea structin the GtkTreeModel.

6 The GtkTree\Miew

The GtkTreeMiew widgetis the only actualwidget
in the entiretree object-setandis the partthatthe
userseeslt wasdesignedo beasefficientaspossi-
ble in renderingat a specificpixel-offsetaswell as
handlinginsertinganddeletingnodes. In orderto
handlefastrenderingjt implementsa heightcache
thatinternallymapseachvisible nodein thetreeto
a specificpixel position(andvice versa).

6.1 The heightand offsetcache

The height cacheis implementedas a red/black
treé"? of red/blacktreesin orderto keepinsertion
anddeletionefficient.

12For thoseunfamiliar with this datatype, a red/blacktree
is essentiallya continuouslybalancedinarytree. Thetreeis
rebalancedif needed)pfterevery insertionanddeletion. It is
never ary deepetthan2 log(n) nodesand,asaresult,opera-
tions suchasinsertion,searchanddeletionareguaranteedo
never be worsethan O(log(n)). Thereis a somavhatlarger
memoryoverheadneededas a resultof this structure. How-

This cacheis usedto storea mappingof heights
on the treeto paths. Thus, whenthe tree getsan
exposeeventon a certainsectionof thetree,it can
determinghe correspondingow andthenhave the
GtkTreeMewColumnsrenderthatarea. The actual
implementatiorof this cacheis extremelyinvolved
andoutsidethe scopeof this paper

6.2 Selection

The GtkTreeMew widget exportsa separatebject
to handleselectionof rows. This objectis concep-
tually part of the view widget—it hasbeensepa-
ratedmostly for codeandAPI cleanlinesseasons.
Thetreeusegshe cacheto storetheselectedstateof
arow. As we arealreadystoringa nodefor every
row in the tree,we cansimply add a flag indicat-
ing whethera particularrow is selected Whenthe
developerneedsto find all selectedrows, the tree
view walks throughall of the cachedrows finding
thosemarkedasselected.

Oneof the unfortunateside effectsis thatthe code
doesnot guardwell againstreentrang issues.We
hopeto fix thisin afutureversionof GTK+.

7 Sorting and Drag and Drop

There are three other interfaces that a Gtk-
TreeModelcan export. They provide supportfor
sortinganddraganddrop.

7.1 Sorting

Sorting is done at the model level using the Gtk-
TreeSortable interface. This interface definesthe
way thatthe modelis sortedandexists primarily to
allow GtkTreeMewColumnsto display sort-order
arravs whenneeded.Both GtkTreeStoreand Gtk-
ListStoreimplementthe interfaceallowing themto
be easily be sorted. However, if thereare multi-
ple views of amodel,theneachview will besorted
identically This is often not the desiredbehaior.
To sortthe views in differentways,a proxy model
suchasGtkTreeModelSortmustbeused.

ever, this overheads in generaimuchlessthanthe costof the
datastored.



The GtkTreeModelSortis a GtkTreeModel that
wraps around other GtkTreeModelsstoring a re-
orderingof thatmodel.Very simply, whentheview
requestsavaluefrom arow, the GtkTreeModelSort
corvertsthis requestio the appropriaterow on the
child modelandproxiesthe requestllowing usto
sortamodelwithout actuallyduplicatingthe stored
values.

Internally the GtkTreeModelSortmodel storesa
mappingof its pathsto its childrens paths. That
meanghatwheneerit getsarequestor aniterator
it mustcorvert a child pathto a child iteratorand
look up the value. This processs potentiallyvery
slow (especiallyin thecaseof the GtkTreeStoreand
GtkListStoremodels). To work aroundthis prob-
lem, thereis a cacheof iteratorsin the model. Not
all modelssupportiterator caching(as perviously
mentionedthereis aflagto indicatewhetheror not
it is supported)In practice thosemodelsthatdont
allow youto cachdterators(suchasthosebasecdn
anarray)tendto befastin converting from pathto
iteratoranyway meaningthatthe sortmodelworks
well in mostcases.

7.2 DragandDrop

Justlike sorting, drag and drop is done through
interfaceson a GtkTreeModel. There are two
suchinterfaces—GtkTreeDragSource and GtkTree-
DragDest. The former is necessaryo drag from
a tree,while the latter is neededo supportdrops.
Like the sorting column, all the models shipped
with GTK+ implementthesetwo signals.

8 “If | hadto do it over...”
learned”

or “lessons

It turned out to be harderthan | had expected
to write a generic model interface. As a re-
sult of not restricting the view to a specificim-
plementationof the model (unlike the text wid-
get in GTK+ 2.0), there was no way to work
around particular limitations of that implementa-
tion. Theselimitations led to some unfortunate
hackslike the ITERS_.PERSISTflag and the Gtk-
TreeRith/GtkTreelter dichotomy It also made

binding the model in a high level languagelike
Pythontricky.

Additionally, the cell measuringsystemactually
turnedout to be noticeablyslow. While the view

can handlelarge (on the order of 100,000)num-
bersof nodeswithout problems,measuringthese
stringsis a seriousbottleneck.A bettergeometry-
managemergéchememight have saveda few of the
necessarpacksaddedfor speed.



A First Example

A smallcode-fragmenthatcreatesall the partsnecessarfor a view.

enum {
FI RST_COLUW,
SECOND_COLUMW,
NUM_COLUWNS

b

@& kTreeStore *nodel ;

& kW dget *vi ew;

& kTreeVi ewCol umm *col unn;

& kCel | Renderer *cell _renderer;

/* Create a nodel. W are using the store nodel for now, though we
* could use any ot her G kTreeMdel */
nodel = gtk tree store _new (NUM COLUWNS, G TYPE STRING G TYPE STRI NG ;

[* Fill the nodel with text */
cust om popul ate_nodel function (nodel);

/* Create a view */
view = gtk _tree_view new wth_nodel (GIK TREE MODEL (nodel));

[* Create a cell render and set an attribute */

cell _renderer = gtk _cell _renderer_text _new ();

g_obj ect_set (G OBJECT (cell _renderer),
"foreground", "dodger blue",
NULL) ;

/* Create a colum, associating the "text" attribute of the

* cell _renderer to the first colum of the nodel */

colum = gtk tree view columm_new with_attributes ("Colum 1",
cell _renderer,
"text", FIRST_COLUW,
NULL) ;

[* Create a second cell render and set an attribute */
cell _renderer = gtk _cell _renderer_text _new ();
g_obj ect_set (G OBJECT (cell _renderer),

"weight", "bold",

NULL) ; ,

/* Create another columm, associating the "text" attribute of the
* cell _renderer to the second colum of the nodel */
colum = gtk tree view columm_new with_attributes ("Colum 2",



/* Add the second colum to the view */

gtk _tree_view append_col um (GIK _TREE VI EW (vi ew),

/* The view now holds a reference to the nodel.
* reference if we no longer need it */
g_obj ect _unref (G OBJECT (nodel));

cell _renderer,

"text",
NULL) ;

col um) ;

We can get

/* Now we can pack the view in another container */

B GtkTreeModellnterface

rid of our

SECOND_COLUWN,

own

The GtkTreeModelinterfacedescribeshe way thatthe view andthe modelinteract.It is shavn herein an
abbreiatedfashionin theinterestof space.Thefully documentednterfacewith prototypescanbe found

athttp://developergnane.og/doc/ap/.

B.1 The Signals

Thesesignalsare emittedevery time the modelchanges.It is possibleto explicitly follow whathappens

with amodelsimply by listeningto thesesignals.

GtkTreeModd!::
GtkTreeModel::
GtkTreeModd!::
GtkTreeModel::
GtkTreeModd!::

row_changed
row_inserted
row_has_child_toggled
row_del eted
rows_reordered

B.2 The Methods

Thesemethodsareusedto inspecta model. Every modelmustimplementtheseata minimum.

& kTreeModel Fl ags gtk _tree nodel get fl ags

gi nt gtk _tree_nodel _get_n_col umms
Glype gtk _tree _nodel get colum_type
voi d gtk _tree nodel get val ue

/* lterator novenment */

gbool ean gtk _tree_nodel get _iter

(G kTr eeMbdel
(G kTr eeMbdel
(G kTr eeMbdel
gi nt
(G kTr eeMbdel
G kTreelter
gi nt
Gval ue

(G kTr eeMbdel
G kTreelter

*tree_nodel);
*tree_nodel);
*tree_nodel

i ndex) ;
*tree_nodel
*iter,

col um,
*val ue) ;

*tree_nodel,
*iter,



G kTreePath *pat h);

& kTreePath * gtk _tree nodel get path (G kTreeMbdel *tree_nodel,
G kTreelter *iter);

gbool ean gtk _tree _nodel _iter_next (G kTreeMbdel *tree_nodel,
G kTreelter *iter);

gbool ean gtk _tree nodel _iter _children (G kTreeMbdel *tree_nodel,

G kTreelter *iter,
G kTreelter *parent);

gbool ean gtk _tree_nodel _iter_has child (GkTreeMbdel *tree_nodel,
G kTreelter *iter);

gi nt gtk _tree nodel iter _n children (G kTreehbdel *tree_nodel,
G kTreelter *iter);

gbool ean gtk tree nodel iter nth child (GkTreeMbdel *tree_nodel,

G kTreelter *iter,
G kTreelter *parent,
gi nt n);
gbool ean gtk _tree nodel _iter_ parent (G kTreeMbdel *tree_nodel,
G kTreelter *iter,
G kTreelter *child);

voi d gtk _tree_nodel ref_node (G kTreeMbdel *tree_nodel,
G kTreelter *iter);
voi d gtk _tree _nodel unref node (G kTreeMbdel *tree_nodel,

G kTreelter *iter);



