
USENIX Association

Proceedings of the
XFree86 Technical Conference

Oakland, California, USA
November 8–9, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A New TreeWidget for GTK+ 2.0

JonathanBlandford
jrb@redhat.com

Abstract

TheGtkTreeView widgetis anew widgetfor GTK+�����
. Designedin a Model/View controllerfashion,

it is highly flexible andcapable.It allows multiple
columnsandcustomrenderingof cells, aswell as
specializedmodels.

1 Intr oduction

The GtkTreeView is a new widget for GTK+
�����

.
Written over thecourseof thepastyear, it is meant
to replacethe other main Tree/List widgets cur-
rently in GTK+, the GtkCList/GtkCTree.1 It is a
much more substantialwork than either of those
widgetsandis similar in scopeto bothJavaSwing’s
JTreeandETablefrom Evolution. It is designedto
solve anumberof problemsfoundin GtkCList and
GtkCTree.Most importantly:

Lack of flexibility in the data model: The older
widgetrequiredthedatato bepartof thewid-
get making it difficult to keep the datasyn-
chronized.

Lack of customcell renderers: Although possi-
ble to customize renderers by drawing
pixmaps,it requiresa lot of effort and is ba-
sicallyahack.

Wr ong order of inheritance: A list is a treewith-
out any children.Having thetreeinherit from
a list is backward.

In addition, the GtkTreeView was designed
to keep one of the main strengths of the

1TherealsoexistsaGtkList andaGtkTree.Thesetwo wid-
getsareextremelybrokenandhave beendeprecatedfor some
time. They will notbementionedagainin this paper.

GtkCList/GtkCTree—theability to efficiently dis-
play largeamountsof data.

2 Overview

The tree object-set2 is designed around a
Model/View/Controller(MVC) designandconsists
of four majorparts:

� thetreeview widget

� theview columns

� thecell renderers

� themodelinterface

The first threepartscomprisethe View, while the
last part is the Model. One of the prime benefits
of the MVC designis that multiple views can be
createdof a singlemodel. For example,consider
a file manager. It couldcreateonemodelmapping
the file systemsuchthat only onecopy of all the
file dataneedsbe kept in memoryat onetime. A
differentview of variouspartsof this modelcanbe
createdwhenanew window is needed.

2.1 A quick example

It is somewhattricky to understandhow theseparts
all fit together. Let usfirst startoff with averysim-
ple example. The relevant codeis locatedin Ap-
pendixA.

2ThereareactuallynineGObjects,five interfaces,andone
widget that make up the whole tree as shippedwith GTK+,
spreadout amongover thirty-five sourcefiles andcomprises
of almostthirty thousandlinesof code.For simplicity’ssake, I
will referto thewidgetthroughoutthispaperasthetree object-
set, unlessreferringto a specificelement.

Figure1: Simpleexampleof theGtkTreeView wid-
get

In thisexample,wewill simplycreateamodel,cre-
atea view, andthenput themtogether. Pleasenote
that this exampleonly shows the part of the code
relevant to the tree-objectsetanddoesnot include
the restof the codeneededfor a functioningpro-
gram.Whenrun, it could look somethinglike Fig-
ure1.

Here,we createa model (in this case,a GtkTree-
Store)andthenadddata.Weaddacolumnandthen
adda text rendererto thecolumn.Wefinally create
amappingfrom themodelto thecell renderers.

3 The Model

Oneof theprimarypartsof thetreeobject-setis the
GtkTreeModel interface. This interfaceallows the
view to get datafrom the model and is meantto
be attachedto any appropriatedatastructure.The
programmersimplyhasto implementthis interface
on his own datatype for it to be viewable by the
GtkTreeView. The interface can be seenin Ap-
pendixB.

The model is representedasa hierarchicaltreeof
strongly-typed,columneddata. In other words,

the modelcanbe seenasa treewhereevery node
has different valuesdependingon which column
is being queried. The type of data found in a
column is determinedby using the GType sys-
tem (ie. G TYPE INT, GTK TYPE BUTTON,
G TYPE POINTER,etc.)andshouldbefamiliarto
GTK+ programmers.3 Thetypesarehomogeneous
percolumnacrossall nodes.It is importantto note
thatthis interfaceonly providesawayof examining
a modelandobservingchanges.The implementa-
tion of eachindividual modeldecideshow and if
changesaremade.

In orderto make life simplerfor programmerswho
do not needto write their own specializedmodel,
two genericmodelsareprovidedwith GTK+

�����
—

the GtkTreeStore andthe GtkListStore. Thesetwo
modelsare‘shove’ models.Tobemorespecific,the
developersimply pushesdatainto thesemodelsas
necessary. They provide thedatastructureaswell
asall appropriatetreeinterfaces.As aresult,imple-
mentingdraganddrop,sorting,andstoringdatais
trivial. For thevastmajorityof treesandlists, these
two modelsshouldbesufficient.

3.1 Accessingthe Model

Models are accessedon a node/columnlevel of
granularity. Onecanqueryfor thevalueof amodel
atacertainnodeandacertaincolumnonthatnode.
Therearetwo structuresusedto referencea partic-
ularnodein amodel.They aretheGtkTreePath and
theGtkTreeIter.4 Themajorityof theinterfacecon-
sistsof operationson aGtkTreeIter.

A path is essentiallya potentialnode. It is a hy-
potheticallocationon amodelthatmayor maynot
actuallycorrespondto a nodeon a specificmodel.
TheGtkTreePathstructcanbeconvertedinto either
anarrayof unsignedintegersor astring.Thestring
form is alist of numbersseparatedby acolon.Each
numberrefersto the offset at that level. Thus,the
path“0” refersto the root nodeandthepath“2:4”
refersto thefifth child of thethird node.

3for those unfamiliar with it, more information can be
foundat http://developer.gnome.org/doc/API/

4here“iter” is shortfor “iterator”

By contrast,a GtkTreeIteris a referenceto a spe-
cific nodeon aspecificmodel.It is a genericstruct
with an integer and threegenericpointers. These
arefilled in by themodelin a model-specificway.
One can convert a path to an iterator by calling���
	 ����
�
 ������
�� ��
�� ���

������ . Theseiteratorsarethe
primarywayof accessingamodelandaresimilarto
theiteratorsusedby GtkTextBuffer. They aregen-
erallystaticallyallocatedontheheapandonly used
for a shorttime. Themodelinterfacedefinesa set
of operationsusingthemfor navigatingthemodel.

It is expectedthat modelsfill in the iterator with
privatedata.For example,theGtkListStoremodel,
which is internallya simplelinked list, storesa list
nodein oneof thepointers.TheGtkTreeModelSort
storesanarrayandanoffset in two of thepointers.
Additionally, there is an integer field. This field
is generallyfilled with a uniquestampper model.
This stampis for catchingerrorsresultingfrom us-
ing invalid iteratorswith amodel.

The lifecycle of an iteratoris a little confusing.It-
eratorsareexpectedto be valid for as long as the
model is unchanged.The model is consideredto
own all outstandingiteratorsandnothingneedsto
bedoneto freethemfrom theuser’s point of view.
Additionally, somemodelsguaranteethat an iter-
ator is valid for as long as the nodeit refersto is
valid (mostnotablytheGtkTreeStoreandGtkList-
Store).Althoughgenerallyuninteresting,asoneal-
wayshasto allow for the casewhereiteratorsdo
not persistbeyond a signal, somevery important
performanceenhancementsweremadein the sort
model.As aresult,aflagwasaddedto indicatethis
behavior.

3.2 Rationaleof complexity

Unfortunately, this dual way of referring to nodes
increasesthecomplexity for theapplicationdevel-
oper. Thereis a temptationto want to simply refer
to nodesonly by aniteratoror by apath.5 However,
it quickly becameclear that having both methods
of accessinganodewasnecessaryfor performance
reasons.

5In fact JTreeusesa non-opaquelist of Objectsto imple-
menttheirTreePath.I feel thisquickly becomesnon-trivial for
a lot of models.

Theview mustbereferencedby paths6 for reasons
thatwill bemadeclearlaterin thispaper. Likewise,
it wasimportantto have a way of quickly finding a
nodein themodel.

For example,during every exposeevent, the Gtk-
TreeView finds the first exposednode and then
walks throughtheremainderof theexposednodes
in order. For a modellike theGtkListStore(which
is internallyimplementedasalinkedlist), thisoper-
ationwould be � � �"!�� if eachnodewasreferenced
by index. By usingtheGtkTreeIter, and,by exten-
sion,having a pointerto the internallist node,the���
	 ����
�
 ������
�� ���

�� �#
�$%�&��� operationcanbevery
fast.

3.3 The GtkTreeRowReferencestructure

To make life easierfor applicationdevelopers,a
structurecalledtheGtkTreeRowReference exists. It
is aGtkTreePaththatlistensto a modelandadjusts
for changesallowing you to trackarow while other
rows areinserted/deleted.Internally, it is usedex-
tensively for things like keyboardnavigation and
selection.

4 Cell Renderers

Thecell renderersarea classof objectsthat inherit
from GtkCellRenderer. They do theactualrender-
ing of a cell to thedisplay. They areflyweight ob-
jects,meaningthat they do not storeany statebut
have it passedin just beforebeingused. As a re-
sult, onecell renderercanbeusedfor every row in
a tree.

GTK+
�����

comeswith threebasiccell renderers—
GtkCellRendererText, GtkCellRendererPixbuf, and
GtkCellRendererToggle. Custom renderersare
easyto createaswell. It is importantto notethat
there is nothing specific about theserenderersto
theGtkTreeView/GtkTreeModel.In fact, thereare
plansto write atable-likewidgetfor futureversions
of GTK+ thatwouldusethem.

6A numberof the methodson the GtkTreeView actually
take aniteratorastheir argument.However, theseiteratorsare
immediatelyconvertedinternallyto paths.

Theprimarywayof settingdataonacell is through
the GTK+ property system.7 GObjectshave a
way of associatingstringattributeswith typedval-
ues.For example,the text cell rendererhas“text”,
“font”, “foreground”, “background”,and“weight”
propertieseachtaking a string as their argument.
It also has an “underline” property that takes a
boolean.8 Onecanset thesepropertiesin the fol-
lowing way:

g_object_set (text_renderer,
"text", "Random text",
"font", "Sans 12",
"foreground", "black",
"weight", "bold",
"underline", TRUE,
NULL);

Onceset,youcanquerythecell rendererfor its size
andrenderit to a GdkDrawable.Additionally, ren-
derershave two other interestingmethods.A cell
renderermaybeactivatedor edited.9 For example,
the GtkCellRendererToggle is activatedwhenever
it is clicked. Onceactivated,it emitsa signalindi-
catingwhat hashappened.As thereis no way to
modify a modelusingtheGtkTreeModelinterface,
it is up to theprogrammerto listenfor thesesignals
andto modify themodeldirectly.

Editing is done in a similar fashion. When the
cell rendererstartsthe editing process,it createsa
GtkWidget. The GtkTreeView displaysthis wid-
get over the areathe cell occupies. This widget
will exist until editing hasended,at which point
it emits an “editing finished” signal. Any widget
implementingtheGtkCellEditableinterfacecanbe
used.For example,thetext renderertakesaGtkEn-
try andusesit to displayeditedtext.

The rationalefor doing the editing in a separate
widget is that thestateneedsto persistthroughout

7formerly theGtkArg system
8indeed, this object has thirty-four propertiesof various

types and usefulness. The most commonly usedonesare
shown in theexample.

9Pleasenotethat theeditableinterfacehasnot beenfinal-
ized at the time of the writing of this paperandmay even be
removed.

thedurationof theeditingphase.10 A cell renderer
maybecorrectlyinitialized with dataat thestartof
theeditingphasebut maybeusedelsewherein the
model. It is necessaryto storesomestatessuchas
pointergrabsandcursorpositions.

5 TreeColumns

The GtkTreeViewColumn objects bind the entire
object-settogether. Eachof theseobjectsis a visi-
ble columnin theview (asopposedto themodel).
Theseobjectscanbepackedinto theview in aman-
nersimilar to widgetsin anhbox.Onceadded,they
canbemovedaround,hidden,or removed.

Theprimary taskof theGtkTreeViewColumnis to
handledrawing eachcolumn for the view. Addi-
tionally, it determinesthe sizing policy of the col-
umn as well as handlingthe button in the header
(if theheadersareshown.) It alsohandlesthesort
arrows.

The way that the GtkTreeViewColumn draws the
cellsis throughcell renderers.Eachcolumnhasone
or morecell rendererpacked into it. For example,
hereis somecode—thistimewritten in Python11—
showing how to createacolumnwith alook similar
to a checkbox:

column = gtk.TreeViewColumn ()
toggle_cell =

gtk.CellRendererToggle ()
text_cell =

gtk.CellRendererText ()
toggle_cell.connect ("activated",

callback)

column.set_title ("Example Column")
column.pack_start (toggle_cell,

gtk.FALSE)
column.pack_start (text_cell,

gtk.TRUE)

10the fact that a lot of codecould be reuseddid not hurt
either

11I amdoingthisexamplein Pythonto give anideaof what
it looks like in anotherlanguage.However, at the time of this
paper, thePythonbindingsfor GTK+ '�() arenot frozen.As a
result,working codemaylook differentin thefuture.

column.set_spacing (4)
column.set_attributes (toggle_cell,

"toggled",
0)

column.set_attributes (text_cell,
"text", 1,
"foreground",
2)

In this example,we createa columnand the ren-
derers. We connectthe “activated” signal so we
canmodify the columnwhen the togglebutton is
pressed.Wethenpackthetwo cellsinto thecolumn
with a four pixel spacebetweenthem.Theboolean
valuepassedto *%+�, 	 -�� + ���&��� indicateswhetheror
not the cell is allocatedleftover space.In this in-
stance,the text following the toggle button gets
all remainingspace. We then make the mapping
of attributeson thecells to variouscolumnsin the
model.

As analternative to providing a mappingfor every
renderer, we canusea customfunction to set the
attributeson therenderer. This is mostusefulif we
wantto storea structin theGtkTreeModel.

6 The GtkTreeView

The GtkTreeView widget is the only actualwidget
in the entiretreeobject-setandis the part that the
usersees.It wasdesignedto beasefficientaspossi-
ble in renderingat a specificpixel-offsetaswell as
handlinginsertinganddeletingnodes. In orderto
handlefastrendering,it implementsa heightcache
thatinternallymapseachvisible nodein thetreeto
aspecificpixel position(andviceversa).

6.1 The height and offset cache

The height cacheis implementedas a red/black
tree12 of red/blacktreesin order to keepinsertion
anddeletionefficient.

12For thoseunfamiliar with this datatype,a red/blacktree
is essentiallya continuouslybalancedbinary tree. The treeis
rebalanced(if needed)afterevery insertionanddeletion. It is
never any deeperthan '/.10325476�8 nodes,and,asa result,opera-
tionssuchasinsertion,search,anddeletionareguaranteedto
never be worsethan 9:47.�0;25476�8<8 . Thereis a somewhat larger
memoryoverheadneededasa resultof this structure. How-

This cacheis usedto storea mappingof heights
on the tree to paths. Thus, when the treegetsan
exposeeventon a certainsectionof thetree,it can
determinethecorrespondingrow andthenhave the
GtkTreeViewColumnsrenderthatarea.Theactual
implementationof this cacheis extremelyinvolved
andoutsidethescopeof thispaper.

6.2 Selection

TheGtkTreeView widgetexportsa separateobject
to handleselectionof rows. This objectis concep-
tually part of the view widget—it hasbeensepa-
ratedmostly for codeandAPI cleanlinessreasons.
Thetreeusesthecacheto storetheselectedstateof
a row. As we arealreadystoringa nodefor every
row in the tree,we cansimply adda flag indicat-
ing whethera particularrow is selected.Whenthe
developerneedsto find all selectedrows, the tree
view walks throughall of the cachedrows finding
thosemarkedasselected.

Oneof theunfortunatesideeffectsis that thecode
doesnot guardwell againstreentrancy issues.We
hopeto fix this in a futureversionof GTK+.

7 Sorting and Drag and Drop

There are three other interfaces that a Gtk-
TreeModelcan export. They provide supportfor
sortinganddraganddrop.

7.1 Sorting

Sorting is doneat the model level using the Gtk-
TreeSortable interface. This interfacedefinesthe
way thatthemodelis sortedandexistsprimarily to
allow GtkTreeViewColumnsto display sort-order
arrows whenneeded.Both GtkTreeStoreandGtk-
ListStoreimplementtheinterfaceallowing themto
be easily be sorted. However, if thereare multi-
ple views of amodel,theneachview will besorted
identically. This is often not the desiredbehavior.
To sort theviews in differentways,a proxy model
suchasGtkTreeModelSortmustbeused.

ever, this overheadis in generalmuchlessthanthecostof the
datastored.

The GtkTreeModelSortis a GtkTreeModel that
wraps aroundother GtkTreeModelsstoring a re-
orderingof thatmodel.Verysimply, whentheview
requestsavaluefrom arow, theGtkTreeModelSort
convertsthis requestto theappropriaterow on the
child modelandproxiesthe requestallowing us to
sortamodelwithoutactuallyduplicatingthestored
values.

Internally, the GtkTreeModelSortmodel storesa
mappingof its pathsto its children’s paths. That
meansthatwhenever it getsarequestfor aniterator,
it mustconvert a child pathto a child iteratorand
look up thevalue. This processis potentiallyvery
slow (especiallyin thecaseof theGtkTreeStoreand
GtkListStoremodels). To work aroundthis prob-
lem, thereis a cacheof iteratorsin themodel. Not
all modelssupportiteratorcaching(as perviously
mentioned,thereis aflag to indicatewhetheror not
it is supported).In practice,thosemodelsthatdon’t
allow youto cacheiterators(suchasthosebasedon
anarray)tendto befastin converting from pathto
iteratoranyway meaningthatthesortmodelworks
well in mostcases.

7.2 Drag and Drop

Just like sorting, drag and drop is done through
interfaces on a GtkTreeModel. There are two
suchinterfaces—GtkTreeDragSource andGtkTree-
DragDest. The former is necessaryto drag from
a tree,while the latter is neededto supportdrops.
Like the sorting column, all the modelsshipped
with GTK+ implementthesetwo signals.

8 “If I had to do it over. . . ” or “lessons
learned”

It turned out to be harder than I had expected
to write a generic model interface. As a re-
sult of not restricting the view to a specific im-
plementationof the model (unlike the text wid-
get in GTK+

�����
), there was no way to work

aroundparticular limitations of that implementa-
tion. Theselimitations led to someunfortunate
hackslike the ITERS PERSISTflag andthe Gtk-
TreePath/GtkTreeIter dichotomy. It also made

binding the model in a high level languagelike
Pythontricky.

Additionally, the cell measuringsystemactually
turnedout to be noticeablyslow. While the view
can handlelarge (on the order of 100,000)num-
bersof nodeswithout problems,measuringthese
stringsis a seriousbottleneck.A bettergeometry-
managementschememight havesaveda few of the
necessaryhacksaddedfor speed.

A First Example

A smallcode-fragmentthatcreatesall thepartsnecessaryfor aview.

enum {
FIRST_COLUMN,
SECOND_COLUMN,
NUM_COLUMNS

};
...
{
GtkTreeStore *model;
GtkWidget *view;
GtkTreeViewColumn *column;
GtkCellRenderer *cell_renderer;

/* Create a model. We are using the store model for now, though we
* could use any other GtkTreeModel */

model = gtk_tree_store_new (NUM_COLUMNS, G_TYPE_STRING, G_TYPE_STRING);

/* Fill the model with text */
custom_populate_model_function (model);

/* Create a view */
view = gtk_tree_view_new_with_model (GTK_TREE_MODEL (model));

/* Create a cell render and set an attribute */
cell_renderer = gtk_cell_renderer_text_new ();
g_object_set (G_OBJECT (cell_renderer),

"foreground", "dodger blue",
NULL);

/* Create a column, associating the "text" attribute of the
* cell_renderer to the first column of the model */

column = gtk_tree_view_column_new_with_attributes ("Column 1",
cell_renderer,
"text", FIRST_COLUMN,
NULL);

/* Create a second cell render and set an attribute */
cell_renderer = gtk_cell_renderer_text_new ();
g_object_set (G_OBJECT (cell_renderer),

"weight", "bold",
NULL);,

/* Create another column, associating the "text" attribute of the
* cell_renderer to the second column of the model */

column = gtk_tree_view_column_new_with_attributes ("Column 2",

cell_renderer,
"text", SECOND_COLUMN,
NULL);

/* Add the second column to the view. */
gtk_tree_view_append_column (GTK_TREE_VIEW (view), column);

/* The view now holds a reference to the model. We can get rid of our own
* reference if we no longer need it */

g_object_unref (G_OBJECT (model));

/* Now we can pack the view in another container */
}

B GtkTreeModelInterface

TheGtkTreeModelinterfacedescribestheway thattheview andthemodelinteract.It is shown herein an
abbreviatedfashionin theinterestof space.Thefully documentedinterfacewith prototypescanbefound
athttp://developer.gnome.org/doc/api/.

B.1 The Signals

Thesesignalsareemittedevery time themodelchanges.It is possibleto explicitly follow what happens
with amodelsimply by listeningto thesesignals.

GtkTreeModel::row changed
GtkTreeModel::row inserted
GtkTreeModel::row has child toggled
GtkTreeModel::row deleted
GtkTreeModel::rows reordered

B.2 The Methods

Thesemethodsareusedto inspecta model.Everymodelmustimplementtheseataminimum.

GtkTreeModelFlags gtk_tree_model_get_flags (GtkTreeModel *tree_model);
gint gtk_tree_model_get_n_columns (GtkTreeModel *tree_model);
GType gtk_tree_model_get_column_type (GtkTreeModel *tree_model,

gint index);
void gtk_tree_model_get_value (GtkTreeModel *tree_model,

GtkTreeIter *iter,
gint column,
GValue *value);

/* Iterator movement */
gboolean gtk_tree_model_get_iter (GtkTreeModel *tree_model,

GtkTreeIter *iter,

GtkTreePath *path);
GtkTreePath * gtk_tree_model_get_path (GtkTreeModel *tree_model,

GtkTreeIter *iter);
gboolean gtk_tree_model_iter_next (GtkTreeModel *tree_model,

GtkTreeIter *iter);
gboolean gtk_tree_model_iter_children (GtkTreeModel *tree_model,

GtkTreeIter *iter,
GtkTreeIter *parent);

gboolean gtk_tree_model_iter_has_child (GtkTreeModel *tree_model,
GtkTreeIter *iter);

gint gtk_tree_model_iter_n_children (GtkTreeModel *tree_model,
GtkTreeIter *iter);

gboolean gtk_tree_model_iter_nth_child (GtkTreeModel *tree_model,
GtkTreeIter *iter,
GtkTreeIter *parent,
gint n);

gboolean gtk_tree_model_iter_parent (GtkTreeModel *tree_model,
GtkTreeIter *iter,
GtkTreeIter *child);

void gtk_tree_model_ref_node (GtkTreeModel *tree_model,
GtkTreeIter *iter);

void gtk_tree_model_unref_node (GtkTreeModel *tree_model,
GtkTreeIter *iter);

