
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Linux on the System/390

Adam Thornton
Sine Nomine Associates

Abstract

This paper is meant to serve as a general overview of
the Linux port to the IBM System/390 mainframe
architecture. The System/390 architecture is
introduced, and its history and design are briefly
discussed, including IBM’s operating system VM,
which allows virtualization of the System/390 and
hence a way to split the machine into a large number
of virtual machines. The short history of Linux on the
platform is then covered, and ways in which running
Linux on the System/390 make sense are discussed,
chief among them the possibility of running many
Linux instances on a single System/390.

Differences between the System/390 port and other
ports of Linux are introduced, and the necessity for a
general solution to the problem of timer interrupts in a
virtual environment is raised. The I/O model of the
System/390 is then described, with an example
comparing a Linux/390 network driver with a PCI
network driver that highlights some of the
idiosyncracies of the System/390. Ways that a
developer can begin working with Linux for
System/390 are suggested, ranging from use of an
employer’s existing machine through acquisition of a
used development machine to Hercules, a free
System/390 emulator for Linux. Finally, areas in
which development help is most badly needed are
spotlighted.

Introduction

The System/390 is one of the more recent targets for a
Linux port. IBM’s port became available in mid−
December of 1999, and formal support for it was
announced May 17. Further commitments have been
made in the meantime by IBM. IBM is clearly heavily
invested in supporting Linux on all its platforms (with
the exception of the AS−400), and that most definitely
includes the System/390. The System/390 port looks,
from user mode, like any other Linux system; inside
the kernel, and especially inside the device model, it’s
somewhat unusual. Although mainframes are typically
very expensive computers, hobbyists and people
wishing to evaluate Linux/390 without investing in a
System/390 can use Hercules, a free System/390
emulator, to see Linux on the System/390 with no
investment but their time.

History and Architecture of the System/390

The System/390 is the direct descendent of IBM’s
System/360 series, announced in 1964. The binary
format of the instructions has not changed, so it
should, in theory, be possible to run a program written
for a 360/25 in 1965 on a modern Multiprise 3000. In
practice it is more difficult, since although the
instructions themselves have not changed, the
interface to operating system services certainly has as
operating systems have come and gone.

In the mainframe world, you will hear about at least
two operating systems. OS/390 is what is usually used
for heavy−duty commercial work; it’s the successor of
MVS, which is the successor to OS/360. Most sites
doing serious data processing on the System/390 use
OS/390. However, more important from the Linux
perspective is VM, "Virtual Machine." VM virtualizes
the System/390 hardware. The usual shell run under
VM is CMS, the Conversational Monitor System. In
essence, each user gets his or her own copy of a
System/390, with attached peripherals, to play with. If
you’ve used VMWare on Intel, VM is the same idea,
but with 30 years longer to mature, and implemented
on hardware that is friendly to self−virtualization.

VM is much more conservative of system resources
than VMWare. A typical CMS installation on a large
system can support between ten and twenty thousand
simultaneous users, each with a unique (virtual)
System/390. VM, however, doesn’t have to run CMS.
Because the interface it presents is, simply a
System/390 as defined in the Principles of Operation,
it can be used to run TPF, VSE/ESA, OS/3901, and, of
course, Linux.

The architecture itself is a fairly standard big−endian
32−bit design. You will often hear System/390
operating systems referred to as 31−bit: this refers to
the amount of memory immediately addressable. This
is 31 rather than 32 bits because the 360 and 370
architectures were 24−bit designs, and to maintain
compatibility when XA ("eXtended Addressing")
mode came along, the top bit in a word was set high to
indicate XA rather than 370 mode. Additionally, the
ESA architecture allows for up to 16Tb of expanded
storage, which is accessed by a fancy version of bank
switching. Linux on the System/390, however, is still
restricted to a 31−bit address space for the time being.
The largest usable machine appears to be 1919M

1 This is a very common use of VM: you can test a
new version of OS/390 under VM and work out the
migration bugs so when you upgrade the
production machine, there is very little downtime
of the primary system.

(which is 2G minus 128M minus 1M, but I don’ t know
what significance that has).

If you need a larger machine, currently the only way to
go beyond 1919M is to use the XPRAM driver to put
swap space in expanded memory (which can lie
beyond 2G). This limitation will vanish at the end of
this year, when IBM introduces its successor to the
S/390 line. It is code−named "Freeway", and not much
is known about it (at least by me) other than that it is a
64−bit architecture, and it will presumably include
compatibility modes to allow older software to
continue to run. A 64−bit Linux port is expected
almost immediately on its introduction. Therefore,
don’ t expect to see much action from Boebligen on
fixing the 1919M limitation; the recommended
solution, if you need that much real memory, will
probably be to buy a 64−bit engine.

You’ve probably heard of EBCDIC. It is the character
encoding used by traditional mainframe operating
systems. Its primary feature is that it is not ASCII;
interoperability with ASCII systems therefore requires
translation tables and is a bit of a headache.
Linux/390, however, is not (unlike Unix System
Services, a platform to make porting Unix applications
to OS/390 and VM easier) EBCDIC; it’s a plain old
ASCII system. As far as the hardware is concerned,
it’s all just ones and zeroes. The only place you see
the EBCDIC translation is in the console driver, as the
console expects to see EBCDIC characters appear on
it.

The System/390 has two classes of instruction:
problem mode and supervisor mode. These
correspond to user and kernel states, and allow for
privileged instructions which cause a machine trap
when a user−mode program tries to execute them. The
instruction set is very, very rich: this is an extremely
CISCy machine (the current 390 Principles of
Operations, or architecture definition, is the size of a
telephone book). For this reason, and because IBM
provides a very good macro assembler, a great deal of
programming on the System/390 is still done in
assembly language rather than a high−level language.

History of Linux on the System/390

Linux on the System/390 is an idea that has been being
kicked around since Linux’s earliest days, but not
much was done until 1998 or so. Linas Vepstas and
others began a port of Linux, called "Bigfoot", which
was an implementation that ran on System/370 (the
390’s predecessor) and later processors. By early
December 1999, Bigfoot would boot and usually load
/bin/sh before panicking and crashing.

In mid−December, IBM Boebligen released its port of
Linux to the System/390. The IBM port has
significant differences from the Bigfoot port. Most
notable is that it actually runs. However, it does
require that you have a second−generation (G2) or
later CMOS System/390 machine, as it uses certain
halfword immediate instructions introduced with the
G2 architecture. Peter Schulte−Strack has released a
set of "Vintage" patches which allow Linux to run on a
G1 machine, which opens the door to a wider variety
of processors. However, the IBM port is certainly
never going to run on a 370.

While Bigfoot was a vastly interesting project, and
was developed as a proper Open Source project rather
than as a skunkworks secret endeavor, it appears to be
dead, or at least in stasis. All further mention of Linux
on the System/390 will assume the IBM port.

The System/390 port was originally bootstrapped by
writing a cross−compiling backend to GCC that
produced System/390 code, cross−compiling glibc for
the 390 architecture, and then uploading those and the
kernel built with them to a real System/390. At this
point there are two distributions of Linux for the
System/390, so it is no longer necessary to build a
cross−compilation environment: simply allocate
enough disk space, copy Linux/390 onto it, IPL (Initial
Program Load, or IBM for "boot"), and go.

Operational Characteristics of the System/390

The System/390 has more I/O capacity than any other
computer on the planet. IBM has spent 35 years
evolving this line of computers to support enormous
databases with rock−solid reliability.

However, the System/390 does not have particularly
good CPU horsepower. That’s not to say you don’ t
get reasonable performance out of one: they have quite
a bit of oomph, but in terms of MIPS per dollar, Intel
or Alpha beats them hands−down. They certainly are
not cheap, and if what you need is computation rather
than I/O, then it makes no sense to run Linux on a
System/390. Further, floating−point support on pre−
G5 models is not IEEE floating−point. Since Linux
expects IEEE floating−point, those instructions must
be emulated for earlier processors, which causes a
very noticeable speed reduction on anything requiring
much floating−point2, most notably KDE.

However, much of the time, CPU performance is not
what is needed, and I/O is. Web hosting is the obvious

2 Those old enough to remember Linux on the i386
or the i486SX remember the pain of emulated
floating−point.

example; in fact, pretty much any sort of e−commerce
application is going to have far more significant I/O
needs than CPU needs.

One of the features of the System/390 is the ability to
split a single physical machine into many virtual
machines. This can be done in hardware, with a
facility called LPAR ("Logical PARtition"), which
allows up to 15 machines to be carved out of a single
computer. It can also be done in software.
Traditionally, this has been done by running VM.

David Boyes ran a test under VM (VM itself was
running in an LPAR of a medium−to−large
System/390, from which it could use a maximum of
10% of the machine’s cycles) in which he brought up
41,400 simultaneous Linux images before the virtual
machine ran out of resources. Although this number is
not representative of a real workload (it was Apache
serving static pages only), there is a customer running
over 3200 Linux machines (as of August 5), in
production, on a single System/390.
On August 2, IBM announced VIF, the Virtual Image
Facility, which is to all intents and purposes a
stripped−down VM, with the ability to run multiple
virtual machines, but with the sophisticated monitoring
and resource allocation tools removed. VIF would let
you run hundreds or thousands of images; however, it
would not let you allocate resource caps to particular
machines, so it would not be possible to keep one
greedy Linux user from affecting performance for the
rest of the Linux images on the machine. Under VM it
is easy to cap each machine’s resource usage, and to
change those caps on the fly.

For OS/390−only shops, Linux has been reported to
run under ISX, which is essentially a virtual machine
facility for OS/390. ISX is not a complete
implementation of a System/390: notably, it doesn’ t do
SIE, and therefore cannot run VM, but it implements
enough of the architecture to run Linux.

Why would you want to run Linux on the System/390?
There are several good reasons. First is that VM (or
VIF) gives you the ability to run thousands of virtual
machines of the same piece of hardware. For an ISP
or ASP, the savings in terms of facilities and
management costs quickly overcome the higher initial
cost of the System/390 hardware: if you are building a
data center based around Suns, your crossover point is
around 25 servers; with Intel, it’s more like 150
servers. In either case, this is a small fraction of the
several thousand machines VM can run with
acceptable performance.

Networking many virtual machines is much easier than
managing a physical facility. All you need to do is to

pick a machine that owns the actual network interface,
or define one machine per interface if you prefer. This
machine has traditionally been the VM TCP/IP virtual
machine (that is, the virtual machine in charge of
VM’s TCP stack), but there is no reason it couldn’ t be
an OS/390 LPAR or, indeed, a Linux virtual machine.
That machine is then set up as the gateway, providing
route information via routed about the machines
behind it. If you preferred, and if your network was
simple enough, you could, of course, use static routes.
The virtual machines then run with point−to−point
connections over virtual channel−to−channel
connections or over VM’s Inter−User Communications
Vehicle (IUCV). vCTC speeds are about 250MB/s,
and IUCV about 500MB/s, sustained.

For certain webhosting models, the ability to bring a
new server online for a customer within 90 seconds at
a marginal cost of very nearly zero is a compelling
argument. For commercial hosting you’ re probably
going to want to run under VM rather than VIF, so that
you can guarantee SLAs by preventing resource
hogging. On the other hand, if what you want to do is
server consolidation without guaranteed resource
limits, VIF would be ideal. For instance, you might
want to take a bunch of departmental servers and place
them on a single box under unified management, while
preserving departmental autonomy by giving each
department its own virtual machine.

A university (universities are traditionally good places
to find underutilized mainframes with pre−existent
VM licenses) might want to run an advanced operating
systems or networking class where you can give each
student his or her own machine. The student can have
absolute control over that machine, and thus you can
do interesting systems programming assignments
without the risk of a traditional shared machine setup
and without the cost of giving each student a physical
machine. The University of Nebraska is, in fact, doing
exactly this. Academic clustering research can also
benefit from Linux under VM, since it’s a lot easier
and cheaper to bring up multiple images on the same
physical box (assuming the mainframe is already
installed at the site) than it is to wire a bunch of
machines together.

Finally, it even sometimes makes sense to run only a
single Linux image on the System/390. This might be
the case if your shop runs a database on OS/390 (or
VM) already. By putting up Linux, either in an LPAR
or under VM, you gain all the benefits of running
Apache as your Web front end: it’s free, it’s easy to
find staff with administrative skills, you can use Perl,
Python, PHP, or even ASP as a scripting environment,
and, best of all, the network connection between your
Web server and your database runs at memory speed

over vCTC or IUCV.

Any multi−tier application that depends on a
System/390 as its back end benefits from this
approach. This does not have to be a web
server/database combination. For example, if you had
a POP or IMAP server residing on your mainframe
providing mail services to users, you might want to
implement spam and relaying protection in your SMTP
MTA. While you could code this from scratch,
sendmail already knows how to do it: it might be much
more efficient to run sendmail in a virtual machine to
provide this protection and then hand the remaining
mail off to your native mail server.

The only reason I can think of to run Linux native on a
real System/390 as the only operating system would be
if you have a very low−end System/390 as a
development machine (assuming the P/390 console
problem has been solved), or if you have a System/390
which has been decommissioned, and thus you no
longer have OS/390 or VM for it, but want it to do
something useful until it develops a hardware problem.
Of course, if you’ re using Hercules, and thus getting
an emulated System/390 for free, Linux makes a lot of
sense; this is really a special case of a low−end
development box.

The Kernel

The kernel is pretty much under the control of IBM
Boebligen. However, it also largely works, so there
really isn’ t very much to do.

There are two outstanding issues, solutions to both of
which are rumored to be under development by IBM.

The first, and most significant, concerns the timer
interrupt. The default value of HZ on the System/390,
as on all other architectures except the Alpha, is 1003.
In normal operation, an interrupt handler executed 100
times a second is not a problem. However, consider
the case where you have 5000 virtual machines all
executing at once. Then you’ re needing to service half
a million interrupts each second, and that eats heavily
into the amount of processor time available to get
useful work done. In fact, both for the 41,400 image
test and for the 3200 virtual machines in production,
the value of HZ has been set to 10. This means that
interactive performance is atrocious, although since
the production servers are running only INN and bind,
their performance is still adequate for their workload.

3 I’ve heard that HZ changes to 1000 in 2.4, at least
for the Intel processor. This would be a very bad
idea for the System/390, especially if it is running a
virtual environment, as you will see.

The right answer to this problem is to have something
like #ifdef RUNNING_VIRTUAL in the kernel,
which disables timer interrupts in the idle task, and
upon receiving a real interrupt, sets the jiffy count by
querying its hypervisor to ask for the real time of day.
This would not just be a VM fix: it is equally
applicable to Linux under VMWare, under Plex86,
and to User−Mode Linux.

The second issue involves PAGEX support. Currently,
when Linux pages, the current Linux task is suspended
while the right page is brought into memory. PAGEX
comes from the VM world, and would allow the Linux
machine to signal to its hypervisor that the machine is
page−faulting. That would not only enable us to do
away with one level of paging (VM’s paging is much
more sophisticated than Linux’s), but would enable
VM to more efficiently schedule its tasks, which might
include multiple Linux machines.

System/390 support was integrated into the main
kernel tree as of 2.2.14. Whether it works right out of
the box is another matter. 2.4 support should be along
Real Soon Now. The kernel development keeps
tickling hitherto undiscovered bugs in GCC and glibc,
and high optimization levels and thread support are
still a little buggy. The assembly syntax used owes a
lot more to GCC than to the mainframe, so old−time
mainframers may feel a bit out of place, but anyone
who has worked with assembly code under GCC will
feel right at home, once the new instruction set is
digested.

The only truly odd part of the System/390 architecture
to the developer steeped in PC culture is the I/O
subsystem.

System/390 I/O

System/390 devices are attached to channels, which
are essentially device busses. Traditionally channels
were parallel bus−and−tag architectures, supplied on
huge cables4, but this has been supplanted in the past
decade by fiber optic ESCON channels. In any event,
they’ve always been very fast compared to their
contemporaries. One way to think of System/390
peripherals is as SCSI on steroids. For an I/O

4 The term given to reconfiguring physical devices
by rewiring them to different channels, typically
underneath the raised floor of a machine room, was
"poking the boa" (as in, "I can’ t go have a beer
with you Friday; I have to poke the boa."). One of
the leading channel cable manufacturers called
itself "Anaconda." The names are pretty accurate,
in terms of the cable size.

operation, the host processor issues a command to the
device (possibly a single command, but more likely an
entire channel program), and the device proceeds with
its work asynchronously. Then once the device has
completed the operation, it will send an interrupt to the
processor stating that it’s finished its task. Channel
commands are documented in Principles of Operation
as well. Each device has its own subchannel, and up
to 65,536 devices are attachable simultaneously.

This makes writing device drivers for Linux/390 more
akin to writing SCSI drivers than to writing any other
sort of device driver. It’s certainly a black and
esoteric art, which requires intimate knowledge not
only of the Linux device driver structure (Allesandro
Rubini’s book Linux Device Drivers is very helpful
here), but of S/390 channel architecture and device
design.

A description of the abstraction of the System/390
device model and the API that device driver authors
should write to is found in kernel−
source/Documentation/s390/cds.txt, and is required
reading if you’ re going to be working on device
drivers. To summarize: the IRQ does not exist as such
on the System/390. However, to modify as little of the
extant (mostly x86−based) code as possible, the
developers decided to map System/390 subchannels
onto IRQs. Basically, instead of being restricted to 16
IRQs, as you are with the ISA bus and its derivatives,
under Linux/390, you get 65,536 IRQs to play with.

However, bolting the System/390 I/O model onto Intel
assumptions is not without peril. Perhaps the most
confusing piece to people who write Intel device
drivers is that the dev_id parameter has been reused.
While on the Intel architecture, it is used to specify
multiple devices sharing an interrupt, on System/390
dev_id serves as a shared buffer to let the generic
interrupt layer and the device−specific driver
communicate about the status of the interrupt. There
are some other differences that can easily bite the
developer; because disabling an interrupt on the
System/390 actually means telling the device "do not
accept any more interrupts" rather than masking a bit
on the PIC, disable_irq() is problematic, since we
would like it to be able to return an error condition.
Thus it and enable_irq() are defined to return int rather
than void, which is Intel’s behavior.

All actual work done in the device driver is done
through the do_IO() interface; the device driver may
not directly issue commands on its own. Aside from
that, writing a device driver is pretty straightforward:
disable the interrupt you’ re currently handling,
schedule a bottom half if it’s going to be a long−
running process, do your work, reenable interrupts. Of

course, you should try to avoid setting the
DOIO_WAIT_FOR_INTERRUPT flag, which turns
on synchronous processing, since that will cause other
CPUs to spin in an SMP environment, and few
production System/390s are uniprocessor5.

Take, as an example, the difference between how bits
are put on the wire with kernel−
source/drivers/net/ne2k−pci.c and kernel−
source/drivers/s390/net/ctc.c. The PCI driver uses a
function called ne2k_pci_block_output (Listing 1),
which messes with a bunch of setup (including some
little−endian ugliness), sets ei_status.dmaing to
indicate the DMA channel is busy, then writes a bunch
of 16−or−32 bit chunks, depending on whether it’s in
16 or 32−bit mode. It does this with the outsl or outsw
functions. Finally, it resets ei_status.dmaing and exits.

On the other hand, the corresponding function in ctc.c,
which describes I/O through a 3088 channel interface
(which is what is emulated in a vCTC), is called ctc_tx
(Listing 2). It too does a lot of setup, mostly related to
whether or not the device is currently busy. If it isn’ t,
the spinlock is set to assure synchronization across
multiple CPUs, and device transmittal status is set to
busy with ctc_test_and_setbit_busy(). The packet to
be transmitted is moved into the lp field of the driver’s
privptr data structure (of type ctc_priv, basically a
representation of the 3088’s state), and a whole pile of
status is set via the channel[] data structure to
represent the I/O occuring on this device. The actual
write is anticlimactic: do_IO() is called, with privptr
supplying all the commands and data, which has the
effect of calling WRITE with the contents of lp being
put on the wire. Then the busy flag is turned off, the
spinlock is unset, and the function returns.

In short, writing device drivers is kind of a mess.
Fortunately, there are a few examples in the kernel
source tree under kernel−source/drivers/s390, and
some support functions can be found in kernel−
source/arch/s390. Be warned that many of the
Boebligen developers do not believe in comments; it’s
not easy going. Once you have device specifications,
so you know what channel commands to issue to
achieve the desired results, it’s not particularly
difficult, or at least, no more so than writing device
drivers for any other architecture usually is.

Some devices have their channel interfaces well−
documented. In that case, writing the device driver is
a matter of implementation. It may be a little

5 Indeed, the uniprocessor support in Linux/390 is
still somewhat buggy; it is recommended to build
an SMP kernel even for uniprocessor systems
because of some unwanted interaction with the
network drivers on non−SMP systems.

technically difficult, but there’s nothing especially
groundbreaking about it. For devices with proprietary
interfaces, you’ re potentially in trouble. If you really
feel a need to write a device driver for an
undocumented interface, then you’d better hope you’ re
running under VM. If you are, then VM’s debugging
facilities will let you trace and record input and output
to the device, and you can begin to reverse−engineer
the communication protocol that way. One good
example might be the Shared File System (SFS) for
VM. IBM published a set of Rexx scripts that allow
you to do SFS over TCP/IP. Armed with that
knowledge and a packet sniffer, it would not be very
hard to determine what the proprietary SFS
communication protocol really consists of. Of course,
you can always mount SFS filesystems via the VM
NFS server, so the utility of the time investment would
be questionable at best.

User Mode

There’s really not much at all to say here. It’s Linux.
There’s no EBCDIC in sight. It looks, tastes, feels,
and smells like Linux. Porting user−mode applications
is generally trivial; if the application does not depend
on hardware that isn’ t available on the System/390,
and if it doesn’ t make any assumptions about byte
order, it should, and almost always does, just compile
and work. For now it’s necessary to patch config.sub
and config.guess to recognize Linux/390; autoconf will
eventually include system definitions for it, and it’s a
two−line patch to each file in any case.

How Can I Play?

There are several approaches to developing for
Linux/390. Some require access to a real System/390,
and some don’ t.

The easiest, of course, is if your organization already
has a System/390. If you’ re running VM, then it’s
probably not going to be a problem to allocate a 64M
class G (general user) machine with a few hundred
megabytes of disk. If not, then it might be a little
tougher to get an LPAR, but if you request it and have
it happen at your next scheduled maintenance window,
it shouldn’ t be impossible.

If you work at a well−funded shop serious about
getting into the Linux/390 market, then you really
should invest in a VM license. The ability to create
multiple images as well as the debugging and
monitoring facilities make development a great deal
easier.

If you don’ t have a System/390, then you might want
to acquire one. The smallest machine, currently, is the

Multiprise 3000. Even through the IBM Partners in
Development program, it’s going to cost you $65,000
or more. You may have more luck on the used
market. A PCI−based P/390, which is a System/390
on a full−sized PCI card, cost me $5000. MCA
versions are cheaper (as little as $800−$1000), but
require an MCA PS/2 or RS/6000 to run, which I
didn’ t have. Not all hosts are suitable for a P/390, but
the IBM PC Server 325 was popular on Onsale.com
last year, and works just fine (the 330 and the 500
were the officially supported platforms). Expect to
pay $700 or so for one. Then you need an OS/2
license for the host machine (the P/390 is hosted by
OS/2 on the PC, AIX for the RS/6000); however,
Warp Server in the shrinkwrap is available for next to
nothing from the usual auction sites. In essence,
you’ re looking at about $6000 for the hardware and
necessary glue code. Make sure that your P/390
comes with the Licensed Internal Code that supplies
the System/390 microcode, or what you have is a very
expensive, albeit pretty, paperweight, not a computer.

There’s also a commercial software solution:
Fundamental Software publishes Flex−ES, which is a
System/390 emulator for Intel. Their prices start at
about $15,000, but on a high−end Intel system, you
can get quite a bit more CPU power than you can from
a P/390.

By the time you read this, Linux/390 will almost
certainly be booting natively on the P/390. As of the
time of writing (early August) there were still some
minor problems with the console driver that required
setting a hardware breakpoint and manually clearing
the registers to get Linux to boot without VM on the
P/390.

A VM license will set you back many thousands of
dollars. If you’ re doing this on the cheap, don’ t go
there. However, there’s one more solution, which is
very slow, but has the great advantage of being free.

Roger Bowler wrote (and Jay Maynard now maintains)
Hercules, a System/370 and System/390 emulator for
Linux. It emulates the hardware well enough to boot
Linux/390 (and, unlike ISX, well enough to run VM),
and there exists a device driver (essentially a dummy
network driver) for the host system that can make the
emulated System/390 think it has a 3088 CTC
connection to the host, so you can run TCP/IP
applications to talk to the host (e.g. to install SuSE via
NFS). The Hercules license allows non−commercial
use for no charge.

Hercules is quite slow compared to the alternatives,
but on a fast PC it has begun to approach the speed of
a first−generation P/390. And, of course, it doesn’ t

cost anything. It’s certainly the best evaluation
platform available, although it may not be sufficient
for serious development work. At least you can get a
feeling for what Linux on the System/390 looks like
and whether it’s something you’ re interested in
pursuing.

You could also build a cross−compilation environment
and port software that way. But that’s no fun, it’s
impossible to test in the absence of a System/390, and
with Hercules available, there’s really no reason to do
so.

One other thing to try, if you’ re serious about
Linux/390 work: call IBM. They made me a very
attractive deal on a development system, and threw in
a VM license. They badly want people developing for
the platform, and are certainly serious about making
life easier for their developers.

Installing Linux/390

Once you have a G2−or−later System/390, either real
or emulated, with a few hundred megabytes of disk
space, then you need to choose a distribution. At the
moment your choices are Marist College’s sort−of−
Red−Hat based Linux or SuSE. TurboLinux is on the
way but is not yet available.

Basically, this is like installing any other Linux. You
prepare the disk space you’ re going to use (if you’ re
using CMS minidisks, you need to format and reserve
them within CMS before booting Linux), boot either
from tape or, under VM, the virtual card reader, set up
your network devices so you can get to installation
media on other machines, use mkfs to build new
filesystems (currently ext2 only, although SuSE may
contain support for reiserfs by the time you read this),
and put the files onto those filesystems. In the case of
the Marist distribution, this means unpacking a giant
tarball and then editing the configuration files in place;
for SuSE, it’s just like every other SuSE installation:
mount the CD−image somewhere it’s accessible via
ftp or NFS, select the packages you want, and install.

What Can I Do?

Most of the effort right now needs to focus on device
drivers. There are two glaring needs at the moment.

First, Linux desperately needs an open−source network
device driver. Because IBM still realizes substantial
profits from licensing its OSA−2 network interface
design to other companies, the ethernet driver is object
code only6. Work is being done on an Open−Source

6 This is legal because the driver is loaded as a

device driver to speak the CLAW protocol, which
would enable Linux to talk to a channel−attached
router (e.g., any Cisco 7xxx router). Hercules can use
the ctc driver to talk to a virtual network interface on
the host. However, if you want to make a difference
fast, write a very dumb, but open−sourced, 3172
network driver for Linux/390. This would require
reverse−engineering the 3172 communication
protocols and implementing a large enough subset to
let you put bytes on and take bytes off the network.

The second need is presumably being addressed by
IBM. Although Linux/390 can boot from a tape, it
cannot use tape devices. Until there is native tape
support, it is difficult to implement a backup solution
for Linux/390, although another avenue of approach
might be to write or port an Amanda client for VM or
OS/390. However, as with any device driver
development, familiarity with both Linux and with the
hardware platform is necessary.

There are a number of nonessential "wouldn’ t it be
nice ifs." Channel−attached printer support is one
such. However, it’s not nearly as necessary as a tape
driver: lpr works fine, and lpd implementations exist
for VM and OS/390.

Although recent versions of mainframe operating
systems have finally incorporated TCP/IP, much of the
mainframe world still relies on SNA (Systems
Network Architecture) to do its networking. There is a
Linux−SNA project, and although it is not yet
incorporated into Linux/390, it is sponsored by
TurboLinux. Since TurboLinux has announced its
intention to produce a Linux/390 distribution, it would
be surprising if Linux−SNA weren’ t included. If you
know both SNA and Linux, and would like to see
Linux (whether on the System/390 or on Intel)
penetrate further into traditional mainframe shops, this
would be an excellent area to explore.

If you intend to run Linux under VM, improved access
to VM facilities (particularly debugging and
performance monitoring), would be wonderful.
Although Neale Ferguson has written hcp, which
allows you to issue CP commands from Linux/390,
there’s a lot of work still to be done. This too,
obviously requires deep acquaintance with the
System/390 architecture and with VM’s services. If
you’ re trying this route, a CMS minidisk filesystem
driver would be a good place to start (even though you
can access the data over NFS already).

The System/390 is one of the most reliable pieces of
hardware on the planet, with MTBFs of 60 years for
recent 9672s. However, Linux high−availability

module and not actually linked into the kernel.

software support lags pretty far behind that of Solaris.
Red Hat has announced Piranha, an Open−Source
software HA project. I’m working on bringing it to
Linux/390, and any work you can do on it will help out
not just Linux/390 but Linux as a whole.

If you want to work on really bleeding−edge High
Availability stuff, consider the "VM Stun" project of
David Boyes and Perry Ruiter. VM already supports
clustering for multiple boxes in the same location
cabled together. Global clustering would stretch that
cable. The essence of the idea is that a virtual
machine state, and its meta−information (size of the
machine, privilege class, attached devices, and so on)
would be frozen, the entire package would be shipped
over the wire to some other location, and then the
package would be thawed and paged into the address
space of the new host machine. Saving the virtual
machine state is easy, but saving, shipping, and
restoring the meta−information is much more difficult.

We’ re discovering new GCC and glibc bugs almost
daily. If you’ re more adventurous than I am, you
could work on these. And, of course, if there’s any
particular piece of software you want, that doesn’ t yet
exist for Linux/390, then you’ re free to port it yourself.
Most applications require nothing more than a patch to
config.sub and config.guess and then a recompilation.
Doom took me about 20 minutes to port. Quake’s a
little harder, and because it relies on OpenGL
(System/390s do not have accelerated video), is
probably going to be unacceptably slow, even on a fast
processor. Before you expend the energy, check out
SuSE and the Iron Penguin project to see whether
someone else has already ported your application. The
odds are good that it’s already been done.

If it hasn’ t, and if you aren’ t using autoconf to
generate an appropriate system definition, it’s been my
experience that the Linux PowerPC port of anything is
usually the right place to start. It’s 32 bits, it’s big−
endian, and it usually doesn’ t use any inline assembly.
Because it’s Linux, we can assume GCC and GNU
make and the usual GNU tool layout. Once you can
specify these parameters in the Makefile, the battle is
just about won. High levels of optimization are still
pretty buggy, so turning optimization down to −O1 is
usually the right thing to do. If even that generates
code that doesn’ t quite work, −O0 may be required.
These problems should go away as the bugs get shaken
out of the compiler and libraries.

Conclusion

Linux/390 is an exciting and fun platform to develop
for. From a user−mode perspective it’s not very
exciting, since everything behaves as it should and

there’s little surprise. However, writing device drivers
is challenging, and writing tools to interact with a
traditional System/390 environment, be that VM,
OS/390, or VSE, is difficult and engrossing. The
System/390 for the first time puts Linux on machines
with the potential for extremely high reliability and
enormous I/O throughput. VM (or VIF) gives the
ability to run thousands of Linux images on a single
piece of hardware, which not only is a cost−effective
solution for the ASP/ISP market, but is also a great
opportunity to do clustering research much more
simply than with a traditional, discrete−machine setup.

Resources

http://linux390.marist.edu
http://www.s390.ibm.com/linux
http://www.vm.ibm.com/linux
http://www.linux390.com
http://linux.s390.org
http://penguinvm.princeton.edu

Listings

Listing 1: ne2k_pci.c, output of bytes to network in ne2k_pci_block_output()

 /* Now the normal output. */
 outb(count & 0xff, nic_base + EN0_RCNTLO);
 outb(count >> 8, nic_base + EN0_RCNTHI);
 outb(0x00, nic_base + EN0_RSARLO);
 outb(start_page, nic_base + EN0_RSARHI);
 outb(E8390_RWRITE+E8390_START, nic_base + NE_CMD);
 if (ei_status.ne2k_flags & ONLY_16BIT_IO) {
 outsw(NE_BASE + NE_DATAPORT, buf, count>>1);
 } else {
 outsl(NE_BASE + NE_DATAPORT, buf, count>>2);
 if (count & 3) {
 buf += count & ~3;
 if (count & 2)
 outw(cpu_to_le16(*((u16*)buf)++), NE_BASE + \
 NE_DATAPORT);
 }
 }

 dma_start = jiffies;

Listing 2: ctc.c, moving of packet into privptr and output of bytes to network in ctc_tx()
 (__u8 *)lp = (__u8 *) &privptr−>channel[WRITE].free_anchor−>block−>length \
 + privptr−>channel[WRITE].free_anchor−>block−>length;
 privptr−>channel[WRITE].free_anchor−>block−>length += \
 skb−>len + PACKET_HEADER_LENGTH;
 lp−>length = skb−>len + PACKET_HEADER_LENGTH;
 lp−>type = 0x0800;
 lp−>unused = 0;
 memcpy(&lp−>data, skb−>data, skb−>len);
 (__u8 *) lp += lp−>length;
 lp−>length = 0;
 dev_kfree_skb(skb);
 privptr−>channel[WRITE].free_anchor−>packets++;
 if (test_and_set_bit(0, (void *)&privptr−>channel[WRITE].IO_active) == 0) {
 ctc_buffer_swap(&privptr−>channel[WRITE].free_anchor, \
 &privptr−>channel[WRITE].proc_anchor);
 privptr−>channel[WRITE].ccw[1].count = \
 privptr−>channel[WRITE].proc_anchor−>block−>length;
 privptr−>channel[WRITE].ccw[1].cda = \
 (char *)virt_to_phys(privptr−>channel[WRITE].proc_anchor−>block);
 parm = (__u32) &privptr−>channel[WRITE];
 rc2 = do_IO (privptr−>channel[WRITE].irq, \
 &privptr−>channel[WRITE].ccw[0], parm, 0xff, flags);
 if (rc2 != 0)
 ccw_check_return_code(dev, rc2);
 dev−>trans_start = jiffies;
 }

