
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

VA SystemImager
Brian Elliott Finley <brian@valinux.com>

Abstract

Linux use in corporations and research
organizations has been growing at an amazing rate. It
is often used on large numbers of identical systems
serving as Internet server farms or high performance
computing clusters. Without the help of specialized
tools, the time and effort required to install and
maintain large numbers of machines grows almost
linearly as new systems are added. This creates the
demand for a tool with the ability to automate the
installation of new systems and maintain the software,
configuration, and content of those systems on an
ongoing basis.

System administrators at large sites will often
develop tools for automating the deployment and
update of their own systems, but these tools are often
very inflexible and are only designed to address the
specific needs of one particular set of systems.
Therefore these tools are often re−created by system
administrators at site after site, not being able to
capitalize on the work of their neighbors. The need
was perceived for a tool that could provide this
functionality at many different sites with different
configurations. This required that the tool be easy to
install, simple and straightforward to use, and that it
be designed in an open and extensible manner to
accommodate future changes and site specific
customizations.

This paper describes the resultant tool, VA
SystemImager. It is Open Source software and is
designed in a very modular manner. Great pains were
taken to ensure that it would be flexible and could
easily be modified to accommodate new hardware,
software, and site specific configuration needs in
future iterations. VA SystemImager is written mostly
in Perl and makes use of rsync(1), syslinux(2), and
pxelinux(2). It also required the creation of a
customized miniature Linux distribution for the
installation media. This paper will also discuss some
of the differences between VA SystemImager and the
KickStart network installation tool from RedHat.
KickStart is the tool most often compared to VA
SystemImager. Although there are a handful of other
tools available, none of them offer the flexibility and
ease of use of VA SystemImager.

Extended Abstract

Design Goals

− Images should be pulled from an already running
system.
− Completely unattended installs were a must.
− The unattended install system had to be able to
repartition the destination drive(s).
− One of the main design goals was ease of use. This
had to be a tool that could be used
 by a system administrator that didn’ t necessarily
understand how it worked.
− It was also necessary for it to install easily and
quickly so that it could be useful right away without a
lot of site specific customization.
− Images should be stored as normal files in
appropriately named directories as opposed to "dd"
style block level images of physical disks.
− Not everyone who needs to install a lot of Linux
systems uses the same distribution, so it had to be
independent of any and all packaging systems (such as
RPM).
− It should be able to store multiple images, for
different types of systems and for revision control, and
provide a mechanism for unattended install clients to
know which image to install.
− Once a client was installed, it should be able to
update itself to a new or updated image.
− It should easily accommodate different distributions.
− It should have a command line interface designed
such that it could later be wrapped with a GUI.
Some VA SystemImager terms and commands that
will be referred to in this abstract:

− autoinstall client − A machine on to which Linux is
to be installed using the VA SystemImager automated
process.
− autoinstall media − The media that is used to boot an
autoinstall client in order to begin the autoinstall
process. This media can be a floppy, a CDROM, the
network, or the local hard drive of the autoinstall
client.
− updateclient − A command that is executed on client
systems allowing them to be updated or synchronized
to a new or updated image.
− imageserver − The machine that will hold the
images.
− master client − The machine that has been manually

installed and configured the way you want your image
to look.
− getimage − This command is run from the
imageserver to pull a system image from a master
client.
− prepareclient − This command is run on the master
client immediately prior to running getimage on the
imageserver.
− makedhcpserver − Used to create the
/etc/dhcpd.conf file. DHCP can be used to assign IP
addresses to autoinstall clients.
− makedhcpstatic − Used to re−write the
/etc/dhcpd.conf file, adding static entries based on the
IP addresses already handed out to all of the
autoinstall clients.
− autoinstall script − A unique autoinstall script is
created for each image and is used by the autoinstall
client as part of the autoinstall process. The names of
these scripts begin with the image name and end in
.master. For example:
"my_webserver_image_v1.master"
− addclients − Creates a soft link to the master
autoinstall script with the name of each host that will
receive that image. It also allows you to populate the
/etc/hosts file with sequential host names and IP
addresses.

Resultant Architecture

VA SystemImager began as a series of
utilities written in bash. Minimal system requirements
were considered a top priority. As VA SystemImager
matured, and the utilities became internally more
complex, it became clear that bash was falling short of
the need. Perl was chosen to pick up the yoke and has
allowed for cleaner, more advanced code. It was
determined that Perl is installed as part of most "base"
Linux installs and therefore was a reasonable choice
from a minimal requirements perspective.

The architecture was designed to be open to
future modification at every level. The protocol used
for transferring files during installs and updates is
currently rsync(1). But the modular code will easily
allow for a drop−in replacement using mftp(5) or other
appropriate file transfer utilities. All file transfer
mechanisms are implemented in a "pull" fashion,
which is generally considered to be superior to a
"push". Using a "pull" mechanism, it is much easier to
monitor the state of the receiving system prior to and
during the file transfers.

There are other methods available for doing
automatic installs, such as RedHat’s KickStart which
installs systems based on a list of pre−defined
packages. But package based installs are very limiting

in that they generally don’ t have an automated way for
dealing with non−packaged files. If you re−compile
your kernel, add a piece of non−packaged software, or
modify certain configuration files, you are usually
required to do some sort of scripting or programming
to deal with these "special cases".

In order keep imaging simple, VA
SystemImager uses images that are based on a working
installed system. We call this system a "master
client". Just get one of your machines working exactly
the way you want and pull it’s image to the
imageserver with the "getimage" command. You can
re−compile your kernel, install custom software, and
do any configuration file tweaking you like. VA
SystemImager will get it all.

Now that you have your master client
configured, we need to run the "prepareclient"
command. prepareclient will collect the partition
information from your disks and put it in the
/etc/partitionschemes directory. A file will be created
in this directory for each of your disks and will contain
that disks partition information. prepareclient will also
creates an rsync(1) configuration file (/etc/rsyncd.conf)
and starts rsync in server mode (rsync −−daemon).
This allows the imageserver to pull the image from the
client, but will not cause the rsync daemon to be
restarted after the master client is rebooted. This helps
avoid security concerns of sharing a master client’s
root filesystem via rsync. rsync has the ability to use
OpenSSH(6) as an alternate shell and plans are in
place to modify VA SystemImager to run all
operations over OpenSSH(6) for security purposes.

On the imageserver we now run the getimage
command. Here’s an example: "getimage −master−
client=192.168.1.1 −image=my_webserver_image_v1"
getimage contacts the master client and requests it’s
/etc/mtab file. This file contains the list of mounted
filesystems and the devices on which they are
mounted. It pulls out the mount points for the
filesystems that are unsupported and creates an
exclusion list. Currently supported filesystems are
ext2 and reiserfs. Unsupported filesystems are things
like proc, devpts, iso9660, etc. getimage then pulls the
master client’s entire system image, excluding the
filesystems in the exclusion list. The files are pulled
by connecting to the rsync(1) daemon running on the
master client. All the files from the client will be
copied over, recreating the filesystem and directory
hierarchy in the image directory.

getimage can also be used to update an
existing image. By simply specifying an existing
image name, you are asking getimage to update that
image to match the files on you master client. In this

case, only the files that are different will be copied
over. Files that exist in the old image but not on the
master client will be deleted, and files that exist in
both places but have changed will be updated. This is
one way to keep an image updated when new security
patches or other system updates come out. However,
the recommended method is to never overwrite a
known working image, so that you have a form a
revision control. This is not true revision control,
where individual file revisions are tracked on a line by
line basis. It is more of a revision control on an image
by image basis. This form of revision control also ties
in to the updateclient command which will be
discussed later. By default, all images are stored in
the parent directory of
"/var/spool/systemimager/images/" in a directory that
bears the image name. For example:
"/var/spool/systemimager/images/my_webserver_imag
e_v1/".

After getimage has pulled the files to the
image directory on the imageserver it creates a
customized autoinstall script. The master script in this
case would be named
"my_webserver_image_v1.master". All autoinstall
scripts are placed in the "/tftpboot/systemimager/"
directory. The disk partitioning information left
behind by the prepareclient command is used to add
the necessary commands to re−partition the disk(s) on
the autoinstall clients. Filesystem information taken
from the /etc/fstab file in the image (Ie.:
"/var/spool/systemimager/images/my_webserver_imag
e_v1/etc/fstab") and is used to determine the
appropriate filesystem creation commands and to
determine mount points for the autoinstall process.
Based on command line options passed to getimage or
questions it has asked, certain networking information
is added to the autoinstall script. This information is
added in variable form as the autoinstall client will
later determine the values for things such as it’s
hostname and IP address.

When running getimage interactively, it will
prompt you to run the addclients command. addclients
will ask you for the series of hostnames that you will
be installing by combining a base host name and a
number range. For example, if your base host name is
"www", and your number range is from "1" to "3",
then the resultant host names would be "www1,
www2, www3". It will then prompt you to choose the
image that will be installed to these hosts and will
create soft links for each hostname that point to the
master script for that image. For example: "www3.sh
−> web_server_image_v1.master". If the image is
updated and you choose to allow getimage to also
update the master autoinstall script, then each of the
associated soft links therefore point to the new master

script. If individual host configuration is necessary,
the soft link for that host can be removed and replaced
with a copy of the master script that can then be
customized for that host. This customization is a
manual process and is up to the administrator of the
system. addclients will then prompt you for the IP
address information for these hosts and will re−write
the imageserver’s /etc/hosts file accordingly and copy
this file to /tftpboot/systemimager/hosts. The latter
file is used during the autoinstall process if the clients
are using DHCP to obtain their IP addresses.

The unattended install portion is flexible and
can work with most any hardware available. It is also
easily modified to work with new or special hardware.
A miniature Linux distribution is used for the boot
media for "autoinstalls" (unattended installs). It
consists of a customized kernel and an initial ram disk.
The same kernel and initial ram disk (initrd.gz) can be
used to boot off floppy disks, CDROMs, the network,
or a running system’s local hard drive. The commands
"makeautoinstalldiskette" and "makeautoinstallcd"
make use of the syslinux(2) utility to create floppies
and CDROMs that will boot the VA SystemImager
kernel and initial ram disk. pxelinux(2), which is a
sister tool to syslinux(2), allows the same kernel and
initial ram disk to boot PXE capable machines off the
network. A configuration file is needed by syslinux(2)
and by pxelinux(2), but VA SystemImager handles this
for you and the two tools are able to use the same
configuration file.

The autoinstall client is a miniature Linux
distribution that has been customized to contain the
specific commands and utilities necessary to perform
autoinstalls to clients. The kernel is compiled to
contain all the necessary drivers for a majority of
systems. Custom kernels can be compiled to match
special configurations. To use a custom compiled
kernel, simply copy it to /tftpboot/kernel. All of the
autoinstall media is created from /tftpboot/kernel and
/tftpboot/initrd.gz. syslinux is used to load the initial
ram disk and to boot the kernel when using an
autoinstall diskette or an autoinstall CD. pxelinux is
used to load the initial ram disk and to boot the kernel
when using network booting.

Once the kernel has booted, it mounts the
initial ram disk as it’s root filesystem. It then executes
an initialization script that has been customized to do
VA SystemImager specific things. This script will use
DHCP to get the autoinstall client’s IP address
information. It makes the assumption that the DHCP
server is the imageserver and contacts it to request the
utilities that would not fit in the initial ram disk. It
copies these utilities to another ram disk that is
mounted as /tmp1. It then requests a hosts file from

the imageserver (the one in /tftpboot/systemimager)
and parses this file to find it’s IP address in order to
determine it’s hostname. Finally it requests an
autoinstall script from the imageserver based on this
hostname and executes it. The autoinstall script is
image specific. This is how a client determines which
image it will receive.

The most common way to assign IP addresses
to the autoinstall clients is DHCP. To easify the
configuration of the DHCP configuration file
(/etc/dhcpd.conf) VA SystemImager includes a utility
called makedhcpserver. makedhcpserver will prompt
you for all the necessary information to create a DHCP
configuration file that is appropriate for VA
SystemImager. It is also possible to continue to use
DHCP to assign static IP addresses to your clients after
installation. If you choose to do so, simply run the
makedhcpstatic command. It will rewrite your
/etc/dhcpd.conf file on the imageserver to contain
static entries for each of your hosts.

Alternately, hostname, imageserver, and
networking information can be put in a configuration
file on a floppy diskette. When the autoinstall client
boots, it will look for this file on the floppy and use
the provided values instead of determining them
dynamically. This will work with any of the
autoinstall media. The configuration file can even be
put on the autoinstall floppy itself! The format of this
configuration file is simply VARIABLE=value for all
the appropriate variables. The name of this file must
be local.cfg and it must exist on the root of the floppy.
The floppy can be formatted with either ext2 or fat.
An example local.cfg file can be found with the
documentation files which are installed in /usr/doc.

Sometimes you will want to update an image
on your imageserver. There are a couple of ways to
do this. The first way is do directly edit the files in the
image directory. The best way to do this is to chroot
into the image directory. Once you have done the
chroot, you can work with the image as if it were
actually a running machine. You can even install
packages with RPM, for example. The second way is
to run the getimage command again, specifying a
master client that has been modified in the desired
way. Only the files that have changed will be pulled
across. Files that have been deleted on the master
client will also be deleted in the image. You are also
given the option to update the master autoinstall script
for the image or to leave it alone. The advantages of
this method are that you can verify that your new
configuration works on the master client, and that the
master autoinstall script is updated.

Once a system has been autoinstalled, the

updateclient command can be used to update a client
system to match a new or updated image on the
imageserver. Let’s say that you’ve installed your
companies 300 web servers and a security patch comes
out the next day. You simply update the image on the
imageserver and run updateclient on each of your 300
web servers. Only the modified files are pulled over,
and your entire site is patched! It is recommended that
you create an entirely new image with a new version
number so that you have a form of revision control.
This way, if you find out that the patch you applied
hosed your entire web farm, you simply do an
updateclient back to the know working image!

By incorporating some modifications sent in
by A.L. Lambert, using the "updateclient" command
with the −autoinstall option will copy the autoinstall
kernel and initial ram disk to the local hard drive of
the client. It will then re−write the /etc/lilo.conf file to
include an appropriate entry for the new kernel and
initial ram disk and specify this new kernel as the
default using the "−D" option. The next time the
client system is booted, it will load the VA
SystemImager kernel and initial ram disk, which will
begin the autoinstall process! This means that you can
re−install any running Linux machine without having
to have someone feed the machine a floppy or CD, and
without having to reconfigure the BIOS to boot off the
network (which can be quite squirrelly with some
BIOSes).

Summary of Steps

1) Install the VA SystemImager software on the
machine chosen to be the imageserver and configure
the machine to be a DHCP server using the
"makedhcpserver" command.
2) Choose the "master client" and make any desired
changes to this system including recompiling the
kernel, installing software, and tweaking configuration
files.
3) Install the VA SystemImager client software on the
client, which prepares it for having it’s image pulled.
4) Issue the "getimage" command from the
imageserver, specifying the master client and the name
to assign to the resultant image.
5) Create autoinstall media for floppy installs using the
"makeautoinstalldiskette" command, or for CD installs
using the "makeautoinstallcd" command. Network
boot clients should be told to boot off the network.
6) Boot the autoinstall client off the chosen media and
watch it autoinstall!

VA SystemImager is available for download from:

http://systemimager.sourceforge.net/

Future Improvements

VA SystemImager is under active
development. Many new features are being added by
the core developers and by end users. Some of the
more notable future improvements are:

− Support for software RAID on autoinstall clients.
− A multicast install utility is being developed that
will allow an unlimited number of autoinstall clients to
be installed in parallel.
− See http://systemimager.sourceforge.net/TODO for
others.

Acknowledgements

VA SystemImager was conceived and
developed by Brian Finley. It’s initial implementation
was known as pterodactyl and was used for software
and password updates to Solaris boxes of varying
hardware and OS versions across a nationwide
enterprise network. Over time it evolved into the
Linux specific autoinstall and update tool that it is
today. Many of the design decisions for VA
SystemImager were based on perceived shortcomings
in other automated install tools for systems such as
Solaris, RedHat Linux, and Windows.

Other people who have contributed code or
documentation that has been incorporated
(alphabetical order):
− Susan Coghlan <smc@acl.lanl.gov>
− Paonia Ezrine <paonia@home.welcomehome.org>
− Michael Jennings <mej@valinux.com>
− Ari Jort <ajort@valinux.com>
− Ian McLeod <ian@valinux.com>
− Michael P. McLeod <mmcleod@bcm.tmc.edu>
− Michael R. Nolta <mrnolta@princeton.edu>
− Laurence Sherzer <lsherzer@gate.net>
− Wesley Smith <wessmith@engr.sgi.com>

Other people who have contributed ideas and
suggestions (alphabetical order):
− Ted Arden <ted@valinux.com>
− Tanmoy Bhattacharya <tanmoy@lanl.gov>
− Susan Coghlan <smc@acl.lanl.gov>
− Steven Duchene <sad@valinux.com>
− Stephen Greene <sgreene@valinux.com>
− Bartosz Ilkowski <barbi@danforthcenter.org>
− Ari Jort <ajort@valinux.com>
− Brian Luethke <luethke@msr.epm.ornl.gov>
− Chip Salzenberg <chip@valinux.com>
− Robert Saft <zardoz@valinux.com>

References

(1) rsync −− remote synchronization/update protocol.
rsync is used to transfer files from the imageserver to
an autoinstall client or a client using the "updateclient"
command.

rsync was written by Andrew Tridgell
<tridge@samba.org> and Paul Mackerras
<Paul.Mackerras@cs.anu.edu.au>.

http://rsync.samba.org/

(2) syslinux −− syslinux is a boot loader for the Linux
operating system. It is used with the autoinstall
diskette.

syslinux was written by H. Peter Anvin.

ftp://ftp.us.kernel.org/pub/linux/utils/boot/syslinux/

(3) pxelinux −− pxelinux is a network boot loader for
the Linux operating system. It is used for
autoinstalling over the network.

pxelinux was written by H. Peter Anvin and is part of
the syslinux package listed above.

(4) tftp−hpa −− tftp−hpa is a tftp server that has been
modified to accept certain options, or "non−options"
required for the broken PXE protocol.

tftp−hpa was written by H. Peter Anvin.

http://www.kernel.org/pub/software/network/tftp/

(5) mftp −− mftp is a multicast ftp client that is
currently being written by Ian McLeod
<ian@valinux.com>. It is based on the multicast
libraries being written by Roland Dreier
<roland@valinux.com>.

(6) OpenSSH −− Ssh (Secure Shell) a program for
logging into a remote machine and for executing
commands in a remote machine. It is intended to
replace rlogin and rsh, and provide secure encrypted
communications between two untrusted hosts over an
insecure network. X11 connections and arbitrary
TCP/IP ports can also be forwarded over the secure
channel.

OpenSSH is OpenBSD’s rework of the last free
version of SSH, bringing it up to date in terms of
security and features, as well as removing all patented
algorithms to separate libraries (OpenSSL).

