

14

If ANIM is so crude, why bother using it? Why not animate an
algorithm simply by drawing geometric objects on the output device
you happen to be using? Some of the answer lies in services like
these:

Device Independence. A script file can be viewed interactively as a
movie on several different kinds of terminals; a higher-quality video-
tape can be made on some terminals. The same script file can be
incorporated into a document by stills.

Names. Labels allow geometric objects to be erased; implicit eras-
ure by re-using a label is easy to use and to implement. Click names
mark key events and can be used to group related events.

Independent Views. Different simultaneous views of a process are
crucial for animating algorithms. In ANIM, a single statement moves
from one view to another. Within a view, the user need not be con-
cerned about the range of coordinates; the system scales automati-
cally.

Viewer Control. Bothmovie and stills allow the viewer to
select which views will be displayed and which clicks will be recog-
nized. Additionally, movie allows the viewer to go forward or
backward, in single steps or running at a selected speed.

An Interface To The World. Although writing to files takes more
computer time than using the geometric primitives provided by a
specific output device, those files allow complicated tasks to be easily
composed out of simple software tools.

3. The System

We begin this section with the obligatory minimal movie:

echo text 0 0 hello, world | movie

This awk program makes a movie with real motion:

BEGIN { s = "hello, world"
for (1 = 1; i <= length(s); i++)
print "text", 1, 0, substr(s, i, 1)
}
Having dispensed with these formalities, we turn to the more sys-
tematic view of ANIM shown in Figure 8; additional details can be
found in Bentley & Kernighan [1987B]. A script file is processed by

Bentley et al.

generator [

1

____'L]
ldevelop
Cfnamed) ~aenio
Sbind .\hdoch IE/
F_—’/ :
mo';rle_l st1+lls
Terminal pic | troff |

Figure 8: Components of ANIM.

the heretofore unmentioned program named develop. The output
of develop is an intermediate file that feeds stills and movie.
The Script and Intermediate Languages.

The script language is summarized in this table:

optional label: line options x| y| X3 Y2
optional label: text options x 'y string

optional label: box options xmin ymin xmax ymax
optional label: circle options x y radius
view name

click optional name
erase label

clear

comment: any text

A line whose first non-blank character is # is a comment; blank lines
are ignored.

Labels are optional. If a label is present on a geometric object, it
names the object and implicitly erases any existing object with the
same name in the same view.

Each object type has a small set of valid options. Lines may have
arrowheads on either or both ends, and may be of several styles and
thicknesses. Text may be centered or left- or right-justified, in one of
several sizes. Boxes and circles may be filled. The options are a
(possibly null) list of names, terminated by the next numeric field.
For instance, a script file might contain the command

A System of Algorithm Animation

15

16

Al1l17: line <-> fat 0 234.021 1 234.087

to draw a heavy line with arrows at both ends.

The view statement places subsequent objects in the named
view, and c1ick denotes an interesting event.

A labeled geometric object can be explicitly erased by the com-
mand

erase label

The various views have distinct name spaces; the same label may be
applied to two unrelated objects in two different views. The clear
statement erases all objects in the current view.

The intermediate language can be viewed as the ‘‘assembly
code’” output of the develop program. The program scales all
numeric values into the range 0..9999, translates symbolic labels into
numbers, makes implicit erasures explicit, and translates options into
a standard form. The resulting file is easy for the subsequent movie
and stills to process; more details are in Bentley & Kernighan
[1987B]. The develop program began life as a 150-line awk pro-
gram, but is now about 1000 lines of C.

The Movie Programs.

The original movie program runs on the Teletype 5620 and con-
tains roughly 1500 lines of C. Movie production, as with most 5620
programs, uses a host process and a terminal process. The host sends
the intermediate file produced by develop in a compact form to the
terminal, which stores it in a form suited for forward or backward
display. Considerable effort was expended in making the internal
representation compact, since memory was at a premium in the 5620.
Fortunately, newer terminals and workstations have much more
memory, so this is no longer an issue.

The X version of ANIM has about 1100 lines of C in a single pro-
cess for animation, but requires 1800 further lines to convert the sim-
ple graphics and mouse interfaces of our local window system into X
calls.

We also implemented a version of movie on the SGI IRIS works-
tation, for producing videotapes suitable for classroom use. In some
ways it is less powerful: it runs only in the forward direction and
does not have single stepping. In other ways it is more powerful: the

Bentley et al.

viewer has greater control over the positioning of views and the time
spent pausing at clicks, and we have added colors as options on any
geometric object. In any case, the programs are different: the origi-
nal movie is controlled by a mouse, while the IRIS version has tex-
tual input. This version took only a few days; it is about 500 lines
long.

The Stills Program.

The stills program is a typical troff preprocessor. Portions
of its input bracketed by .begin stills and . end are translated
into pic commands, and the rest of the input is passed through
untouched. A paper containing stills input is typically compiled
by a command like

stills paper | pic | troff >paper.out
For instance Figure 4 was produced by this description:

.begin stills

file ffd2.s
view rect ""
view dots """

print weight 26 40
frameht 1.4
framewid 2.25

down

times invis
small -6
.end

The first line names the script file, and the next two lines select views
for display and give them null titles. The print statement causes
snapshots at the selected times of the click weight. The five
remaining lines are name-value pairs: the height and width are in
inches, down causes time to go down the page, and small text is
rendered six points smaller than usual.
In summary, stills input consists of these commands:

print all

print final

print clickname all

print clickname number number number

view name optional title
parameter—name value

A System of Algorithm Animation

17

At least one print statement and a £ile assignment are manda-
tory; other statements are optional.

4. Uses of The System

This section describes several animations produced by ANIM, and
some supporting tools.

Sorting.

Sorting algorithms provide one of the most fertile domains for
algorithm animation. Indeed, Ronald Baecker’s movie ‘‘Sorting out
Sorting’’ [1981] has provided for many students their first (and fre-
quently best) exposure to algorithm animation. One of the authors
recently faced the problem of giving a 50-minute undergraduate lec-
ture about sorting. There wasn’t time for the 25-minute ‘‘Sorting out
Sorting’’ (and the algorithms covered didn’t quite match the syl-
labus), so we used ANIM to produce a simpler and shorter substitute.

Figure 9 shows four frames from an animation of selection sort
on a 15-element array. The vertical lines represent the elements to be
sorted; in the initial frame they are in a random order, and in the final
frame they are sorted in increasing order. Each comparison between
a pair of elements is denoted by a horizontal line below the pair.
Selection sort works by first selecting the smallest element and plac-
ing it in the first position of the array, then selecting the smallest
remaining element for the second position, etc.

Figure 9 was produced by Program 3. The BEGIN block gen-
erates, draws, then sorts the array elements. Function randint gen-
erates random integers from a specified range; it is used to create the

|

comps: 1 comps: 49 comps: 50 final

Figure 9: Selection sorting a 15-element array.

18 Bentley et al.

BEGIN ({

n = 15

for (i = 1; i <= n; i++) {
x[1] = randint (1, 100}
draw (1)

}
selectsort ()
}
function randint(l, u) {
return 1 + int ((u-1+1)*rand())
}
function draw (i) {
print "a" i ": line", i, 0, i, x[1i]
}
function swap (i, 3j) {
t = x[i]; x[i] = x[3]; =xI[j] =t
draw(i); draw(j)
print "click swaps"”
}
function less (i, J) {
print "compline: line", i, -8, j, -8
print "click comps"
if (x[i] < x[J]) return 1; else return 0;
}
function selectsort (i, j) { # Sedgewick, p.96
for (1 = 1; 1 <= n-1; i++)
for (j = i+l; j <= n; Jj++)
if (less(j, 1)) swap(i, 3J)

Program 3: A simple program for animating sorting.

elements (and is also used by Quicksort). Function draw is the main
animation primitive. Functions swap and less are the two funda-
mental operations of all later sorting algorithms; they are augmented
to produce animations as a by-product. Function selectsort
implements selection sort, using less and swap as primitives.

Program 4 contains four additional sorting algorithms. The page
numbers in the comments are from Sedgewick [1988]. The heap sort
algorithm has been deleted from this program to conserve space (18
lines). We modify Program 3 to animate the various algorithms by
changing the final line in the BEGIN block.

The complete movie for the classroom lecture animated five sort-
ing algorithms in 74 lines of awk. Starting from a program like Pro-
gram 3, the task required two hours to write the sorts, one hour to
experiment with representations as seen through a home camcorder,
and one hour to shoot the five-minute movie onto videotape.

A System of Algorithm Animation

19

20

function insertsort (i, j) { # Sedgewick, p.98
for (1 = 2; 1 <= n; 1i++)
for (3 = 1i; 9 > 1 && less(j, j-1); J——)
swap(j-1, J)
}
function bubblesort (i, 3) { # Sedgewick, p.100
for (i = n; 1 >= 1; i--)
for (j = 2; j <= 1i; J++)
if {(less(j, j-1})) swap(j, j-1)
}
function shellsort(i, j, h) { # Sedgewick, p.108
for (h 1l; h <=n; h = 3*h + 1) ;
for (h int (h/3); h >= 1; h = int (h/3))
for (i = h+l; i <= n; i++)
for (3 = 1; J > h && less(j, j-h):; j —= h)
swap (J-h, J)

[}

}

function gquicksort(l, u, i, m) { # Sedgewick, p.115
if (1 >= u) return
m = 1

swap (m, randint(l, u))
for (i = 1+1; 1 <= u; i++)
if (less(i, 1)) swap(++m, 1)
swap{(l, m)
quicksort(l, m-1)
quicksort (m+l, u)

Program 4: Additional sorting algorithms.

As entertaining as it is to watch a fast runner, the real glory of
track meets is a race among many runners. Bentley & Kernighan
[1987B] contains a merge program that allows us to splice together
runs of the various sorting algorithms into a race. While some algo-
rithm animation systems implement races with a general mechanism
for time sharing, we do the job with a dozen-line awk program.

ANIM is also able to produce more sophisticated sorting anima-
tions. Figure 10 shows three frames of the history of Quicksort on a
50-element array. In the top view, the dots represent the elements to
be sorted (x is position in the array and y is value), the horizontal
lines represent a recursive call of Quicksort (width is the subarray
and height is the partitioning value), and vertical lines show two
pointers used by the partitioning code. The horizontal lines in the
bottom view give the history of the recursive calls, so the final view
represents the call tree of the function. This animation was produced
by a 55-line awk program.

Bentley et al.

- *ae - c'.. ™ .n JM
L ... G * "o, e ' -.’.‘
L - . . . 3 . .’o
. ‘. i _/A.-ﬂ" I,‘-ﬁ"
comp: 80 comp: 160 final

Figure 10: Quicksorting a 50-element array.

Three Dimensions.

Many processes to be animated naturally take place in three
dimensions. In this section we will sketch a simple preprocessor that
allows 3-d scripts to be viewed through sterco viewers. Figure 11,
for instance, shows a minimum spanning tree of 40 points distributed
uniformly over the unit cube; some readers will be able to view it by
crossing their eyes. The program we’ll describe translates a 3-d
script into a standard script that contains two 2-d views (for left and
right eyes).

Figure 11 was produced by Program 5. That simple version of a
stereo program handles five kinds of input lines: 1ines and text
are now in three dimensions, while view, c1lick and comments are

Figure 11: A 3-d minimum spanning tree.

A System of Algorithm Animation

21

22

BEGIN {

lpicx = 2; rpicx = 0
leyex = .44; reyex = l-leyex
gs = 3.8
planez = -.5
eyey = .5; eyez = -1
OFs = "\t"
}
$1 == "line" {

ax = $2; ay = $3; az = $4
bx = $5; bby = $6; bz $7
sfa = gs * (planez-eyez) / (az-eyez)
sfb = gs * (planez-eyez) / (bz-eyez)
print "line", lpicx + sfa*{ax-leyex), sfa*(ay-eyey),
lpicx + sfb* (bx-leyex), sfb* (bby-eyey)
print "line", rpicx + sfa*(ax-reyex), sfa*(ay-eyey),
rpicx + sfb* (bx-reyex), sfb*(bby-eyey)

print "click stereo"”
next

}

$1 == "text" {

tx = $2; ty = $3; tz = $4
sf = gs * (planez-eyez) / (tz-eyez)
print "text", lpicx + sf*(tx-leyex), sf*(ty-eyey), $5
print "text", rpicx + sf*(tx-reyex), sf*(ty-eyey), $5
print "click stereo”
next

}

{ print }

i

Program 5: A simple stereo program.

unchanged. The transformation for mapping a 3-d point into two 2-d
views assumes that all input is in the unit cube. Note that the two
images for left and right eyes are implemented as a single view in the
resulting script file.

Program 5 is for educational purposes only. The complete stereo
program is implemented in 150 lines of awk. It supports a more
complete 3-d script language: 1ines and text may have labels (and
subsequently be erased), a frame statement draws the 3-d bound-
ing box of the region, and view, click, clear, and comments are
supported as well. The larger program provides better error check-
ing, and no longer assumes that the input is contained in the unit cube
(the first pass of the now two-pass program scales the input). A
command-line option allows the stereograms to be viewed either by
crossing one’s eyes or by using a stereo viewer.

Our first application of 3-d stereo movies was frivolous: we
watched equal-mass bodies moving through 3-space under

Bentley et al.

Newtonian attraction (Bentley & Kernighan [1987B] presents a 2-d
version). Our first serious application was for a biophysicist col-
league who was studying the structure of a molecule with a few hun-
dred atoms. The molecular graphics systems available to her did not
support the operations she desired, so we made our own versions
with a few simple programs. For instance, a 35-line awk program
rotated its input by an angle given on the command line, and an 8-
line shell script called the rotation program to spin the molecule. We
have also used the complete stereo program to debug 3-d geometric
algorithms.

A Survey of Applications.

ANIM provides only a few geometric primitives: lines, boxes, cir-
cles and text. Nevertheless, they appear to be sufficient for making a
variety of interesting movies.

Set algorithms provide an interesting domain for algorithm ani-
mation; we saw several sorting algorithms earlier. Bentley & Ker-
nighan [1987B] contains animations of binary search trees and heaps,
along with hints on how to lay out trees.

Figure 12 shows a randomly generated parse tree. It was pro-
duced by Program 6, which reads a grammar with productions
including these:

Sentence —> Nounphrase Verbphrase

Verbphrase -> Verb Modlist Adverb
Modlist —> very Modlist

Program 6 is a slightly modified version of a program in Section 5.1
of Aho, et al. [1988]. The animation represents each node in the tree
by a bullet, left-justified text, and a line to its parent. As with more
general graph algorithms, the hard part of drawing a tree is placing
the nodes. In this case, the y-value of a node is its depth in the tree
and the x-value is the index of a terminal node in the sentence or the
minimum of x-values among a non-terminal’s descendants. An
animated recursive descent parser for arithmetic expressions requires
about 100 lines of awk. One user reports that he uses ANIM to show
lambda calculus expressions in parse-tree form.

We’ll now consider the domain of graph algorithms. Figure 13
shows the operation of Christofides’ heuristic [1976] for constructing
approximate traveling salesman tours. The left panel shows the

A System of Algorithm Animation

23

24

func gen(sym, depth, i, j, origx) |
origx = globalx
print "text", origx, -depth, "bullet"

print "text ljust", origx, -depth, "\" " sym "\""
if (sym in lhsct) (
i = int (lhsct[sym] * rand()) + 1
for (j = 1; j <= rhsctsym, 1i]; Jj++) |
print "line", origx, -depth, globalx, -(depth+l)

gen (rhslist([sym, i, 3], depth+l)
}

} else
globalx++
}
{ if (NR == 1) start = $§1
i = ++lhsct[$1]
rhsct[$1, i] = NF-2
for (j = 3; j <= NF; j++)
rhslist[$1, i, 3-21 = §3
)
END { globalx = 0; srand(); gen(start, 0) }

Program 6: A random sentence generation program.

Nounphrase erbphrase

Modlist Adverb

runs l very slowly

Figure 12: A parse tree for a sentence.

minimum spanning tree of a point set, the center panel shows an
(approximate) matching of the odd-degree vertices in the tree, and the
right panel shows the (approximate) tour constructed by an Eulerian
traversal through the sum of the two previous graphs. Given a good
geometric placement of the vertices, it is easy to animate many graph
algorithms (though finding good layouts for nongeometric graphs can
be difficult — see, for instance, Gansner, et al. [1988] and the refer-
ences therein). Bentley & Kernighan [1987B] contains a detailed
animation of Dijkstra’s implementation of Prim’s minimum spanning
tree algorithm.

Bentley et al.

s
tes ¥

Lol

Figure 13: Christofides” TSP heuristic.

ANIM has found applications in numerical analysis tasks includ-
ing the display of two-variable functions and adaptive meshes chang-
ing over time. The stars moving under Newtonian attraction in Bent-
ley & Kernighan [1987B] can be viewed as solving simultaneous dif-
ferential equations. One user writes:

I have used ANIM for debugging a recursive algorithm that
was part of my master’s thesis. I had constructed some
algorithms for reordering elimination trees (used for doing
parallel Cholesky decomposition on sparse matrices). My
algorithms were recursive and worked on large data sets,
which made it difficult to use standard debugging tools.
Instead I animated the tree for each reordering step and
was able to step through the program and see when it was
doing something wrong. Once the program was working,
animation also made it possible for me to show how a fas-
ter algorithm was producing a poorer result.

Computational geometry is a natural domain for algorithm ani-
mation. Users have animated geometric programs for tasks such as
triangulating simple polygons, finding intersections in sets of line
segments, and computing the maxima and convex hulls of point sets.
Bentley [1990] describes a 6000-line C++ program for performing
experiments on geometric algorithms (including nearest neighbor
searching, minimum spanning trees, and a wide variety of traveling
salesman heuristics); about 200 lines of animation code proved
indispensable for debugging the programs and experimenting with
options in the heuristics.

A System of Algorithm Animation

25

26

Several users of ANIM have animated parallel algorithms, ranging
from communication networks to tightly coupled systems to neural
networks. Another user writes:

I used ANIM with a simulator for a highly-parallel func-
tional machine, specifically when debugging and trying to
understand the subtleties of the interprocessor communica-
tion. The simulator spit out ANIM scripts, so that I could
watch packets move around on a stick diagram of the
machine architecture. When a deadlock occurred, I would
single-step the last few packets to see what hole I’d gotten
myself into; this was far better than the previous method,
which amounted to reconstructing this information on a
sheet of paper by hand.

Bentley & Kernighan [1987B] contains a program to animate the
malloc storage allocator, and a picture it produced. Several users
have found bugs in their use of the storage allocator by examining the
progress of movies.

An easy way to learn any new system is to play games with it.
Towers of Hanoi and Conway’s Game of Life are popular victims for
animation — each task requires about 30 lines of awk.

Dynamic graphical displays are frequently used by statisticians
[Cleveland 1988]; they go far beyond the simple histogram in Figure
1. Clark and Pregibon [1990A] have used ANIM to provide an anima-
tion facility in the S system [Becker, et al. 1988], essentially using
the S language instead of awk as the script generator. They have
used the facility to implement prototypes of a wide variety of
dynamic statistical graphics [Clark & Pregibon 1990B], including
point cloud rotation, scatterplot linking, scrolling time series, and
time series maps. An example of an animated time series, Rick
Becker’s movie of air pollution transport in the Northeastern United
States, appears in Bentley & Kernighan [1987B].

Supporting Programs.
ANIM provides the bare bones of an animation environment. In
the spirit of UNIX, we have enhanced the environment not by modi-

fying the primary programs, but rather by using small filters to mani-
pulate input and output files. We have already mentioned a program

Bentley et al.

for merging several animations into a race, and the stereo program
and programs for rotation and spinning for 3-d animations.

Bentley & Kernighan [1987B] describes several other supporting
programs. The view.clicks program summarizes the views and
clicks in a script file. The show.clicks program creates a new
script file with a new view in which all clicks are counted. Another
program processes lines in the script file of the form

#var name value

The output script file has a new view named variables; it con-
tains the name of each variable mentioned and its current value.

ANIM does not have a facility for counting clicks; rather, we use a
command like

grep ’‘click comps’ | wc

to see how many comparisons were made. We will even admit to
using text editors to make minor changes to both script and inter-
mediate files in times of need.

S. Conclusions

We believe that ANIM demonstrates that there is a role for an anima-
tion system that trades quality of output for ease and simplicity of
use. ANIM has been used for a variety of applications, some
significantly outside the algorithm animation area that was the origi-
nal target, and it has been used by many people besides its authors.

There are a few features of ANIM that have proven especially use-
ful, so much so that we feel they ought to be available in any anima-
tion system.

Independent views provide a way to see the same thing from
several perspectives at the same time, or to see different things con-
currently.

The use of named objects, and the implicit erasure of an object by
re-drawing something with the same name, makes many kinds of ani-
mation trivial; merely drawing an object at a sequence of positions
causes animation to happen ‘‘for free.”’

Movies are nice, but stills are much easier to distribute widely;
the st111ls language has been heavily used to capture and present

A System of Algorithm Animation

27

28

relevant frames from movies in situations where the movie itself can-
not be shown.

There are some obvious places where ANIM could be improved
without compromising the fundamental goal of ease of use. It would
be desirable to add more options, especially color and shading. A
few more primitive geometric objects would be desirable; for exam-
ple, ellipses could be added at essentially no cost. We have also had
some requests for composite objects that could be drawn and erased
as aunit. The stills language needs more ability to control lay-
out; Sedgewick [1988] shows the kind of elaborate layout that is pos-
sible. Some applications call for a more sophisticated view of time
and motion, such as *‘slide this collection of objects smoothly from
here at this time to there at that time.”’

In conclusion, we believe that a simple animation system is use-
ful for teaching, research, and, perhaps least obvious, just plain pro-
gramming. Such a system need not be elaborate, nor does it need to
produce superb output. Ease of use and wide availability are much
more important.

Acknowledgements

We are deeply indebted to Howard Trickey, who has made ANIM
work and kept it working for the X window system, a task far harder
than writing ANIM itself. We are also grateful to Rick Becker, Linda
Clark, Doug Mcllroy, Peter Nelson, Daryl Pregibon, Howard
Trickey, Chris Van Wyk, and an anonymous referee for helpful com-
ments on this paper.

Bentley et al.

References

A. V. Aho, B. W. Kernighan, and P. J. Weinberger, The AWK Program-
ming Language, Addison-Wesley, Reading, MA, 1988.

R. Baecker, Sorting out Sorting, University of Toronto, 1981. 25 minute
color sound film.

R. A. Becker, J. M. Chambers, and A. R. Wilks, The New S Language,
Wadsworth, Pacific Grove, CA, 1988.

J. L. Bentley, D. S. Johnson, T. Leighton, and C. C. McGeoch, An Experi-
mental Study of Bin Packing, Proc. of 21st Annual Allerton Conf. on
Communication, Control, and Computing, pages 51-60, October
1983.

J. L. Bentley and B. W. Kernighan, A System for Algorithm Animation,
Fourth UNIX Computer Graphics Workshop, Cambridge, MA,
October 1987.

J. L. Bentley and B. W. Kernighan, A System for Algorithm Animation
(Tutorial and User Manual), AT&T Bell Laboratories Computing Sci-
ence Technical Report 132, 1987.

J. Bentley, Tools for Experiments on Algorithms, Proc. CMU 25™ Anniver-
sary Symposium, Pittsburgh, PA, September 1990.

M. Brown and R. Sedgewick, Techniques for Algorithm Animation, IEEE
Software 2(1):28-39, January 1985.

N. Christofides, Worst-Case Analysis of a New Heuristic for the Traveling
Salesman Problem, Report 388, Graduate School of Industrial
Administration, Carnegie-Mellon University, 1976,

L. A. Clark and D. Pregibon, An Animation Device Driver for S, Proc. Stat.
Graphics ASA, August 1990,

L. A. Clark and D. Pregibon, Prototyping Dynamic Graphics Functions in
S, Proc. COMPSTAT 90, September 1990.

W. S. Cleveland, Dynamic Graphics, Wadsworth, Belmont, CA, 1988.

E. R. Gansner, S. C. North, and K. P. Vo, DAG — A Program that Draws
Directed Graphs, Software—Practice & Experience 18(11):1047-
1062, November 1988.

A System of Algorithm Animation

29

R. Sedgewick, Algorithms, Second Edition, Addison-Wesley, Reading, MA,
1988.

J. T. Stasko, Tango: A Framework and System for Algorithm Animation,
IEEE Computer 23(9):27-39, September 1990.

30 Bentley et al.

