Diffusion Dynamics of Games on Online Social Networks

Xiao Wei, Jiang Yang, and Lada A. Adamic
University of Michigan, Ann Arbor

Ricardo Matsumura de Araújo
Federal University of Pelotas, Brazil

Manu Rekhi
LOLapps -> MySpace
Motivation

• How can games be designed to propagate efficiently along a social network?
 – What are the best invitation strategies at the individual level?
 – Are there network effects?
Related work

• Online viral marketing (Leskovec et al., EC’06)

• Social influence & diffusion
 – Backstrom et al. 2006: joining LJ groups or CS conferences
 – Aral et al. 2009: distinguishing homophily and influence
 – Liben-Nowell & Kleinberg 2008: email chain letters
 – many studies of diffusion in blogs and microblogs (Twitter)
 – Bakshy et al. 2009: social networks and content diffusion

• Facebook
 – Sun et al. (ICWSM 2009): diffusion of pages on FB
 – Gjoka WOSN 2008: more apps, decreased average usage
Outline

• games we studied

• invitation efficiency
 – inviter
 • profile
 • invitation patterns
 – invitee
 • how many and how different are the inviters?

• network effects for games that favor large within-game groups
• 50 million active users/month (June 2010)
• founded in 2008
• 300,000 user generated applications
• 11 games
a tale of 2 games

- Grow your family (Yakuza Lords) or entourage (Diva Life) and win battles/gigs
Game activities

Yakuza Lords

Diva Life

Number of Actions

Action Portion of Each Type

1.0

0.8

0.6

0.4

0.2

0.0

1 5 20 100

battles

battle_view

invites

banks

properties

healing

characters

locations

item

mission
Game demographics

<table>
<thead>
<tr>
<th>Yakuza Lords</th>
<th>Diva Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 million users (July 2009 – Feb 2010)</td>
<td>2 million users (Sept 2009 – Feb 2010)</td>
</tr>
<tr>
<td>85% male</td>
<td>96% female</td>
</tr>
<tr>
<td>most players 18-38 years old</td>
<td>“”</td>
</tr>
</tbody>
</table>

Age distribution

![Age distribution graph](image)

- **Yakuza Lords**
 - Population Probability Density
 - Age of Gamers

- **Diva Life**
 - Population Probability Density
 - Age of Gamers
inviting friends
Your friends don’t all want to play

Name: I'm sick of Farmville notifications, I don't care about your lost cow.
Type: Products
13,329 people like this.

Name: I don't care about your fishes, farm, pets or mafia... :P
Type: Local Business
1,023 people like this.

Name: Stop sending me Farmville requests
I DON'T PLAY!
Type: Products
1,012 people like this.
In defense of social invites

- I don't care about your farm, or your fish, or your park, or your mafia!!
 Club
 1,468 people like this.

- I don't care that YOU don't care about my farm, fish and mob!
 Local Business
 1,814 people like this.

- I DON'T CARE if YOU DON'T CARE about my farm, cafe, fish, island, etc. LOL
 Local Business
 176 people like this.

- I don't care that you don't care about my farm, or my fish...
 Local Business
 245 people like this.

- I care about your farm, fish, park, & your mafia! Those who don't R Haters!
 Website
 633 people like this.
Are social invites worth it?

- only 37/25% (YL/DL) users received invites before installing game...

- However...
 - 20% of non-invited players stayed past the first day
 - 50% of invited players stuck around more than a day, and 20% were still there 80 days later.
How broadly are users inviting?

- Invite a few friends who are close and/or might be interested? Or invite everybody?

![Graphs showing Cumulative Probability and Average Number of Invitees](image-url)
Inviter efficiency: strategy

• Some users are more active inviters:
 – 10% of users account for 50% of successful invites.

• But inviting fewer friends gives higher yield per invite
 – $\rho(\text{success rate, } \# \text{ invites sent}) = -0.77$
why is less more when it comes to invites?

pacing, repetition, selectivity

• to control for # of invites sent, consider separately users who have invited 6, 12, or 20 friends
• inviters who pace their invites are more likely to succeed:
 – ρ (median interval between sending an invite, success rate)
 = 0.09~0.19***
• sending repeat invites pays off
 – ρ (av. # invites per friend, success rate) = 0.23~0.27***
• inviting fewer users at once gives higher yield
 – ρ (av. # invites per click, success rate) = - 0.35~0.49***
Inviter efficiency: profile

- Can one identify successful inviters based on their profile?
 - no correlation with gender, education, hometown, relationship status
 - weak correlation ~0.1 with age
the inviter’s network & sharing

- almost no correlation ($\rho \sim -0.04$) between the size of an inviter’s network and success rate

- almost no correlation with # of walls posts (game and other) $\rho \sim 0.04$

- or privacy level of profile ($\rho \sim -0.06$) (what gets shared publicly).
inviters engagement with the game and success

• higher engagement <-> higher invite success

 correlation between Life Time an success rate

• the top 10% of inviters by success rate have an average lifespan of 70 days
Putting it together: Invitation cascades

successful invitation

user who joined game
Cascades are wide and shallow

• small-world: everyone runs into everyone else in the game in a small number of steps
invitations
spread
and
collide
who is inviting you?

• more invites from different people -> higher probability of joining

• but inviters don’t have to be different form each other... entropy of profiles does not matter

• helps if inviters belong to the same clique
 – \(\rho \) (clustering coefficient) = 0.21 (YL), \(\rho = 0.14 \) (DL)
Are cliques being absorbed into the game?

- families grow rapidly at first, then more and more slowly

- when friends join forces their success rate grows (they share credit for new recruits)
How far does influence carry?

- correlation between one’s success rate and descendants’ av. success rate
Using networks to propagate games or using games to grow networks?

- Users add each other as friends in order to grow families...
conclusion

• games are spreading successfully and virally over social networks, as users invite friends
• it’s not so much who the inviter is, but how selective and persistent they are
• engagement correlates with success
• family-structured games experience boost from network effects
• persuasive users are proximate in the network
• games can modify the social networks they are spreading on
future work

• tracing user created games
 – what are the properties of viral games?
• characterizing large-scale cascades

more info

• http://netsi.org