Outwitting the Twitterers – Predicting Information Cascades in Microblogs

Wojciech Galuba, Karl Aberer
EPFL, Switzerland

Dipanjan Chakraborty
IBM Research India

Zoran Despotovic, Wolfgang Kellerer
Docomo Euro-Labs, Munich, Germany
Why study information flows in OSNs?

- casual link sharing
- breaking news
- activism
- viral marketing
- emergencies
- PR campaigns

Modeling

- improve how information flows
- new applications
- insights into underlying sociology
Information overload?

Median: 23 tw/h, 552 tw/day

Full-time job (reading tweets 40h a week at 150WPM)

(Sep 2009 data)
OSN information spread modeling

- Related work:
 - generative models
 - reproduce statistical properties of info spread
 - predict coarse-grained aggregates
 - # of nodes reached by spread etc.

- Our approach:
 - Look at URL diffusion on Twitter
 - Can we predict which user will mention which URL with what probability?
Why predict URL tweets?

- Protect from information overload
 - Sort incoming URLs by probability of retweeting
- Viral marketing
 - Select a subset of users that ensure successful URL propagation
- Spam detection
 - Mispredictions are a sign of anomalous activity
Realtime results for http

taksilover RT @taksilover HAHAHAHA OF FENNE STUURT JE FF BABYFOTO VAN TREY SONGZ HAHAHA < http://bit.ly/bkoOFY
less than 10 seconds ago from web

its_shauny_yo So beautiful imy !RT @MrsPinkylvory: http://twitpic.com/1o1fnm
less than 10 seconds ago from UberTwitter

dominos_JP やや重たくてすみません。充実の動画でして・・・。RT @mitsuyamarines http://tl.gd/1af1mc
less than 10 seconds ago from TwitBird iPhone

soro09 @NMANUELX_x 1235 firmas por la libertad de los presos políticos venezolanos Necesitamos tu apoyo http://bit.ly/cxRjjH
less than 10 seconds ago from web

CisaOficial RT @MaiteOficial: Para que se den una idea este fue mi postre ayer... Mmmmmmm buenísimo http://twitpic.com/1o1gnp
less than 10 seconds ago from Twitpic

Taigenz Q:Girl or boy? A:Lol http://formspring.me/TaigenzB/q/549093468
less than 10 seconds ago from formspring.me
Data

- 300 hour window in Sep’09
- 22M tweets
- 2.7M unique users
- 15M unique URLs
- 700M connections in the follower graph
- Approx. 1/15th of the Twitter traffic
Follower graph*

* active users only: that have sent at least one URL in 300h
Follower graph*

* active users only: that have sent at least one URL in 300h

Mean (directed): 3.61
User activity

![Graph showing the distribution of tweets and unique URLs](image)

- **#tweets**
- **#unique urls**
Per-URL activity
Information cascades

Nodes: users that mentioned a given URL

Arcs: information flow
Re-tweeting

Space Shuttle Atlantis lifts off for final scheduled mission. http://on.cnn.com/cBDQEk
about 23 hours ago via web

chaunce322: RT @cnnbrk Space Shuttle Atlantis lifts off for final scheduled mission. http://on.cnn.com/cBDQEk
about 18 hours ago from Twitterific · Reply · View Tweet
RT-cascade

- **@alice**: http://url.com
- **@bob**: RT @alice
 - http://url.com
- **@charlie**: http://url.com

- **Arcs**: who retweets whom
 - Irrespective of whether users follow one another

- **Single parent**
 - Only the user name immediately after „RT” taken into account
F-cascade

@alice: http://url.com @bob: http://url.com

@charlie: http://url.com

Arc @a → @b exists if:

- user @a mentioned URL before user @b
- user @b follows user @a
RT-cascades vs. F-cascades

- RT-cascades are trees
- F-cascades are DAGs
- 33% of the retweets credit a source that the user does not directly follow
cascade

subcascade
Subcascade size

![Graph showing the distribution of subcascade sizes](image)
Cascade fragmentation

![Graph showing cascade fragmentation with logarithmic scales for both axes. The x-axis represents the number of subcascades, and the y-axis represents the number of cascades. The graph includes two lines: one for RT-cascades in red and one for F-cascades in blue. The line for F-cascades appears to be steeper than the line for RT-cascades, indicating a higher rate of fragmentation for F-cascades.](image-url)
Cascade depth

![Graph showing cascade depth with logarithmic scales for both axes. The x-axis represents distance to root, and the y-axis represents the number of sub-cascades. The graph includes data points for average and maximum values of RT-cascades and F-cascades.](image_url)
Influence of the root

![Graph showing the relationship between the number of followers of a subcascade root and the median subcascade size. The graph includes two lines: one for RT-cascades (red) and one for F-cascades (blue).]
Information diffusion rate

Median: 50mins
URL tweeting prediction

- Based on the past URL retweets by users, predict the future ones
- Find probability that user i mentions URL u

$$p_{i}^{u} = ?$$
Influence

\[\alpha_{ij} \]
External influence

\[\beta_i \]
URL virality

\[\gamma_u \]

http://cnn.com/
Per-user diffusion delay

μ_i, σ_i^2

![Graph showing the fraction of events over diffusion delay with data and log-normal fit lines.](image)
Model

\[\alpha_{ij} \]

\[\beta_i, \mu_i, \sigma_i^2 \]

http://cnn.com/
At-Least-One (ALO) model

\[p_i^u = \alpha_{ij} \gamma_u p_j^u \]

* Temporal component \(\mu_i, \sigma_i^2 \)

\[P(\text{at least one event happens}) \]
Linear threshold (LT) model

\[p^u_i = \sum \alpha_{ij} \gamma_u P^u_j + \beta_i \gamma_u \]

Thresholding function (sigmoid)

* Temporal component \(\mu_i, \sigma_i^2 \)
Performance metrics

- **Recall**: fraction of tweets predicted out of all tweets that happened
- **Precision**: fraction of true positives out of all tweets predicted
- **F-score**: harmonic mean of recall and precision
- **F-score is the optimization goal**
Learning

- Input: a time window of tweets
- Computation: gradient ascent method
 - Parameter space: $\alpha_{ji}, \beta_i, \gamma_u, \mu_i, \sigma_i^2$
 - Goal: maximize F-score
- Output: p_i^u
Lineup

- **LT** – Linear Threshold model
- **LTr** – Linear Threshold model with α_j instead of α_{ji}
- **ALO** – At-Least-One model
- **RND** – baseline, makes random guesses about p_{ui}
* training data: first 150 h, test data: next 150h, results for 100 random URLs
Summary

- Log-normal degree distribution
- Small-world: 3.6 hops from user to user
- Power-laws in the user activity and URL mentions
- Cascades are shallow: exponential depth falloff
- Log-normally distributed diffusion delay
- The LT model:
 - predicts more than half of the URL tweets
 - with less than 15% false positive rate
Ongoing work

- Investigating mispredictions
 - URLs
 - users
- Scaling up the real-time data mining
 - continuous MapReduce
 - crawler farm
- Website: personalized URL rankings for Twitter users
- Apply to other systems